POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Anomaly detection as-a-Service for Predictive Maintenance

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: DANIELE DE DOMINICIS

Advisor: PrRorFr. MANUEL ROVERI

Co-advisors: DoTT. ALESSANDRO FALCETTA, ING. MIRCO ZANETTI

Academic year: 2021-2022

1. Introduction

Cloud Computing is a model for enabling ubig-
uitous, convenient, on demand network access
to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, appli-
cations and services) that can be rapidly provi-
sioned and released with minimal management
effort or service provider interaction [1]|. In par-
ticular, in the recent years Machine Learning as-
a-Service (MLaaS) is playing a fundamental role
in the Cloud world. The support of MLaaS ap-
proach resides in the ability to provide users and
companies, via web-console or API, with ready-
to-use or remotely trainable Machine Learning
(ML) models leveraging the high performance
computing and memory abilities of Cloud Com-
puting systems. This thesis aims at build an in-
novative client-server architecture that allows to
offer Anomaly detection as-a-Service via REST-
ful APIs, based on supervised and unsupervised
ML algorithms, with three different types of ser-
vices: the training of a ML model, the update of
a ML model and the inference of a sample data
through a ML model. In the literature of MLaaS
most of the efforts focused on images, video and
textual information, while very little attention
has been posed to sensor data sampling in indus-
trial environments. From this perspective, the

design and development of Cloud-based MLaaS
tool for the identification of anomalies in the in-
dustrial environment is a novel and promising
research area. Moreover, a real case study is
treated in which Eisenmann Italia S.r.l. com-
pany wants to build a monitoring system for the
identification of anomalies in the perspective of
predictive maintenance in Industry 4.0. And a
client-server architecture for Anomaly detection
as-a-Service is a solution tailored to the busi-
ness’s needs.

2. Related Literature

In the literature of MLaaS the applications are
far from Anomaly detection. Tay [2] applied
deep learning algorithms within the area of
wood identification, to create a MLaaS prod-
uct. Their tool consists of individual cloud-
based services for data collection, data verifica-
tion, model training, internal testing, and in-
ference. Instead, to tackle the cost of bug fix-
ing within software engineering, modern debug-
ging and testing methods moved from finding
to predicting the bugs [3]. The field of bug fix-
ing is another area that leverages ML predic-
tions. By proposing bug prediction via MLaaS
the authors provide Bug Prediction as-a-Service
(BPaaS). MLaaS can be leveraged in other ar-

eas as well and of the challenges within MLaaS
are attacks on network data. Rajagopal et al. [4]
propose a solution within network intrusion de-
tection applying MLaaS and by that increasing
time-efficiency. The goal is to correctly classify
an attack as such.

3. Background

Anomalies can appear in different forms. Com-
monly, three different types of anomalies exist:
Point anomalies in which a point deviates sig-
nificantly from the rest of the data. Collective
anomalies in which a collection of related data
instances is anomalous with respect to the entire
data set. Contextual anomalies are observa-
tions or sequences which deviate from the ex-
pected patterns within the time series, however,
if taken in isolation they may be within the range
of values expected for that signal. Anomaly de-
tection methods can be divided in three main
categories: statistical methods, Machine Learn-
ing methods and Deep Learning methods. Sta-
tistical methods utilize historical data to model
the expected behavior of a system. When a new
observation is received it is compared against
the current model for that system and if it does
not fit within that model it is registered as an
anomaly. Machine Learning (ML) is the
study of computer algorithms which are able to
improve automatically in solving a certain task.
ML algorithms use a mathematical model which
could be optimized using sample data (training
data) or not. There are at least three different
paradigms used to build the model, based on the
availability of the labels in the data: Super-
vised anomaly detection techniques assume
the availability of a training data set which has
labeled instances for normal as well as anomaly
class. Semi-Supervised anomaly detection
techniques assume that the training data has la-
beled instances for only the normal class. Un-
supervised anomaly detection techniques do
not require label training data and thus are most
widely applicable.

4. Architecture

The work aims to build a client-server architec-
ture that allows to offer Anomaly detection as-
a-Service via RESTful APIs. The Anomaly de-
tection as-a-Service solution allows the client to
make requests to a server, in order to train ML

models for the identification of anomalies from
the data sent by the client and to make infer-
ence on a single data from the previously trained
models. Since the identification of anomalies can
refer to a wide range of applications and conse-
quently data, in this work the focus is on data
collected by accelerometers installed on indus-
trial machines, without any loss of generality.
Accelerometers will sample at a certain sampling
rate and the data will be saved within Csv files.

Client Server
Get/Training ==

— 5
— "The training of the model has started” w
Getlinference

)

prediction”: znomalousinat anomalous,

Data . fF——
- Get/Update Data
“The update of the model has started™

Figure 1

The client-server architecture for Anomaly de-
tection as-a-Service is shown in Figure 1 and it
is designed to meet the following client require-
ments: Training of a model, Inference of a
data sample and Update of a model. Client
side, the Python scripts have been developed
in order to make easy for the client the use of
the services. Scripts allow to take a single data
or a series of data as input and serialize them
in JSON format, to send the request and the
JSON (in its body) at the appropriate server
API. Server side it is necessary to implement
the APIs defined by appropriate URLs. They
must allow the client to reach the server and
send the above mentioned requests along with
the data in JSON format. After defining the
APIs, the server is ready to receive the client
requests and execute the appropriate "service"
code. The three services are analyzed in detail
for both client and server. The figure 2 shows
the Training service pipeline.

Figure 2

The client-side Python script: takes as input
the path of a folder containing the Csv files re-

lated to the data samples of a sensor, in order
to carry out the training of the model. Then
it transforms the Csv files into a single JSON
with the structure displayed in the Figure 2,
where id sensor is the identification of a sen-
sor. Finally it makes a GET request contain-
ing the JSON to the appropriate API of the
server. The server listening: receives the GET
request from the client with the JSON in the
body of the request. It saves the JSON in the
DB Data with the appropriate nomenclature,
that is the id _sensor (id _sensor.json) and sends
the answer to the client notifying the start of
the training of the model ending the communi-
cation with client. Then it performs the prepro-
cess of the data first and then the selection of
the features. Then it performs the training of
the ML model using the modified data. Finally
it saves the model in the DB Models with the
appropriate nomenclature, that is the id _sensor
(id_sensor.joblib). The figure 3 shows the In-
ference service pipeline.

{10_s
“timest
data” data_inference

Getnference

Figure 3

The client-side Python script: takes as input the
Csv file related to the data sample of a sen-
sor, in order to carry out the inference of the
sample. Then it transforms the Csv file into a
JSON with the structure displayed in the Fig-
ure 3. Finally it makes a GET request con-
taining the JSON to the appropriate API of the
server. After receiving the reply from the server
containing the JSON; it saves the inference re-
sult in the folder "results" (if not present is cre-
ated) as id _sensor.timestamp.json. The server
listening: receives the GET request from the
client with the JSON in the body of the request
and extracts the model inside the DB Models (if
present) through the id sensor, otherwise the
server returns the JSON containing the error
and it ends the requested service. Then it per-
forms the preprocess of the data first and then

the selection of the features. It uses the model to
inference the modified data. Then it sends the
response to the client containing the JSON with
the structure shown in the Figure 3. In partic-
ular, the "prediction" key contains the value 1
if the model has evaluated the sample as nomi-
nal, otherwise it contains the value -1. Instead,
Confidence expresses the ability of the model to
provide a given prediction and it is a value be-
tween 0 and 1; it is an additional semantics to
the single 1/-1 of the prediction, since it makes
sense to look at how the measure evolves over
time. The figure 4 shows the Update service
pipeline.

a
serialization JSON

{id_sensor" - id_sensor,
‘data" data_update }

GetlUpdate

“The update of the
model has started”

Figure 4

The client-side python script: takes as input the
path of a folder containing the Csv files related
to the data samples of a sensor, in order to up-
date the sensor model with new samples. Then it
transforms the Csv files into a single JSON with
the structure displayed in the Figure 4. Finally
it makes a GET request containing the JSON to
the appropriate API of the server. The server lis-
tening: receives the GET request from the client
with the JSON in the body of the request and ex-
tracts the JSON containing the previous sensor
data from the DB Data through the id sensor
(if present), otherwise the server returns the er-
ror message and it ends the requested service.
Then it joins the JSON containing the previous
sensor data with the JSON sent by the client,
and saves it in the DB Data overwriting the pre-
vious JSON. It sends the answer to the client
notifying the start of the training of the model
with the integration of the new data and ends
the communication with the client. Then it per-
forms the preprocess of the data contained in
the new built JSON first and then the selec-
tion of the features. Finally it performs model
training using the modified data and saves the
model in the DB Models overwriting the previ-
ous model(Figure 4).

5. Operational Steps

As noted above, the work focuses on data col-
lected by accelerometers installed on machinery.
This means that the data we deal with are sig-
nals in time domain. However signals in time
domain do not accurately characterize the vibra-
tions captured by the accelerometers. Therefore
the signal has to be transformed in the signal
in frequency domain. In particular it was used
the Fast Fourier Transform (FFT) algorithm to
compute the discrete Fourier Transform and to
convert a signal from time to frequency domain.
Basically, if the signals are sampled at a rate f,
then the FFT will return the frequency spectrum
up to a frequency of fs/2. Applying the FFT
on the signals of interest, one can see particu-
lar peaks at 0 Hz. Since the data are extracted
from accelerometers, it indicates the presence of
a static acceleration field influencing the sensors
(gravity). This kind of bias, especially for an ac-
celerometer, is not desired. One way to fix this
is to subtract the mean of the signal to the sig-
nal itself. Thus the first operation is to subtract
the average value from the signal in the time
domain in order to remove the gravity acceler-
ation. Then apply the FFT to the signal and
take from the output of the FFT function the
absolute value of the first N/2 points of the sig-
nal in the frequency domain. Finally the signal
is multiplied by a normalization factor since it
scales each element separately to the range 0-1,
which is the range for floating-point values where
there is the most precision. Feature selection,
also called subset selection, aim to select a sub-
set of features that can sufficiently represent the
characteristic of the original features. The indi-
vidual signal in the frequency domain contains
too many features and thus redundant informa-
tion. This could cause loss of effectiveness in the
predictions of ML algorithms and poor accuracy
of the model. To be considered effective it was
decided to divide the signal into bins of size of
50 Hz each. For each of these bins the mean and
variance were calculated. The average takes into
account possible peaks that distinguish impor-
tant frequency bands. Variance, on the other
hand, takes into account the variability of the
assumed values within the bins and it is an ap-
propriate index in the identification of fluctua-
tions. As a consequence, there are two vectors,
one of the means and the other of the variances

of equal size. The two vectors are concatenated
in order to obtain a single vector, which char-
acterizes the spectrum of the single signal in a
precise way.

5.1. Unsupervised Approach

It is relatively easy to gather training data of
situations that are normal; it is just the stan-
dard production situation. But on the other
side, collection example data of a faulty system
state can be rather expensive, or just impossi-
ble. If a faulty system state could be simulated,
there is no way to guarantee that all the faulty
states are simulated and thus recognized in a
traditional binary-class problem. To cope with
this problem, one-class classification solution is
introduced. By just providing the normal train-
ing data, an algorithm creates a model of this
data. If newly encountered data is too differ-
ent, according to some measurement, from this
model, it is labeled as out-of-class and so anoma-
lous. Nominal data after the pre-processing and
feature-selection phases are ready to be con-
sumed by the svm.OneClassSVM module of the
Scikit-learn library [5]. The one-class SVM then
tries to find a boundary that encloses regions of
high data density excluding at most a fraction
of data points. It can be seen that boundaries
which are linear in the problem variable space
are too simple for most problems. Since SVM is
a linear classifier by nature, it is needed to re-
sort to kernel methods to build a flexible model
with non-linear boundaries. The one-class SVM
tries to find a hyperplane separating the data
from the origin. The idea is to map the data
into the kernel feature space and to separate it
from the origin with maximum margin using a
linear classifier in the kernel feature space. This
corresponds to using a non-linear boundary in
the original problem space. The inliers will be
on one side of the decision boundary and all the
outliers will be on the other side of the decision
boundary. In the end, the algorithm detects the
soft boundary of the set of samples and then re-
turn the one-class model through the fit() func-
tion.

5.2. Supervised Approach

When both nominal and anomalous data are
available, accompanied by labels that defining
them, it is possible to use supervised anomaly

detection techniques including Neighbors-based
classification. Classification is computed from
a simple majority vote of the nearest neigh-
bors of each point: a query point is assigned
the data class which has the most representa-
tives within the nearest neighbors of the point.
Several nearest neighbors classifiers have been
developed to address multi-class classification
problems among which, this thesis makes use
of neighbors.KNeighborsClassifier module of the
Scikit-learn library [5]. It is a classifier imple-
menting the k-nearest neighbors vote and the
optimal choice of the value k is highly data-
dependent: in general a larger k suppresses
the effects of noise, but makes the classification
boundaries less distinct. In this work is used k&
equals to 3 and since data belong to the nominal
class (+1), synthetic anomalous data has been
created from normal data in order to have an
anomalous class (-1). Synthetic data is informa-
tion artificially manufactured rather than gener-
ated by real-world events. So a supervised model
can be trained with both nominal and anoma-
lous data that went through the pre-processing
and feature-selection phases, with the appropri-
ate labels.

6. Implementation

The client can run the Python script passing the
appropriate parameters via the terminal com-
mand line:

e service parameter that can be training or
update or inference.

e path parameter that can be a path of a Csv
file (inference) or a path of a folder contain-
ing a series of Csv files (training, update).

Moreover, a configuration file has been written
in JSON format that contains the parameters
"ip" and "port" relative to the server to make
requests. Python script takes the parameters
and after the serialization of the data into JSON
format, send the GET request containing the
JSON in the body, to the server with the appro-
priate APIs. The server is built with Uvicorn,
that is an Asynchronous Server Gateway Inter-
face (ASGI) web server implemented in Python.
ASGI not only allows multiple incoming events
and outgoing events for the application, but also
allows for a background coroutine so the appli-
cation can do other things. The RESTful APIs,
instead are developed in Python with FastAPI

web framework that fully supports asynchronous
programming and can run with Uvicorn.

7. Amazon EC2

The server code can be deployed into an Ama-
zon Elastic Compute Cloud (Amazon EC2) in
order to provide scalable computing capacity in
the Amazon Web Services (AWS) Cloud. In the
case study addressed in Chapter 8 has been cre-
ated an Amazon EC2 T3a instance. It provides
a baseline level of CPU performance with the
ability to burst CPU usage at any time for as
long as required. After having created the vir-
tual computing environment, the server is de-
ployed as systemd service and the server code
runs with the Uvicorn command. In this way
we have obtained a system of Anomaly detec-
tion as-a-Service that actually works on AWS
machines and able to provide the services.

8. Case Study

The case study addressed in this thesis is that
of Eisenmann Italia S.r.l. company. The aim
of the Eisenmann Italia S.r.l. company is to
build a monitoring system for the identifica-
tion of anomalies in the perspective of predic-
tive maintenance in Industry 4.0. The sensors
used are triaxial accelerometers and they are
directly mounted on the machines mentioned
above. Sampling periods are carried out alter-
nating with periods of inactivity of the sensors.
The type of phenomena on which the work fo-
cuses have a constant pattern over time. There-
fore it is expected that a machine will have a
slow degradation with a certain continuity and
not a transient failure. The sensors have a sam-
pling frequency of 5000 Hz. The duration of each
sampling is equal to 30 seconds and the sam-
pling rate shall be hourly. The data are stored
in a shared database so that they can be ac-
cessed and each data sample is stored inside a
Csv file. The metadata of the sample is con-
tained in the file name, which is composed of
the sensor name followed by the sampling start
timestamp (date and time). The Csv file con-
sists of 4 columns: TIME that is a counter use-
ful to sort the individual sampling, and the 3
measurements along the X, Y and Z axis. The
length of the Csv file is proportional to the sam-
pling frequency and the duration of the sam-
pling. In this case being the sampling frequency

equal to 5000 Hz and continuing to sample for
30 seconds, the length of each Csv file will be
150k rows. Eisenmann Italia S.r.l. company pro-
vided the Sensor; and Sensory data, mounted on
different physical systems are available, which
are respectively composed of approximately 640
and 300 signals each. These data are obtained
from steady-state measurements, they are there-
fore related to the nominal/correct operation of
the systems. Moreover, the company have per-
formed a data quality assessment in fact data
have the same formats, the same dimensions and
no missing values.

9. Experiments and Results

In order to know the anomalous states of the
data and the way in which they present them-
selves, it is necessary to define their characteris-
tics. The machine on which a sensor is mounted
may tilt. This would lead the sensor to record
noise or bias that can be equivalent to the ad-
dition of: white noise tuned with feasible mean
and standard deviation to nominal data, and si-
nusoids with appropriate magnitudes to nominal
data. White noise in the frequency domain occu-
pies the whole spectrum band and will therefore
affect the signal in all frequencies. On the other
hand, sinusoids in the frequency domain occupy
only a limited band of the spectrum, which cor-
responds to their frequency and will therefore
affect the signal with unusual peaks. The pro-
duction of the synthetic failures is based on the
types of anomalies written before. These intro-
ductions applied to nominal data in the time
domain on each axis (X,Y,Z) lead to undesired
effects in the frequency domain.

9.1. Unsupervised model

The unsupervised one-class SVM model relative

to Sensor; has been trained with 240 nominal

samples of Sensor;. The model has been tested

on the remaining 400 samples (of Sensor;) of

which 200 were not modified and 200 were mod-

ified at each different configuration with the ad-

dition on each axis (X,Y,Z) of:

(a) White noise with mean p = 0 and standard
deviation ¢ = 0.16.

(b) White noise with mean p = 0 and standard
deviation ¢ = 0.3.

(c) Sinusoids with frequency 1200Hz < f <
1202H z and magnitude equals to the max

of each axis.

(d) Sinusoids with frequency 1200Hz < f <
1203 H z and magnitude equals to the max
of each axis.

(e) Sinusoids with frequency 600Hz < f <
601Hz and magnitude equals to the max
of each axis.

The training phase and the test phase with all

configurations, were repeated 5 times in order to

have 5 different random partitions of the data.

The accuracy results obtained by the unsuper-

vised model are shown in the Table 1, divided

by type of synthetic failure injected. Mean and
variance refer to mean and variance of accura-
cies.

Partitionl Partition2 Partition3 | Partition4 | Partition5 | Mean Variance

(a) 0.615 0.6 0.6075 0.975 0.9025 0.74 | 0.0268825
(b) 1.0 0.995 0.9825 0.9925 0.9925 0.9925 | 3.2499e-05
(c) 0.6 0.6075 0.575 0.5775 0.685 0.609 | 0.0016015
(d) 0.9475 0.94 0.975 0.965 0.9575 0.9570 | 0.000154
(e) 0.4925 0.495 0.505 0.5125 0.5175 0.5045 | 9.3499e-05

Table 1: Accuracies of unsupervised model

The results of the experiment show that the
unsupervised model is able to correctly classify
data affected by a relevant white noise. With
less evident white noise (lower variance), the ac-
curacy of the model is reduced depending on the
partition. As for the data with the addition of
sinusoids: the model is able to correctly classify
the sinusoids that have peaks in the frequency
domain that occupy more than one frequency.
On the other hand the peaks that occupy a sin-
gle frequency are not classified as anomalous by
the model. The model therefore does not assess
the latter case with a significant weight. In fact
the accuracy of the model is higher the more
peaks occupy a large frequency band, denoting
a unconventional intensity event.

9.2. Supervised model

In the context of supervised approach, the

Sensory’s dataset (640 samples) was split in half

randomly. One half (320 samples) left as it was.

The other half have been added:

(a) White noise with mean y = 0 and standard
deviation o = 0.08.

(b) Sinusoids with frequency 1200Hz < f <
1202H z and magnitude equals to the max
of each axis.

(¢) Mix of sinusoids with frequency 600H z <

f < 601Hz and magnitude equals to the
max of each axis, and white noise with mean
© = 0 and standard deviation o = 0.06.
(d) Sinusoids with random frequencies and
magnitude equals to the max of each axis.
The supervised KNN model relative to Sensory
has been trained with 240 samples of Sensorj.
The model has been tested on the remaining 400
samples. The split of the dataset, the training
phase and the test phase with all configurations,
were repeated 5 times in order to have 5 differ-
ent random partitions of the data. The accu-
racy results obtained by the supervised model
are shown in the Table 2, divided by type of
synthetic failure injected.

Partitionl | Partition2 Partition3 | Partition4 | Partition5 Mean | Variance
(a) 0.95 0.945 0.945 0.9475 0.9475 0.94699 | 3.50e-06
(b) 0.99 0.9975 0.995 0.9925 0.9575 0.9865 | 0.000216
(c) 0.8625 0.925 0.9175 0.9025 0.8775 0.89699 | 0.000561
(d) 0.4625 0.5125 0.5225 0.52 0.4925 0.502 0.0005009

Table 2: Accuracies of supervised model

The results of the experiment show that the su-
pervised model is able to correctly classify data
affected by both relevant and less evident white
noise. And the accuracy of the model remains
high. On the other hand sinusoids with peaks
that occupy random frequencies are not clas-
sified as anomalous by the model. The model
therefore does not assess the latter case with
a significant weight. In the scenario in which
the case study is carried out, the supervised
approach tends to be too limited because it
would not be able to correctly classify types of
malfunctions that are different from those with
which the model has been trained. On the con-
trary, the unsupervised approach despite the re-
sults obtained during the experiments carried
out, would seem to be a practical solution that
adapts very well to the real need of the company.

10. Conclusions

The thesis project carried out aimed at the de-
sign and construction of a client-server archi-
tecture for the Anomaly detection as-a-Service
via RESTful APIs. This solution is capable
of supporting predictive maintenance activities
of Eisenmann Italia S.r.l. in Industry 4.0 con-
text. The developed architecture has proven
to be able to provide the three services men-

tioned above. Moreover it classifies and de-
tects anomalies, thus enabling diagnostic func-
tions that reduce losses and total machines fail-
ure. In addition, the solution is scalable across
multiple sensors and consequently across mul-
tiple machines. In the event that the machine
on which the sensor is mounted undergoes un-
natural movements such as involuntary blows, it
will be necessary to collect new data and then
re-train the model. This is because otherwise
the model would evaluate the current state of
the machine as anomalous. The results obtained
by unsupervised model, based on the one-class
SVM algorithm, are confident for use in indus-
trial processes in the scenario in which Eisen-
mann Italia S.r.l. is located. On the contrary
the use of supervised model, based on the KNN
algorithm, does not guarantee reliability on un-
charted anomalous states where the machines
could be found. In the end, the Anomaly de-
tection as-a-Service is a promising and growing
area of research. And the developed client-server
architecture can start future improvements and
applications in different areas of work.

References

[1] Peter Mell and Timothy Grance. The nist
definition of cloud computing, 2011-09-28
2011.

[2] Yong Haur Tay. Xylorix: An ai-as-a-service
platform for wood identification, 05 2019.

[3] Uma Subbiah, Muthu Ramachandran, and
Zaigham Mahmood. Software engineering
approach to bug prediction models using ma-
chine learning as a service (mlaas). In IC-

SOFT, 2018.

[4] Smitha Rajagopal, Katiganere Sid-
daramappa Hareesha, and Poornima
Panduranga Kundapur. Performance anal-
ysis of binary and multiclass models using
azure machine learning. International Jour-
nal of Electrical and Computer Engineering,
10(1):978-986, January 2020. ISSN 2088-
8708. doi: 10.11591 /ijece.v10il.pp978-986.

[5] Gilles Louppe Lars Buitinck. APT design for
machine learning software: experiences from
the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and
Machine Learning, pages 108-122, 2013.

	Introduction
	Related Literature
	Background
	Architecture
	Operational Steps
	Unsupervised Approach
	Supervised Approach

	Implementation
	Amazon EC2
	Case Study
	Experiments and Results
	Unsupervised model
	Supervised model

	Conclusions

