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1. Introduction
Massive Multiple Input Multiple Output
(MIMO) technology is the key technology in
the 5G mobile communication system. This
technique enhances a large number of antennas
at both the transmitter and the receiver side
[6]. With a high number of antennas, trying
to recover the transmitted information in a
massive MIMO up-link receiver is more com-
putationally complex, because the transmitted
signals interfere with each other. The thesis
focuses on signal detection in a multi-user
communication scenario, in particular at the
receiver side.

2. Problem and research ques-
tion

Promising detectors are iterative detectors based
on Approximate Message Passing (AMP) algo-
rithm [2]. Deep Learning (DL) reported promis-
ing results in signal detection. Recently two new
algorithms based on deep learning and AMP
have been proposed. The first one is called
LVAMP and it is a deep leaning based neural
network that is obtained by unfolding the Vec-
tor AMP algorithm (VAMP). The second one
instead is a new network obtained by unfold-

ing Orthogonal AMP (OAMP) algorithm, called
OAMPNet2. A comparison between these two
algorithms in different situations and with a
common baseline is missing, therefore the the-
sis is focused on that.
Research Question: Can LVAMP and
OAMPNet2 be considered as sub-optimal solu-
tions to MIMO detection problem and which one
is the best network in terms of complexity and
SER on different MIMO scenarios?

3. MIMO
MIMO system can be represented trough a ma-
trix mathematical approach.

ȳ := H̄x̄+ n̄ (1)

where ȳ is a vector of complex values of length
N̄r, with N̄r that is the number of receiver an-
tennas, and represents the signal received by the
BS. x̄ represents the signal transmitted by the
UEs and it is a vector of complex values, taken
from a discrete alphabet Ā, of length N̄t, with
N̄t that is the number of transmitter antennas.
n̄ represents the noise and it is a vector of com-
plex numbers of length N̄r. Finally, H̄ is called
channel matrix, it has shape N̄r×N̄t and hij ∈ C
is the channel gain that derives from x̄j and x̄i
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antennas. The channel matrix can assume dif-
ferent structures, called channel models.

3.1. i.i.d Gaussian channel model
This channel model is so common because it is
simple but it is far from the real scenario. In
fact, it assumes that each h̄ij is independent
from all the others and h̄ij ∼ CN (0, 1/N̄r).
The columns of H̄ are normalized such that
∥h̄i∥2 = 1 in this thesis.

3.2. Kronecker channel model
The Kronecker channel model simulates the spa-
tial correlation among channels. It is modelled
as: H̄ = R

1/2
R KR

1/2
T where k̄ij ∼ CN (0, 1/N̄r)

and RR and RT are the receiver and transmitter
Correlation matrices respectively. These matri-
ces are generated according to an exponential
correlation model, depending on a parameter of
correlation that assumes values from 0 (iid Gaus-
sian) to 1 when all the channels interfere with
each other. The coefficient at receiver side is in-
dicated as ρr while the one at transmitter side
is ρt. Also in this case, the column of H̄ are
normalized such that ∥h̄i∥2 = 1.

3.3. From Complex to Real MIMO
System

Due to the fact that working with complex val-
ues is more difficult than working with real num-
bers, the MIMO model can be convert to a real-
valued system. A new vector is defined for each
variable of the model, in particular the trans-
mitted symbol vector becomes

x =
[
ℜ(x̄T ) ℑ(x̄T )

]T (2)

where ℜ(·) is the real part of the complex num-
ber between brackets and ℑ(·) is its imaginary
part. Also the other variables are modified and
in particular

y =
[
ℜ(ȳT ) ℑ(ȳT )

]T
n =

[
ℜ(n̄T ) ℑ(n̄T )

]T
H =

[
ℜ(H̄T ) −ℑ(H̄T )
ℑ(H̄) ℜ(H̄)

]
y = Hx+ n

Nr = 2N̄r

Nt = 2N̄t

(3)

The last modification that must be applied con-
cerns the alphabet A. With these new definition

of MIMO system, x can assume values coming
from A, where A = ℜ(Ā) = ℑ(Ā) in the case of
QAM modulation.

4. MIMO Detection
Definition 1 (MIMO Detection): Given
a MIMO system a MIMO Detection method
can be defined as the problem of retrieving the
transmitted signal vector x ∈ RNt from a noisy
linear measurement that can be expressed as
y = Hx+ n ∈ RNr where H is a known matrix
∈ RNr×Nt and n is an unknown unstructured
noise vector ∈ RNr .

The optimal method for solving the MIMO de-
tection problem is represented by the ML detec-
tor:
x̂ = arg max

x∈ANt

prob(y|x,H) = arg min
x∈ANt

∥y −Hx∥2

(4)

ML does not scale, therefore several suboptimal
solutions have been tested in order to solve this
problem during the years, and the most com-
mon is Minimum Mean Squared Error (MMSE).
MMSE finds x̂MMSE through

x̂MMSE = arg min
x∈ANt

∫
∥x− x̄∥2p(x|y)dx (5)

that is equal to compute E[x|y].

4.1. AMP
The AMP algorithm [1] performs the steps:

zt = x̂t +HH(y −Hx̂t) + bt
bt = αt(H

H(y −Hx̂t−1) + bt−1)
x̂t+1 = ηt(zt;σt)

(6)

AMP is an iterative algorithm that uses a bt
term that is called Onsanger correction term.
Both σt and αt can be computed using Signal
Noise Ratio (SNR) and system parameters such
as the dimension of the system or the constella-
tion. The denoising function is the optimal one
for each element of zt.
Optimal denoiser for Gaussian noise: if the noise
at the input of the denoiser zt − x has an iid
Gaussian distribution with a covariance matrix
that is diagonal with value σ2

t INt , the element-
wise thresholding function derived from the pre-
vious formula is

ηt(z;σ
2
t ) =

1

Z

∑
xt∈A

xt exp(−
∥z − xt∥2

σ2
t

) (7)
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where Z =
∑

xt∈A exp(−∥z−xt∥2
σ2
t

). In this
case σt represents the standard deviation of the
Gaussian noise.

4.2. OAMP
A variant of AMP that relaxes the iid Gaus-
sian channel assumption is the Orthogonal AMP
(OAMP) that works for unitarily invariant chan-
nel matrices [3]. OAMP is an optimal estimator
with excellent convergence properties [4]. The
principle of OAMP is to decouple the posterior
probability p(x|y,H) into a series of probabili-
ties p(xi|y,H)i=1,2,...,Nt in an iterative way. The
OAMP detector can be written as Algorithm 1

Algorithm 1 OAMP
Require: received signal y, channel matrix
H, noise covariance matrix Rn̂n̂

Output: Estimated signal x̂T+1

Initialize: τ0 ← 1, x̂0 ← 0
for t = 1, . . . , T − 1 do
rt = x̂t +Wt(y −Hx̂t)
x̂t+1 = E{x|rt, τt}
v2t =

∥y−Hx̂t∥22−tr(Rn̂n̂)

tr(HHH)

τ2t = 1
Nt

tr(BtB
H
t )v2t +

1
Nt

tr(WtRn̂n̂W
H
t )

end for
Return x̂T

where

v2t =
E[∥qt∥22]

Nt

τ2t =
E[∥pt∥22]

Nt

Wt = Nt

tr(ŴtH)
Ŵt

Ŵt = v2tH
H(v2tHHH +Rn̂n̂)

−1

(8)

where Rn̂n̂ is the covariance matrix of the noise
in signal detector n̂, and Bt = I −WtH. Due
to the fact that the values of x are taken from a
constellation of symbols and that the estimation
is based on MMSE, in order to estimate x̂ it is
used

x̂t+1 = E{xi|ri, τi} =
∑

si
siNC(si; ri, τ

2
t )p(si)∑

si
NC(si; ri, τ2t )p(si)

(9)

where p(si) is the prior distribution of
the symbol xt and is defined as p(xi) =∑

j∈Nr

1√
Nr

δ(xi − sj).

4.3. VAMP
In [5] the Vector Approximate message passing
(VAMP) algorithm is proposed, showing that
it holds under a bigger class of channel ma-
trices respect to AMP, those that are right-
orthogonally invariant. The VAMP algorithm is
based on the “economy” SVD of the channel ma-
trix: H = Ūdiag(s̄)V̄ T where s̄ ∈ RRforR :=
rank(H) ≤ min(Nr, Nt). Algorithm 2 is the
SVD form of the VAMP algorithm.

Algorithm 2 VAMP in SVD form
Require: received signal y, channel matrix
H, denoiser function g1(·, γt), noise precision
γw ≥ 0, number of iterations T , r0 ≥ 0, γ0 ≥ 0

Output: Estimated signal x̂T
Compute economy SVD H = Ūdiag(s̄)V̄ T

Compute preconditioned ỹ = diag(s̄)−1ŪT y
for t = 0, 1, . . . , Tdo do
x̂t = g1(rt, γt)
αt = ⟨g′1(rt, γt)⟩
r̃t = (x̂t − αtrt)/(1− αt)
γ̃t = γt(1− αt)/αt

dt = γwdiag(γws̄
2 + γ̃t1)

−1s̄2

γt+1 = γ̃t⟨dt⟩/(Nt
R − ⟨dt⟩)

rt+1 = r̃t +
Nt
R V̄ diag(dt/⟨dt⟩)(ỹ − V̄ T r̃t)

end for
Returnx̂T

In the algorithm, g1(rt, γt) : RNt → RNt is de-
fined as g1 = argminx∈A[

γt
2 |x − rt|2 − ln p(x)]

where p(x) is the prior distribution of x, while
g′1(rt, γt) as g′1(rt, γt) = diag[∂g1(rt,γt)∂rt

], and
⟨·⟩ is the empirical averaging operation ⟨u⟩ :=
1
Nt

∑Nt
n=1 un. Moreover, rt ∈ RNt is called resid-

ual term at iteration t− th and γt represents the
reciprocal of its variance. Finally, R is defined
as R = rank(H).
There is also another approach to write the
VAMP algorithm without using the SVD form.
In this second variant, the linear MMSE and
the trace of the covariance matrix must be com-
puted at each iteration, involving the inverse of
a Nt × Nt matrix. The second version of the
VAMP algorithm is called LMMSE form and it
follows the steps of Algorithm 3.
In the algorithm, g2(r2t, γ2t) = (γwH

TH +
γ2tI)

−1(γwH
T y + γ2tr2t) is a MMSE estimate

linear in r2k (that’s why it is called LMMSE
form) of a random vector x2 under likeli-
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Algorithm 3 VAMP in LMMSE form
Require: LMMSE estimator g2(r2t, γ2t), de-
noiser function g1(·, γ1t), number of iterations
T , r10 and γ10 ≥ 0
Output: Estimated signal x̂T
for t = 0, 1, . . . , T do

Denoising
x̂1t = g1(r1t, γ1t)
α1t = ⟨g′1(r1t, γ1t)⟩
η1t = γ1t/α1t

γ2t = η1t − γ1t
r2t = (η1tx̂1t − γ1tr1t)/γ2t
LMMSE
x̂2t = g2(r2t, γ2t)
α2t = ⟨g′2(r2t, γ2t)⟩
η2t = γ2t/α2t

γ1,t+1 = η2t − γ2t
r1,t+1 = (η2tx̂2t − γ2tr2t)/γ1,t+1

end for
Returnx̂1T

hood N (y;Hx2, γ
−1
w I) and prior N (r2k, γ

−1
2k I).

Instead, ⟨g′2(r2k, γ2k)⟩ can be defined as
⟨g′2(r2k, γ2k)⟩ =

γ2t
Nr

tr[(γwH
TH + γ2tI)

−1]. For
what concerns g1 and g′1, they are defined as in
Algorithm 2.

4.4. OAMP-Net2
In [2] the authors proposed a model driven
deep learning network based on OAMP, named
OAMPNet2. OAMPNet2 performs considerably
better than OAMP and is more robust with re-
spect to SNR, channel correlation, modulation
symbol and MIMO configuration mismatches.
OAMPNet2 is a deep learning network com-
posed by T cascade layers with the same archi-
tecture but different parameters. The inputs of
the network are y and Ĥ, while the output is
x̂T+1. For each layer, the input is the x̂t estima-
tion of x computed in the previous layer. The
OAMPNet2 detector follows these steps at each
layer:

rt = x̂t + γtWt(y − Ĥx̂t)
x̂t+1 = ηt(rt, τ

2
t ;ϕt, ξt)

v2t =
∥y−Ĥx̂t∥22−tr(Rn̂n̂)

tr(ĤHĤ)

τ2t = 1
Nt

tr(CtC
H
t )v2t+

θ2t
Nt

tr(WtRn̂n̂W
H
t )

(10)

where Ct = I−θtWtĤ. The nonlinear estimator
ηt for estimating x̂t+1 instead is revised and it is

constructed by the divergence free estimator

ηt(rt, τ
2
t , ϕt, ξt) = ϕt(E{x|rt, τt} − ξtrt) (11)

where E{x|rt, τt} is computed as for OAMP.

4.5. LVAMP
LVAMP is the neural network that results from
the unfolding of the iterations of VAMP. The
LVAMP network consists in two modules as
VAMP that can be divided in two parts each.
Therefore, four steps compose the LVAMP net-
work, a LMMSE estimation, decoupling stage,
shrinkage estimation, an another identical de-
coupling stage. The LMMSE stage uses as pa-
rameters θ̃ = {Ut, st, Vt, σ

2
wt} for each iterations

t. When the channel is not iid Gaussian and
there are correlations, it is important to consider
the covariance matrix. In this case the param-
eters of the network becomes θ̃ = {Gt,Kt} and
the LMMSE stage is defined as

η̃(r̃t; σ̃t, θ̃t) = Gtr̃t +Kty (12)

where Gt ∈ RNt×Nt and Kt ∈ RNt×Nr . The
shrinkage stage instead has as parameter θt that
is used in the denoising function η(·). There-
fore the parameters to be learnt are expressed
as {θ̃t, θt}Tt=0. It is suggested to inizialize U , s,
V as the SVD values of H and σ2

w at the average
value of N−1

t ∥y∥2.

5. Method
The thesis is based on an experimental and
quantitative methodology. The algorithms
that are taken in consideration for the thesis
and therefore for the experiments are MMSE,
VAMP, OAMP, LVAMP, OAMPNet2, and also
MMNet. MMNet is a deep learning neural net-
work that can be considered the state of the art
when trained online. In the thesis it is trained
offline for coherence with the other DL-based al-
gorithms.
The experiments consist in different simulations
based on 5G scenarios. The simulations differ
for size of the MIMO system, channel model,
QAM size, SNR values and type of training.
For each experiment, the same range of SNR
values are considered. The range that has been
selected is from 18 dB to 23 dB, that are the
values that are common in the comparison of
MIMO detectors.
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Finally, the algorithms, in particular the ones
that are DL-based, are trained and tested in
three different ways:
• The training phase is conducted with iid

Gaussian channel matrices, and tested with
matrices generated from the same channel
model.
• The training phase uses Kronecker channel

matrices with different correlation parame-
ters, and the testing is conducted with Kro-
necker channel matrices.
• The training is based on iid Gaussian chan-

nel model, but the testing is done with Kro-
necker matrices in order to verify the adapt-
ability of the algorithms.

The metric that is used to compare the algo-
rithms in the experiments is the SER perfor-
mance metric.

SER =
no.ofsymbolsinerror

totalno.oftransmittedsymbols
(13)

5.1. Dataset
The training dataset is split in parts of equal
size called batches before the start of the learn-
ing procedure. When the training phase starts
the algorithm iterates over epochs. The dataset
is composed by samples with three sources of
randomness: the signal x, the channel matrix H
and the noise n. The signal x is sampled form
the constellation randomly and uniformly. The
channel matrix is sampled following the struc-
ture of the channel model selected for the ex-
periment. The noise is derived from the sam-
pling of the standard deviation sigma that is
derived from the SNR of the experiment. For
each sample in the batch, the SNR value is cho-
sen randomly in the range 18-23 dB. Therefore,
each batch that is used during training is a tu-
ple of four elements {(y(d), H(d), σ(d), x(d))}Dd=1

where x(d) are the values that have to be pre-
dicted. The generated training dataset is split
in two parts in order to create the validation
set. The size of the validation set is 25% of the
generated dataset. In order to avoid overfitting,
early stopping, dropout and cross validation are
used. The algorithms have been trained for 2000
epochs, with Adam optimizer and learning rate
of 0.001. Each batch has size of 1000 samples.

5.2. Experiments
The number of combinations that can be gener-
ated and that have been tested during the thesis
work are hundreds. In the thesis only the most
significant ones are reported. Seven experiments
have been described in the thesis and they can
be summarized through Table 1.

6. Results and Analysis
In this section, the results of the experiments are
shown and analysed. Due to the fact that the
32 transmitters and 64 receivers configuration is
the most common and realistic for comparing al-
gorithms in a MIMO scenario, only the results
of Experiment 5, 6 and 7 are shown in this ex-
ecutive summary.

6.1. Experiment 5
In Figure 1 the results of the experiment are
presented. All the algorithms have very good
performances, with SER values that are always
(a part from 18 dB of SNR) under 0.1. The
OAMPNet2 algorithm outperforms the others,
being the only one having all SER under 0.1,
and reaching 10−4 for 23dB of SNR. VAMP and
LVAMP algorithms instead does not perform
well in this configuration, with values that are
very similar to the one of MMSE. The OAMP al-
gorithm is the second best algorithm with great
results despite it is not a DL-based algorithm.
For what concerns MMNet instead, it has a par-
ticular curve. In fact, at the beginning the curve
and the SER values are very close to the ones of
OAMP, but when the SNR values increase, it
does not follow the OAMP curve, having an im-
provement of accuracy lower.

Figure 1: Experiment 5 results
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Table 1: Experiments summary

Experiment Nr Nt Shape Modulation C.M. training C.M. testing
1 4 4 Squared QAM-16 i.i.d Gaussian i.i.d Gaussian
2 32 32 Squared QAM-64 i.i.d Gaussian i.i.d Gaussian
3 32 32 Squared QAM-64 Kronecker Kronecker
4 32 32 Squared QAM-64 i.i.d Gaussian Kronecker
5 64 32 Rectangular QAM-64 i.i.d Gaussian i.i.d Gaussian
6 64 32 Rectangular QAM-64 Kronecker Kronecker
7 64 32 Rectangular QAM-64 i.i.d Gaussian Kronecker

6.2. Experiment 6
Experiment 6 is divided in two cases, that are
based on training and testing phases conducted
with Kronecker channel matrices.

6.2.1 Experiment 6a

The first case consists in an experiment where
ρR = ρT = 0.3. In Figure 2 the results of the
experiment are reported. The MMNet algorithm
performs very badly, with SER values that are
very high. This algorithm is fragile when trained
offline and this experiments shows the difficulties
for MMNet to adapt to a more complex scenario.
For what concerns the other algorithms, they be-
have similarly to experiment 5. In fact, VAMP
and LVAMP have performances very close to the
ones of MMSE. OAMP provides again good re-
sults, while OAMPNet2 outperforms the other
algorithms. As it possible to see, OAMPNet2
is the only algorithm that reaches a SER value
close to 10−4 with a SNR value of 23 dB. The
SER values are a bit worse than the ones in ex-
periment 5, but this is due to a more complex
and realistic MIMO system in which the exper-
iment is conducted.

Figure 2: Experiment 6a results

6.2.2 Experiment 6b

The second case changes the correlation param-
eters respect to the experiment 6a. In fact in
this case ρR = ρT = 0.5. The result of the ex-
periment are presented in Figure 3. This time
MMNet has SER values very close to 1, meaning
that quite all the estimations are wrong. With
an highly correlated Kronecker channel model,
MMNet is not able to estimate the transmitted
signal if trained offline. An interesting result of
the experiment is represented by OAMPNet2.
In fact for the first time, it has a behaviour very
close to the one of OAMP for SNR equal to 18,
19 and 20 dB. For the last three values of SNR,
instead, OAMPNet2 performs better than the
others. Again, VAMP and LVAMP have accu-
racy very close to the one of MMSE, overlap-
ping graphically. Also OAMP is closer to MMSE
for 18dB of SNR, but then its performances im-
prove.

Figure 3: Experiment 6b results

6.3. Experiment 7
The final experiment is based on a training phase
conducted with iid Gaussian channel matrices
and then the algorithms are tested on a Kro-
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necker channel model. This represents the inno-
vative part of the thesis. Thanks to this experi-
ment it is possible to analyse the adaptability of
the DL algorithms, trained with a simple chan-
nel model, and tested on a more complex one.
Also in this experiment, two cases are analysed.

6.3.1 Experiment 7a

The first case uses ρR = ρT = 0.3 as cor-
relation parameters for the Kronecker channel
model. The results of the experiment are shown
in Figure 4. The results are very similar to the
ones obtained in experiment 6a, with some SER
values that are also better. Again, MMNet is
not able to adapt to a more complex channel
model, having high SER values for each SNR
considered. VAMP and LVAMP performs as
MMSE. OAMPNet2, despite the training phase
conducted with iid Gaussian channel matrices,
outperforms the other algorithms. Again it
reaches a value of SER in order of 10−4 for SNR
equal to 22 dB and 23 dB.

Figure 4: Experiment 7a results

6.4. Experiment 7b
The second case has ρR = ρT = 0.5, therefore
an highly correlated channel. The results of the
experiment are very similar to the ones of ex-
periment 6b and they can be seen in and Figure
5. MMNet again misses the estimations of all
the points, achieving a SER very close to 1 for
all the SNR values. Also in this case, VAMP,
LVAMP and MMSE perform the same. OAMP-
Net2 is also in this case the best algorithm, but
for low SNR values it performs like OAMP. For
higher SNR values instead it improves its per-
formances. Also OAMP has performances that
are a bit worse for the lowest SNR values, and

better when SNR increases.

Figure 5: Experiment 7b results

7. Complexity Analysis
A summary of this complexity analysis is shown
in Table 2 where each column represents an al-
gorithm, the first row the computational com-
plexity and the second row the number of itera-
tions/layers T for convergence.

8. Conclusions
Both LVAMP and OAMPNet2 algorithms can
be considered sub-optimal solutions for the
MIMO detection problem. In fact, LVAMP can
be built with a complexity lower than MMSE
and it obtains SER values that are equal or bet-
ter than MMSE in all the scenarios considered
for the experiments. Also OAMPNet2 is a sub-
optimal solution to the problem because it out-
performs MMSE in all the scenarios considered,
having a complexity that is just a few greater
than MMSE, thanks also to a very fast conver-
gence.
Another important insight discovered thanks to
the experiments is that the two deep networks
are able to adapt very well to different condi-
tions. In fact they perform well on both iid
Gaussian and Kronecker channel models. They
are also able to perform well on realistic chan-
nel models like the Kronecker one, with both
medium and high correlation parameters. More-
over, they can perform well on this type of chan-
nel, also with a simple training phase conducted
with iid Gaussian channel matrices.

7
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Table 2: Complexity and number of iterations/layers for convergence of each algorithm

MMSE MMNet VAMP LVAMP OAMP OAMPNet2
Complexity O(N3

r ) O(TN2
r ) O(2TNrNt) O(2TNrNt) O(TN3

r ) O(TN3
r )

T 1 10-14 5-6 5-6 4-5 4-5

9. Future work
• Find new methods in order to solve the

MIMO detection problem.
• compare and verify that all the different

version of VAMP and LVAMP performs the
same or if there is a version that provides
better results.
• Trying to rethink the OAMPNet2 algorithm

in order to lowering its complexity.
• Test all the algorithms on the 3GPP chan-

nel model.
• Using other QAM types, a wider range of

SNR values, different sizes of MIMO sys-
tem, different Nt

Nr
ratios.

• Changing the loss function during the train-
ing phase of the DL-based algorithms
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