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Abstract

Nowadays, the agricultural chain’s dependency on human labor turned out to be risky.
The worldwide demand for agricultural products is rapidly increasing due to the growing
population, but, in parallel, the number of rural laborers is declining chronic everywhere
or can be compromised by exceptional events, like the recent pandemic. Automation of
agriculture can be an important solution to tackle the increasing load on farming busi-
nesses forced to deal with the aforementioned issues. Strawberry is among high-value crops
with considerable harvesting costs highly dependent on human labour, but a fully viable
commercial robotic system for autonomous picking has yet to be established. This thesis
deals with some main problems for the development of a successful strawberry harvesting
technology: ready-to-be-picked strawberry detection, key-points localisation for grasping
and picking actions, fruit weight estimation before picking, and path planning from visual
information to reach the target fruit. Strawberries are subject to chaotic configurations
from the organic cluster formations, causing obstructions to harvest-ready fruits and this
poses a great problem for visual localisation. Moreover, picking and grasping points detec-
tion is a needed perception component for a successful selective harvesting robot. These
problems have been addressed with Deep Learning (DL) and in particular, Detectron-2
[133], a next-generation open-source object detection system from Facebook AI Research
based on Mask Region-based Convolutional Neural Network (Mask R-CNN) [52], has been
trained to segment berries, classify them as ripe or unripe and to detect the key-points for
picking and grasping action. Strawberry weight estimation has been achieved in the Ma-
chine Learning framework implementing a Random Forest Model [20] with Decision Trees
[70, 92] which takes as input a vector including features extracted from RGB and depth
data of the berries whose weight has to be estimated. This approach has been proven to
outperform many other state-of-the-art DL approaches. Weight estimation of the straw-
berries before picking can help sort the fruits in the correct punnet right after picking,
that meets the legislation for immediate packaging, which results in minimum fruit touch
and in the subsequent decrease of the added packaging costs during post-harvesting pro-
cesses. Once the fruit perception problem is addressed, the ultimate goal for the robotic
system is the ability to efficiently and successfully reach to pick ripe strawberries. This
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has been solved by proposing a new probabilistic neural network architecture, called deep
Probabilistic Movement Primitives (deep-ProMP), that generates successful reach-to-pick
trajectories distributions from visual camera information only, trained in a Learning from
Demonstrations (LfD) [118] setting. A few model architectures have been presented,
namely, Deep-ProMP-AE, Deep-ProMP-VAE, and Deep-ProMP-cVAE which all have a
two-fold design: from the input image to a latent space representation and from the la-
tent representation to the desired trajectories distribution. This architecture design has
been compared against the direct mapping from the RGB image to the trajectory space
to show its superiority. A probabilistic approach has been preferred over a deterministic
one for trajectory prediction since this setting can be exploited in future developments
to sample from the predicted distribution to optimise the trajectory to meet secondary
objectives, like collision avoidance. Finally, a novel domain-specific latent space training
has been proposed to learn the latent space representation of the input image in a way
that is relevant both for computer vision and for the specific robotic task.

Keywords: Autonomous robotic strawberry harvesting, Object detection trough key-
points, Fruit weight estimation, Learning from Demonstration, Path planning, Latent
space learning.
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Abstract in lingua italiana

Al giorno d’oggi, la dipendenza della filiera agricola dal lavoro umano si è rivelata es-
sere rischiosa. La domanda mondiale di prodotti rurali è in rapida crescita a causa
dell’aumento della popolazione, ma, parallelamente, il numero di lavoratori agrari è in
calo cronico ovunque o può essere compromesso da eventi eccezionali, come la recente
pandemia. L’automazione dell’agricoltura può costituire un’importante soluzione per af-
frontare il carico crescente sulle imprese agricole, costrette a far fronte ai suddetti prob-
lemi. Nonostante la fragola sia tra le colture di alto valore con costi di raccolta con-
siderevoli e fortemente dipendenti dal lavoro umano, deve ancora essere sviluppato un
sistema robotico commercializzabile per la raccolta autonoma. Questa tesi affronta alcuni
tra i principali problemi per lo sviluppo di una tecnologia di raccolta autonoma delle
fragole: il rilevamento delle fragole mature, la localizzazione dei punti chiave per l’azione
di raccolta, la stima del peso dei frutti, e la pianificazione della traiettoria della mano
robotica dalle informazioni visive per raggiungere il frutto da raccogliere. Le fragole sono
soggette a configurazioni caotiche e a formazioni organiche a grappolo, che rendono poco
visibili i frutti maturi e questo rappresenta un grosso problema per la localizzazione a
carico della tecnologia di visione artificiale. Inoltre, anche la localizzazione dei punti di
taglio del frutto è una componente di percezione necessaria. Questi problemi sono stati
affrontato con tecniche di Deep Learning (DL) ed in particolare con Detectron-2 [133],
un sistema di rilevamento di oggetti open-source di nuova generazione creato da Face-
book AI Research, basato su Mask Region-based Convolutional Neural Network (Mask
R-CNN) [52], il quale è stato addestrato per eseguire la segmentazione delle fragole, la
classificazione in mature o acerbe e a rilevare i punti chiave necessari per la raccolta del
frutto. La stima del peso delle fragole è stata ottenuta nell’ambito del Machine Learning,
implementando un Random Forest Model [20] with Decision Trees [70, 92], il cui input è
un vettore che include le caratteristiche estratte dai dati RGB e di profondità delle fragole
il cui peso deve essere stimato. Questo approccio è stato dimostrato essere più accurato di
altre tecniche recenti basate sul DL. La stima del peso delle fragole può aiutare a smistare
i frutti nei corretti contenitori subito dopo la raccolta, il che soddisfa la legislazione
per il confezionamento immediato, il quale implica un tocco minimo del frutto e una



riduzione dei costi di confezionamento aggiunti durante lo stadio post-raccolta. Una volta
affrontato il problema dell’individuazione del frutto da raccogliere, l’obiettivo finale del
sistema robotico è la capacità di raggiungerlo in modo efficace. Questo problema è stato
risolto proponendo un nuovo design probabilistico di rete neurale, chiamato deep Proba-
bilistic Movement Primitives (deep-ProMP), che genera distribuzioni di traiettorie dalle
sole informazioni visive della telecamera, allenato in un’impostazione di Apprendimento
tramite Dimostrazioni [118]. Sono state presentate diverse architetture per il modello pro-
posto, vale a dire Deep-ProMP-AE, Deep-ProMP-VAE e Deep-ProMP-cVAE che hanno
tutte un duplice design: dall’immagine di input alla rappresentazione nello spazio latente
e dalla rappresentazione latente alla distribuzione delle traiettorie. Questo design è stato
confrontato con la mappatura diretta dall’immagine RGB allo spazio delle traiettorie per
mostrarne la superiorità. Inoltre, un approccio probabilistico è stato preferito rispetto
ad uno deterministico poiché questa impostazione può essere sfruttata in sviluppi futuri
per campionare dalla distribuzione di traiettorie prevista e ottimizzare rispetto ad obi-
ettivi secondari (come evitare le collisioni). Infine, è stato sviluppato un nuovo metodo
di regolazione dello spazio latente specifico al dominio di applicazione, per apprendere la
rappresentazione dell’immagine di input in funzione sia della visione computerizzata che
dello specifico compito robotico.

Parole chiave: Raccolta autonoma roboticizzata delle fragole, Rilevamento di oggetti
attraverso punti chiave, Stima del peso dei frutti, Apprendimento tramite dimostrazioni,
Pianificazione della traiettoria, Apprendimento dello spazio latente.
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1| Introduction

1.1. Robotic technologies for autonomous strawberry

harvesting: general overview of the problem

Developing robotic technologies for selective harvesting of high-value crops, such as straw-
berries, has become highly demanded because of different social, political, and economical
factors [29], such as labour shortage, recent COVID-19 pandemic, and the increase of
global population.

According to the International Labor Organization (ILO), agricultural laborers, as a per-
centage of the workforce, declined from 81.0% to 48.2% in developing countries and from
35.0% to 4.2% in developed ones since 2014 [6]. The shortage of people working in farms
is growing chronic everywhere. In the Asia Pacific, especially in Japan alone, the number
of people working in farms dropped from 2.2 million in 2004 to 1.7 million in 2014. Such a
huge decline in the workforce of about 12.8% is also observed in the European agriculture
sector [6].

In Fig. 1.1 the world share of the labour force employed in agriculture is shown as a
heat map, in the years 1991 and 2019. It is evident how the agricultural labour force is
decreased over the years.

Figure 1.1: Share of the labor force employed in agriculture in 1991 vs 2019 [112].
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Additionally, the open borders that had become nearly self-evident in most of the EU’s
territory, have largely been closed in the period of Covid-19 pandemic, as member states
introduced travel restrictions to stem the further spread of the disease. This has left
farmers in western Europe struggling to bring in the tens of thousands of seasonal workers
on which they rely to pick their rapidly ripening fruits and vegetables. According to
farming association Coldiretti, the more than 370,000 seasonal workers who travel to the
country each year - primarily from Romania, Bulgaria, and Poland - produce more than a
quarter of all Italian food [2]. The European Commission president said that Europe (and
the rest of the world) must prepare all sectors to cope with an “era of pandemics” [38],
meaning that this problem is not to be considered limited to the past Covid-19 pandemic.

Moreover, with a global population projection of 9.7 billion people by 2050, agricultural
production will need to increase of at least 70% from current levels to serve nutritional
trends. Now more than ever, the pressure on farmers to produce nutritious products is
putting our planet’s health under even more stress [65].

Also the climate change plays a role in this framework. Models vary, but the World
Bank (2010) estimates that to meet the growing demand for food between 2005 and 2055,
agricultural productivity will need to rise by 64% under the assumptions of the “business-
as-usual” (no climate change) scenario and by a further 80% to offset the projected stresses
arising from climate change (Fig. 1.2). However, the model indicates that if population
remained constant at the 2005 level, agricultural productivity would need to rise only
25% under the “business-as-usual” scenario; that is, more of the required productivity
increase under the “business-as-usual” scenario is necessitated by population growth than
by increases in consumption per capita [27].

Figure 1.2: Required growth in agricultural productivity given estimated population Growth,
increase in per capita consumption, and climate change [27].
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Figure 1.3: Robotic technologies for autonomous strawberry harvesting

All these aspects underline that the dependency of the agricultural chain on human labor
turns out to be very risky as the farming business is going to be pressurised and forced
to deal with labor shortages due to different factors.

Robotic methods are therefore in development for soft fruits harvesting (Fig. 1.3) and
other aspects of agriculture, as a possible solution for ensuring a more sustainable food
chain, and as means of providing cheap alternative sources of labor globally. Agriculture
is a perfect niche for innovations in the sphere of robotics: farmers usually have to deal
with repetitive tasks in the field, and this work is primarily labor-intensive.

Smart farming is an evolving concept that refers to managing farms through incorporating
current information and communication or advanced AI technologies to bring rapid growth
in the quantity and quality of products while optimizing human labor [3]. As such,
private and public sectors have invested across the globe to develop robotic harvesting
and commercialise the corresponding technologies in the last few years (Fig. 1.4). Only
EU invested above e5 million in BACHUS [30] project to develop robotic technology
for grape and olive picking and above e4 million in SWEEPER [7] for Sweet pepper
harvesting robotic technology. The global harvesting robot market size is expected to
reach US$1,827.9 Million by 2027 [3].

Strawberries are farmed extensively in most parts of the world, growing either outdoors
in open fields or in controlled environments, like greenhouses or polytunnels. It is among
high-value crops with considerable selective harvesting costs in production. With a total
retail value of $17 Billion globally, above $1 Billion is only the picking cost [5]. Strawberry
production is heavily reliant on human labor, especially for harvesting [137]. It was
reported that 25% of all working hours in Japan are consumed by harvesting operations
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Figure 1.4: Agricultural robotics market trend from 2014 to 2023. The market is valued at USD
3.42 billion in 2017 and is expected to register a CAGR of 21.1% [3].

[139]. Despite several attempts to develop a robotic solution for harvesting strawberries
and many other crops, a fully viable commercial system has yet to be established [122].

A major challenge for these robotic systems is that strawberries are subject to chaotic con-
figurations from the organic cluster formations, causing obstructions to ripe and harvest-
ready strawberries (Fig. 1.5), as well as complex non-linear interaction dynamics between
the fruits, stems, leaves, and the robotic agents [68, 121]. Other factors such as delicate
manipulations are also required to avoid bruising or damaging the fruits, to reduce waste.

Human intelligence and dexterity can easily accommodate this. However, robots require
tightly integrated systems that incorporate perception, motion planning, and manipula-
tion to be able to operate robustly with high efficiency in these settings [82, 136]. These
robots are also required to operate at high speed, with high accuracy and robustness and
at a low cost, all features that are especially challenging in unstructured environments,
such as strawberry farms [135].

It is in the aforementioned setting that the author wants to contribute with the work
presented in this thesis. In particular the problems that have been addressed are:

• Perception problem (1): ripe strawberries localization and picking point estima-
tion;

• Fruit weight estimation (2): evaluation of the weight of the fruits before picking
to directly sort berries into punnets of constant weight without additional handling;

• Path planning (3) to reach the ready to be picked fruit with the robotic hand.
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Figure 1.5: Clusters of strawberries in a poly-tunnel farm.

1.2. Problem statement and thesis research aim

This thesis deals with three main problems related to a successful robotic technology for
selective harvesting of strawberries.

The first one is a pure Computer Vision (CV) problem related to the perceptive ability
of the robotic system to detect the ready-to-be-picked fruits (1). Machine vision
is an essential component for agricultural robots, enabling them to detect and localize the
target crop [135]. Unstructured growing conditions, including variable clustering, occlu-
sions, and varying lighting conditions, have been considered as the common challenges for
fruit detection in farm environments [122]. Commercially available depth sensors, e.g Re-
alsense D435i, also make the perception challenging as they are designed for large objects
3-D perception and controlled lighting conditions. For small fruits under outdoor lighting,
the depth maps are not precise. Moreover, picking and grasping points localisation is a
needed perception component for a successful selective harvesting robot. Consequently,
the focus of much ongoing research, comprised of this one, is novel ways to resolve these
situations.

The second proposal of this thesis regards an algorithm for berries weight estimation
before picking (2). Normally, after the picking action of the ripe strawberries from
the plant, the harvested fruits are directly placed into punnets that are roughly required
to be of the same weight. Human harvesters rely on their experience to estimate the
strawberry weights. Clearly, this procedure can be imprecise, and subsequently, a lot
of effort is required to re-sort the strawberries into punnets, increasing the production
cost. Moreover, weighting strawberries after harvesting requires additional handling and
maneuvering of the delicate fruits, which run the risk of being bruised. Developing an
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AI technology able to estimate weight from the camera visual information constitutes a
solution for the listed issues.

The last problem considered is the robot’s ability to efficiently and successfully reach-
to-pick harvest-ready strawberries regardless of obstructions and cluster configurations.
The objective is to automatically generate a path in the manipulator workspace
to reach the ripe target fruit (3) detected by the visual system using as input the
camera visual information of the surrounding environment.

These three topics are individually considered in the following chapters and the relative
work logical scheme is shown in Fig. 1.6.

Figure 1.6: Thesis logical scheme.

1.3. Thesis structure

The remaining part of the thesis is structured into 5 chapters and a conclusive section
(Fig. 1.7). These are:

• Chapter 2: current state-of-the-art works related to the problem of fruit detection,
weight estimation, and trajectory planning through Learning from Demonstrations
(LfD) are discussed;

• Chapter 3: the solution to the problem of strawberry segmentation, key-points
detection and classification is detailed;

• Chapter 4: it includes the methods developed for strawberry weight estimation
from visual sensors and the experimental results;

• Chapter 5: deals with the path planning problem to generate successful reach-to-
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pick trajectories from visual camera information only. The mathematical formula-
tion of the problem and the details of the implementations are provided;

• Chapter 6: it includes the experimental results both in simulation and with the
real robotic arm for the proposed path planning approach;

• Conclusion and future developments.

Figure 1.7: Thesis problems and relative chapters.
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2| State of the Art

In this chapter, current state-of-the-art works related to the problem of fruit detection,
weight estimation, and trajectory planning through Learning from Demonstrations (LfD)
are discussed to provide the baselines of the work included in this thesis.

2.1. Fruit detection, semantic segmentation, and

key-points identification

Different fruit detection and localisation approaches exist for the successful application
of machine vision systems for robotic fruit harvesting. These are mainly classic com-
puter vision (CV)-based operations and modern state-of-the-art Convolutional Neural
Networks (CNNs). CNNs are artificial Neural Network architectures able to deal with 2D-
representations of data, like images, and for this reason they have become important in CV
applications. While classical methods (including morphology, colour-based, thresholding,
and geometrical approaches) provide good performance, other state-of-the-art approaches
in CV and deep learning (DL) have been able to yield improved performance.

In the category of classical colour-based methods [22, 23, 47] (which select an op-
timal gray-level threshold value for separating objects of interest in an image from the
background, based on their gray-level distribution), Rajendra et al. [105] converted straw-
berries images from RGB (red, green, blue) to HSI (hue, saturation, intensity) colour map
to manually set a threshold for ripe berries. The authors also proposed diameter thresh-
olding for peduncle detection of strawberries. Zhuang et al. [148] implemented automatic
thresholding algorithms based on Otsu’s thresholding method [91] for more robust thresh-
olding. Arefi et al. [14] adopted colour-based segmentation to remove background and
keep the fruit blob. Colour information can also be exploited with other features for a
more robust approach. Tao et al. [126] employed colour with geometric features for apple
classification with Genetic Algorithm and Support Vector Machine (GA-SVM). Lehner et
al. [69] utilized colour-based segmentation with 3D parametric model-fitting for localisa-
tion of sweet peppers. Zhuang et al. [148] improved colour-based segmentation through
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(a) Peduncle angle calculation from the ge-
ometry of strawberry [48].

(b) Apple recognition result in point cloud from [126].

Figure 2.1: Examples of traditional CV-based methods for fruit detection.

iterative-Retinex algorithm [67] followed by Otsu’s thresholding. Arefi et al. [14] used the
well-known watershed algorithm [111] (it treats the image it operates upon like a topo-
graphic map, with the brightness of each point representing its height, and finds the lines
that run along the tops of ridges to detect different objects) to extract the morphology of
tomatoes from binary images obtained by colour-thresholding. Huang et al. [57] applied
erosion and dilatation operations (dilation adds pixels to the boundaries of objects in an
image, while erosion removes pixels on object boundaries) to refine strawberry from the
colour segmented binary mask. Li et al. [75] implemented morphological operations for
twig detection to prune fruitless twigs for litchi harvesting. The connected component
algorithm (it groups together pixels belonging to the same connected component, e.g. ob-
ject) was utilized by Duran et al. to identify strawberry blobs [31]. Hayashi et al. [48] took
advantage of the geometry of strawberry for calculating peduncle angle with respect to
the vertical line for picking point localisation (Fig. 2.1a). [126] exploited a parameterised
query of the spatial differences between a point and its adjacent area to form a Fast Point
Feature Histogram (FPFH) descriptor (Fig. 2.1b). The FPFH descriptor formed a mul-
tidimensional histogram to describe the geometric properties within the K-neighborhood
of a point. This offered the advantages of rotation invariance and good robustness under
different sampling densities and noise levels [126].

However, the inability to generalise and being prone to noise are among the weak-
nesses of colour thresholding, geometry or morphology-based algorithms, and other tra-
ditional approaches. Moreover, CV engineers need to handcraft features and, as the
variation in data increases, it becomes a cumbersome and infeasible task [93].

In recent years, DL has been demonstrated to be superior for tasks such as segmentation
[53] and key-points detection [21]. Thus, authors in selective harvesting have begun to
adopt some of the DL techniques for fruit perception. Lamb et al. [66] trained
CNN for strawberry detection by optimising the network through input compression,
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image tiling, colour masking, and network compression. Liu et al. [78] employed CNN
in combination with depth data to calculate the relative 3-D location of fruit. Similarly,
Zhang et al. [143] adopted CNN for tomato classification. [41] used spectral features
together with CNN for strawberry quality or ripeness detection. CNN model has also
been applied for pear bruise detection based on thermal images [141].

While CNN models perform well in image-specific tasks such as classification, for the
pixel-wise understanding of images (semantic segmentation) Regional-CNNs (RCNNs)
[45] (a special CNN architecture designed for segmentation and object detection) are
more successful. Sa et al. [114] detect fruit using the fusion of faster-RCNN [109], RGB
and Infrared (IR) images. Liu et al. [80] combined both YOLOv3 [108] and Mask-RCNN
(MRCNN) [54] with ResNet-52 and ResNet-150 [51] as backbone for bounding box detec-
tion for citrus fruit harvesting. Among the three models tested, MRCNN with ResNet-150
as backbone provided the best performance. RCNN, MRCNN, faster-RCNN, and ResNets
model architectures will be deepened in Sec. 3.2.1.

Researchers also started to combine the information extracted from RCNNs [45] with their
algorithm to improve the estimation of picking points [42, 79]. Ge et al. [42] extracted
strawberry pixels with MRCNN. Then, the extracted strawberry pixels were combined
with depth data, density-based clustering, and Hough transformation to develop a more
robust scene understanding. Similarly, Perez et al. [98] exploited MRCNN for strawberry
segmentation for harvesting. Researchers have also employed RCNN in combination with
other methods to improve the overall accuracy. For instance, Liu et al. [79] implemented
MRCNN with the logical green operator to improve the overall performance for cucumber
detection. Ganesh et al. [40] chose a combination of HSV and RGB images to improve the

Figure 2.2: Summary of parameters for the localization of the fruit picking point from [140]: a.
minimum of contour coordinate, b. maximum of contour coordinate, c. contour of interest, d.
dividing line, e. barycenter, f. fruit axis, g. sample A, h. sample B, i. barycenter, j. vertex of
contour, and k. picking point.
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overall performance of MRCNN for orange detection. Yu et al. [140] first exploited MR-
CNN to segment strawberry images and then applied geometrical calculations to localise
the picking point (Fig. 2.2).

As seen, MRCNN has become the de facto standard for successful object detection, and
this is the reason why it has been chosen also in the case of strawberry perception, as it
will be seen in Chapter 3.

2.2. DL and CV-based fruit characteristics regression

As it is an important feature for robotic automation in the field of agriculture, several kinds
of systems able to determine volume, surface area, and mass information of agricultural
food products have been developed based on computer vision techniques. Computer vision
systems mainly focus on features such as maturity, color, defects, and size of the fruit [59]
for the automation of fruits and vegetable sorting. The size of a fruit corresponds to its
volume, surface area, and mass [90]. Automating the fruit sorting operation can be very
valuable in terms of manual labour cost reduction and to avoid excessive fruit handling
and the usage of various tools that require dedicated human efforts. [84].

In 1996 the Agricultural Machinery Laboratory of Miyazaki University developed a ma-
chine vision computer software to separate strawberries into classes [87]. To have an
accurate shape and size judgment it strictly requires that the strawberry is laid in a
straight and forward direction with respect to the camera. At angles, more than 15 de-
grees to the right or left of the mentioned direction misjudgments result. To overcome
these limits, Nagata et al. (1997) [86] investigated image processing and analysis to sort
fresh strawberries based on size and shape independently from the fruit direction. Namely,
the area ratio RA and area A extracted from the strawberry image were computed for this
purpose, together with a series of geometrical assumptions. In 2013, Prabha et al. [100]
developed a system able to estimate the maturity of bananas using traditional image-
processing techniques based on the extraction of the fruit size and color from images.
They categorized the maturity of bananas into three types (over-mature, mature, and
under-mature). [33] implemented a color-grading method to estimate the maturity and
the quality of date fruits using 2-D histograms of colors in the grading category to identify
the co-occurrence frequency. In 2015, [46] introduced a method to determine the sweet
lime maturity using RGB image processing. However, most of these methods are based
on thresholds, in terms of shape, color, and size.

In 2014, Yamamoto, Kyosuke et al. [138] utilized machine learning (ML) (computer
systems that are able to learn and adapt without following explicit instructions, by using
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algorithms and statistical models to analyse and draw inferences from patterns in data)
to identify tomato organic product development stages without a threshold value. Their
system was composed of three parts: an “X” means clustering, pixel-based, and blob-based
segmentation. In 2020, Faisal et al. [35] introduced the IHDS system, which consists of
six DL systems to estimate seven maturity stages. The IHDS system was based on date
fruit bunches in orchard datasets [12] and achieved accuracy of 99.4 %, F1 score of 99.4
%, 99.7 % recall, and 99.7 % precision.

Several approaches specifically developed for fruit weight estimation using image pro-
cessing techniques have also been introduced. Some of the studies directly estimate the
fruit weight using traditional image processing techniques. Eoh, C., and AR Mohd
Syaifudin [125] determined the linear relation between the measured area and the actual
weight of the mangoes with linear regression techniques. Other studies, as [76] and [74],
started from 3-D images gathered by multiple cameras to estimate the weight of mango
fruit. A more mathematical approach was introduced by Dang, Nhan T., et al. [26] in
2016. Here the volume is estimated using the 3D bounding box of the mangoes and the
Monte Carlo.

Recently CNN has been adopted for food volume estimation too. In 2017, Liang
et al. [49] introduced faster-RCNN based regression to estimate the food volume with
an average error of 20%. In 2018, Li et al. [123] developed a CNN system for volume
estimation using two phases. First, the fruit is recognized by a pre-trained detection net,
then the fruit image passes into a ResNet-based regression relation between food image
and volume estimation, with an average error of less than 15% for the various viewpoints.
In 2020, Kalantar et al. [60] used RetinaNet deep convolutional neural network to esti-
mate the number of melons and the weight of each melon using colored images acquired
by a digital camera mounted on an unmanned aerial vehicle. This system included three
phases: melon detection, geometric feature extraction, and individual melon yield esti-
mation (Fig. 2.3).

In Chapter 4 an original strawberry weight estimation method is developed, exploiting
both state-of-the-art machine learning and deep learning techniques.

2.3. DL and LfD for trajectory planning

Learning from demonstration (LfD) is a method exploited for training the robot to
perform a certain task (in this case to reach a certain ripe target berry to be picked) with
several demonstrations performed by an expert. The expert can be a human but this is
not mandatory [18].
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The goal is to derive from demonstrations a policy that maps from state to action, thus it is
important to understand what to learn and how to learn. This approach makes teaching
a new task easier and the policy learned can apply to never-seen-before environments.
Thanks to these advantages, the adoption of LfD increased during the years (Fig. 2.4).

The demonstration can be performed in different ways: kinesthetic [34] in which the
operator can move directly the robot by hand, teleoperation [9] where it is involved an
external input to the robot, or observations [146] in which the task is shown directly with
the body of the operator (Fig. 2.5).

LfD methods can build task models for trajectory planning/control with no extensive
handcrafted programming. Probabilistic LfD approaches learn the distribution of
demonstrated behaviour (e.g. Gaussian Mixture models (GMM) [43] or Gaussian Pro-
cess [120]) and express them by a mean trajectory and its covariance. However, these

Figure 2.3: Algorithm pipeline for automated yield tracking by [60].

Figure 2.4: Consistent growth in the number of publications concerning LfD over the past
decade, as reflected by the trend in the number of search results on Google Scholar that contain
key phrases related to LfD [107].
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Figure 2.5: Examples of the three categories of robot demonstrations [107].

models only encode the observed trajectory and need some input to be provided by hu-
man or CV module [106] for generalising to new scenes. In other words, they do not
represent the mapping between some perceptive sensory information and the desired tra-
jectory to perform the task.

End-to-end learning-based control approaches have been adopted to map pixel
and depth images to the torque of quadruped to jump [81, 128]. Inverse Reinforcement
Learning [71], vision-based Model Predictive Control [37], or Behaviour cloning [104] map
directly visual information into robot actions; but they usually suffer from lack of gener-
alisation in complex tasks. Moreover, they are only applied to a class of tasks that involve
complicated motion control but not complex motion planning. End-to-end LfD methods
enable generating control commands directly from raw image data for a task that requires
complex motion control and simple motion planning, e.g. rolling a marble 1-2 centimeters
on a table [127]. However, formalising the problem in this way for complicated tasks, e.g.
fruit picking, makes it intractable. In this case it is hard to map a high-dimensional ob-
servation space into robot actions. Making combined motion/path planning and motion
control using only raw images is intractable in such complex settings [11, 85].

Deep-time series (the prediction of a sequence of data, e.g. a trajectory, using a deep
model) have been applied to learn the control policy of a robot to perform a specific task.
For example, [72, 73] trained deep Neural Networks (NNs) in combination with Recurrent
Neural Networks (RNNs) [51] with image data for learning a robots’ control policy which
may be effective for a limited number of (complex control) tasks.

Dynamic Movement Primitives (DMP) is a well-known LfD approach [119] able
to encode the desired motion to be learned with a certain set of parameters (weights).
Recently, deep learning has been applied to generate the DMP model parameters directly
from an image of the environment in which the movement has to be executed [99, 110].
Ridge et al. [110] proposed a NN-based model that was trained to produce the DMP
parameters [119]. Also, Pervez et al. [99] trained their deep NNs to enforce the DMP
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model for visual servoing. Deep-MPs [115] utilise deep Neural Networks (NNs) for feature
extraction and subsequent generation of the DMP weights defining a trajectory.

All the aforementioned models consider the prediction of a deterministic trajectory, but if
there is some variability in the execution of a certain task (as can be the case of strawberry
picking, where the fruit can be approached in multiple ways and with multiple orienta-
tions), it can be captured with the Probabilistic Movement Primitives (ProMPs)
framework, able to represent the distribution of a set of demonstrations [94, 95]. However,
ProMP lacks the relation between visual information and trajectory variations, hence,
it lacks the points for generalisation [113]. In contrast to d-DMP [99, 110] and Deep-
MPs [115], the approach that will be proposed in Ch. 5, called Deep Probabilistic
Movement Primitives (Deep-ProMP), maps the visual sensory information into a
distribution of robot trajectories instead of a deterministic movement, filling the gap
discussed above.

Deep-ProMP can be designed exploiting the architecture of Autoencoder (AE) [55],
Variational Autoencoder (VAE) [13] or conditional Variational Autoencoder
(cVAE) [61], as it will be seen in Ch. 5. The Encoder-Decoder architecture (common at
AE, VAE and cVAE) is well-known in deep learning: it first compresses the information,
e.g. image, in spatial resolution and then gradually decompress it [15]. In AE, VAE and
cVAE architectures, the output of the decoder is the same as the input of the encoder.
This compresses/embeds the feature representation into a lower-dimensional space (latent
feature). This can be used for different tasks such as dimensionality reduction [130] and
information retrieval [16]. AEs yield optimal reconstruction error but lack structure and
interpretability in the latent space, i.e. it is not capable of generating new content.
VAE [13] comes from the regularisation of AEs during training, expressing the latent
space as probabilistic to avoid over-fitting. cVAE is introduced to learn the class-wise
distribution of the data by inputting a condition (e.g. class label) to the latent space [61].
To improve the quality of latent space of VAE and cVAE regularisation is utilised [61].

AE, VAE and cVAE architectures will be exploited in Ch. 5 to map the visual information
of the environment in which the robot has to perform a task to the desired trajectory. The
Encoder maps the input image to the latent space representation, and then, the latent
space is mapped into the trajectory to be learnt with another trained deep model. A step
more has been done with Generative Adversarial Networks (GANs): VAE-GANs
and cVAE-GANs additionally encode the ground truth trajectory back into the latent
space [147]. In cLR-GAN [147], a random number (sampled from a known distribution) is
input to the latent space that maps into the output and the latent vector is reconstructed
from the output. Regularisation also helps to reconstruct the latent space from the output
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in VAEs. For instance, Zu et al. [147] presented a BiCycle GAN model based on the same
concepts in cVAE-GANs and cLR-GANs to improve the latent space. Kosaraju et al. [64]
maps both (1) the latent noise to an output trajectory and (2) that trajectory back to
the original latent space.

While GANs generate new content, the proposed Deep-ProMP aims to generate a proba-
bilistic model of the demonstrated trajectories in the space of the observed dataset. This
is different from content generation, hence, GANs have not be implemented. But,
being inspired by [64] –that maps the output trajectories back to latent space to improve
the latent space representation– regularisation and domain-specific training have been
implemented to improve latent space representation (Sec. 5.4). This enforces the latent
space to learn domain-specific information (i.e. on the reach-to-pick task for the hand
of the robotic manipulator) to improve the proposed Deep-ProMP performance for path
planning.
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One key enabling technology towards automated harvesting is accurate and robust
strawberry detection, which poses great challenges for the complex greenhouse envi-
ronment that involves varying lighting conditions and foliage/branch occlusions. The first
skill that an autonomous fruit-harvesting robotic system should acquire is the perceptive
ability to detect the ready-to-be-picked fruits regardless of the complex and clustered
configurations of the fruit plants. Greenhouse environments can be very challenging for
computer vision problems, like fruit detection, since high variations in the colors or bright-
ness of the fruits can be encountered over different plants of the same crop, overtime for
the same plant, or over images of the same plant from different camera positions [10].
This chapter deals with the development of a deep learning (DL) based image analysis
and computer vision method for the detection of berries able to handle these aspects.
DL is a machine learning method, based on artificial Neural Networks (NNs), that uses
multiple layers between the input and the output to extract higher-level features from the
input data [39]. Object detection is the most informative instance of DL for the detection
of fruits but it requires a lot of training data. This has led to the creation of two novel
datasets useful for strawberry detection and ripeness classification through convolutional
neural networks (CNNs) (Sec. 3.3). A CNN is a DL architecture that is most commonly
used in computer vision to analyze visual data. While CNNs outperform humans in many
cases, the complexity of the environments, such as multiple overlapping objects and dif-
ferent backgrounds, can pose several challenges. To this end, the current state-of-the-art
object detection and instance segmentation method, Mask Region Convolutional Neural
Network (Mask-RCNN) [54] has been chosen as a detection technique. The two proposed
datasets have been used to train a Mask-RCNN based model (Sec. 3.2) with the
objective of detecting individual berries, obtaining pixel-wise masks for each fruit, and
classifying them accordingly to their ripeness level.
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(a) Object detection. (b) Image segmentation.

Figure 3.1

3.1. Object detection and semantic segmentation

Before detailing the proposed strawberries detection system, let us first consider what the
object detection and instance segmentation problems are in the framework of Computer
Vision (CV).

Object detection consists of two separate tasks: classification and localization. The
objective is to locate the presence of objects with a bounding box and types or classes of
the located objects in an image (Fig. 3.1a).

• Input: An image with one or more objects.

• Output: One or more bounding boxes (e.g. defined by a point, width, and height)
and a class label for each bounding box.

On the other hand, in digital image processing and computer vision, image semantic
segmentation is the process of partitioning a digital image into multiple image segments
(sets of pixels), also known as image regions or image objects. Image segmentation is the
process of assigning a label to every pixel in an image such that pixels with the same label
share certain characteristics. Each of the pixels in a region is similar with respect to some
characteristic or computed property [89], such as color, intensity, or texture (Fig. 3.1b).

3.1.1. Overview of fruit detection and localisation existing ap-
proaches

Different approaches exist for the problem of object detection and instance segmentation in
the framework of fruit localisation. Among them, classic computer vision (CV)-based op-
erations (including morphology, colour-based thresholding, and geometrical approaches)
are widely used as a standard way to deal with the fruit perception problem and, in
general, provide good performances.
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Figure 3.2: Color tresholding for fruit detection.

For example, the basic idea of color thresholding [22, 23, 47] is to automatically select
an optimal gray-level threshold value for separating objects of interest in an image from
the background based on their gray-level distribution (Fig. 3.2). The major problem with
thresholding is that only the intensity is considered and not any relationships between
the pixels. There is no guarantee that the pixels identified by the thresholding process
are contiguous. Extraneous pixels that are not part of the desired region can be easily
included, while isolated pixels within the region (especially near the boundaries of the
region) can be easily excluded. These effects get worse as the noise gets higher, simply
because it is more likely that a pixel’s intensity does not represent the normal intensity
in the region.

Morphology and geometrical approaches [25], instead, rely on the shape and geom-
etry information of objects to detect them in an image. The problem of these approaches
is the high variance among the possible shapes of fruit and so they lack the generalisation
across different strawberries. Moreover, these algorithms often make several assumptions
about the orientation of the fruit or the positioning of the peduncle or stem. However,
strawberries and other fruits can grow with different positions and orientations and can
be of any shape. This aspect limits the success of the approach presented. So, the inabil-
ity to generalise and being prone to noise are among the weaknesses of these traditional
approaches. Moreover, CV engineers need to handcraft features and, as the variation in
data increases, it becomes a cumbersome and infeasible task [93].

Other state-of-the-art approaches in CV and DL have been able to yield improved per-
formance. Deep Learning is a subfield of machine learning (computer systems that are
able to learn and adapt without following explicit instructions, by using algorithms and
statistical models to analyse and draw inferences from patterns in data) concerned with
algorithms called artificial Neural Networks (NNs) inspired by the structure and function
of the brain. NNs are comprised of node layers, containing an input layer, one or more
hidden layers, and an output layer. Each node, or artificial neuron, connects to another
and has an associated weight and threshold. If the output of any individual node is above
the specified threshold value, that node is activated, sending data to the next layer of the
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network. Otherwise, no data is passed along to the next layer of the network. In recent
years DL has been demonstrated to be superior for tasks such as segmentation [54]. Thus,
authors in selective harvesting have begun to adopt some of the DL techniques such as
modern Convolutional Neural Networks (CNNs) for fruit perception. CNNs are special-
ized neural networks for processing data with an input shape like a 2D matrix (as images).
But while CNN models perform well in image-specific tasks such as classification, for the
pixel-wise understanding of images (semantic segmentation) Regional CNNs (RCNNs) are
more successful [42]. RCNNs are widely described in section 3.2.1.

Another important need for autonomous fruit harvesting is the localisation of the pick-
ing point. Researchers have used information extracted from RCNNs with their own
algorithm to improve the estimation of picking points [42, 79]. Yu et al. [140] first used a
Mask-RCNN (MRCNN) to segment strawberry images and then used geometrical calcu-
lations to localise the picking point. The authors used two extreme points of a strawberry
pixel to draw a horizontal line on the image frame. Then, the fruit axis was calculated
based on the similarity of regions that would be divided by the fruit axis. The picking
point was localised on the fruit axis based on statistics of strawberry shape. It is argued
that, due to the widely varying shape of strawberries, such approaches for picking point
localisation may fail in some cases and lacks the generalisation across different strawber-
ries. Varying orientations of strawberry (upside-down, parallel to the gravity vector, or
with an angle smaller than 90 degrees with respect to the gravity vector), occlusion, and
other factors may limit the success of this presented approach.

3.1.2. DL-based key-points detection approaches

All the aforementioned aspects and possible failures for a precise strawberry detection
and picking point localisation method led to consider DL-based key-points detection
approaches, which has been very successfully applied in other domains, e.g. face land-
mark detection [144] or human-pose estimation [21] (Fig. 3.3a). These methods can be
successfully applied to determine strawberry picking points, grasping points, and orien-
tation (Fig. 3.3b). The idea of key-points detection is to detect interest points or key
locations in an image, which are spatial locations or points that define what is interesting
or what stands out in the image. They are invariant to image rotation, shrinkage, trans-
lation, distortion, and so on. However, this approach requires a strawberry dataset
with key-points annotations.
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(a) Key-points detection for hu-
man pose estimation.

(b) Key-points detection for straw-
berry perception .

Figure 3.3

As it will be shown in Table 3.1, the existing publicly available datasets do not present
strawberry key-points or picking points, but only instance segmentation and detection
annotations. So, two new datasets have been created containing key-points and picking
points information, which are two essential attributes for selective harvesting (Sec. 3.3).
Moreover, one of the two datasets also includes labeling for the weight of strawberries
on the plant and it will be used for the development of a strawberry weight estimation
algorithm in Ch. 4.

3.2. Proposed approach: Detectron-2 based model

The DL-based key-points estimation has never been explored for strawberry picking point
localization. It has been demonstrated through the experimental results (Sec. 3.4.1) that
the key-points regression approach based on MRCNN [54] works well for localizing the
picking points of strawberries. Apart from localization of cutting points, the key-points
are also pivotal in determining the orientation of strawberries which will be also used
by the robot to approach the ripe strawberry. Similar to human pose estimation, the
key-points are marked as visible or invisible. Thus, if the peduncle of a strawberry is
occluded or facing away from the camera perspective, the MRCNN [54] algorithm can be
trained to estimate the point as invisible. The proposed approach includes Detectron-2
[133] for segmentation and key-points estimation.

Detectron-2 [133] is a next-generation open-source object detection system from Face-
book AI Research. The Detectron-2 model is based on MRCNN [54] and has become the
de facto standard for instance segmentation. MRCNN [54], in turn, has been developed
on top of RCNNs [45], fast-RCNNs [44], and faster-RCNNs [109].
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In the following sub-sections, the architecture of the aforementioned models is detailed.

3.2.1. RCNNs, fast-RCNNs, faster-RCNNs and MRCNN

RCNNs (Fig. 3.4a) are a family of deep learning models specially designed for object
detection and developed by Girshick et al., from UC Berkeley in 2014 [45]. An input image
given to the RCNN model goes through a mechanism called selective search to extract
information about the multiple regions of interest. A region of interest is a rectangular
portion of the input image and can be represented by its boundaries. Every region of
interest goes through pre-trained CNNs to produce output features. These output features
then go through multiple SVM (Support Vector Machine [24]) classifiers to classify the
objects presented under a region of interest. In particular, the outputs of every single SVM
are the bounding box coordinates and the class of the detected object in the proposed
region.

Although the RCNN model uses pre-trained CNNs to effectively extract image features,
it is slow. Imagining that thousands of region proposals are selected from a single input
image, this requires thousands of CNN forward propagations to perform object detection.

This massive computing load makes it infeasible to widely use RCNNs in real-world ap-

(a) RCNN. (b) fast-RCNN .

(c) faster-RCNN . (d) Mask-RCNN .

Figure 3.4
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plications. The main performance bottleneck of an RCNN lies in the independent CNN
forward propagation for each region proposal, without sharing computation. Since these
regions usually overlap, the independent feature extractions lead to much-repeated com-
putation.

One of the major improvements of fast-RCNN [44] (Fig. 3.4b) from RCNN is that the
CNN forward propagation is performed on the entire image, converting the whole image
on the feature map, at once. Moreover, this CNN is trainable. The region proposals
from the selective search mark regions of interest on the CNN output instead of the input
image. Then, from these regions of interest, fast-RCNN further extracts features of the
same shape to be easily concatenated. To achieve this, fast-RCNN introduces the region
of interest (RoI) pooling layer : the inputs to this layer are the CNN output and the region
proposals, while the outputs are the concatenated features further extracted from all the
regions proposed on the CNN output.

So far no method for choosing regions of interest has been considered. This is the basic
difference between fast-RCNN and faster-RCNN [109] (Fig. 3.4c). Faster-RCNN uses
a region proposal method to create the sets of regions. Faster-RCNN possesses an extra
CNN for gaining the regional proposals, called the regional proposal network. The rest
of the model remains unchanged from fast-RCNN. It is worth noting that, being part of
faster-RCNN, the region proposal network is jointly trained with the rest of the model.
In other words, the objective function of faster-RCNN includes not only the class and
bounding box prediction for object detection but also the binary class and bounding box
prediction of anchor boxes in the region proposal network (Fig. 3.4c). As a result of
the end-to-end training, the region proposal network learns how to generate high-quality
region proposals and stay accurate in object detection with a reduced number of region
proposals that are learned from data.

Mask-RCNN (MRCNN) [54] (Fig. 3.4d) was developed on top of faster-RCNN to per-
form image segmentation. While faster-RCNN has two outputs for each candidate object,
a class label, and a bounding-box offset, MRCNN is the addition of a third branch that
outputs the object mask from an additional fully convolutional network. The additional
mask output is distinct from the class and box outputs, requiring the extraction of a much
finer spatial layout of an object. In particular, the outputs of MRCNN are (Fig. 3.5):

• Bounding Box : described by the vertices of the rectangle around each detected
object;

• Class Label : Class label assigned to each detected object;
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Figure 3.5: Output of Mask-RCNN.

• Prediction Confidence: Confidence of class label prediction for each detected object;

• Object Mask Outline: Pixel values of the polygon outline for the mask of each
detected object;

• Object Mask : pixels filling the the polygon for the mask of each detected object.

3.2.2. Proposed model based on Detectron-2

Detectron-2 [133] is Facebook AI Research (FAIR)’s next-generation library, based on
MRCNN, that provides state-of-the-art detection and segmentation algorithms. Various
state-of-the-art models for detection tasks such as bounding-box detection, semantic seg-
mentation, and person key-point detection can be trained using this library, and this is
the reason why it has been chosen for the purpose to estimate the strawberry key-points.

The schematic in Fig. 3.6 shows the meta-architecture of the Detectron-2 network, and
its main components, namely:

• Backbone Network or Feature Pyramid Network (FPN): it extracts feature
maps from the input image at different scales.

• Region Proposal Network: it detects object regions (1000 box proposals by
default) from the multi-scale features.

• Box Head: it crops and warps feature maps using proposal boxes into multiple
fixed-size features, and obtains fine-tuned box locations and classification results
via fully-connected layers.
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(a)

(b)

Figure 3.6: Detectron-2 meta architecture.

Experiments have been performed with three backbone networks for Detectron-2, R50-
FPN, X101, and X101-FPN. These are all Residual Neural Networks (ResNets)
[51]. Their peculiarity is that they use skip connections, or shortcuts to jump over some
layers of the deep model (Fig. 3.7b). There are two main reasons to add skip connections
among the hidden layers of a NN: to avoid the problem of vanishing gradients (when the
partial derivative of the loss function with respect to the current NN weights becomes
vanishingly small, preventing the weights from changing their values during training), or
to mitigate the accuracy saturation problem (where increasing the depth of a network
leads to a decrease in performance on both test and training data).

ResNeXt [134] (X101-FPN and X101) is more recent network architecture which was
introduced as an improvement of ResNet-50 [50] (R50-FPN), a convolutional residual
neural network that is 50 layers deep. In particular, ResNeXt includes shortcuts from the
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(a) CNN block (b) ResNet block (c) ResNeXt block

Figure 3.7: Three different network building blocks

previous block to next block, stacking layers and adapting split-transform-merge strategy
(Fig. 3.7c). Section 3.4.1 discusses the results obtained with the different backbones in
detail.

To train the Detectron-2 based models to estimate the bounding box around the detected
berry together with the segmentation mask, the key-points, and the ripeness category,
a dataset of images and relative annotations is needed. Since current publicly available
strawberry datasets, as Strawberry Digital Images (SDI) [101] and Dryad [32] are
not suitable for picking point localization and determination of the orientation through
key-points, since they are not furnished with these annotations (see Table 3.1), two novel
datasets (Dataset-1 and Dataset-2) have been created and proposed with the annota-
tions of the aforementioned features.

Strawberry datasets details

SDI Dryad Dataset-1 Dataset-2

#Images 31200 35442 1588 3100

#Berries 17938 1611 2413 17938

Depth ✗ ✓ ✓ ✗

Segmentation ✓ ✗ ✓ ✓

Farm ✓ ✗ ✓ ✓

Ripeness ✗ ✗ ✓ ✓

Key-points ✗ ✗ ✓ ✓

Weight ✗ ✓ ✓ ✗

Dimensions ✗ ✓ ✓ ✗

Table 3.1: Details of the already available and the new proposed strawberries datasets.
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The datasets’ key-points, segmentation masks and strawberry ripeness categories have
been provided in MSCOCO JSON format [77] since this is the default format for feeding
data into Detectron-2. A file in COCO JSON format is composed of five sections providing
information for an entire dataset:

– info – general information about the dataset;

– licenses – license information for the images in the dataset;

– images – a list of images in the dataset;

– annotations – a list of annotations that are present in all images in the dataset;

– categories – a list of label categories.

3.2.3. Detectron-2 loss function for segmentation and key-points

detection

The loss function to be minimized during training of Detectron-2-based models to get
the bounding boxes and segmentation masks of the objects of interest, the classes of the
detected objects, and the key-points location and type, is calculated as shown in Eq. 3.1.

Ltot = Lcls + Lbox + Lmask + Lkp (3.1)

Lall represents the total cost loss function of the Mask-RCNN model, Lbox (Eq. 3.3)
represents the regression loss of the predicted boxes, Lcls (Eq. 3.2) represents the classi-
fication loss of the predicted boxes, Lmask (Eq. 3.5) represents the loss on the predicted
segmentation masks and Lkp represents the loss on the predicted key-points.

Lcls(p
k
i , p

k∗
i ) = −lb[pki pk∗i + (1− pki )(1− pk∗i )] (3.2)

In Eq. 3.2 the classification loss is shown, where pki represents the predicted probability
that pixel i belongs to a certain object class k, pk∗i represents the corresponding real pixel
for that class k label and lb represents the log loss function. k goes from 1 to K (total
number of classes).

Lbox(t
k, v) =

∑
i∈x,y,w,h

[Lsmooth
1 (tki − vi)] (3.3)
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Lsmooth
1 =

{
0.5x2, if |x| < 1,

|x| − 0.5, otherwise
(3.4)

In Eq. 3.3 the bounding box regression loss is shown, where tk and v represent the
predicted bounding box for class k and ground truth bounding box, respectively. The
term i represent bounding box coordinate offset (center coordinate (x, y), width w, and
height h). These are the parameters to be correctly predicted and that describe a bounding
box.

Lmask = −
1

m2

∑
1≤i,j≤m

[gijlog(p
k
ij) + log(1− pkij)] (3.5)

Lmask (Eq. 3.5) is computed as the average binary cross-entropy for the predicted masks
associated with the ground truth. The mask head of the model has a dimensional output
of Km2 as it generates K (total number of classes) binary masks of size m x m (input
image dimensions). gij is the class label probability of a pixel (i, j) in the ground truth
mask, pij is the predicted label of the same pixel in the mask generated for class k.

Lkp has the same formulation of Lmask considering that the masks to be predicted are
the one-hot binary mask representing the key-point locations (Fig. 3.8). So, for each
key-point, during training, the target is a binary map of the image dimensions where only
a single pixel is labeled as foreground.

Figure 3.8: Segmentation masks (a) and key-points masks (b) to be predicted.
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3.3. Datasets acquisition and annotation

The proposed datasets present the annotations of the bounding boxes, segmentation
masks, key-points, ripeness category, and weight (Dataset-1) of each strawberry.

These novel features are not present in available datasets as SDI [101] or Dryad et al. [32]
and are unique and very much needed for autonomous strawberry harvesting robots. In
particular, the weight annotations have been exploited to develop a strawberry weight
estimation algorithm (Ch. 4) useful for developing robotic systems that pick strawberries
and place them directly into punnets according to their weights and sizes for delivering
to supermarkets.

Dryad et al. [32] presents the weights of strawberries only under controlled laboratory
conditions with the calyx separated from the strawberries. In contrast, the proposed
Dataset-1 presents the weights of strawberries under farm conditions where it
is difficult to obtain very accurate and consistent depth information, especially under
sunlight. This is a more challenging and realistic perception scenario since the initial
separation of berries into punnets happens directly after the picking action, according to
the estimated strawberries’ weight.

3.3.1. Dataset 1

Dataset-1 (Fig. 3.10a) has been collected at the new 15-acre table-top strawberry glasshouse
in Carrington, Lincolnshire, which is the latest addition to the state-of-the-art Dyson
Farming’s circular farming system [4]. Dataset-1 is a novel dataset that presents straw-
berries dimensions, weights, suitability for picking, instance segmentation, and key-points
for grasping and picking. The main purpose of this dataset is to facilitate autonomous
robotic strawberry picking action. For each strawberry, the dataset presents five dif-
ferent key-points: picking point (PP), top, bottom points of fruit, left grasping point
(LGP), and the right grasping point (LGP) as shown in Fig.3.9. While the PP indicates
the position on the stem where the cutting action has to be performed, the left and right
grasping points can provide reference to the end effector for grasping action. Each key-
point is then classified as "visible", if it is clearly visible in the image, "invisible-by-itself"
if the key-point is not visible because covered by the berry itself due to its orientation
with respect to the camera, or "invisible-by-other" if something different is hiding it. It
is essential to accurately recalculate the bounding box once the key-points annotations
are added. Without the key-points, the bounding box aligns to the extremities of the
segmentation mask.
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Figure 3.9: Strawberries 5 key-points.

However, the PP key-point lies outside the segmentation mask of the strawberries and
thus outside the bounding box. Because of the nature of MRCNN, a key-point outside the
bounding box is not detectable. Thus, the bounding boxes are expanded to accommodate
all the key-points (see Fig. 3.9). In addition, the dataset also contains annotation for
instance segmentation for each of the strawberries. To determine the suitability of straw-
berries for harvesting, each strawberry is labeled as "pluckable"–ready to be picked–
or "unpluckable"–not to be picked–. "unpluckable" strawberries include unripe, semi-,

(a) Dataset-1.

(b) Datastet-2.

Figure 3.10: Images from Dataset-1 and Dataset-2
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Strawberry datasets details

#images #"pluckable" #"unpluckable" #KPS #Weight

Dataset-1 1588 1757 656 2413 1910

Dataset-2 3100 3659 14279 10999 NA

Table 3.2: Details of the new proposed strawberries datasets.

and over-ripe or rotten berries. The "pluckable" category includes strawberries that are
nearly ripe and perfectly ripe.

The dataset contains 532 strawberry sets (Table 3.2). Each set has three color, depth,
and point cloud data of the same strawberry cluster from three different distances. The
farthest image captures the entire cluster whereas the nearest image focuses on one target
strawberry in the cluster. In total, this dataset includes 1588 strawberries images (Table
3.2). All the images have been captured with Intel Realsense RGB-D sensor D435i.

3.3.2. Dataset 2

Dataset-2 (Fig. 3.10b) has been derived from the Strawberry Digital Images (SDI) [101]
dataset and it is an enhancement of it. SDI dataset contains a total of 3100 images. These
are dense strawberry clusters that contain an average of 5.8 strawberries per image. 10999
berries have been carefully annotated, each with the 5 different key-points.

Moreover, the "pluckability" (i.e. suitability to be picked) has been labeled for all the
strawberries. The strawberries that are either severely occluded or are in an early flowering
stage have not been annotated for key-points since a meaningful annotation was not
possible.

3.4. Experimental results and discussion

3.4.1. Standard metrics for object detection and images seg-
mentation

To evaluate the proposed models’ performances for strawberry detection and segmen-
tation the MSCOCO evaluation standard [8] has been adopted. Namely, the Average
Precision (AP) is considered as it is the conventional metric to evaluate object detection
performances. It is defined as the area under the precision-recall curve (PR curve). In
equation 3.6 the definitions of Precision and Recall are shown, where tp is the number
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Figure 3.11: Intersection over Union score (IoU)

of true positives (number of outcomes that the model correctly predicts as positive class),
fp is the number of false positives (number of outcomes that the model incorrectly pre-
dicts as positive class) and fn is the number of false negatives (number of outcomes that
the model incorrectly predicts as negative class). Basically Precision is measuring the
percentage of correct positive predictions among all predictions, and Recall is measuring
the percentage of correct positive predictions among all real positive cases.

{
Precision = tp/(tp+ fp)

Recall = tp/(tp+ fn)

(3.6a)

(3.6b)

In the case of object detection or instance segmentation, the Intersection over Union
(IoU) ratio is used as a threshold for determining whether a predicted outcome is a true
positive or a false positive. Given the predicted and ground-truth bounding boxes, the
ratio between the area of overlap and the area of the union of the two bounding boxes is
the IoU score (Fig. 3.11). IoU is a good way of measuring the amount of overlap between
two bounding boxes or segmentation masks. If the prediction is perfect, IoU = 1, while if
it completely misses, IoU = 0. Precision and Recall are calculated using the IoU value of
the predicted and ground-truth bounding boxes, for a given IoU threshold. For example,
if IoU threshold is 0.5, and the IoU value for a prediction is 0.7, then the prediction is
classified as True Positive (tp). On the other hand, if IoU is 0.3, it is classified as False
Positive (fp) as shown in Fig. 3.12. That also means that for a prediction, different
binary true or false positives can be obtained, by changing the IoU threshold.

Average Precision (AP) is the precision average across all recall values between
0 and 1 at a certain IoU threshold. To have a more general view, the AP index has
been computed with different IoU levels, namely 0.5, 0.7 and 0.9.
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Figure 3.12: IoU for True Positive (tp) or False Positive (fp) classification.

To adopt AP for key-points detection, an analogous similarity measure has to be defined.
This is done by defining the Object Key-point Similarity (OKS), which plays the
same role as the IoU. OKS [133] (Fig. 3.13) is the standard performance metric used by
Detectron-2 [133] and MSCOCO [77] for key-point detection. It is calculated from the
distance between predicted points and ground truth points normalized by the scale of
the detected berry. Equation 3.7 shows the mathematical formulation of the OKS index,
where di is the Euclidean distance between the detected key-point and the corresponding

Figure 3.13: (a) Object Key-point Similarity (OKS). (b) OKS for True Positive (tp) or False
Positive (fp) classification.
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ground truth, vi is the visibility flag of the ground truth point (annotated as visible or
invisible), s is the strawberry scale, and ki is the per-key-point constant that controls
falloff. Perfect predictions will have OKS = 1 and predictions for which all key-points are
off by more than a few standard deviations will have OKS = 0.

OKS =

∑
i exp(−d2i /2s2k − i2)δ(vi > 0)∑

i δ(vi > 0)
(3.7)

Also in this case the AP index has been computed with different OKS levels, namely 0.1,
0.3 and 0.5.

3.4.2. Implementation details

Detectron-2 [133] has been trained in Pytorch 1.8 [96] using separately first Dataset-1 and
then Dataset-2 to have a comparison between the performances of the two datasets. For
Dataset-1, the Detectron-2 model is trained for 2200 iterations, and for the larger Dataset-
2, the model is trained for 20000 iterations. The Adam optimizer has been adopted with
a learning rate of 0.0001.

3.4.3. Discussion of results

Table 3.3 summarises the results for segmentation and key-points detection of strawberries
for both the datasets with Detectron-2 [133]. Although, the results demonstrate different
backbones used in the experiments can produce consistent results across the dataset,
ResNeXt base model performs better than ResNet-50 base model when used as
backbone network for Detectron-2.

3.4.4. Segmentation results

The first two columns of Table 3.3 show segmentation Average Precision (AP) values
for "pluckable" and "unpluckable" berries separately. The sub-columns show AP for
Intersection over Union (IoU) thresholds of 0.5, 0.7, and 0.9. The standard practice is to
consider IoU threshold 0.5 [54]; however, IoU thresholds up to 0.9 have been considered
for completeness. Using Dataset-2, the proposed models yield decent AP values for both
"pluckable" and "unpluckable" strawberries at IoU threshold 0.5. However, as shown in
Table 3.3, the "unpluckable" berries in Dataset-2 significantly outnumber the "pluckable"
berries. This results in better segmentation performance of "unpluckable" berries. The
performance drops significantly for stricter IoU thresholds 0.7 and 0.9. This dataset
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represents berries in very dense clusters and thus Dataset-2 is a very challenging dataset
and has the potential to further advance the research in selective harvesting.

On the other hand, Dataset-1 shows very reliable AP values for "pluckable" strawberries
for both the backbones across the different IoU thresholds. With IoU threshold of 0.5,
Detectron-2 produces 93.32 (R50-FPN) and (X101-FPN) 94.19 AP values, while with a
very strict IoU threshold of 0.9 it provides AP of 83.55 and 88.70 with R50-FPN and X101-
FPN, respectively. This shows that for selective harvesting the dataset can be reliably
used. For Dataset-1, the performance of the models on "unpluckable" berries is compar-
atively less reliable as there are fewer samples of "unpluckable" berries in this dataset.
However, from a selective harvesting perspective, instance segmentation of "pluckable"
berries is more essential.

3.4.5. Key-points detection results

The results of the key-points detection expressed in terms of AP at different OKS thresh-
olds are similar to segmentation. At each OKS threshold, the AP with 0.5, 0.3, and 0.1
OKS has been taken. While the OKS threshold normally used is 0.5, 0.1 is a stricter
threshold. The experimental results show that, similarly to segmentation, the results
are consistent across the two backbones, although X101-FPN performs slightly better.
Also, the key-points detection for "pluckable" berries is much better than "unpluckable"

Segmentation and key-points detection results

Dataset-1 Dataset-2
Backbone IoU/OKS R50-FPN X101 X101-FPN X101

Segmentation "Pluckable"
0.5 93.32 94.19 71.12 72.12
0.7 90.97 92.83 64.70 66.84
0.9 83.55 88.70 43.24 47.86

Segmentation "Unpluckable"
0.5 59.46 61.12 76.83 78.09
0.7 53.61 56.22 74.52 76.65
0.9 42.91 45.64 68.79 70.30

Key-Points "Pluckable"
0.1 91.27 97.21 64.32 59.29
0.3 89.10 91.40 58.93 54.40
0.5 81.90 87.74 39.92 42.12

Key-Points"Unpluckable"
0.1 51.36 61.26 73.26 74.67
0.3 46.20 56.52 71.39 71.45
0.5 37.30 46.84 66.46 65.30

Table 3.3: Details of the experimental results for strawberry segmentation and key-points
detection.
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berries for Dataset-1. The results for Dataset-2 obtained comparing X101-FPN and X101
networks, provide a good baseline for future research.

In Fig. 3.14 two segmented images are shown. In Fig. 3.14a an image from Dataset-1
is represented, while in Fig. 3.14b an image from Dataset-2 is shown. It can be seen
that the berries are recognized, labeled as "pluckable" or "unpluckable" with a certain
confidence, and the 5 key-points for picking and grasping action are predicted.

(a) Dataset-1. (b) Datastet-2.

Figure 3.14: Strawberry perception for images in Dataset-1 and Dataset-2
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Normally, after the picking action of the ripe strawberries from the plant, the harvested
fruits are directly placed into punnets (Fig. 4.1) that are required to be roughly of
the same weight. Human harvesters rely on their experience and scales to estimate the
strawberry weights. Clearly, this procedure can be imprecise, and subsequently, a lot of
effort is required to re-sort the strawberries into punnets. This increases the production
cost. Moreover, weighting strawberries after harvesting requires additional handling and
maneuvering of the delicate fruits, which run the risk of being bruised. AI-based weight
estimation has the potential to reduce the production cost by estimating the
weight of the strawberries before detaching them from the plant [84, 142]. Robust and
easy-to-use automatic machine vision-based systems can be used to increase the weighing
efficiency of fruits and to decrease the overall costs of manual labour avoiding excessive
fruit handling and the usage of various tools that require dedicated human efforts. [84].

Automatic image processing techniques are gaining popularity in the agriculture industry.
The available image processing techniques for fruit weight estimation use mainly the
intensity or color (RGB) values to identify and estimate weights.

Figure 4.1: Punnets of strawberries of fixed weight.
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Figure 4.2: RGB-D image.

Recently, the availability of commercial depth sensors that are cheap and easy to use has
opened the way to utilize the depth information along with intensity/color pixel values
for automatic image processing methods [84]. An RGB-D image is simply a combination
of an RGB image and its corresponding depth image (Fig. 4.2). A depth image is an
image channel in which each pixel relates to a distance between the image plane and the
corresponding object in the RGB image.

Various approaches for strawberry weight estimation have been developed and will be
shown in the next sections. All the approaches belong to the category of deep (Sec. 4.2)
or machine (Sec. 4.3) learning techniques, solving the problem of finding a mapping from
the RGB-D information to the strawberry weight in different ways. In particular, the first
approach (presented in Sec. 4.2.1) combines the RGB image and the raw depth image
information using a neural network architecture inspired to the family of EfficientNet
models [124]. The approach presented in Sec. 4.2.2 is a deep model which predicts the
fruit weight starting from the reconstructed point cloud of the berry. In Sec. 4.2.3,
a neural network able to handle a graph representation of the input data is presented.
However, the machine learning-based approach explained in Sec. 4.3.1 turned out to be
the most accurate, outperforming all the other deep model-based techniques.
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The weight of strawberries is proportional to size, shape, and density. The instantaneous
density of strawberries is also dependent on the sugar and water content of the strawberry
which may not be feasible to be inferred from images alone. The higher the weight
estimation accuracy, the better the performance of a robot picker in terms of meeting the
weight and packaging legislation. Thus, estimating the weights of strawberries to a decent
accuracy (80-90%) is the goal here so that they can be properly sorted into punnets while
harvesting without the need for further manual processing [84].

4.1. Evaluation metrics

To measure the accuracy of weight estimation provided by the different implemented
techniques, explained in the following sections, the Percentage of Correct Weights
(PCW) protocol has been proposed as a metric. The goal is to have a unique way of
measuring the weight estimation performances to compare the different approaches and
to select the best or the most accurate one.

The regression error in percentage with respect to the ground truth is computed as shown
in Eq. 4.1, where x̂ is the predicted weight and x is the ground truth. If the error is within
the desired tolerance, the inference is marked as accurate (score = 1, Eq. 4.1a); otherwise,
it is marked as non-accurate (score = 0, Eq. 4.1b). The percentage of predictions within
the tolerance values (marked as accurate) defines the accuracy of a model.

In the experiments, the tolerance levels are set at 0.05, 0.1, 0.15, 0.20, 0.25 and 0.30 which
correspond to a range of 70-95% accuracy. The protocol is inspired by the Percentage of
correct key-points (PCK) protocol used for human pose estimation [88].


| x̂− x
x
| < tol −→ 1

| x̂− x
x
| > tol −→ 0

(4.1a)

(4.1b)

4.2. Deep learning-based approaches

The first set of techniques implemented for strawberry weight estimation includes several
state-of-the-art neural networks. The vision-based weight estimation is dependent on the
berries’ apparent size in images and thus it is essential to use depth information together
with the colour one. Dataset-1 (sec. 3.3.1) has been used to train the different models as
it is composed of 1588 RGB-D images (captured with an Intel Real-Sense D435i camera)
with 1910 strawberries, each annotated with the weight.
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(a) Original RGB (b) Detection (c) Segmented RGB (d) Segmented depth

Figure 4.3: Strawberries instances extraction.

First, all the instances of strawberries from each RGB image (Fig. 4.3a) have been
extracted with the help of segmentation through Detectron-2 [133] (Fig. 4.3b and 4.3c).
The same segmentation mask is also applied to depth images (Fig. 4.3d).

These two segmented images (color and depth) have been used to train a model based on
EfficientNet [124] (Sec. 4.2.1).

Moreover they have been combined with the help of the Realsense intrinsic camera cali-
bration parameters to reconstruct the point cloud. The result is a segmented point cloud
that only contains the strawberry points (Fig. 4.4a). The segmented point cloud has
been used to train PointConv [132], PointNet [103] and PointNet++ [102], which
are well-known point cloud-based deep networks (Sec. 4.2.2).

Recently there has been an increased interest in graph-based neural networks since the
introduction of graph neural networks by Kipf et al. [63]. Thus, also graph-based net-
works have been trained on the strawberry graphical representation (Fig. 4.4b), namely
Dynamic Graph CNN (DGCNN) [131], Graph Convolutional Network (GCN)
[63] and Higher-order Graph Neural Network (HGNN) [83].

(a) Strawberry segmented point cloud (b) Strawberry graph diagram

Figure 4.4: Strawberry segmented point cloud and relative graph.
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4.2.1. Efficient-Net based model

The first proposed model capable to regress the weights of the berries is a Convolutional
Neural Network (CNN). A two-streams architecture is used, where the first stream
takes as input the segmented RGB image of a single strawberry, while the second stream
is fed with the segmented depth image (Fig. 4.5). Thus, in both the inputs to the
model, pixels belonging to the same strawberry retain their original value, whereas non-
strawberry pixels are zeroed. The two branches are represented by a model taken from
the EfficientNet family [124] with weights pre-trained on ImageNet. The final dense
layer of the EfficientNet is removed and the outputs of both streams are concatenated.
This concatenated layer is passed through a dense layer with linear activation to regress
the berries’ weights. EfficientNets [124] is a family of models obtained as improvement
of standard Convolutional Neural Networks. Namely they originated from the obser-
vation that balancing network depth, width, and resolution has been proven
to lead to better performances. Depth can be scaled up as well as scaled-down by
adding-removing layers respectively; a deeper network can capture richer and more com-
plex features, and generalizes well on new tasks. However, vanishing gradients is one of
the most common problems that arise. In the second place, wider networks (with larger
kernels/filters) tend to be able to capture more fine-grained features, but the accuracy
saturates quickly with a larger width. Scaling resolution simply means that the resolu-
tion of the image passed to the CNN is scaled up or down. In high-resolution images,
the features are more fine-grained, and hence high-resolution images should work better.
Scaling up any dimension of a network (width, depth, or resolution) improves accuracy,
but the accuracy gain diminishes for bigger models. M. Tan and Quoc V. proposed a sim-
ple yet very effective scaling technique that uses a compound coefficient ϕ to uniformly
scale network width, depth, and resolution in a principled way as shown in Eq. 4.2.



depth : d = αϕ

width : w = βϕ

resolution : r = γϕ

αβ2γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

In Eq. 4.2 ϕ is a user-specified coefficient that controls how many resources are available
whereas α, β, and γ specify how to assign these resources to network depth, width,
and resolution respectively. EfficientNets are networks obtained with the optimal values
for those scaling parameters. For example EfficientNet-B0 has ϕ = 1, α = 1.2, β =
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EfficientNet EfficientNet
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Figure 4.5: EfficientNet-based model architecture.

1.1 and γ = 1.15. EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy on
ImageNet. Efficient-Net-B0 and B7 have been used as baselines for weight estimation. The
ImageNet pre-trained EfficientNets have been implemented through Tensorflow 2.1 with
Keras wrapper. In order to help the neural networks generalize better, data augmentation
has been performed through random translations and rotations of the RGB and depth
input images during training.

4.2.2. PointNet and PointNet++

Another baseline considered for strawberry weight estimation is represented by point
cloud-based deep networks fed with the reconstructed segmented strawberry point cloud.
Namely PointNet [103], PointNet++ [102] and PointConv [132] have been implemented.
For each of these networks, the final layer in the network has been replaced with a dense
layer containing only one unit with a linear activation function for regressing the straw-
berry weight.

PointNet [103] takes raw point cloud data as input. A point in a point cloud is fully
described by its (x, y, z) coordinates together with other features that may be included,
such as surface normal and intensity. The architecture of PointNet is surprisingly simple
and quite intuitive. The network uses a shared multi-layer perceptron (MLP), i.e. a
sequence of dense layers, to map each of the n points from three dimensions (x, y, z) to
64 dimensions. It is important to note that a single multi-layer perceptron is shared for
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Figure 4.6: PointNet for weight estimation.

each of the n points (i.e., mapping is identical and independent on the n points). This
procedure is repeated to map the n points from 64 dimensions to 1024 dimensions. With
the points in higher-dimensional embedding space, max pooling is used to create a global
feature vector. Finally, a three-layer fully-connected network is used to map the global
feature vector to the regression output (weight of the berry). PointNet learns a spatial
encoding of each point and then aggregates all individual point features to a global point
cloud signature, so it does not capture local structures. Namely, it operates on each point
independently and subsequently applies a symmetric function to accumulate features.

PointNet++ [102] is a hierarchical network that applies PointNet recursively on a nested
portioning of the input point cloud. Similar to CNNs, PointNet++ extracts local features
from a small neighborhood of points, and, further grouping them into larger units, pro-
duces higher-level features. This process is recursive until the feature of the whole point
set is obtained. The ability to abstract local patterns along the hierarchy allows better
generality to unseen cases with respect to PointNet.

PointConv [132] is the last model that is fed with a point cloud but it performs the
regression operation differently from PointNet and PointNet++. While PointNet and
PointNet++ consider each point in the point cloud as a set of coordinates to be processed
through the units of the network, PointConv is based on an extension of the image con-
volution concept into the point cloud. PointConv trains multi-layer perceptrons on local
point coordinate to approximate continuous weight and density functions in convolutional
filters. This allows deep convolutional networks to be built directly on 3D point clouds.

Data augmentation has been performed also in this case, so the point cloud has been both
translated and rotated randomly (the variations are within a region) before being used
as input to the aforementioned models. A random translation has been applied in both
dimensions perpendicular to the depth value that is kept fixed as the strawberry depth
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location is a fundamental parameter for a correct weight regression. On the other hand, a
random rotation has been applied around all three axes of the strawberry. After that, the
coordinate values have been normalized and finally given as input to the different models
for training.

4.2.3. Graph-based models

Experiments have also been carried out with graph-based networks, namely Graph Con-
volutional Network (GCN) [63], Higher-order Graph Neural Network (HGNN) [83] and
Dynamic Graph CNN (DGCNN) [131].

Graph Neural Networks (GNNs) [116] are a class of deep learning methods designed
to perform inference on data described by graphs. Graphs are simply one of the modalities
which can be used to represent data. The difference is that in addition to the definition of
the data points, the relationship that exists between them is also defined, and thus pro-
vides them with a structure. This means that graphs are a structured data representation.
This additional information about the relation between data points can be very valuable,
which is the reason why GNNs, in certain fields, have better performances compared to
other solutions. A graph can be described as an entity composed of units (that are the
data points we are working with), edges (that connect similar data points or express a
relation between them), and features, that are additional information each node can carry
on to better describe the node. The edges can be described with the Adjacency matrix,
a binary square matrix which defines if there is a connection (with a 1) or not (with a
0) comparing each node with all the others and itself (Fig. 4.7). If instead of zeros and
ones, float numbers are used to represent how powerful the connections are, the matrix is
called the Weight matrix.
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Figure 4.7: Graph and Adjacency matrix.
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The graph dataset of strawberries is obtained by firstly applying surface mesh reconstruc-
tion to the segmented point clouds. Then, a fixed number of points have been sampled
from the reconstructed surfaces. Finally, the k-nearest neighbor graph generation func-
tion has been exploited to get the final graphs, composed of nodes and edges (Fig. 4.4b).
Each point in the point cloud represents a node. Given a point p, a directed edge links p
to q whenever q is part of the k nearest neighbors of p, considering the Euclidean distance
between p and q. The nodes’ features are represented by the (x, y, z) coordinates of the
point in the point cloud. In other words every node is represented by a point in the point
cloud, while the edges are built on the basis of the Euclidean distance among the points.
The obtained graphs are used as inputs for the different implemented GNNs, while the
output is the strawberries’ weight.

Graph Convolutional Network (GCN) [63] generalize classical Convolutional Neural
Networks (CNN) to the case of graph-structured data. There are some challenges in
applying convolution as it is applied in images or data sequences since in graphs both
the number of neighboring nodes and the distance between nodes change. The concept
of convolution can be extended to the graph framework considering that, on Euclidean
domains, convolution is defined by taking the product of translated functions. In Eq.
4.3b, xl+1 is the representation of the input graph after the l+ 1 layer of the network. It
is defined as the product of xl for the Graph Convolution Filter (G) plus a bias b passed
trough a non linear function σ. The Graph Convolution Filter is defined as G (Eq. 4.3a)
with wk coefficients as weights pre-multiplied by S (adjacency matrix) to the power of
the hyperparameter k. These wk coefficients are the parameters that are updated and
learned during training in order to minimize some loss function.

G =
K∑
k=0

wkS
k

xl+1 = σ(Gxl + b)

(4.3a)

(4.3b)

In a nutshell, this is the equivalent formulation to perform a convolution step on graph
data instead of 2D images.

The working principle of Higher-order Graph Neural Network (HGNN) [83] is the
same as GCNs, but higher dimansional combinations of the input are utilized so that the
input graph is combined in different ways before being fed to the GNN. The key insight in
these higher-dimensional variants is that they perform message passing directly between
subgraph structures, rather than individual nodes. This higher-order form of message
passing can capture structural information that is not visible at the node-level [83].
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Figure 4.8: DGCNN model architecture for weight estimation. The EdgeConv block takes as
input a tensor of shape n × f , computes edge features for each point by applying a multi-layer
perceptron (mlp) with the number of layer neurons defined as {a1, a2, ..., an}, and generates a
tensor of shape n × an after pooling among neighboring edge features.

Finally, Dynamic Graph CNN (DGCNN) [131] is a network that works slightly
differently from the two previously described GNNs. It is fed with the original segmented
point cloud, over which a dynamic graph representation is computed and updated at every
layer of the network. This means that the computed graph, differently from the previous
cases (in which the input graph was completely determined before training the models),
is not fixed but rather is dynamically updated after each layer of the network. That
is, the set of k-nearest neighbors of a point changes from layer to layer of the network
and is computed from the sequence of embeddings. DGCNN is inspired by PointNet,
but instead of working on individual points, it exploits local geometric structures by
constructing a local neighborhood graph and applying convolution-like operations on the
edges connecting neighboring pairs of points, in the spirit of graph neural networks, from
which, on the other hand, it differs for the continuous update of the graph along the
layers of the model (Fig. 4.8). It is able to do this using a neural network module called
Edge-Conv suitable for CNN-based high-level tasks on point clouds. EdgeConv acts on
the graphs dynamically computed in each layer of the network and, instead of nodes
features, it generates edge features that describe the relationships between a point and
its neighbors [131].

4.3. Machine learning-based approach

4.3.1. Random Forest Model with Decision Trees

Along with the above approaches, a novel, simple and effective baseline that outperforms
the other state-of-the-art networks is presented. As shown in Figure 4.3, first the seg-
mented images of individual strawberries are obtained through Detectron-2 [133]. The
same segmentation mask is applied to the raw-depth image. As done for point cloud-based
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deep networks these segmented images are combined with the help of Realsense intrinsic
camera calibration parameters to create a segmented point cloud (Fig. 4.4a). The point
cloud is not continuous and represents two depth layers (Fig. 4.9a). This is the case with
original point clouds captured with Realsense. In realistic farm or outdoor scenes, the
depth could range up to infinity. Thus, the resultant depth sensitivity (resolution) is low
and unable to capture the relatively small depth gradient on the surface of a strawberry
in a continuous manner. For this reason, the convex hull of the segmented point clouds
(Fig. 4.9b) is reconstructed, which provides a more continuous surface. A principal com-
ponent analysis (PCA) is performed on the convex hull to determine the direction of the
largest extent (Fig. 4.9c). PCA is a technique used for identification of a smaller number
of uncorrelated variables known as principal components from a larger set of data. The
technique is widely used to emphasize variation and capture strong patterns in a data set.
In this case it is used to find the 3 directions of largest extent of the point cloud of the
strawberry.

A feature vector is created which contains the strawberry bounding box area obtained
from the segmentation mask, the segmentation mask area, the histogram of depth values,
and the primary principal components (Fig. 4.10). This feature vector is used to train a
Random Forest model with Decision Trees [56]. Random forest is a flexible, easy-to-
use machine learning algorithm that can produce, even without hyper-parameter tuning,
great results both for classification and regression. It is a supervised learning algorithm.
It builds multiple decision trees, so a combination of machine learning models, and merges
them to get a more accurate and stable output, averaging the final predictions (the weights
of the strawberries) from all the trees (Fig. 4.10). The trees are run in parallel and there
is no interaction between them. The inner working of a Decision Tree can be thought of as
a bunch of if-else binary conditions that leads to predicting the value of a target variable

(a) Discontinuous point cloud (b) Convex hull (c) PCA

Figure 4.9: Discontinuous point cloud, convex hull and PCA.
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Figure 4.10: Random Forest model with Decision Trees to regress strawberries weight.

based on several input variables (the ones in the feature vector). It arrives at an estimate
of the berry weight by asking a series of questions to the data, each question narrowing
the possible values until the model gets confident enough to make a single prediction.
The order of the question as well as their content is being determined by the model. In
addition, the questions asked are all in a True/False form. During training, the model is
fitted with the provided feature vectors and the true weight values. The model learns any
relationships between the data and the target variable.

The histogram of the depth data of the strawberry with twelve bins has been considered to
help the model learn about the extension of the fruit along the axis perpendicular to the
camera. The bounding box area helps the model to learn the apparent size of strawberries.
If a strawberry comes in different shapes and sizes, the area of the segmentation mask
with respect to the bounding box helps the model to fine-tune the apparent size of the
strawberry. This is straightforward if the orientation of the berry parallel to the camera
view, but due to the different possible orientations of the strawberry, the bounding box
and the apparent area of the strawberry can vary (Fig. 4.11). Thus, if the model is aware
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Figure 4.11: Due to the different possible orientations of the strawberry, the bounding box and
the apparent area of the strawberry can vary.

of the 3-D orientation of the strawberry, it can learn the relationship of the weight and
the variation of apparent size caused by the orientation of the fruit. And this is verified by
the fact that the inclusion of the primary principal components in the feature
vector improves the performance of the Random Forest model with Decision
Trees for weight estimation. This last proposed model performs better than the deep
models discussed earlier, as it can be seen from the graph in Fig. 4.12 and as discussed
in Sec. 4.3.3.

4.3.2. Implementation details

The models and algorithms have been implemented in Python 3.7. The point cloud
and graph-based neural networks have been implemented in Pytorch 1.8 [96]. For graph
networks, Pytorch Geometric [36] version 1.7 has been used.

All models have been trained with a learning rate of 0.001 with Adam optimizer. For the
Random Forest model with Decision Trees and to compute the PCA components of the
strawberries point clouds, Scikit Learn [97] version 0.24.2 has been used.
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Open3D [145] has been used for manipulating point clouds, computing the convex hulls
and for the surface mesh reconstruction needed to create the graph representation of data.

4.3.3. Experimental results and Discussion

Figure 4.12 illustrates the result of strawberry weight estimation experiments. As dis-
cussed earlier the goal here is to achieve 80-90% accuracy using the Percentage of Correct
Weights (PCW) protocol described in Sec. 4.1. With (PCW @x) the percentage of ac-
curate predictions, considering a tolerance of x, is indicated. Point cloud, graph and
RGB+depth-based state-of-the-art neural networks have been evaluated on a test set of
RGB-D images of berries annotated with their ground truth weight value. Obviously this
tasting dataset was never seen by the models during training.

The point cloud-based network, PointConv [132] provides only 15.5% (PCW @0.1) to
28.90% (PCW @0.2). Similarly, PointNet [103] gives only around 23.00% (PCW @0.1) to
41.90% (PCW @0.2) accuracy while PointNet++ [102] gives only 27.23% (PCW @0.1) to
48.30% (PCW @0.2) accuracy. From Figure 4.12, it can also be concluded that the graph-
based networks achieve performances similar to point cloud-based networks. DGCN [131],
GCN [63] and HGNN [83], provides 44.20% , 44.30% and 46.10% accuracy at PCW @0.20.
Figure 4.12 shows that the performance of the two-stream model based on EfficientNet is

Figure 4.12: Weight estimation results.
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more accurate than point cloud and graph-based networks. EfficientNet-B0 and B7 give
much better results with 67.10 % and 68.21 % accuracy at PCW @0.2, but still far from
suitability for selective harvesting.

This motivates the proposal of the Random Forest-based method which performs
much better than the other state-of-the-art deep methods. The main novelty
of the proposed algorithm is that by including the largest principal component using
PCA, the method learns the orientation of the strawberry that helps with slightly more
accurate weight estimation. The model performs 81.36 and 81.99% PCW @0.2 without
and with PCA, respectively. By inclusion of PCA, the performance improves from 28.32%
to 29.63% PCW @0.05. The graph in Fig 4.12 shows that the inclusion of the PCA
in the feature vector improves the performance across all the PCW levels.
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from visual information

5.1. Problem formulation: from perception to path

planning

Robots for autonomous fruit picking require tightly integrated systems that incorporate
perception, motion planning, and, in the last stage, manipulation. This section deals with
the motion planning problem for autonomous strawberry harvesting. After the
recognition of the target fruit to be picked at the perception stage, described in Ch. 3, the
ultimate goal for the robotic systems is the ability to efficiently and successfully reach-to-
pick harvest-ready strawberries regardless of obstructions and fruit cluster configurations.
To achieve the reach-to-pick task, robot manipulators need to generate safe and smooth
motions. The goal is to have a mapping between the detection information of the target
ripe strawberry, furnished by the perceptive stage of the pipeline, and the robot end-
effector trajectory towards the target berry (Fig. 5.1). This mapping is intended to be
made through the segmented image (containing the detection information) and with the
use of deep learning techniques. In other words, the objective is to find a non-linear
mapping (represented by a trained neural network) from the segmented RGB image pixel
values (the depth information is not exploited) to the robot end-effector trajectory for the
reach-to-pick task. In this way also the path planning (together with the detection) part
depends only on the visual information made available by a simple RGB camera.

Everything has been developed in the Learning from Demonstrations (LfD) setting.
In the context of robotics and automation, LfD is the paradigm in which robots acquire
new skills by learning to imitate an expert. This framework allows the learning of a huge
number of possible tasks, and particularly it is useful when it is easier for an expert to
demonstrate the desired behaviour rather than to hard code a policy able to perform it.
Instead of requiring users to analytically decompose and manually program the desired
behavior, LfD takes the view that an appropriate robot behaviour can be derived from
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Path planning from visual information 
to reach the target fruitTarget strawberry segmentation, key-points 

detection and ripe-unripe classificationInput visual information

PERCEPTION PATH  PLANNING

Figure 5.1: Pipeline from perception to path planning from the visual information.

observations of a human’s performance thereof. The aim is for robot capabilities to be
more easily extended and adapted to novel situations, even by users without programming
ability.

There are two main phases in LfD:

• Gathering examples: the process of recording example data from the expert to
derive a policy from.

• Deriving policies: analyzing examples to determine a policy.

In the case considered, in which the task to be performed is a target-reaching task, the
human demonstrations are performed manually moving the robot end-effector towards
the targeted berry in kinesthetic teaching mode, while the joint trajectories are recorded.
The policy is then determined training a neural network to learn the mapping from the
segmented input RGB image, in which the target fruit is detected and marked, to the joints
trajectories to reach it, based on the data collected from the human expert demonstrations
(Fig. 5.2). In Sec. 5.2 the complete mathematical formulation of the problem is provided.

A probabilistic approach has been preferred over a deterministic one in terms of tra-
jectory prediction. This means that given the RGB image with the target berry, not only
a single deterministic trajectory but a distribution of trajectories (assumed Gaussians) is
predicted by the trained neural network. This way, the setting can be exploited in future
developments to sample from the predicted distribution to optimise the trajectory to meet
secondary objectives, like collision avoidance. Moreover, this leads to the exact reproduc-
tion of human behaviour, which is intrinsically stochastic when it deals with performing
a task that has not a strictly unique way to be performed. Given a target fruit, there
can be different possible ways of reaching it, and this stochasticity has been included in
the dataset of recorded human demonstrations by repeating the reach-to-pick movement
multiple times.
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Figure 5.2: Learning from Demonstrations scheme (LfD).

Different neural network architectures have been implemented and compared to
achieve the best performances in path prediction (Sec. 5.3). All the proposed models
are composed of two parts: (1) part-1 encodes the high-dimensional input RGB image in
a low-dimensional latent space vector, preserving all the relevant information for image
reconstruction, using a set of convolutional layers, (2) part-2 maps the latent embedded
vector to the relative trajectory distribution using a Multi-Layer Perceptron (MLP), i.e.
a sequence of dense layers. The models differ in how they perform the encoding (1) or in
how they predict the final trajectory distribution from the latent space (2).

Also, a novel training method for learning domain-specific latent features has
been developed. This has been done so that the latent representation of the input RGB
image does not only contain useful information for image reconstruction but also for the
prediction of the reach-to-pick trajectory (Sec. 5.4).
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Figure 5.3

Another important feature of the developed approach is the use of the Probabilis-
tic Movement Primitives (ProMPs) [94] framework to represent the demonstrated-
predicted trajectory distributions. ProMPs are the probabilistic extension of the Move-
ment Primitives formulation (MP) [117], which is a compact reparameterization of a
trajectory into a finite set of numbers, called weights. The concept behind it is that every
kind of trajectory (considered as the variation of a quantity in time) can be represented
as the sum of a set of standardized translated Gaussian functions, scaled by the relative
weight, namely a number (Fig. 5.3a). So, just from a finite set of weights, it is possible
to reconstruct a trajectory of any length. The number of weights and Gaussians needed
to represent with an acceptable accuracy the trajectory is determined experimentally.
For example, in Fig. 5.3a a set of 8 weighted Gaussians describes accurately the desired
trajectory. To represent a distribution of trajectories instead of a single trajectory, it is
possible to simply consider a set of probabilistic distributions of weights instead of a set
of deterministic ones; so every weight is described by its mean and standard deviation
values (Fig. 5.3b). This approach has been exploited to represent the predicted policy
for the reach-to-pick task so that the neural network is trained to output a set of weights
distributions (their mean and standard deviation values). In this way, the dimensionality
of the problem is reduced, since the neural network is not required to predict a trajectory,
considered as a value for every time instant, but it is only required to predict a finite set
of weights (in number much lower than the one of time instants). In Sec. 5.3 the details
of the proposed deep models are shown, while in Ch. 6 the experimental results obtained
in simulation and with the real robotic arm are provided.
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5.2. Mathematical formulation of the problem: from

visual information to path prediction

Let us consider a set ofNtr demonstrations T := {{Q1, I1}, . . . , {QNtr , INtr}} for the reach-
to-pick task, where Qn (n = 1, . . . , Ntr) are the joint/task space sets of trajectories, and
In is the raw RGB image taken from the corresponding robot’s workspace that captures
the target berry to be reached. A set of trajectories instead of a single one (for every joint
or task space coordinate) is captured since the probabilistic face of the behaviour should
be captured. In other words, for every single target berry, the reach-to-pick movement is
performed S times (S trials compose a single set of trajectories) to extract a distribution
of effective trajectories (for every joint/task space coordinate) in reaching the target berry.
For a single joint (or task space coordinate) a set of trajectories relative to a certain target
berry is defined as the ordered set qj expressed in Eq. 5.1.

qj :=
{
qj
s

}
s=1,...,S

:=
{
qjt,s

}
t=1,...,T ;s=1,...,S

(5.1)

qjt,s ∈ R is the joint (or task space coordinate) position during trial s at time instant t.
Considering all the joints (or task space coordinates) together, Q := {q1, ...,qNjoint

}, where
Njoint is the number of the joints (or Degree-of-freedoms (DOFs)) of the manipulator. In
the following, the proposed approach is formulated in joint space, but it can be easily
extended to obtain predictions in task space. The ProMPs framework is exploited to
represent the demonstrated sets of trajectories. The deterministic Movement Primitives
model is described in Eq. 5.2, where ψi are basis functions (usually Gaussians [19])
evaluated at z(t). z is a phase function that allows time modulation. If no modulation is
required, then z(t) = t/f , where f is the sampling frequency of the trajectory. θi ∈ R are
weights.

qj
s =

Nbas∑
i=1

θiψi(z(t)) (5.2)

To pass to a probabilistic framework, a robot trajectory is described with an observation
uncertainty added to the deterministic MPs model, as shown in Eq. 5.3 where ϵqj

s
adds

zero-mean Gaussian observation noise with variance Σqj
s
.

qj
s =

Nbas∑
i=1

θiψi(z(t)) + ϵqj
s

(5.3)
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Figure 5.4: Gaussian basis functions.

For stroke-like movements, normalised Gaussian basis functions are used ψi(t) :=
bi(z(t))∑Nbas

j=1 bj(z(t))

where bi(z(t)) := exp
(
− (z(t)−ci)

2

2h

)
. Some of them are represented in Fig. 5.4.

Eq. 5.3 can also be written in a matrix form (Eq. 5.4).

qj
t,s = ΨT

t Θ
s
j + ϵqjt,s

(5.4)

with: Ψt := (ψ1(z(t), . . . , ψNbas
(z(t)) ∈ RNbas×1,Θs

j := (θ1, . . . , θNbas
) ∈ RNbas×1,

Ω := (Θs
1, . . ., Θs

Njoint
) ∈ RNbasNjoint×1 and Φ := [Ψ1, . . . ,ΨT ]

T ∈ RT×Nbas .

The Probabilistic Movement Primitives (ProMP) [94] model directly follows from this
formulation. From Eq. 5.3, it follows that the likelihood of observing qjt,s is given by

p(qjt,s|Θ) = N
(
qjt,s

∣∣ΨT
t Θ

s
j ,Σqjt,s

)
. Since Σqjt,s

is the same for every time step t and every

trial s (Σqjt,s
= Σqj), the values qjt,s are taken from independent and identical distributions.

Hence, the likelihood of observing a trajectory qj
s is given by Eq. 5.5.

p(qj
s|Θs

j ) :=
T∏
t=1

p(qjt,s|Θs
j ) (5.5)

It can be assumed that the weight parameters are taken from a distribution. The distribu-
tion of qjt,s, which does not depend on Θs

j , but on ρ := (Θmean,j,ΣΘj
), can be estimated.

This is done by marginalising Θs
j out in the distribution as shown in Eq. 5.6 where

Θs
j ∼ p(Θs

j |ρ) = N (Θs
j |Θmean,j,ΣΘj

).

p(qjt,s|ρ) =

∫
N

(
qjt,s

∣∣ΨT
t Θ

s
j , Σqj

)
N

(
Θs

j

∣∣Θmean,j, ΣΘj

)
dΘ

= N
(
qjt,s

∣∣ΨT
t Θ

s
j , Σqj +ΨT

t ΣΘj
Ψt

)
(5.6)
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This means that the trajectory distribution can be represented by its mean and covariance
values (qmean,j,Σqj), which in turn can be derived by the mean and covariance values of
the ProMPs weights (Θmean,j,ΣΘj

), as described in Eq. 5.7.

qmean,j = ΦTΘmean,j,

Σqj = ΦTΣΘj
Φ

(5.7)

The reach-to-pick policy predicted by the trained neural network is determined by the
predicted mean and covariance values of the ProMPs weights. The probabilistic neural
network that maps the visual sensory information of a robot’s workspace to the distri-
bution of robot trajectories expressed in weights space (with Θmean,j and ΣΘj

) is called
Deep Probabilistic Movement Primitives (Deep-ProMP). Deep-ProMP learns the rela-
tion between Θmean,j and ΣΘj

and the input image.

Θmean,j ,ΣΘj
= fj(Ŵj , I

n, σ̂j) (5.8)

Eq. 5.8 shows that Θmean,j , ΣΘj
are equivalent to a nonlinear function, denoted by

fj, of the input image In, the weight parameter Ŵj and the node activation σ̂j. fj is
a non-linear deep model mapping the image In, taken by robot’s camera at a home
position, to the ProMPs weights distributions. The weights distribution generates the
corresponding trajectory distribution as per Eq. (5.7). Predicting Θmean,j , ΣΘj

instead of
qmean,j,Σqj means reducing the dimensionality of the problem. For example, a trajectory
of 150 time steps can be represented with a set of just 8 weights. Every joint (or task
space coordinate) trajectory is considered decoupled from the other joints (or task space
coordinates) trajectories, so the mean vector qmean,j is 150-dimensional and the covariance
matrix Σqj is a 150 by 150 matrix, expressing the correlation of the trajectory at a
certain time instant with the trajectory values at the other time instants. This identical
information can be expressed with the weights mean vector Θmean,j (8-dimensional) and
covariance matrix ΣΘj

(8 by 8) (Fig. 5.5).

ProMPs weights distribution Trajectory distribution

timeweights

Figure 5.5: From ProMPs weights distribution to trajectory distribution. Shaded purple areas
represent ±σ and ±2σ.
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Figure 5.6: Two-fold design of Deep-ProMP.

5.3. Proposed Approach

Different baselines for the Deep-ProMP model architecture have been tested to gradually
improve the accuracy in the prediction of the demonstrated behaviour. All the imple-
mented architectures have in common a twofold design (Fig. 5.6).
They are indeed composed by two parts: (1) part-1 encodes the high-dimensional input
RGB image In in a low-dimensional latent space vector, preserving all the relevant infor-
mation for image reconstruction, using a set of convolutional layers (which constitute the
Encoder) as per Eq. 5.9, where Wenc and σenc are the Encoder weights and activation
functions;

En = Encoder(Wenc, I
n, σenc) (5.9)

(2) part-2 maps the latent embedded vector En to the relative ProMPs weights distribu-
tion (Θ̂j, Σ̂Θj

), using a Multi Layer Perceptron (MLP) as per Eq. 5.10, where Wj and
σj are the MLP weights and activation functions.

Θ̂j, Σ̂Θj
= hj(Wj,E

n, σj) (5.10)

This twofold design of the model has an advantage over a direct mapping of the image to
the trajectories distributions as it yields higher prediction accuracy, as it is demonstrated
in Sec. 6.2.

All the details of the proposed model architectures are shown in Appendix A.

5.3.1. AE-deep-ProMP

The first baseline proposed, called AE-deep-ProMP, makes use of the encoding layers
(Encoder) of an autoencoder (AE) network as part-1 of Deep-ProMP to reduce the
input dimensionality while preserving the important information for image reconstruction.
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Figure 5.7: AE-deep-ProMP architecture and training.

An autoencoder [55] is a neural network composed of two main parts: an Encoder that
maps the input into a lower-dimensional vector, and a Decoder that maps the latent
vector back to a reconstruction of the input. In this case both the Encoder and Decoder
are composed by a sequence of convolutional and dense layers. This means that, at
first, an AE is trained to reconstruct the RGB images captured during the human expert
demonstrations collection, as per Eq. 5.11, where În is the reconstructed image.

En = Encoder(Wenc, I
n, σenc)

În = Decoder(Wdec,E
n, σdec)

(5.11)

The reconstruction loss used to train the autoencoder is the Mean Squared Error (MSE)
expressed in Eq. 5.12.

Loss = E
[
∥In − În∥2

]
(5.12)

Once the AE is trained, the Encoder is able to extract a low-dimensional latent space
representation of the input image, which still contains all the important information for
image reconstruction. Algorithm 5.1 expresses the exact procedure for the AE training.
Part-2 of AE-Deep-ProMP is composed of a sequence of dense layers that map the deter-
ministic latent representation of the input image En, to the ProMPs weights distribution,
as per Eq. (5.10). A single MLP (for every joint or task space coordinate ) is trained to
predict the mean and covariance matrix (Θ̂j, Σ̂Θj

) of the ProMPs weights. This is done
minimizing the loss in Eq. 5.13 which is back-propagated to update the weights of the
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MLPs, while the Encoder weights are kept fixed (Fig. 5.7).

Lj = E
[
∥qmean,j − q̂mean,j∥2 + α∥Σq,j − Σ̂q,j∥2

]
(5.13)

The loss used to train the MLPs is the MSE computed in the trajectory space, and
not in the ProMPs weights space. This means that, after the prediction of (Θ̂j, Σ̂Θj

),
(qmean,j,Σqj) are reconstructed using Eq. 5.7. The parameter α is determined experi-
mentally as a tuning weight for the two components of the loss. The exact procedure to
train the MLPs of AE-deep-ProMP model is expressed in Algorithm 5.2. Summing up,
the training procedure for all deep-ProMP models (including deep-ProMP-AE) is com-
posed of two subsequent and decoupled parts: (tr-1) considers the training of part-1 (the
Encoder) and (tr-2) considers the training of part-2 (the MLPs).

Algorithm 5.1 Autoencoder training (tr-1).
Input: Encoder architecture Encoder , Decoder architecture Decoder , image In,
activation functions σenc and σdec.
Outputs: Encoder weights Wenc, Decoder weights Wdec and reconstructed image În

———————————————————————————————————————

1: RGB Images Dataset :
I = {In}n={1,...,Ntr}

2: Initialise Autoencoder :
En = Encoder(Wenc, I

n, σenc)
În = Decoder(Wdec,E

n, σdec)
3: MSE Loss : Eq. 5.12
4: while (e > ϵ) do
5: for all In in I do
6: Forward Propagation:

En = Encoder(Wenc,j, I
n, σenc,j)

În = Decoder(Wdec,E
n, σdec)

7: MSE Loss:
Lk = E

[
∥In − În∥2

]
8: end for
9: Back Propagation:

Wk+1
enc ← {Wk

enc,
∂Lk

∂Wk
enc
}

Wk+1
dec ← {Wk

dec,
∂Lk

∂Wk
dec
}

10: end while
11: Encoder−Decoder:

En = Encoder(Wenc, I
n, σenc)

În = Decoder(Wdec,E
n, σdec)

12: end
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In (tr-1) the weights of the MLPs are kept fixed, while in (tr-2) the weights of the Encoder
are kept fixed. Algorithm 5.1 expresses (tr-1), while Algorithm 5.2 expresses (tr-2).

Algorithm 5.2 MLP training (tr-2).
Note: This pseudo code is for joint trajectory prediction without conditioning.
Generalising it to the task space and/or with conditioning is straightforward.
Input: MLPs architecture hj, encoder architecture Encoder , ProMP basis functions Φ
image In, training set trajectories qj, activation functions σj and σenc.
Outputs: Encoder and MLP weights Wenc, Wj, mean trajectory q̂mean,j and
covariance matrix Σ̂q,j .
———————————————————————————————————————

1: Probabilistic Dataset :
T = {qj, In}n={1,...,Ntr},j={1,...,Njoints}

2: Trajectories Mean and Covariance Extraction :
{qmean,j , Σqj}j=1...Njoints

3: Encoder -Decoder training for image reconstruction
4: Initialise DeepModel :

En = Encoder(Wenc, I
n, σenc)

Θ̂mean,j, Σ̂Θ̂j
= hj(Wj,E

n, σj)
5: Initialise ProMP :

q̂mean,j = ΦT Θ̂mean,j

Σ̂q,j = ΦT Σ̂Θ̂j
Φ

6: MSE Loss : Eq. 5.13
7: while (e > ϵ) do
8: for all {qmean,j ,Σq,j , I

n} ∈ T do
9: Forward Propagation:

En = Encoder(Wenc,j, I
n, σenc,j)

Θ̂j, Σ̂Θj
= hj(Wj,E

n, σj)
10: Forward ProMP:

q̂mean,j = ΦT Θ̂mean,j

Σ̂qj = ΦT Σ̂Θ̂j
Φ

11: MSE Loss:
Lk,j = E

[
∥qmean,j − q̂mean,j∥2 + α ∗ ∥Σqj − Σ̂qj∥2

]
12: end for
13: Back Propagation: Keep Wenc Fixed & Train Wj with Loss in Eq . ??

Wk+1
j ← {Wk

j ,
∂Lk

∂Wk
j
}

14: end while
15: Deep− ProMP:

q̂mean,j = ΦT Θ̂mean,j

Σ̂qj = ΦT Σ̂Θ̂j
Φ

16: end
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5.3.2. VAE-deep-ProMP

The second baseline proposed is called VAE-deep-ProMP. The architecture is similar
to the previous one, but now the latent representation is stochastic and not deterministic
as per Eq. (5.14). This has been made possible by using a Variational Autoencoder
(VAE) [62] instead of a simple AE.

En ∼ N (µEn ,ΣEn)

µEn ,ΣEn = Encoder(Wenc, I
n, σenc)

(5.14)

Just as a standard autoencoder, a variational autoencoder is an architecture composed
of both an Encoder and a Decoder that is trained to minimise the reconstruction error
between the encoded-decoded data and the initial data (Fig. 5.8).

Reconstructed RGB

Input RGB

Encoder

Decoder

Figure 5.8: Variational autoencoder.
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The Decoder reconstructs the input image after sampling from the latent space distribu-
tion predicted by the Encoder. However, to introduce some regularisation of the latent
space, the encoding-decoding process is slightly modified: instead of encoding an input
as a single vector, it is encoded as a distribution over the latent space.

A regular latent space is continuous and complete, meaning that every point in the la-
tent space is a meaningful representation of data belonging to the input distribution and
vice-versa. The encoded distributions are chosen to be normal so that the Encoder can
be trained to return the mean vector and the covariance matrix that describe these Gaus-
sians. Thus, the loss function that is minimised during the training of a VAE is composed
of a “reconstruction term” (on the final layer), that tends to make the encoding-decoding
scheme as performant as possible, and a “regularisation term” (on the latent layer), that
tends to regularise the organisation of the latent space by making the distributions re-
turned by the encoder close to a standard normal distribution. That regularisation term
is expressed as the Kulback-Leibler divergence between the returned distribution and a
standard Gaussian. This leads to the expression of the loss used to train the VAE in Eq.
5.15.

L = E
[
∥In − În∥2 +KL (N (µEn ,ΣEn),N (1, 0))

]
(5.15)

In Fig. 5.9 four input RGB and relative VAE reconstructed images are shown. The latent
space representation is a 256-d vector, which is much smaller than the original (128 x 128
x 3) image.

Figure 5.9: Variational autoencoder reconstructed images.
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In Algorithm 5.3 the complete procedure to train the VAE is shown.

Part-2 of VAE-deep-ProMP is the same as part-2 of AE-deep-ProMP, and it is trained in
the same way; after (tr-1) has been performed to train Encoder part of the VAE, (tr-2)
is carried out using the same loss in Eq. 5.13.

Algorithm 5.3 Variational Autoencoder training.
Input: Encoder architecture Encoder , Decoder architecture Decoder , image In,
activation functions σenc and σdec.
Outputs: Encoder weights Wenc, Decoder weights Wdec and reconstructed image În

———————————————————————————————————————

1: RGB Images Dataset :
I = {In}n={1,...,Ntr}

2: Initialise Autoencoder :
µEn ,ΣEn = Encoder(Wenc, I

n, σenc)
În = Decoder(Wdec,E

n, σdec)
3: MSE Loss : + KL Loss : Eq. 5.15
4: while (e > ϵ) do
5: for all In in I do
6: Forward Propagation:

µEn ,ΣEn = Encoder(Wenc, I
n, σenc)

En ∼ N (µEn ,ΣEn)
În = Decoder(Wdec,E

n, σdec)
7: MSE Loss + KL Loss:

Lk = E
[
∥In − În∥2 +KL (N (µEn ,ΣEn),N (1, 0))

]
8: end for
9: Back Propagation:

Wk+1
enc ← {Wk

enc,
∂Lk

∂Wk
enc
}

Wk+1
dec ← {Wk

dec,
∂Lk

∂Wk
dec
}

10: end while
11: Encoder−Decoder:

µEn ,ΣEn = Encoder(Wenc, I
n, σenc)

În = Decoder(Wdec,E
n, σdec)

12: end
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5.3.3. cVAE-deep-ProMP

The third proposed model is called cVAE-deep-ProMP. It is very similar to VAE-deep-
ProMP since it makes use of the encoding part of a trained VAE as part-1, but it also
exploits the information of a conditional variable c, concatenated with the latent vector,
to predict the ProMPs weight distributions in part-2, as per Eq. (5.16).

Θ̂j, Σ̂Θj
= hj(Wj,E

n, σj, c) (5.16)

c helps the consequent MLP networks to tailor their behaviour according to some impor-
tant information. In the case considered the information of the pixel coordinate of the
center of the bounding box around the target berry has been considered as a conditional
variable. The architecture is shown in Fig. 5.10.

Variational 

Autoencoder

multi-MLP Forward ProMPs







ProMPs weights 

distribution

  

Input RGB

Reconstructed RGB

Ground-truth 

trajectories

 distribution

Predicted 

trajectories 
distribution

 

X

Y

Figure 5.10: c-VAE-deep-ProMP architecture and training.

5.4. Domain-specific latent space learning

As described in the previous sub-sections, AE-deep-ProMP, VAE-deep-ProMP and cVAE-
deep-ProMP have two ordered training stages: (tr-1) unsupervised training of part-1,
so of AE or VAE (using image reconstruction loss and eventually KL loss), and (tr-2),
supervised training of part-2 (using MSE error as per eq 5.13).
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Tr-1 is done at first to train the encoder part; then, tr-2 is performed to train the MLPs.
Hence, tr-1 and tr-2 are completely decoupled.

As such, the latent space is defined to maintain the information necessary for reconstruct-
ing the input RGB image, independently from the demonstrated trajectories distributions.

It can be argued that, while this non-domain-specific training tr-1 is useful for computer
vision, it is not relevant for robotic tasks. Hence, it has been proposed to continue the
training of the weights of Encoder using the loss in Eq. 5.17, while the MLP weights are
kept fixed (Fig. 5.11).

e = E
[
∥qmean,j(tend)− q̂mean,j(tend)∥2 + α ∗ ∥Σqj(tend)− Σ̂qj(tend)∥2

]
(5.17)

This is called domain-specific latent space Deep-ProMP (l-Deep-ProMP) and has
been performed for all the three proposed architectures (AE/VAE/cVAE-deep-ProMP).
In this way, there is a direct mapping of the latent space to the information useful both
for image reconstruction and for trajectory prediction.

The domain-specific latent space learning Deep-ProMP is explained in detail in Algorithm
5.4.
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Figure 5.11: Latent space learning. In gray the non-trained parts of the model.
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Algorithm 5.4 Domain-specific latent vector training Deep-ProMP.
Note: This pseudo code is for joint trajectory prediction. Generalising it to the task
space is straightforward.
Input: MLPs architecture hj, encoder architecture Encoder , ProMP basis functions Φ
image In, training set trajectories qj, activation functions σj and σenc.
Outputs: Encoder and MLP weights Wenc, Wj, mean trajectory q̂mean,j and
covariance matrix Σ̂qj .
———————————————————————————————————————

1: Probabilistic Dataset :
T = {qj, In}n={1,...,Ntr},j={1,...,Njoints}

2: Trajectories Mean and Covariance Extraction :
{qmean,j , Σq,j}j=1...Njoints

3: Encoder -Decoder training for image reconstruction
4: Initialise DeepModel :

En = Encoder(Wenc, I
n, σenc)

Θ̂mean,j, Σ̂Θ̂j
= hj(Wj,E

n, σj)
5: Initialise ProMP :

q̂mean,j = ΦT Θ̂mean,j

Σ̂qj = ΦT Σ̂Θ̂j
Φ

6: MSE Loss : Eq. 5.17
7: while (e > ϵ) do
8: for all {qmean,j ,Σqj , I

n} ∈ T do
9: Forward Propagation:

En = Encoder(Wenc,j, I
n, σenc,j)

Θ̂j, Σ̂Θj
= hj(Wj,E

n, σj)
10: Forward ProMP:

q̂mean,j = ΦT Θ̂mean,j

Σ̂q,j = ΦT Σ̂Θ̂j
Φ

11: MSE Loss:
Lk = E

[
∥qmean,j(tend)− q̂mean,j(tend)∥2 + α ∗ ∥Σqj(tend)− Σ̂qj(tend)∥2

]
12: end for
13: Back Propagation: Keep Wj Fixed & Train Wenc with Loss in Eq . 5.17

Wk+1
enc ← {Wk

enc,
∂Lk

∂Wk
enc
}

14: end while
15: Deep− ProMP:

q̂mean,j = ΦT Θ̂mean,j

Σ̂qj = ΦT Σ̂Θ̂j
Φ

16: end
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results

This chapter deals with the experimental results obtained implementing the proposed
deep-ProMP architectures shown in Ch. 5 both in a simulated environment and with a
real robotic arm.

In particular Sec. 6.1 is about the qualitative testing of the approach obtained with
PyBullet, the open-source Python binding for the Bullet physics engine. A realistic envi-
ronment with a 7-DoF robotic arm and a cluster of strawberries have been recreated and
used to implement the approach from the demonstrations to the autonomous execution
of the reach-to-pick task through the deep-ProMP models predictions.

In Sec. 6.2 the results obtained considering a series of real-robot tasks of picking straw-
berries with a mock setup in the laboratory of the University of Lincoln [1] are shown.
In particular different types of analysis have been carried out. The performances of deep-
ProMP-AE, deep-ProMP-VAE, and deep-ProMP-cVAE are compared before and after
the domain-specific training. Furthermore, a comparison between predictions made in
task and joint space is shown. Finally, a study on the latent space clustering level is
reported.

6.1. Testing in simulation with PyBullet

The proposed approach has been first tested in a simulated environment and then applied
to move a real robotic arm. The Bullet physics engine has been chosen for this purpose.
Bullet is a free and open-source physics engine that simulates collision detection as well as
soft and rigid body dynamics. In particular, the PyBullet Python binding for Bullet has
been exploited. The robotic arm used in the real setup is a 7-DoF Panda manufactured
by Franka Emika with a custom gripper specifically designed for strawberry picking and
developed at the University of Lincoln [1], called UPH. The robotic arm with the UPH is
shown in simulation in Fig. 6.1. The UPH has two separation fingers to manipulate leaves
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Figure 6.1: Robotic panda arm + UPH in PyBullet.

and branches during strawberry harvesting, and beneath them, there are two grasping
fingers and a cutting blade. The objective of the reach-to-pick task is to arrive on top of
the target berry with the two separation fingers open, as shown in Fig. 6.3.

The robotic arm is placed on a table, and a support for a cluster of strawberries is also
recreated and placed in front of the robot. In Fig. 6.2 the simulated cluster of strawberries
is shown. It has been designed so that there’s always only a ripe strawberry, that is the
one that the gripper of the UPH should reach, among multiple unripe strawberries and
leaves in random number.

Once the simulated environment has been created, the demonstrations have been col-
lected. Namely, for 25 different cluster configurations, the reach-to-pick trajectory has
been performed and recorded. In particular, the joint trajectories, while reaching the

Figure 6.2: Simulated strawberries cluster in PyBullet.
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Figure 6.3: Reach-to-pick task in PyBullet. Home position and final position.

different target berries, have been captured. For every single configuration of the cluster,
so for every different position of the target berry, the motion to reach the top of the berry
with the UPH fingers open has been performed 10 times to extract the variability of the
behaviour. This has been made possible since in simulation the position of the target
berry is known and can be imposed as the final position of the end effector, computing
the inverse kinematics to solve for the joints trajectories (Fig. 6.3). In Fig. 6.3 and 6.4
only the robotic arm (first in home position and then in target final position), the target
berry and an unripe berry are rendered for clarity. In particular IKFast [129] has been
used to solve the inverse kinematics. It is a powerful inverse kinematics solver provided
within Rosen Diankov’s OpenRAVE motion planning software. IKFast can analytically
solve the kinematics equations of any complex kinematics chain, and generate language-
specific files (like C++) for later use. The result is extremely stable solutions that can run
as fast as 5 microseconds on recent CPUs. The variability in the trajectory execution has
been obtained imposing different via-points and a different orientation of the end effector
at the final position as shown in Fig. 6.4. Together with the recorded joint trajectories
also the RGB images of the cluster from the camera on top of the UPH are collected (Fig.
6.2) to train the AE-deep-ProMP, VAE-deep-ProMP, and cVAE-deep-ProMP models to
map the pixel values to the desired trajectories distributions. The simulated camera has
been set up with the intrinsic and extrinsic parameters of an Intel RealSense D435i RGB-
D camera since this is the model used in the real setting. At this stage, the testing of
all the proposed architectures has been performed only in a qualitative way. Namely, it
has only been verified that such approaches could be valid for the execution of a task of
this type. After the training stages, the models were successfully able to predict the joint
trajectories distributions suitable for reaching the target berry.
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Figure 6.4: Reach-to-pick with final different orientations.

Since in this simplified setting, there is always only one ripe berry, clearly visible in the
RGB images, no post-processing of the image has been performed before feeding it to the
deep-ProMP models (the target berry detection and marking with the Detectron-2 [133]
based model described in Ch. 3 is not needed).

In the experimental setup described in Sec. 6.2, instead, since multiple ripe berries are
present in the RGB images, the targeted one has been detected and masked by its bound-
ing box, before feeding the deep-ProMP models.

The simulation of the approach in PyBullet was successful to validate the idea and pro-
ceeding with the real setup since the models were able to predict valid trajectories distri-
butions. No comparison among the models has been performed at this stage since it has
been directly done during the experimentation with the real robotic arm.

6.2. Experimental results and discussion

To validate the proposed approach, a series of real-robot tasks of picking strawberries
with a mock setup has been performed in the laboratory of the University of Lincoln
[1]. In Sec. 6.2.1 the experimental setup is described as well as the process of human
demonstrations collection. In Sec. 6.2.2 the implementation details are reported and
finally, in Sec. 6.2.3 the quantitative results are shown to have a fair comparison among
the proposed approaches.
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6.2.1. Experimental set up and human demonstrations acquisi-

tion

The experimental setup consists of a 7-DoF Panda robotic arm manufactured by Franka
Emika with a custom gripper (UPH) specifically designed for strawberry picking by the
University of Lincoln (Fig. 6.5a). An Intel RealSense D435i RGB-D camera is mounted
on the top of the gripper. The images are captured with VGA resolution (640,480). A
mock set up with plastic strawberries to test the methods during the off-harvesting season
has been created and it is shown in Fig. 6.6. It includes ripe and unripe strawberries
together with leaves.

A dataset of 250 samples has been acquired, where each sample includes an RGB image of
the scene and the robot joints trajectories, starting from a home configuration as shown
in Fig. 6.5.

After taking an image, the robot is manually moved to reach the targeted berry in kines-
thetic teaching mode (Fig. 6.7). The target berry in the input RGB image is masked with
a white bounding box using the trained segmentation model based on Detectron-2 [133]
and explained in Ch. 3. The movement is repeated 10 times for a single targeted straw-
berry to capture the demonstration variations and stochastic nature. Both the joint space
and task space trajectories have been recorded. 5 different strawberry plant configurations
have been created, each including 5 different target ripe berries.

(a) (b)

Figure 6.5: Panda robotic hand in home position.
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Figure 6.6: Cluster of fake strawberries.

6.2.2. Implementation details

All the models have been trained and tested both for task and joint space predictions.
Predicting in joint space means predicting the distributions of the 7 joints trajectories for
the reach-to-pick task, while predicting in task space means predicting the end-effector
position (x, y, z coordinates) and orientation (the four components of a quaternion)
trajectories.

Working in task space is more general since the predictions are not bound to the very
model of the robot; given a trajectory in task space, the relative trajectories of the joints
can always be computed using the inverse kinematics of the specific robot. The trajectories
have been represented with 8 ProMPs weights, since, as it can be seen from Fig. 6.8,
this allows to have a negligible MSE between the original and ProMPs reconstructed
trajectories.

Deep-ProMP-AE embeds the input image with the trained Encoder of AE. Deep-ProMP-

Figure 6.7: Human expert demonstrations.
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Figure 6.8: MSE vs #ProMP weights. Increasing the number of weights increases the accuracy
in trajectory reproduction.

VAE utilises the trained Encoder of a VAE. Deep-ProMP-cVAE is conditioned by con-
catenating the normalized pixel coordinate of the target berry bounding box center, with
the latent vector. The latent space representations are 256-dimensional vectors. For all
the models, (tr-1) has been performed training for 250 epochs the AE or VAE to recon-
struct the input images as described in Sec. 5.3. Then (tr-2) is performed using the loss
in Eq. 5.13 to train the MLPs for 3000 epochs. In Fig. 6.9 the trend of the loss when
training the MLP relative to a specific joint prediction is shown. It can be noticed that,
at the final epochs, the loss becomes asymptotically horizontal, meaning that the learning

Figure 6.9: MLP training loss in logaritmic scale.
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phase is finished. The prediction of the covariance matrix ΣΘj
is done exploiting the

LDL decomposition for square positive definite matrices, as per Eq. 6.1. L is a lower
triangular square matrix with unity diagonal elements, D is a diagonal matrix, and L∗ is
the complex conjugate transpose of L.

ΣΘj
= LDL∗ (6.1)

This means that instead of predicting the 56 components of ΣΘj
, it is suffcient to predict

the diagonal values of D (8) plus the non-zero values of L ((82 − 8)/2 = 28).

Moreover, the domain-specific latent space learning of these three models (l-Deep-ProMP-
AE, l-Deep-ProMP-VAE, l-Deep-ProMP-cVAE) has been implemented. The latent space
tuning loss used to train for 250 epochs more the encoder weights, is the prediction
error at the last time instant, as per Eq. 5.17. This allows the tuning of the encoder
weights according to specific task requirements. All the models have been implemented
on Ubuntu 16 using TensorFlow 2.5. The learning rate has always been set to 0.0001 in all
the training stages and the Adam optimizer has been used. In Fig. 6.10 the cVAE-deep-
ProMP predictions on a test case (never seen during training) are shown. The ground
truth and predicted joints trajectory distributions are respectively drawn in blue and red.

Figure 6.10: cVAE-deep-ProMP predictions in joint space.
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6.2.3. Results

Three types of analysis have been carried out and the corresponding results are shown in
Table 6.1, 6.2. and 6.3 and Fig. 6.12.

For the first experiment, the prediction performances of the 7 joint trajectories distribu-
tions with Deep-ProMP-AE, Deep-ProMP-VAE, and Deep-ProMP-cVAE are considered.
Moreover, a model that maps directly the input image to the trajectories distributions
with a series of convolutional and dense layers (Deep-ProMP-Direct) has been trained
and tested.

Deep-ProMP-Direct has been used as a benchmark to demonstrate that the twofold design
proposed (Encoder + MLPs) performs better than the direct mapping. The performances
have been evaluated on a test set never seen in training or validation stages. The evalua-
tion metric is the same as the loss used for the MLPs training, as shown in Eq. 5.13.

Table 6.1 shows that the prediction error is improving going from Deep-ProMP-Direct to
Deep-ProMP-AE, Deep-ProMP-VAE, and finally to Deep-ProMP-cVAE. Hence, Deep-
ProMP-cVAE is outperforming all other models. The same observation can be
done for the case of predictions made in task space as shown in Table. 6.2.

Another experimentation has been conducted on the same test set to compare the model
performances between task and joint space predictions.

The evaluation metric in Eq. 6.2 is used. It considers the error at the final point (when
the target berry has to be reached) between the predicted and ground truth end-effector
position and orientation. The error on position is simply the Euclidean distance between
the predicted and ground-truth final points in the space.

Table 6.1: Joint space predictions.
deep-ProMp-cVAE is the most accurate model.

Joint deep-ProMP deep-ProMP deep-ProMP
-AE -VAE drop -cVAE drop

J1 5.4× 10−4 1.30× 10−4 -74% 1.00× 10−4 -28%
J2 48.9× 10−4 14.4× 10−4 -70% 9.00× 10−4 -38%
J3 93.0× 10−4 9.60× 10−4 -89% 5.90× 10−4 -38%
J4 37.1× 10−4 19.3× 10−4 -47% 5.90× 10−4 -71%
J5 24.2× 10−4 23.5× 10−4 -2.7% 20.1× 10−4 -13%
J6 29.0× 10−4 15.4× 10−4 -48% 15.4× 10−4 -0%
J7 21.4× 10−4 5.40× 10−4 -75% 5.40× 10−4 -0%
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Table 6.2: Task space predictions.
deep-ProMp-cVAE is the most accurate model.

Task deep-ProMP deep-ProMP deep-ProMP
-AE -VAE drop -cVAE drop

X 1.40× 10−4 1.40× 10−4 -0% 1.40× 10−4 -0%
Y 15.31× 10−4 7.05× 10−4 -53% 0.88× 10−4 -88%
Z 0.92× 10−4 0.12× 10−4 -88% 0.12× 10−4 -0%

Q1 1.53× 10−4 0.57× 10−4 -68% 0.57× 10−4 -0%
Q2 24.2× 10−4 4.10× 10−4 -83% 1.56× 10−4 -75%
Q3 1.15× 10−4 0.37× 10−4 -80% 0.21× 10−4 -43%
Q4 0.78× 10−4 0.36× 10−4 -68% 0.33× 10−4 -8%

The error on orientation is defined as the minimum among the sum and the difference
of the predicted and ground truth quaternions, since, according to [58], it is a parameter
proportional to the distance between the two expressed orientations. A big value for this
parameter means a big difference between the predicted and ground truth orientations,
while a small value means a good prediction of the end effector orientation at the final
point.

eposition =
√
(x− x̂)2 + (y − ŷ)2 + (z − ẑ)2

eorientation = min[∥q − q̂∥, ∥q + q̂∥]
(6.2)

In Eq. 6.2, (x, y, z) and (x̂, ŷ, ẑ), and q and q̂ represent the ground truth and predicted
position and orientation (quaternions) at the final time step of the end effector, respec-
tively. The trajectories that have been evaluated are the predicted mean trajectory and
the one at a distance of 2σ from the mean. Table 6.3 illustrates that task space predic-
tions produce much more accurate performances at the final point. Moreover,
the most accurate model is the Deep-ProMP-cVAE.

The third set of experiments has been performed implementing the models on the real
robot instead of using a previously recorded dataset and testing the models’ performances.
5 new (different) strawberry plant configurations are built, each including again 5 different
target berries. This helps to demonstrate the generalisation ability of the models in
predicting the reaching movement in unseen real-robot settings. The final position of the
target strawberry has been used as a reference to evaluate the prediction performances.
To capture this information the robot has been moved at first (kinesthetic teaching mode)

to the desired final pose necessary for picking a target berry and the (x, y, z) position
has been recorded. Deep-ProMP-AE, Deep-ProMP-VAE, Deep-ProMP-cVAE have been
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Table 6.3: Joint Space vs Task Space prediction accuracy at the final point. Task space
predictions are more accurate.

Deep-ProMP
-Direct

Deep-ProMP
-AE

Deep-ProMP
-VAE

Deep-ProMP
-cVAE

JOINT
mean pos 0.15 0.10 0.06 0.04

ori 0.10 0.06 0.03 0.02

2σ pos 0.31 0.32 0.19 0.18
ori 0.41 0.41 0.31 0.28

TASK
mean pos 0.08 0.04 0.03 0.02

ori 0.06 0.04 0.03 0.02

2σ pos 0.10 0.09 0.07 0.06
ori 0.10 0.07 0.06 0.06

tested before and after the domain-specific latent space training. The predicted mean
trajectory together with the trajectory at 2σ and at −2σ from the mean have been
evaluated.

Eq.6.2 has been used as the metric to evaluate the position error at the final reaching

(a) Input RGB (b) Panda arm in Home position

(c) Deep-ProMP-AE (d) Deep-ProMP-cVAE-l

Figure 6.11: Test on real robot.
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point.

In Fig. 6.11 the images of one test on the real robot are shown. In Fig. 6.11a the input
RGB image before and after the marking with the white bounding box is shown. In
Fig. 6.11b the robotic arm in Home position is captured while in Fig. 6.11c and Fig.
6.11d the robotic arm is captured at the final time instant when the predictions are made
respectively with Deep-ProMP-AE and l-Deep-ProMP-cVAE (the mean trajectory was
sampled from the predicted distributions).

Fig. 6.12 shows that the model performances increase after the domain-specific
training. Furthermore, the most accurate model is l-Deep-ProMP-cVAE. The mean
predicted trajectory performance is always better than the trajectories sampled at some
σ from the mean.

The probabilistic framework can be exploited to perform the task in different ways sam-
pling from the predictions of Deep-ProMP. For example, if the predictions are made in
task space and some variability in the orientation of the end effector at the final point is
desired, it can be simply achieved by sampling different trajectories from the predicted
quaternion distribution (Fig. 6.13).

Figure 6.12: Experimental results before and after latent space tuning.
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Figure 6.13: Reach-to-pick with different orientations.

The last type of analysis carried out is specific on the latent space morphology. The
clustering level of the latent space before and after the domain-specific training
has been explored. Fig. 6.14 visualises the 2-D representation of latent spaces of AE
or VAE representing the input images (with a 256-d latent vector) before and after the
domain-specific training. The T-distributed Stochastic Neighbour Embedding [17] has
been used to reduce the dimensionality of the latent vectors from 256 to 2 to visualise
latent spaces. It is a statistical method for visualizing high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. Specifically, it models each
high-dimensional object by a two- or three-dimensional point in such a way that similar
objects are modeled by nearby points and dissimilar objects are modeled by distant points
with high probability. The t-SNE algorithm comprises two main stages. First, t-SNE
constructs a probability distribution over pairs of high-dimensional objects in such a way
that similar objects are assigned a higher probability while dissimilar points are assigned
a lower probability. Second, t-SNE defines a similar probability distribution over the
points in the low-dimensional map, and it minimizes the Kullback–Leibler divergence
(KL divergence) between the two distributions with respect to the locations of the points
in the map. Every point the representation in Fig. 6.14 represents an image taken from
the dataset of 250 RGB images used for models training and testing.

Figure 6.14: Latent space visualisation/representation through T-SNE embedding before and
after domain specific tuning. After tuning, the clustering in the embedding space increases in
both AE and VAE.
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Table 6.4: Cluster separability of latent space representation through T-SNE using Davies-
Bouldin Index [28] before and after latent space tuning with. A lower score indicates better
clustering.

Davies-Bouldin score

AE base 0.616
latent space tuned 0.482

VAE base 0.424
latent space tuned 0.352

Table 6.4 also shows the Davies-Bouldin [28] score used to evaluate the clustering level of
the latent space with a numeric index. The score indicates the average similarity measure
of each cluster with its most similar cluster, where similarity is the ratio of within-cluster
distances to between-cluster distances. Thus, the lower the scores, the higher the level of
clustering. This means that the clustering level increases from AE to the VAE.
Moreover, the domain-specific latent space learning further increases clustering
level.

A more clustered latent space is index of better representation of the input data in the
embedding space. The regularity that is expected from the latent space can be expressed
through two main properties: continuity (two close points in the latent space should
not give two completely different contents once decoded) and completeness (for a chosen
distribution, a point sampled from the latent space should give “meaningful” content
once decoded). A more clustered latent space is more continuous and complete, meaning
that the latent space has no points or regions which have no meaning, but it completely
represents the distribution of the input data.
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developments

This chapter summaries the major achievements of the research and suggests its further
possible developments.

The worldwide demand for agricultural products is rapidly increasing due to the constantly
growing population. However, rural human labor shortage due to different factors is
becoming a limiting factor for agricultural production. Moreover, the recent Covid-19
pandemic has shown how possible travel restrictions can limit the affluence of seasonal
farmworkers to the countries which rely on human power to pick rapidly ripening fruits
and vegetables during harvesting season. All these aspects underline that the agricultural
chain is strongly dependent on human labor, which turns out to be very risky in the
current era.

Automation of agricultural activities can be an important solution to tackle these chal-
lenges and, as such, in the last few years private and public sectors have invested across the
globe to develop and commercialise robotic fruit and vegetables harvesting technologies.
Strawberry production is heavily reliant on human labor and despite several attempts to
develop a robotic solution for harvesting strawberries and many other crops, a fully viable
commercial system has yet to be established [122].

This thesis provides a solution for some main problems that need to be solved to develop a
successful robotic technology for selective harvesting of strawberries, which are: ready-to-
be-picked strawberries detection, key-points perception for picking and grasping actions,
strawberries’ weight estimation before picking, and path planning from visual information
to reach the target fruit with the robotic hand.

The first two problems have been addressed with Detectron-2 [133], a next-generation
open-source object detection system from Facebook AI Research based on Mask Region
Convolutional Neural Network (Mask R-CNN) [52]. In particular, it has been trained
to segment berries, classify them as ripe or unripe and detect the key-points
necessary for picking and grasping action (Ch. 3). Moreover, two new datasets
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useful for selective harvesting of strawberries (which include the strawberries RGB-D
images under farm conditions from different perspectives, together with the annotations
of key-points, instance segmentation, dimensions, and weights) have been presented and
published. The results of the experiments show the effectiveness of the proposed approach
and datasets to localize strawberries and key-points for selective harvesting regardless of
the chaotic configurations which cause obstructions to ripe and harvest-ready strawberries
.

Strawberry weight estimation of the fruits while on plant can help sort the fruits in the
correct punnet right after picking. It has been achieved by implementing a Random Forest
Model [20] with Decision Trees [70, 92] which takes as input a vector including features
extracted from RGB and depth data of the berries whose weight has to be estimated (Ch.
4). This approach outperforms many state-of-the-art methods such as last generation
EfficientNets or point cloud and graph-based neural networks.

Finally, a novel probabilistic framework, called deep Probabilistic Movement Prim-
itives (deep-ProMP), which maps the visual information of a robot workspace into
the corresponding robot trajectories according to a set of human expert demonstrations,
has been presented. The aim here is to correctly predict a distribution of trajectories
effective in reaching the target ripe fruit using as input only the RGB information of
the surrounding environment. A few model architectures have been presented, namely,
Deep-ProMP-AE, Deep-ProMP-VAE, and Deep-ProMP-cVAE which all have a two-fold
design: from the input image to latent representation and from latent representation to
the desired trajectory. This architecture design has been compared against the direct
mapping from RGB image to the trajectory space, (represented by Deep-ProMP-Direct)
to show its superiority. The probabilistic nature of Deep-ProMP can be exploited in a
series of real robot tests to reach the target point with different orientations. To further
improve the performance of Deep-ProMP, a novel domain-specific latent space training
has been proposed. This allows learning latent space representations of the input images
in a way that is relevant both for computer vision and the specific robotic task. The
results suggest that the deep-ProMP conditioning with a relevant feature (in this case
the center of the bounding box of the target berry in pixel space) and domain-specific
training of the latent space yields the best performances. Indeed, l-Deep-ProMP-cVAE
outperforms other models with a relatively low error value suitable for real robot tasks.

Future works for sure include the testing of the approach in the real field. Moreover,
the probabilistic framework can be exploited to sample from the deep-ProMP predicted
distribution to optimise secondary objectives, e.g. avoid collisions at the reach point,
eventually in a Reinforcement Learning setting.
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A.1. Networks Architectures

In the next figures, the details per each model implemented in Ch. 5 are summarized.

Namely, both the Encoder and Decoder architectures for the Autoencoder (AE) and
Variational Autoencoder (VAE) models are shown in A.1.1 and A.1.2 respectively.

In A.1.3 the architecture of the Multi-Layer Perceptrons (MLP) with and without condi-
tioning is presented.
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A.1.1. Autoencoder (AE)

Figure A.1: AE-Encoder architecture.
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Figure A.2: AE-Decoder architecture.
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A.1.2. Variational Autoencoder (VAE)

Figure A.3: VAE-Encoder architecture.
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Figure A.4: VAE-Decoder architecture.
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A.1.3. Multi-Layer Perceptron (MLP)

Figure A.5: MLP for singe joint or task space coordinate trajectory prediction without condi-
tioning.
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Figure A.6: MLP for singe joint or task space coordinate trajectory prediction with conditioning.
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