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1. Introduction
We built and tested a fluorescence microscope
that combines Light Sheet Fluorescence Mi-
croscopy with Compressed Sensing for the 4D
imaging of live biological samples. Our aim was
to achieve temporal resolutions in the order of
20ms using common and relatively inexpensive
optical components.

1.1. Fast sampling of volumes
Fluorescence Microscopy is extensively used in
experimental biology because of its high sensi-
tivity and specificity. Moreover, it allows to im-
age live samples that range from single molecules
to whole organisms. Standard microscopy tech-
niques (like confocal microscopy) do not offer
sufficient temporal resolution to study physio-
logical processes that evolve on the millisecond
time scale.
Selective Plane Illumination Microscopy
(SPIM), also known as Light Sheet Fluorescence
Microscopy (LSFM), is widely employed to
record 4D images (i.e., volumes throughout
time): it offers low photobleaching and high
temporal resolution by simultaneously exposing
and imaging all the points lying on a plane.
The temporal resolution of conventional SPIM

setups is limited by the need to mechanically
translate either the sample or the detection ob-
jective. Fahrbach et al. [1] solved these problems
using tunable optic elements to move the de-
tection focus plane on the scanning illumination
sheet. Their microscope had no moving parts
and allowed to image 17 planes at 510 frames
per second, which corresponded to 30 volume
scans per second.
Recently, systems with increasing complexity
and costs have achieved high temporal resolu-
tions. For example, the combination of Swept
confocally-aligned planar excitation (SCAPE)
microscopy with a cooled image intensifier cam-
era (which reached 12719 frames per second for
a 640 ˆ 148 pixel active sensor) achieved acqui-
sition speeds beyond 100 volumes/s [2].

1.2. Compressed Sensing
Compressed sensing allows to increase the tem-
poral resolution of 4D scans. Its efficiency in
gathering information allows one to reduce the
number of measurements needed to collect the
most relevant features of an unknown sample [3].
To sample an unknown vector x of dimension
N , we can use a measurement matrix Φ (with
M rows and N columns) that translates its in-
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formation into quantities y that we can easily
record and analyse: y “ Φ ¨ x. To find y we
need to perform M different measurements as
each value ym “ φm ¨x is the projection of x on
φm, the m-th row of Φ.
With compressed sensing we aim to perform a
smaller number of measurements than normally
necessary, that is, M is smaller than N and we
face an ill posed problem. We can look for x by
solving the following Least square problem:

argmin
x

´∥∥y ´ Φ ¨ x
∥∥2
l2

` τRpxq

¯

. (1)

In the last equation, τRpxq is a “regularization”
or “penalty” function that we add to promote
certain features in the solution. In this way,
x will minimize both the loss function and the
penalty function with a relative priority given
by the parameter τ .
The choice of the measurement matrix Φ is cru-
cial for a good reconstruction of compressed
data: we want to create redundancy in each
measurement so that we can skip some of them
and still uniformly sample the whole x space.
This constraint immediately makes orthogonal
basis unsuitable for compressed sensing as re-
moving a base element leaves a degree of free-
dom of x completely unmeasured.

1.3. Compressed sensing light sheet
To introduce compressive sensing in fluorescence
microscopy, we needed to formalize the fluores-
cent emission from a given point in the sam-
ple. Fluorescence intensity is the product be-
tween the illumination intensity and the concen-
tration of fluorophores. Let xpi,jq P RN be the
unknown fluorescence distribution along the Z-
direction for a given pi, jq point in the XY plane.
Moreover, let φm P RN be the z-modulated il-
lumination light pattern that we project during
the acquisition of the m-th camera frame.
Each pixel of a CMOS camera integrates all the
fluorescent emission generated within the Point
Spread Function (PSF) of the detection objec-
tive. We worked under the hypothesis that the
PSF of our system was confined in the plane
parallel to the camera sensor (XY) and elon-
gated along the axial direction (Z). We wanted
a detection objective with a depth of field long
enough to cover the Z-dimension of our volume
of interest.

Under these hypothesis, the intensity ypi,jq,m P R
recorded by the pi, jq camera pixel is given by:
ypi,jq,m “ φm ¨ xpi,jq, where the scalar prod-
uct formally performs the integration along the
Z-axis. If we perform M measurements, m P

t1, ...,Mu, then the raw data set y is the result of
the following matrix product: ypi,jq “ Φ ¨ xpi,jq.
As each one of the N Z-planes can be illuminated
or left dark, the entries of φm encode these two
states with values 1 and 0 respectively.
SPIM is not compatible with compressed sensing
because its measurement matrix is the identity
matrix (i.e., an orthogonal base). We therefore
needed to shape the illumination in a more com-
plex and rich way to be able to take advantage
of compressive sensing. While SPIM illuminates
one plane at a time, we worked on the volume
as a whole, moving to what is called Selective
Volume Illumination Microscopy (SVIM).
Calisesi et al. [4] designed a Spatially Modu-
lated Selective Volume Illumination Microscope
(smSVIM) that used the modified light sheet
setup to implement compressed sensing for the
acquisition of a single volume.
The objective of this thesis was to build a vari-
ation of this smSVIM microscope and achieve
compressive sensing of a time series of volumes.
In particular, we wanted to extend the hypoth-
esis of sample regularity to the time dimen-
sion and reconstruct each volume taking into ac-
count information coming from neighboring time
points.

2. Materials and methods
2.1. Optical setup
To shape the illumination of our volume of
interest we used Digital Micromirror Devices
(DMDs). They are efficient and inexpensive
Spatial Light Modulators (SLMs). DMDs fea-
ture an array of micrometric mirrors that can be
individually tilted to a ˘12˝ positions. As a re-
sult, light shining on the DMD can be deflected
by each mirror along two different paths. On
one of these paths we placed the sample so that
by tilting each mirror we could decide whether
to shine light on the sample or divert it away. In
this way, the DMD applied a binary amplitude
modulation mask to the illumination beam.
We used two telescopes to conjugate the DMD
and samples planes; in this way, we could deliver
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Component Specification

CW laser 473 nm, 40mW
MM fiber 200µm core diameter

L1 f1 = 30mm
Cyl. lens fCL = 300mm (y axis)

DMD Texas Instruments
DLP6500, 7.56µmˆ7.56µm
mirrors

L2 f2 = 150mm
L3 f3 = 75mm

TL1 fTL1 = 180mm
Ill. obj. fI.O. = 40mm, NA = 0.14

Det. obj. Nikon 20ˆ, NA = 0.45
Det. filter FELH 500 nm

TL2 Nikon, fTL2 = 200mm
Camera Hamamatsu ORCA-

Flash4.0 V2, 6.5 µmˆ6.5µm
pixels, 100 fps for
2048ˆ2048 px active sensor

Figure 1: smSVIM microscope configuration. This scheme shows the complete setup of the
microscope. The main specifications of each part are reported in Table on the right. In the bottom left
portion of this figure we see an example of how DMD patterns must be designed to create modulated
illumination along the z-axis (as the four lines are parallel to the Y-axis).

to the sample the pattern created by the bright
and dark pixels of the DMD (Fig. 1). With a
calibration glass we experimentally determined
that the detection magnification was 19.2 (with
a nominal 20ˆ detection objective) and that the
illumination magnification from the DMD to the
sample was Mexp “ 8.94.
We introduced a cylindrical lens to focus the
laser beam in one direction to address the power
loss caused by the shape difference between the
circular laser beam and the rectangular DMD
active region. The long focal length of this lens
partially justifies the absence of a second cylin-
drical lens that recollimates the beam (like in a
“4f” telescope). Indeed, after testing the system
with a proper cylindrical telescope, we found out
that a single lens with a long focal length worked
just as well: after the DMD, the divergence of
the beam due to the single lens did not produce
visible artifacts.
Typical Light Sheet microscopes use coherent
laser light to illuminate the sample. Indeed,
laser sources are well suited for real time imag-

ing because of their high radiance (i.e., energy
density): even with short exposure times, they
can provide sufficient fluorophore excitation and
acceptable signal to noise ratios. However, laser
light creates striping artifacts and speckle pat-
terns. Striping artifacts (i.e., shadows) are cre-
ated by dense media within the sample as the
highly directional laser light fails to recover af-
ter an obstacle.
While Huisken et al. [5] tackled these problems
by using multi-directional illumination, Calisesi
et al. [4] opted for an incoherent light source (an
LED). In our case, to take advantage of the high
intensity of a laser source while avoiding the arti-
facts entailed by coherent illumination, we chose
to use a continuous wave diode laser coupled to
a multimode optical fibre. The large core of this
fibre (200 µm) allowed to achieve very good cou-
pling efficiency and, more importantly, it greatly
deteriorated the laser light coherence.
The samples were first enclosed in 2% agarose
and then lowered in a quartz cuvette filled with
distilled water. The glass of the cuvette was
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1.30mm thick and the water was confined in a
square of p10.00mmq2.
We strove to efficiently upload patterns on the
DMD. We created patterns at the beginning
of each measurement to avoid using a static
pre-made collection (which could not be mod-
ified between experiments). The whole mi-
croscope is managed through ScopeFoundry, a
Python based instrument control application
that manages both data acquisition and visu-
alization [6]. ScopeFoundry allows us to inter-
act with the hardware and to execute custom
designed measurements (https://github.com/
marccv/smSVIM).

2.2. Increasing the detection depth of
focus

To use a SVIM microscope we needed a suf-
ficiently large detection depth of focus to uni-
formly integrate the emitted fluorescence along
the Z direction.
Tomer et al. [7] devised a SPherical-aberration-
assisted Extended Depth-of-field light sheet mi-
croscope (SPED-LS) where sample and detec-
tion objective were kept stationary while the
light sheet was scanned within the detection
depth of focus. The depth of focus was pur-
posefully extended in the axial direction (i.e.,
Z-axis) by introducing spherical aberrations in
the detection path. For this purpose, a layer
of medium with refractive index higher than air
(for objectives that are aberration corrected in
air) was inserted between the sample and the
detection objective. The PSF axial FWHM in-
creased with the layer’s refractive index and
thickness.
We found that the depth of focus of our setup
was sufficiently large to uniformly image our vol-
ume of interest (with a Z extent of 76.5 µm).
The elongation of the PSF was caused by intrin-
sic aberrations in the detection arm: we used a
detection objective designed to work in air (20ˆ

Nikon, NA = 0.45) to image a sample that was
placed behind layers of glass and water. Over
the nominal air working distance of the objec-
tive (8.2mm) we find circa 4mm of water and a
1.30mm slab of glass.
We directly measured the detection PSF by illu-
minating the whole volume of interest (76.5 µm
in Z) and translating sub-diffraction beads
(160 nm in diameter) by steps of 2 µm along the
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Figure 2: Detection objective PSF. a, b)
XZ planes that contain the PSF brightest point
shown with two different contrasts. The scale
bars are 10 µm long. c) PSF Z-profile in the XY
coordinate of its brightest point.

Z-axis. We recorded 51 frames to cover a span
of 100 µm in the Z direction. In this way, we
could follow a single bead as it passed through
different portions of the detection PSF (Fig. 2).
The aberrated air detection offers an elongated
PSF that more or less spans across the z region
of interest (ROI). The PSF is asymmetric along
the Z axis and exhibits rings only on one side.

2.3. Measurement matrix
We adopted measurement matrices built with
Hadamard patterns because they have been
found to work well with compressed sensing [3].
A Hadamard matrix HN , is a N ˆ N matrix
with entries `1 and ´1 that satisfies HNHT

N “

HT
NHN “ NIN , where IN is the N dimen-

sional identity matrix. We can recursively build
Hadamard matrices by defining H1 “ 1 and, for
k P N`,

H2k “

„

H2k´1 H2k´1

H2k´1 ´H2k´1

ȷ

. (2)

Figure 3 shows the Walsh version of H16 where
rows were ordered by increasing spatial fre-
quency. While the first row of these symmetric
matrices has all values set to 1, the remaining
rows have half of the entries equal to 1’s and
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Figure 3: Walsh Hadamard matrix.

half equal to ´1’s (fill factor 1/2). This prop-
erty survives even if we scramble HN by ran-
domly permuting its rows and columns.
Hadamard pattern are well suited for DMDs as
they have binary entries. However, DMDs can
only show 0’s and 1’s. This leaves us two choices:
we can either replace all the ´1 entries with a
0 and work with a positive measurement matrix
Φ, or express each row of H (that is, each mea-
surement) as the subtraction of two positive pat-
terns. We called the first method Single Frame
and the second one Double Frame. Here is an ex-
ample of the second method applied to the m-th
row φm “ r1,´1s of a measurement matrix with
N “ 2:

ym “ y`
m ´ y´

m “ r1, 0s ¨ x ´ r0, 1s ¨ x “

“ r1,´1s ¨ x “ φm ¨ x,
(3)

where y`
m and y´

m are the physical values that
we record in two subsequent camera frames.
The significant advantage of a Double Frame ac-
quisition lies in its intrinsic and robust back-
ground subtraction. Moreover, the subtraction
of two frames leads to a signal to noise ratio

?
2

times higher. The great cost we need to pay for
this features, is the doubling of the number of
frames needed to reconstruct a single volume.
We also employed an ex-post method to recon-
struct negative values in a Single Frame data
set. This method independently worked on XY
pixels by subtracting from the raw data y the
average of the measures ym that were acquired
with high spatial frequency patterns. For Walsh
patterns, we performed this operation by sub-
tracting the average of the values ym for m ě l.
We empirically set l “ 7 when N “ 16.
The matrices used for the inverse problem were:

‚ The Walsh matrix with ˘1s for Double
Frame data sets and Single Frame data sets
where negative values were reconstructed.

‚ The Walsh matrix matrix with negative val-
ues set to zero for the Single Frame data
set.

2.4. Compressed Sensing in 4D imag-
ing

Time lapse measurements can really take advan-
tage of Compressed sensing as they can use tem-
poral regularization to reconstruct volumes that
otherwise are too undersampled to be indepen-
dently used.
If the camera sensor has nV rows and nH

columns, xpi,jq P RN with i “ 1, . . . , nV and
j “ 1, . . . , nH are the unknown Z fluorescence
distributions in front of every pi, jq camera pixel
in a given time point.
To handle the complete time series, let us define
xt P RpN ¨nV ¨nHq as the column vector built by
vertically stacking all the xpi,jq of a given time
point t “ 1, . . . , T (where T is the total num-
ber of volumetric time points). Moreover, let us
define a column vector x̂ P RpN ¨nV ¨nH ¨T q built
by vertically stacking the different time points
xt p@ t “ 1, . . . , T q.
It is also useful to arrange the dynamic sam-
ple x̂ in a Casorati matrix Cpx̂q. By definition,
the columns of this matrix are the different time
points:

Cpx̂q ” rx1, x2, . . . , xT s P RpN ¨nV ¨nHq ˆ T .

(4)
The measurement matrix Φ̂ that we apply to
x̂ is a block diagonal matrix built by repeat-
ing nV ¨ nH times the measurement matrices
Φt P RMˆN of each time point t. This way,
the direct problem is defined for the whole time
series but each xpi,jq P RN is still indepen-
dently measured. The complete measured data
ŷ “ Φ̂ ¨ x̂ is structured in the same way as x̂.
While Calisesi et al. [4] exclusively exploited spa-
tial redundancies to reconstruct an undersam-
pled volume, Tourais et al. [8] extended the hy-
pothesis of sample regularity to the temporal
dimension and were able to reconstruct com-
pressed magnetic resonance dynamic images. In
particular they used the alternating direction
method of multipliers (ADMM) to solve the fol-
lowing problem:
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argmin
x̂

´∥∥ŷ ´ Φ̂ ¨ x̂
∥∥2
l2

`

` α
∥∥Cpx̂q

∥∥
˚

` β
∥∥TVpx̂q

∥∥
l1

¯

.
(5)

The two regularization terms respectively pro-
mote regularity in time and in space (with α
and β as regularization parameters).
The regularization over time was built on the
hypothesis that time points are mutually cor-
related because they follow a sufficiently slow
movement of a given structure. Formally, this
redundancy generates a Low rank Casorati ma-
trix of the sample. We enforced this constraint
by minimizing the sum of the singular values
(that is, the nuclear norm ∥ ‚ ∥˚) of Cpx̂q.
On the other hand, spatial regularization is
introduced by minimizing the anisotropic To-
tal Variation of the sample: ∥TVpx̂q∥l1 ”

∥∇xx̂∥l1 ` ∥∇yx̂∥l1 ` ∥∇zx̂∥l1 .

3. Results
We proceeded to test the system on the zebrafish
beating heart. The samples were prepared by
the Department of Bioscience of the University
of Milano following standard procedures. Deco-
rionated specimen were delivered to us two days
post fertilization.
We worked with zebrafish fluorescenct in the
vasculature and blood cells. They were kept in
0.003% 1-phenyl-2-thiourea (PTU) to inhibit the
melanization of tissues.
To reduce the movement of the fish during
data set acquisition, we anesthetized samples
by placing them in 0.016% tricaine (Ethyl 3-
aminobenzoate methanesulfonate salt) and we
restrained them in low melting point 2% agarose
gel. The liquid gel with the sample was drawn
in a capillary so that after its solidification we
could extrude an agarose cylinder. During ac-
quisitions, we lowered the sample in the cuvette
which was filled with fish water (Instant Ocean,
0.1% Methylene Blue).

3.1. Acquisition of complete data sets
We decided to test the system by acquiring com-
plete data sets. In this way, we could retrospec-
tively apply different types of data compression
and optimize the reconstruction algorithms. We
needed to verify that the system was fast enough
to produce temporally correlated time points: if

Parameters Description

Markers KDRL + GATA
Det. Obj. Nikon 20ˆ, NA = 0.45
Voxel (X,Y,Z) p0.339, 0.339, 4.78qµm
Volume dim. X: 256 px Ñ 86.8 µm

Y: 2048 px Ñ 694 µm
Z: 16 px Ñ 76.5 µm

Laser power 40mW
Exp. time 1.208ms
Read out time 1.388ms
Frame rate 386.3Hz
Measurements N “ M “ 16 (no CS)

Single
Frame

Double
Frame

Frames/pattern 1 2
Frames/volume 16 32
Time/volume 41.41ms 82.82ms
Pattern type Scrambled Hadamard

with different permuta-
tion for each time point

Table 1: Experimental details for non-
compressed data sets.

the sample moves too fast for our system, the
hypothesis of temporal regularity will not stand.
Moreover, we wanted to investigate if introduc-
ing Low Rank temporal regularization offered
substantial advantages over spatial regulariza-
tion of individual time points.
Table 1 reports the details of the experiments
carried out without direct use of compressed
sensing. We used scrambled Hadamard ma-
trices with dimension N “ 16; patterns were
displayed on the DMD with a binning equal
to 4. The voxel Z dimension was p4 ¨

?
2 ¨

7.56 µmq { Mexp “ 4.78 µm, where 4 is the DMD
binning,

?
2 ¨ 7.56 µm is the diagonal length of a

DMD pixel and Mexp “ 8.94 is the experimental
illumination magnification.

3.2. Inversion tests
To test the algorithms and the effect of Low
Rank regularization we inverted the complete
data sets in three ways:

‚ We used all the acquired frames (M “

N “ 16) to obtain a non-compressed re-
construction. In this case, we did not apply
Low rank or Total Variation regularization
(α “ 0 and β “ 0 in Eq. 5)
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Figure 4: DMD SPIM and smSVIM reconstructions Panel A shows the reference light sheet
reconstruction of the zebrafish heart. Panel C shows the inversion of a retrospectively down-sampled
Double Frame data set (2ˆ compression) regularized with Total Variation (TV). Panel D shoes how
the TV reconstruction is improved when also applying Low Rank temporal regularization. The Single
Frame inversion of panel E doubled the volume sampling frequency but featured strong artifacts and
has lower signal to noise ratio.

‚ We performed an ex-post 2ˆ compression
and applied only Total Variation (TV, i.e.
spatial) regularization. We discarded half of
the acquired frames to bring M “ N{2 “ 8
and we used α ‰ 0 and β “ 0 in Eq. 5.

‚ We performed an ex-post 2ˆ compression
and applied both spatial and temporal regu-
larization (Low Rank). We discarded half of
the acquired frames to bring M “ N{2 “ 8
and we used α ‰ 0 and β ‰ 0 in Eq. 5.

Figure 4.A shows a reference volume reconstruc-
tion built using light sheet sectioning. With the
DMD we produced a 4.78 µm thick light sheet
and we moved it along the Z axis.
Figure 4 shows orthogonal sections of a Dou-
ble Frame time point inverted with the three

different methods. Fig. 4.C indicates that TV
spatial regularization of independent volumes
struggled to yield clean images and that we
needed time regularization to reconstruct the
compressed time lapse (Fig. 4.D). Using com-
pression, M “ 16{CSratio becomes too small
to independently reconstruct each volume (i.e.,
with α “ 0 in Eq. 5).
At this point we tested if we could improve
the reconstruction by using the Single Frame
scheme. Figure 4.E shows how we obtained
crispier details than in the Double Frame acqui-
sition. However, they also had lower signal to
noise ratio and strong planar artifacts (in differ-
ent XY planes across different time points).
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4. Conclusions
We built a fluorescence microscope to perform
4D imaging of dynamic samples with a time res-
olution of circa 40ms. Starting from Light Sheet
Fluorescence Microscopy and Spatially Modu-
lated Selective Volume Illumination Microscopy,
we worked to implement Compresses Sensing
and increase the volume sampling rate.
The system was optimized and we were able to
reach frame rates previously not accessible in
our laboratory. In particular, we payed close
attention to hardware management: we used
Python to control the DMD and the camera
during experiments. The resulting acquisition
time of a single volume was compatible with Low
Rank compressed sensing: even without com-
pression, the temporal resolution was sufficient
to smoothly follow events that evolved on the
millisecond time scale.
We experimented with different methodologies
for the inversion of complete and retrospectively
compressed data sets. We found that temporal
regularization (with Low Rank) was pivotal for
the reconstruction of time series that have few
measurement for each volume. In the future, we
expect to achieve better results with data sets
that were compressed during data acquisition.
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