

In-band Network Telemetry

and CHIMA Framework: A

performance Analysis and

Optimization Study

TESI DI LAUREA MAGISTRALE IN

TELECOMMUNICATION ENGINEERING

INGEGNERIA DELLE TELECOMUNICAZIONI

Author: Simone Tonelli

Student ID: 939480

Advisor: Giacomo Verticale

Academic Year: 2021-22

 i

Abstract

The adoption of Virtual Network Functions has increased the flexibility in the

deployment of network services, without the need for specialized hardware, but has

lowered the overall performance.

In our study, we focused on a framework called CHIMA, developed for the

deployment of heterogeneous Service Function Chains (SFCs). This framework

executes SFCs in docker containers and switches running functions written in the P4

language. The goal of this framework was to extend the capabilities of other

frameworks in the literature for the deployment of heterogeneous Service Function

Chains, exploiting the capabilities of P4 programmable switches to perform real-time

monitoring using the In-band Network Telemetry specification and to reroute the

traffic in case of violation of the fixed Service Level Agreement (SLA).

In this work, we address the advantages and drawbacks of this framework by

introducing some improvements. We replaced the Prometheus web server, an open-

source monitoring system, with InfluxDB, an open-source time-series database with a

monitoring system, and Telegraf, a specific agent written in the programming

language GO to efficiently collect metrics from the CHIMA framework. The advantage

of using Telegraf is that this framework is plug-in driven, allowing the user to collect

metrics simply and efficiently. We also changed the way we calculate the metrics:

latency and jitter, by substituting the EWMA with an arithmetic average. Additionally,

we introduced a new metric which is the number of packets received every polling

interval.

Key-words: INT, docker, virtualization, VNF.

 iii

Abstract in italiano

L'adozione di Funzioni di Rete Virtuali ha aumentato la flessibilità nella distribuzione

dei servizi di rete, senza la necessità di hardware specializzato, ma ha diminuito le

prestazioni complessive.

Nel nostro studio, ci siamo concentrati su un framework chiamato CHIMA [2],

sviluppato per la distribuzione di Catene di Funzioni di Servizio eterogenee (SFC).

Questo framework esegue le SFC in container Docker e switch che eseguono funzioni

scritte nel linguaggio P4. Lo scopo di questo framework era di estendere le capacità di

altri framework presenti in letteratura per la distribuzione di Catene di Funzioni di

Servizio eterogenee, sfruttando le capacità degli switch programmabili P4 per eseguire

il monitoraggio in tempo reale utilizzando la specifica In-band Network Telemetry [1]

e per instradare il traffico in caso di violazione del Service Level Agreement (SLA).

In questo lavoro, affrontiamo i vantaggi e gli svantaggi di questo framework

introducendo alcune migliorie. In particolare, abbiamo sostituito il web server

Prometheus, un sistema di monitoraggio open-source, con InfluxDB, un database di

serie temporali open-source con un sistema di monitoraggio, e Telegraf, un agente

specifico scritto nel linguaggio di programmazione GO per raccogliere metriche in

modo efficiente dal framework CHIMA. Il vantaggio nell'utilizzare Telegraf è che

questo framework è guidato da plug-in, permettendo all'utente di raccogliere metriche

in modo semplice ed efficiente. Abbiamo anche cambiato il modo in cui calcoliamo le

metriche: la latenza e il jitter, sostituendo l'EWMA con una media aritmetica. Inoltre,

abbiamo introdotto una nuova metrica che rappresenta il numero di pacchetti ricevuti

in ogni intervallo di polling.

Parole chiave: INT, docker, virtualizazione, VNF.

 v

Contents

Abstract ... i

Abstract in italiano .. iii

Contents ... v

1 Introduction ... 1

2 background .. 3

2.1. P4 Language .. 3

2.1.1. Why P4 ... 4

2.2. INT .. 5

2.2.1. INT Application Modes ... 5

2.2.2. What is monitored .. 6

2.2.3. Structure of an INT packet .. 6

2.3. CHIMA .. 8

2.3.1. The CHIMA framework .. 10

2.3.2. The P4 Pipeline ... 12

2.3.3. Routing ... 13

2.3.4. The INT Collector ... 14

2.4. InfluxDB and Telegraf ... 16

2.4.1. InfluxDB ... 17

2.4.2. Telegraf .. 17

3 State of the Art .. 19

3.1. Related work ... 19

4 System Model ... 21

4.1. The INT Collector ... 21

4.1.1. The new eBPF implementation... 22

4.1.2. The new Python implementation ... 24

4.2. InfluxDB and Telegraf ... 25

4.2.1. Telegraf .. 25

4.3. InfluxDB... 27

5 Validation of results .. 29

5.1. Methodology ... 29

vi | Contents

5.2. Numerical results ... 31

5.2.1. Detection time ... 31

5.2.2. Containers saturation ... 32

6 Conclusions ... 39

Bibliography ... 41

List of Figures ... 43

Acknowledgments ... 45

 1

1 Introduction

In this work, we will analyse in-depth some aspects of the CHIMA (CHain Installation,

Monitoring and Adjustment) framework developed by Battiston, a framework able to

deploy services in a network function chain and reroute the traffic in case of a violation

of the Service Level Agreement, pointing out the drawbacks of his work and proposing

solutions to them. Specifically, we will examine the In-band Network Telemetry

collector used in the framework and propose improvements. We noticed that the

collector uses an Exponentially Weighted Moving Average (EWMA) to overcome the

limitations of eBPF, an efficient kernel-level programming language for networking,

which cannot perform division with unsigned integers like jitter values. However, the

use of EWMA causes delays in detecting a Service Level Agreement (SLA) violation.

Therefore, we propose an efficient way to overcome this problem in this paper.

The second improvement we made is the introduction of InfluxDB, a time-series

database, and Telegraf, a plug-in driven agent written in GO-Lang, to collect and

process the metrics of the In-band Network Telemetry [1].

The work is structured as follow: First, we are going to give to the reader an

introduction to the background technologies we are going to use in this thesis, in

particular we’re going to analyse the P4 language, able to deploy services in bmv2 P4

switches and enables the In-band Network Telemetry. Then we will talk about the INT

and the previous CHIMA framework [2].

In the third chapter we briefly analyse the state of the art regarding the INT from which

CHIMA is based.

In the fourth chapter we propose to the reader an overview of the new CHIMA

framework, in particular the renewed INT collector and the new ecosystem composed

by InfluxDB and Telegraf with the aim of substituting the Prometheus time-series

database.

In the fifth chapter we will propose some tests and the associated numerical results to

validate the new CHIMA framework and to point out some limitations in the use of

docker containers due to lack of performance.

 3

2 background

In this chapter we will briefly introduce the P4 language, the INT concept and the

CHIMA framework [2].

2.1. P4 Language

In 2016, the Open Networking Foundation introduced the concept of INT [1], which

leverages the P4 language [3] to configure network devices such as switches and

routers. P4 is "vendor-agnostic," meaning it can be used with a range of hardware and

isn't tied to any specific vendor. Previously, vendors had complete control over

network functionality, but P4 enables the extraction of specific data embedded in

packets, such as INT data, in the context of INT, which is the focus of this thesis.

Figure 1 The P4 ecosystem [3]

4 2| background

2.1.1. Why P4

The use of P4 programming language gives a lot of advantages compared to the

previous vendor-specific implementations.

1) Protocol independence: P4 allows the user to define his own network protocols

and packet processing logic, rather than being bounded to some pre-defined

protocols. This translates into a flexible and adaptable framework.

2) Hardware independence: as said earlier in the previous paragraph, P4 is

completely vendor-agnostic, meaning that its code can be compiled to run on

various network hardware platforms. For example, in this work P4 runs on

bmv2 switches.

3) Customizable packet processing: With P4, you can define the exact behaviour

of how packets are processed through a network device. The advantage is that

this allows for fine-grained control over network traffic and can improve

network performance.

4) Faster development and testing: P4 code can be easily tested and simulated

using software-based environments, which allows for faster development and

testing cycles.

5) Standardization: P4 code can be written and run across various vendors’

network hardware. This promotes interoperability and reduces vendor lock-in.

Figure 2 P4 workflow [3]

2| background 5

2.2. INT

In-band Network Telemetry (INT) [1] is a rapidly evolving technology that enables

network operators to extract detailed, real-time network performance data, without

the need of specialized monitoring tools or probes. It is a related specification of the

P4 language. With INT, telemetry data is carried inside the network traffic, embedded

into packets, providing an accurate and comprehensive view of network performance.

This technology has become increasingly important as networks become more

complex and dynamic, with the rise of cloud computing, network virtualization, and

software-defined networking.

INT is exhaustively described in literature, and it is outside the scope of this paper.

However here we are going to give the reader an overview based on the specification

[1].

2.2.1. INT Application Modes

Original data packets are monitored and may be modified to carry INT instructions

and metadata.

There are three variations based on the level of packet modifications.

• INT-XD (eXport Data): In this mode the INT nodes directly export metadata

from their dataplane to the monitoring system without further packet

modifications.

• INT-MX (eMbed instruct(X)ions): The INT Source node embeds INT

instructions in the packet header, then the INT Source, each INT Transit, and

the INT sink directly send the metadata to the monitoring system by following

the instructions embedded in the packets. The INT Sink node strips the

instruction header before forwarding the packet to the receiver. Packet

modification is limited to the instruction header, the packet size doesn’t grow

as the packet traverses more Transit nodes.

• INT-MD (eMbed Data): In this mode both INT instructions and metadata are

written into the packets. This is the classic hop-by-hop INT where 1) INT Source

embeds instructions, 2) INT Source and Transit embed metadata, and 3) INT

Sink strips the instructions and aggregated metadata out of the packet and

(selectively) sends the data to the monitoring system. The packet is modified

the most in this mode while it minimizes the overhead at the monitoring system

to collate reports from multiple INT nodes.

6 2| background

Figure 3 INT application modes

2.2.2. What is monitored

Even if it is technically possible to monitor any device information using the INT, it is

a best practice to define a small set of metadata that can be made available on a wide

variety of devices.

• Node id: This is the unique ID of an INT node to identify a node in the network.

• Ingress interface identifier: The interface on which the INT packet was received.

• Ingress timestamp: the local time in nanoseconds when the INT packet was

received on the ingress port.

• Egress interface identifier: The interface on which the INT packet was sent out.

• Egress timestamp: The local time in nanoseconds when the INT packet was

processed by the egress port.

• Hop latency: Time taken for the INT packet to be switched within the device.

There are other metadata defined in the INT specification; however, these are the ones

that CHIMA utilizes.

2.2.3. Structure of an INT packet

The structure of INT is embedded within a TCP/UDP packet (this work focuses on

UDP packets), and it can be divided into two sections: the INT Header and INT Data.

The protocol structure is exhaustively described in the specification paper [1]. Here,

we provide the reader with an overview of the protocol.

2| background 7

2.2.3.1. INT Header

The INT Header is added at the beginning of the INT packet and is responsible for

carrying information about the transmission. Like other headers such as TCP/UDP, it

is also responsible for ensuring the successful processing of the data. The INT Header

consists of several fields, including:

• Type: the type of INT header, which can be either “switch metadata” or “hop-

by-hop metadata”.

• DSCP: Differentiated Services Code Point (DSCP) value of the packet.

• Length: The length of the INT header.

• Maximum hop count: The maximum number of hops the packet can travel

before the INT header is removed.

• Instructions: A set of instructions that specify the types of telemetry data that

should be collected by network devices as the packet travels through the

network.

• reserved bits for eventually further use.

2.2.3.2. INT Data

Here we have the actual telemetry data collected by our network devices. It consists in

several fields, most of them covered in the section 2.2.2.

• Switch ID

• Ingress port

• Egress port

• Queue ID

• Timestamps

• Packet Length

Figure 4 Packet carrying INT [4]

8 2| background

2.3. CHIMA

The use of Virtual Network Functions (VNFs) in modern networks has made it easier

and faster to manage the provisioning of network services. However, this introduces

a trade-off between flexibility and performance. Packet processing logic executed on

regular CPUs may be less efficient than specialized hardware middleboxes in terms of

throughput and power consumption. Recent advances in Programmable Data Planes,

and In-Network Computing in particular, have shown that offloading sections of these

services to programmable switches can eliminate this trade off, bringing back

processing performance to the level offered by specialized hardware middleboxes.

One such technique is the use of In-band Network Telemetry (INT), which enables the

real-time monitoring of flows and can be exploited for more than just error diagnosis

or logging. It can provide real-time feedback on the performance of a service, allowing

an orchestrator to take immediate action in response to congestion or faults.

2| background 9

Figure 5: Representation of the steps needed to perform a redeployment of the service

through the new path after a SLA violation

The system proposed by Battiston [2] consists of a chain of functions that can run on

P4 switches and hosts capable of running Docker containers, each of them are

associated with an SLA specifying the maximum end-to-end delay and jitter. The

packet routing is managed by the ONOS SDN controller [5]. In the next page is

depicted, as example, a service function chain mapped into a physical topology.

10 2| background

Figure 6: Example of a service function chain mapped into a physical topology [2]

2.3.1. The CHIMA framework

In this chapter, we will provide an overview of the CHIMA framework, as described

in [2]. CHIMA consists of several components, which are illustrated in the next page:

2| background 11

Figure 7: The previous CHIMA “ecosystem” [2]

1) CHIMAstub: It is a component able to expose the topology to the ONOS

application and allows interactions with the network devices by means of an

extension built in the ONOS REST APIs.

2) CHIMAclient: this is a process running on hosts enabling routing schemes

exhaustively described in [2] outside the scope of this paper.

3) P4 pipeline: It is installed on all switches, and it is what enables the support to the

In-band Network Telemetry v1.0 [1]

4) INT Collector: this is the component on which this paper leverage. It is responsible

to extract the telemetry data generated by the P4 switches. In the CHIMA framework

proposed by Battiston [2] it maintained a moving average of the measures (EWMA).

In this paper we are proposing a new model based on an arithmetic average

computed every “polling interval” defined by the user. In the previous version of

CHIMA the INT collector sent data do the Prometheus client. We substituted it with

InfluxDB and telegraf [6]. This new system which is the main topic of this work will

be discussed in 2.3.4.

5) CHIMA: The CHIMA module is the manager of the system. It can:

“• Build and maintain an internal representation of the

network topology.

12 2| background

• Compute a deployment strategy based on the available

topology information.

• Inject user provided P4 functions into the template

pipeline.

• Carry out the installation of P4 pipelines through CHIMA

Stub.

• Deploy Docker containers on hosts using Docker Com-

pose.

• Compute performance metrics for communication paths,

using data provided by the INT Collector, and compare

them with user set requirements.

• Alter the placement of functions and reroute traffic ac-

cordingly in case of a requirement violation.” [2]

2.3.2. The P4 Pipeline

In the following section, we will provide an overview of how the P4 switches are

programmed with a specific pipeline to enable the deployment of Virtual Network

Functions (VNFs).

Figure 8: Stages of the template pipeline [2]

2| background 13

1) Forwarding: This pipeline is based on a built-in function “basic.p4” in ONOS

and it is responsible of the forwarding mechanism.

2) Routing: This section of pipeline is managed by CHIMA and bypasses the usual

forwarding mechanism by means of MPLS, as will be described later in the

section 2.3.3.

3) INT: The implementation of the INT is based on the ONOS P4 pipeline int.p4.

This is the part on which we made most of the improvements on the framework.

4) User’s functions: The template pipeline includes a section in which user code

can be inserted. Users provide functions to execute on packets in the form of

control blocks with a predefined signature, such as the one presented in Listing

1. Control blocks allow the definition of arbitrary computation on the packet by

defining tables, instantiating other controls, using registers, etc. The access to

parsed headers and metadata is provided through the parameters of the control,

enabling the user’s function to change the content of the packet and even

altering the predetermined egress port. When CHIMA determines one or more

P4 functions of a service must be deployed on a switch, their code is injected,

and will only be executed for packets of the correct service.

Setting up the pipeline: here the decision of what user functions must be deployed in

each switch is made by means of an orchestrator.

Figure 9 Snippet of basic.p4 [2]

2.3.3. Routing

The correct routing of packets along the intended path and ensuring compliance with

the SLA after deploying network functions is absolutely fundamental and can be

considered one of the core aspects of the project developed by Battiston [2].

14 2| background

To achieve this goal MPLS was used in the deployment of the routing path, in

particular the Segmentation Routing over MPLS was used. This MPLS implementation

uses values called Segment Ids to instruct switches on the operations to execute on a

packet by embedding them in the packet itself. The implementation used in CHIMA

is the one described in the RFC8660.

In CHIMA the encapsulation of the MPLS packets is performed by the CHIMAclient

module. The services are identified by a tuple of source and destination and if it is

known, it means that the eBPF filter has a label stack that represent the series of

segments used to implement its pre-computed path.

Figure 10: Example of routing by means of MPLS in the CHIMA framework [2]

The eBPF filter is the core of the "collector" in the CHIMA framework, and it is worth

going into more detail about it in the next section since it is one of the parts in which

we introduced improvements.

2.3.4. The INT Collector

Here we will describe the functions of the pre-built INT Collector. In Section 4.1, we

will detail the original contributions and improvements introduced.

The INT Collector in CHIMA is composed of an eBPF filter and a Python application

that interacts with it using the BCC (BPF Compiler Collection) library [7].

“The CHIMA process includes an INT collector as one of its modules, which has been

adapted form an existing eBPF based implementation [...]. The source of the obtained

values is identified by the pair of IDs of the switches at the two ends of a link. For each

incoming INT packet, the collector computes the packet delay dp. The collector also

maintains a running Exponentially Weighted Moving Average (EWMA) of the delay

d, which is updated for each incoming packet as follows:

d ← (1 − α) d + αdp

2| background 15

The average value of jitter is also measured following the same procedure.

Periodically, at each polling interval, the running values of delay and jitter are also

conveyed to a server of the Prometheus monitoring system. The α parameter acts as a

smoothing factor and can be modified by the user when running CHIMA to tune the

response to transient variations of the metrics.” [2]

As we are going to describe in section 4.1, we modified this feature by eliminating the

need for the use of EWMA and instead using arithmetic mean to enhance performance.

2.3.4.1. eBPF Filter

eBPF (extended Berkeley Packet Filter) is a technology that allows for dynamic and

efficient tracing and monitoring of system and application behaviour in Linux-based

operating systems. eBPF achieves its flexibility and efficiency by providing a way to

inject and execute small snippets of code directly into the kernel, known as eBPF

programs. These programs can be dynamically loaded and unloaded, enabling the

creation of custom tracing and monitoring functionality without the need to recompile

or modify the kernel itself. The fact that these programs run directly in the kernel space

is an incredible advantage in our environment because it allows the processing of INT

packets arriving at very high frequencies without interruptions.

eBPF programs are written in a restricted subset of the C programming language and

are executed in a secure virtual machine within the kernel. This allows eBPF programs

to safely interact with the kernel and other system resources, without compromising

system stability or security.

Figure 11: eBPF code snippet, EWMA calculation of latency and jitter

2.3.4.2. Userspace Python script

In this section, we will provide an overview of the Python script that interacts with the

eBPF.

16 2| background

The aim of this script is defined in the function send metrics. This function is responsible

for starting an HTTP server on TCP port 8000 that is used by Prometheus to collect

data, including the latency and jitter data extracted by the eBPF filter previously

discussed. The function also calls another function defined in a separate script to check

if the triggers, which are SLA parameters such as the maximum latency and jitter, are

exceeded. If the triggers are exceeded, the function triggers a redeployment of the

VNFs.

Figure 12: Snippet of the userspace python script

2.4. InfluxDB and Telegraf

In this chapter, we introduce two software: InfluxDB, an open-source time-series

database, and Telegraf, a GO-Lang agent to collect metrics from a variety of sources.

2| background 17

2.4.1. InfluxDB

InfluxDB is an open-source time-series database that is designed to handle high

volumes of time-series data, such as metrics, events, and logs. It is built with

performance, scalability, and ease of use in mind, and is widely used in a variety of

industries for real-time monitoring, analytics, and IoT applications. InfluxDB uses a

schema-less data model, which means that it doesn’t use the traditional relational

model of tables and columns. Instead, data is organized into measurements, tags, and

fields, providing a flexible and efficient way to store and query time-series data.

We can list the key features of InfluxDB as follows:

1. High performance: InfluxDB can handle a large amount of time-series data

while ensuring low latency and high throughput.

2. Query language: InfluxDB comes with a query language called InfluxQL, which

is specifically designed for time-series data. It allows filtering, aggregation, and

downsampling of data.

3. Built-in visualization: InfluxDB provides a visualization tool called

"Chronograf" that is integrated into the database, allowing for real-time

dashboards for monitoring and data analysis.

4. Integration: InfluxDB can be easily integrated with other tools such as

Kubernetes, Grafana (a visualization tool), and Telegraf.

2.4.2. Telegraf

Telegraf instead is an agent written in the programming language GO to collect and

report data from a variety of sources. Telegraf is plug-in based meaning that it works

by means of plugins. These plugins can be divided into four groups:

• Output plugins: they are responsible to send the collected metrics to a specific

service, like a SQL database, a text file or, and this is the case, InfluxDB.

• Input plugins: they are responsible to collect the metrics before sending them

to the output plugins. For this work we used the “Socket Listener Input Plugin”.

• Processor plugins: they are responsible to manipulate, filter and decorate the

metrics before sending them to the output plugins.

• Aggregator plugins: they are responsible to aggregate metrics, creating, for

example: minimum, maximum, average of the metrics.

2.4.2.1. Why Telegraf

The use of Telegraf offers a lot of advantages in our system. For example:

18 2| background

1. Easy to use: We shouldn't neglect the user-friendly design of Telegraf, which

allows users to easily change plugins and configure them using TOML file

format. It's also worth considering that in most cases, there will be a pre-built

plugin available to meet the user's needs.

2. Flexible and modular: Telegraf's support for over 200 plugins makes it a highly

flexible and modular tool. It allows users to collect, process, aggregate, and

output data from a variety of sources in a customizable way. The availability of

numerous plugins enables users to choose the ones that best fit their needs and

to create custom data pipelines. This flexibility and modularity make Telegraf

a powerful tool for data processing and management in various use cases.

3. Low Resource Usage: Telegraf is designed to be extremely fast and efficient,

with a low resource usage. This makes it feasible to run on edge-devices, such

as Docker containers running on hosts.

4. Integration: As previously mentioned, Telegraf can integrate with other tools

such as InfluxDB, Prometheus, and Grafana, as well as with the Linux kernel to

extract various information such as CPU usage and disk I/O. This enables

Telegraf to be a versatile agent that can be used in a variety of contexts and

workflows, making it a valuable tool for monitoring and collecting data.

5. Real-time monitoring: Thanks to its high efficiency and low resource usage,

Telegraf enables real-time monitoring of data, allowing users to quickly identify

and respond to issues as they occur.

Overall, Telegraf is a powerful and versatile tool that can help you collect and process

data from a wide range of sources and send it to a variety of destinations. Its ease of

use, flexibility, and low resource usage make it a popular choice for monitoring and

data collection in a variety of industries. This is why we consider this product the most

feasible solution to be implemented in our system.

 19

3 State of the Art

In the past, telemetry data was collected using out-of-band methods such as SNMP

(Simple Network Management Protocol), NetFlow, and packet capture systems like

Wireshark or TCPdump. However, as networks became more complex and dynamic,

traditional monitoring techniques were unable to keep pace with the demands of

modern applications. This led to the emergence of the idea of embedding telemetry

data in the network itself, which has become more popular in recent years.

3.1. Related work

CHIMA was not the first work aimed at determining the optimal path for

communication in a network. It was developed based on existing literature, which we

will discuss below. Addis et al. [8] used ILP (Integer Linear Programming) to optimize

the deployment of VNFs, and related work was also done by Khoshkholghi et al. [9]

using heuristic-based algorithms.

“Focusing on service chaining, we formulate a Mixed-Integer Linear

Programming problem with the objectives of load balancing as well as

reducing drop rate.” [9]

and Mechtri et al. [10] proposed an SFC orchestration framework that takes the

monitoring of the deployed service into consideration but does not propose solutions

to guarantee its performance.

“This article presents the SFC orchestration framework, an implementation,

and a qualitative and quantitative evaluation of its components in an

experimental environment.” [10]

However, these previous works only considered SFCs composed of Virtual Network

Functions (VNFs) that target homogeneous compute architectures. In contrast,

CHIMA [2]

“Supports the deployment of heterogeneous SFCs that take advantage of

programmable data planes and significantly increase the achievable throughput” [2].

20 3| State of the Art

Also, other approaches have been studied, such as the use of Hyper4 [11] and P4Visor

[12]. However, CHIMA instead leverages FOP4 [13], a mininet fork that introduces

support for P4 switches and SmartNICs.

In the following chapter, we will discuss the improvements implemented into the

CHIMA framework.

4| System Model 21

4 System Model

The system model we are going to use for the tests is the same as that proposed by

Battiston [2], but with some improvements in certain components which will be

described in more depth in this chapter.

4.1. The INT Collector

In this paragraph, we will analyse the INT collector of CHIMA and the improvements

made to it in more depth.

Inband Network Telemetry (INT) has the potential to revolutionize the way we

monitor and manage networks by providing a more holistic and proactive approach

to network performance management. The INT collector proposed by Battiston [2] was

derived from a previous eBPF implementation [14]. In this implementation, each value

is identified by a couple of IDs associated with the two switches at the ends of the

single link. For each incoming packet, the collector computes the packet delay.

In the original implementation proposed by Battiston, the collector maintains an

Exponentially Weighted Moving Average (EWMA) of the delay updated for each

incoming packet. However, in this work, we modified this mechanism and switched

to an arithmetic average.

The choice to use EWMA in the original solution was induced by the fact that eBPF,

due to its extremely high efficiency in executing code at the kernel level, supports

signed division of integers but not unsigned division of integers. The EWMA avoids

the use of divisions entirely, but it has infinite memory, so the measurements obtained

in a previous polling interval may perturb the further measurements in other polling

intervals.

To address this issue, a new implementation of the way measurements are averaged

was proposed. Instead of sending every measure to CHIMA, every time a measure is

received, a counter is updated, and a variable is updated to store the sum of the

measurements received, allowing an arithmetic average to be performed every polling

interval. Additionally, the new implementation calculates the new minimum and

maximum latency, as well as the minimum and maximum jitter, according to RFC3393

[15], for every packet arrival. The average is calculated with a workaround in user

space, at every polling interval, by a modified version of a Python script developed in

[2], which interacts with the eBPF using APIs developed by BCC [7]. This allows for

the avoidance of the limitation of eBPF regarding the division of unsigned integers.

The modified Python script is also responsible for sending the metrics to InfluxDB, by

means of Telegraf [6].

22 4| System Model

4.1.1. The new eBPF implementation

The previous eBPF collector proposed by Battiston has this interesting code snippet

for the calculation of latency and jitter.

Figure 13: The previous CHIMA's collector implementation on metric calculation [2]

This is the code snippet that we modified. The functions compute_ewma_unsigned and

compute_ewma_signed are portrayed in figure #11. The code initializes the pointers if

necessary and calculates the jitter as the difference between the new latency and the

last latency. Then, it saves the EWMA latency value and the jitter inside the map

link_metrics using a pointer to the eBPF map. The value of the last latency is also

updated.

As previously mentioned, the choice to use EWMA in the original CHIMA architecture

was induced by the limitation of eBPF, which is not capable of performing divisions

with unsigned integers (which the jitter requires). We proposed to substitute this

snippet (Figure 13) with the following code snippet (Figure 14), which is more complex

but more efficient in terms of detecting SLA violations, as we will see in the next

chapter.

4| System Model 23

Figure 14: Snippet of the new eBPF collector [2]

As we can see, we first initialize the pointers if needed. If not, we jump to the else block

of code. First, we calculate the jitter and save this value into the eBPF map. Then, we

check if the minimum and maximum jitter and latency are initialized. If not, meaning

them equal to zero in eBPF, we update them with the current values of jitter and

latency. If they are initialized, we jump to check if the new values of jitter and latency

are the new minimum or maximum. At the end of the snippet, we increase a counter

variable, which is also the number of packets in the polling interval. We update the

24 4| System Model

total latency and the total jitter. The value referenced by the last latency pointer is also

updated.

4.1.2. The new Python implementation

As we stated before, the eBPF collector alone is not sufficient to perform all the

required tasks due to the limitation with unsigned integer division. Therefore, we are

proposing a new implementation of the Python script responsible for extracting

latency and jitter values from eBPF by means of the bcc Python library.

Figure 15: Snippet of the new python script userspace

In the updated script, we have introduced the items_lookup_and_delete_batch function

from the bcc library, which allows us to iterate through the eBPF map for each link_key

pair (consisting of the IDs of two switches or Docker containers) and their

corresponding link_metric values (jitter, latency, and associated counter). As the

function iterates through the data, it calculates the arithmetic mean of the jitter on-the-

fly, along with the minimum and maximum latency and jitter values. We have also

implemented a specific plugin in the system that sends this data to the Telegraf agent

using a UDP socket. Once the iteration process is complete, the eBPF map is cleared,

making it ready for the next iteration. A check on the SLA is performed, and if violated,

4| System Model 25

the redeployment Python function is called, which is implemented in other

components of CHIMA.

4.2. InfluxDB and Telegraf

As introduced in the previous chapters, InfluxDB and Telegraf are the two softwares

implemented to substitute the Prometheus webservice to collect the metrics. These two

softwares were installed on the same virtual machine used to perform the tests, but

they don’t run inside Docker containers like CHIMAclient.

4.2.1. Telegraf

The Telegraf agent is started before the tests by loading a particular configuration file

that we implemented for our system:

Figure 16: the used Telegraf configuration file

the [agent] section defines the basic configurations of the Telegraf agent.

26 4| System Model

• Interval: the frequency at which the metrics are collected. 10ms allows the use

of polling intervals down to 10ms, but it can be regulated lower or higher

depending on the necessity of the system.

• round_interval: Whether to round the collection interval to the nearest whole

number of seconds.

• metrics_batch_size: The maximum number of metrics to buffer before sending

them to the output plugins.

• metric_buffer_limit: The maximum number of metrics to buffer in memory

before dropping them. This is to avoid an overload of the system.

• collection_jitter: The maximum amount of jitter to add to the collection interval

to spread out metrics collection.

• flush_interval: The maximum amount of time to wait before flushing the metric

buffer.

• flush_jitter: The maximum amount of jitter to add to the flush interval to spread

out metric flushes.

• Hostname: The hostname to include in the metric data. If left blank, the system

hostname will be used.

• omit_hostname: Whether to exclude the hostname from the metric data.

• Precision: The precision to use for timestamps in the metric data.

[[outputs.influxdb_v2]] is the plugin responsible to send the metrics to InfluxDB.

• Urls: The URL of the InfluxDB webservice.

• Token: The API access token. It is written as local variable in compliance with

the cybersecurity policy.

• Organization: The name of the organization we choose.

• Bucket: This is the InfluxDB “bucket” in which all the data will be written

[[outputs.file]] is a simple plugin writing all the data into a text file. We choose to

introduce this plugin because InfluxDB allow the visualization of data with at least 1

second of precision. Considering we have data collected by Telegraf every hundreds

of millisecond will be worth to have a reference for all of them.

[[inputs.socket_listener]] this is the input plugin we decided to use. It collects the

metrics acting as an UDP socket listening for datagrams.

4| System Model 27

• service_address: The address to listen on for incoming metrics data.

• data_format: The format of the incoming metric data. In this case, it is JSON.

• json_name_key: The name key in the JSON data that contains the metric name.

4.3. InfluxDB

After installing InfluxDB, we started the service and the web server to access the web-

based graphical interface. Through the interface, we created a bucket, which serves as

a container for our data, an organization name, and an API key, which is necessary to

interact with InfluxDB through Telegraf. For security reasons, we stored the API key

in the etc/environment file instead of directly in the Telegraf configuration file. With the

provided Telegraf configuration file (shown in Figure #16), the system was then able

to collect the metrics and send them to InfluxDB.

 29

5 Validation of results

In this chapter, we are going to describe the test we performed, following the

methodology applied by Battiston [2].

5.1. Methodology

The topologies described in [2] are depicted in the next page:

30 5| Validation of results

Figure 17: Topologies available for tests in the CHIMA framework [2]

We evaluated the new proposed CHIMA framework using the minimal test case

described in [2].

The test cases were simulated with FOP4 [13] using bmv2 instances as switches. To

evaluate detection and redeployment time, we used the built-in instruments

developed by Battiston in the previous framework [2]. Additionally, we examined

how the system responds to a traffic load with a step increase and sinusoidal variation

with a period equal to 10 times the sampling rate.

The tests were performed on a clean installation of Ubuntu 20.04 LTS in a virtual

machine with 8 dedicated virtual cores and 16GB of virtual RAM. The virtual machine

ran on a host machine with a Ryzen 5 3600 and 32GB of RAM.

5| Validation of results 31

We use the same methodology used in [2]. At the beginning of each experiment FOP4

sets up the simulated topology and the deploys the CHIMA service (MPLS routing,

INT Collector, CHIMAclients). The service runs for several seconds, then the latency

of the target link is artificially increased in order to simulate a failure to match the

target SLA causing a redeployment of the service in the backup path. A dedicated

script is responsible to save timestamps of the events to calculate the time needed to

redeploy the service and the time to detect the failure.

5.2. Numerical results

In this chapter we are going to presents the results we obtained in various simulated

behaviours.

It is worth remembering that in the previous CHIMA implementation, we were

assuming that the need for an EWMA to create an average of the results was impacting

the overall performance in terms of detecting an SLA violation. The problem of the

delay introduced by the EWMA was studied by Battiston and can be summarized in

the following picture:

Figure 18: Detection time with minimal topology and polling interval 0.1s in function of the

EWMA coefficient [2]

As we can see, the lower the EWMA coefficient, the shorter the detection time.

5.2.1. Detection time

In this section, we are going to compare the mean detection time in the minimal

topology of the tests performed by Battiston with the test performed using the new

32 5| Validation of results

CHIMA implementation. The new tests were performed by conducting 15 tests for

every polling interval, and then the results were arithmetically averaged.

Figure 19: mean detection delay with the previous CHIMA framework [2]

Figure 20: mean detection delay with the new CHIMA framework

As we can see, for every polling interval the mean detection time is 150ms lower with

respect to the previous CHIMA implementation with EWMA.

5.2.2. Containers saturation

In this paragraph, we will conduct new tests on the newly proposed CHIMA

framework. The aim of these tests is to evaluate how the system performs under

different traffic loads. To accomplish this, we developed several Python scripts to

5| Validation of results 33

generate various types of traffic. The tests were performed with a fixed polling interval

of 1s to provide better visualization of the time series.

5.2.2.1. Step traffic according to Poisson arrivals

Here we are going to propose the results of how the system responds to a stepwise

increase in traffic generated according to a Poisson process in the minimal topology.

For this test I used a python script I developed for the scope:

Figure 21: Python script to send UDP traffic according to a Poisson statistic.

To perform the test, we reduced the waiting time between two consecutive packets by

a factor of 0.75 every 10 seconds using the built-in function in the script. The results

are shown in the following figure.

34 5| Validation of results

Figure 22: Latency of the first docker container (values in microseconds)

Figure 23: step increase of the number of packets sent per second

As we can see, after a certain threshold (in our system, more than 350 packets/second),

the value of latency on link 101_101 tends to increase significantly while the other links

remain within a certain range. This can be easily explained by looking at the minimal

topology (Figure 13.a) and considering the design of the CHIMA framework. The

traffic entering the network through a specified port (in this case, UDP 12345) is sent

through the following path: 1-2-1-3-4. Nodes 2 and 4 are represented in Figure 13 as

the nodes 101_101 and 102_102, respectively, and they are the Docker images running

the CHIMA client. After a certain threshold of traffic, the Docker containers cannot

handle it and start to send the traffic to the next CHIMA client (in this case, 102_102)

at a rate lower than the incoming traffic ratio. This causes an increase in latency in

node 2 (101_101 in InfluxDB) but normal behaviour in node 4 (102_102 in InfluxDB)

because it receives packets from the first CHIMA client at a rate that is slightly below

the maximum it can handle, considering every Docker container has the same

resources assigned. We have seen that this behaviour is repeated with the medium and

large topologies, saturating just the first container but not the following ones.

In the following graph, we can observe the behaviour of the second Docker function.

The cyan line represents the number of packets per second, while the purple line

represents the second Docker function. In the first stage, the mean packets per second

were set to 10 packets per second. Then, it was increased to 420 packets per second,

which caused saturation in the first Docker container but not in the second one.

5| Validation of results 35

Figure 24: Latency of the second docker container (yellow line, values in microseconds) in

function of a step increase in traffic (green line, values in packets per second)

In this graph, as soon as the traffic overcome a certain threshold, even if the first docker

contain saturates, the other functions (e.g. the second CHIMAclient docker container)

remain quite constant in values. This confirms what we observed in the previous

graphs, namely that the first docker container is saturated and cannot handle the

incoming traffic, while the other containers can still operate normally. Also, the latency

of the second docker container tends to be more stable after the saturation of the link

101_101.

5.2.2.2. Sinusoidal traffic

Here we are going to present the results of a test where we examined how the CHIMA

system responds to a sinusoidal variation in traffic with a peak value near the

saturation threshold of our specific system in the minimal topology. The test was

conducted with a polling interval of 1s and a sinusoidal period of 10s.

We used a Python script to generate a sinusoidal traffic pattern where the traffic

intensity varied between 1 packet per second to 360 packets per second following a

sinusoidal wave. The results of this test are presented in the following pages.

36 5| Validation of results

Figure 25: Python script that generates a sinusoidal traffic

Here is portrayed the result obtained by running the script on the first docker

container.

Figure 26: Latency of the first docker container (purple line, values in microseconds) with

sinusoidal traffic in input (green line, values in packets per second)

As we can see, there is a clear correlation between the latency and the number of

packets sent per second, where low packet interarrival rates are associated with low

saturation of the first docker function, and high packet interarrival rates are associated

with a higher saturation of the first docker function.

As tested in the previous chapter, we are now going to present the results of how the

other links respond to the sinusoidal traffic. The cyan line represents the evolution

5| Validation of results 37

over time of the packets per second, ranging from 1 to about 420 packets/s. It is

important to note that the latency of the first docker image with the sinusoidal traffic

spikes up to 20 ms while the latency of the other links remains in the range between

0.3 ms to 0.6 ms, with variations not correlated to the sinusoidal wave, as we can see

in the following graph:

Figure 27: Latency of the other links with a sinusoidal traffic in input (green sinusoidal line)

It will be interesting to investigate how the jitter variation is. As we can see, even with

the sinusoidal traffic, the jitter is not affected, remaining quite constant and near zero

during the stress-test, meaning that we have low variation in the latency of the links

and quite constant variations.

Figure 28: Jitter of the other links with a sinusoidal traffic in input (green sinusoidal line)

These results show clearly a limitation in the capacity of the CHIMAclient running

inside docker containers to handle a certain number of packets carrying INT data. This

suggests implementing soon a mechanism to avoid the insertion of INT data in every

packet to avoid the saturation of the resources.

 39

6 Conclusions

In this work, we explored the CHIMA framework, its advantages, drawbacks, and

how we improved it. We introduced the Telegraf agent to collect the metrics generated

through INT and used InfluxDB to visualize and manage them. We enhanced the

performance of SLA violation detection by reducing the detection time and avoiding

the use of EWMA. We performed tests to expose the limitations of CHIMAclient

running inside Docker containers.

The proposed new CHIMA framework is faster in detecting SLA violations, more

reliable using arithmetic average instead of EWMA, and has a new time-series

database to visualize data.

Further work will involve porting this infrastructure into a testbed to analyze its

behavior in a non-virtualized environment.

 41

Bibliography

[1] T. P. A. W. Group et al., “In-band Network Telemetry (INT)

Dataplane Specification - Version 2.1,” 2018. [Online]

https://p4.org/p4-spec/docs/INT_v2_1.pdf.

[2] Battiston Elia: “CHIMA: a framework for network services deployment and

performance assurance” Tesi di Laurea [Online]

https://www.politesi.polimi.it/handle/10589/181816?mode=simple

[3] Open Network Foundations: https://opennetworking.org/p4/

[4] Ismail Butun, Yusuf Kursat Tuncel, Kasim Oztoprak, “data Application Layer

Packet Processing Using PISA Switches”. In MDPI, Sensors, 2021, 21, 8010.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards

an open, distributed sdn os,” in Proceedings of the third workshop on

Hot topics in software defined networking, 2014, pp. 1–6.

[6] InfluxDB and Telegraf. Available: https://www.influxdata.com/

[7] BPF Compiler Collection (BCC) Available: https://github.com/iovisor/bcc

[8] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network

functions placement and routing optimization,” in 2015 IEEE 4th In-

ternational Conference on Cloud Networking (CloudNet). IEEE, 2015,

pp. 171–177.

[9] M. A. Khoshkholghi, M. G. Khan, K. A. Noghani, J. Taheri, D. Bhamare,

A. Kassler, Z. Xiang, S. Deng, and X. Yang, “Service function chain

placement for joint cost and latency optimization,” Mobile Networks and

Applications, vol. 25, no. 6, pp. 2191–2205, 2020.

[10] M. Mechtri, C. Ghribi, O. Soualah, and D. Zeghlache, “NFV orches-

tration framework addressing SFC challenges,” IEEE Communications

Magazine, vol. 55, no. 6, pp. 16–23, 2017.

https://opennetworking.org/p4/
https://www.influxdata.com/
https://github.com/iovisor/bcc

42 | Bibliography

[11] D. Hancock and J. Van der Merwe, “Hyper4: Using P4 to virtualize

the programmable data plane,” in Proceedings of the 12th International

on Conference on emerging Networking EXperiments and Technologies,

2016, pp. 35–49.

[12] P. Zheng, T. Benson, and C. Hu, “P4visor: Lightweight virtualization

and composition primitives for building and testing modular programs,”

in Proceedings of the 14th International Conference on Emerging

Networking Experiments and Technologies, 2018, pp. 98–111.

[13] FOP4: Function Offloading Prototyping with P4 [online]

https://github.com/ANTLab-polimi/FOP4

[14] “INT Collector - Atmosphere project.” [Online]. Available:

https://github.com/eubr-atmosphere/distributed-network-federation-

probe/tree/master/int collector

[15] IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)

Available: https://www.rfc-editor.org/rfc/rfc3393

https://github.com/ANTLab-polimi/FOP4
https://www.rfc-editor.org/rfc/rfc3393

 43

List of Figures

Figure 1 The P4 ecosystem [3] ... 3

Figure 2 P4 workflow [3] .. 4

Figure 3 INT application modes .. 6

Figure 4 Packet carrying INT [4] ... 7

Figure 5: Representation of the steps needed to perform a redeployment of the service

through the new path after a SLA violation .. 9

Figure 6: Example of a service function chain mapped into a physical topology [2] .. 10

Figure 7: The previous CHIMA “ecosystem” [2] .. 11

Figure 8: Stages of the template pipeline [2] ... 12

Figure 9 Snippet of basic.p4 [2] ... 13

Figure 10: Example of routing by means of MPLS in the CHIMA framework [2] 14

Figure 11: eBPF code snippet, EWMA calculation of latency and jitter 15

Figure 12: Snippet of the userspace python script .. 16

Figure 13: The previous CHIMA's collector implementation on metric calculation [2]

 .. 22

Figure 14: Snippet of the new eBPF collector [2] .. 23

Figure 15: Snippet of the new python script userspace ... 24

Figure 16: the used Telegraf configuration file ... 25

Figure 17: Topologies available for tests in the CHIMA framework [2] 30

Figure 18: Detection time with minimal topology and polling interval 0.1s in function

of the EWMA coefficient [2] ... 31

Figure 19: mean detection delay with the previous CHIMA framework [2] 32

Figure 20: mean detection delay with the new CHIMA framework 32

Figure 21: Python script to send UDP traffic according to a Poisson statistic. 33

Figure 22: Latency of the first docker container (values in microseconds) 34

Figure 23: step increase of the number of packets sent per second 34

44 | List of Figures

Figure 24: Latency of the second docker container (yellow line, values in microseconds)

in function of a step increase in traffic (green line, values in packets per second) 35

Figure 25: Python script that generates a sinusoidal traffic .. 36

Figure 26: Latency of the first docker container (purple line, values in microseconds)

with sinusoidal traffic in input (green line, values in packets per second) 36

Figure 27: Latency of the other links with a sinusoidal traffic in input (green sinusoidal

line) .. 37

Figure 28: Jitter of the other links with a sinusoidal traffic in input (green sinusoidal

line) .. 37

 45

Acknowledgments

I would like to thank my parents, my grandparents, and my aunt Antonella who have

always supported me in my studies, both financially and emotionally. I would also

like to thank my supervisor Giacomo Verticale for his support and guidance during

the thesis writing process.

