
 

Time, amplitude, and 
frequency dependence of the 
Payne effect a study on silica-
filled styrene-butadiene 
rubbers 

MASTER THESIS IN  

MATERIALS ENGINEERING AND NANOTECHNOLOGY 

INGEGNERIA DEI MATERIALI E DELLE NANOTECNOLOGIE 

Author: Jacopo Cervi 

 

Student ID: 977627 
Advisor: F. Briatico Vangosa 
Co-advisor: C. Marano 
Academic Year: 2022-23 



 

 

 

 

 



 i 

 

 

Abstract 

This research explores the influence of strain amplitude on the nonlinear viscoelastic 
behavior of silica-filled styrene-butadiene and acrylonitrile-butadiene rubbers, a 
phenomenon known as the Payne effect. The study delves into the time-dependent 
aspects to assess the reversible nature of structural changes caused by strain 
amplitude. Experimental tests have been carried out using the torsional Dynamic 
Mechanical Analysis technique with a prismatic specimen’s configuration. 
Experiments, conducted at ambient temperature with variable frequencies, involved 
oscillatory sinusoidal tests under controlled shear strain. The inherent nonlinearities 
in these materials limit the applicability of traditional viscoelastic theories in 
oscillatory experiments for property assessment. To address this, an initial evaluation 
using FT-rheology focused on higher harmonics, showed that the level of nonlinearity 
is limited to an extent that the classical interpretation of material properties via storage 
(G') and loss (G'') moduli is acceptable. Furthermore, the study investigates the 
frequency's impact on this complex nonlinear response, particularly examining the 
purported frequency-insensitivity of the Payne effect. 

Finally, using appropriate oscillating strain histories it was possible to demonstrate the 
full reversibility of the structural changes involved in the Payne effect for the filled 
rubber considered in this work. 

 

Key-words: Payne effect, reinforced elastomers, reversibility, recovery, frequency 
effect 
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Abstract in italiano 

Questa ricerca esplora l'influenza dell'ampiezza di sforzo sul comportamento 
viscoelastico non lineare di gomme rinforzate con silice, come le gomme stirene-
butadiene e l'acrilonitrile-butadiene, un fenomeno noto come effetto Payne. Lo studio 
si addentra negli aspetti dipendenti dal tempo per valutare la natura reversibile dei 
cambiamenti strutturali causati dall'ampiezza della deformazione. Sono stati effettuati 
test sperimentali utilizzando la tecnica di Analisi Dinamico Meccanica in torsione con 
una configurazione prismatica del campione. Gli esperimenti, condotti a temperatura 
ambiente con frequenze variabili, sono stati svolti in oscillazione sinusoidale 
controllando la deformazione a taglio. Le non linearità intrinseche in questi materiali 
limitano l'applicabilità delle teorie viscoelastiche tradizionali negli esperimenti 
oscillatori per la valutazione delle proprietà. Per affrontare ciò, una valutazione 
iniziale utilizzando la FT-reologia si è concentrata sugli armonici superiori, ha 
mostrato che il livello di non-linearità è limitato a tal punto che l'interpretazione 
classica delle proprietà del materiale tramite i moduli di conservazione (G') e perdita 
(G'') è accettabile. Inoltre, lo studio indaga l'impatto della frequenza su questa 
complessa risposta non lineare, esaminando in particolare la presunta insensibilità alla 
frequenza dell'effetto Payne. 

Infine, utilizzando storie di deformazione oscillante appropriate, è stato possibile 
dimostrare la completa reversibilità dei cambiamenti strutturali coinvolti nell'effetto 
Payne per la gomma riempita considerata in questo lavoro. 

 

Parole chiave: Effetto Payne, elastomeri rinforzati, reversibilità, recupero, effetto della 
frequenza 
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Introduction 

Numerous applications including tires, damping devices, and belts for transmitting 
power utilize reinforced rubbers. These are typically vulcanized elastomers 
strengthened by inorganic particles like carbon black and silica. This thesis addresses 
the complex behavior of reinforced rubbers, display complex behavior due to their 
nonlinear reaction to increasing amplitudes in oscillating strains. This phenomenon, 
identified in the 1960s, describes the softening of the storage modulus component in 
filled rubbers with varying strain amplitudes, it is the so-called Payne effect.  

The focus of this study is the nonlinear relationship between the shear dynamic 
modulus components and strain amplitude in torsional oscillatory experiments on 
styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR) with 
different silica contents. Employing the simple and practical torsional setup on the 
Anton Paar MRC502-rheometer using rectangular specimens, the research starts with 
an analysis of shear stress responses from amplitude sweep experiments to quantify 
the higher harmonics. The not significant presence of higher harmonics results in 
supporting the use of the linear viscoelastic theory to elaborate and represent data in 
terms of storage and loss components of the dynamic modulus. 

The study of materials containing varying amounts of filler aligns with existing 
literature findings: the inclusion of particles significantly changes the viscoelastic 
response, compared to the properties of unfilled rubber. Specifically, reinforced 
rubbers exhibit a non-linear viscoelastic behavior when the shear strain amplitude 
approaches approximately 0.5%, in contrast to unfilled rubber, which maintains a 
linear viscoelastic behavior up to 30%. 

A crucial aspect of this thesis has been demonstrating the reversible nature of 
structural changes induced by the Payne effect, because a comprehensive 
understanding of this aspect is lacking in literature. This study bridges this knowledge 
gap by conducting detailed experiments to observe and analyze these changes, 
through the monitoring of the properties over a large range of time scales. 

Additionally, this thesis research investigates how frequency influences the dynamic 
modulus's nonlinear dependency on amplitude. This work further explores these 
aspects in order to assess the separability of frequency and amplitude variables which 
prior studies have noted in the dynamic modulus analysis.  

In summary, this thesis aims to deepen the understanding of the Payne effect in 
reinforced rubbers by examining their nonlinear viscoelastic behavior under 
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oscillatory strain. Through theoretical and experimental methods, the study 
contributes to the broader knowledge of this critical phenomenon in material science, 
with potential implications for its practical applications. 
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1 Theoretical background  

The subsequent sections provide an in-depth description of the structure and 
behaviour of elastomers, together with an exploration of the governing principles of 
viscoelastic materials as characterized by Dynamic Mechanical Analysis (DMA). 
Attention then shifts to the distinctive nonlinear behaviour observed in filler-
reinforced elastomers and referred to as Payne effect when linearity is described in 
terms of dependence of dynamic mechanical properties on strain amplitude. This 
includes a comprehensive examination of various interpretations of the Payne effect, 
culminating in an analysis of the unique phenomena and specific dependencies 
inherent in this nonlinear effect. 

1.1. Elastomers 

1.1.1. General description of elastomers 
Elastomers, commonly referred to as rubber, hold a central position in an array of 
industrial applications, primarily due to their exceptional physical attributes. To truly 
appreciate the outstanding characteristics of elastomers, it is essential to delve into 
their intricate internal structure. [1] 

At the core of elastomers lies a distinctive internal arrangement, characterized by long, 
flexible chain-like molecules that intertwine and form entanglements [1] [2]. These 
macromolecular chains exhibit a remarkable degree of flexibility and mobility, 
constantly undergoing conformational changes due to thermal agitation [1] [2]. In fact, 
the defining feature of elastomers lies in their extraordinary capacity to undergo 
substantial deformations [2]. 

Before their deployment in industrial applications, elastomers often undergo physical 
and chemical treatments aimed at enhancing their mechanical properties. One of the 
most significant processes in this regard is vulcanization, which involves the chemical 
creation of covalent network junctions through the insertion of crosslinks between 
polymer chains. Typically, vulcanization involves heating the rubber, combined with 
sulfur-based vulcanizing agents, within a mold under pressure [2] [3]. It is worth 
noting that some linkages between chains may be physical and thermo-reversible, 
granting a temporary character to the network structure [2]. 
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The resulting network structure imparts elastomers with solid-like characteristics, 
significantly increasing their elasticity while decreasing their plasticity. Under external 
stresses, these chain networks inhibit relative motions, allowing rubber to stretch up 
to approximately ten times its original length. Upon the removal of external forces, the 
material rapidly reverts to its initial dimensions, exhibiting virtually no residual or 
non-recoverable strain [2]. 

Furthermore, this network formation renders rubber practically insoluble in solvents 
and furthermore renders it unsuitable for processing methods involving flow, such as 
mixing, extrusion, milling, or molding. Consequently, vulcanization must occur only 
after the rubber article assumes its final geometric form [2]. This intricate interplay 
between molecular structure and processing techniques consolidates the unique 
elasticity and functionality of elastomers, setting the stage for a deeper exploration into 
the material’s specifics. 

1.1.2. Elasticity of elastomers 
Understanding the remarkable elasticity displayed by elastomers requires a closer 
examination of the underlying mechanisms governing their behavior. Elastomeric 
chains exhibit a collection of conformations influenced by three key factors: the 
statistical nature of random processes, preferences for specific bond arrangements 
driven by steric and energetic constraints within the molecule, and the exclusion of 
hypothetical conformations necessitating overlapping chain segments in space [2]. 

Notably, the tension experienced by elastomers primarily arises from an entropic 
mechanism. It originates from the inherent tendency of the polymer chains to adopt 
configurations characterized by maximum randomness, rather than any energetic 
preference for one conformation over another [2]. This entropic effect lies at the heart 
of their singular elasticity.  

In rubber elasticity, macroscopic deformation primarily induces conformational 
transitions in the polymer. Initially in a compact, disordered, random coil state, the 
chains gradually align in the direction of the applied strain. Significant elongation 
stresses bond lengths and angles, affecting internal energy. This deformation reduces 
the system's disorder, leading to a decrease in entropy (loss of conformational 
freedom). The driving force to elastic recovery is entropic, as the material seeks to 
return to a state of minimum free energy by increasing entropy. Notably, in the 
absence of crosslinking, a stretched rubber can spontaneously revert to its high 
entropy state (random coil) through viscous flow and thermal motions [4]. 

In contrast, vulcanized elastomers respond differently to external traction. The 
molecular chains align parallel to the macro-displacement due to the presence of 
crosslinks introduced during vulcanization. These crosslinks prevent the chains from 
returning to their initial disordered state, imparting greater stability to the material. 
It's worth highlighting that the formation of crosslinks significantly reduces hysteresis, 
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which is the ratio of the viscous component to the elastic component of deformation 
resistance [2]. 

The behavior of both vulcanized and non-vulcanized rubber specimens under a tensile 
load is highlighted in Figure 1.1. 

 

 
In conclusion, these insights into the entropic nature of elastomers' elasticity 
underscore the fundamental principles driving their behavior. This knowledge forms 
the basis for our in-depth exploration of "Filled elastomers" in the upcoming section. 

1.2. Reinforced elastomers 
The enhancement of elastomers through the incorporation of particulate fillers has 
been a subject of extensive investigation, particularly during the 1960s and 1970s. The 
motivation for this exploration derives from two distinct yet connected factors. Firstly, 
the profound alterations in mechanical properties induced by filler reinforcement have 
rendered many applications of elastomers possible. Secondly, the enigmatic nature of 
the reinforcement mechanism has captivated scientists, and despite persistent efforts, 
it remains largely uncharted territory today [2]. 

In contrast to plastics, where reinforcement leads to an increase in modulus and 
hardness, but on the other hand the deformation at break decreases, elastomers exhibit 
a unique response. When reinforcing fillers are introduced, elastomers experience a 
simultaneous increase in modulus and deformation at break, a phenomenon at odds 
with traditional expectations. This intriguing paradox, although not entirely 
comprehended, underscores the distinctive ability of reinforced elastomers to offer 

Figure 1.1. Effect of stretching on a non-vulcanized (above) and a vulcanized (below) 
elastomer. 
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exceptional material properties and applications. It also justifies their widespread 
success across various technological domains [2]. 

Elastomers benefit from a variety of fillers, including carbon black, silica, and newer 
reinforcing agents [2].  

In the 1960s, the interaction between carbon black and elastomers was initially 
attributed to chemical bonding [5] [6]. Silica-reinforced blends, in contrast, initially 
displayed lower mechanical properties, especially concerning stress at break and 
abrasion resistance. However, two significant breakthroughs paved the way for silicas 
to achieve properties like carbon black mixes. The first, in the 1970s, was the 
introduction of specific coupling agents by Wolff [7] [8]. The second, in the 1990s, was 
proposed by Rauline, involving the utilization of specific precipitation silica, 
elastomers, and tailored mixing conditions to achieve effective reinforcement [9]. 

Additionally, numerous reinforcing systems have been patented, encompassing 
alumina oxyhydroxide, oxides, titanium oxides, and silicon nitride/carbide [10] [11] 
[12] [13] [14]. 

Morphology and physicochemical properties of reinforcing fillers are of crucial 
importance as they directly define their reinforcement ability. Consequently, their 
characterization is fundamental and primarily relies on morphological properties 
(sizes, surface area, and structure), dispersibility, and surface chemistry [2]. 

1.2.1. Fillers-elastomers interactions 
The interactions between fillers and elastomers are essential in understanding the 
reinforcement mechanisms that are responsible for the mechanical properties of filled 
elastomers, a topic we delve into in this section. 

Carbon Black: 

 Filler Network - Carbon black's high surface energy exerts a substantial influence 
on elastomeric chains. These chains become strongly adsorbed onto the carbon 
black surface, leading to a significant reduction in their mobility, especially in 
regions referred to as "trains" [15] [16] [17] [18]. A more refined perspective 
recognizes that elastomeric chains exhibit a gradient of mobility, ranging from 
the carbon black surface to the bulk of the material. The bonding of carbon black 
aggregates gives rise to the formation of a filler network [2]. This network 
emerges due to the statistical size of polymeric chains, which falls within the 
range of interaggregate distances. The high surface areas and loadings of carbon 
blacks used in elastomer reinforcement further induce proximity between 
reinforcing objects, resulting in elastomeric chains interacting with multiple 
aggregates, potentially binding neighboring objects together [19]. 
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 Chemical Surface Bonding - Strong links keep the chains attached to the filler 
surface hence, following Medalia and Kraus [20], chemical reactions could 
occur at the carbon black matrix interface. 

Silica: 

In contrast to carbon black, achieving silica elastomer reinforcement typically requires 
the use of a coupling agent. TESPT, a silane-based compound, is widely employed as 
a coupling agent due to its bifunctionality, enabling the formation of covalent bonds 
between silica surfaces and elastomeric chains [2]. 

 Polymer Adsorption - Polymer adsorption naturally occurs [21] [22], but the 
presence of the coupling agent limits this process due to its shielding effect. 
Consequently, in silica-silane-elastomer compounds, the filler network is 
generally less extended than in carbon black-elastomer systems. Despite this, 
the reduction in elastomeric chain mobility near the silica surface follows a 
similar qualitative trend [23]. Due to the high polarity of silica, direct 
interactions between silica aggregates may also occur, forming an additional 
filler-filler network. However, the extent of the filler network is contingent on 
the amount of coupling agent used [2]. 

Recently, Huang et all. [24] introduced an advanced model that details the interactions 
between silica fillers and rubber matrices. In this study of uncured rubber mixed with 
silica, the model categorizes the elastomeric chains into four distinct states: tightly 
bound rubber, loosely bound rubber, free rubber, and entrapped rubber. The last 
category, "entrapped rubber," refers to elastomeric molecules enveloped within the 
filler network. The distinctions and specifics of these chain states are effectively 
illustrated in the accompanying figure. 

 

Figure 1.2: Representation of the model introduced by Huang et all. (2023) 
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The introduction of fillers significantly modifies various mechanical properties due to 
the complex interactions discussed earlier. Qualitatively, attributes like strength, tear 
and abrasion resistance, as well as stiffness, experience substantial improvements 
compared to the neat elastomer. The inclusion of fillers also has a profound impact on 
the material's dissipative behavior and temperature sensitivity [2].  

It's important to note that the complex interplay of these interactions introduces 
nonlinear behaviors to certain material responses. Two notable nonlinear phenomena 
extensively studied in the literature are the Mullins effect, which pertains to quasi-
static behavior, and the Payne effect, which relates to dynamic responses [1]. These 
nonlinearities add depth and intricacy to the understanding of filled elastomers' 
mechanical properties, enhancing their utility in various applications. 

To facilitate an in-depth discussion of this nonlinear dynamic response known as the 
Payne effect, it is essential to initially undertake a concise review of the theoretical 
foundations around dynamic mechanical analysis (DMA). 

 

Figure 1.3. Description of the model introduced by Huang et all. (2023) 
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To be more precise, the Mullins effect is observed during repeated loading-unloading 
cycles, as depicted in Figure 1.4. Typically, a gradual softening in the loading curves 
occurs over these cycles, potentially leading to residual deformation. This effect is 
linked to the rearrangement of labile bonds, but it can also result from mechanical 
degradation when these cycles involve extremely high elongations [4]. 

 

 
Figure 1.4. Stress-strain responses of a 50 phr carbon-black filled SBR submitted to a 

simple uniaxial tension and to a cyclic uniaxial tension with increasing maximum 
stretch every 5 cycles [25] 

1.3. Dynamic mechanical analysis 
Dynamic Mechanical Analysis (DMA) is instrumental in elucidating the viscoelastic 
behavior of polymers, particularly due to its capability to analyze the material's time-
dependent response in terms of dependency on frequency when subjected to 
sinusoidal inputs in steady state.  

At the heart of DMA is the measurement of a material's steady-state response to a 
sinusoidal strain or stress at a constant frequency. For instance, applying a sinusoidal 
shear strain can be mathematically expressed as: 

𝛾(𝑡) = 𝛾 sin(𝜔𝑡) 1.1 

where 𝛾  denotes the strain amplitude, 𝜔 the angular frequency and 𝑡 the time. 

A perfectly elastic response (also called solid-like), following Hooke’s law (Equation 
1.2), would occur without phase delay in relation to the strain. In contrast, the liquid-
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like response follows the Newton’s law (Equation 1.3), therefore it would be in phase 
with the strain rate, exhibits a phase delay of 𝜋 2⁄  with respect to the sinusoidal strain. 

𝜏 = 𝐺𝛾 1.2 

𝜏 = 𝜂
𝑑𝛾

𝑑𝑡
 1.3 

For materials displaying linear viscoelastic properties, the shear stress 𝜏 oscillates 
sinusoidally as well, but with a phase angle 𝛿 between 0 and 𝜋 2⁄ . This angle indicates 
the phase shift between stress and strain. Mathematically, the stress response can be 
divided into two components: 𝜏  and 𝜏 , representing the in-phase, elastic and in 
quadrature, viscous responses, respectively. The elastic stress component 𝜏 , in phase 
with the strain, represents the material's ability to store energy elastically. In contrast, 
the viscous component 𝜏 , with 𝛿 = 𝜋 2⁄ , indicates the material's capacity to dissipate 
energy. 

These stress components help define material properties. The elastic modulus 𝐺′, or 
storage modulus, is the ratio of the elastic stress component amplitude to the strain 
amplitude, given by: 

𝐺 (𝜔) =
𝜏 cos(𝛿)

𝛾
 

1.4 

The viscous, or loss, modulus 𝐺  is calculated from the ratio of the viscous stress 
component amplitude to the strain, indicating the material's propensity for energy 
dissipation, as shown in: 

𝐺 (𝜔) =
𝜏 sin(𝛿)

𝛾
 1.5 

The complex modulus 𝐺∗ integrates both elastic and viscous elements, representing 
the overall deformation resistance. 

𝐺∗(𝜔) = 𝐺 (𝜔) + 𝑖𝐺 (𝜔) 1.6 

The ratio of 𝐺  to 𝐺  (Equation 1.7), provides insights into the damping characteristics 
of the material, crucial for understanding polymer behavior under cyclic loading.  

tan(𝛿(𝜔)) =
𝐺 (𝜔)

𝐺 (𝜔)
 1.7 

It's important to note that these relationships are primarily established in shear 
stress/strain state, where the relevant modulus is 𝐺, while in uniaxial tensile state, E 
denotes the appropriate property. 

All information explained above are referred to [26], [27] and [2]. 
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1.3.1. Rectangular geometry torsion 
In the exploration of shear deformations, a variety of experimental setups have been 
utilized. Particularly, Sternstein et al. (2000) and Rizza (2020) [28] [29] used a shear 
sandwich tool, while Li (2017) and other authors [30] [31] [32] applied parallel plates 
in rotation. The relatively new technology RPA is used by Randall at al. 2014 [33]. In 
this experimental work, our focus is on a torsional geometry tool (Figure 1.5) to study 
deformations in rectangular specimens. 

 

 
Figure 1.5. Torsional rectangular geometry tool 

Addressing the in-plane shear stress distribution in rectangular specimens is complex 
[34]. When torque is applied to such specimens, the resulting stress field includes two 
torsion components: primary and secondary. The primary torsion solution, commonly 
adopted in commercial rheometers, operates under the assumption that sections 
perpendicular to the rotational axis are free to warp. This, however, is an 
oversimplification, given that the specimen ends are clamped, restricting warping [35]. 
Thus, secondary torsion, or warping torsion, comes into play. It arises from tangential 
stresses that counterbalance the normal stresses caused by these clamping-induced 
constraints. This interaction misleadingly increases the torsional stiffness, leading to 
an overestimation in the measured shear modulus, especially in less slender 
specimens. 

Considering these intricacies, the selection of prismatic specimen sizes becomes 
crucial. Luca Di Giosia's (2022) [36] extensive research in this area has been quite useful 
on determining the optimal geometry, and its results are applied in this experimental 
work.  
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1.4. Payne effect 

1.4.1. Description of the Payne effect  

 
Figure 1.6. Schematic illustration G' and G'' variation divided in three strain amplitude zones 

The Payne effect, crucial in the study of filled rubbers, was first documented by 
Fletcher and Gent (1953) [37] and further elaborated by Payne (1962) [38]. This 
phenomenon describes the non-linear softening behavior of rubber materials under 
oscillatory displacement, observed as a strong dependence of the dynamic stress 
response on the applied strain amplitude. This characteristic behavior forms a key 
aspect of the viscoelastic properties of filled rubbers, which are essential components 
in many practical applications, including automobile tires, damping devices, and 
power transmission belts. The significance of the Payne effect in such applications 
arises from the typical dynamic stresses and strains these materials are subjected on, 
directly correlating with the effect's parameters [39] [30]. 

Despite extensive research, the fundamental nature of the Payne effect and the 
underlying mechanisms remain partially unresolved. Over a hundred publications 
have focused on various aspects of this phenomenon, enriching the field but also 
highlighting the complexity surrounding it [39]. Chazeau et al. (2000) [29] notably 
classified mechanism-based models that seek to explain the Payne effect, contributing 
significantly to our understanding. 

One explanatory model is Dannenberg's molecular slippage model (1996) [40], which 
delves into the interaction between elastomer chains and filler particles. Initially, these 
chains are adsorbed onto the filler surface. At low strain amplitude (Figure 1.6 - Figure 
1.7), the chains extend, storing the deformation energy as elastic energy, which is 
recoverable upon strain reduction, resulting in a low and constant loss modulus 𝐺′′. 
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Figure 1.7. Chains stretching at low strain amplitude Zone 1 

 
Figure 1.8. Chains desorption at medium strain amplitude Zone 2 

As strain progresses (Figure 1.6 and Figure 1.8), the stored elastic energy surpasses the 
adsorption energy, causing elastomer chains to gradually desorb from the filler 
surface. This desorption is a gradual process, influenced by a broad distribution of 
interaggregate distances, leading to various lengths of bridging elastomer segments. 
Dannenberg suggests that eventually, this gradual desorption, which results in 
homogenization of segment lengths, explains the stabilization of the modulus in the 
Payne effect's third zone. Thus, the Payne effect not only highlights the unique 
viscoelastic properties of filled rubbers but also provides insight into the molecular 
dynamics governing rubber-filler interactions. 

1.4.2. Linear-nonlinear dichotomy 

In the field of dynamic mechanical analysis (DMA), understanding the behavior of 
materials under oscillatory strain is essential. At small strain amplitudes, the material's 
response is linear and characterized by the viscoelastic moduli 𝐺  and 𝐺′′ [41]. 
However, as strain amplitude is increased, the response enters a nonlinear viscoelastic 
regime, and the decomposition in an elastic and viscous component is inadequate, 
given the appearance on higher order harmonics in the stress periodic response. 

To quantify the behavior under large amplitude oscillatory strain (LAOS), Fourier 
transform (FT) rheology is commonly employed [42]. This approach involves 
representing the stress response to sinusoidal strain input through a Fourier series [43]. 
In the linear regime, this response will mainly contain the first harmonic (𝑛 = 1), i.e. 
an out of phase sinusoid. However, with increased strain, nonlinear responses emerge, 
marked by the growth of higher harmonic contributions. Although mathematically 
sound, FT rheology has limitations, such as sensitivity to nonlinearity without 
providing a clear physical interpretation of higher-order coefficients [44]. 



14  

 

 

Addressing these challenges, Ewoldt (2008) [44] introduced new metrics for analyzing 
nonlinearities in LAOS tests, offering the advantage of a clearer physical 
interpretation. However, there remain some fundamental questions concerning 
Ewoldt’s approach as discussed by Rogers et al. (2018) [45].  

An intriguing aspect of the Payne effect, particularly in vulcanized rubber compounds, 
is that despite the reduction of modulus with increasing strain common to many soft 
materials [46] [47] [48], the response to forced oscillatory shear remains almost 
sinusoidal, distinctly lacking higher order harmonics across all considered strain 
amplitudes (Figure 1.9) [39] [29] [49] [33] [50]. This peculiar behavior, termed "The 
linear-nonlinear dichotomy" by Roberson et al. (2006) [39], is a key characteristic 
differentiating the Payne effect from other types of viscoelastic nonlinearity. This 
absence of higher harmonics in filled rubber is evident when examining the ratio of 
Fourier coefficients: third harmonic response relative to the first (Figure 1.10).  

 
Figure 1.9. Dependence of 𝐺′ and 𝐺′′ on 

strain amplitude. The test material: SBR-CR 
rubber. [30] 

 
Figure 1.10. Dependence of the ratio of first 
and third harmonics on strain amplitude. 

The test material: SBR-CB rubber. 

Lissajous plots offer another method to visualize rheological responses, wherein 
oscillatory shear deformation at a fixed amplitude is plotted against the periodic shear 
stress response. In the linear viscoelastic regime, these plots show an elliptical shape. 
By replotting the sinusoidal data of Figure 1.9 into a Lissajous plot, become visually 
apparent that the deviations from the elliptical shape at high amplitudes are a limited 
entity [30]. This observation implies that, unlike other materials exhibiting complex 
nonlinear responses, the classical viscoelastic quantities 𝐺′ and 𝐺′′ remain effective for 
analyzing the Payne effect in vulcanized rubber compounds. 
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Figure 1.11. Lissajous presentation of the response of rubber to forced oscillatory shear. The 
test condition for cases (d)-(f): Strain-controlled mode at 10 Hz and 25 °C. The test material: 

SBR-CB rubber [30] 

1.4.3. Reversibility and recovery aspects 
Filled and unfilled rubber-like materials exhibit a stress-softening phenomenon 
known as the Mullins effect, which, unlike other similar effects, is irreversible at room 
temperature. This phenomenon has been extensively documented in various studies 
[51] [52] [5] [53]. When examining the Payne effect, which describes the reversible 
softening in elastomers, researchers have noted an additional softening effect. This is 
particularly evident in virgin specimens subjected to tests in which strain amplitude is 
first gradually increased to a maximum value and then decreased to the initial value, 
and the cycle is repeated more than once [54] [55] [51]. Data (Figure 1.12), particularly 
dynamic modulus measurements from the initial upward amplitude sweep (labeled 
as "up 1"), differ markedly from subsequent sweeps. This reduction in modulus is 
attributed to the Mullins effect and has been considered irreversible [51] [36]. 

 
Figure 1.12. 𝐺′ function of strain amplitude in increasing and decreasing amplitude sweeps 

driven in series tests for (a) SBR50, (b) SBR25 and (c) SBR0 [36] 
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To mitigate the influence of the Mullins effect, experimental procedures often involve 
preconditioning filled rubber samples using large strain amplitudes. This 
preconditioning is essential to exclude the influence of the Mullins effect from the 
observations, focusing solely on the reversible softening characteristics [29] [51]. 

 
Figure 1.13. Dynamic storage modulus recovery in time at different temperatures (HAM 

high amplitude modulus, LAM low amplitude modulus) [29] 

In literature, the term "reversibility" is frequently associated with the Payne effect in 
preconditioned samples. Sternstein et al. (2000) demonstrated that the low amplitude 
shear modulus in such samples could be restored over time, indicating a degree of 
reversibility and recovery [29] [56] [57] [51].  

In contrast to these methods, the current study does not utilize preconditioning. This 
approach allows for an examination of both the reversibility and the recovery kinetics 
of the initial softening effect, as observed in virgin specimens. This method provides a 
more comprehensive understanding of the intrinsic material behavior, encompassing 
the reversible and the presumed irreversible softening effects. 

1.4.4. Frequency-insensitive feature of Payne effect  
In the study of filled rubbers, a recurring observation in the literature is that for filled 
rubbers the effect of measurement frequency on the dynamic storage modulus vs. 
shear strain amplitude gives constant shifts along the vertical direction with the 
increase of frequency [29] [30]. This manifests as almost parallel strain sweep curves 
at various frequencies, a feature clearly illustrated in following figures: 
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Figure 1.14. Frequency dependence of the storage shear modulus vs. dynamic strain 

amplitude relationship for a silica filled-silicone elastomer at 25 °C [40] 

 
Figure 1.15. 𝐺  and 𝐺  at 25° versus γ0 for the SBR-CB rubber at various frequencies. The 

strain sweeps are performed at several fixed frequencies, 0.004, 0.04, 0.4, 4, and 10 Hz. Arrow 
marks the location of the 𝐺∗ maximum [30]  

This distinct phenomenon is referred to as the "frequency-insensitivity feature of the 
Payne effect" [58] [59] [60] [61]. Notably, this pattern holds true for both the storage 
(𝐺 ) and loss (𝐺 )  components of the dynamic modulus, leading to what is termed 
the frequency-deformation separability principle. In essence, within both linear and 
nonlinear regimes, the dynamic moduli can be effectively decomposed into two 
components: one that depends on strain and another on frequency (1.8). 

𝐺 𝛾0, 𝜔 = 𝑓 𝛾0 𝐺0(𝜔)

𝐺 𝛾0, 𝜔 = 𝑔 𝛾0 𝐺0 (𝜔)
 1.8 

Where, following the conventions of the literature, the low amplitude moduli for 
storage and loss are designated as 𝐺′   and 𝐺′′ , respectively (in this experimental work 
these notations are applied). This separability implies that experimental data across 
different frequencies can converge into a single, unified master curve. Achieving this 
involves normalizing 𝐺  by 𝐺′  and similarly 𝐺 ′ by 𝐺′′  (1.9), where both 𝐺′  and 𝐺′′  
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represent the moduli at sufficiently low strain amplitudes that exhibit linear 
characteristics [30]. 

⎩
⎪
⎨

⎪
⎧

𝐺 𝛾0, 𝜔

𝐺0(𝜔)
= 𝑓 𝛾0

𝐺 𝛾0, 𝜔

𝐺0 (𝜔)
= 𝑔 𝛾0

 1.9 

The Figure 1.16 below illustrates this principle, showing that only vertical adjustments, 
influenced by frequency, are required for data alignment.  

 
Figure 1.16. Normalized 𝐺  and 𝐺′′ at 25°C versus γ0 for the SBR-CB rubber [45] 

Relying on this fundamental understanding, the current research effort to explore the 
extent to which the frequency-insensitivity feature of the Payne effect is observable 
and consistent in the present system. 
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2 Materials and methods 

2.1. Materials and preparation 
The experimental work involved testing materials comprising E-SBR 1500 (styrene-
butadiene rubber), produced by Versalis S.p.A., and NBR (acryl nitrile butadiene 
rubber), each reinforced with silica in varying concentrations. E-SBR 1500, a standard 
grade of SBR used in car tires and inner tubes, is manufactured through cold emulsion 
copolymerization employing rosin and fatty acid soaps, containing 23% chemically 
bonded styrene. Versalis S.p.A. of Milan, Italy, provided the uncured E-SBR 
compounds in four batches differentiated by silica filler content, measured in phr 
(parts per hundred rubber). This metric indicates the grams of a particular component 
per 100 grams of rubber matrix. The four batches contain 0, 25, 50, and 75 phr of silica 
Zeosil 1165 MP supplied by Solvay. 

It is crucial to clarify the nomenclature for all the material types, as these will be 
consistently used as labels throughout the detailed results report. Table 2.1 outlines 
these terms. 

Table 2.1: Labels used in the present work to lighten the notation of the materials  

Silica content 

[phr] 

Material 
notations 

0 SBR 0 

25 SBR 25 

50 SBR 50 

60 NBR 60 

75 SBR 75 

 
In addition to the silica filler, the compounds detailed in Table 2.2 incorporated several 
essential ingredients, each serving a unique purpose in the rubber compounding 
process. The antioxidant 6PPD, or N-(1,3-dimethylbutyl)-N'-phenyl-p-
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phenylenediamine, was included to protect the rubber from oxidative degradation. 
CBS, known chemically as N-cyclohexyl-2-benzothiazole sulfenamide, functioned as 
an accelerator to advance the vulcanization process. The coupling agent, Si69, or bis3-
triethoxysilylpropyltetrasulfide, was crucial for enhancing the bond between the silica 
filler and the rubber matrix, thus improving the mechanical properties of the 
compounds. Lastly, zinc oxide (ZnO) served as an activator, facilitating the overall 
vulcanization reaction, and ensuring a uniform cure throughout the compound. 

Before testing, these compounds underwent vulcanization using a compression 
molding press. The process involved applying 10 MPa pressure at 170 °C for 10 
minutes, replicating the conditions suggested by Pirelli & C. S.p.A. and used by Luca 
Di Giosia with similar materials. The molds produced rubber sheets of 127x127x3 mm3, 
later die-cut into rectangular specimens with dimensions 34x9x3 mm3, as determined 
by Luca Di Giosia [36]. 

Additionally, this study analyzes NBR, reinforced with 60 phr of silica. However, due 
to a confidentiality agreement, details regarding NBR’s supplier and composition were 
not available. While the silica-filled NBR sheets were thinner than the E-SBR ones, they 
were cut into identical rectangular shapes. 

Table 2.2: Batches composition per 100 grams of E-SBR 

Species 

[phr] 
SBR 0 SBR 25 SBR 50 SBR 75 

KER 1500 100 100 100 100 

Silica 0 25 50 75 

Si69  2 4 6 

6PPD 2 2 2 2 

Steric acid 2 2 2 2 

ZNO 2 2 2 2 

CBS 3 3 3 3 

S 1 1 1 1 



 21 

 

 

2.2. Dynamic mechanical tests 
In this particular section, we provide a comprehensive and detailed description of the 
measuring instrument and the various test protocols that have been utilized in our 
procedures. 

2.2.1. Testing apparatus 
This investigation employed the Anton Paar MCR502 Rheometer, showcased in Figure 
2.1 (a). Specimen testing was conducted under shear deformation in an oscillatory 
mode, using the torsional setup illustrated in Figure 2.1 (b). This setup features two 
main elements: an upper tool and a lower tool, each equipped with adjustable clamps 
to firmly secure the specimen. However, the clamps lack a mechanism for controlling 
the force applied, marking a limitation of this methodology. 

 

 
       (a)      (b) 

Figure 2.1. Imagine of the Anton Paar MCR502 on the left (a), scheme of the torsional setup 
on the right (b) 

Operational dynamics of the setup involve the upper clamp, which is connected to the 
motor via a shaft. This connection enables the induction of oscillatory shear through 
rotational motion. Additionally, the system permits the control of the axial force 
exerted on the specimen through vertical adjustments of the motor along the 
crosshead. The lower clamp remains static, integrated into the instrument's structure.  

By inputting the precise dimensions of the rectangular specimen into the Anton Paar 
Rheometer, the instrument calculates the specific shear strains selected by utilizing the 
relationship between the deflection angle (θ) and the shear strain (γ) for rectangular 
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cross-sections, as outlined in Equation 2.2. By measuring the torque response of the 
material, the rheometer can estimate the shear modulus using Equation 2.1. This 
equation is derived from the approximation of Saint-Venant's exact solution for the 
primary torsion of rectangular specimens. Specifically, the approximation arises from 
omitting higher terms in the series expansion that describes the polar moment of 
inertia J [36]. Nevertheless, this equation is commonly used in most commercial 
rheometers. 

 

𝐺 =
𝑀

𝐷𝐽
=

3𝑀𝐿

𝜃𝑤𝑡 𝑔 (𝑛)
 2.1 

with 

𝜃 =
𝛾𝐿𝐶

𝑡
 2.2 

𝐶 =
1

[1 − 0.378𝑛 ]
 2.3 

𝑔 (𝑛) ≅ 1 −
192

𝑛𝜋
𝑡𝑎𝑛ℎ 𝑛

𝜋

2
+ 0.004524  2.4 

𝑛 =
𝑤

𝑡
 2.5 

𝐷 =
𝜃

𝐿
 2.6 

 

Owing to the inability to precisely control the clamping force, a preliminary analysis 
was conducted to quantify the associated variability. The findings and detailed 
discussions of this aspect are presented in the respective subchapter, providing a 
deeper understanding of its impact on the overall experimental results (Section 2.4). 

It is essential to briefly summarize a few observations regarding the testing apparatus 
that emerged during the analysis: 

 The instrument with this setup and specimen geometry has some difficulties at 
high amplitudes (30%) especially at high frequencies (20 rad/s), maybe due to 
some slippage phenomena 

 The periodic cleaning of the clamps reduces the just mentioned risk 
 The lack of a dynamometric torque wrench leads to an increase of the system 

variability 
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2.2.2. Sinusoidal oscillatory test in simple conditions 
To characterize the viscoelastic behavior of the samples, various histories of oscillatory 
sinusoidal deformations under shear conditions were imposed. These different 
deformation profiles aimed to unravel the complex nonlinearity inherent in the 
reinforced elastomer being studied. Typically, in line with the instrument 
manufacturer's recommendations, a 1 N tension normal to the sample's cross-section 
augments the sinusoidal oscillations. 

The chosen approach, with its focus on the amplitude of dynamic strain, the time, and 
the frequency of application, is essential for an in-depth analysis of the material's 
viscoelastic properties. The experimental parameters considered are outlined in 
Equation 1.1 where γ0 is the amplitude of the shear strain and ω is the frequency.  

𝛾(𝑡) = 𝛾 sin(𝜔𝑡) 2.7 

2.2.3. Shear Strain amplitude sweep tests 
The most utilized test for investigating the Payne effect involves deforming the 
specimen with progressively increasing strain amplitudes, γ0. This method typically 
focuses on the material's steady-state behavior, therefore the acquisition of the data at 
each step waits until the steady state is reached. The specific parameters utilized in 
these tests of the present work are reported in the table that follows: 

Table 2.3: Control parameters of the increasing strain amplitude test  

𝛾0  

[%] 

𝛾0  

[%] 

Frequency 

[rad/s] 

0,01 30 5 

The scheme of this standard test method is depicted in Figure 2.2. 
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Figure 2.2. Scheme of an oscillatory applied strain test with a logarithmical increasing strain 

amplitude γ0  

2.2.4. Series of shear strain amplitude sweep 
In addition to this, an extra test protocol has been selected to examine the reversibility 
of the Payne effect and the impact of stretching on the material's characteristics. This 
additional method involves conducting a series of amplitude sweep tests in 
succession, and the testing protocol is detailed in Table 2.4 below. The nomenclature 
was set in such a way that the initial amplitude sweep is termed "sweep #0", 
emphasizing the pristine condition of the sample without any prior strain application. 
By this logic, the subsequent amplitude sweep is labeled "sweep #1," indicating the 
material has previously been subjected to one amplitude sweep, and so on. 
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Table 2.4: Successive strain amplitude sweep test protocol, including its parameter 
nomenclature; the rest time �̃� is set to a different value depending on the material and test 

frequency.  

Interval 
Initial 𝛾0 

[%] 

Final 𝛾0 

[%] 

ω 

[rad/s] 

Rest 
time 

Nomenclature 

1 0,01 30 𝛚  Sweep #0 

2    𝒕  

3 0,01 30 𝛚  Sweep #1 

4    𝒕  

5 0,01 30 𝛚  Sweep #2 

 

Between these sweep tests, a rest period is included. Each material underwent the 
documented procedure for different frequencies which are chosen among these 
values: 0,1, 1, 5, 10, and 20 rad/s. 

The schematic view of this series of amplitude sweeps is illustrated in Figure 2.3.  

 

 
Figure 2.3. Scheme of increasing and decreasing amplitudes sweeps driven in series test 

A possible variant of the previous protocol is detailed in Table 2.5, where the rest time 
is no more fixed but is different between sweeps #0 and #1 respect to the rest time 
between the sweeps #1 and #2. The rest times are variables but in general 𝑡  is minor 
than 𝑡 . 

 

�̃� �̃� 
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Table 2.5: this table outlining two amplitude sweeps intervals, each detailed with its 
corresponding parameters and divided by a variable long rest time �̂� 

Interval 
Initial 𝛾0 

[%] 

Final 𝛾0 

[%] 

ω 

[rad/s] 
Rest time Nomenclature 

1 0,01 30 20  Sweep #0 

2    𝒕𝟏  

3 0,01 30 20  Sweep #1 

4    𝒕𝟐  

5 0,01 30 20  Sweep #2 

 

The protocol previously detailed was used to assess the response at various times. 
However, due to time restrictions in the experimental phase of the thesis, this test was 
exclusively performed on SBR 50 and 75, and only at a frequency of 20 rad/s. 

2.2.5. Series of strain amplitude sweeps followed by a constant low strain 
amplitude test 

It has been demonstrated that following a test after increasing deformation 
amplitudes, the dynamic moduli exhibit a significant time dependency (1.4.3). The 
study's approach to evaluating the system's recovery capabilities—in terms of both the 
kinetics and the extent of recovery of the linear modulus of unstrained material—
involved a specific test. This implied imposing a constant low strain amplitude test 
subsequent to the series of amplitude sweeps already described. The experimental 
details of the test protocol can be found in Table 2.6, which includes only the last of the 
amplitude sweep tests, referred to as "sweep #2". The protocol was applied considering 
the frequencies of 5, 10, and 20 rad/s. 
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Table 2.6: table outlining a series of test intervals, each detailed with its corresponding 
parameters. 

Interval 
Initial 𝛾0 

[%] 

Final 𝛾0 

[%] 

ω 

[rad/s] 
Rest time Nomenclature 

1 0,01 30 𝛚  Sweep #2 

2    6 s  

3 0,01 𝛚  Recovery 

 

Following the amplitude sweep series and a six-second rest interval, a fixed low strain 
amplitude at a constant frequency is then employed to track the recovery over time of 
the low amplitude storage modulus, recorded as 𝐺 # (𝑡), and compared to the initial 
virgin modulus 𝐺 #  (#0). The interlude of six seconds is mandated by the equipment’s 
limitations when shifting from a high amplitude (30%) to a low amplitude (0.01%), 
particularly due to system inertia at elevated frequencies. 

The protocol was applied to all material types previously examined. The analysis will 
particularly concentrate on how the low amplitude moduli progress over time and 
whether the original pristine modulus (𝐺′ #  ) is fully regained. Thereafter, the chapter 
will delve into the temporal changes of the Payne effect curve beyond the initial low 
amplitude response. 

To schematically explain the protocol detailed in Table 2.6, the test sequence is 
illustrated in Figure 2.4.  

 
Figure 2.4. Scheme of a sequence of strain amplitude sweep test followed by a constant 

amplitude of strain test 
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2.2.6. Frequency sweep test 
The final type of test adopted involves applying a logarithmically increasing 
frequency, at a constant strain amplitude. This test was conducted to examine how the 
moduli are affected by frequency in the low amplitude linear range. It has to be said 
that samples tested using this method are virgin materials. 

 
Figure 2.5. schematic  view of the oscillatory applied strain with a logarithmical increasing 

frequency ω in time 

2.3. Sample geometry 
The determination of a sample geometry ensures accurate measurements with the 
Anton Paar MCR502 rheometer, was informed by extensive preliminary work [36]. 
Styrene-Butadiene Rubber (SBR) bars with length 34mm and width 9mm were die cut 
from 3mm thick slabs.  The dimensions followed both theoretical considerations and 
empirical findings. 

In the primary torsion problem of rectangular bars as described by De Saint-Vénant 
[36], sections perpendicular to the rotational axis of the specimen bar are assumed to 
be free to warp. Therefore, out-of-plane displacements along the rotational axis occur. 
Actually, when the sample is twisted in torsion, axial stresses occur near the clamps as 
the warpage is hindered. Then secondary torsion arises from tangential stresses that 
balance those normal stresses induced by prevented warping deformations. Such an 
effect can be seen as a localized phenomenon close to the constraining areas, and its 
effect on the overall modulus measurement depends on the specimen length-to-width 
ratio and its cross-section geometry (or thickness to width ratio) [34]. 

Since the instrument takes only into account the primary torsion component a 
significant higher shear modulus may be measured; for this reason, the geometry 
analysis aims to minimize artefacts choosing the values of the cross-section aspect ratio 
and the length-to-width ratio that would minimize the overestimation of the modulus. 
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In general, a square cross-section (that is a width-to-thickness ratio equal to 1) and a 
length-to width ratio higher than 3 are recommended [62].  

At the other hand there’re some constraints which have to be taken into account: 

- The torque range of the instrument (from 0.002 µNm to 200 mNm) 

- Maximum thickness allowed by the setup (4 mm) 

- The equations used by the instrument have a maximum limit of validity in 
terms of deflection angle (θ < 180°). 

Starting with the assumption that the shear modulus G of SBR grades is around 1 MPa, 
L. Di Giosia in 2022 [36] chose a cross-section aspect ratio of 3 with a thickness of 3 
mm. These dimensions were selected based on the maximum thickness, the smallest 
measurable torque, and the most suitable cross-section aspect ratio. 

Additionally, taking into account the constraint on the deflection angle and the 
requirement for a length-to-width ratio greater than 3, a length of 20 mm was 
determined. Also, considering the necessity to secure the sample with a clamping 
length of 14 mm, the overall length of the sample was established to be 34 mm. 

The decision to apply these results in this study is further justified by the fact that the 
materials being investigated here are similar to those analyzed in [36]. 

In the case of the NBR material used in this research, the discussion around sample 
geometry was not necessary, as the NBR samples came pre-sized at 34 mm in height, 
9 mm in width, and 2 mm in thickness. This pre-determined dimension meant that our 
focus could remain on other experimental variables, with the geometry already set. 

 
Figure 2.6. Scheme of the standard specimen dimensions representing SBR and NBR with 

their dimensions 
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2.4. Sample installation errors analysis 
At the outset of this chapter, we examine the errors inherent in the sample installation 
process, noting how they can compromise measurement accuracy. it is imperative to 
address the variability introduced during the clamping operation, which currently 
lacks a tool to regulate the clamping force. Additionally, the geometric placement of 
the sample relies solely on visual estimation, which inherently introduces a degree of 
inaccuracy into the measurements. Furthermore, it’s important to point out that this 
variability is influenced by the methodology and the operator involved. 

Compounding these issues is the viscoelastic nature of the material in question. The 
stress state induced by the clamps evolves over time following deformation, which 
could further affect the integrity of the measurements. Given these complexities, it is 
crucial to ascertain the most effective testing methodologies that minimize potential 
errors. In fact, to minimize potential errors coming from this aspect for all the analysis 
presented in this experimental work, it’s been predetermined a resting period post-
clamping of 120 s to wait before the specific test would start. 

The subsequent sections will delve into the analytical exploration of the before 
mentioned issues, with a focus on both the control of clamping forces and the precision 
of geometric positioning. It is essential to note that the analyses to follow have been 
conducted on virgin samples, ensuring that the findings reflect the initial state of the 
material devoid of any pre-existing stress or deformation influences. 

2.4.1. Clamping and positioning error 
To isolate the variability introduced during the clamping and positioning phase, 
modulus measurements for SBR compounds with variable silica contents are recorded 
at a fixed strain amplitude (0,01%) and frequency (20 rad/s). The protocol devised is 
described in  Table 2.7: Protocol for the investigation of the positioning and clamping 
error. , and was applied 5 consecutive times on each sample considered in this 
investigation. 

 

 

 

 

 



 31 

 

 

Table 2.7: Protocol for the investigation of the positioning and clamping error.  

Steps Description 

1 Positioning and clamping 

2 
Rest time 

(120 s) 

3 
Oscillatory measurement 

(γ0 = 0,01 %; ω = 20 rad/s) 

4 Removal 

5 
Rest time 

(10 min) 

 

The removal of the sample is followed by a ten-minute relaxation period, after which 
the step sequence is reiterated on the same sample, so as to minimize confounding 
variables such as minor inconsistencies in material composition or sample geometry. 

The results (Figure 2.7) display the dependence of G’ and G’’ on silica content (in parts 
per hundred rubbers - phr), with the error bar related to specimen positioning and 
clamping.  
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Figure 2.7. Storage (G’) and loss (G’’) modulus in tests performed at γ0 = 0,01 %; ω = 20 rad/s 

for each silica content (0, 25, 50, 75 phr) in SBR 

The provided graph presents the mean values of the storage and loss moduli obtained 
from five trials, with error bars representing the maximum dispersion (difference 
between the highest and the lowest values) of the data points. Notably, the variability 
becomes more pronounced in SBR samples containing higher levels of silica, 
particularly in terms of the loss moduli. To clearly discern the impact of these 
variabilities on the measurements, a comparison of the relative maximum dispersion 
(relative error) across different mixtures is presented. Therefore, each data point and 
corresponding error bar have been normalized to the average modulus value for each 
mixture, as depicted in the figure. 
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Figure 2.8. Normalized storage modulus with error bars showing the relative maximum 

dispersion of the data as a function of the silica content in SBR 

  
Figure 2.9. Normalized loss modulus with error bars showing the relative maximum 

dispersion of the data as a function of the silica content in SBR 

The analysis reveals a more significant relative effect of the positioning and clamping 
procedures on samples with lower silica content in both components of modulus, with 
maximum errors of around 10% relative to the average measured moduli. In general, 
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for silica-filled SBR and neat SBR, the errors remain below 10% for storage moduli and 
are about 10% or less for loss moduli.The effect of filler content is significantly higher, 
so it can be concluded that although clamping and positioning operations do impact 
the measurements, their influence is not so significant.  

This preliminary examination has been undertaken to quantify potential errors that 
may influence the outcomes, particularly in studies requiring the sample to be 
removed post-measurement and subsequently reinstalled and tested after a certain 
duration. 
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3 Experimental results 

In this chapter attention is directed towards the nonlinear response exhibited by filled 
rubbers when subjected to increasing strain amplitude, known as the Payne effect. 
Specifically, the results are intended to demonstrate how various factors like filler 
content, material history, time, and frequency influence this nonlinear phenomenon. 

3.1. Payne effect 

3.1.1. Filler effect on storage and loss moduli 
Dynamic mechanical analysis, particularly through increasing strain amplitude tests 
commonly referred to as amplitude sweeps, is the prevalent method for examining the 
nonlinear behavior characteristic of filled rubber, including the Payne effect.  

The following figures illustrate the dynamic moduli's non-linear dependence on strain 
amplitude on a double logarithmic scale, offering a comparative view of the different 
non-linear viscoelastic behaviors of various materials, as shown in Figure 3.1 and 
Figure 3.2. The SBR samples with 0, 25, 50, and 75 parts per hundred rubbers (phr) of 
silica are represented by squares shaded in varying degrees of grey, while the NBR 
with 60 phr of silica is denoted by triangles. 
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Figure 3.1. Storage modulus versus on the strain amplitude additionally showing the 

dependency on the filler content (SBR mixtures are represented as squares with different 
scales of grey, NBR 60 is represented with triangular symbols) 

 

 
Figure 3.2. Loss modulus versus on the strain amplitude additionally showing the 

dependency on the filler content (SBR mixtures are represented as squares with different 
scales of grey, NBR 60 is represented with triangular symbols) 

Figure 3.1 captures the storage modulus's behavior, where filled rubbers display the 
anticipated Payne effect: an initial linear response at low strain amplitudes followed 
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by a softening up to the maximum amplitude applied for all. As expected unfilled 
rubber, SBR 0, does not display this nonlinearity in the shear amplitude range 
investigated. The filler effect is particularly noticeable in Figure 3.3 and Figure 3.4 
where the low amplitude moduli and the moduli at the highest amplitude (30%) are 
plotted as function of the silica content. The presence of filler substantially increases 
rubber stiffness—evidenced by an increase of the low amplitude moduli that is at least 
an order of magnitude higher for SBR 50 and 75 and NBR 60. 

 

 
Figure 3.3. Storage moduli at low amplitudes G’0 (full symbols) and at amplitude 30% after 

the Payne effect 𝐺 (𝛾 = 0.30) (empty symbols) for SBR (squares) and NBR (triangles) 
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Figure 3.4. Loss moduli at low amplitudes G’0 (full symbols) and at amplitude 30% after the 

Payne effect 𝐺 (𝛾 = 0.30) (empty symbols) for SBR (squares) and NBR (triangles) 

 

These graphs also reveal the damaging effect, indicated by the difference between the 
full and empty symbols, which intensifies with increasing silica content. This may be 
due to a higher proportion of chains being desorbed, as a greater concentration of 
particles leads to a more complex filler-rubber network.  

However, the materials do not exhibit the distinct second plateau often associated with 
the Payne effect curve [38] at the highest amplitudes obtainable with the selected 
sample geometry and testing configuration. 

Also the loss modulus graph versus strain amplitudes agrees with the trends reported 
in literature [38], characterized by a linear response at low amplitudes and a peak at 
medium amplitudes, which coincides with the onset of storage modulus softening. 
Like the storage modulus, an increase in filler content results in a heightened loss 
modulus curve. Additionally, this increment marginally shifts the peak of the curve 
towards lower amplitudes, as shown in Figure 3.2. 

As already discussed in chapter 1, the mechanisms contributing to the storage 
modulus's softening effect are a subject of debate in the literature. One explanation 
could be the gradual detachment of rubber chains from the filler surfaces under 
increased strain, leading to the disintegration of the filler-rubber network at high 
amplitudes. Furthermore, the silica particles' ability to form filler-filler networks, 
which may also suffer damage under strain, as discussed in Section 1.2.1, could play a 
role. This hypothesis helps to shed light on the observation that higher silica content 
within the matrix correlates with stronger networks and phase interactions, ultimately 
enhancing the material's properties. 
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3.1.2. Investigation on the linearity of the oscillatory responses 
Dynamic modulus analysis relies on the assumption that the material behaves linearly, 
meaning the response to a sinusoidal input is also sinusoidal. This is consistent with 
the independency of 𝐺  and 𝐺  on shear strain amplitude. However, filled rubbers 
exhibit a dependence of 𝐺  and 𝐺  on the amplitude of oscillating deformation, 
indicating a nonlinear behavior. Despite this nonlinearity, literature reports cases in 
which such materials still display a sinusoidal response, possibly due to the crosslinks 
created during vulcanization. Verifying this behavior is essential for validating the use 
of storage (𝐺 ) and loss (𝐺 ) moduli as meaningful representations. 

One method to investigate whether the shear stress response is sinusoidal is by 
graphically plotting the shear stress (τ(t)) measured in a cycle against the applied shear 
strain (g(t)) for a given strain amplitude and frequency. This data representation is 
known as Lissajous plot, and for a linear viscoelastic material, it has an elliptical shape. 
Deviations from this shape indicate nonlinearity. 

Lissajous plots presented here (Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8) reflect the 
material's behavior at medium and high strain amplitudes where nonlinear softening 
occurs. Visually, there appears to be some distortion respect to an elliptical shape. 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.5. Lissajous plots for SBR 0 at strain amplitudes of 0,7% (a), 

2,87% (b) and 30,2% (c), with both measured at a frequency of 10 rad/s 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.6. Lissajous plots for SBR 25 at strain amplitudes of 0,7% (a), 

2,87% (b) and 30,2% (c), with both measured at a frequency of 10 rad/s 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.7. Lissajous plots for SBR 50 at strain amplitudes of 0,7% (a), 

2,87% (b) and 30,2% (c), with both measured at a frequency of 10 rad/s 
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(a) 

 

(b) 

 

(c) 

 
Figure 3.8. Lissajous plots for SBR 75 at strain amplitudes of 0,7% (a), 

2,87% (b) and 30,2% (c), with both measured at a frequency of 10 rad/s 
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To quantify any deviations, Fourier Transform (FT) rheology is employed (Figure 3.9), 
which evaluates the nonlinearity in terms of the ratio of the intensities of higher 
harmonics (I(nω)) to the first harmonic (I(1ω))—the latter representing the sinusoidal 
linear response. Specifically, ratio of the third harmonic (I(3ω)) to the first harmonic 
(I(1ω)) is considered because the intensity of higher harmonics is substantially lower, 
often to the point of being negligible. 

 
Figure 3.9. Graph depicting the ratio of the third harmonic intensity to the first, plotted 

against strain amplitude for different SBR mixtures, each distinguished by a shade of gray 

Literature suggests that when the ratio I(3ω)/I(1ω) is less than 4%, the influence of 
higher harmonics can be disregarded as insignificant [30], theoretically underpinning 
the representations of storage and loss moduli. The graph (Figure 3.9) displays this 
ratio for various SBR compositions. For SBR 50 and 75, ratios at amplitudes around 
20% and 30% slightly exceed the 4% threshold, but not to a degree considered 
significantly higher.  

Consequently, subsequent experimental work presented here will overlook the 
presence of higher harmonics, with an understanding that data points at higher strain 
amplitudes may incorporate a margin of error. 

3.2. Payne effect reversibility 
The concept of the Payne effect's reversibility is a recurring topic within the field, 
typically presented alongside the close irreversible Mullins effect [36] [29]. This 
subchapter is dedicated to an in-depth exploration of these phenomena, emphasizing 
how the system's past deformation history and time have affected its behavior. 
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3.2.1. Series of consequent strain amplitude sweeps 
The inspiration for this investigation is based on different views of several authors [36] 
[29]. Hence, a series of constant amplitude sweeps is implemented to initiate the 
investigation of the reversibility of the Payne effect. To this end, a succession of 
increasing amplitude sweep tests is applied to the materials considered in the thesis. 
In line with the observations noted in the Theory chapter 1.4.3, where the storage 
modulus experiences a recovery to the linear low strain amplitude moduli after the 
test, a fixed rest period is maintained between any successive amplitude sweeps within 
the series. 

Following the procedure explained in the section 2.2.3, the sequence of amplitude 
sweeps conducted at 20 rad/s across various materials yields experimental data for 
𝐺 (𝛾 ) and 𝐺 (𝛾 ) presented in the figures (Figure 3.10, Figure 3.11, Figure 3.12, Figure 
3.13).  

 

 
Figure 3.10. Storage modulus as function of the strain amplitude applied at 20 rad/s, 

materials SBR 0, 25, 50 and 75 are represented as squares with decreasing transparency for 
increasing filler content; the three sweeps are shown for each material: a full symbol for 

sweep #0, half-full symbol for sweep #1 and empty for sweep #2 
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Figure 3.11. Loss modulus as function of the strain amplitude applied at 20 rad/s, materials 
SBR 0, 25, 50 and 75 are represented as squares with decreasing transparency for increasing 
filler content; the three sweeps are shown for each material: a full symbol for sweep #0, half-

full symbol for sweep #1 and empty for sweep #2 

 

 
Figure 3.12. Storage modulus as function of the strain amplitude applied at 20 rad/s, material 

NBR 60 is represented as triangles; the three sweeps are shown as before a full symbol for 
sweep #0, half-full symbol for sweep #1 and empty for sweep #2 
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Figure 3.13. Loss modulus as function of the strain amplitude applied at 20 rad/s, material 
NBR 60 is represented as triangles; the three sweeps are shown as before a full symbol for 

sweep #0, half-full symbol for sweep #1 and empty for sweep #2 

The analysis of filled SBR and NBR materials illustrates a marked contrast between the 
response of the initial, unstrained material in sweep #0, and in the subsequent sweeps, 
numbered "#1-#2". Notably, there is an evident decrease in 𝐺  and a limited increase in 
𝐺  for sweeps #1 when compared to the virgin curves (better seen in Figure 3.14, 
Figure 3.15, Figure 3.16, Figure 3.17). In contrast, the subsequent sweeps, after the 
virgin one, display overlapping curves with consistent plateau values, indicating no 
significant change after the first sweep.  

Despite initial expectations that the unreinforced SBR would remain unaffected by 
softening following high strain amplitude applications, due to the absence of silica, 
minor variations are still noticeable across different sweeps. This observed behavior 
suggests that viscoelasticity may be contributing to these subtle changes.  

The observed overlap of curves in sweeps #1-#2, often referred to as "reversibility" in 
literature, appears to be a consistent feature irrespective of the frequency employed or 
the various fixed rest times selected. 
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Figure 3.14. Zoom in on the storage modulus plot of SBR 75  

 
Figure 3.15. Zoom in on the loss modulus plot of SBR 75 
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Figure 3.16. Zoom in on the storage modulus plot of SBR 50 

 
Figure 3.17. Zoom in on the loss modulus plot of SBR 50 

The high strain amplitude region of the storage modulus also deserves close 
examination. Specifically, the initial #0 curve for SBR 50 and 75 phr silica rubber does 
not exhibit a second plateau, a feature that appears in the subsequent sweeps (Figure 
3.14, Figure 3.16).  

The observed second plateau may simply be a residual 'memory effect' from the 
previously applied maximum strain amplitude. The simplest way to assess this 
hypothesis is to add a subsequent amplitude sweep reaching amplitudes greater than 
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sweep from the linear regime to an amplitude which is in the middle of the G’ 
softening. Then, after a rest time of tens of seconds, an additional amplitude sweep, 
which instead goes to higher amplitudes then before, should be applied. If at the 
intermediate amplitude of this second sweep the material would show a second 
plateau, it would be a suggestion that the second plateau seen in the present work 
could be apparent. Due to time reasons in this thesis work has been impossible to apply 
this additional experiment protocol. 

Upon examining the loss modulus curves depicted in Figure 3.15 and Figure 3.17, it is 
noteworthy that the magnitude of the changes following sweep #0 is considerably less 
pronounced compared to the case of the storage modulus. Additionally, these changes 
in the loss modulus are accompanied by a noticeable increase in the peak values 
especially for SBR 50. 

Given that filled rubbers are known to exhibit a time-dependent recovery effect after 
strain (1.4.3), the consistency of curves #1 and #2 suggest that the recovery kinetics 
remains unaffected by the amplitude sweep. This implies that the structural changes 
induced by the Payne effect do not alter the material's inherent (viscoelastic) recovery 
capabilities. Notably, this characteristic is observed regardless of filler content, rubber 
type, and frequency. 

To confirm the independence of the above discussed feature on frequency, the ratios 
of G’ and G’’ measured at in the linear regime after the first amplitude sweep tests to 
those measured the second one were determined for each considered material 
(equations 3.1 and 3.2) and for each frequency, and then averaged. 

𝐺 0#2(𝜔)

𝐺 0#1(𝜔)
 3.1 

𝐺 0#2(𝜔)

𝐺 0#1(𝜔)
 3.2 

The average is then reported along with the standard deviation as a function of filler 
content in  Figure 3.18. The averages are based on a collective dataset derived from 
several samples, detailed samples’ amount as follows: SBR 0 (13 samples), SBR 25 (12 
samples), SBR 50 (12 samples), SBR 75 (13 samples), and NBR 60 (7 samples). The 
figures show that the average ratio is always 1, with a very small standard deviation, 
confirming that the above discussed feature is material and frequency insensitive.  
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Figure 3.18 Ratios of the low amplitude storage moduli 𝐺′0#2(𝜔)  /𝐺′0#1(𝜔) (full symbols) and 

loss moduli 𝐺′′0#2(𝜔)/𝐺′′0#1(𝜔)  (empty symbols) versus the silica content  

Structural variations: irreversibility assessment  
The series of amplitudes brings evidence that only the virgin sample shows structural 
changes capable of altering the components of the dynamic moduli. It remains to be 
established whether these structural changes are irreversible, or if they only appear to 
be so due to a slow recovery process. 

An indication that recovery is occurring can be deduced from variations in the 
successive frequency sweep tests protocol. Specifically, if the rest time between sweep 
#0 and #1 differs from that between #1 and #2, the material is likely to exhibit a greater 
𝐺    following the longer rest period. Here below an example of a sample of SBR 75 
clearly shows this phenomenon (Figure 3.19).  

 

0 10 20 30 40 50 60 70 80
0.8

0.9

1.0

1.1

1.2

 G'0#2(w)/G'0#1(w)

 G''0#2(w)/G''0#1(w)

 SBR
 NBR

Silica content [phr]

G
' 0

#
2(

w
)/

G
' 0

#1
(w

) 
a

nd
 G

'' 0
#2

(w
)/

G
'' 0

#
1(

w
)



52  

 

 

 
Figure 3.19. Graph present the storage modulus as a function of strain amplitude across 

different sweeps at 20 rad/s, illustrating the dependence of SBR 75 responses on rest time 
duration 

An evidence supporting the idea that the effects of the structural change can be 
recovered, comes from observations made when the rest time between successive 
shear amplitude sweep tests is too short (Figure 3.20). In such cases, the material 
exhibits an increase in G’ while increasing shear strain amplitude in the low amplitude 
region, were G’’ is expected to be independent of shear strain amplitude; this 
phenomenon occurs only at low angular frequency, where the time required to get to 
the steady state and take the measurement is long. During this time a partial recovery 
of the structure may occur, leading to an increase of G’ and decrease of G’’. 

When the measuring time is lower than the waiting time between two subsequent 
strain amplitude sweep tests, the apparent initial dependence of the viscoelastic 
properties on strain amplitude is not observed. 
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Figure 3.20. Graph presents the storage modulus as a function of strain amplitude across 
different sweeps at 0,1 rad/s, illustrating the dependence of SBR 50 responses on rest time 

duration 

These preliminary findings and their implications motivated the following detailed 
analysis of the recovery of the value of G’0 of the virgin material with time. 

3.2.2. Recovery: series of strain amplitude sweep tests followed by a 
constant low strain amplitude test 

Time effect on the low amplitude storage modulus 
This section presents the experimental findings from the time recovery tests. Figure 
3.21 illustrates the evolution of the storage modulus 𝐺  over time, without subjecting 
the data to further manipulation. This approach follows the groundwork laid by Luca 
Di Giosia [36], even though with a new analytical perspective focusing on whether the 
material can fully restore its low amplitude modulus before straining, 𝐺′ # . 
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Figure 3.21. Graph depicting the results of G’ throughout the "sweep #2" and "recovery" 

phases over test time for SBR 75 at 5 rad/s 

The plot displays the relationship between 𝐺 ,  and the elapsed test time for an SBR 75 
sample at 5 rad/s. Initially, the graph depicts an increase in strain amplitude during 
the 500s third shear strain amplitude sweep where the Payne effect is observable. 
Subsequently, 𝐺 # (𝑡) recovery is monitored under the application of a constant low 
shear strain amplitude. For this experiment, the monitoring period for 𝐺 # (𝑡)  spans 
several decades. However, the time scales generally used in these analyses vary, 
extending to 10  s, 10  s, and even 10  s. 

The focus now shifts to the right-hand portion of the graph to investigate whether the 
material regains its original linear modulus. This is achieved by calculating the ratio 
of the monitored modulus over time (𝐺 # (𝑡)) to the pristine linear modulus 𝐺 # , Eq. 
3.3. This representation is advantageous not only because it charts the initial loss and 
eventual recovery to the virgin modulus (a ratio of 1 indicating full recovery), but also 
because it theoretically eliminates the influence of frequency dependency on the low 
amplitude modulus, resulting in a more consistent comparison across frequencies. 
Figure 3.22, using this normalized approach, effectively compares the recovery 
kinetics of all materials while accounting for frequency-related variability. 
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𝐺 # (𝑡)

𝐺′ #
 3.3 

  
Figure 3.22. 𝐺′

0#3(𝑡) 𝐺0#0
′⁄  time dependence in a double logarithmic plot, depicting the 

recovery kinetics of different materials (squares for SBR with varying silica content levels 
indicated by transparency; triangles for NBR) and frequencies (black for 5 rad/s, red for 10 

rad/s, blue for 20 rad/s) 

Figure 3.22, employing a double logarithmic scale, effectively illustrates the recovery 
process across various materials. The graph collects data from multiple samples tested 
at different frequencies. Notably, the SBR 50 sample, subjected to a constant strain 
amplitude over a timescale of 10  s, approaches a ratio close to 1, suggesting a full 
recovery of its virgin low amplitude storage modulus. 

It's interesting to highlight that the SBR samples with no silica also exhibit an increase 
in modulus. However, this increase couldn’t be related to a recovery of the Payne effect 
but is likely attributable to viscoelastic recovery from the previous extensive strain. 
For the SBR 0 phr sample, the slightly above one values could be attributed to 
instrument sensitivity limits and additionally to the fact that taking a ratio between to 
experimental values, amplifies the measurement error in. An additional explanation 
could be that the energy imparted by the deformation history might promote the 
progression of the crosslinking process. However, this needs to be further explored 
through subsequent analyses on the same specimen. 

Regarding frequency effects, there is no consistent pattern observable; actually, curves 
at different frequencies counterintuitively in some cases (SBR 50, 75 and NBR 60) 
higher frequency curves are contained among the lower frequency ones. This fact 
possibly is due sample variability, potentially in silica dispersion among samples. 
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The rate at which materials recover varies significantly with the filler content. The 
curves seem to have a slight sigmoidal trend. A simple, fast but not fully correct way 
to contrast these kinetic properties could be fitting the ratio values 𝐺 # (𝑡) 𝐺 #⁄  
(Figure 3.22) with a power law function, as equation (3.4a, which become a linear 
function on the double logarithmic scale (equation (3.5b). 

 

𝑓(𝑥) = 𝑎𝑥  (3.4a) 

log 𝑓(𝑥) = 𝑏 log(𝑥) +  log(𝑎) (3.5b) 

 

In order to minimize the error incurred when using this function to fit the curves, only 
data from the start of the curves up to approximately 600 seconds are considered. The 
"b" parameter, shown in Figure 3.23 in relation to silica content, is the slope of the linear 
fitting function on a double logarithmic scale. This parameter qualitatively 
characterizes the recovery kinetics of the materials.  

 

  
Figure 3.23. The graph displays the slope derived from the linear interpolation of 

𝐺 # (𝑡) 𝐺 #⁄  versus time on a double logarithmic scale, plotted as a function of filler content 

To extend the time scale of observation for the low amplitude modulus recovery in 
SBR 50 and 75 materials, a selection of samples was removed from the testing 
apparatus at the conclusion of the initial recovery test. These samples were stored and 
then, after an interval of approximately one week or one month, tested again by 
applying a constant low strain amplitude. Figure 3.25 and Figure 3.24 presents the 
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result in terms of ratio (Equation 3.3). The error bars included account for the 
maximum error introduced by positioning and clamping (as discussed in 2.4). 

Notably, these later measurements also register ratios exceeding the unit value, 
suggesting an “over-recovery”. Indeed, the difference may be partly explained with 
measurement errors (and their combination in considering the ratio of experimental 
values), and partly with the different temperatures in the lab between the two 
measurement sessions. Starting from the modulus increase, to reinforce this 
hypothesis one could estimate the necessary temperature variation using the 
molecular theory of elasticity. Unfortunately the density of crosslinking is not known 
for these materials, so further investigations about it are needed. 

Nevertheless, these supplementary data points lend weight to the assertion that the 
low amplitude modulus of virgin materials can be fully restored, provided sufficient 
rest time is allowed. This finding demonstrates that the structural changes of the 
materials induced by the Payne effect have reversible nature, even if the recovery 
kinetic is quite slow. 

Previously, it has been shown that amplitude sweeps do not significantly impact 
recovery kinetics. Therefore, even though the current results on recovery are derived 
after a sequence of amplitude sweeps, it is logical to assume that they would also apply 
to specimens subjected to a single strain, given this evidence. 

 

 
Figure 3.24. Double logarithmic plot of SBR 50's 𝐺 # (𝑡) 𝐺 #⁄  over diverse time scales and 

frequencies, featuring additional data points collected after approximately one week and one 
month (10  seconds) 
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Figure 3.25. Double logarithmic plot of SBR 75's 𝐺 # (𝑡) 𝐺 #⁄  over diverse time scales and 

frequencies, featuring additional data points collected after approximately one month (106 s) 

Time effect on the storage modulus in high strain amplitude region 
The difference between the response to shear strain amplitude sweeps on the virgin 
material (sweep #0) and the strained one (sweep #1) has been previously established 
and is characterized by two main features. The first is the reduction of the low 
amplitude storage modulus, G’0, extensively discussed and analyzed in a prior 
paragraph. The second refers to the shape of the tail end of the curve, whose shape 
suggests the existence of a second plateau. Furthermore, although less pronounced, 
there are also changes observed in the loss modulus. 

Above, the possibility to recover the unstrained material small strain elastic 
component of the modulus, 𝐺′ #   has been discussed. Now the shape of the response 
to shear strain amplitude sweep tests of the material after recovery will be considered 
in terms of both G’ and G’’. The method to investigate the recovery of the curve's 
original shape involved conducting an amplitude sweep after the series of amplitude 
sweeps, with variable resting periods, without the removal of the samples, are 
described at the end of the section 2.2.4. Due to time constraints in the thesis work, the 
test was only conducted on SBR 50 and 75 at a frequency of 20 rad/s. The experimental 
outcomes for SBR 75 are represented in subsequent figures (Figure 3.26, Figure 3.27, 
Figure 3.28, Figure 3.29), each showcasing the sweep #0 curve to represent the response 
of the virgin specimen, juxtaposed with the sweep #1 and sweep #2 curve to visually 
compare the changes in curve shape. It is useful to remember that sweep#1 and 
sweep#2 curves were shown to overlap when the same rest time is waited before each 
of the two shear strain amplitude sweep tests, while in this experiment the rest time 
between sweeps is varied to capture “snapshots” of the recovery at different recovery 
phases. 
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Figure 3.26. Storage modulus for subsequent amplitude sweeps for SBR 75 at 20 rad/s are 

represented, the rest time between #0 and #1 is equal to 65 s instead between sweeps #1 and 
#2 the sample rest for 600 s 

 

 
Figure 3.27. Loss modulus for subsequent amplitude sweeps for SBR 75 at 20 rad/s are 

represented, the rest time between #0 and #1 is equal to 65 s instead between sweeps #1 and 
#2 the sample rest for 600 s 
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Figure 3.28. Storage modulus for subsequent amplitude sweeps for SBR 75 at 20 rad/s are 

represented, the rest time between #0 and #1 is equal to 65 s instead between sweeps #1 and 
#2 the sample rest for 3600 s 

 

 
Figure 3.29. Loss modulus for subsequent amplitude sweeps for SBR 75 at 20 rad/s are 

represented, the rest time between #0 and #1 is equal to 65 s instead between sweeps #1 and 
#2 the sample rest for 3600 s 
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more extended, or the high strain amplitude changes are related to the irreversible 
Mullins effect. Because of the slow kinetics, analyzing the full recovery of SBR 75 while 
leaving the sample in place could be challenging. Consequently, SBR 50 was also 
examined with a second rest period of 50400 seconds (Figure 3.30 and Figure 3.31).  

 

 
Figure 3.30. Storage modulus for subsequent amplitude sweeps for SBR 50 at 20 rad/s are 

represented, the rest time between #0 and #1 is equal to 65 s instead between sweeps #1 and 
#2 the sample rest for 50400 s 

 
Figure 3.31. Loss modulus for subsequent amplitude sweeps for SBR 50 at 20 rad/s are 

represented, the rest time between #0 and #1 is equal to 65 s instead between sweeps #1 and 
#2 the sample rest for 50400 s 
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Unfortunately, the loss modulus of SBR 50 exhibits unexpected vertical shifts 
(Figures). Notably, the low amplitude modulus of sweep #2 falls below the pristine 
property. This unusual behavior warrants additional investigation in future studies to 
determine if it is merely a result of measurement system noise. On the other hand, the 
G’ curves show the recovery of the initial plateau G’0, yet they do not completely 
restore the initial response shape of sweep #0 at high amplitudes (Figure).  

In other to further investigate the initial reversibility hypothesis on a higher time scale, 
the same samples just analyzed were removed from the rheometer setup and 
subsequently stored for one month to allow recovery. Then they were subjected to an 
additional amplitude sweep, identified here as sweep #3. The data gathered from this 
procedure are illustrated in the Figure 3.34 and Figure 3.32. 

 

 
Figure 3.32. Representation of the storage modulus for SBR 50 at 20 rad/s across consecutive 

amplitude sweeps. Post-sweep #2, which is not depicted to make the graph clearer, the 
sample was set aside and subsequently retested to execute sweep #3 following a rest period 

of one month 

0.01 0.1 1 10

4

6

8

10
 Sweep #0
 Sweep #1 - Rest time 65 s
 Sweep #3 - Rest time 1 month

G
' [

M
P

a
]

g0 [%]

SBR 50



 63 

 

 

 
Figure 3.33. Representation of the loss modulus for SBR 50 at 20 rad/s across consecutive 
amplitude sweeps. Post-sweep #2, which is not depicted to make the graph clearer, the 

sample was set aside and subsequently retested to execute sweep #3 following a rest period 
of one month 

 

 
Figure 3.34. Representation of the storage modulus for SBR 75 at 20 rad/s across consecutive 

amplitude sweeps. Post-sweep #2, which is not depicted to make the graph clearer, the 
sample was set aside and subsequently retested to execute sweep #3 following a rest period 

of one month 
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Figure 3.35. Representation of the loss modulus for SBR 75 at 20 rad/s across consecutive 
amplitude sweeps. Post-sweep #2, which is not depicted to make the graph clearer, the 

sample was set aside and subsequently retested to execute sweep #3 following a rest period 
of one month 

The almost complete overlap of sweep #3 curves of G’ and G’’ with the initial sweep 
#0 indicates that SBR 50 and 75 experience predominantly reversible structural 
modifications through the course of strain amplitude testing history. Any potential 
irreversible small changes, if present, do not seem to affect the Payne effect curve after 
recovery. 

3.3. Frequency effect 
The experimental data have been considered also to investigate the impact of 
frequency on the Payne effect. Notably, frequency's influence on the shape of the 
dynamic moduli as a function of shear strain amplitude appears negligible, as 
established in literature [29] [30]. This phenomenon is referred to as "frequency-
insensitive feature of the Payne effect." Li et al. in 2017 observes this across various 
rubbers and filler types over a broad frequency range (0.004 – 10 Hz), and indicates 
that filled rubbers tested by shear strain amplitude sweep at different frequencies 
exhibit merely vertical shifts in their moduli (in a logarithmic scale), correlating with 
frequency changes. 

This phenomenon implies the separability of amplitude and frequency effects on 
dynamic modulus components, a concept mathematically represented by Li (2017) in 
equation 1.8.  

The current chapter aims to validate this feature in the studied system. An initial 
investigation focused on the low amplitude modulus's frequency dependence (0,01% 
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strain amplitudes) through frequency sweep tests (0,1-20 rad/s). The results, presented 
in Figure 3.36 and Figure 3.37 in double logarithmic scale, reveal a moderate 
dependency of the low amplitude moduli on frequency, with moduli at most doubling 
over a three-order frequency magnitude increase. 

 

 
Figure 3.36. The storage component of the dynamic modulus in function of the frequency for 
filled and unfilled rubbers, where the content of filler is differentiated by the grey scales and 

the rubbers by squared (SBR) and triangular (NBR) symbols  

 
Figure 3.37. The loss component of the dynamic modulus in function of the frequency for 

filled and unfilled rubbers, where the content of filler is differentiated by the grey scales and 
the rubbers by squared (SBR) and triangular (NBR) symbols 
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Further tests involved shear strain amplitude sweeps (Section 2.2.3) at logarithmically 
increasing strain amplitudes (ϒ0 0,01-30%) across various frequencies (0,1-1-5-10-20 
rad/s). The outcomes of these tests are presented from Figure 3.44 to Figure 3.47. 

 
Figure 3.38. The SBR 0’s storage modulus in function of the strain amplitude for different 
frequencies 1, 5, 10 and 20 rad/s represented by different colors: purple, grey, pink, blue 

respectively 

 
Figure 3.39. The SBR 0’s loss modulus in function of the strain amplitude for different 

frequencies 1, 5, 10 and 20 rad/s represented by different colors: purple, grey, pink, blue 
respectively 
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Figure 3.40. The SBR 25’s storage modulus in function of the strain amplitude for different 

frequencies 1, 5, 10 and 20 rad/s represented by different colors: purple, grey, pink, blue 
respectively 

 

 
Figure 3.41. The SBR 25’s loss modulus in function of the strain amplitude for different 
frequencies 1, 5, 10 and 20 rad/s represented by different colors: purple, grey, pink, blue 

respectively 
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Figure 3.42. The SBR 50’s storage modulus in function of the strain amplitude for different 
frequencies 0,1, 5, 10 and 20 rad/s represented by different colors: green, grey, pink, blue 

respectively 

 

 
Figure 3.43. The SBR 50’s loss modulus in function of the strain amplitude for different 

frequencies 0,1, 5, 10 and 20 rad/s represented by different colors: green, grey, pink, blue 
respectively 
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Figure 3.44. The SBR 75’s storage modulus in function of the strain amplitude for different 
frequencies 0,1, 5, 10 and 20 rad/s represented with different colors: green, black, dark red, 

blue respectively 

 

 
Figure 3.45. The SBR 75’s loss modulus in function of the strain amplitude for different 

frequencies 0,1, 5, 10 and 20 rad/s represented with different colors: green, black, dark red, 
blue respectively 
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Figure 3.46. The NBR 60’s storage modulus in function of the strain amplitude for different 

frequencies 0,1, 5 and 20 rad/s represented by different colors: green, grey, and blue 
respectively 

 

 
Figure 3.47. The NBR 60’s loss modulus in function of the strain amplitude for different 

frequencies 0,1, 5 and 20 rad/s represented by different colors: green, grey, and blue 
respectively 
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These results indicate a vertical shift in the moduli values. To determine whether this 
shift is uniform across all applied strain amplitudes, Li (2017) recommends a method 
of normalization. This involves normalizing the components of the dynamic modulus 
by their corresponding low amplitude values, as in equation 3.6: 

 

⎩
⎪
⎨

⎪
⎧

𝐺 𝛾0, 𝜔

𝐺0(𝜔)
= 𝑓 𝛾0

𝐺 𝛾0, 𝜔

𝐺0 (𝜔)
= 𝑔 𝛾0

 3.6 

 

If the frequency does not impact the amplitude dependence, the curves, once 
normalized, would overlap. The elaborated data are reported in the following graphs 
(from Figure 3.54 to Figure 3.57). 

 

 
Figure 3.48. The normalized shear storage modulus for SBR 0 in function of the shear strain 

amplitude 
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Figure 3.49. The normalized shear loss modulus for SBR 0 in function of the shear strain 

amplitude 

 

 
Figure 3.50. The normalized shear storage modulus for SBR 25 in function of the shear strain 

amplitude 
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Figure 3.51. The normalized shear loss modulus for SBR 25 in function of the shear strain 

amplitude 

 

 
Figure 3.52. The normalized shear storage modulus for SBR 50 in function of the shear strain 

amplitude 

0.01 0.1 1 10

0.6

0.8

1

1.2

1.4
 20 [rad/s]
 10 [rad/s]
 5 [rad/s]
 1 [rad/s]

G
''/

G
'' 0

 [-
]

g0 [%]

SBR 25

0.01 0.1 1 10

0.2

0.4

0.6

0.8

1

1.2  20 [rad/s]
 10 [rad/s]
 5 [rad/s]
 0,1 [rad/s]

G
'/G

' 0
 [

-]

g0 [%]

SBR 50



74  

 

 

 
Figure 3.53. The normalized shear loss modulus for SBR 50 in function of the shear strain 

amplitude 

 

 
Figure 3.54. The normalized shear storage modulus for SBR 75 in function of the shear strain 

amplitude 
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Figure 3.55. The normalized shear loss modulus for SBR 75 in function of the shear strain 

amplitude 

 

 
Figure 3.56. The normalized shear storage modulus for NBR 60 in function of the shear strain 

amplitude 
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Figure 3.57. The normalized shear loss modulus for NBR 60 in function of the shear strain 

amplitude 

The analysis reveals that for the case of SBR 75, SBR 50 and NBR 60 curves at the lower 
frequencies (0,1 and 5 rad/s) do not fully overlap, suggesting that the amplitude-
frequency separability does not apply to their dissipative behavior at low frequencies. 
This is particularly evident in the loss modulus curves, at medium to high shear strain 
amplitudes. 

The increased storage modulus ratio at higher amplitudes could be due to the 
emergence of higher harmonics, which could impact the separability of frequency and 
amplitude. The analysis of the loss modulus data indicates that at lower frequencies, 
there is less dissipative movement in the molecules compared to higher frequencies. 
This could be attributed to partial recovery during tests, but this factor seems to be not 
as impactful for the loss modulus. Alternatively, a more plausible explanation is that 
these materials undergo different deformation mechanisms at lower frequencies, 
possibly involving reduced molecular desorption from the silica particles’ surface, 
given the extended time available for molecules to adjust to the applied shear strains. 

However, due to time constraints, it was not possible to check the same phenomenon 
for SBR 0 and 25 lack at 0,1 rad/s, though the overlap in the available frequency range 
is satisfactory. 

Normalization also facilitates the comparison of how different materials behave as the 
amplitude increases. Figure 3.58 showcases the variations in the storage and loss 
moduli at the highest shear strain amplitude applied (30%) specifically in relation to 
silica content. 
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Figure 3.58. The storage (full symbols) and the loss (empty symbols) moduli ratio (eq.1.10) 

and averaged across the frequencies, in function of the silica content  

By looking at the graph, the correlation between the extent of softening, attributed to 
the Payne effect, and the amount of filler is evident. This correlation can be explained 
by the increased interconnectedness of the network formed between the particles and 
the matrix as filler content rises. As a result, there is a greater probability of chain 
desorption with higher filler concentrations. 
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4 Conclusion and future developments 

Conducting a variety of oscillatory sinusoidal shear tests with a torsional geometry tool 
on the Anton Paar MCR502 Rheometer, this research shows the impact of time, amplitude, 
and frequency on the Payne effect observed in silica filled SBR and NBR rubbers. The key 
findings and issues are listed in the following. 

The silica the reinforcing effect and the non-linear response under increasing 
amplitudes observed on the materials considered in this work are in accordance with 
literature findings. 

The complex modulus dependence on shear strain amplitude is an indication of a no -
linear behavior, however, if non-linearity is estimated by a FFT analysis of the shear 
stress oscillatory response in terms of relative contribution of higher harmonics to the 
overall response, this is less than 8% respect to the first harmonic. This value is limited 
enough to allow a data interpretation based on the linear viscoelastic analysis, and G’ 
and G’’ can still be considered as valid parameters. 

From the series of amplitude sweeps is shown that, for rest times in the order of tens 
of seconds, the amplitude sweep induces the following changes on the subsequent 
Payne effect curve respect to the virgin response: 

 A significant residual softening of the storage modulus and a small increase of 
the loss modulus at low amplitudes (in accordance with literature) 

 The G’ curve displays second plateau at high amplitudes contrary to the virgin 
curve (sweep #0) 

The second point should be further investigated to be sure that this second plateau is 
not just apparent due to the memory of the material. A possible testing procedure is 
discussed in the thesis.  

Because the ratios between the moduli at low amplitude taken from the sweep #2 and 
sweep #1 are very close to the unity for all silica contents, it can be stated that the 
structure, which has been modified by the first amplitude sweep, has no further 
modifications induced by the subsequent amplitude sweeps. Thus, in other terms, 
there is no evidence of damage accumulation regardless of the filler content.  

The reversibility of the structural modification imposed by the high strain amplitudes 
is shown by the recovery tests: independently on the silica content, it’s demonstrated 
that if sufficient rest time is waited the reduction of the low amplitude G’ would be 
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completely recovered, even though the recovery kinetic is slow. For the highest silica 
filled materials, SBR 50 and SBR 75 the recovery time is less than one month.  

The structural variations caused by the Payne effect seem therefore to have a reversible 
nature. Any potential irreversible small changes, if present, do not seem to affect the 
Payne effect curve after recovery. 

Finally, all the observations are mostly independent from the applied frequency: 
indeed frequency and amplitude seem to have independent effect of the Payne effect 
curve at higher frequencies (5 – 10 – 20 rad/s). At lower frequencies (0,1 – 1 rad/s) some 
combined effect seem to be present, however, this may be related again to recovery of 
the pristine structure occurring during the test, as for these low frequencies recovery 
times may be comparable to the period of oscillation. 
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A Selection of the rest time parameter 

This chapter delves into the rationale behind selecting rest time values for the series of 
amplitude sweeps. These parameters are influenced by the material type and the 
frequency used in the amplitude sweep. It was observed that if the rest time is too 
brief, the material's recovery effect might occur during the amplitude sweep, leading 
to a non-linear behavior in the low amplitude region of the G’ and G’’ curves (Figure 
3.20). Because the recovery kinetics of all materials studied slow down over time, the 
rest time is designed to allow sufficient recovery, minimizing its impact on the initial 
points of the moduli. 

An additional complexity is that amplitude sweeps performed at different frequencies 
have varying test velocities. In other terms sweeps at higher frequencies are completed 
more quickly, resulting in less time for recovery and, consequently, a need for shorter 
minimum rest times. 

 Based on these concepts, the subsequent Table A.1 presents the set of rest time values 
employed in the series of amplitude sweeps (Section 2.2.4) for all frequencies and 
materials used. It's crucial to emphasize that these values are empirically determined 
and serve merely as an indication of the minimum rest time required. 

 

Table A.1. List of minimum rest time values in seconds [s] as function of the chosen 
frequency and the material  

Frequencies 
[rad/s] 

SBR 0 SBR 25 SBR 50 SBR 75 NBR 60 

0.1 / 300 / 300 250 

1 6 150 / / / 

5 6 30 120 120 70 

10 6 25 110 120 / 

20 6 20 55 65 60 
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