

Computation of Flexible

Skylines in a distributed

environment

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE AND ENGINEERING

INGEGNERIA INFORMATICA

Author: Emilio De Lorenzis

Student ID: 10612395

Advisor: Davide Martinenghi

Academic Year: 2021-22

 i

Abstract

Skyline queries are a way of finding interesting data within a large dataset by

considering attributes all at the same level. Flexible skylines, on the other hand, are

methods of finding interesting data by applying constraints on the attributes, thereby

also reducing the amount of data returned. The computation of these skylines can

become very time-consuming in the case of very large datasets. In this thesis, we will

implement parallel computation algorithms for these datasets, trying to reduce the

execution time as much as possible. We will introduce several algorithms for parallel

computation taken from the literature applied to skyline computation and also adapt

them to the computation of the Flexible Skyline ND and PO operators. We will try to

introduce improvements to these algorithms with an initial filtering phase aimed at

decreasing the dataset size before performing the parallel phase, and once it is

established that the sequential part is the most expensive, we will propose an all

parallel algorithm in which we will eliminate it totally. To carry out the parallelization

of these algorithms, we will use the PySpark framework and see in detail how these

algorithms behave by changing the size of the dataset and the dimensions.

Key-words: Skyline, Flexible Skyline, PySpark, Parallel Algorithms.

 iii

Abstract in italiano

Le Skyline query sono un modo per trovare dati interessanti all’interno di un dataset

di grandi dimensioni che considerano gli attributi tutti allo stesso livello. Le Flexible

Skyline invece, sono dei metodi per trovare dati interessanti applicando dei vincoli

sugli attributi, riducendone cosi anche la quantità di dati restituiti. Il calcolo di queste

Skyline può diventare molto dispendioso nel caso di dataset di grandi dimensioni. In

questa tesi andremo ad implementare algoritmi paralleli per il calcolo di questi set di

dati cercando di diminuirne il tempo di esecuzione quanto più possibile. Introdurremo

diversi algoritmi per il calcolo parallelo presi dalla letteratura applicati al calcolo delle

Skyline e li adatteremo anche al calcolo degli operatori Flexible Skyline ND e PO.

Cercheremo di introdurre miglioramenti a questi algoritmi con una fase di filtraggio

iniziale volta a diminuire la grandezza del dataset prima di effettuare la fase parallela

e una volta assodato che la parte sequenziale è la più dispendiosa, proporremo un

algoritmo tutto in parallelo in cui la elimineremo del tutto. Per effettuare la

parallelizzazione di questi algoritmi utilizzeremo il framework PySpark e vedremo nel

dettaglio come si comportano questi algoritmi cambiandone la grandezza del dataset

e le dimensioni.

Parole chiave: Skyline, Flexible Skyline, PySpark, Algoritmi Paralleli.

 v

Contents

Abstract ... i

Abstract in italiano .. iii

Contents ... v

1 Introduction ... 1

1.1. Motivations and objectives of the work ... 1

1.2. Structure of the work... 3

1.3. Thesis contributions .. 4

2 Preliminaries ... 5

3 Sequential Algorithms .. 15

3.1. Skyline Algorithms .. 16

3.1.1. Block Nested Loops (BNL) .. 16

3.1.2. Sort Filter Skyline (SFS) ... 17

3.1.3. Sort and Limit Skyline algorithm (SaLSa) ... 18

3.2. Flexible Skyline Algorithms ... 19

3.2.1. ND computation ... 19

3.2.2. PO computation .. 23

4 Parallel Algorithms .. 25

4.1. Random Partitioning ... 27

4.2. Grid Space Partitioning ... 28

4.3. Angle-based Space Partitioning ... 31

4.4. One-dimensional Slicing (Sliced Partitioning) ... 34

5 Improvement of Parallel Algorithms ... 37

5.1. Grid Filtering .. 38

5.2. Representative Filtering .. 42

5.3. All parallel Algorithm without sequential phase 49

6 Experimental Settings ... 55

6.1. Pyspark framework ... 55

6.2. Computational environment and packages utilized 56

7 Experimental Results ... 57

vi

7.1. Summary of findings ... 58

7.2. Execution Time of the Serial Algorithms .. 60

7.3. Execution Time of the Parallel Algorithms .. 64

7.4. Execution Time of the Improved Parallel Algorithms 71

7.5. Change the cardinality ... 78

7.6. Change the number of dimensions .. 80

7.7. Change the number of partitions ... 82

7.8. Change the number of cores ... 84

8 Related work ... 87

9 Conclusion and future developments .. 89

Bibliography ... 91

List of Figures ... 93

List of Tables .. 97

Acknowledgments ... 99

 1

1 Introduction

One of the main tasks when working with big data is to find all the most interesting

data in a dataset, whether working in the field of Database Systems or in the field of

Data Mining or Machine learning. Multi-criteria analysis [1] deals with decision-

making applications, selecting the best alternatives in different contexts, such as

databases, by finding the best tuples that are not dominated by any other.

1.1. Motivations and objectives of the work

In recent years, with the growth of big data, attempts are being made to find a way to

search within larger and larger datasets, the data that might be more interesting and

to pay special attention to. Skyline queries are an efficient and fast way to select a

subset of these huge datasets that might be more interesting, returning the set of tuples

not dominated by any other tuple. We have that a tuple t dominates another tuple s if

and only if t is not worse in any attribute than s and strictly better in at least one.

The top-k or ranking queries approach [2], instead, involves reducing the original

multi-objective problem into a single-objective problem using a scoring function. This

function incorporates parameters, such as weights, to adjust scales and reflect the

user's preference for different attributes. Skylines provide a global view of data that

might be of interest but, unlike top-k queries, do not take user preferences into account

because they consider attributes all at the same level, in addition they might contain

too many tuples and thus give too little useful information that cannot help the user

make decisions. The greater the dimensionality of the attributes, the larger the skyline

set will be.

To try to overcome these problems in this thesis, we will also discuss Flexible skylines

[3], which are a hybrid between Skyline queries and top-k queries where with

constraints on attributes we try to give different importance to different attributes. The

concept of F-dominance was introduced for this purpose: A tuple t F-dominates

another tuple s if and only if t is always better than or equal to s according to all scoring

functions in F. Flexible skylines thus return a subset of the skylines and are divided

into 2 operators: ND which returns the subset of non F-dominated tuples and PO

2 1|Introduction

which returns a subset of ND representing all tuples that are potentially optimal with

respect to a scoring function in F. A benefit of using F-skylines is that the cardinality

of the interesting tuples decreases compared to that of skylines since we apply

constraints on the attributes, so the tighter the constraints, the narrower the set of

results. Like skylines, these also suffer from dimensionality, and the more we increase

the dimensions, the larger these subsets will be.

In this thesis, several algorithms will be presented for computing Skylines and Flexible

Skylines. We will see how the centralized version of these algorithms is difficult to use

as the cardinality of the dataset increases, as the execution time of these algorithms

will become unmanageable. Therefore, it is important for us to introduce parallel

frameworks to try to divide the computation of these subsets into several partitions

that will be executed in parallel. Each partition will have a part of the dataset and will

return a local skyline that will be equal to the skyline set of that subset of points and

not all the dataset. Once all the local skylines have been computed, they will merge

and there will be a sequential phase in which we will find the global skyline from the

local skylines found from each partition.

The important goal is to find the best possible partitioning in order to have local

skylines as small as possible and thus reduce the final sequential phase, which will be

the slowest. Later in this thesis we will present improvements to these types of

partitioning by attempting to perform an initial filtering phase, thus decreasing the

load on the parallel part, and then we will study a method to eliminate the sequential

phase totally.

One aim of this thesis will be to implement the algorithms in both the centralized and

parallel versions with all the types of partitioning widely used for skyline queries and

apply them to our specific case of the Flexible Skyline computation using the PySpark

framework [4], and to verify which algorithm performs best and what conditions

makes it perform the best.

Another goal will therefore be to find new algorithms that allow for greater speed of

execution, in the next chapters we will look at initial point filtering techniques and also

introduce a new algorithm for computing the most representative points for filtering,

which in this thesis we have adapted to make them work for both skyline computation

and Flexible Skyline operators.

After that, algorithms will be proposed in which the final sequential part will be

eliminated for the computation of the Flexible Skyline operators ND and PO, and as

we will see, these algorithms will be the ones that will give us the best results

compared to the other techniques because we will eliminate the sequential part which

is the longest to perform.

We will try to increase the cardinality and dimensionality of the datasets as much as

possible, and will use both a local machine with 4 cores and a virtual machine granted

by the Polimi Datacloud with 30 cores to run the algorithms.

1|Introduction 3

1.2. Structure of the work

The first chapter is the introduction, after that, the second chapter called preliminaries,

focuses on giving a theoretical definition of Skylines and Flexible skylines, explaining

their properties and the theorems used to compute them. We will also see the

distinction of the computation of the two operators ND and PO in different strategies.

In the third chapter we will introduce the sequential algorithms for skyline and

Flexible skyline computation, in particular we will see Block Nested Loop (BNL), the

Sort-Filter-Skyline Algorithm (SFS) and the Sort and Limit Skyline algorithm (SaLSa)

for Skyline computation, while for ND computation we will see sorted and unsorted

versions of two main algorithms, 2-phase LP and 1- and 2-phase VE. Finally, for the

computation of PO we will see two main algorithms, one applying a Primal PO Test

and the other performing the same version but with the Dual version.

In chapter four, we will introduce parallel algorithms with different types of

partitioning, and in particular we will look at random partitioning, grid partitioning,

angular-based partitioning and One-Dimensional Slice Partitioning.

After that, in the fifth chapter we will try to improve these algorithms by applying

several enhancements. First of all, by applying an initial filtering phase so as to

decrease the initial dataset using certain techniques, thus eliminating all those points

that cannot definitely be Skyline points. And after that we will see an algorithm that

eliminates the final sequential phase, and performs everything in parallel.

In Chapter 6, we will introduce the Spark framework and the environment where the

code will be executed. We will also present the packages utilized for computing the

various algorithms.

In chapter seven we will verify the results of these algorithms performed both with a

local machine with 4 cores and with a virtual machine with 30 cores. We will analyse

the results using synthetically created datasets, paying particular attention to the

anticorrelated ones, which take the longest to finish the computation. We will change

the cardinality of these datasets and dimensionalities to see how long the algorithms

take to finish. We will also look at how changing the number of partitions affects the

duration of the parallel algorithms and how changing the number of cores affects the

execution time.

Finally, in Chapters eight and nine we will discuss the related works and the

conclusions.

4 1|Introduction

1.3. Thesis contributions

The contributions of this thesis are several. First, pre-existing algorithms for skyline

computation and Flexible Skyline operators are introduced and tested in using Python

as a programming environment. After that, the Spark framework is introduced with

which we are going to parallelize the computation of these algorithms.

One of the contributions of this thesis is to take some partitioning algorithms from the

literature applied so far only for Skyline computation, and readapt them for the

computation of the Flexible Skyline ND and PO operators.

We will see some improvements to these algorithms, some taken from the literature,

others introduced for the first time in this thesis. The one proposed in this thesis is to

do filtering with representatives points taking the first n sorted points of each partition

after the angular partitioning technique. Another contribution will be to take this

technique, and readapt it to the computation of the ND set with some improvements.

Another contribution will be to create a parallel algorithm without a sequential part

that is good for the computation of the two Flexible Skyline operators ND and PO.

Having taken all these algorithms, we will implement them using the Pyspark

framework and derive an experimental analysis in which we will test the efficiency of

the various algorithms and find the optimal setting to make them work best.

 5

2 Preliminaries

In this chapter, we will give a theoretical definition to the concept of Skyline and

Flexible Skyline, introducing their definitions and discussing their properties. All

definitions, theorems and results have been taken from the literature and explained in

this chapter using examples to facilitate the understanding. We will look in detail at

two methods for the computation of ND points using two different theorems and two

methods for the computation of PO to solve a LP, one with primal and the other with

dual.

2.1. Skyline query

The skyline query was first introduced in [5] to find all the best tuples in a database,

and after that it was adapted to more fields. It is based on the concept of dominance,

in fact a skyline query returns all tuples (points) that are not dominated within a

dataset. In this thesis we consider smaller values as better, but it is only a convention

we use here, the opposite could be used. Let us first introduce the definition of

dominance between tuples.

Definition 2.1: Given two tuples t, u ∈ ℝd belonging to the same dataset S, t dominates

u, written t ≺ u, if and only if t is not worse than u in all dimensions and better in at

least one. Equivalently:

𝑡 ≺ 𝑢 ↔ {

∀𝑖 ∈ [1, 𝑑] → 𝑡[𝑖] ≤ 𝑢[𝑖]

∃𝑗 ∈ [1, 𝑑] → 𝑡[𝑗] < 𝑢[𝑗]

(2.1.1)

Thus we have that the skyline set of a Dataset S, denoted by SKY(s) is equal to:

 𝑆𝐾𝑌(𝑠) = {𝑡 ∈ 𝑠|∄𝑢 ∈ 𝑠. 𝑢 ≺ 𝑡} (2.1.2)

The first formula (2.1.1) gives us the definition of dominance between tuples, telling

us when one tuple dominates another and is therefore “better”. The second (2.1.2)

gives us the definition of the Skyline set which is equal to all non-dominated tuples

6 2|Preliminaries

within a dataset, hence those tuples for which there is no “better” tuple within the

same dataset.

Consequently, we can also give a definition to the set of dominated tuples that will be

simply equal to the set of tuple of given dataset that are not Skyline.

 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝑠) = 𝑆 − 𝑆𝐾𝑌(𝑠) (2.1.3)

We can also give another definition of Skyline by introducing the concept of monotone

scoring functions. Let us first introduce the definition of a monotone scoring function:

Definition 2.2: A scoring function f is a function that takes a tuple with non-negative

real values for attributes and returns a non-negative real value representing the score.

For a tuple t belonging to a dataset S, the value f(t) represents the score. We have that

a scoring function F is monotone if, for any tuple t, u on S, we have that:

 ∀ 𝑖 ∈ [1, 𝑑] | 𝑡[𝑖] ≤ 𝑢[𝑖] → 𝑓(𝑡) ≤ 𝑓(𝑢) (2.2.1)

We could see the scoring functions, in our case where we consider the lowest values

to be the better ones, as the measure of distance from the origin of the point, preferring

those closer to it. The new definition of Skyline can be specified in this way as shown

in [3]:

 𝑆𝐾𝑌(𝑠) = {𝑡 ∈ 𝑠|∃𝑓 ∈ 𝑀𝐹. ∀ 𝑢 ∈ 𝑠. 𝑢 ≠ 𝑡 → 𝑓(𝑡) < 𝑓(𝑢)} (2.2.2)

Where MF is the infinite set of all monotone scoring functions.

Example: An example of a Skyline computation could concern the choice of a

restaurant. We take into account two characteristics of each restaurant, the average

cost (in euros) per person and the distance from the centre (Km). We want to find all

restaurants that have the best compromise between these two characteristics, to have

both as low as possible. Suppose we have 5 restaurants with the following values for

the attributes A={cost, distance}, r1={30, 2}, r2={20, 4}, r3={35, 2.5}, r4= {50, 1}, r5 = {40, 3}.

2|Preliminaries 7

Figure 2.1: A Skyline example with 5 points in 2 dimensions

As we can see in the figure 2.1 we have that the skyline points are r1, r2, r4, i.e. all the

points that have no other points that have both lower cost and distance values. We can

also see the set of dominated points that is the one in the upper right area and is

composed of points r3 and r5 which are both dominated by r1.

8 2|Preliminaries

2.2. Flexible Skyline

2.2.1 F-dominance

With the flexible skylines we try to overcome the problem of skyline queries which do

not take into account user preferences by applying constraints on attributes. To do this

we present two operators introduced in [3] that behave like skyline queries but are

applied to a non-empty set of monotone scoring function F. From now on, we will

introduce another type of dominance between tuples that takes scoring functions into

account.

Definition 2.3: (F-dominance) Let F be a non-empty set of monotone scoring functions

and t, u tuples belonging to a dataset S, with t ≠ u. We have that t F-dominates u, written

as t ≺F u , if:

 ∀ 𝑓 ∈ 𝐹 → 𝑓(𝑡) ≤ 𝑓(𝑢) (2.3.1)

It can be deduced from the definition that F-dominance is transitive. So if t ≺F u, and

u ≺F r, then t ≺F r.

Definition 2.4: (Dominance Region) Given a tuple t and a set of monotone scoring

functions F, the F-dominance region DR(t; F) of tuple t in a dataset S under the set F is

the set of all tuples that are F-dominated by t:

 𝐷𝑅(𝑡; 𝐹) = { 𝑢 ∈ 𝑠 | 𝑡 ≺𝐹 𝑢 } (2.4.1)

Example: Given the tuple t = (1, 0) and u = (0.5, 1), and the monotone scoring functions

𝑓1(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑓2(𝑥, 𝑦) = 2𝑥 + 𝑦. We have that t ≺F u, since the definition 2.3 holds:

f1(t) = 1 < f1(u) = 1.5 and f2(t) = f2(u) = 2.

2|Preliminaries 9

2.2.2 Non-dominated Flexible Skyline (ND)

We now introduce the first Flexible Skyline operator, called non-dominated Flexible

Skyline (ND), which is the set of all tuples that are not F-dominated within a dataset.

Definition 2.5: The set of non-dominated Flexible Skyline (ND) of a dataset s with

respect to a set of monotone scoring functions F ⊆ MF, is defined as:

 𝑁𝐷(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∄ 𝑢 ∈ 𝑠. 𝑢 ≺𝐹 𝑡 } (2.5.1)

This formula 2.5.1 is similar to the Skyline formula except that instead of simple

dominance ≺ we have F-dominance ≺F .

We now introduce two main strategies for calculating ND when each function F is a

monotonically transformed, linear-in-the-weights (MLW) function, i.e. a function with

the following form:

𝑓(𝑡) = ℎ(∑ 𝑤𝑖𝑔𝑖(𝑡[𝑖])

𝑑

𝑖=1

)

(2.5.2)

Where W = (w1, … , wd) ∈ W(C), and W(C) is the subset of all normalized weight vectors

that satisfies C, C is a set of linear constraints, and h and gi are continuous and

monotone transforms, such that are all either non-decreasing or non-increasing. We

refer to gi(t[i]) as the marginal score of tuple t.

Theorem 1: (F-dominance test) Let F be a set of MLW functions subject to a set C = {C1, ...

,Cc } of linear constraints on weights, where 𝐶𝑗 = ∑ 𝑎𝑗𝑖
𝑑
𝑖=1 𝑤𝑖 ≤ 𝑘𝑗 (for j ∈ [1,c]) . Then, t

≺F u if and only if the following linear programming (LP) problem in the variables W

= (w1, ... ,wd) has a non-negative solution:

 minimize ∑ 𝑤𝑖(𝑔𝑖(𝑢[𝑖]) − 𝑔𝑖(𝑡[𝑖])𝑑
𝑖=1 ,

subject to 𝑤𝑖 ∈ [0,1] 𝑖 ∈ [1, 𝑑],

 ∑ 𝑤𝑖 = 1𝑑
𝑖=1 ,

 ∑ 𝑎𝑗𝑖𝑤𝑖 ≤ 𝑘𝑗
𝑑
𝑖=1 𝑗 ∈ [1, 𝑐].

(2.5.3)

10 2|Preliminaries

Example: Given 2 tuples t = (0.3, 0.5) and u = (0.6, 0.35) and the following constraints on

the weights 𝑤2 ≤ 𝑤1, according to Theorem 1, we have that t ≺F u if and only if this LP

has a non-negative solution:

minimize 𝑤1(0.6 − 0.3) + 𝑤2(0.35 − 0.5)

subject to 𝑤1, 𝑤2 ∈ [0,1],

 𝑤1 + 𝑤2 = 1,

 𝑤2 ≤ 𝑤1.

In this case we have that t ≺F u when 𝑤1 = 1 and 𝑤2 = 0.

This strategy of computation of ND is heavy and time-consuming because we have to

solve a different LP problem for each of the F-dominance Tests, that are O(N2), where

N is the cardinality of the dataset. The second strategy involves computing the

dominance region of each point and eliminating all points that are part of at least one

of these regions. By doing so we avoid solving linear problems that are time-

consuming, and we only calculate the dominance region of each point and check

whether the others are part of it or not, and if so we can deduce if a point is not part of

the ND set. To compute the dominance region of t (DR(t; F)), we have to compute the

vertices of the convex polytope W(C) . For this purpose, we introduce a new theorem:

Definition 2.6: (F-dominance Region) Let F be a set of MLW functions subject to a set C =

{C1,...,Cc } of linear constraints on weights, where Cj = ∑ aji
d
i=1 wi ≤ kj (for j ∈ [1,c]) and

let W(1), … , W(q) be the vertices of the convex polytope W(C). The dominance region of

a tuple t under F is the locus of the points u defined by the q inequalities:

∑ 𝑤𝑖
(𝑙)

𝑔𝑖(𝑢[𝑖]) ≥
𝑑

𝑖=1
∑ 𝑤𝑖

(𝑙)
𝑔𝑖(𝑡[𝑖]), 𝑙 ∈ [1, 𝑞]

𝑑

𝑖=1

(2.6.1)

Theorem 2: A tuple t F-dominates another tuple u if and only if u belongs to the F-

dominance region of t, i.e. if u satisfies the equations of Definition 2.6:

 𝑡 ≺𝐹 𝑢 ↔ 𝑢 ∈ 𝐷𝑅(𝑡; 𝐹) (2.6.2)

Example: Let us take the same example as above. We have the constraint 𝐶 = {𝑤2 ≤ 𝑤1}

and we have to consider also 𝑤1 + 𝑤2 = 1 and 𝑤1, 𝑤2 ∈ [0,1]. The vertices of W(C) are

2|Preliminaries 11

 𝑊(1) = (1,0) and 𝑊(2) = (
1

2
,

1

2
). According to Theorem 2 we can compute the

dominance region DR(t; F) of t = (0.3, 0.5):

{
𝑢[1] ≥ 0.3

1

2
𝑢[1] +

1

2
𝑢[2] ≥

1

2
0.3 +

1

2
0.5

We have that the tuple u = (0.6, 0.35) satisfies this equations, so we have that t ≺F u.

The advantage of this strategy w.r.t. the first one is that the computation of the

dominance region DR(t; F) of a tuple t is computed only once, and so the computation

of the vertex enumeration of the polytope which introduce the most significant

overhead is performed only once.

Figure 2.2 : u is in the F-dominance region of t, so t ≺F u.

12 2|Preliminaries

2.2.3 Potentially Optimal Flexible Skyline (PO)

We now introduce the second operator, called Potentially Optimal Flexible Skyline

(PO), which returns a set of tuples considered optimal (the best) according to some

monotone scoring functions F.

Definition 2.7: The set of Potentially Optimal Flexible Skyline (PO) of a dataset s with

respect to a set of monotone scoring functions F ⊆ MF, is defined as:

 𝑃𝑂(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∃𝑓 ∈ 𝐹 . ∀𝑢 ∈ 𝑠. 𝑢 ≠ 𝑡 → 𝑓(𝑡) < 𝑓(𝑠)} (2.7.1)

We have that a tuple t that is potentially optimal is certainly also ND, but the fact that

it is not F-dominated is only a necessary condition for t to be potentially optimal and

not sufficient. There are two ways to find the PO set: start from the whole dataset and

find the set in one step or find the ND set first and then compute PO from that. In both

cases, we have to solve some LP and there are two strategies: solve the Primal or the

Dual PO test.

Theorem 3: (Primal PO Test) Let F be a set of MLW functions subject to a set C = {C1,...,Cc}

of linear constraints on weights, where Cj = ∑ aji
d
i=1 wi ≤ kj (for j ∈ [1,c]) and

𝑁𝐷(𝑠; 𝐹) = {𝑡1, 𝑡2, … , 𝑡σ, t}. Then 𝑡 ∈ 𝑃𝑂(𝑠; 𝐹) if and only if the following LP problem

in the variables 𝑊 = (𝑤1, … , 𝑤𝑑) and ϕ has a strictly positive optimal solution:

 maximize ϕ,

subject to ∑ 𝑤𝑖(𝑔𝑖(𝑢[𝑖]) − 𝑔𝑖(𝑡𝑗[𝑖])𝑑
𝑖=1 + 𝜙 ≤ 0 𝑗 ∈ [1, 𝜎],

 𝑤𝑖 ∈ [0,1] 𝑖 ∈ [1, 𝑑],

 ∑ 𝑤𝑖 = 1𝑑
𝑖=1 ,

 ∑ 𝑎𝑗𝑖𝑤𝑖 ≤ 𝑘𝑗
𝑑
𝑖=1 𝑗 ∈ [1, 𝑐].

(2.7.2)

2|Preliminaries 13

Theorem 4: (Dual PO Test) Let F be a set of MLW functions subject to a set C = {C1,...,Cc}

of linear constraints on weights, W(1), … , W(q) be the vertices of the convex polytope

W(C) and 𝑁𝐷(𝑠; 𝐹) = {𝑡1, 𝑡2, … , 𝑡σ, t}. Then 𝑡 ∈ 𝑃𝑂(𝑠; 𝐹) if and only if the following

linear system in the variables α = (𝛼1 , . . . , 𝛼𝜎) is unsatisfiable:

∑ 𝑤𝑖

(𝑙)
(∑ 𝛼𝑗

𝜎

𝑗=1
𝑔𝑗(𝑢𝑗[𝑖])) ≤

𝑑

𝑖=1
∑ 𝑤𝑖

(𝑙)
𝑔𝑖(𝑡[𝑖]), 𝑙 ∈ [1, 𝑞]

𝑑

𝑖=1

𝛼𝑗 ∈ [0, 1] 𝑗 ∈ [1, 𝜎],

∑ 𝛼𝑗 = 1.
𝜎

𝑗=1

(2.7.3)

2.2.4 Properties

The first property of the Flexible Skyline operators regards the relationship with the

Skyline operator SKY, in fact we have that when the monotone scoring function set

coincides with the infinite set of all monotone scoring functions MF, we have that ≺MF

coincides with ≺ and thus:

 𝑃𝑂(𝑠; 𝑀𝐹) = 𝑁𝐷(𝑠; 𝑀𝐹) = 𝑆𝐾𝑌(𝑠) (2.8.1)

From this property we can deduce that:

Property 1: PO is a subset of ND and ND is a subset of SKY:

 𝑃𝑂(𝑠; 𝐹) ⊆ 𝑁𝐷(𝑠; 𝐹) ⊆ 𝑆𝐾𝑌(𝑠) (2.8.2)

Another property of ND and PO is that they are monotone operators with respect to

the set of scoring functions.

Property 2: Given two sets F1 and F2 of monotone scoring functions, if F1 ⊆ 𝐹2 then:

 𝑁𝐷(𝑠; 𝐹1) ⊆ 𝑁𝐷(𝑠; 𝐹2)

𝑃𝑂(𝑠; 𝐹1) ⊆ 𝑃𝑂(𝑠; 𝐹2)

(2.8.3)

14 2|Preliminaries

From this property we can see that both the ND and PO sets become smaller as the

constraints become more restrictive.

Property 3: Let F be a set of MLW functions subject to a set C of linear constraints on

weights. For any dataset S, we have that 𝑃𝑂(𝑠; 𝐹) = 𝑃𝑂(𝑁𝐷(𝑠; 𝐹); 𝐹)

This property tells us that we can calculate the PO set either from the original dataset

S or from the ND set.

 15

3 Sequential Algorithms

This chapter will present some of the sequential algorithms for both the computation

of the Skyline and the ND and PO sets. All the algorithms we will see in this chapter

are taken from the literature.

Symbol Meaning

S Input dataset

t, u Tuples

C Constraints

F Family of MLW functions.

W Vertices of W(C)

SKY Skyline set

nd ND set

po PO set

f Sorting Function

n Number of partitions

P Partitions

d Number of dimensions

r Number of representatives

LS Local Set

GS Global Set

Table 5.1: Table of Notation

16 3|Sequential Algorithms

3.1. Skyline Algorithms

3.1.1. Block Nested Loops (BNL)

The first algorithm we will see for sequential Skyline computation was introduced by

Borzsony et al. [5] and is called Block Nested Loop (BNL). The basic idea is to use a

memory called window (SKY), initially empty, in the main memory. We scan the

original dataset S without performing any sorting and for each new tuple t we check

whether or not it is dominated by the tuples in SKY. If there is a tuple u in SKY that

dominates t, i.e. u ≺ t, then t is discarded, otherwise added to SKY. If the tuple is added

to SKY then we must check whether there are tuples in SKY previously added that are

dominated by the new addition. In this case, we sequentially scan SKY and discard all

tuples dominated by t from it. At the end of the scan of the entire dataset, only the

tuples belonging to the Skyline will be left.

Algorithm 1 Block Nested Loops (BNL)

1:

Input: S: dataset

Output: SKY: Skyline Set

SKY ← []

2: for t in S do

3: for u in SKY do

4: if u ≺ t then continue to line 2

5: for u in SKY do

6: if t ≺ u then SKY ← SKY \ { u }

7: SKY ← SKY ∪ { t }

8: return SKY

The advantage of this algorithm is that it is very simple and can be applied to a dataset

without doing any kind of data pre-processing, but is not very efficient when

increasing the cardinality of the dataset.

3|Sequential Algorithms 17

3.1.2. Sort Filter Skyline (SFS)

The SFS algorithm is an improvement of the BNL algorithm introduced by Chomicki et

al [7]. The algorithm is very similar to BNL, except that there is a pre-processing of the

data in which the tuples are sorted using a monotone function f. By performing this

sorting, we are sure that no tuple coming after a certain tuple t dominates it. So the

functioning of SFS is very simple, first the dataset is ordered using a monotone

function f, after which BNL is applied without, however, having to perform a check

on the set SKY as in BNL, because we are sure that once a tuple t has been added to

the set SKY, there can be no tuple within SKY that can be dominated by t.

Algorithm 2 Sort Filter Skyline (SFS)

1:

Input: S: dataset, f: sort function

Output: SKY: Skyline Set

SKY ← []

2: S_sorted ← f(S)

3: for t in S_sorted do

4: for u in SKY do

5: if u ≺ t then continue to line 3

6: SKY = SKY ∪ { t }

7: return SKY

Compared to BNL, we have greatly reduced the number of comparisons, however the

pre-processing phase could be heavy for very large datasets.

18 3|Sequential Algorithms

3.1.3. Sort and Limit Skyline algorithm (SaLSa)

This algorithm [8] was born with the idea of improving SFS by trying to avoid reading

the entire dataset S. The basic idea is that if the dataset is sorted using a monotone

function f, there is no need to check the entire dataset S but we can stop earlier. In

general, the number of comparisons may decrease a lot depending on the type of

function we use to sort the data.

The algorithm involves the initialization of a set of unread tuples U equal to the dataset

S and a stop point pstop, which will be used to stop the algorithm in advance. First we

need to perform the sorting using a monotone function f. After that we scan the set U

sequentially and compare it with the set SKY which will be initially empty. If no point

in SKY dominates the point under evaluation then we add it in SKY, and if necessary

update the value of the stop point. At the end of each iteration, the algorithm verifies

whether it can terminate by making a check. This check consists of seeing if the stop

point dominates all points in the set U that have not been read yet. If yes, the algorithm

terminates, otherwise it continues.

Algorithm 3 Sort and Limit Skyline algorithm (SaLSa)

1:

Input: S: dataset, f: sort function

Output: SKY: Skyline Set

SKY ← [], U ← S, stop ← false, pstop ← undefined

2: U ← f(U)

3: while not stop ∧ U ≠ ∅ do

4: p ← get next point from U, U ← U \ {p}

5: if not SKY ≺ p then SKY ← SKY ∪ {p}, update pstop

6: if pstop ≺ U then stop ← true

7: return SKY

The key factors that influences the performance of SaLSa are the choice of the sorting

function and the strategy for updating the stop point.

3|Sequential Algorithms 19

3.2. Flexible Skyline Algorithms

3.2.1. ND computation

There are two strategies for computing ND [3], the first is to start from the skyline set

and then calculate the ND set (2-phase), the second is to start from the entire input

dataset (1-phase). In the first case, no restriction is placed on the algorithm for

computing the skyline set, we will see two variants, one unsorted which uses BNL and

one sorted which uses SFS instead. It is also valid for the one-step version to choose

whether or not to order the input dataset. The main difference between these

algorithms is the way of checking the F-dominance, whether to verify it with Theorem

1 by solving LP, or to use Theorem 2 by solving a system of inequalities.

The main steps can be summarized by first choosing the number of phases: 1-phase if

we want to compute ND directly from the input dataset, 2-phase if we want to

compute ND after having computed the Skyline. After that, we choose whether or not

to apply sorting ('U' for the unsorted version, 'S' for the sorted version) to produce a

topological sort with respect to the F-dominance relation, i.e. if a tuple t precedes a

tuple u in the sorted input dataset, then u ⊀F t. To get the topological sort, we will use

as sort function a weighted sum in which the weights are the coordinates of the

centroid of the polytope W(C). Next, we choose the way in which to verify F-

dominance, and to do so we have seen two alternatives: the first by solving an LP

problem as done in Theorem 1 (denoted ‘LP’ in the name of the algorithm), and the

second by verifying whether the tuple is part of the dominance region of another tuple

as in Theorem 2, using the vertex enumeration of the polytope W(C) (denoted ‘VE’ in

the name of the algorithm).

We’ll see in chapter 7 that the Sorted algorithms are faster than the Unsorted, and the

second strategy to check the F-dominance with Vertex Enumeration is much faster

than the LP strategy. For this reason, we’ll see only the sorted 1-phase VE strategy.

20 3|Sequential Algorithms

3.2.1.1. ULP2 and SLP2

The first two algorithms we will see are ULP2 and SLP2, the principle of both is the

same, the only difference is the algorithm with which the skyline is computed from,

since they are 2-phase algorithms. ULP2 uses BNL to compute the skyline, while SLP2

uses SFS with a sorting function that is equal to the weighted sum with the coordinates

of the centroid of W(C) as weights.

Algorithm 4 ULP2

1:

Input: S: dataset, C: constraints, F: family of MLW functions.

Output: nd: ND Set

skyline ← BNL(S)

2: nd ← skyline

3: for s in skyline do

4: for t in nd in reverse order do

5: if s == t then continue to line 4

6: if t ≺F s then nd ← nd \ {s} and continue to line 3

7: return nd

Algorithm 5 SLP2

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions.

Output: nd: ND Set

1: S ← sort(S, W)

2: skyline ← SFS(S)

3: nd ← []

4: for s in skyline do

5: for t in nd do

6: if t ≺F s then continue to line 4

7: nd ← nd ∪ {s}

8: return nd

ULP2 after computing the skyline with BNL, initializes the ND set equal to the skyline,

and sequentially scans the entire skyline set comparing it with the ND set. Using

Theorem 1, it removes from the ND set all points F-dominated by the point under

consideration. SLP2, on the other hand, exploits initial sorting, so no tuple will ever be

removed from the ND set for the sorting property, and the vertices of the polytope

W(C) are computed only once at the beginning. So if a tuple is not F-dominated by all

the tuples in the ND set, it can be added to it and will never be removed from it.

3|Sequential Algorithms 21

3.2.1.2. UVE2 and SVE2

These two algorithms are the unsorted and sorted versions of the strategy that

performs the F-dominance check using Vertex Enumeration and thus Theorem 2. Being

two 2-phase algorithms, as always there is the first phase where there is the skyline

computation using BNL for the Unsorted version and SFS for the Sorted version.

Algorithm 6 UVE2

1:

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions.

Output: nd: ND Set

skyline ← BNL(S)

2: nd ← skyline

3: for s in skyline do

4: compute left-hand side of Inequalities

5: for t in nd do

6: if s == t then continue to line 4

7: if t ≺F s then nd ← nd \ {s} and continue to line 3

8: return nd

Algorithm 7 SVE2

1:

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions.

Output: nd: ND Set

S ← sort(S, W)

2: skyline ← SFS(S)

3: nd ← []

4: for s in skyline do

5: Compute left-hand side of inequalities

6: for t in nd do

7: if t ≺F s then continue to line 4

8: nd ← nd ∪ {s}

9: return nd

UVE2 after computing the skyline with BNL, initializes the ND set equal to the skyline,

and sequentially scans the entire skyline set, computing the left-hand side of the

inequalities one time for each point, and then compare it with the ND set. UVE2 scans

the unordered skyline set to verify that the point into consideration is part of the ND

set, compares it with all the different points in ND, and for each computes the right-

hand side of the inequalities.

If there is at least one point in the ND that by Theorem 2 F-dominates the point into

consideration, then it will be removed from the ND set and the iteration will continue,

otherwise if no point F-dominates it then it will be kept in the ND set. SVE2 on the

22 3|Sequential Algorithms

other hand, taking advantage of initial sorting and its property that a tuple that comes

later in the sorted dataset cannot F-dominate one that comes earlier, initializes the nd

set empty, and adds, by scanning the skyline set, the points that are not F-dominated

by any point within the ND set, according to Theorem 2.

3.2.1.3. SVE1 and SVE1F

Now we move on to the one-phase algorithms, but we will only consider the sorted

and VE ones because they are the fastest compared to the unsorted and LP versions.

SVE1 and SVE1F are both two algorithms that start from the original input dataset and

not from the skyline set like the others we have seen, and their peculiarity is that they

check the points one by one simultaneously verifying if they are skylines and if so if

they are part of the ND set or not.

Algorithm 8 SVE1

1:

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions.

Output: nd: ND Set

S ← sort(S, W)

2: nd ← []

3: for s in S do

4: for t in nd do

5: if t ≺ s then continue to line 3

6: compute left-hand side of Inequalities

7: for t in nd do

8: if t ≺F s then continue to line 3

9: nd ← nd ∪ {s}

10: return nd

Algorithm 9 SVE1F

1:

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions.

Output: nd: ND Set

S ← sort(S, W)

2: nd ← []

3: for s in S do

4: compute left-hand side of Inequalities

5: for t in nd do

6: if t ≺ s ∨ t ≺F s then continue to line 3

7: nd ← nd ∪ {s}

8: return nd

The difference between the two algorithms lies in the dominance check, SVE1 first

checks if the point is dominated by the ND set using simple skyline dominance and

then does the same with F-dominance. SVE1F on the other hand, combines both

3|Sequential Algorithms 23

dominance tests by doing a single scan of the ND set unlike SVE1 which in the worst

case will have to do it 2 times. The advantage of SVE1F is that if F-dominance has more

effect in making selection than simple dominance, we could decrease the number of

dominance tests a lot compared to SVE1.

3.2.2. PO computation

For the computation of PO [3], as for ND, several strategies can be implemented, such

as starting from the original input dataset or given property 3 for which 𝑃𝑂(𝑠; 𝐹) =

𝑃𝑂(𝑁𝐷(𝑠; 𝐹); 𝐹), starting from the ND set. Since checking for optimality is very time

consuming, we will see in this thesis two algorithms that both start from the ND set

that can be computed with any algorithm seen so far. The difference between the two

algorithms is in the Optimality test: the first algorithm use the Primal PO Test (Theorem

3), the second instead, the Dual PO Test (Theorem 4).

In both algorithms, a heuristic optimization technique can be used to try to reduce the

number of optimality tests, which will attempt to discard non-optimal tuples using an

incremental strategy. This strategy attempts to limit the number of σ tuples with which

to test whether a tuple t is potentially optimal or not. The test is done by solving an LP

problem that takes into account the marginal scores of all the σ + 1 tuples in the set,

but when σ is large this procedure may be too costly in terms of time. And here the

heuristic optimization technique comes into play: we solve an LP problem using only

a subset of σ tuples: if the solution to Theorem 3 or 4 tells us that t is not potentially

optimal, then we can safely discard t. This allows us to discard some tuples that are

not potentially optimal with small LP problems, so that the check with all σ tuples is

performed only for those tuples that cannot be discarded with smaller LP problems.

24 3|Sequential Algorithms

Algorithm 10 PO non-incremental(Primal and Dual)

1:

Input: nd: nd set, C: constraints, W: vertices of W(C), F: family of MLW functions

Output: po: PO set

po ← nd

2: for t in po in reverse order do

3: if isNonPO(t, po \ {t}) then po ← po \ {t}

4: return po

Algorithm 11 PO (Primal and Dual)

1:

Input: nd: nd set, C: constraints, W: vertices of W(C), F: family of MLW functions

Output: po: PO set

po ← nd

2: σ ← 2; lastRound ← false

3: while not lastRound do

4: if σ ≥ |po| - 1 then lastRound ← true

5: for t in po in reverse order do

6: T ← first min(σ, |po| - 1) tuples in po \ {t}

7: if isNonPO(t, T) then po ← po \ {t}

8: σ ← σ * 2

9: return po

In the non-incremental method we perform the Optimality Test of each tuple against

all the tuples in po except t. In the incremental method, instead, we initialize σ = 2,

which will give us small LP problems initially, this condition is necessary for pruning

but not sufficient, so if the non-optimality check of a tuple gives a negative answer it

does not necessarily mean that tuple is potentially optimal. For each t in PO we check

if it is not potentially optimal compared to the first σ tuples in PO, since according to

the order they are the best. In the last round where all remaining tuples are considered,

they are compared with all the other tuples still in PO, which now becomes a necessary

and sufficient condition for pruning. To check whether a tuple is not potentially

optimal in line 7, we can use either the Primal PO Test as in Theorem 3 or the Dual PO

Test as in Theorem 4.

 25

4 Parallel Algorithms

This chapter presents algorithms that enable us to parallelize the computation of the

Skyline and Flexible skyline operator, resulting in decreased computation time. These

algorithms operate by decomposing the dataset into multiple partitions, where each

partition is responsible to compute a skyline without having to consider all the points

in the dataset but only its assigned points, the resulting set of points is known as the

local set of a specific partition. Subsequently, a sequential phase is performed, where

the final skyline set, called global set since it collects all skyline points in the entire

dataset, is determined by merging the previously found local sets.

Algorithm 12 Parallel Algorithm

1:

Input: S: dataset, n: number of partitions

Output: GS: global set

LS ← [], P← []

2: P ← PartitionAlgorithm(S, n)

3: for p in P do

4: LS ← LS ∪ ComputeLocalSet(p)

5: GS ← SequentialPhase(LS)

6: return GS

Let us take the Skyline computation as an example, but the same applies to the Flexible

Skyline operators: we take a dataset S and we decompose it into n partitions S0, S1, ...,

Sn. We will have that 𝑆𝐾𝑌(𝑆) = 𝑆𝐾𝑌(𝑆𝐾𝑌(𝑆0) ∪ 𝑆𝐾𝑌(𝑆1) ∪ … ∪ 𝑆𝐾𝑌(𝑆𝑛)). The parallel

algorithm is divided into two phases, the first in which each partition i is assigned to

a thread that computes its local skyline set SKY(Si), and the second which involves

merging these local skyline sets and computing their global set SKY(S).

By applying specific partitioning to the initial dataset, we aim to reduce the time it

takes to complete the algorithm. The effectiveness of the partitioning directly impacts

the workload, with smaller local sets being preferred to decrease the workload in the

final sequential part, which is the slowest.

In this chapter we are going to introduce 4 types of partitioning taken from the

literature with the goal of dividing the workload and improving the algorithm's

26 4|Parallel Algorithms

efficiency. Our task in will be to present them and explain how the algorithms assign

points to a given partition.

Our final conclusions will be that all algorithms speed up execution time compared to

the centralized version because they are able to parallelize work on several partitions

simultaneously, but as we will see in chapter 7, some types of partitioning are more

effective than others depending on how they partition the space.

From now on, we will see these algorithms applied to 3 different types of datasets,

independent, correlated and anticorrelated. The difference between these is that an

independent dataset does not exhibit any proportional relationship between

dimensions, while the other two do. An anticorrelated dataset is characterized by

points in one dimension that have an inverse proportionality relationship with all the

points in another dimension. In contrast, a correlated dataset is one where the points

are directly proportional to one dimension.

Figure 4.1: The upper-left image displays an independent dataset, while the upper-

right a correlated one. In the bottom we have an anticorrelated dataset. All are 2d

datasets.

4|Parallel Algorithms 27

4.1. Random Partitioning

The initial partitioning method we will examine is Random Partitioning. This technique

was initially proposed in [9] with the goal of ensuring that each set Si represents a

sample of S that has similar structural characteristics. To achieve this, points are

randomly distributed among the various partitions, with the number of points evenly

allocated to the n partitions.

This partitioning method's key benefit is its simplicity since the random assignment of

points eliminates the need for pre-processing the data, as is required by other

techniques such as index computation or sorting. On the other hand, this method's

drawback is that it produces a comparatively large local skyline set in comparison to

other partitioning techniques. As a result, the sequential phase will require more effort,

and the algorithm's overall runtime will be impacted.

Figure 4.2: Application of Random Partitioning to three distinct datasets, each

containing 2000 points and 8 partitions where a different colour corresponds to a

different partition. The upper-left image displays an independent dataset, while the

upper-right a correlated one. In the bottom we have an anticorrelated dataset.

28 4|Parallel Algorithms

4.2. Grid Space Partitioning

The next partitioning technique we will examine is Grid Partitioning, which was first

introduced in [10]. This method entails dividing the space into an nxn grid to enable

parallel computation on different partitions. In this approach, each dimension is

divided into n parts, resulting in a total of nd partitions, where d denotes the total

number of dimensions. The simplest approach is to compute the local sets for all nd

partitions, combine them and sequentially compute the global set.

Despite this, this partitioning method is efficient because it enables us to eliminate

partitions that cannot contain points that belong to the global set. To accomplish this,

we employ a principle that is comparable to dominance between tuples, although it

involves a dominance relationship between partitions, with the corner points serving

as the basis for comparison. We use p.max and p.min to respectively represent the

maximum and minimum corners of a given partition p.

A partition's maximum corner p.max is the corner that has the highest (worst) values

on all dimensions, while its minimum corner p.min is the corner that has the lowest

(best) values on all dimensions.

Therefore, we can group every tuple between the best and worst representative point

together, enabling us to compute the local skyline of each square in the grid. An index

is computed for each specific point, and then all points with the same index are

grouped together within a specific partition:

𝑖𝑛𝑑𝑒𝑥(𝑥𝑖) = ∑⌊𝑥𝑖 ∗ 𝑁⌋ ∗ 𝑁𝑖−1

𝑑

𝑖=1

where xi is the point for which we are computing the index and N is the number of

partitions per dimension.

4|Parallel Algorithms 29

Example: Let us consider the following independent dataset of 40 points in two

dimensions, in which we want to apply grid partitioning with N=4 partitions per

dimension. We will then have a total of 42 partitions (grids).

Figure 4.3: An independent dataset with grid partition where a different colour

corresponds to a different partition.

This figure show us how grid partitioning works and how the points are distributed

between the partitions.

Using this type of partitioning, we will have many points in the local set that will be

dominated later in the computation of the global set, and this leads us to lose a lot of

time. In the next chapter, we’ll see how to use grid filtering to prune certain partitions

before the parallel phase, thereby saving some time.

30 4|Parallel Algorithms

With Grid Partitioning, we have no control on how many points the different

partitions will have, and we have limited control over the number of partitions since

they will depend on the number of dimensions and the number of slices per dimension

assigned to them, unlike Random Partitioning which manages to divide the work

equally between the various partitions and you can select as many partitions as you

want. However, it does manage to group the points within partitions better, managing

to eliminate many points in the parallel phase compared to random partitioning, thus

greatly reducing the local set.

Figure 4.4: An example of how data are partitioned using Grid Partitioning in a 2d

independent (upper-left), correlated(upper-right), anticorrelated (bottom) datasets

with 42 partitions where a different colour corresponds to a different partition.

As we can see from Figure 4.4, Grid Partitioning succeeds in dividing the dataset

equally in the case of independent datasets, but in the case of anticorrelated datasets,

which will be the ones to which we will give our attention in the experimental results,

it divides the load into some partitions, leaving some of them empty or almost empty.

This as we shall see in Chapter 7 will be a disadvantage because the parallel phase will

last longer than the others, since some partitions will be heavier.

4|Parallel Algorithms 31

4.3. Angle-based Space Partitioning

Introduced in [11], the Angle-based Partitioning technique aims to address the issue of

local sets containing an excessive number of successively dominated points and the

problem of load sharing between partitions, which was observed in previous

partitioning techniques. The technique involves mapping the Cartesian coordinate

space to a hyperspherical space and partitioning the resulting data space into N

partitions based on the angular coordinates.

Figure 4.5: An example of angular partitioning on a independent 2d dataset with 4

partitions where a different colour corresponds to a different partition.

The angle-based approach can achieve a better balance of workload, as each partition

includes both good and bad points in the data space. This results in a larger number

of points being dominated in the local set computation phase compared to grid

partitioning and Random Partitioning, leading to a smaller set of local sets and

reducing the workload for the sequential phase. As a result, the execution time is

reduced. Unlike grid partitioning, angular-based partitioning does not allow for

pruning. However, in the next chapter, we will explore methods for performing

filtering before partitioning in order to address this limitation.

32 4|Parallel Algorithms

Like the grid technique, every point in the dataset needs to be assigned an index and

allocated to a corresponding partition based on that index. The index for each point is

computed by first transforming its Cartesian coordinates into Hyperspherical

Coordinates, which includes a radial coordinate r and d-1 angular coordinates φ1, φ2,

…, φd-1. This transformation can be accomplished using set of equations:

𝑟 = √𝑥𝑛
2 + 𝑥𝑛−1

2 + ⋯ + 𝑥1
2

tan (φ1) =
√𝑥𝑛

2 + 𝑥𝑛−1
2 + ⋯ + 𝑥2

2

𝑥1

 ……..

tan (φ𝑑−2) =
√𝑥𝑛

2 + 𝑥𝑛−1
2

𝑥𝑛−2

tan (φ𝑑−1) =
𝑥𝑛

𝑥𝑛−1

Then , we can compute the index of each point in the dataset, for a given number of

partitions N, using this formula:

𝑖𝑛𝑑𝑒𝑥(𝑥) = ∑ ⌊𝜑𝑖 × 𝑁𝑖 ×
2

𝜋
⌋

𝑑−1

𝑖=1

The difficulty with this type of partitioning lies in finding the best number of partitions

so as not to have too much parallel work and at the same time to have partitions as

large as possible so as to be able to obtain local sets as small as possible. It suffers from

the same problem as Grid Partitioning where we are limited in choosing the number

of partitions because it will depend on the number of sizes and the number of slices

per size we choose.

4|Parallel Algorithms 33

Figure 4.6: An example of how data are partitioned using Angular Partitioning in a

2d independent (upper-left), correlated(upper-right), anticorrelated (bottom) datasets

with 8 partitions where a different colour corresponds to a different partition.

As we can see from the figure, Angular Partitioning manages the division of the

workload better than Grid Partitioning, being able to divide the load between all

partitions more or less equally, but never as well as Random Partitioning, even for

anticorrelated datasets without leaving empty partitions.

34 4|Parallel Algorithms

4.4. One-dimensional Slicing (Sliced Partitioning)

The last partitioning method we will see is called Sliced Partitioning. It is introduced in

[12] and the basic idea is to overcome one of the limitations of grid and angular

partitioning methods which is that we have no control over how many partitions we

can use and how many points there will be in each partition. The idea of this

partitioning algorithm is to sort the dataset on one dimension and divide it between

the partitions equally, so that each partition will have the same number of points and

we decide how many partitions to have.

We must keep in mind, however, that sorting on one dimension is not a topological

sort and that therefore the property for which a tuple that comes after another cannot

dominate the one that comes before is not verified in this case. This method does

indeed return false positives in the case of algorithms that use sorting to terminate

execution first such as SFS. These false positives, however, will be dominated in the

following sequential phase during the computation of the global set.

The functioning of the algorithm 13 is very simple, first we sort the dataset on the basis

of the first dimension in ascending order, and after that we assign each partition a

unique id, which will be assigned a number of points from the sorted dataset within a

range. Each partition will have points ranging from id * section to (id+1) * section. After

that the local set for each partition is computed and finally the set of these local sets is

returned.

Algorithm 13 Sliced Partitioning

1:

Input: S: dataset, n: number of partitions

Output: LS: Local Set

Sorted_dataset ← sort(S[0]) //sort on the first dimension

2: P ← [] , LS ← []

3: section ←
𝑆.𝑙𝑒𝑛𝑔𝑡ℎ

𝑁

4: for id in [0, N-1] do

5: P.add (id)

6: for id in P do

7: data ← Sorted_dataset[id ∗ section, (id + 1) ∗ section]

8: LS ← LS ∪ ComputeLocalSet(data)

9: return LS

4|Parallel Algorithms 35

Figure 4.7: An example of how data are partitioned using Sliced Partitioning in a 2d

independent (upper-left), correlated(upper-right), anticorrelated (bottom) datasets

with 8 partitions where a different colour corresponds to a different partition.

With this type of partitioning we manage to divide the workload equally among all

the partitions, and as we will see in chapter 7 it will be the one that will be able to

eliminate more points in the parallel phase by returning a smaller local set.

36 4|Parallel Algorithms

 37

5 Improvement of Parallel Algorithms

This chapter introduces techniques to improve parallel algorithms by reducing their

execution time. As we have seen in the previous chapter, the type of partitioning we

apply is very important in affecting the execution time, because it will be important in

putting together within the same partition as many dominatable points as possible

with points of the global set, so as to have at the end of the parallel phase a local set as

small as possible, since the sequential part will be the one that takes the longest.

The first technique called Grid Filtering introduced in [11] for the Skyline computation

involves eliminating as many partitions as possible using the Grid Partitioning before

computing the local sets, but as we shall see in the case of anticorrelated datasets it

does not work well because it eliminates few points.

The second technique called Representative Filtering introduced in [12] for the skyline

computation set, involves selecting a few points that will act as representatives (better

points) and will be used to remove as many points as possible. We will see several

techniques for choosing these representatives, the one proposed in this thesis is to take

the first n sorted points of each partition after the angular partitioning technique. As

we shall see, however, for independent and correlated datasets, the proposed method

is better than the one proposed in [12], while with anticorrelated datasets, the latter

succeeds in filtering more, so that we prefer it since we are going to use anticorrelated

datasets for our experiments.

The last technique we will see called All Parallel is used to avoid performing the

sequential part, by performing two parallel phases, passing in the last one to each

partition the union of the local sets found during the first parallel phase. We will see

how this technique has a positive impact on the total duration of the algorithm, since

the part that takes the longest is the final sequential phase in parallel algorithms. Our

original contribution here will be to create an algorithm without a sequential part that

is good for the computation of the two Flexible Skyline operators ND and PO.

These techniques are applied for both the computation of skylines and the

computation of Flexible Skylines operators. However, the filtering technique is only

applicable for computing the Skyline and ND, while for PO, since we start with the

ND set, we can use these techniques for the initial computation of ND but not for the

computation of PO. Regarding the All Parallel technique, it can also be applied to PO.

38 5|Improvement of Parallel Algorithms

5.1. Grid Filtering

This technique introduced in [11] addresses the issue of simple Grid Partitioning,

where the number of local sets can become unmanageable. When employing the

standard grid partitioning approach, local sets are computed for all partitions,

including those containing points that will surely be dominated in the next phase. To

overcome this challenge, the grid filtering technique is implemented, which removes

points in dominated partitions before starting the parallel phase.

The technique operates by first determining the best and worst points of each partition

and then assigning all the points belonging to each partition. The next step involves

comparing two partitions, and if one partition dominates another, all the points within

the dominated partition can be safely excluded from the global set. We use p.max and

p.min to respectively represent the maximum and minimum corners of a given

partition p.

A partition's maximum corner p.max is the corner that has the highest (worst) values

on all dimensions, while its minimum corner p.min is the corner that has the lowest

(best) values on all dimensions.

Definition 5.1: (Partition dominance) A partition pi dominates partition pj (pi ≺ pj) only

when pi.max dominates pj.min. This means that pi ≺ pj is equivalent to pi.max ≺ pj.min.

Thanks to Definition 5.1, we have that if pi ≺ pj for every t in pi and u in pj, t ≺ u.

As result of this dominance, we can carry out a filtering step that involves eliminating

all points within dominated partitions, so as to decrease the number of points in the

initial dataset efficiently. Once the value N representing the number of partitions per

size has been set, we will have a total of Nd partitions (grids). Each partition p will thus

have a worst point p.max and a best point p.min equal to:

𝑝𝑖. 𝑚𝑎𝑥 =
⌊

1
𝑁𝑖−1⌋ 𝑚𝑜𝑑 𝑁

𝑁
+

1

𝑁

𝑝𝑖. 𝑚𝑖𝑛 =
⌊

1
𝑁𝑖−1⌋ 𝑚𝑜𝑑 𝑁

𝑁

We can observe that the best and worst tuple’s difference is an identity vector

multiplied by the constant value 1/N.

By executing this step, as many dominated points as possible are eliminated before

proceeding with partitioning and running the parallel algorithm.

5|Improvement of Parallel Algorithms 39

Figure 5.1: Example of partition dominance in an independent dataset using grid

filtering.

As depicted in the figure above, using grid partitioning, we can remove points that

belong to dominated partitions. The red-colored partitions located in the upper right-

hand corner are dominated, with partition 00 dominating all the red partitions.

Similarly, partition 04 dominates 09 , 10, 11, 13, 14 and 15 and so on.

40 5|Improvement of Parallel Algorithms

Algorithm 14 Grid Filtering

1:

Input: S: dataset, n: number of partitions per dimension

Output: T: filtered dataset

T ← [], ContainerList ← []

2: d ← len(S[0]) //number of dimensions

3: for I in [0, nd] do

4: for j in [0, d] do

5:
 worst[j] ←

⌊
𝑖

𝑛𝑗
⌋𝑚𝑜𝑑 𝑛

𝑛
+

1

𝑛

6:
 best[j] ←

⌊
𝑖

𝑛𝑗⌋𝑚𝑜𝑑 𝑛

𝑛

7: ContainerList[i] ← (worst, best, [])

8: for s in S do

9: index ←∑ ⌊𝑠[𝑖] ∗ 𝑛⌋ ∗ 𝑛𝑖𝑑−1
𝑖=0

10: ContainerList[index] ← ContainerList[index] ∪ s

11: ContainerList.sort(min(best))

12: for c in ContainerList do

13: for t in T do

14: if t.worst ≺ c.best then continue to line 11

15: T ← T ∪ c

16: return T.lists

This algorithm 14 involves an initial step where the best and worst points are

computed for each container (partition), which is then initialized as empty. Next, an

index is computed for each point in the dataset and is added to the container with that

index. After that, the containers are sorted based on the value of the best tuple of each

container. Finally, we sequentially scan the containers and compare them with the

non-dominated set T, which is initially empty. During each comparison, we verify if

the container being scanned is dominated by any of those in set T. If not, it is added to

set T. Once finished, we return the list of points of non-dominated containers.

5|Improvement of Parallel Algorithms 41

Figure 5.2: Percentage of filtered data using different types of 4d datasets and 84

partitions.

As depicted in Figure 5.2, the grid filtering approach exhibits distinct behaviour based

on the dataset type. Regarding the independent datasets, 58% of the points being

filtered for various dataset sizes, indicating effective filtering. On the other hand, for

correlated datasets, the filtering performance is superior, with over 90% of the points

being filtered. In contrast, the grid filtering approach does not offer much advantage

for anticorrelated datasets, where only 16% of the points are filtered, resulting in a time

loss. In the following section, we will explore a filtering method that works effectively

for all three dataset types.

42 5|Improvement of Parallel Algorithms

5.2. Representative Filtering

Another method of filtering could be to choose a few “best” points and pass them to

each partition to try to delete as many dominated points as possible in a short time.

The choice of these representative points can be done in several ways, and the

effectiveness of the algorithm depends precisely on the choice of these points, which

the better they are the more points they will dominate, thus drastically decreasing the

size of the input dataset.

There are various methods to select representative points, one of which is to randomly

choose them. However, this approach is unreliable as it may include weak points that

are not part of the global set. A more effective method would be to select the first points

in the sorted dataset. This approach is promising as we know that, by virtue of the

sorting property, a tuple that comes later in the sorted dataset cannot dominate the

tuple that comes earlier. Especially in the case of computing the ND set, we could use

as sort function a weighted sum in which the weights are the coordinates of the

centroid of the polytope W(C).

In this thesis, we will present an algorithm that exploits angular partitioning to search

for the best points to make as representatives. Its operation is simple, it simply

partitions the points using angle partitioning and for each partition returns the best

points based on a sorting function.

Another method would be to take points that have a larger dominance region, as seen

in [12]. In [12] the objective was to apply filtering before computing the skyline set, our

objective in this thesis will be to apply the same type of filtering but adapting it to the

computation of ND. To compute the dominance region of a point we need to compute

the area between the point and the limit point, which in the case of normalized datasets

between the interval [0,1] is equal to [1]d. This filtering technique therefore only works

if we have a limit to the maximum value a tuple can take, and thus the dataset must

first be normalized to the interval [0,1]. There are other methods for computing

representatives, again in [12] there is a method that takes all points within a radius

with the origin as centre.

5|Improvement of Parallel Algorithms 43

Algorithm 15 Representative Filtering

Input: S: dataset, r: number of representatives, f: sorting function, n: number

of partitions

Output: T: filtered dataset

1: T ← [], representatives ← [], P ← []

2: representatives ← getRepresentatives(S)

3: P ← PartitioningAlgorithm(S,n) //partitioning the dataset

4: for p in P do

5: for data in p do

6: for rep in representatives do

7: if rep dominates data then continue to line 5

8: T ← T ∪ data

9: return T

Now we present a method to choose the representatives taking advantage of angular

partitioning that partitions in the best possible way, and our task will be to take the

first r points of each partition, since they will be the 'best' according to a sorting

function.

Algorithm 16 Representative Filtering SKY(Sorted method)

Input: S: dataset, r: number of representatives, f: sorting function, n: number

of partitions

Output: T: filtered dataset

1: T ← [], representatives ← [], P1 ← [], P2 ← []

2: P1 ← AngularPartitioning(S,n)

3: for p in P1 do

4: p.sort(f)

5: representatives ← first r tuples in p

6: representatives ← SFS(representatives) //discard dominated t

7: P ← PartitioningAlgorithm(S,n) //partitioning the dataset

8: for p in P do

9: for data in p do

10: for rep in representatives do

11: if rep ≺ data then continue to line 9

12: T ← T ∪ data

13: return T

44 5|Improvement of Parallel Algorithms

This, instead, is the dominance Region method seen in [12] that selects the best points

according to the area they cover.

Algorithm 17 Representative Filtering SKY (Dominance Region method)

Input: S: sorted dataset, r: number of representatives, d: dimensions

Output: T: filtered dataset

1: T ← [], representatives ← [], P ← []

2: P ← Partitioning(S,d) // part. the dataset in d partitions

3: for index in [0, len(P)] do

4: R ← []

5: for data in S do

6: area ←∏ (1 − 𝑡[𝑖])𝑑−1
𝑖=0

7: if area > 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋]. 𝑎𝑟𝑒𝑎 then 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋] ← (area, data)

8: for rep in R do

9: representatives ← representatives ∪ rep.data

10: representatives ← SFS(representatives) //discard dominated t

11: P ← PartitioningAlgorithm(S, n) //partitioning the dataset

12: for p in P do

13: for data in p do

14: for rep in representatives do

15: if rep ≺ data then continue to line 13

16: T ← T ∪ data

17: return T

The algorithms 16 and 17 exhibit differences in how they choose representative points.

In the first algorithm (16),after we have partitioned using angular partitioning, we take

the best points from each partition by simply taking the first r points in the set of points

sorted. The partitions are sorted using a sorting function, which may be based on the

Euclidean distance from the origin or the weighted sum of the points with the

centroids of the polytope W(C) as weights. Next, the dominated points in the set of

representatives are discarded, if any. After obtaining the representative points, the

computation is split into multiple partitions by dividing the original dataset. Each

partition is designed to contain both good and bad points, ensuring that each partition

has similar computation time. Within each partition, a sequential scan of the points is

conducted, and each point is compared to the set of representatives. If a point is not

dominated by any representative, it is added to the set of non-dominated points.

The second algorithm (17) introduced by [12] has the same working principle, only the

representatives are chosen according to their dominance region, the larger this is, the

stronger the points are and thus the more representative. The computation of the

dominance region is equal to the area between the points and the maximum point they

5|Improvement of Parallel Algorithms 45

can reach. This is why it is important to normalize the data in the interval [0,1] so that

the limit point equals [1]d otherwise this algorithm does not work.

The advantage of the first method is that the computation of the representatives is very

simple and there is no need to normalize the dataset, unlike the second method which

requires a step of computing the representatives and does not work with non-

normalized datasets.

We will now see the behaviour of the two filtering algorithms in different types of

datasets with respect to execution time and the percentage of filtered points aimed at

computing the skyline set.

Figure 5.3: Comparison of the two algorithms in terms of time taken to filter the data

and percentage of filtered data using 4d independent datasets of different sizes

Figure 5.4: Comparison of the two algorithms in terms of time taken to filter the data

and percentage of filtered data using 4d correlated datasets of different sizes

46 5|Improvement of Parallel Algorithms

Figure 5.5: Comparison of the two algorithms in terms of time taken to filter the data

and percentage of filtered data using 4d anticorrelated datasets of different sizes

Based on the characteristics of the dataset, the optimal approach for selecting

representatives may vary. For independent or correlated datasets, the method that

filters the most is the Sorted Method even if it takes a little longer. However, in the

case of an anticorrelated dataset, the same method cannot be used since this is not the

best measure of the goodness of a point, as we can see from Figure 5.5, and therefore

the best method is to compute the dominance region for each point and select

representatives according to the size of their respective dominance regions.

In all cases, the Sorted Method is a little slower in finding representatives due to the

sorting function that takes some time, whereas with the dominance region method no

sorting is needed.

Since our experiments will be carried out on anticorrelated datasets, representative

filtering with the dominance region method will be used from now on.

So far we have seen these algorithms being applied for skyline computation and in

particular using the SFS algorithm. This algorithm works for both Skyline and Flexible

Skyline computations, in the sense that if points are filtered that are not Skyline for

sure, then they can also be discarded because they are not ND since ND ⊆ SKY.

However, this type of filtering can be better adapted for the computation of ND using

a modified version that we will introduce in this thesis. The difference lies in the

number of filtered points, which with the second method will filter many more points

than the first since it will also check F-dominance.

5|Improvement of Parallel Algorithms 47

Algorithm 18 Representative Filtering ND (Dominance Region method)

Input: S: sorted dataset, r: number of representatives, d: dimensions

Output: T: filtered dataset

1: T ← [], representatives ← [], P ← []

2: P ← Partitioning(S,d) // part. the dataset in d partitions

3: for index in [0, len(P)] do

4: R ← []

5: for data in S do

6: area ←∏ (1 − 𝑡[𝑖])𝑑−1
𝑖=0

7: if area > 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋]. 𝑎𝑟𝑒𝑎 then 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋] ← (area, data)

8: for rep in R do

9: representatives ← representatives ∪ rep.data

10: representatives ← SVE1F(representatives) //discard dominated t

11: P ← PartitioningAlgorithm (S, n) //partitioning the dataset

12: for p in P do

13: for data in p do

14: for rep in representatives do

15: if rep ≺ data ∨ rep ≺F data then continue to line 13

16: T ← T ∪ data

17: return T

The algorithms 17 and 18 have the same step of computing the representative points,

which may be done by the sorted method or by the computation of the dominance

region, in this case we have used the dominance Region method. The different lines of

code between the two algorithms are highlighted in red in Algorithm 18. Unlike the

filtering algorithm aimed at computing the skyline set, the one aimed at computing

ND when checking between partition points and representative points, not only

checks for simple dominance but also for F-dominance. If the point is neither

dominated nor F-dominated then it is added to the set of points not dominated by the

representatives.

48 5|Improvement of Parallel Algorithms

Figure 5.6: Comparison of the two algorithm aimed at computing SKY and ND in

terms of time taken to filter the data and percentage of filtered data using 4d

anticorrelated datasets of different sizes

In Figure 5.6, we compare two filtering methods: one based only on simple dominance,

and the other based on both simple dominance and F-dominance. The latter approach

filters a greater number of points but incurs slightly longer computation time. We will

see that this extra time it takes to filter the dataset will be recovered by running it faster

when we perform the final sequential phase that takes the longest to compute.

Therefore, having fewer points in the local set, the final sequential part will take much

less time.

5|Improvement of Parallel Algorithms 49

5.3. All parallel Algorithm without sequential phase

So far, we have explored methods for speed up the parallel phase of local set

computation and partitioning techniques that minimize the size of local sets to prevent

overloading the final sequential phase, which is typically the most time-consuming

aspect of the execution. Our objective now is to present an algorithm that eliminates

the need for the final sequential step and enables parallel computation of the global

set.

The algorithm originally introduced in [12] consists of two distinct phases. During the

first phase, the local sets are computed as usual for each partition. However, instead

of computing the global set sequentially from the local sets, we divide the set of local

sets into multiple partition and pass to it the entire set of local sets. This enables each

partition to have its own set of points to extrapolate non dominated points and

compare against the entire set of local sets. This method guarantees that every point

that returns every partition in the last parallel phase will be part of the global set. So

this method allows us to bypass the final sequential step and perform parallel

computation of the global set.

In this thesis we present an improvement that leverages the sorting property, which

dictates that a point that comes after another in the sorted dataset cannot dominate it.

As a result, the improvement only works with sorted algorithms such as SFS for

Skyline computation and ‘S’ algorithms for ND operator computation.

Algorithm 19 All Parallel (Improved version)

Input: S: dataset, n:number of partitions

Output: GS: global set

1: GS ← [], P1← [], P2← []

2: P1← PartitioningAlgorithm(S,n)

3: for p in P1 do

4: LocalSet ← LocalSet ∪ ComputeLocalSet(p)

5: P2← PartitioningAlgorithm(LocalSet, n)

6: for p in P2 do

7: p.sort()

8: for data in p do

9: for s in LocalSet do

10: if s == data then GS ← GS ∪ data and continue to line 8

11: if s dominates data then continue to line 8

10: return GS

As with all algorithms, we can carry out an initial filtering phase, thus making our

algorithm three phases. The first phase involves a filtering phase, in our case as seen

50 5|Improvement of Parallel Algorithms

earlier, the fastest and most selective is representative filtering using as representatives

the points with the greatest dominance region in the case of anticorrelated datasets.

The second phase is to perform a parallel step by taking the unfiltered points and

dividing them into several partitions to find the local sets. Once the local sets have

been found, there is a third phase which is to compute the final global set, which in

this algorithm involves dividing the points of the local sets into several partitions and

passing the entire set of local sets to each one so that the dominated points can be

deleted.

We also propose an improvement to this algorithm that involves unifying the first and

second phases. This is done by computing the local sets together with the filtering

phase, thus saving some time.

Figure 5.7: Block diagram of the All Parallel algorithm

Figure 5.7 shows a block diagram with all the steps of the All Parallel algorithm. From

the dataset S, we perform a partitioning algorithm where we compute the local sets in

each partition. After that we take the union of the local sets and partition again by

passing the local global set to each partition. At the end, each partition will return the

points that will be part of the final global set.

5|Improvement of Parallel Algorithms 51

Algorithm 20 All Parallel SKY

Input: S: dataset, n: number of partitions

Output: SKY: global set SKY

1: SKY ← [], P1← [], P2← [], P3 ← []

2: LocalSet ← [], representatives ← []

3: P1 ← Partitioning (S,d) // part. the dataset in d partitions

4: for index in [0, len(P1)] do

5: R ← []

6: for data in S do

7: area ←∏ (1 − 𝑡[𝑖])𝑑−1
𝑖=0

8: if area > 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑛⌋]. 𝑎𝑟𝑒𝑎 then 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑛⌋] ← (area, data)

9: for r in R do

10: representatives ← representatives ∪ r.data

11: representatives ← computeLocalSet(representatives) //discard dominated t

12: P2 ← PartitioningAlgorithm(S, n) //partitioning the dataset

13: for p in P2 do

14: R ← []

15: for data in p do

16: for rep in representatives do

17: if rep ≺ data then continue to line 15

18: R ← R ∪ data

19: LocalSet ← LocalSet ∪ SFS (R)

20: LocalSet.sort()

21: P3← PartitioningAlgorithm(LocalSet, n)

22: for p in P3 do

23: p.sort()

24: for data in p do

25: for s in LocalSet do

26: if s == data then SKY ← SKY ∪ data and continue to line 24

27: if s ≺ data then continue to line 24

28: return SKY

This algorithm (20) provides an initial phase in which the representatives are found on

the basis of their dominance region and once found, the dataset is divided into n

partitions and the representatives are passed to each one. After that each partition is

responsible to delete all the points dominated by these representatives and when

finished perform the SFS algorithm with the points remaining in the partition not

dominated by the representatives so as to find the local set of each partition. Once all

the local sets have been found, the points present in the union of the found local sets

are repartitioned, passing the global local set to each partition. Each partition will have

to sort its points and scan them sequentially comparing them with the points in the

52 5|Improvement of Parallel Algorithms

local set which are also sorted, exploiting the topological sort property according to

which a point that comes after another cannot dominate it, if the point we are analysing

is compared with itself in the global local set then we add it to the global set since all

the points that come afterwards will certainly not be able to dominate it, otherwise, if

is dominated by a point that comes before it in the sorting then it is discarded. In the

end, each partition will return a set of points that will be part of the final global set.

Algorithm 21 All Parallel ND

Input: S: dataset, n: number of partitions, W: vertices of W(C)

Output: ND: global set ND

1: ND ← [], P1← [], P2← [], LocalSet ← [],

2: representatives ← computeRepresentatives (S) //same as SKY

3: P1 ← PartitioningAlgorithm(S, n) // partitioning the dataset

4: for p in P1 do

5: R ← []

6: for data in p do

7: compute left-hand side of Inequalities

8: for rep in representatives do

9: if rep == data then continue to line 11

10: if rep ≺ data or rep ≺F data then continue to line 6

11: R ← R ∪ data

12: LocalSet ← LocalSet ∪ SVE1F (R)

13: LocalSet.sort(W)

14: P2← PartitioningAlgorithm(LocalSet, n)

15: for p in P2 do

16: p.sort(W)

17: for data in p do

18: compute left-hand side of Inequalities

19: for s in LocalSet do

20: if s == data then ND ← ND ∪ data and continue to line 17

21: if s ≺ data or s ≺F data then continue to line 17

22: return ND

The difference between the algorithm 20 and 21 are highlighted in red in the algorithm

21. The all parallel ND algorithm is similar to the SKY one in the computation of the

representatives, with the difference that when we go to compute the local sets by

dividing into partitions, in addition to testing the simple dominance we have to also

test the F-dominance, and once the dominated points have been eliminated, we run an

ND algorithm like SVE1F in each partition to find the local sets. Finally, the last parallel

5|Improvement of Parallel Algorithms 53

part is similar to that of SKY with the difference that we also test here both simple

dominance and F-dominance.

Algorithm 22 All Parallel PO

Input: ND: nd set, n: number of partitions, W: vertices of W(C)

Output: PO: global set PO

1: PO ← [], P1← [], P2← [], LocalSet ← [],

2: P1← RandomPartitioning(ND, n)

3: for p in P1 do

4: LocalSet ← LocalSet ∪ PO_incremetal_computation(p)

5: P2← PartitioningAlgorithm(LocalSet, n)

6: for p in P2 do

7: for data in p reversed do

8: if isNonPO(data, LocalSet \ {data}) then p ← p \ {data}

9: PO ← PO ∪ p

10: return PO

The all parallel PO algorithm differs from the others because starting from the ND set

it does not perform any initial filtering step, except for the computation of ND. Once

the ND set is obtained we partition it and for each partition we compute the local set

by performing the incremental or non-incremental PO computation with the points in

each partition. Once all local sets are obtained, in the same way as SKY and ND we

partition the local set and pass the global local set to each partition. Another time we

can use both methods to compute PO, and each point that the partitions return will be

part of the global set.

 55

6 Experimental Settings

In this chapter, we will explain the framework used for parallelization and the

environment used to execute the algorithms. After that, we will list all the packages

used and their specific tasks for computing the various algorithms and the dataset

generator used.

6.1. Pyspark framework

Apache Spark [13] is an open source framework for distributed computing. Unlike the

MapReduce [14] paradigm which processes data on disk, Spark processes them in

memory providing much better performance for the same applications. Spark

applications run as a set of independent processes in a cluster and are coordinated by

the SparkContext object in the main program, called the driver program. The

SparkContext object tells Spark how to access a cluster and to create a SparkContext

we first need to build a SparkConf object that contains information about our

application.

Every Spark application consists of a driver program that executes the main user

function and performs various parallel operations on a cluster. Spark provides a

resilient distributed data set (RDD) that is an abstraction, i.e. a collection of partitioned

elements between cluster nodes on which parallel operations can be performed.

Spark supports multiple widely-used programming languages like Java, Python, R,

and Scala. In this thesis we will use Pyspark that is an interface for Apache Spark in

Python.

The parallel computation using Pyspark takes place by making use of the parallelize

API, which allows to divide the dataset into multiple partitions, with the number of

these that can be input by the user.

56 5|Experimental Settings

6.2. Computational environment and packages utilized

In this thesis, we use Python as a programming language, which is a high-level

language very suitable for parallel computing. It is a language that has developed a lot

in recent years, and thanks to the numerous packages it contains, it is very useful for

the work we will do in this thesis. In particular, here are some of the main packages

used for the computation of the algorithms seen in this thesis:

Pycddlib: Is used for generating all vertices (i.e. extreme points) and extreme rays of a

general convex polyhedron given by a system of linear inequalities.

Pulp: Is an LP modeler in python used to solve linear problems.

Gurobipy: Gurobi Optimizer is a mathematical optimization software library for

solving linear and mixed integer quadratic optimization problems.

FindSpark: package that contains findspark.init() that is used to make pyspark

importable as a regular library.

The code implemented for the parallel computation of the algorithms can be reached

using the link [18].

For the experiments, we will use synthetic datasets created using a dynamic points

generator from code.

All the experiments will be performed on two different machines, the first being a

computer running on Windows 10 with 8 GB of RAM and a processor Intel(R)

Core(TM) i7-7500U CPU @ 2.70GHz with 4 cores. The second is a virtual machine

granted by the Polimi Datacloud running on Ubuntu 22.04 with 8 GB of RAM and a

processor with 30 cores.

 57

7 Experimental Results

In this chapter, we will run the various algorithms for the skyline computation set and

the Flexible Skyline ND and PO operators. Our goal will be to evaluate the various

parallel algorithms seen in this thesis and try to understand which algorithms perform

best and in what setting. The various algorithms will be run on two different machines,

a local machine with 4 cores and a virtual machine with 30 cores. The substantial

difference between the two machines will be seen in the much shorter duration of the

parallel algorithms, because since we have more cores, we will be able to take much

more advantage of parallelization by having several workers running tasks in parallel.

We will evaluate how long the various algorithms we have seen take to compute the

global Skyline set and the ND and PO global sets in the parallel versions. We will only

look at the centralized version for SFS, because since some are very time-consuming,

the centralized version would take too long to return the final global set. We will

evaluate the performance of these algorithms by changing the cardinality of the

dataset, the dimensionality of the data, the number of partitions and the number of

cores used for the parallelization.

58 7|Experimental Results

7.1. Summary of findings

We will see that for both the skyline computation and the computation of ND, the best

algorithm is Sliced Partitioning which manages to return the smallest local set in the

shortest possible time in both cases, thus impacting less on the final sequential part.

Compared to the Angular Partitioning algorithm for Skyline computation, we see that

in the case where an anticorrelated dataset with 4 dimensions and 3 million points is

taken into account, the execution time goes from 244.97 seconds of Angular to 184.55

seconds of Sliced Partitioning. This increased speed is due to the size of the returned

local set which goes from the 66251 points of Angular to the 40251 of Sliced, thus

having a lighter and consequently faster sequential phase. As far as the computation

of the PO set is concerned, on the other hand, the best algorithm is not Sliced

Partitioning, which will perform worse than both Random and Angular Partitioning

since for the computation of the PO set sorting on one dimension is not important for

the computation of the global set, but it is Random Partitioning that succeeds in

dividing the load equally between the partitions.

We will see how the improvements in Chapter 5 will affect the standard algorithms,

in particular Grid Filtering will not bring any advantage by eliminating a few points

in the filtering phase, instead, Representative Filtering manages to eliminate many

more points bringing an advantage over the standard version by returning a smaller

local set. Thanks to representative filtering, we are able to go from 184.55 seconds for

the version of Sliced Partitioning without filtering to 164.1 seconds for the version with

filtering in the case of the skyline computation with a 4-dimensional anticorrelated

dataset with 3 million points.

The best algorithm for all 3 types of skyline computation is the All Parallel Algorithm.

This algorithm is the only one which, by eliminating the final sequential phase and

computing the global set in parallel, manages to making the most efficient use of the

parallelization and, as we shall see, will take much less time than the version of the

same algorithm with the final sequential part. In this case for the skyline computation

set we have a duration of 38.17 seconds, while the same algorithm with the final

sequential part has a duration of 164.1 seconds which is 4.29 times longer. For the

computation of the ND set instead, using a 2-million point dataset manages to finish

in 99.66 seconds, about 6.5 times faster than the same version with the final sequential

part.

We are going to evaluate how the algorithms behave when changing the number of

partitions, size and cores. By changing the number of partitions, we will see how the

duration of the algorithms is affected, because if it is true that increasing the number

of partitions increases the speed of the parallel part, on the other hand, having more

partitions the size of the local set returned will be greater, affecting the duration of the

final sequential part.

7|Experimental Results 59

By changing the number of dimensions, on the other hand, we will see how the

duration of the algorithms follows an exponential trend because by increasing the

dimensionality of the dataset we will greatly increase the size of the global set,

resulting in very high execution times.

Finally, we will see how changing the number of cores affects the execution speed of

parallel algorithms. All the algorithms, by increasing the number of cores, will

decrease the execution time, with the duration of the parallel part becoming smaller

and smaller as the number of cores increases, but since they always have to perform a

final sequential part, this advantage is not so great. It is a different matter for PO

computation, which, since it has partitions that have to compute many LPs, will have

a parallel part with a considerable duration, thus improving the execution time by a

significant amount. On the other hand, for the all parallel algorithm, which manages

to make the most of parallelization, the change in the number of cores helps reduce the

duration by a factor of 2.37 for the skyline computation, 2.28 for the computation of

the ND set and 3.53 for the PO set.

60 7|Experimental Results

7.2. Execution Time of the Serial Algorithms

In this section, we will look at the durations of the various sequential algorithms to see

which of them are the best in terms of execution time so as to apply parallelization to

these only. We start with the algorithms for skyline computation, as we can see from

figure 7.2.1, the slowest algorithm is the BNL algorithm because it has to do many

more comparisons than SFS and SaLSa. After that SFS is faster because it uses

topological sort to make fewer comparisons than BNL, but it needs a data pre-

processing step where we sort the dataset. SaLSa on the other hand manages to go

faster than SFS because we can not check the entire dataset but can stop earlier.

Figure 7.2.1: Execution time of the Centralized Skyline Algorithms using 4d

anticorrelated datasets.

However, SFS is highly dependent on the sorting function we use, the better this is,

the faster the algorithm will terminate. In figure 7.2.2 we use a sorting function that is

equal to the weighted sum with the coordinates of the centroid of W(C) as weights, i.e.

the sorting function used to compute ND. As we can see, the execution time drops

dramatically, so we are going to evaluate the behaviour of SFS using parallel

algorithms. We cannot use the same sort function for SaLSa because in order to stop

the execution of the algorithm earlier, we need a symmetric sort function. We have

that a function F on d variables is symmetric if it is not invariant under any

permutation of the variables, i.e. the function does not privilege any attribute over the

others, so all attributes play the same role, therefore this type of sorting function cannot

be used since it imposes weights on the attributes by giving them different importance.

7|Experimental Results 61

Figure 7.2.2: Execution time of the Centralized SFS with centroids as weights of the

sorting function using 4d anticorrelated datasets

In the same way, we can verify which algorithm for computing ND and PO is the best

in terms of execution time. For this check, only the algorithms in the sorted ('S') version

will be used, since as we have also seen for the skyline computation, topological

sorting helps us to decrease the duration of the algorithms compared to the unsorted

version. Small datasets will be used for the results, as the running time of the LP

algorithms is very expensive.

Figure 7.2.3: Execution time of the Centralized ND Algorithms using 4d

anticorrelated datasets.

As we can see from figure 7.2.3 in which we compare the two algorithms in the two-

phase sorted version in which the former uses the LP technique and the latter the VE

62 7|Experimental Results

technique, the VE version is much faster than the LP version which has to solve an LP

problem with each comparison, as opposed to the VE technique where the

computation of the vertex enumeration of the polytope which introduces the most

significant overhead is performed only once.

So now we are going to compare the algorithms using the VE technique in the one-

phase and two-phase versions to see which are the fastest.

Figure 7.2.4: Execution time of the VE centralized ND Algorithms using 4d

anticorrelated datasets

From the figure 7.2.4 we can see that the one-step algorithms are faster, and in

particular we note that the SVE1F algorithm is the one that takes less time to finish

than its variant SVE1 where the only difference is the way they verify simple

dominance and F-dominance.

7|Experimental Results 63

In this last figure 7.2.5, we see the difference between the version with PO computation

using the Dual PO Test and the Primal, both in the incremental version. We can see

that the duration of the two algorithms does not differ much, with a small advantage

in terms of execution time for the Primal.

Figure 7.2.5: Execution time of the centralized PO Algorithms using 4d anticorrelated

datasets

Having this preliminary information on which algorithms have the shortest execution

time for skyline (SFS), ND (SVE1F) and PO (PO Primal Test) computation, we will go

on to apply the parallel algorithms only to these which will be the most promising.

64 7|Experimental Results

7.3. Execution Time of the Parallel Algorithms

In this section we will look at the duration of the parallel algorithms applied using the

SFS algorithm for skyline set computation, the SVE1F algorithm for ND computation

and finally the incremental algorithm using the PO Primal Test for PO computation.

In detail, we will see how the algorithms using random partitioning, grid partitioning,

angular partitioning and finally one-slice partitioning perform. As far as SFS is

concerned, the parallel algorithms, together with the centralized version, will run on

both the local machine with 4 cores and the virtual machine with 30 cores.

On the other hand, for SVE1F and PO incremental Primal, only the parallel algorithms

will be executed without a centralized version on the virtual machine, as this will be

the fastest one.

For the experiments we will use anticorrelated synthetic datasets generated, ranging

from 100k points up to 3 million points, with the number of dimensions fixed at 4. We

will see the execution time on two different machines, one with 4 cores and the other

with 30, where we will see that having more cores using Spark's parallelization will

drastically decrease the execution time.

Figure 7.3.1: Execution Time of the SFS algorithm in the centralized and parallel

version using 4d anticorrelated datasets and the local machine with 4 cores.

7|Experimental Results 65

Figure 7.3.2: Execution Time of the SFS algorithm in the centralized and parallel

version using 4d anticorrelated datasets and the virtual machine with 30 cores.

From the figures 7.3.1 and 7.3.2, we can immediately see how the execution time drops

dramatically between the centralized version and the distributed version on both

machines. As we can see between the local machine and the virtual machine, there is

a difference in the duration of the algorithms themselves, especially the parallel ones

in which it is able to utilise the full power of the 30 cores to best parallelize the

computation. In the following figures we see the power of all the algorithms to

compute the local Skyline sets with the amount of time it takes to finish each one.

We immediately notice that the parallel algorithm that applies random partitioning is

the one that takes the longest to finish. We expected this, however, because as

discussed in the previous chapters, it is true that it is the simplest type of partitioning

of all and the one that divides the work best between all the partitions, but it is also

true that we have no control over what type of points will occur in the partitions, for

example, only "good" points may occur in some partitions and therefore the local set

of these partitions will be very large, thus having the risk of local sets that are too large.

Next we see how we can improve speed with grid partitioning and angular

partitioning, both of which partition better than random partitioning leading to an

improvement in execution time.

The best partitioning algorithm as also demonstrated in the thesis [12], however, is

sliced partitioning, which succeeds in returning the smallest local sets in the shortest

time so as to have the least heavy sequential phase.

66 7|Experimental Results

Figure 7.3.3: Execution time of the parallel phase of the SFS Algorithms and

percentage of the dominated points in 4d anticorrelated dataset using the virtual

machine.

Algorithm’s Name Number of Local

Skyline points

Execution time

Parallel phase

Execution time

Sequential Phase

Random Partitioning 134690 27.5 348.97

Grid Partitioning 79361 46.3 289.01

Angular Partitioning 66251 23.6 244.97

One-Slice Partitioning 40251 14.9 184.55

Table 7.1: Time of parallel and sequential phases of the SFS Algorithms using a 4d

anticorrelated dataset with 3 million points and 30071 SKY points on the virtual

machine.

As we can see from figure 7.3.3 and table 7.1, the algorithm that applies the best

partitioning is One-Sliced Partitioning. Taking table 7.1 as a reference, we see how the

One-Sliced algorithm manages to eliminate almost 98.66% of the data in the parallel

phase, in a time of about 14.9 seconds. We can see that grid partitioning manages to

eliminate several points in the parallel phase, almost as good as One-Slice and

Angular, but it takes too long to perform the parallel phase. This is because since it is

a technique that uses grids to partition neighbouring points, and since we are

evaluating anticorrelated datasets that have a high concentration of points in certain

areas, we will have some partitions being very heavy, as opposed to others that will

have very few points if any.

From now on, all algorithms will be executed only on the virtual machine, which as

we have seen is the fastest one.

7|Experimental Results 67

We will now look at the same algorithms without the centralized version but applied

to the computation of the ND set, specifically using the SVE1F algorithm. For the

experiments we will use anticorrelated synthetic datasets generated, ranging from

100k points up to 2 million points, with the number of dimensions fixed at 4. We use

only one constraint which is: 𝑤1 − 𝑤2 ≥ 0.

Figure 7.3.4: Execution Time of the SVE1F algorithm in the parallel versions using 4d

anticorrelated datasets and the virtual machine.

As we can see from the graph in figure 7.3.4, even with the computation of ND using

SVE1F we have the same behaviour as with SFS. Once again, the worst performer is

Random Partitioning, while the best performer is One-Sliced Partitioning. This is due

to the fact that once again the partitioning types return local sets, which in the case of

One-Slice Partitioning are much smaller than the other partitioning techniques. In the

following figure 7.2.5, we will look in detail at the amount of data dominated in the

parallel phase by all partitioning techniques and the time it takes.

68 7|Experimental Results

Figure 7.3.5: Execution time of the parallel phase of the SVE1F Algorithms and

percentage of the dominated points in 4d anticorrelated dataset using the virtual

machine.

Algorithm’s Name Number of Local ND

points

Execution time

Parallel phase

Execution time

Sequential Phase

Random Partitioning 140512 51.9 1480.16

Grid Partitioning 39946 325.6 970.05

Angular Partitioning 33971 68.33 776.98

One-Slice Partitioning 28051 14.8 679.3

Table 7.2: Time of parallel and sequential phases of the SVE1F Algorithms using a 4d

anticorrelated dataset with 2 million points and 16781 ND points.

As we can also see from figure 7.3.5 and table 7.2, once again the best algorithm is One-

Slice Partitioning, which in this case manages to delete almost 98.6% in a very small

amount of time compared to the other partitioning algorithms. Again, grid

partitioning has a low number of local skyline points, much lower than random

partitioning and similar to angular, but as we can see compared to angular it is 4.76

times slower for the parallel phase, while compared to one-sliced partitioning it is

more than 20 times slower.

7|Experimental Results 69

Finally, we evaluate these algorithms for the computation of the PO set using the

incremental version that makes use of the Primal PO Test. For the experiment, we will

only consider the time it takes the algorithm to find the PO set from the ND set, thus

not taking into account the time for the computation of the ND set.

This time since we will have to solve LP we would like the partitions to have more or

less the same number of points. For this reason we will not use Grid Partitioning

because with anticorrelated datasets we will have some partitions with many points

and others almost empty, incurring in a high overhead in the parallel phase.

For the experiments we will use anticorrelated synthetic datasets generated, ranging

from 100k points up to 2 million points, with the number of dimensions fixed at 4. We

use only one constraint which is: 𝑤1 − 𝑤2 ≥ 0.

Figure 7.3.6: Execution Time of the PO algorithm starting from the ND set in the

parallel versions using 4d anticorrelated datasets and the virtual machine.

Looking at figure 7.3.6, we notice a completely different behaviour of the partitioning

algorithms compared to the Skyline and ND computation. As we can see, random

partitioning together with angular partitioning are the algorithms that finish in the

shortest time, which is almost indistinguishable, while this time the worst is One-Slice

partitioning.

70 7|Experimental Results

Figure 7.3.7: Execution time of the parallel phase of the PO Algorithms and

percentage of the dominated points starting from the ND set in 4d anticorrelated

dataset using the virtual machine.

Algorithm’s Name Number of Local PO

points

Execution time

Parallel phase

Execution time

Sequential Phase

Random Partitioning 3990 36.82 77.42

Angular Partitioning 1544 72.4 48.97

One-Slice Partitioning 5108 46.58 504.52

Table 7.3: Time of parallel and sequential phases of the PO Algorithms using a 4d

anticorrelated dataset with 16781 ND points and 150 PO points.

In figure 7.3.7 and table 7.3 we see in detail the size of the local sets returned by the

parallel partitioning of the various algorithms and the duration of the final sequential

phase. The difference lies precisely in the number of local points returned by the

various algorithms. If for SFS and SVE1F the One-Slice returned the smallest local set,

this is not the case for the PO computation. This is due to the fact that the PO set is a

very small set of points compared to ND, e.g. in the case of 2 mil from 16781 ND it goes

to 150 PO, so sorting the dataset by one dimension does not help in the computation

of PO, while the random factor helps speed up the process. Angular partitioning

compared to random partitioning manages to return a smaller local set but takes much

longer to compute because we will have some partitions with more points than others

and since we have to solve LP to compute the PO set, having many points in some

partitions does not help. This time that we lose in the parallel computation is recovered

in the sequential part leading to having the same duration for both algorithms.

 71

7.4. Execution Time of the Improved Parallel

Algorithms

In this section, we are going to test the execution time of the improved parallel

algorithms seen in Chapter 5. We will apply these improvements to the Angular and

One-Slice partitioning algorithms, which, as seen in the previous section, are the

fastest. In detail we will see how the Angular algorithm behaves with an initial grid

filtering phase, Angular and One-Slice with representatives filtering using the

Dominance Region method to find representatives, which as seen in Chapter 5 is the

best at filtering data.

Finally we will look at the All Parallel algorithm in which the initial parallel phase is

performed using One-Slice partitioning with representatives. As we will see, the best

results are given by One-Slice partitioning with representatives which manages to

speed up the version without initial filtering, but the best of all is the All-Parallel

algorithm which eliminates the final sequential part and uses a final parallel part

instead. By exploiting parallelism and the 30 cores of the virtual machine with this

algorithm we manage to finish the computation, taking SFS as an example, 4.71 times

sooner than the same version of One-Slice partitioning in which the final sequential

part is used.

Figure 7.4.1: Execution Time of the improved parallel algorithms using SFS with 4d

anticorrelated datasets and the virtual machine.

72 7|Experimental Results

Looking at the execution time of the algorithms we see that grid filtering gives no

advantage over the same version without initial filtering of angular partitioning, in

fact it performs worse because the initial filtering phase has a duration and the number

of filtered points is not enough to bring an advantage. This is always due to the

problem of grid filtering, which with anticorrelated datasets does not partition the

dataset well. The advantage over the standard versions is given by the representative

filtering, which by performing the initial filtering phase manages to eliminate many

points before performing the parallel computation leading to an advantage. Finally,

the last algorithm is the All Parallel that manages to exploit the parallel computation

to take advantage over the versions with the final sequential part, arriving for 3 million

points and 30071 skyline points to have a duration of 38.17 seconds, while the same

algorithm with the final sequential part has a duration of 164.1 seconds which is 4.29

times longer.

Figure 7.4.2: Execution time of the parallel phase of the Improved parallel

Algorithms using SFS and percentage of eliminated points in 4d anticorrelated

dataset using the virtual machine.

7|Experimental Results 73

Algorithm’s Name Number of Local

Skyline points

Execution time

Parallel phase

Execution time

Sequential Phase

Angular Partitioning 66251 23.6 244.97

One-Slice Partitioning 40251 14.9 184.55

Grid Filtering + Angular

Partitioning

59253 73.15 201.29

Angular Representative

Filtering

55512 39.9 194.82

One-Slice Representative

filtering

36268 15.9 164.1

Table 7.4: Time of parallel and sequential phases of improved Parallel Algorithms

using SFS with a 4d anticorrelated dataset with 3 million points and 30071 SKY

points.

Let us look in detail at how long these algorithms take to perform the parallel phase

and how many points they manage to eliminate compared to the basic version. As we

can see from table 7.4, the algorithms with initial filtering manage to eliminate many

more points in the parallel phase than the standard versions, but they take longer to

execute. As far as Grid Filtering is concerned, it is very time-consuming, so even if we

manage to reduce the size of the Local Skyline compared to the standard version, the

extra time we put in for the parallel phase does not give us any advantage in terms of

final execution time, leading to a slowdown of the algorithm. As far as Representative

Filtering is concerned, as we can see for both Angular Partitioning and One-Slice

Partitioning, even though it takes longer to compute the parallel phase (not as long as

Grid Filtering), it returns a Local Skyline set that is much smaller than the basic version,

and we are therefore able to speed up the final sequential part.

74 7|Experimental Results

We are now going to evaluate how these algorithms perform in the case of ND set

computation.

Figure 7.4.3: Execution time of the parallel phase of the Improved parallel

Algorithms using SVE1F and percentage of the local set size in 4d anticorrelated

dataset using the virtual machine.

The behaviour of these algorithms for the computation of ND set using SVE1F is very

similar to that of the skyline set computation using SFS. Also in this case we have that

Grid Filtering in the case of anticorrelated datasets does not bring any advantage in

terms of final execution time compared to the basic version, while the Representative

Filtering manages to speed up the duration of the algorithm compared to the version

without. The Representative Filtering used is the one aimed at the computation of ND

set computation as opposed to the previous one used for the computation of SFS,

which as we have seen in Chapter 5 speeds up the total duration of the algorithm by

eliminating many more points in the parallel part during the computation of local sets.

Once again, as with SFS, the best algorithm is the All Parallel algorithm with One-Slice

Representative Filtering, which in the case of a 2-million point dataset with 16774 ND

points manages to finish in 99.66 seconds, about 6.5 times faster than the same version

with the final sequential part.

7|Experimental Results 75

Figure 7.4.4: Execution time of the parallel phase of the Improved parallel

Algorithms using SVE1F and percentage of the local set size in 4d anticorrelated

datasets using the virtual machine.

Algorithm’s Name Number of Local ND

points

Execution time

Parallel phase

Execution time

Sequential Phase

Angular Partitioning 33971 68.33 776.98

One-Slice Partitioning 28051 14.8 679.3

Grid Filtering + Angular

Partitioning

31765 133.5 749.4

Angular Representative

Filtering

29640 85.4 731.99

One-Slice Representative

filtering

23104 30.36 647.49

Table 7.5: Time of parallel and sequential phases of improved Parallel Algorithms

using SVE1F with a 4d anticorrelated dataset with 2 million points and 16781 ND

points.

As we can see from table 7.5, the algorithms applying initial filtering succeed in

reducing the size of the Local Set computed during the parallel phase, but as far as

Representative Filtering is concerned, it brings advantages over the standard version

of the same algorithm, whereas Grid Filtering takes too long to return the Local Set,

thus bringing a disadvantage in terms of duration compared to the basic version.

Finally, we will evaluate the behaviour of the All Parallel algorithm in the case of PO

computation. Since we start from the global set ND to compute PO, we cannot apply

76 7|Experimental Results

the Representative and Grid Filtering algorithms to the computation of PO, but we can

apply the All Parallel algorithm to try to decrease the duration of the algorithm by

eliminating the final sequential part, which for this type of algorithm where many LPs

have to be solved, brings a huge advantage to be able to parallelize the execution.

Since, as seen above, One-Slice partitioning does not bring any advantage for PO

computation, in fact in figure 7.3.6 we can see that it reduces the speed by a lot

compared to random and angular partitioning, we are going to use the all parallel

algorithm using for the initial parallel part where we are going to compute the local

sets, both angular and random partitioning.

Figure 7.4.5: Execution time of All Parallel algorithms to compute PO in 4d

anticorrelated datasets using the virtual machine.

Looking at figure 7.4.5, we can see that for the computation of the PO set, partitioning

the data according to the position of the points in space using Angular or One-Slice

partitioning does not bring any advantage. In fact, the best algorithm for computing

PO as we can see from the same figure is Random Partitioning, which manages to

finish executing the All Parallel algorithm in the shortest possible time. This is because

partitioning with angular we have some partitions that will be heavier than others

leading to a longer duration of the first parallel phase where we go to compute the

local set as we can see from figure 7.3.7. Random on the other hand manages to divide

the load on all partitions in the best possible way.

7|Experimental Results 77

In this section we have seen algorithms that have allowed us to speed up the standard

parallel algorithms, but as we have seen, the best of all for the computation of both the

skyline and the F-Skyline operators ND and PO is the All Parallel Algorithm. In Figure

7.4.6 we will evaluate how this algorithm behaves when we increase the number of

points in the 4-dimensional anticorrelated dataset to as many as 10 million points.

Figure 7.4.6: Execution Time of the All Parallel Algorithm for computing the Skyline,

ND and PO sets using a 4d anticorrelated dataset.

Data 500 K 1 M 2 M 3 M 5 M 10 M

Skyline

Points

4480 11619 23354 29974 39685 73245

ND points 3307 7954 16781 20623 26996 53142

#PO points 83 117 150 196 215 285

Table 7.6: Number of Skyline, ND and PO points per cardinality of the 4d dataset.

78 7|Experimental Results

7.5. Change the cardinality

In this section we are going to evaluate the behaviour of the parallel algorithms as the

cardinality of the anticorrelated dataset used changes. The dimensionality of the

dataset will remain fixed at 4 and we will only change its cardinality.

Figure 7.5.1: Execution time of the Parallel Algorithms to compute the Skyline using

SFS changing the cardinality of the 4d anticorrelated datasets.

Figure 7.5.2: Execution time of the Parallel Algorithms to compute ND using SVE1F

changing the cardinality of the 4d anticorrelated datasets.

7|Experimental Results 79

Figure 7.5.3: Execution time of the Parallel Algorithms to compute PO changing the

cardinality of the 4d anticorrelated datasets.

As we can see from the figures 7.5.1, 7.5.2 and 7.5.3, changing the cardinality of the

dataset increases the execution time for the skyline set computation and for ND and

PO and we have more or less linear trend for the computation of all three sets. As the

cardinality of the dataset increases, so does the size of the skyline, ND and PO set.

Once again, we can see that the best algorithm is the All Parallel for the computation

of all three sets, because it makes the best use of parallelization. Instead, among the

algorithms with sequential final part, we have that One-slice partitioning performs

best for the computation of Skyline and ND sets, while for the computation of PO both

random partitioning and angular partitioning perform almost equally well.

80 7|Experimental Results

7.6. Change the number of dimensions

In this section we are going to change the number of dimensions of the dataset to see

how the parallel algorithms for skyline, ND and PO set computation perform. We will

only look at the algorithms that have been the best so far which are Angular

Representative filtering, One-Slice Representative Filtering and All Parallel Algorithm.

For the experiment we are going to use generated datasets anticorrelated by 1 million

points to which we are going to change the number of dimensions.

Figure 7.6.1: Execution Time of the Improved Parallel Algorithms using SFS in an

anticorrelated dataset of 1 million points.

dimensions 2 4 6 7

Skyline Points 1830 16711 70182 120769

ND points 6 11621 58123 106366

#PO points 5 169 942 2152

Table 7.7: Number of Skyline, ND and PO Points per dimension.

As we can see from graph 7.6.1, increasing the number of dimensions considerably

increases the execution time of all the algorithms, because increasing the

dimensionality of the dataset consequently increases the number of points that will be

7|Experimental Results 81

part of the Skyline set (see table 7.7) and therefore the duration of the algorithms to

find them since they will have to make many more comparisons. All three algorithms

show an exponential trend as the dimensions increase. As always, the best algorithm

is the All Parallel algorithm because as the most expensive part is the final sequential

part, which with this algorithm we have eliminated and we are able to exploit all the

power of the virtual machine with its 30 cores.

Since angular and one-slice algorithms for large dimensions take too long due to the

final sequential phase, for the computation of ND and PO we will only evaluate how

the All Parallel algorithm performs.

Figure 7.6.2: Execution time of the All Parallel Algorithm for the computation of ND

and PO using an anticorrelated dataset of 1 million points.

82 7|Experimental Results

7.7. Change the number of partitions

In this section, we will see how changing the number of partitions impacts the parallel

algorithms for the computation of the skyline and ND sets. For the experiments, we

will use an anti-correlated 4d dataset generated with 1 million points.

Figure 7.7.1: Execution Time of the Parallel Algorithms using SFS and SVE1F with an

anticorrelated 4d dataset of 1 million points changing the number of partitions.

From Figure 7.7.1 we can see how changing the number of partitions affects the

duration of the algorithms. The first graph shows how the grid and angular algorithms

vary as the number of slices per dimension changes. In the case of Grid Partitioning,

the number of partitions will be equal to nd whereas for Angular Partitioning it will be

equal to nd-1. The first thing we notice is that for both the skyline computation with SFS

and the computation of ND set with SVE1F, when it comes to algorithms with final

sequential part, it is never advisable to choose a number of partitions that is too high,

because it is true that the parallel part will be faster, but the number of points in the

returned local set will be greater, affecting the duration of the final sequential part.

Different reasoning with the All Parallel algorithm, which by increasing the number

of partitions is able to better parallelize the computation.

7|Experimental Results 83

Figure 7.7.2: Execution time and cardinality of the local set after the parallel phase

using a 4d anticorrelated dataset of 1 million points changing the slice per dimension

Figure 7.7.3: Execution time and cardinality of the local set after the parallel phase

using a 4d anticorrelated dataset of 1 million points changing the number of

partitions.

In Figures 7.7.2 and 7.7.3, we can see how changing the number of partitions reduces

the duration of the algorithms in their parallel phase, but as a result, the cardinality of

the local set is increased, resulting in a longer time for the computation of the global

set in the final sequential phase. We need to find the right compromise, which as we

can see from figures 7.7.1 in this specific case, seems to be 5 slices per dimension for

Grid (54 partitions) and Angular (53 partitions) partitioning while 100 partitions for

One-Slice partitioning and consequently All Parallel for bot Skyline and ND

computations.

84 7|Experimental Results

7.8. Change the number of cores

In this section, we will see how changing the number of cores used by Pyspark for

parallelization impacts the parallel algorithms for the computation of the skyline, ND

and PO sets. For the experiments, we will use an anti-correlated 4d dataset generated

with 1 million points and we will test the behaviour of the algorithms as the cores vary

from 5 to 30.

Figure 7.8.1: Execution time of the Parallel Algorithms to compute the Skyline using

SFS changing the number of cores used.

Figure 7.8.2: Execution time of the Parallel Algorithms to compute the ND set using

SVE1F changing the number of cores used.

7|Experimental Results 85

Figure 7.8.3: Execution time of the Parallel Algorithms to compute the PO set

changing the number of cores used.

From the figures 7.8.1, 7.8.2 and 7.8.3, we can see that by increasing the number of

cores, the execution time decreases. As for parallel algorithms with a sequential final

part, we can see that the execution time decreases but not as much between the 30 cores

version and the 5 cores version. This is due to the fact that the parallel part in these

algorithms covers a much smaller part than the final sequential part and using more

cores leads to a speeding up of the parallel part but does not affect the sequential part

which will still be very long. Having said that, using more cores for these types of

algorithms will speed up the parallel part a little, but the sequential part will not be

affected and will not bring a big advantage in execution time.

Taking One-Slice Partitioning with representative filtering as an example, we go from

79.3 seconds of the 5-core version to 53.5 seconds of the 30-core version for SFS, thus

speeding up the algorithm by a factor of 1.48. The same applies to the other algorithms

and the computation of ND, where the same algorithm is speeded up by a factor of

1.3. A different case is made for PO computation, as each partition has to compute so

many LPs, that the execution time of the parallel partitioning has a significant

duration, thus speeding up Random Partitioning using the 30 cores compared to the 5

cores by a factor of 2.96.

Finally, the All Parallel algorithms are those that benefit most from parallelization and

we can see how the execution speed decreases much more than the other algorithms

as the number of cores increases. This is because being an algorithm that does

everything in parallel, having more cores at work speeds up the execution time a lot.

For the skyline computation we have that the execution time goes from 34.44 seconds

of the 5 cores version to 14.5 of the 30 cores version, speeding up the algorithm by a

factor of 2.37. For the computation of ND, on the other hand, we go from 124.56

seconds in the 5-core version to 54.4 in the 30-core version, speeding up the algorithm

86 7|Experimental Results

by a factor of 2.28. Finally, the All Parallel for PO computation goes from 181.3 seconds

for the 5-core version to 51.3 seconds for the 30-core version, speeding up the algorithm

by a factor of 3.53.

 87

8 Related work

We have seen several algorithms for skyline computation, but there are many more.

One such algorithm is the Divide and Conquer (D&C) approach [5], which partitions

the data space into multiple regions, computes the skyline in each region, and

combines the regional skylines to obtain the final skyline. Papadias et al. [15] proposed

a branch and bound algorithm for progressively outputting skyline points from a

dataset indexed by an R-Tree, with a guaranteed minimum I/O cost.

There are various methods, such as F-Skyline, that extend the concept of Skyline by

taking user preferences into account. For example, Prioritized Skyline (P-skyline)

[reference] queries allow users to specify which attributes are more important in

skyline queries. As we have seen with F-Skyline, P-Skyline also returns a smaller set

compared to Skyline. The key difference with F-Skyline is that P-Skyline assumes a

strict priority between attributes.

One of the earliest parallel frameworks for computing the skyline query was Apache

Hadoop, which utilizes the MapReduce computational paradigm [14]. This framework

breaks down every job into two tasks: the mapping task and the reducing task. In the

mapping task, the framework takes the input dataset and divides it into independent

portions. Then, it maps each point in the dataset into key-value pairs. The utilization

of these two fundamental functionalities has led to the creation of numerous efficient

distributed algorithms for skyline query computation like [16][17]. Given that

MapReduce operates on disk-based data processing, as opposed to Spark's in-memory

approach, we can anticipate that the same applications implemented on Spark will

likely exhibit improved performance, particularly for small datasets that can be fit in

memory.

In this thesis, we have applied parallel algorithms for computing Skyline and F-Skyline

operators. As shown in [12], we have found that One-Dimensional Slice partitioning is

the most effective method for computing the Skyline set. Moreover, in this thesis, we

have demonstrated that this approach is also the best for computing the ND set, as it

returns the smallest local set in the shortest amount of time. The situation is different

for the PO set, where One-Dimensional Slice partitioning is not the most effective

method. Instead, we have found that random partitioning performs significantly

better.

88 8|Related Work

An alternative method for parallel skyline computation is introduced in [6] in which

the authors employ a multi-disk design with a single processor, and they leverage the

parallel R-Tree. The central aim of this paper is to enhance the efficiency of eliminating

non-qualifying points by accessing multiple entries from various disks concurrently.

While this approach focuses on optimizing the distribution of nodes in the parallel R-

Tree, the methods we have seen so far addresses the problem of data space partitioning

in a parallel share-nothing architecture.

 89

9 Conclusion and future developments

In this thesis, we introduced several parallel algorithms and applied them to the

computation of Skylines and the Flexible Skyline ND and PO operators using the

PySpark framework.

We saw that for both skyline computation and ND, the parallel algorithms behave

more or less the same in the case of anticorrelated datasets. Random Partitioning does

not perform very well despite the fact that unlike Grid and Angular Partitioning it

succeeds in dividing the dataset into partitions of equal size, but the fact of joining

random points does not bring any advantage, in fact the computed local set is very

large, thus introducing a high overhead compared to the others in the final sequential

part. Grid Partitioning, on the other hand, manages to eliminate enough points in the

parallel phase by returning a smaller local set than Random Partitioning, but in anti-

correlated datasets, as we have seen, it has some partitions that are much heavier than

others, thus incurring a fairly large computation time for the parallel phase. Angular

partitioning succeeds in overcoming the problem of Grid Partitioning by being able to

divide the dataset more evenly while returning small local sets. Finally, One-Slice

partitioning succeeds in overcoming the problems of Grid and Angular Partitioning

by managing to partition the dataset equally between partitions and still return the

smallest local set of all the parallel algorithms.

Improvements have been made to these algorithms. Grid filtering as we have seen

brings no advantage in terms of execution time, because once again, the dataset being

anticorrelated, grid partitioning fails to divide the space well, leaving many more

points in some partitions than in others, leading to the elimination of many partitions

with few points. The real improvements are found with Representative Filtering,

where the algorithms manage to return a smaller local set than the standard version,

thus reducing the duration of the global set computation in the final sequential part by

using a few "better" points to filter the dataset before performing parallel computation.

We have seen that the results obtained are in line with the thesis [12] in which One-

Slice Partitioning turns out to be the best partitioning algorithm among those proposed

for skyline set computation. In this thesis, we were able to establish that it is also the

best algorithm for ND set computation, being able to return the smallest local set in

the shortest time. On the other hand, different considerations apply to the computation

of PO, which is much more efficient when starting from the ND set and partitioning

the space randomly or using Angular partitioning, preferring the former as it succeeds

90 9|Conclusion and future developments

in dividing the set more evenly between the partitions without overloading them too

much since the computation of LP is very onerous.

Finally, we have seen that the best algorithm is the All Parallel since it manages to

eliminate the final sequential part, which is the longest. The algorithm performs best

when using the virtual machine with 30 cores, managing to finish execution 4.29 times

earlier than the same version with the final sequential part for the skyline computation,

6.5 times earlier for ND and 2.1 times earlier for PO.

 91

Bibliography

[1] M. Ehrgott. Multicriteria Optimization. Springer, 2nd edition, 2005.

[2] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of top-

k query processing techniques in relational database systems. ACM Comput.

Surv. 40, 4 (2008).

[3] Paolo Ciaccia and Davide Martinenghi. 2020. Flexible Skylines: Dominance for

Arbitrary Sets of Monotone Functions. ACM Trans. Database Syst. 45, 4, Article

18 (December 2020), 45 pages.

[4] https://spark.apache.org/docs/latest/api/python/

[5] S. Börzsönyi, D. Kossmann and K. Stocker, "The skyline operator," Proceedings

of International Conference on Data Engineering (ICDE), p. pp. 421–430, 2001.

[6] Y. Gao, G. Chen, L. Chen, and C. Chen. Parallelizing progressive computation

for skyline queries in multi-disk environment. In Proc. Int. Conf. of Database

and Expert Systems Applications (DEXA), pages 697–706, 2006.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In IEEE

Computer Society, pages 717–719. IEEE Computer Society, 2003.

[8] I. Bartolini, P. Ciaccia, and M. Patella. Efficient Sort-Based Skyline Evaluation.

ACM Transactions on Database Systems, 33(4), 2008.

[9] A. Cosgaya-Lozano, A. Rau-Chaplin and N. Zeh, Parallel computation of skyline

queries. In Proc. of Int. Symp. on High Performance Computing Systems.

[10] K. Mullesgaard, J. L. Pederseny, H. Lu and Y. Zhou, "Efficient Skyline

Computation in MapReduce," Advances in Database Technology - EDBT 2014,

17th International Conference on Extending Database Technology, pp. pp. 37-

48, 2014.

92 Bibliography

[11] A. Vlachou, C. Doulkeridis and Y. Kotidis, "Angle-based Space Partitioning for

Efficient Parallel Skyline Computation", SIGMOD, 08, June 9–12, 2008,

Vancouver, BC, Canada

[12] Etion Pinari, "Parallel Implementations of the Skyline Query using PySpark",

2022.

[13] Apache Spark: "Spark overview" https://spark.apache.org/docs/latest/

[14] Map Reduce: “Map Reduce Tutorial”

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in

database systems. ACM Transactions on Database Systems (TODS), 30(1):41–

82, 2005.

[16] L. Chen, K. Hwang and J. Wu, "MapReduce Skyline Query Processing with a

New Angular Partitioning Approach," IPDPS Workshops, pp. 2262-2270, 2012.

[17] J.-L. Koh, C.-C. Chen, C.-Y. Chan and A. L. P. Chen, "MapReduce skyline query

processing with partitioning and distributed dominance tests," 2017.

[18] Github repository with the implemented code:

“https://github.com/emilio99-del/Master-Thesis”

 93

List of Figures

Figure 2.1 : A Skyline example with 5 points in 2 dimensions……………………...…..7

Figure 2.2 : Example of F-dominance test ………………...……………………………..11

Figure 4.1 : Example of independent, correlated and anticorrelated 2d datasets……26

Figure 4.2 : Application of Random Partitioning to three distinct datasets…………..27

Figure 4.3: An independent dataset with grid partition.……………………………….29

Figure 4.4: Example of how data are partitioned using Grid Partitioning……………30

Figure 4.5: An example of angular partitioning on a independent 2d dataset……….31

Figure 4.6: An example of how data are partitioned using Angular Partitioning……33

Figure 4.7: An example of how data are partitioned using Sliced Partitioning………35

Figure 5.1: Example of partition dominance using grid filtering………………………38

Figure 5.2: Percentage of filtered data using different types of 4d datasets…………..40

Figure 5.3: Comparison of the two algorithms in terms of time taken to filter the data

and percentage of filtered data using 4d independent datasets of different sizes……45

Figure 5.4: Comparison of the two algorithms in terms of time taken to filter the data

and percentage of filtered data using 4d correlated datasets of different sizes………46

Figure 5.5: Comparison of the two algorithms in terms of time taken to filter the data

and percentage of filtered data using 4d anticorrelated datasets of different sizes….47

Figure 5.6: Comparison of the two algorithm aimed at computing SKY and ND in

terms of time taken to filter the data and percentage of filtered data…………………48

Figure 5.7: Block diagram of the All Parallel algorithm…………………………………50

Figure 7.2.1: Execution time of the Centralized Skyline Algorithms…………………..60

Figure 7.2.2: Execution time of the Centralized SFS with centroids as weights of the

sorting function……………………………………………………………………………...61

Figure 7.2.3: Execution time of the Centralized ND Algorithms……………………….61

Figure 7.2.4: Execution time of the VE centralized ND Algorithms……………………62

Figure 7.2.5: Execution time of the centralized PO Algorithms…………………………63

94 List of Figures

Figure 7.3.1: Execution Time of the SFS algorithm in the centralized and parallel

version using 4d anticorrelated datasets and the local machine with 4 cores…………64

Figure 7.3.2: Execution Time of the SFS algorithm in the centralized and parallel

version using 4d anticorrelated datasets and the virtual machine with 30 cores……..65

Figure 7.3.3: Execution time of the parallel phase of the SFS Algorithms and percentage

of the dominated points in 4d anticorrelated dataset using the virtual machine…….66

Figure 7.3.4: Execution Time of the SVE1F algorithm in the parallel versions using 4d

anticorrelated datasets and the virtual machine………………………………………….67

Figure 7.3.5: Execution time of the parallel phase of the SVE1F Algorithms and

percentage of the dominated points using the virtual machine………………………..68

Figure 7.3.6: Execution Time of the PO algorithm starting from the ND set in the

parallel versions using 4d anticorrelated datasets and the virtual machine…………..69

Figure 7.3.7: Execution time of the parallel phase of the PO Algorithms and percentage

of the dominated points starting from the ND set using the virtual machine………..70

Figure 7.4.1: Execution Time of the improved parallel algorithms using SFS with 4d

anticorrelated datasets and the virtual machine…………………………………………71

Figure 7.4.2: Execution time of the parallel phase of the Improved parallel Algorithms

using SFS and percentage of eliminated points in 4d anticorrelated dataset…………72

Figure 7.4.3: Execution time of the parallel phase of the Improved parallel Algorithms

using SVE1F and percentage of the local set size in 4d anticorrelated dataset……….74

Figure 7.4.4: Execution time of the parallel phase of the Improved parallel Algorithms

using SVE1F and percentage of the local set size in 4d anticorrelated datasets………75

Figure 7.4.5: Execution time of All Parallel algorithms to compute PO in 4d

anticorrelated datasets using the virtual machine……………………………………….76

Figure 7.4.6: Execution Time of the All Parallel Algorithm for computing the Skyline,

ND and PO sets using a 4d anticorrelated dataset………………………………………77

Figure 7.5.1: Execution time of the Parallel Algorithms to compute the Skyline using

SFS changing the cardinality of the 4d anticorrelated datasets…………………………78

Figure 7.5.2: Execution time of the Parallel Algorithms to compute ND using SVE1F

changing the cardinality of the 4d anticorrelated datasets………………………………78

Figure 7.5.3: Execution time of the Parallel Algorithms to compute PO changing the

cardinality of the 4d anticorrelated datasets……………………………………………..79

Figure 7.6.1: Execution Time of the Improved Parallel Algorithms using SFS in an

anticorrelated dataset of 1 million points…………………………………………………80

Figure 7.6.2: Execution time of the All Parallel Algorithm for the computation of ND

and PO using an anticorrelated dataset of 1 million points…………………………….81

List of Figures 95

Figure 7.7.1: Execution Time of the Parallel Algorithms using SFS and SVE1F with an

anticorrelated 4d dataset of 1 million points changing the number of partitions…….82

Figure 7.7.2: Execution time and cardinality of the local set after the parallel phase

using an anticorrelated dataset of 1 million points changing the slice per dimension...83

Figure 7.7.3: Execution time and cardinality of the local set after the parallel phase

using an anticorrelated dataset of 1 million points changing the num of partitions…83

Figure 7.8.1: Execution time of the Parallel Algorithms to compute the Skyline using

SFS changing the number of cores used…………………………………………………..84

Figure 7.8.2: Execution time of the Parallel Algorithms to compute the ND set using

SVE1F changing the number of cores used……………………………………………….84

Figure 7.8.3: Execution time of the Parallel Algorithms to compute the PO set changing

the number of cores used…………………………………………………………………..85

96 List of Figures

 97

List of Tables

Table 5.1: Table of Notation………………………………………………………………...15

Table 7.1: Time of parallel and sequential phases of the SFS Algorithms using a 4d

anticorrelated dataset with 3 million points and 30071 SKY points on the virtual

machine………………………………………………………………………………………66

Table 7.2: Time of parallel and sequential phases of the SVE1F Algorithms using a 4d

anticorrelated dataset with 2 million points and 16781 ND points…………………….68

Table 7.3: Time of parallel and sequential phases of the PO Algorithms using a 4d

anticorrelated dataset with 16781 ND points and 150 PO points………………………70

Table 7.4: Time of parallel and sequential phases of improved Parallel Algorithms

using SFS with a 4d anticorrelated dataset with 3 million points and 30071 SKY

points………………………………………………………………………………………....73

Table 7.5: Time of parallel and sequential phases of improved Parallel Algorithms

using SVE1F with a 4d anticorrelated dataset with 2 million points and 16781 ND

points………………………………………………………………………………………....75

Table 7.6: Number of Skyline, ND and PO points per cardinality of the 4d dataset….77

Table 7.7: Number of Skyline, ND and PO Points per dimension………………………80

98 List of Tables

 99

Acknowledgments

Prima di tutto ringrazio il mio relatore, il professor Davide Martinenghi il quale mi ha

seguito per tutti questi mesi in cui ho svolto il lavoro di tesi, è riuscito a guidarmi con

i suoi consigli ed è sempre stato disponibile nel momento del bisogno.

Ringrazio i miei genitori Damiano e Miranda, che non mi hanno mai fatto mancare il

loro appoggio e il loro amore anche a chilometri di distanza in tutti questi anni. Mi

hanno reso l’uomo che sono oggi e insegnato cosa vuol dire essere supportato, ed è

grazie a loro che non ho mai dubitato di me stesso e continuerò a non farlo mai.

Ringrazio i miei fratelli Giuseppe e Raffaele, i migliori fratelli che si possano

desiderare. Da fratello minore non mi hanno mai fatto mancare l’affetto e sono per me

da sempre un’ ispirazione e non smetterò mai di essergli grato per tutto l’amore che

mi hanno dato in questi anni.

Infine ringrazio tutti i miei amici con il quale ho condiviso momenti bellissimi e mi

hanno aiutato a mantenere il sorriso sulle labbra anche nei momenti più difficili.

