
Web3-Streaming: a decentralized
audio and video streaming platform
implementing Conditions-Based
Decryption (CBD)

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Author: Andrea Razza

Student ID: 968483
Advisor: Prof. Francesco Bruschi
Co-advisors: Manuel Tumiati
Academic Year: 2022-2023

i

Abstract

In recent years, technological innovations gradually invaded everyone’s life, suffice it to
think the quantity of tasks that are performed everyday thanks to a smartphone and
mobile applications. In addition to the positive aspects brought by this evolution it can
be found a big issue arising from it: the data privacy and security one. This problem
comes from the fact that people’s sensitive data became precious for cybercriminals who
attack companies causing sensitive data leaks for economic purposes.

This project idea was born from a collaboration with the company KNOBS, with whom
it was thought about how to solve the problem of data privacy for the development of
a decentralized application that offers on-demand streaming services of audio and video
files. The work that anticipated the platform developing consisted of studying different
cryptographic technologies and protocols in order to find the best solution for the problem
addressed. The choice fell on Conditions-Based Decryption (CBD), a technology that
leverages the decentralized Threshold network and allows, through a strategy deploy on
the blockchain, its member nodes to use mutual cooperation to encrypt and decrypt data.
During the encryption phase some settings are specified by the data owner, the most
important are the threshold, that is the minimum number of Threshold network nodes
whose cooperation is required for the file decryption, and the decryption condition set
that indicates the requirements to be fulfilled by the data requester’s MetaMask wallet to
gain access to the file.

The platform is built to offer different services and interfaces to data owners and data
requesters: the data owners, through the encryption page, can create new strategies or
use previously deployed ones to encrypt and save new files, while the data requesters,
through the decryption page, can visualize the encrypted files previews with the related
decryption conditions and try to decrypt them. CBD technology was chosen since it offers
a good data security level while allowing the data owner to potentially share his files with
many users with only a single strategy deployment.

Keywords: blockchain, streaming app, cryptography, decryption conditions

Abstract in lingua italiana

Negli ultimi anni le innovazioni tecnologiche hanno gradualmente invaso la vita di tutti,
basti pensare alla quantità di attività svolte ogni giorno grazie ad uno smartphone. Oltre
agli aspetti positivi portati da questa evoluzione si riscontra un grande problema che ne
deriva: quello della privacy e della sicurezza dei dati. Questo problema deriva dal fatto
che i dati personali sono diventati preziosi per i cyber-criminali che attaccano le aziende
causando fughe di dati per motivi economici.

L’idea di questo progetto nasce da una collaborazione con l’azienda KNOBS, con la quale
si è pensato a come risolvere questo problema per lo sviluppo di un’applicazione decentral-
izzata che offrisse servizi on-demand di streaming di file audio e video. Il lavoro preliminare
è consistito nello studio di diverse tecnologie crittografiche e protocolli al fine di trovare
la miglior soluzione per il problema affrontato. La scelta è ricaduta su Conditions-Based
Decryption (CBD), una tecnologia che sfrutta la rete decentralizzata di Threshold che
consente, tramite il deployment di una strategia sulla blockchain, di usare i suoi nodi
per criptare e decriptare dati grazie alla loro cooperazione. Durante la fase di cifratura
alcune impostazioni sono specificate dal proprietario dei dati, le più importanti sono il
threshold: numero minimo di nodi della rete Threshold la cui cooperazione è richiesta per
la decifratura del file, e il set di condizioni di decifratura: requisiti che il wallet MetaMask
dell’utente deve soddisfare per avere accesso al file.

La piattaforma è costruita per offrire servizi e interfacce differenti ai proprietari e ai
richiedenti dei dati: il proprietario, tramite la pagina di cifratura, può creare nuove strate-
gie o usare quelle già create per criptare e salvare nuovi file, mentre il richiedente, tramite
la pagina di decifratura, può visualizzare l’anteprima dei file criptati con le relative con-
dizioni di decifratura e provare a decifrarli. La tecnologia CBD è stata scelta in quanto
offre un buon livello di sicurezza consentendo al contempo al proprietario dei dati di con-
dividere potenzialmente i propri file con molti utenti effettuando il deployment di una
singola strategia.

Parole chiave: blockchain, app di streaming, crittografia, condizioni di decifratura

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Thesis outline . 4

2 Literature 5
2.1 Blockchain . 5

2.1.1 The data structure . 6
2.1.2 The network . 7
2.1.3 Decentralized Applications . 10
2.1.4 Wallet . 11
2.1.5 InterPlanetary File System (IPFS) 12
2.1.6 Fungible and Non-Fungible Tokens 13

2.2 Threshold Network . 14
2.2.1 Proxy Re-Encryption (PRE) . 15
2.2.2 Conditions-Based Decryption (CBD) 20
2.2.3 PRE vs. CBD . 22

3 Final project and achieved results 25
3.1 IrpiniaNFT . 25
3.2 Files encryption phase . 26

3.2.1 CBD Strategy building . 27
3.2.2 Condition set entry . 31
3.2.3 File encryption . 36
3.2.4 Encrypted and uploaded files visualization 37

3.3 Files decryption phase . 38
3.3.1 Encrypted files retrieving . 39
3.3.2 Files decryption and visualization 41

4 Application testing 45
4.1 Static tests . 46
4.2 Dynamic tests . 46

4.2.1 Unit testing . 47
4.2.2 Integration testing . 52

5 Conclusions and future developments 55

Bibliography 57

List of Figures 61

List of Tables 63

Acknowledgements 65

1

1| Introduction

Privacy issues related to sensitive data is a very serious concern in nowadays world where
technologies resources keep on increasing their fundamental role in everyone’s lives. Per-
sona data, such as Personally identifiable information (PII), Biometric data, Protected
health information (PHI), but also positions, personal interests and many others are very
important information about all of us that are collected everyday and given to compa-
nies which stores them for various purposes. These data are really precious and if they
gets into the wrong hands user’s privacy could be violated and this can result to very
dangerous consequences for the individuals. [18]

Everyday all of us accept privacy-usability trade-offs in order to exploit all the services
that the technology offers without thinking that by simply booking a taxi transfer location
data, information about financial details and many other data are communicated. Cyber-
criminals have stolen in these years millions of credentials and sensitive data to sell them
or to exploit them for various purposes, such as identity theft and financial frauds.[14]
These cybercriminals are very powerful computer engineers that uses their knowledge to
commit malicious activities on information systems or networks to steal companies or
private sensitive data in order to generate profit. They attack these kind of systems in
various ways, the main and most frequent are:

• Unauthorized access: this can happen through hacking, weak passwords, social
engineering, or inadequate access controls.

• Malware and ransomware: malicious software, such as Trojans, viruses, worms, can
infect information systems for multiple purposes, including senstitive data theft.

• Phishing and social engineering: the first one consists of impersonating legitimate
entities and tricking individuals into revealing personal information through emails,
websites and many others. Social engineering tricks instead exploit human psychol-
ogy to manipulate individuals into disclosing confidential information.

• Lack of encryption: the data encryption process makes the stored or sent sensitive
data inaccessible to unauthorized individuals, weak or nonexistent encryption can

2 1| Introduction

lead attackers to easily access these data.

• Data retention and privacy policies: often organizations collect and retain more
data than the strictly necessary, leading to increased privacy risks. In these cases,
data breaches can be caused by inadequate privacy policies or improper handling of
personal information.

• Internet of Things (IoT) vulnerabilities: the increasing presence of smart intercon-
nected devices in every area introduces security risks because these devices can be
compromised and data breaches danger is very high.

Another important aspect of this issue is the artificial intelligence and machine learning
techniques proliferation: some companies to which we legally yield our sensitive data
exploit these technologies to train algorithms that everyday learns new things about all
of us and have become capable of influencing human opinions and ideas.[14]

The Web3 platforms based on blockchain, that is the main argument of this thesis, aim to
decentralize and provide a more secure control to users over their data and transactions,
but also these kind of applications present privacy and security issues, among which we
can find:

• Pseudonymity and privacy: while blockchain offers pseudonimity by using crypto-
graphic keys instead of real-world identities, it is still possible to trace transactions
and associate them to a specific address.

• Smart contract vulnerabilities: smart contracts are self-executing agreement on the
blockchain and they can contain coding errors and vulnerabilities that can lead to
cyber attacks. By attacks it can be meant financial losses, unauthorized access and
many other dangerous interventions for personal privacy.

• Data privacy: since the blockchain is a transparent entity by nature, that ensures
immutability and public transaction visibility, storing personally identifiable and
sensitive information directly on it can be translated in unlimited access to them
from anyone on the network

• Off-chain data storage and oracles: Web3 applications may rely on off-chain or oracle
storage services to save and access data. These systems can introduce security issues
if they’re not properly secured or if the data stored has been tampered by external
entities

• Malicious nodes: it can happen that a spiteful individual joins the network and
tries to damage it. This kind of attack is performed by flooding the network with

1| Introduction 3

transactions or by trying to reverse valid ones. [24]

Addressing these security problems that, despite introducing more restrictive measures,
the blockchain still present, requires a combination of technical solutions, such as strong
data encryption with authentication techniques, secure smart contract coding practices
and users education about risks, otherwise it will be always faced the privacy/usability
trade-off in the technology tools everyday exploitation.

Threshold Network aims to solve this compromise by using cryptography to unlock the
potential of digital assets without intervention or trust in a centralized authority. The
Threshold idea consists of distributing the data decryption operations on many distributed
and independent entities represented by the Threshold Network nodes. In order to suc-
ceed in this decryption operation it is necessary to reach a minimum number of entities
cooperating with each other.[14] This technique is the basis of the so called Threshold
cryptosystem that aims to address the issue of single point of failure in traditional cryp-
tographic systems because even if some of the threshold agents are compromised, the
system can still maintain its security as long as the threshold number of agents remain
uncompromised. Threshold Access Control enables end-to-end encrypted data sharing
and communication aiming to trust-minimization via cryptography and decentralization
and it offers two protocols: Proxy Re-Encryption (PRE) and Conditions-Based Decryp-
tion (CBD). The idea behind the first one is to offer an end-to-end cryptography protocol
that allows proxy entities, the nodes on the Threshold Network also known as Ursulas,
to re-encrypt the encrypted data to transform the decryption key from one to another
without ever having access to the plaintext. The PRE protocol on-chain policy is per-Bob:
each encrypted message has one and only recipient, specified during the policy creation
phase, that is able to decrypt it. The idea from which the second protocol was born,
instead, consists of giving access to the encrypted message only to users that satisfies the
decryption conditions related to the message. In this scenario, the Threshold Networks
nodes job is to check whether the data requester’s Metamask account satisfies the required
Conditions and, if so, provide the key to decrypt the message. The message encrypter
can build a condition set from three different condition types: the first one is the so called
timelock based condition, which make the message decryptable if and only if the specified
time condition is satisfied. The second one is the EVM based condition that is a condition
type regarding blockchain token possession of the data requester. And the last condition
type that the encrypter can specify is the RPC based condition that is a money condition,
here the message is decryptable if the data requester’s Metamask account satisfies the
money condition specified by the encrypter.

The topic of study of which this thesis concerns consists of the developing of a Web3 audio

4 1| Introduction

and video streaming platform built on blockchain that take advantage of the underlined
Conditions-Based Decryption service; moreover, for the faced use case it was carried
out also the analysis of the strengths and weaknesses of the two underlined protocols in
order to evaluate the best one to use from different points of view. During the platform
development it was also created a ERC721 Non-Fungible-Token (NFT) called IrpiniaNFT
in order to relate messages decryption to this NFT possession.

The aim of this platform is to provide to users a streaming service that, through this
cryptographic protocol, has a very high level of data privacy but at the same time is as
much as scalable and usable as possible in order to reach any user without any security
issue. In this way the usability-security trade-off which was mentioned above is completely
erased.

1.1. Thesis outline

The thesis is organized as follows:

• Chapter 2 provides an overview of the used technologies: an introduction of the
blockchain technology with all the exploited decentralized tools and services. Sub-
sequently a deep and careful analysis of the cryptographic technologies offered by
Threshold Network will be done.

• Chapter 3 presents the developed decentralized streaming platform, every nuance
of the software is properly analyzed and explained in order to fully understand the
application workflow.

• Chapter 4 describes the testing techniques implemented both during the develop-
ment process and at the end of it to validate and verify the platform functionality
and evaluate the reached performances.

• Chapter 5 consists of the thesis conclusion which contains final considerations about
the platform and an analysis of prospects for improvements and future developments.

5

2| Literature

In order to fully understand the developing process of the web3 streaming platform it is
necessary to analyze and deepen the tools and the technologies used. It will be firstly
presented an overview about the blockchain and all the related services that are based on
this technology, exploited to build the platform. It will be explained and clarified what is a
decentralized application (dApp), a wallet and also some decentralized tools such as IPFS
and the increasingly famous NFTs, in short all the platform developing tools that rely on
these kind of networks: the decentralized ones. Subsequently they will be presented and
compared, from the theoretical point of view, the cryptographic technologies, offered by
Threshold Network, evaluated for the addressed use case: Proxy Re-Encryption (PRE)
and Conditions-Based Decryption (CBD) that are apparently similar each other but hide
some deep differences that pushed to choose the second one in order to manage the
platform cryptographic operations.

2.1. Blockchain

In these last years it is increasingly common to hear about blockchain and cryptocurren-
cies, but too often there is confusion about what they really are. The aim from where
the blockchain idea was born was to create a network without a central entity, made
up of multiple components that own the same data in order to ensure integrity of the
data stored in the structures.[16] Blockchain, as we intend it nowadays, is a decentralized
and distributed digital ledger technology that enables secure and transparent recording
of transaction across multiple computers or nodes. Its "data structure can be defined by a
list of records, also called blocks, that can contain data from any type and that are linked
by means of cryptographic references." [16] The key features of blockchain are:

• Decentralization: instead of relying on a central authority, as traditional information
systems do, blockchain relies on a network of nodes whose tasks are to validate and
record transactions. This feature is useful to make the system more reliable and
attack-resistant.

6 2| Literature

• Transparency: the blockchain’s ledger is visible to any participant in order to guar-
antee the transparency and enable anyone to check for the transactions integrity.

• Security: blockchain takes advantage of cryptographic tools to secure transactions
and keep the data integrity: when a block is added to the network, it is extremely
difficult to modify its content.

• Immutability: the blockchain’s name comes from the fact that each block is con-
nected, by containing a reference, to the previous one thus forming a chain. This
mechanism provides an immutable and verifiable transactions record and ensures
the immutability feature because once a new block is added to the chain it can’t be
easily modified.

• Smart Contracts: they’re self-executing contracts that contain terms of agreement
within their codes. Their main task is to automatically execute code blocks when
certain conditions are met. In this way they automate and provide programmability
to blockchain systems.

Figure 2.1: Blockchain flow. Source: Geeksforgeeks

2.1.1. The data structure

The blockchain’s data structure is based on a decentralized and distributed ledger model
that is made up of several nodes connected each other in order to build a chain. In this
subsection it will be deeply analyzed the blocks structure. It is necessary to underline that
the block structure and the relative components that it is made up of may have variation
basing on the analyzed blockchain implementation. However, the essential properties that
unite each block variations are the following:

https://media.geeksforgeeks.org/wp-content/uploads/20220518004235/BlockchainF1.jpg

2| Literature 7

• Block header: the block header contains essential metadata about the block such as
its unique identifier (hash), the previous block’s one and other technical informa-
tion like timestamp. The hash represents a signature of the data contained in the
block, calculated by applying a cryptographic hash function to the contents of the
block, and it is used as digital fingerprint in order to help check the blocks’ data
integrity.[16]

• Transactions and data: this block’s part contains a collection of transactions or
data entries. They can represent any kind of data, such as information needed to
be stored on the blockchain for applications use cases or movements of digital assets
between users in cryptocurrency contexts.

• Difficulty: the level of mining difficulty (Proof of Work) regarding the block itself.[16]

• Nonce: the nonce is a random number useful during the mining process and it is
used to modify the generated hash.

• Merkle Tree Root: in several blockchain implementations, the transaction and data
of a block are recorded using this kind of data structre. A Merkle tree is a hierar-
chical layout of hashes constructed by gradually combining individual transactions
into pairs until a single root hash, that is called Merkle root, is obtained.

Figure 2.2: Blocks structure. Source: Geeksforgeeks

2.1.2. The network

The blockchain decentralized network is made up of nodes that collaborate with each other
in order to guarantee its availability and integrity. Blockchain typically utilize a Peer-To-
Peer (P2P) network architecture in which the nodes that compose it communicate directly

https://media.geeksforgeeks.org/wp-content/uploads/20221111160733/Structureofblocksinblockchain.png

8 2| Literature

with each other, thus avoiding the presence of a central entity that manages the network.
All the actors of this P2P network, the nodes, have the same status and can act both
as clients and servers, this design choice allows them to interact, share information and
also to implement a mechanism of propagation of transactions and blocks to all the nodes
in order to guarantee the blockchain’s state synchronization. Thanks to this mechanism
each node keep an always updated copy of the entire ledger, ensuring redundancy and
increasing the network’s failure tolerance, because in case a node fails and goes offline, all
the others can remedy and keep the blockchain working without any issue.

Figure 2.3: Traditional Client-Server System vs. Peer-To-Peer Network. Source: Bybit
Learn

Another very important aspect regarding the blockchain network is the Consensus Mech-
anism: a group of protocols, algorithms, incentives and ideas that the blockchain network
takes advantage of in order to achieve agreement on its state: transaction validity and
blocks order.[10] This mechanisms determine and decide how network nodes agree on the
blockchain’s state and prevent malicious actors from tampering it thanks to the need
to have the majority of nodes in the network reach a consensus on the blockchain state
agreement. The most common consensus mechanisms are Proof-Of-Work (PoW) based
one, used by Bitcoin, and Proof-Of-Stake (PoS) based one, used nowadays by Ethereum.

Blockchain can be moreover categorized in two main groups basing on the data secrecy
that run on it: permissionless and permissioned blockchains. The first one is also known
as public blockchain because it is available and accessible to every user that wants to use
it in order to send and validate transactions or data. It is trustable, decentralized and

https://images.contentstack.io/v3/assets/blt38dd155f8beb7337/blt038dd327481519cc/62324ac6658ad76d6946b71a/How_P2P_work.png
https://images.contentstack.io/v3/assets/blt38dd155f8beb7337/blt038dd327481519cc/62324ac6658ad76d6946b71a/How_P2P_work.png

2| Literature 9

has an anonymous nature but, since it has huge size, the transaction process speed is very
slow and Proof-Of-Work is very high energy-consuming so good hardwares are required
to join this kind of network.[13] The second type is the permissioned blockchain: they are
closed networks reserved to a group of users that are allowed to validate transactions and
data, these networks are not truly decentralized as permission operations are required. To
permissioned blockchain belong two blockchain types: private and consortium blockchain.
The first ones are controlled by one authority, run in closed networks and only few people
are allowed to participate, from these properties it derives that they have very high speed
and privacy levels.[13] The second type, the consortium blockchain is controlled by a
group, indeed it is also known as Federated Blockchain, the main characteristic of this
blockchain type is that some part are public and some others are private, in this way,
more than one organization can manage the blockchain without any privacy or security
issue.

The last blockchain type is the Hybrid blockchain: it is a mixed version of private and
public ones where some part are under some organization management and some others
are visible like the public blockchain. It brings the best aspects from both the starting
versions.[13]

Figure 2.4: Types of blockchain. Source: Geeksforgeeks

https://media.geeksforgeeks.org/wp-content/uploads/20220416092058/type.jpg

10 2| Literature

2.1.3. Decentralized Applications

Decentralized applications, also known as DApps, are software applications that run on
a decentralized network, in case of this thesis work on the blockchain, instead of on a
single authority like traditional applications that rely on a central server for data storage
and processing.[19] DApps leverage the decentralized nature of blockchain to offer to the
app users several benefits like transparency and security. DApps run on the blockchain
network which offer an environment that is public, open-source and decentralized and, in
this way, they won’t ever be under a single central entity control and dependency.[19].

A very important role in the majority of DApps is played by Smart Contracts that are
self-executing contracts that automate processes and allow trustless interactions between
participants. Moreover, Smart contracts guarantee DApps data integrity, since the data
stored within a smart contract is transparent and immutable, as it is written on-chain,
and data security, since they also take advantage of cryptographic techniques while storing
data and transactions. Another functionality that smart contracts offers to DApps is the
interoperability, as they can interact and communicate with other smart contracts and
DApps allowing exchange of assets and data between different DApps. Among all the
shown advantages that decentralized applications introduce we can also find resistance to
censorship, as no participant is able to delete or block contents, but also disadvantages
can be found such as the fact that their use is still in the early stages and it is prone
to some problems and unknowns or the difficult that can be found to make needed code
modification to fix some bugs or software updates, as the blockchain data is immutable
by definition.[19]

2| Literature 11

Figure 2.5: Traditional Apps vs. Decentralized Apps. Source: Linkedin

2.1.4. Wallet

In order to interact with the developed decentralize streaming application and with the
blockchain in general each user need to own a blockchain wallet that is a user interface
that allows users to manage their cryptocurrencies: they allows to transfer funds between
users through writing transactions to the blockchain.[2] Crypto wallets also manage cryp-
tography thanks to a public-key cryptography which they’re based on, the wallet’s key
features are a public/private key couple and the address of the wallet. The private key
is a 256-bit binary number, generally represented as a 64 length alphanumeric string,
used to offer the access to blockchain network to the owner of the relative wallet. The
public key is instead used to encrypt information sent on-chain by the owner. Lastly, the
address is an alphanumeric string derived from the public key that specifies the crypto
wallet location on the blockchain.[2]

In order to interact with the developed web3 audio and video streaming platform the
popualar browser extension that act as cryptocurrencies wallet MetaMask is needed. The
wallet enables the users that wants to upload and encrypt files to deploy the smart con-
tract by paying the required fee on the Mumbai Testnet and enables the encrypted data
requesters to try to access the data by provide their wallet information to nodes in order
to check the decryption conditions fulfillment.

https://media.licdn.com/dms/image/C4D12AQEda0AY3ep1vA/article-cover_image-shrink_720_1280/0/1636121627858?e=2147483647&v=beta&t=BotnE0frNBjxkgsMoE3Fyy3dJH-ykN9nGm16usZa5U8

12 2| Literature

Figure 2.6: Crypto wallet illustration. Source: Trustwallet

2.1.5. InterPlanetary File System (IPFS)

When developing a distributed application (DApp) it obviously necessary to adopt a
strategy to store and retrieve data, InterPlanetary File System, most commonly known
as IPFS, is a Peer-To-Peer hypermedia protocol designed to offer to DApps a decentralized
solution for this task. IPFS allow users to store and access any kind of data, like files
but also softwares identified and addressed using content-based addressing, indeed each
file is assigned a unique cryptographic hash, computed from its content, that is used as
its identifier. The contents hosted by IPFS can be of a large variety of types including,
among the others, databases, documents, files, websites and each uploaded content is
retrivable by simply searching for the relative link.[22] When a content is uploaded on
IPFS network, it is chopped up into blocks and distributed across several nodes that
the network is made up of. Similarly to how blockchain networks employs the nodes to
verify the transactions, IPFS employs its nodes, which are hundreds of thousand, to store
the data exploiting their storage bandwidth. Basically, IPFS offers a service that also
centralized platforms offers, with the very important difference that it does not require
any centralized data storage and this feature pushes dApps to exploit this service.[22] For
the decentralized platform developing Pinata and ThirdWeb Storage were used, which are
services built on top of InterPlanetary File System, in order to take advantage of their
decentralization feature to store the encrypted files, the relative metadata and encryption
strategy and conditions to be reused. This choice was born from the need to have a fast,
reliable, secure and distributed entity to store the encrypted data and all the necessary

https://trustwallet.com/assets/images/home_hero.png

2| Literature 13

platform data.

Figure 2.7: IPFS vs. Centralized data storage. Source: Blog.IPFS

2.1.6. Fungible and Non-Fungible Tokens

An important blockchain aspect that is becoming very popular nowadays is the token
concept. Tokens are digital assets that run on blockchain, use smart contracts to define
the ownership rules and provide a transparent and verifiable transaction history, they
can be stored in wallets and they’re used in a lot of blockchain use cases basing on the
token type: some examples are governance, utility, security, platform tokens and so on.[20]
Tokens can be divided in two different groups: Fungible tokens (FT) and Non-Fungible
Tokens (NFT), the latter have sparked enormous interest and innovation in art, gaming
and other worlds because provide monetization opportunity to creators by certificating
their ownership.

• Fungible Tokens (FTs): they are interchangeable token, each token is identical to
another of the same type. Example of fungible tokens are the cryptocurrencies like
Bitcoin (BTC) and Ethereum (ETH) since each crypto unit is interchangeable with
another of the same crypto unit. A standard for Fungible tokens is introduced by
ERC-20, that stands for Ethereum Request for Comment-20, which is a technical
specification or set of rules that defines the functionality and behavior of Fungible
tokens.[20]

• Non-Fungible Tokens (NFTs): differently from FTs, non-fungible tokens are non-
interchangeable, unique, indivisible and irreplaceable digital assets.[20] Each NFT
is characterized by distinct properties from other tokens of the same type and for this

https://blog.ipfs.tech/assets/img/http-vs-ipfs.a90615df.png

14 2| Literature

reason they are different from each other and not exchangeable. NFT’s uniqueness
is achieved by assigning an identifier, called Token ID, to each NFT, this feature is
responsible for the popularity of this technology since it allows, for example, artists
to tokenize and sell their works while retaining control and receivig royalties on
subsequent sales. Another field in which NFTs have acquired a great popularity
is Digital Collectibles and Blockchain Gaming because they can represent various
assets and unique items into games, such as characters, avatars and so on. Some
of the most popular NFT collections are Crypto Punks, Doodles, Azuki and others
that are purchasable on different online marketplaces like OpenSea and Binance.[20]
The standard for non-fungible tokens creation is the ERC-721 one, it allows creators
to issue these unique assets via Smart Contracts.

While developing the audio and video streaming platform which this thesis is based on, an
NFT was created by the process known as minting. The created ERC-721 token is called
IrpiniaNFT, with contract address: 0x21739b933261efF4bDE8d375796Bd40Eca8713A3
and TokenID: 0, and it was created to add conditions for files decryption based on the
ownership of this token. For the smart contract creation process they were used the ERC-
721 standard and the OpenZeppelin wizard [1]. The underlined contract deployment and
the successive NFT minting were done on a testnet called Mumbai Testnet with Chain
ID = 80001 and in the next chapters it will be shown in detail the decryption process
conditioned by its ownership.

Figure 2.8: A screenshot of the famous NFT marketplace OpenSea. Source: OpenSea

2.2. Threshold Network

Threshold Network is a decentralized ecosystem that was born from the merge between
two networks and community: NuCypher and Keep. It offers a suite of threshold cryp-

https://opensea.io/

2| Literature 15

tography services for web3 decentralized applications that power user sovereignty on the
blockchain.[7] The aim of threshold network is to distribute sensitive operations across
multiple independent entities represented by the nodes on its network and then return
the successful operation result if and only if a minimum number of nodes addressed to
operate, known as threshold, cooperate with each other in order to compute the response.
This process increases security and availability platforms levels and moreover protects
against the single point of failure and against malicious nodes presence because a single
individual is not able to corrupt the system.[8]

The idea is based on a famous cryptography techinque known as Threshold Cryptosystem
that is one of the most secure and and reliable one. Threshold Cryptosystem’s work
consists of encrypting information and distributing secrets among a cluster of independent
entities which guarantee fault-tolerance thanks to the system’s ablity to keep on working
also when some of them fails. The general idea that makes this cryptosystem very strong
is to consider the participants as susceptible to compromise and, thanks to the threshold
concept, even if some of the participant collude the encrypted secret remains safe.[6]

Threshold network, as said, provides to web3 developers an Access Control service that is
a suite of cryptographic services based on its decentralized network which enables end-to-
end, secure and fully decentralized communication and data sharing. The Access Control
service is basically divided in two distinct technologies: Proxy Re-Encryption (PRE)
and Conditions-Based Decryption (CBD) both of which provide end-to-end-encryption-
as-a-service.[12] These technologies are a fundamental topic of this thesis because the
developed decentralized streaming platform idea was born from the need to obtain at the
end of the work an application that offers sophisticated cryptographic technologies. Both
the offered protocols were evaluated and analyzed with respect to the desired final product
and, finally, Conditions-Based Decryption was exploited for the platform development. In
the fist developing phases a web3 streaming Proof-Of-Concept implementing Proxy Re-
Encryption was developed but weaknesses and scalability limits with respect to the goal
influenced the choice of using CBD. In this chapter PRE and CBD workflows will be
analyzed in detail in order to fully understand the thesis project work.

2.2.1. Proxy Re-Encryption (PRE)

Threshold Proxy Re-Encryption technology is a cryptographic middleware that aims to
preserve applications users’ privacy, it is an end-to-end encryption protocol that works
with a cluster of proxy entities whose task is to receive an encrypted data and perform
a re-encryption operation on it in order to transform the decryption key from one to

16 2| Literature

another without revealing the plaintext, these proxy entities are the Threshold Network
nodes and they, always basing on the threshold cryptography, cooperatively re-encrypt
the received data if and only if the data requester coincides with the one specified by the
data owner.[8]

In order to properly analyze and understand how this technology works from the crypto-
graphical point of view, it is necessary to split the cryptographic process in four different
steps, each of which is associated to a principal actor:

• Alice: the data owner, the one who wants to share her data through a PRE appli-
cation.

• Enrico: the encrypter, an entity that performs data encryption on behalf of Alice.

• Bob: the data recipient, the actor designed for the message decryption.

• Ursula: a PRE node on the Threshold Network designed for the re-encryption op-
eration.

Alice

When Alice wants to share some data she firstly specify a label to categorize the encrypted
data, from this label an asymmetric key pair is created: the public one is shared to Enrico
for the encryption process, while the private one is used with the recipient’s (Bob) specified
public key to create a re-encryption key. Then Alice must determine n Ursulas from
the Threshold Network employed for the re-encryption process and configure the policy
conditions, that are expiration time, shares value and threshold value (m-of-n values), in
order to deploy the policy to the blockchain and pay the associated policy fees. In the
end the re-encryption key is split into ’n’ key fragments, called kFrags in order to create
an encrypted treasure map that contains the list of the Ursula nodes with the relative
re-encryption keys (kFrags) encrypted for each Ursulas in the policy. Alice finally passes
to Enrico the asymmetric encryption key in order to allow him to encrypt the message to
be subsequently sent to Bob with the encrypted treasure map. [3]

2| Literature 17

Figure 2.9: Alice’s actions. Source: NuCypher

Enrico

Threshold Network nodes, Ursulas, works by following the Umbral threshold proxy re-
encryption scheme[21] which essentially uses two mechanism: Key encapsulation mecha-
nism (KEM) and Data encapsulation mechanism (DEM). Enrico, the encrypter, first of
all receives from Alice the data to be encrypted and the asymmetric encryption key gener-
ated from the label, subsequently it is created an ephemeral random symmetric key, used
to encrypt the data, that is then encrypted with the asymmetric encryption key provided
by Alice. In this way the encrypted data (DEM part) and the encrypted symmetric key
(KEM part) also called capsule are stored together and are sent also with the encrypted
treasure map to Bob in order to allow him to receive the necessary tools to retrieve the
plaintext. These data can be stored anywhere since they’re encrypted and inaccessible
from anyone but Bob. [3]

https://docs.nucypher.com/en/latest/_images/alice_grant.svg

18 2| Literature

Figure 2.10: Enrico’s actions. Source: NuCypher

Bob

In order to obtain the plaintext sent by Alice, Bob must firstly retrieve the encrypted
message (that contains the key capsule and the ciphertext) and the encrypted treasure
map in order to obtain, once decrypted with his private key, the Ursula nodes associated
with the policy and the relative re-encryption key fragments encrypted for each of them
(kFrags). Once obtained this information, Bob sends the capsule and the kFrags to the
various proxy entities which returns to Bob the re-encrypted kFrag version, known as
cFrag. Bob collect these cFrags until he obtains a number of cFrags equal to the threshold
(m) fixed into the policy; when he reaches this goal, Bob attaches these m received cFrags
in order to obtain the symmetric encryption key encrypted under his public key. After
the symmetric key decryption process Bob can finally decrypt the message sent by Alice
thanks to the result of the previous decryption operation.[3]

https://docs.nucypher.com/en/latest/_images/enrico_encrypt.svg

2| Literature 19

Figure 2.11: Bob’s actions. Source: NuCypher

Ursula

When Bob receives the key encapsulation and the treasure map, as said, he sends to
each Ursula in the trasure map the capsule and the relative encrypted re-encryption key
(kFrag). Each Ursula’s task is to decrypt the kFrag encrypted under its public key and
successively use it to perform the re-encryption operation on the capsule, the related result
will be returned to Bob, which requires m of these interactions with m different Ursulas
in order to retrieve the fully re-encrypted capsule. [3]

Figure 2.12: Ursula’s actions. Source: NuCypher

https://docs.nucypher.com/en/latest/_images/bob_retrieve.svg
https://docs.nucypher.com/en/latest/_images/ursula_reencrypt.svg

20 2| Literature

2.2.2. Conditions-Based Decryption (CBD)

For the project development the other analyzed technology, presented by Threshold Net-
work on 6th of January 2023, is Conditions-Based Decryption. It is a plug-in service that
offers the possibility to share any private or sensitive data within web3 dApps. Identically
to PRE service, the encrypted data flowing on the internet remains secret until it reaches
an authorized recipient device. This technology enables users to attach decryption con-
dition to the encrypted messages in order to make the messages available in clear only
for users that fulfills the specified conditions.[9] Conditions-based decryption adopts the
threshold cryptosystem idea too in order to reach an high reliability and security level
and remove the single point of failure. The access conditions, that are related to the
ciphertext, can be combined in any logical sequence or decision tree and can be of three
different types: time-based condition type enables the message decryption if and only if
the specified temporal condition is satisfied; EVM-based condition type regards the re-
cipient’s ownership of a token specified by the data owner; RPC-driven condition type is
based on the recipient ownership of a specified amount of a given token in the wallet.[9]
The conditions fulfillment verification is one of the specified cohort of Threshold Network
nodes jobs ensemble with the key fragments decryption to be sent to the requester that
is able to decrypt the encrypted message only when he receives an amount of fragments
equal to the threshold specified by the data owner in the strategy deployment phase.[9]

For the developed web3 streaming platform Conditions-Based Decryption was the tech-
nology used to manage the files encryption and decryption. Nevertheless the above tech-
nology explanation, since the technology has been launched only few months ago, it is
actually build on top of Proxy Re-Encryption so in the actual state the Ursula nodes that
belong to the strategy cohort still perform the re-encryption operation while in the next
Threshold Conditions-Based Decryption release the technology is built using a Decentral-
ized Key Generation ceremony, so the Ursulas will not perform any re-encryption, just
check the conditions and decrypt the keys fragments.

CBD Encryption process

When a data owner wants to encrypt some data the first step consists of configuring
a cohort of nodes from the Threshold Network, with the relative shares and threshold
values, in order to employee them to participate to the data sharing process. When this
cohort is chosen, a Decentralized Key Generation ceremony is performed in order to create
a key pair for the encryption and decryption phase, the derived public key is sent to the
encryptor to successively perform the message encryption operation while the private one

2| Literature 21

is broken into segments and sent to each cohort node in order to return each fragment
to any conditions-allowed arbitrary recipient during the decryption phase. Contextually,
the strategy, built from the nodes cohort ensemble with a label specified from the data
owner, is deployed onto the blockchain with the relative fee payment. Successively, the
data owner must specify a decryption conditions tree and the message he wants to encrypt
in order to enable the encryptor entity to use these data with the previously deployed
strategy for the message encryption. Finally, the data owner can send to any arbitrary
recipient the block that contains the encrypted data and the decryption condition and
all the information about the cohort of Threshold Nodes which refer to in order to try to
decrypt the message if the message specified conditions are fulfilled.

Figure 2.13: CBD encryption flow. Source: GitHub

CBD Decryption process

The Conditions-Based Decryption process starts by retrieving the data produced in the
encryption phase by the data owner from the data storage which consist of a block that
contains the encrypted data and the decryption condition set. When this recipient obtains
these information it is sent a request to the nodes cohort that also contains the previously
retrieved block. In order to check the requester’s conditions fulfillment an interactive step

https://user-images.githubusercontent.com/19150641/212952615-ec94ab99-7ac3-4471-9c84-6ce2014cee5a.png

22 2| Literature

is now required: since the cohort nodes need to verify certain conditions with respect
to a certain Ethereum Wallet, they want a wallet ownership proof performed from the
user by a message signature. This signature is then cached so it is asked only the first
time. At this time the Ursulas check through the passed Web3 Provider if the wallet
satisfy or not the passed condition set, in case of positive answer each of them provides
to the user the decryption key fragment related to its node. When the recipient collect a
number of fragment equal to the threshold set during the strategy deployment phase he
assemble all of them together in order to fully reconstruct the decryption key and finally
obtain the plaintext. In case the recipient’s wallet doesn’t fulfill the message decryption
conditions, each cohort node answer with an error message and the plaintext remains
obviously inaccessible.

Figure 2.14: CBD decryption flow. Source: GitHub

2.2.3. PRE vs. CBD

The two analyzed technologies designed by Threshold Network practically offers the same
service to the users that is a secure data end-to-end sharing, but, comparing them, they
reveal very important and deep differences, this subsection purpose is to properly ex-
plore these differences from different points of view also with respect to the developed
application use case.

The most important difference between these two cryptographic technique, that is also the
reason for what Conditions-Based Decryption was devised, is that Proxy Re-Encryption’s
encrypted message can be decrypted and readable by one and only one user, that is
specified during the policy deployment phase, this means that if a user wants to encrypt a
message to be read from more than one user by using the Proxy Re-Encryption technology

https://user-images.githubusercontent.com/19150641/212952675-55c952a8-0c56-414f-8f85-ce3fd3e5dc6a.png

2| Literature 23

he will be forced to create and deploy a number of policy that is equal to the number
of recipients he wants to share that message with. This aspect is really important both
in terms of usability, because if it is needed to create a very large number of policies
the process would take a long time and maybe even be unfeasible, and also economics
because when a policy is created the user must pay a fee for the writing operation onto the
blockchain, and so paying for a large number of policies would cost too much. Conditions-
Based Decrytion, instead, was designed to potentially allow the message access to an
infinite number of users by creating and deploying simply one strategy onto the blockchain.
As said in the above section, the encrypted message with CBD is related to a decryption
condition set from which derive if a user is allowed to access that message or not. So it can
be said that in PRE each policy is per-Bob and in CBD the conditionSet is per-ciphertext.
During the study phase of the developed decentralized application it was realized that
this PRE’s feature was a too big limit for the fixed goal, i.e. an audio and video streaming
platform containing files potentially decryptable by any user. CBD offers a very scalable
and cheap solution in order to reach this goal ensemble with the possibility to specify a
decryption condition set that is a perfect access control method for the encrypted files
inside the platform.

Another very important difference can be found on the security aspect, in particular the
Threshold Network nodes’ jobs are different as we said in the analysis conduced in the
previous sections: in PRE applications the Ursula nodes performs proxy re-encryption
operations, which means that they change the decryption key from one to another by
applying a new encryption to the encrypted data, so they will never be able to access the
plaintext. This means that in the case in which malicious nodes take part to the process,
also if in number that is greater then or equal to the policy threshold, they will never be
able to access the plaintext because they do not acquire the message decryption key. The
only attack that they can carry out is a denial-of-service attack but the encrypted data
will always remain secret and inaccessible. CBD cohort nodes’s job, instead, consists of
return to the arbitrary recipient a decryption key fragment, that he will only need to put
all of them together in order to fully reconstruct the key. In this case, if malicious nodes
that take part to the process are at least equal to the strategy’s threshold they will be
able also to access the plaintext simply by putting together the key fragments decrypted
by them.

We can finally conclude that Proxy Re-Encryption employs a more secure and reliable
service from the data privacy point of view but Conditions-Based Decryption offers a
more scalable solution for the data distribution point of view, still offering a quite high
security level.

24 2| Literature

Figure 2.15: Technologies security and scalability comparison diagram. Source: YouTube

https://www.youtube.com/watch?v=KvXtoNNCoOU&t=1271s

25

3| Final project and achieved

results

As introduced in the previous chapters, the project consists of a web3 decentralized plat-
form that allows authorized users to access on-demand audio and video contents while
using a very secure and reliable cryptographic technology: Conditions-Based Decryp-
tion (CBD). The decentralized application, born from a collaboration with the company
KNOBS, is a React App that take advantage of the Webpack module bundler to manage
the project dependencies and it was developed with Typescript as programming language.
The application is made up of two pages: the first page is dedicated to the encryption
phase, the second one instead to the decryption phase, every nuance regarding these pages
will be thoroughly analyzed and explained in this chapter. CBD consists of allowing the
access to the files available on the platform only to users whose wallet fulfills the required
decryption conditions, starting from this assumption the main idea was to enable decryp-
tion of files based on whether the data requester’s wallet owns a certain Non-Fungible
Token (NFT) or not, so one was created: the IrpiniaNFT. The application moreover of-
fers other decryption condition types, as it will be seen in this chapter in which it will be
firstly described the token creation and minting process and successively a focus on the
application will be done.

3.1. IrpiniaNFT

As stated above, this NFT has been created for the Proof-Of-Concept, in order to relate
some files decryption to the user’s wallet ownership of this token. The smart contract
creation was done thanks to the Contract Wizard of OpenZeppelin that allows users
to write all kinds of contracts, among which ERC-721 standard one, used to create the
contract to which IrpiniaNFT belongs, whose name is Web3-Streaming-Token and symbol
is W3ST. Successively, to exploit the contract deployment and token minting processes the
Remix IDE from Ethereum in collaboration with IPFS where the token’s baseURI and
metadata are stored. The Web3-Streaming-Token (W3ST) smart contract was deployed

26 3| Final project and achieved results

on the Mumbai Network which is a testnet with Chain ID = 80001, the choice of using
this network comes from the fact that, for which concerns the developing and testing
phase, the smart contract with whom the application’s interactions take place in order to
write the CBD strategy details and pay the related fees runs on this network.

The Web3-Streaming-Token (W3ST) ERC-721 contract’s address is 0x21739b933261efF4-
bDE8d375796Bd40Eca8713A3 and the IrpiniaNFT’s tokenID is 0. Contract details can
be found on Mumbai Polygonscan

Figure 3.1: IrpiniaNFT MetaMask screenshot

3.2. Files encryption phase

The first step of the application workflow consists of the file encryption phase, in order to
interact with this page each user need to connect his MetaMask account to the website
by clicking the proper button on the right in the TopBar.

https://mumbai.polygonscan.com/address/0x21739b933261efF4bDE8d375796Bd40Eca8713A3

3| Final project and achieved results 27

Figure 3.2: Wallet connection phase

3.2.1. CBD Strategy building

Once the MetaMask wallet connection is correctly established the user sees the main page,
which contains two sections, the first one allows the user to retrieve from Pinata, the
used IPFS service used as data storage, the files previously encrypted with the currently
connected account, but this section will be later analyzed. The second section, instead,
consists of the first step of the file encryption process that is the choice between deploying
a new Conditions-Based Decryption strategy on-chain and selecting one among the user’s
already deployed ones saved on Pinata. This latter feature is very useful in order to use
the same strategy for multiple files encryption without the need of deploying a new one
and consequently pay the writing fee every time.

Figure 3.3: Encryption process starting

28 3| Final project and achieved results

Stategy deployment

When the user decides to create and deploy on-chain a new strategy it will be necessary
to configure two kind of settings: the Cohort and the Strategy settings. The cohort, as
explained in the section 2.2.2, is the set of Threshold Network nodes responsible for the
Decentralized Key Generation process in order to construct the asymmetric encryption
key to be used subsequently, and for the management of the conditions checking during
the decryption process. The Cohort settings definition consists of specifying the URI
of the Porter, the number of nodes to be considered in the cohort and the threshold of
nodes’ responses needed to decrypt the message. The Porter is a sort of gateway for
the Threshold Network, it is a web-based service which performs nucypher-based proto-
col operations on behalf of applications, its goal is to simplify the interaction with the
nucypher protocol operations and to avoid that the application need to interact with
this protocol through a python client. Moreover, the Porter entity allows cross-platform
applications, such as web and mobile ones, to exploit the nucypher functionality.[5] By
default, the Porter URI inserted in the input field is a public one provided by Tapir :
"https://porter-tapir.nucypher.community".

The strategy settings configuration, instead, consist of simply specifying a label to be
associated with the strategy and, optionally, a decryption condition set to be attached
to all files that will be encrypted with the strategy being created. This feature is very
useful in the case in which a user needs to encrypt a lot of files with the same decryption
condition set. Since the conditions setting phase is a crucial point and the chosen ones
are attached to the encrypted file, we will analyze and explain it later in the section.

The below example, the figure 3.4, shows an example of a new strategy creation, built with
the default Tapir Porter URI, the amount of randomly chosen Threshold nodes involved
in the Decentralized Key Generation equal to 5 and the minimum number of nodes to
decrypt files related to this strategy equal to 3, for which concerns the cohort. For which
concerns the strategy settings, the entered label is "No conditions strategy" because no
decryption conditions are specified for this strategy, as can be seen from the unchecked
checkbox, it will be necessary to add decryption conditions in the next step.

3| Final project and achieved results 29

Figure 3.4: Strategy creation example

Once the settings are established, the "Create" button click make the strategy deploy-
ment process start: the first step consists of making a post request to the Porter URI
in order to retrieve the addresses of the requested nodes and start with the Decentral-
ized Key Generation. Successively, the strategy is written onto the blockchain (Mumbai
Testnet) thanks to the method createPolicy(bytes16, address, uint16, uint32, uint32) of
the smart contract SubscriptionManager specifying the off-chain generated policyID, the
policy owner i.e. the user itself, the number of shares and a start date and end date (in the
form of timestamp). The last two parameters are useless and will be removed in the next
CBD release. The fee that the user is called to pay is computed by a simple calculation:

transactionCost = feeRate× duration× numberOfNodes (3.1a)

where duration is endTimestamp - startTimestamp.[4]

The fee payment is made through MetaMask and the relative notification shown to the

30 3| Final project and achieved results

user can be found in figure 3.5. The underlined smart contract details can be explored on
Mumbai Polygonscan.

Moreover, when the strategy deployment ends successfully, as we can see in figure 3.6 the
application asks the user to sign a message with his wallet in order to get the relative
secret key to store on Pinata, under his MetaMask account, the newly deployed strategy.

Figure 3.5: Transaction’s fee payment
Figure 3.6: Message signature for the Pinata
key generation

Stategy selection from IPFS

Before moving to the conditions set insertion step it is good to highlight also the other
method that can be used in order to move to the encryption phase: using an already
deployed strategy chosen from IPFS, if present. In order to retrieve the currently con-
nected user’s encryption strategies from Pinata, as seen above, it is necessary to provide
the wallet signature to generate the Pinata secret key to retrieve the files. This interac-
tive step is necessary only at the first request, after which the key is cached. Once the
user clicks the right button "Use a deployed strategy", shown in figure 3.3, all the user’s
strategies are retrieved and the user can also visualize all the details regarding each of
them before deciding which use. As said, this application feature is useful to avoid paying
a transaction fee for each message to be encrypted and also to reuse the same decryption
condition set for different files without the needing of entering it every time.

https://mumbai.polygonscan.com/address/0xb9015d7b35ce7c81dde38ef7136baa3b1044f313

3| Final project and achieved results 31

In the below example, figure 3.7, are shown seven buttons related to the strategies already
deployed on-chain with the currently connected account, each of them is represented by
the label inserted during the creation phase. As can be noticed, the just deployed one
with label "No conditions strategy" has been clicked and the relative details are shown,
among which we can find the decryption conditions inserted. This is the strategy that
will be used in order to go ahead with the encryption process.

Figure 3.7: Deployed strategies retrieved from Pinata

3.2.2. Condition set entry

The key concept of the project comes when it is needed to specify the decryption conditions
to be then attached to the encrypted file. If in the previous step the selected strategy to
be used contains an empty condition set, it is mandatory to specify one before moving
to the file selection. Otherwise, if the used strategy contains a condition set it is possible
to use it or also to overwrite it by checking the related checkbox and inserting a new one
for a specific file, still using that strategy. This is possible because the conditions are
per-ciphertext : they are encapsulated within the encrypted message, so it is possible also
to overwrite them before the file encryption.

32 3| Final project and achieved results

The condition set can be made up of three different condition types that can be also
concatenated in a hierarchy tree thanks to the two logical operators AND/OR that allows
to put more conditions together.

Timelock-based condition

The first available condition type is the Timelock-based one, it allows to make a file
decryption available or unavailable basing on temporal conditions, as can be seen in figure
3.8 the user can insert an operator to compare the return value, that for this condition
type is the current timestamp, to the date and hour value that can be inserted through
the calendar. For the working example it is inserted a timelock condition that makes the
file undecryptable until the 1st of July 2023 at 00:00.

Figure 3.8: Timelock-based condition.

EVM-based condition

The second available condition type is the EVM-based one: it allows users to enable
files decryption basing on token ownership. It is possible to specify this condition for
the two most famous token standards: ERC-20 for fungible tokens and ERC-721 for
non-fungible tokens. Basing on the selected standard different methods are offered, it is
good to analyze all the possibility the user can face. If ERC-20 is selected the user, after
the smart contract address specification to which the token refers, can call the method

3| Final project and achieved results 33

balanceOf(), which is a method of ERC-20 contracts that need to receive a wallet address
as parameter in order to return the amount of tokens owned by it. The address parameter
must be specified in the proper input field and if the user wants to pass to the method
the decrypting user’s address it is necessary to type ":userAddress". And then he can
compare the return value with the any value and operator.

Instead, when ERC-721 is selected the user can choose between two methods: balanceOf()
and ownerOf(). The first method is a ERC-721 method which, by receiving as parameter
a wallet address, returns the number of NFTs belonging to the smart contract on which
the method is called owned by that wallet. The second method, instead, receives as
parameter a TokenID and returns the owner address of that tokenID belonging to the
smart contract on which the method is called. So the application can call these two
methods on the inserted smart contract address and passing the selected parameter. As
before, the user can compare the return value with any value he wants.

It is good to underline that the, since the platform works with the Mumbai Testnet, this
method works with smart contracts and tokens running on it.

In the below example, the figure 3.9, it is inserted an EVM-based condition that makes the
file inaccessible if the user that will require the file doesn’t own the IpriniaNFT, that be-
longs to the Web3-Streaming-Token smart contract: address 0x21739b933261efF4bDE8d3-
75796Bd40Eca8713A3 and has TokenID = 0. This condition is added to the previously
created condition set with the OR operator.

34 3| Final project and achieved results

Figure 3.9: EVM-based condition.

RPC-driven condition

The last condition type provided by CBD is the RPC-driven one that allows to make
the file decryptable or not basing on money conditions. This kind of condition can be
used with two different methods: eth_getBalance() and balanceOf(). The first one
requires a wallet address as parameter and returns the account balance related to the
chainID token required. The second method, instead, requires a smart contract address
as parameter and returns its balance. After choosing the method to use and entering the
relative paramter to pass the user can insert the return value comparison in order to build
the condition, as can be seen in the platform the comparing value must be specified in
Wei unit of measurement.

As the previous method, also this one works on Mumbai Testnet, therefore the cryptocur-
rency considered is Matic. In the below example, figure 3.10, the RPC-driven specified
condition calls the eth_getBalance() method on the data requester’s address and checks
if its balance is greater than 0.05 MATIC, that becomes 50000000000000000 once con-

3| Final project and achieved results 35

verted to Wei. As before, this condition has been added to the condition set with the OR
operator.

Figure 3.10: RPC-based condition.

When each condition is added to the condition set it is shown a JSON preview that recaps
the inserted condition set, in order to double check the decryption rules before moving to
the file encryption phase. From the screenshot below, the figure 3.11, it can be seen the
JSON related to the inserted condition set, in this case they can be found three conditions,
one for each type, concatenated with OR operators. The below condition set meaning
is that the file that will be associated to it will be decryptable only after the 1st of July
2023 at 00:00 unless the data requester owns the IrpiniaNFT in his wallet or his wallet’s
balance on the Mumbai Testnet is greater than 0.05 MATIC.

It is good to underline that the just outlined process is identical if the user decides to
add a condition set to the strategy during the deployment phase. In case the strategy is
already associated with a condition set this step can be skipped in order to directly pass
to the file encryption process or, if the user wants to change it, he can overwrite it thanks
to the special checkbox in order to make some modification to conditions for a specific
file.

36 3| Final project and achieved results

Figure 3.11: Decryption condition set building.

3.2.3. File encryption

When the decryption conditions are successfully established, in order to go ahead to the
file encryption phase, the user needs to click the "Complete" button that will be enable
the file upload. If the user notices that between his condition set there is something
wrong he can, thanks to the "Reset" button, go back and repeat the condition entering
process. When going ahead another content block appears on the page, this content block
contains three input fields: the first and the third ones are needed to specify the name
and the image related to the file he wants to encrypt that the user wants displayed on the
decryption page, while the second one is the audio or video file itself.

Once these input field are properly filled the decryption process can be run through the
"Encrypt" button: when this action is performed it happens that the file is sent to the
encrypter entity ensemble with the chosen condition set that will encrypt the plaintext

3| Final project and achieved results 37

and encapsulate it with the conditions. When this operation is successfully completed
the encrypted message, encoded in a base64 string, is uploaded on IPFS Pinata service
divided in different chunks with other data that will be needed during the decryption
phase, among these we can obviously find the file’s title and image, a reference to the
strategy used and also the decryption condition set. When uploading the file to Pinata,
in the file metadata it is also specified a reference to the MetaMask wallet that performed
this operation in order to, as it will be explained in the next subsection, retrieve the files
encrypted and uploaded by the currently connected user.

In the example in figure 3.12 it has been selected an audio file to be encrypted, the related
title, "Fabri Fibra - Come Te", and cover image to be shown inside the decryption page.

Figure 3.12: Filled file encryption input fields.

3.2.4. Encrypted and uploaded files visualization

At the beginning of this section it was mentioned the first content block that is dedicated to
the uploaded encrypted messages retrieving. This section allows users to browse between
the files encrypted and uploaded on Pinata by the currently connected wallet with the
related details. If the user is new to the platform and no file has been uploaded by him
the message "Sorry, zero files found!" will be shown. Otherwise, the menu displays an
unordered list with the title of each file and an hypertext that allows users to retrieve
details related to the selected file: the IPFS CID, the strategy label thanks to which the
file was encrypted, and the detailed decryption condition. If the user wants to access the
strategy details he can do it thanks to the second content block, as said in the above

38 3| Final project and achieved results

subsections.

This feature is useful in order to allow any user to track and consult any file encrypted and
uploaded to the streaming platform. The figure 3.13 shows an example of the explained
process, it can be noticed that, among the other files encrypted with the currently con-
nected wallet, it can be found the file encrypted during this workflow example, of which
details are also shown.

Figure 3.13: Encrypted files retrieved from IPFS.

3.3. Files decryption phase

After outlining in depth the platform encryption side, it must be properly analyzed and
explained the files decryption page. Equally to the encryption page, when a user enters
this page no content can be displayed until his MetaMask wallet is successfully connected
to the platform. As the decentralized applications majority, in order to interact with the
platform this connection operation is necessary, in detail in this dApp’s decryption page,
as widely said, to decrypt files the conditions must be met by the MetaMask wallet. The
figure 3.14, shows the page the user faces when enters the app.

3| Final project and achieved results 39

Figure 3.14: Wallet connection phase.

3.3.1. Encrypted files retrieving

When the wallet connection is successfully completed the encrypted files are retrieved
from Pinata, it is initially shown only one row, made up of four files, but the user can
download the subsequent ones by clicking the button "Show more". The encrypted files
are displayed through the images and file titles specified during the file encryption phase.
On the top of the content block, on the right, the user can find a dropdown menu that
allows him to filter the files basing on the type: audio files, video files and all files, by
default the dropdown value is "Audio", so when the user enters the platform and connects
the wallet he browse the uploaded audio files, as shown in figure 3.15, where two file rows
have been downloaded.

40 3| Final project and achieved results

Figure 3.15: Decryption page showing audio files.

It can be noticed from the above figure that on the decryption homepage the file that was
encrypted during the explanation of the first side of the platform in the previous section is
also shown. The user, when browsing these files, can look at each file decryption details by
clicking onto the relative cover image in order to understand the necessary requirements
to gain access to the selected file, the section devoted to this purpose appears above the
files’ content block.

The figure 3.16 shows the just highlighted section mentioning the decryption details re-
lated to the previously encrypted file which presents all three types of decryption condi-
tions.

3| Final project and achieved results 41

Figure 3.16: File’s decryption conditions details.

3.3.2. Files decryption and visualization

When a file’s decryption conditions details are shown, that section also present a button
"Decrypt" that is useful to send the decryption request to the cohort of nodes estab-
lished during the related strategy deployment process. The Threshold Network’s nodes
to interview in order to receive the decryption key fragments are communicated to the
data requester through Pinata strategy metadata. When this request takes place they
are sent to the cohort nodes the encrypted message encapsulated with the relative con-
dition set and also the currently connected wallet so that the nodes can perform the
conditions checking process. In this conditions fulfillment checking phase an interactive
step is required: in order to prove the wallet ownership a message signature is required,
this happens only the first time the wallet performs a request because this signature is
then cached. When this wallet ownership proof correctly ends, the Threshold Network
nodes belonging to the cohort proceed by extracting the condition set from the message
encapsulation and, subsequently, verifying if that condition set is fulfilled by the provided
wallet. If so, each of them returns its decryption fragment to the user, who will be able
to decrypt the message only when a number of fragments equal to the strategy threshold

42 3| Final project and achieved results

value will be collected because only in that case the decryption key can be fully recon-
structed. In this case the audio or video file is shown to the data requester without any
issue. If, on the other hand, the user’s wallet does not meet the decryption requirements,
each node returns an error message that is simply shown to the user on the platform.

The below figure 3.17 shows the result of the decryption process of the file shown in
figure 3.16 performed with IrpiniaNFT proprietary wallet, that is able to gain access to it
because, as said, this file can be freely decrypted by anyone after the 1st of July 2023 at
00:00, but until then the decryption is reserved to the IrpiniaNFT owner and to wallets
that own at least 0.05 MATIC on Mumbai Testnet. When the file is provided, they are
also displayed the file name and the related deployed strategy label.

Figure 3.17: Successful audio file decryption.

The figure 3.18 instead illustrate the result of the same operation but performed with
an empty wallet, which owns neither the IrpiniaNFT nor any MATIC token, therefore a
wallet like this will be able to access the file only after the 1st of July 2023. As can be
seen they are visualized the addresses of the cohort nodes involved in the strategy with
the error message returned by all of them.

3| Final project and achieved results 43

Figure 3.18: Result of decryption attempt by a non-authorized user.

For the sake of completeness, the figure 3.19 illustrates an example of access to a video
file, whose encryption and decryption workflows are completely identical to the audio files
ones presented during all this chapter. The access to the below video, as can be read in
the decryption condition section in the figure, is reserved to the IrpiniaNFT owner wallet.

44 3| Final project and achieved results

Figure 3.19: Successful video file decryption.

45

4| Application testing

When developing software, whatever kind it is, a very important phase is testing, which
is a mandatory process that must be carried out to minimize the presence of any kind of
bugs. The huge importance of this developing step resides in the fact that an eventual
presence of bugs in a software launched on the market can lead to several risks for the
users and for the company itself. Moreover, the testing phase allows software developers
to improve their software quality, through various testing techniques they can assess the
functionality, performance, security, and reliability of the software, in order to find any
weaknesses and improve them to offer to the end-user an always higher-quality product
and reducing the risk of problems for the company’s business operations. In particular, in
the decentralized applications’ world the distribution of a platform which contains bugs
is even more dangerous because, as outlined in the chapter 2, this type of software, once
written onto the blockchain, is impossible to remove or to make changes to the code, this
due to the blockchain immutablility property.

In order to perform software testing several techniques and approaches exists but they
are typically divided in two main categories:

• Static testing techniques: this group of testing methods consists of searching for
defects in the application without executing the code. This approach is used in
the early stages of the software development in order to find issues that may cause
failures and, therefore, improve the software efficiency by fixing them.[11]

• Dynamic testing techniques: the methods belonging to this second group, instead,
test the software under analysis by inspecting its dynamic behaviour through code
execution. The testing operation is performed by inserting dynamic input values
that, basing on the software requirements, can be allowed (positive testing) or re-
jected by the platform (negative testing).[11]

The developed streaming platform has undergone numerous tests, both static and dy-
namic. The purpose of this chapter is to illustrate the used testing techniques and analyze
the results obtained.

46 4| Application testing

4.1. Static tests

For what static testing concerns, the Static code review technique has been exploited, this
method consists of a systematic review of the source code without obviously running it,
since it belongs to the static approaches family. The purpose of the static code review of
the developed streaming platform was to, through a careful line-by-line review, look for
code imperfections that may cause problems. In particular the attention was focused on:

• Code syntax in order to avoid logical errors with respect to the software require-
ments.

• Design and implementation choices in order to maximize the platform efficiency.

• Compliance with coding standards and best practices like formatting, naming con-
ventions, code structures.

• Code redundancies search, like unused variables, and comments completeness in
order to make the code as understandable as possible by third parties.

• Security vulnerability detection in order to, if any, mitigate any risk derived by them
by properly implementing the needed security measures.

• Code complexity and maintainability: it is possible to improve the software main-
tainability and facilitate future platform enhancement by analyzing factors such as
code structure, functions size and code duplication.

During the development of the platform the Static code review technique was used when-
ever a task was accomplished to streamline this process and apply it to smaller code blocks
so that nothing was left out.

The test carried out returned quite good results but, at the same time, helped a lot in
correcting errors and inefficiencies in the platform’s source code. In particular, thanks to
this method the maintainability level of the software was improved and some redundancies
were found like unused variables. Once the dApp developing was completed another code
review was done in order to double check the final obtained product, this final test was
passed with very good results, no issues were found also thanks to the several intermediate
static test done during the developing phase.

4.2. Dynamic tests

When talking about testing approaches, the most common and used are the ones belonging
to the Dynamic testing techniques family. As said, the most relevant characteristic of

4| Application testing 47

this group’s methods is that, differently from static-based ones, the testing process is
performed by running the source code of the software and analyzing its behavior in order to
search for defects of various nature during runtime, such as functionality and performance
issues or the software compliance with its specific requirements.

Among the techniques that belong to the dynamic ones they can be found Unit testing and
Integration testing, that are two of the most common and important testing methods in
literature and are the ones used to dynamically test the developed streaming decentralized
platform. The first one involves individual components testing by isolating that specific
unit of the software with respect to the others, the aim of the Unit testing method is to
make sure that each unit and component of the software properly works as expected and
it can be done manually or by taking advantage of automated tools. The second one is
consequential to the first because, when the unit testing is successfully completed, the
Integration testing method aims to put that units together and verify the interactions
with each other.

4.2.1. Unit testing

Unit testing is an integral part of the developing process of the platform because every
developer, once completed the task on which he’s working on, runs the code in order to
verify the correct operation of that specific code unit. This method allows developers to
promote code quality, early detection of eventual bugs and defects and maintainability.
This method involves isolating the section of code under testing and check that it properly
works by entering dynamic input values, also to verify its robustness with values that could
cause malfunctioning, this approach is called negative testing.[17]

In order to test the different units of the streaming platform unit testing processes have
been performed also at the end of the work, before putting all together and moving to
the integration testing. The purpose of this chapter is to highlight all the tests carried
out with the expected behavior and the relative test result. The below table 4.2 shows
all the performed tests and the relative results.

48 4| Application testing

Encryption Page testing

Table 4.1: Unit testing table for encryption page components

Test case Expected output Result

1. Wallet connection

The user clicks on the "Con-
nect wallet" hypertext

The MetaMask connection
popup opens

OK

The user enters the correct
wallet password

The page content with the
currently connected wallet ad-
dress is displayed

OK

The user enters an incorrect
wallet password

The MetaMask popup shows
the message "Incorrect pass-
word"

OK

2.
User’s encrypted files col-
lection
The user clicks on the "Show"
button in the first content
block

If the user’s key is not
cached, the MetaMask signa-
ture popup opens

OK

The user correctly sign the
message and no files were en-
crypted by him

The message "Sorry, zero files
found!" is displayed

OK

The user correctly sign the
message and some file were en-
crypted by him

An unordered list with all file
titles is displayed

OK

The user clicks on an hyper-
text "See more" in order to vi-
sualize file details

Correct URI, strategy label
and decryption conditions are
displayed below the file title

OK

3. Strategy deployment

The user clicks on the "Deploy
a new strategy" button

The form to enter the cohort
and strategy settings is dis-
played

OK

The user correctly fills the
form and clicks the "Create"
button owning funds on the
connected wallet

The MetaMask popup to pay
the strategy fee opens and, af-
ter that, the newly deployed
strategy is stored on Pinata
and the conditions content
block is displayed

OK

4| Application testing 49

Test case Expected output Result

The user correctly fills the
form and clicks the "Create"
button without owning funds
on the connected wallet

The error message "Error dur-
ing strategy creation, check
the parameters or your wallet
funds" is displayed

OK

4.
Strategy selection from
IPFS
The user clicks on the "Use
a deployed strategy" button
and no strategies were de-
ployed by him

The message "Sorry, zero
strategies found!" is displayed

OK

The user clicks on the "Use
a deployed strategy" button
and some strategy were de-
ployed by him

The strategy deployed by
the currently connected wallet
stored on IPFS are displayed
in the form of buttons

OK

The user clicks on a strategy
button

The clicked strategy and rela-
tive cohort details are shown

OK

The user clicks on the button
"Use" related to the selected
deployed strategy

The selection content block is
disabled and the file encryp-
tion condition content block
appears

OK

5.
Decryption conditions in-
sertion
The user checks the checkbox
in order to override the strat-
egy’s decryption condition for
that specific file

The content block that allows
the user to define a condition
set appears

OK

The user correctly fills the sin-
gle condition form and clicks
the button "Add new"

The inserted condition ap-
pears in the JSON preview be-
low

OK

The user fills the single con-
dition form with illegal values
and clicks the button "Add
new"

The error message "Sorry, er-
ror while adding your condi-
tion, check your parameters
and retry!" appears and the
condition set must be rebuilt

OK

50 4| Application testing

Test case Expected output Result

The user clicks the button
"Reset"

The condition set represented
in the JSON preview empties
out in order to be rebuilt

OK

The user inserts at least one
condition and clicks the but-
ton "Complete"

The condition content block’s
button become disabled and
the encryption content block
appears.

OK

6. File encryption

The user correctly fills the en-
cryption form

The button "Encrypt" in en-
abled

OK

Once filled the form, the user
clicks on the button "En-
crypt"

The loader is displayed dur-
ing encryption and uploading
operations and, when the pro-
cess correctly completes, the
encrypted file is stored on
Pinata and the relative URI is
displayed

OK

4| Application testing 51

Decryption Page testing

Table 4.2: Unit testing table for decryption page components

Test case Expected output Result

1. Wallet connection

The user clicks on the "Con-
nect wallet" hypertext

The MetaMask connection
popup opens

OK

The user enters the correct
wallet password

The page content with the
currently connected wallet ad-
dress is displayed

OK

The user enters an incorrect
wallet password

The MetaMask popup shows
the message "Incorrect pass-
word"

OK

2.
Encrypted files download-
ing

The connected user enters the
page

A row made up of four images
representing the audio files
and a button "Show more"
appear

OK

The user clicks the button
"Show more"

Another row of four images
appears below

OK

The user changes the drop-
down menu value to "Video"

The previously visualized im-
ages are changed with the
ones representing the video
files

OK

The user changes the drop-
down menu value to "All files"

Both audio and video files re-
lated images are displayed in
the content

OK

3.
Files decryption details
visualization

The user clicks on an image
related to a file

A content block showing the
clicked file name and the re-
lated decryption conditions to
fulfill is displayed

OK

52 4| Application testing

Test case Expected output Result

The user clicks on another file
image

The content of the details sec-
tion changes, showing the in-
formation related to the newly
selected file

OK

3. File decryption process

The user clicks on the but-
ton "Decrypt" related to a file
and his connected wallet ful-
fills the required decryption
conditions

The loader is shown during
the conditions checking and
decryption process and, at the
end, the audio or the video file
is shown to the user

OK

The user clicks on the button
"Decrypt" related to a file and
his connected wallet doesn’t
fulfill the required decryption
conditions

The loader is shown during
the conditions checking and
decryption process and, at
the end, the Threshold Net-
work nodes’ error responses
are shown: "Unauthorized:
b’Decryption conditions not
satisfied’"

OK

4.2.2. Integration testing

As said, Integration testing is commonly intended as the second phase of a software
testing process, consequent to Unit testing, because this method in needed to check that
the single software units analyzed by unit testing properly work together as designed.[23]
The integration testing process is usually performed when all the pieces are merged and it
is very useful to verify the compatibility of software modules and components, the correct
data flow between different part of the software and many others possible defects that can
come out during the components integration.

For the streaming platform integration testing has been performed both during the de-
velopment process and at the end of it, this because the platform works in a sequential
way: each unit work is fundamental to the subsequent ones. In literature many types of
integration testing exists, but the focus was directed to the Big Bang Integration method,
that consists of merging all the modules and components and testing the entire system
as a whole. This approach is mainly used for relatively small and simple softwares.[23]

4| Application testing 53

The used testing techniques are only the first two levels of the pyramid of software testing
methods that is made up of four floors. The last two methods of this pyramidal hierarchy
are designed to be used in the very last developing phases before the product launching.
They are, in sequence:

• System testing: in this phase it is checked the system compliance with the re-
quirements in terms of security, performances, speed, reliability and many other
parameters. Usually, this test is performed by professional figures trying to emulate
the real end-users environment as much as possible in order to search for eventual is-
sues. This step is very important because, as said, it is performed when the product
launch to the market is about to happen.[15]

• Acceptance testing: also known as UAT (User Acceptance Testing) it the very top
of the highlighted pyramid and consists of a distribution of a Beta version of the
software to some users in order to allow them to use it, as a simulation of the product
launch, in order to receive the last feedbacks before the final release. Usually, the
tester’s focus is mainly directed to the usability feature of the software, but also to
spelling mistakes, clarity of usage and more.[15]

The System testing and Acceptance testing will be the future testing phases of the de-
centralized streaming platform. Since they are the last two steps, they will be performed
once eventual future platform enhancements will be carried out.

55

5| Conclusions and future

developments

The preliminary studies that anticipated the decentralized platform developing were made
to find the optimal solution for the usability-privacy trade off that everyone meet everyday
in the nowadays digital world, as explained in the Chapter 1. The main idea, which came
about through collaboration with the company KNOBS, was to find the best way to
share files between users without worrying about security issues and taking advantage of
decentralized technologies. After several protocols and solutions analysis the choice fell
on Conditions-Based Decryption (CBD) which has been widely explained and analyzed
the previous chapters and allows the achievement of an high usability level while ensuring
the encrypted data privacy.

The streaming platform allows users to encrypt audio and video files in order to make their
decryption available only to users whose cryptocurrency wallet fulfills certain conditions,
from the security point of view the solution adopted isn’t obviously too restrictive since
the conditions may allow also every users to decrypt the file, but that is a user choice:
the user when encrypt his files establishes the decryption conditions basing on the secrecy
level of the file. So, the platform offers the possibility of making the decryption available
to anyone, for example by inserting a simple timelock condition, or also to one and only
user, for example by setting a Non-Fungible Token ownership condition. It is important,
however, to underline that when the file runs encrypted onto the web it is extremely
secure, practically undecryptable. This is why this technology was chosen, because is
flexible to different situations while ensuring a very high data security level.

For what future developments and platform enhancements concern, a smarter decryption
process could be implemented: the current platform version handles the encryption and
decryption flows by manipulating the entire file, this means that, in case of huge files,
the decryption operation could last a long time. A solution to ease this process might be
to manage the encryption process by fragmenting the files and encrypting the resulting
fragments in order to allow the data requester to access the file without waiting for the

56 5| Conclusions and future developments

file to be fully decrypted, and giving the requester the ability to start accessing the file
during download, as classic streaming platforms do.

Another limit of the Web3-Streaming platform is that once a message is encrypted and
uploaded on IPFS, its condition set is unmodifiable, since it is written ensemble with the
ciphertext on IPFS, that is unchangable by definition. An improvement of the platform
under this point of view could be achieved by giving the possibility to encrypt messages
and relate their decryption to updateable condition set. This solution can be reached by
deploying onto the blockchain a smart contract containing the decryption condition set
and giving the data owner the possibility to alter it by sending a transaction to the smart
contract. This solution could also help the data owner to revoke access to the file for all
users.

57

Bibliography

[1] What is openzeppelin? developer’s guide 2023. URL https://www.

alchemy.com/overviews/openzeppelin-developers-guide-2022#:~:

text=OpenZeppelin%20is%20a%20crypto%20cybersecurity,largest%20DeFi%

20and%20NFT%20projects.

[2] What is a blockchain wallet and how does it work? URL https://kriptomat.io/

blockchain/what-is-a-blockchain-wallet/.

[3] Character concepts, 2019. URL https://docs.nucypher.com/en/latest/

architecture/character.html.

[4] Ethereum contracts, 2019. URL https://docs.nucypher.com/en/latest/

architecture/contracts.html.

[5] Web development, 2019. URL https://docs.nucypher.com/en/latest/

application_development/web_development.html.

[6] Threshold cryptography, mpc, and multisigs: A complete overview, 2022. URL
https://blog.pantherprotocol.io/threshold-cryptography-an-overview/.

[7] About threshold network, 2022. URL https://threshold.network/about/.

[8] What is threshold network (t)?, 2022. URL https://academy.binance.com/en/

articles/what-is-threshold-network-t.

[9] Conditions-based decryption (cbd), 2023. URL https://docs.

threshold.network/applications/threshold-access-control/

conditions-based-decryption-cbd.

[10] Consensus mechanisms, 2023. URL https://ethereum.org/en/developers/docs/

consensus-mechanisms/.

[11] Software testing techniques, 2023. URL https://www.geeksforgeeks.org/

software-testing-techniques/.

https://www.alchemy.com/overviews/openzeppelin-developers-guide-2022#:~:text=OpenZeppelin%20is%20a%20crypto%20cybersecurity,largest%20DeFi%20and%20NFT%20projects.
https://www.alchemy.com/overviews/openzeppelin-developers-guide-2022#:~:text=OpenZeppelin%20is%20a%20crypto%20cybersecurity,largest%20DeFi%20and%20NFT%20projects.
https://www.alchemy.com/overviews/openzeppelin-developers-guide-2022#:~:text=OpenZeppelin%20is%20a%20crypto%20cybersecurity,largest%20DeFi%20and%20NFT%20projects.
https://www.alchemy.com/overviews/openzeppelin-developers-guide-2022#:~:text=OpenZeppelin%20is%20a%20crypto%20cybersecurity,largest%20DeFi%20and%20NFT%20projects.
https://kriptomat.io/blockchain/what-is-a-blockchain-wallet/
https://kriptomat.io/blockchain/what-is-a-blockchain-wallet/
https://docs.nucypher.com/en/latest/architecture/character.html
https://docs.nucypher.com/en/latest/architecture/character.html
https://docs.nucypher.com/en/latest/architecture/contracts.html
https://docs.nucypher.com/en/latest/architecture/contracts.html
https://docs.nucypher.com/en/latest/application_development/web_development.html
https://docs.nucypher.com/en/latest/application_development/web_development.html
https://blog.pantherprotocol.io/threshold-cryptography-an-overview/
https://threshold.network/about/
https://academy.binance.com/en/articles/what-is-threshold-network-t
https://academy.binance.com/en/articles/what-is-threshold-network-t
https://docs.threshold.network/applications/threshold-access-control/conditions-based-decryption-cbd
https://docs.threshold.network/applications/threshold-access-control/conditions-based-decryption-cbd
https://docs.threshold.network/applications/threshold-access-control/conditions-based-decryption-cbd
https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://www.geeksforgeeks.org/software-testing-techniques/
https://www.geeksforgeeks.org/software-testing-techniques/

58 | Bibliography

[12] Threshold access control, 2023. URL https://docs.threshold.network/

applications/threshold-access-control.

[13] Types of blockchain, 2023. URL https://www.geeksforgeeks.org/

types-of-blockchain/.

[14] C. Boscolo. Che cos’è e come funziona threshold network?, 2023. URL https://it.

cryptonews.com/news/che-cose-e-come-funziona-threshold-network.htm.

[15] M. Calvello. The 4 levels of testing in software engineering explained: Examples,
challenges, and approaches, 2022. URL https://fellow.app/blog/engineering/

the-levels-of-testing-in-software-engineering-explained/.

[16] T. Candido. A technical introduction to blockchain,
2020. URL https://betterprogramming.pub/

a-technical-introduction-to-blockchain-22ab05308151.

[17] T. Hamilton. Unit testing tutorial – what is, types test example, 2023. URL
https://www.guru99.com/unit-testing-guide.html.

[18] N. Iny. Sensitive data exposure: What is it and how to avoid it?, 2022. URL
https://www.polar.security/post/sensitive-data-exposure.

[19] M. L. Jake Frankenfield, Jefreda R. Brown. Decentralized applications (dapps): Def-
inition, uses, pros and cons, 2023. URL https://www.investopedia.com/terms/

d/decentralized-applications-dapps.asp.

[20] A. Knezovic. The difference between fungible and non-
fungible tokens (nfts), 2022. URL https://medium.com/udonis/

the-difference-between-fungible-and-non-fungible-tokens-nfts-123df237b892#:

~:text=Fungible%20tokens%20are%20not%20unique,investments%20in%20the%

20right%20hands.

[21] D. Nuñez. Umbral: A threshold proxy re-encryption scheme, 2018. URL https:

//github.com/nucypher/umbral-doc/blob/master/umbral-doc.pdf.

[22] R. N. Shilpa Lama. What is ipfs?, 2022. URL https://beincrypto.com/learn/

what-is-ipfs/.

[23] J. Terra. What is integration testing: Examples, challenges,
and approaches, 2023. URL https://www.simplilearn.com/

what-is-integration-testing-examples-challenges-approaches-article.

[24] D. Zafar. 8 blockchain security issues you are likely to encounter,

https://docs.threshold.network/applications/threshold-access-control
https://docs.threshold.network/applications/threshold-access-control
https://www.geeksforgeeks.org/types-of-blockchain/
https://www.geeksforgeeks.org/types-of-blockchain/
https://it.cryptonews.com/news/che-cose-e-come-funziona-threshold-network.htm
https://it.cryptonews.com/news/che-cose-e-come-funziona-threshold-network.htm
https://fellow.app/blog/engineering/the-levels-of-testing-in-software-engineering-explained/
https://fellow.app/blog/engineering/the-levels-of-testing-in-software-engineering-explained/
https://betterprogramming.pub/a-technical-introduction-to-blockchain-22ab05308151
https://betterprogramming.pub/a-technical-introduction-to-blockchain-22ab05308151
https://www.guru99.com/unit-testing-guide.html
https://www.polar.security/post/sensitive-data-exposure
https://www.investopedia.com/terms/d/decentralized-applications-dapps.asp
https://www.investopedia.com/terms/d/decentralized-applications-dapps.asp
https://medium.com/udonis/the-difference-between-fungible-and-non-fungible-tokens-nfts-123df237b892#:~:text=Fungible%20tokens%20are%20not%20unique,investments%20in%20the%20right%20hands.
https://medium.com/udonis/the-difference-between-fungible-and-non-fungible-tokens-nfts-123df237b892#:~:text=Fungible%20tokens%20are%20not%20unique,investments%20in%20the%20right%20hands.
https://medium.com/udonis/the-difference-between-fungible-and-non-fungible-tokens-nfts-123df237b892#:~:text=Fungible%20tokens%20are%20not%20unique,investments%20in%20the%20right%20hands.
https://medium.com/udonis/the-difference-between-fungible-and-non-fungible-tokens-nfts-123df237b892#:~:text=Fungible%20tokens%20are%20not%20unique,investments%20in%20the%20right%20hands.
https://github.com/nucypher/umbral-doc/blob/master/umbral-doc.pdf
https://github.com/nucypher/umbral-doc/blob/master/umbral-doc.pdf
https://beincrypto.com/learn/what-is-ipfs/
https://beincrypto.com/learn/what-is-ipfs/
https://www.simplilearn.com/what-is-integration-testing-examples-challenges-approaches-article
https://www.simplilearn.com/what-is-integration-testing-examples-challenges-approaches-article

5| BIBLIOGRAPHY 59

2022. URL https://cybersecurity.att.com/blogs/security-essentials/

8-blockchain-security-issues-you-are-likely-to-encounter.

https://cybersecurity.att.com/blogs/security-essentials/8-blockchain-security-issues-you-are-likely-to-encounter
https://cybersecurity.att.com/blogs/security-essentials/8-blockchain-security-issues-you-are-likely-to-encounter

61

List of Figures

2.1 Blockchain flow. Source: Geeksforgeeks . 6
2.2 Blocks structure. Source: Geeksforgeeks 7
2.3 Traditional Client-Server System vs. Peer-To-Peer Network. Source: Bybit

Learn . 8
2.4 Types of blockchain. Source: Geeksforgeeks 9
2.5 Traditional Apps vs. Decentralized Apps. Source: Linkedin 11
2.6 Crypto wallet illustration. Source: Trustwallet 12
2.7 IPFS vs. Centralized data storage. Source: Blog.IPFS 13
2.8 A screenshot of the famous NFT marketplace OpenSea. Source: OpenSea . 14
2.9 Alice’s actions. Source: NuCypher . 17
2.10 Enrico’s actions. Source: NuCypher . 18
2.11 Bob’s actions. Source: NuCypher . 19
2.12 Ursula’s actions. Source: NuCypher . 19
2.13 CBD encryption flow. Source: GitHub . 21
2.14 CBD decryption flow. Source: GitHub . 22
2.15 Technologies security and scalability comparison diagram. Source: YouTube 24

3.1 IrpiniaNFT MetaMask screenshot . 26
3.2 Wallet connection phase . 27
3.3 Encryption process starting . 27
3.4 Strategy creation example . 29
3.5 Transaction’s fee payment . 30
3.6 Message signature for the Pinata key generation 30
3.7 Deployed strategies retrieved from Pinata 31
3.8 Timelock-based condition. 32
3.9 EVM-based condition. 34
3.10 RPC-based condition. 35
3.11 Decryption condition set building. 36
3.12 Filled file encryption input fields. 37
3.13 Encrypted files retrieved from IPFS. 38

https://media.geeksforgeeks.org/wp-content/uploads/20220518004235/BlockchainF1.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20221111160733/Structureofblocksinblockchain.png
https://images.contentstack.io/v3/assets/blt38dd155f8beb7337/blt038dd327481519cc/62324ac6658ad76d6946b71a/How_P2P_work.png
https://images.contentstack.io/v3/assets/blt38dd155f8beb7337/blt038dd327481519cc/62324ac6658ad76d6946b71a/How_P2P_work.png
https://media.geeksforgeeks.org/wp-content/uploads/20220416092058/type.jpg
https://media.licdn.com/dms/image/C4D12AQEda0AY3ep1vA/article-cover_image-shrink_720_1280/0/1636121627858?e=2147483647&v=beta&t=BotnE0frNBjxkgsMoE3Fyy3dJH-ykN9nGm16usZa5U8
https://trustwallet.com/assets/images/home_hero.png
https://blog.ipfs.tech/assets/img/http-vs-ipfs.a90615df.png
https://opensea.io/
https://docs.nucypher.com/en/latest/_images/alice_grant.svg
https://docs.nucypher.com/en/latest/_images/enrico_encrypt.svg
https://docs.nucypher.com/en/latest/_images/bob_retrieve.svg
https://docs.nucypher.com/en/latest/_images/ursula_reencrypt.svg
https://user-images.githubusercontent.com/19150641/212952615-ec94ab99-7ac3-4471-9c84-6ce2014cee5a.png
https://user-images.githubusercontent.com/19150641/212952675-55c952a8-0c56-414f-8f85-ce3fd3e5dc6a.png
https://www.youtube.com/watch?v=KvXtoNNCoOU&t=1271s

62 | List of Figures

3.14 Wallet connection phase. 39
3.15 Decryption page showing audio files. 40
3.16 File’s decryption conditions details. 41
3.17 Successful audio file decryption. 42
3.18 Result of decryption attempt by a non-authorized user. 43
3.19 Successful video file decryption. 44

63

List of Tables

4.1 Unit testing table for encryption page components 48
4.2 Unit testing table for decryption page components 51

65

Acknowledgements

I want to thank my advisor, the professor Francesco Bruschi, for giving me the opportunity
of working on this thesis that I’ve been so passionate about in this months of hard work,
for giving me the chance to expand my knowledge by delving into the blockchain world
and for supporting me during the study and development process together with my co-
advisor, Manuel Tumiati, and Stefano De Cillis from KNOBS whom I want to thank for
all the advices and insights given to me in these last months.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Thesis outline

	Literature
	Blockchain
	The data structure
	The network
	Decentralized Applications
	Wallet
	InterPlanetary File System (IPFS)
	Fungible and Non-Fungible Tokens

	Threshold Network
	Proxy Re-Encryption (PRE)
	Conditions-Based Decryption (CBD)
	PRE vs. CBD

	Final project and achieved results
	IrpiniaNFT
	Files encryption phase
	CBD Strategy building
	Condition set entry
	File encryption
	Encrypted and uploaded files visualization

	Files decryption phase
	Encrypted files retrieving
	Files decryption and visualization

	Application testing
	Static tests
	Dynamic tests
	Unit testing
	Integration testing

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

