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Abstract 

Skyline queries are a way of finding interesting data within a large dataset by 

considering attributes all at the same level. Flexible skylines, on the other hand, are 

methods of finding interesting data by applying constraints on the attributes, thereby 

also reducing the amount of data returned. The computation of these skylines can 

become very time-consuming in the case of very large datasets. In this thesis, we will 

implement parallel computation algorithms for these datasets, trying to reduce the 

execution time as much as possible. We will introduce several algorithms for parallel 

computation taken from the literature applied to skyline computation and also adapt 

them to the computation of the Flexible Skyline ND and PO operators. We will try to 

introduce improvements to these algorithms with an initial filtering phase aimed at 

decreasing the dataset size before performing the parallel phase, and once it is 

established that the sequential part is the most expensive, we will propose an all 

parallel algorithm in which we will eliminate it totally. To carry out the parallelization 

of these algorithms, we will use the PySpark framework and see in detail how these 

algorithms behave by changing the size of the dataset and the dimensions. 
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Abstract in italiano 

Le Skyline query sono un modo per trovare dati interessanti all’interno di un dataset 

di grandi dimensioni che considerano gli attributi tutti allo stesso livello. Le Flexible 

Skyline invece, sono dei metodi per trovare dati interessanti applicando dei vincoli 

sugli attributi, riducendone cosi anche la quantità di dati restituiti. Il calcolo di queste 

Skyline può diventare molto dispendioso nel caso di dataset di grandi dimensioni. In 

questa tesi andremo ad implementare algoritmi paralleli per il calcolo di questi set di 

dati cercando di diminuirne il tempo di esecuzione quanto più possibile. Introdurremo 

diversi algoritmi per il calcolo parallelo presi dalla letteratura applicati al calcolo delle 

Skyline e li adatteremo anche al calcolo degli operatori Flexible Skyline ND e PO. 

Cercheremo di introdurre miglioramenti a questi algoritmi con una fase di filtraggio 

iniziale volta a diminuire la grandezza del dataset prima di effettuare la fase parallela 

e una volta assodato che la parte sequenziale è la più dispendiosa, proporremo un 

algoritmo tutto in parallelo in cui la elimineremo del tutto. Per effettuare la 

parallelizzazione di questi algoritmi utilizzeremo il framework PySpark e vedremo nel 

dettaglio come si comportano questi algoritmi cambiandone la grandezza del dataset 

e le dimensioni. 

 

Parole chiave: Skyline, Flexible Skyline, PySpark, Algoritmi Paralleli. 
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1 Introduction  

One of the main tasks when working with big data is to find all the most interesting 

data in a dataset, whether working in the field of Database Systems or in the field of 

Data Mining or Machine learning. Multi-criteria analysis [1] deals with decision-

making applications, selecting the best alternatives in different contexts, such as 

databases, by finding the best tuples that are not dominated by any other.  

1.1. Motivations and objectives of the work 

In recent years, with the growth of big data, attempts are being made to find a way to 

search within larger and larger datasets, the data that might be more interesting and 

to pay special attention to. Skyline queries are an efficient and fast way to select a 

subset of these huge datasets that might be more interesting, returning the set of tuples 

not dominated by any other tuple. We have that a tuple t dominates another tuple s if 

and only if t is not worse in any attribute than s and strictly better in at least one.  

The top-k or ranking queries approach [2], instead, involves reducing the original 

multi-objective problem into a single-objective problem using a scoring function. This 

function incorporates parameters, such as weights, to adjust scales and reflect the 

user's preference for different attributes. Skylines provide a global view of data that 

might be of interest but, unlike top-k queries, do not take user preferences into account 

because they consider attributes all at the same level, in addition they might contain 

too many tuples and thus give too little useful information that cannot help the user 

make decisions. The greater the dimensionality of the attributes, the larger the skyline 

set will be.  

To try to overcome these problems in this thesis, we will also discuss Flexible skylines 

[3], which are a hybrid between Skyline queries and top-k queries where with 

constraints on attributes we try to give different importance to different attributes. The 

concept of F-dominance was introduced for this purpose: A tuple t F-dominates 

another tuple s if and only if t is always better than or equal to s according to all scoring 

functions in F. Flexible skylines thus return a subset of the skylines and are divided 

into 2 operators: ND which returns the subset of non F-dominated tuples and PO 



2 1|Introduction 

 

 

which returns a subset of ND representing all tuples that are potentially optimal with 

respect to a scoring function in F. A benefit of using F-skylines is that the cardinality 

of the interesting tuples decreases compared to that of skylines since we apply 

constraints on the attributes, so the tighter the constraints, the narrower the set of 

results. Like skylines, these also suffer from dimensionality, and the more we increase 

the dimensions, the larger these subsets will be.  

In this thesis, several algorithms will be presented for computing Skylines and Flexible 

Skylines. We will see how the centralized version of these algorithms is difficult to use 

as the cardinality of the dataset increases, as the execution time of these algorithms 

will become unmanageable. Therefore, it is important for us to introduce parallel 

frameworks to try to divide the computation of these subsets into several partitions 

that will be executed in parallel. Each partition will have a part of the dataset and will 

return a local skyline that will be equal to the skyline set of that subset of points and 

not all the dataset. Once all the local skylines have been computed, they will merge 

and there will be a sequential phase in which we will find the global skyline from the 

local skylines found from each partition.  

The important goal is to find the best possible partitioning in order to have local 

skylines as small as possible and thus reduce the final sequential phase, which will be 

the slowest. Later in this thesis we will present improvements to these types of 

partitioning by attempting to perform an initial filtering phase, thus decreasing the 

load on the parallel part, and then we will study a method to eliminate the sequential 

phase totally. 

One aim of this thesis will be to implement the algorithms in both the centralized and 

parallel versions with all the types of partitioning widely used for skyline queries and 

apply them to our specific case of the Flexible Skyline computation using the PySpark 

framework [4], and to verify which algorithm performs best and what conditions 

makes it perform the best.  

Another goal will therefore be to find new algorithms that allow for greater speed of 

execution, in the next chapters we will look at initial point filtering techniques and also 

introduce a new algorithm for computing the most representative points for filtering, 

which in this thesis we have adapted to make them work for both skyline computation 

and Flexible Skyline operators.  

After that, algorithms will be proposed in which the final sequential part will be 

eliminated for the computation of the Flexible Skyline operators ND and PO, and as 

we will see, these algorithms will be the ones that will give us the best results 

compared to the other techniques because we will eliminate the sequential part which 

is the longest to perform. 

We will try to increase the cardinality and dimensionality of the datasets as much as 

possible, and will use both a local machine with 4 cores and a virtual machine granted 

by the Polimi Datacloud with 30 cores to run the algorithms. 



1|Introduction 3 

 

 

1.2. Structure of the work 

The first chapter is the introduction, after that, the second chapter called preliminaries, 

focuses on giving a theoretical definition of Skylines and Flexible skylines, explaining 

their properties and the theorems used to compute them. We will also see the 

distinction of the computation of the two operators ND and PO in different strategies. 

In the third chapter we will introduce the sequential algorithms for skyline and 

Flexible skyline computation, in particular we will see Block Nested Loop (BNL), the 

Sort-Filter-Skyline Algorithm (SFS) and the Sort and Limit Skyline algorithm (SaLSa) 

for Skyline computation, while for ND computation we will see sorted and unsorted 

versions of two main algorithms, 2-phase LP and 1- and 2-phase VE. Finally, for the 

computation of PO we will see two main algorithms, one applying a Primal PO Test 

and the other performing the same version but with the Dual version. 

In chapter four, we will introduce parallel algorithms with different types of 

partitioning, and in particular we will look at random partitioning, grid partitioning, 

angular-based partitioning and One-Dimensional Slice Partitioning. 

After that, in the fifth chapter we will try to improve these algorithms by applying 

several enhancements. First of all, by applying an initial filtering phase so as to 

decrease the initial dataset using certain techniques, thus eliminating all those points 

that cannot definitely be Skyline points. And after that we will see an algorithm that 

eliminates the final sequential phase, and performs everything in parallel. 

In Chapter 6, we will introduce the Spark framework and the environment where the 

code will be executed. We will also present the packages utilized for computing the 

various algorithms. 

In chapter seven we will verify the results of these algorithms performed both with a 

local machine with 4 cores and with a virtual machine with 30 cores. We will analyse 

the results using synthetically created datasets, paying particular attention to the 

anticorrelated ones, which take the longest to finish the computation. We will change 

the cardinality of these datasets and dimensionalities to see how long the algorithms 

take to finish. We will also look at how changing the number of partitions affects the 

duration of the parallel algorithms and how changing the number of cores affects the 

execution time. 

Finally, in Chapters eight and nine we will discuss the related works and the 

conclusions. 
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1.3. Thesis contributions 

The contributions of this thesis are several. First, pre-existing algorithms for skyline 

computation and Flexible Skyline operators are introduced and tested in using Python 

as a programming environment. After that, the Spark framework is introduced with 

which we are going to parallelize the computation of these algorithms. 

One of the contributions of this thesis is to take some partitioning algorithms from the 

literature applied so far only for Skyline computation, and readapt them for the 

computation of the Flexible Skyline ND and PO operators. 

We will see some improvements to these algorithms, some taken from the literature, 

others introduced for the first time in this thesis. The one proposed in this thesis is to 

do filtering with representatives points taking the first n sorted points of each partition 

after the angular partitioning technique. Another contribution will be to take this 

technique, and readapt it to the computation of the ND set with some improvements.  

Another contribution will be to create a parallel algorithm without a sequential part 

that is good for the computation of the two Flexible Skyline operators ND and PO. 

Having taken all these algorithms, we will implement them using the Pyspark 

framework and derive an experimental analysis in which we will test the efficiency of 

the various algorithms and find the optimal setting to make them work best.  
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2 Preliminaries 

In this chapter, we will give a theoretical definition to the concept of Skyline and 

Flexible Skyline, introducing their definitions and discussing their properties.  All 

definitions, theorems and results have been taken from the literature and explained in 

this chapter using examples to facilitate the understanding. We will look in detail at 

two methods for the computation of ND points using two different theorems and two 

methods for the computation of PO to solve a LP, one with primal and the other with 

dual. 

2.1. Skyline query 

The skyline query was first introduced in [5] to find all the best tuples in a database, 

and after that it was adapted to more fields. It is based on the concept of dominance, 

in fact a skyline query returns all tuples (points) that are not dominated within a 

dataset. In this thesis we consider smaller values as better, but it is only a convention 

we use here, the opposite could be used. Let us first introduce the definition of 

dominance between tuples. 

Definition 2.1: Given two tuples t, u ∈ ℝd belonging to the same dataset S, t dominates 

u, written t ≺ u, if and only if t is not worse than u in all dimensions and better in at 

least one. Equivalently:  

 

 
𝑡 ≺  𝑢 ↔  {

∀𝑖 ∈ [1, 𝑑] →  𝑡[𝑖] ≤ 𝑢[𝑖]

∃𝑗 ∈ [1, 𝑑] → 𝑡[𝑗] < 𝑢[𝑗] 
 

(2.1.1) 

 

Thus we have that the skyline set of a Dataset S, denoted by SKY(s) is equal to: 

 

 𝑆𝐾𝑌(𝑠) = {𝑡 ∈ 𝑠|∄𝑢 ∈ 𝑠.  𝑢 ≺  𝑡} (2.1.2) 

 

The first formula (2.1.1) gives us the definition of dominance between tuples, telling 

us when one tuple dominates another and is therefore “better”. The second (2.1.2) 

gives us the definition of the Skyline set which is equal to all non-dominated tuples 
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within a dataset, hence those tuples for which there is no “better” tuple within the 

same dataset.  

Consequently, we can also give a definition to the set of dominated tuples that will be 

simply equal to the set of tuple of  given dataset that are not Skyline. 

 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑(𝑠) = 𝑆 − 𝑆𝐾𝑌(𝑠) (2.1.3) 

We can also give another definition of Skyline by introducing the concept of monotone 

scoring functions. Let us first introduce the definition of a monotone scoring function: 

Definition 2.2: A scoring function f is a function that takes a tuple with non-negative 

real values for attributes and returns a non-negative real value representing the score. 

For a tuple t belonging to a dataset S, the value f(t) represents the score. We have that 

a scoring function F is monotone if, for any tuple t, u on S, we have that:  

 

 ∀ 𝑖 ∈ [1, 𝑑] | 𝑡[𝑖] ≤ 𝑢[𝑖] → 𝑓(𝑡) ≤ 𝑓(𝑢) (2.2.1) 

 

We could see the scoring functions, in our case where we consider the lowest values 

to be the better ones, as the measure of distance from the origin of the point, preferring 

those closer to it. The new definition of Skyline can be specified in this way as shown 

in [3]: 

 

 𝑆𝐾𝑌(𝑠) = {𝑡 ∈ 𝑠|∃𝑓 ∈ 𝑀𝐹.  ∀ 𝑢 ∈ 𝑠.  𝑢 ≠ 𝑡 → 𝑓(𝑡) < 𝑓(𝑢)}  (2.2.2) 

 

Where MF is the infinite set of all monotone scoring functions. 

 

Example: An example of a Skyline computation could concern the choice of a 

restaurant. We take into account two characteristics of each restaurant, the average 

cost (in euros) per person and the distance from the centre (Km). We want to find all 

restaurants that have the best compromise between these two characteristics, to have 

both as low as possible. Suppose we have 5 restaurants with the following values for 

the attributes A={cost, distance}, r1={30, 2}, r2={20, 4}, r3={35, 2.5}, r4= {50, 1}, r5 = {40, 3}.  
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Figure 2.1: A Skyline example with 5 points in 2 dimensions 

 

As we can see in the figure 2.1 we have that the skyline points are r1, r2, r4, i.e. all the 

points that have no other points that have both lower cost and distance values. We can 

also see the set of dominated points that is the one in the upper right area and is 

composed of points r3 and r5 which are both dominated by r1. 
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2.2. Flexible Skyline 

2.2.1 F-dominance 

With the flexible skylines we try to overcome the problem of skyline queries which do 

not take into account user preferences by applying constraints on attributes. To do this 

we present two operators introduced in [3] that behave like skyline queries but are 

applied to a non-empty set of monotone scoring function F. From now on, we will 

introduce another type of dominance between tuples that takes scoring functions into 

account. 

 

Definition 2.3: (F-dominance) Let F be a non-empty set of monotone scoring functions 

and t, u tuples belonging to a dataset S, with t ≠ u. We have that t F-dominates u, written 

as t ≺F  u , if: 

 

 ∀ 𝑓 ∈ 𝐹 → 𝑓(𝑡) ≤ 𝑓(𝑢) (2.3.1) 

 

It can be deduced from the definition that F-dominance is transitive. So if t ≺F u, and 

u ≺F  r, then t ≺F  r. 

Definition 2.4: (Dominance Region) Given a tuple t and a set of monotone scoring 

functions F, the F-dominance region DR(t; F) of tuple t in a dataset S under the set F is 

the set of all tuples that are F-dominated by t: 

 

 𝐷𝑅(𝑡; 𝐹) = { 𝑢 ∈ 𝑠 | 𝑡 ≺𝐹 𝑢 } (2.4.1) 

Example: Given the tuple t = (1, 0) and u = (0.5, 1), and the monotone scoring functions 

𝑓1(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑓2(𝑥, 𝑦) = 2𝑥 + 𝑦. We have that t ≺F u, since the definition 2.3 holds: 

f1(t) = 1 < f1(u) = 1.5 and f2(t) = f2(u) = 2. 
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2.2.2 Non-dominated Flexible Skyline (ND) 

We now introduce the first Flexible Skyline operator, called non-dominated Flexible 

Skyline (ND), which is the set of all tuples that are not F-dominated within a dataset.  

Definition 2.5: The set of non-dominated Flexible Skyline (ND) of a dataset s with 

respect to a set of monotone scoring functions F ⊆ MF, is defined as: 

 𝑁𝐷(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∄ 𝑢 ∈ 𝑠.  𝑢 ≺𝐹  𝑡 } (2.5.1) 

This formula 2.5.1 is similar to the Skyline formula except that instead of simple 

dominance ≺ we have F-dominance ≺F . 

We now introduce two main strategies for calculating ND when each function F is a 

monotonically transformed, linear-in-the-weights (MLW) function, i.e. a function with 

the following form: 

 
𝑓(𝑡) = ℎ(∑ 𝑤𝑖𝑔𝑖(𝑡[𝑖])

𝑑

𝑖=1

) 
 

(2.5.2) 

 

Where W = (w1, … , wd) ∈ W(C), and W(C) is the subset of all normalized weight vectors 

that satisfies C, C is a set of linear constraints, and h and gi  are continuous and 

monotone transforms, such that are all either non-decreasing or non-increasing. We 

refer to gi(t[i]) as the marginal score of tuple t. 

Theorem 1: (F-dominance test) Let F be a set of MLW functions subject to a set C = {C1, ... 

,Cc } of linear constraints on weights, where 𝐶𝑗 = ∑ 𝑎𝑗𝑖
𝑑
𝑖=1 𝑤𝑖 ≤ 𝑘𝑗  (for j ∈ [1,c] ) . Then, t 

≺F u if and only if the following linear programming (LP) problem in the variables W 

= (w1, ... ,wd) has a non-negative solution: 

 

 minimize   ∑ 𝑤𝑖(𝑔𝑖(𝑢[𝑖]) − 𝑔𝑖(𝑡[𝑖])𝑑
𝑖=1 , 

subject to  𝑤𝑖 ∈ [0,1]       𝑖 ∈ [1, 𝑑], 

   ∑ 𝑤𝑖 = 1𝑑
𝑖=1 , 

   ∑ 𝑎𝑗𝑖𝑤𝑖 ≤ 𝑘𝑗
𝑑
𝑖=1      𝑗 ∈ [1, 𝑐]. 

 

(2.5.3) 
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Example: Given 2 tuples t = (0.3, 0.5) and u = (0.6, 0.35) and the following constraints on 

the weights 𝑤2 ≤ 𝑤1, according to Theorem 1, we have that t ≺F   u if and only if this LP 

has a non-negative solution: 

minimize  𝑤1(0.6 − 0.3) + 𝑤2(0.35 − 0.5) 

subject to  𝑤1, 𝑤2  ∈ [0,1], 

   𝑤1 + 𝑤2 = 1, 

   𝑤2 ≤ 𝑤1. 

 

In this case we have that t ≺F   u when 𝑤1 = 1 and 𝑤2 = 0. 

This strategy of computation of ND is heavy and time-consuming because we have to 

solve a different LP problem for each of the F-dominance Tests, that are O(N2), where 

N is the cardinality of the dataset. The second strategy involves computing the 

dominance region of each point and eliminating all points that are part of at least one 

of these regions. By doing so we avoid solving linear problems that are time-

consuming, and we only calculate the dominance region of each point and check 

whether the others are part of it or not, and if so we can deduce if a point is not part of 

the ND set. To compute the dominance region of t (DR(t; F)), we have to compute the 

vertices of the convex polytope W(C) . For this purpose, we introduce a new theorem: 

Definition 2.6: (F-dominance Region) Let F be a set of MLW functions subject to a set C = 

{C1,...,Cc } of linear constraints on weights, where Cj = ∑ aji
d
i=1 wi ≤ kj (for j ∈ [1,c] ) and 

let W(1), … , W(q) be the vertices of the convex polytope W(C). The dominance region of 

a tuple t under F is the locus of the points u  defined by the q inequalities: 

 

 

∑ 𝑤𝑖
(𝑙)

𝑔𝑖(𝑢[𝑖]) ≥
𝑑

𝑖=1
∑ 𝑤𝑖

(𝑙)
𝑔𝑖(𝑡[𝑖]),       𝑙 ∈ [1, 𝑞]

𝑑

𝑖=1

 
(2.6.1) 

 

Theorem 2: A tuple t F-dominates another tuple u if and only if u belongs to the F-

dominance region of t, i.e. if u satisfies the equations of Definition 2.6: 

 

 𝑡 ≺𝐹  𝑢 ↔ 𝑢 ∈ 𝐷𝑅(𝑡; 𝐹)  (2.6.2) 

 

 

Example: Let us take the same example as above. We have the constraint 𝐶 = {𝑤2 ≤ 𝑤1} 

and we have to consider also 𝑤1 + 𝑤2 = 1 and 𝑤1, 𝑤2  ∈ [0,1]. The vertices of W(C) are 
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 𝑊(1) = (1,0) and 𝑊(2) = (
1

2
,

1

2
). According to Theorem 2 we can compute the 

dominance region DR(t; F) of t = (0.3, 0.5): 

 

{ 
𝑢[1] ≥ 0.3

1

2
𝑢[1] +

1

2
𝑢[2] ≥

1

2
0.3 +

1

2
0.5

 

 

We have that the tuple u = (0.6, 0.35) satisfies this equations, so we have that t ≺F  u. 

The advantage of this strategy w.r.t. the first one is that the computation of the 

dominance region DR(t; F) of a tuple t is computed only once, and so the computation 

of the vertex enumeration of the polytope which introduce the most significant 

overhead is performed only once. 

 

Figure 2.2 : u is in the F-dominance region of t, so  t ≺F  u. 
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2.2.3 Potentially Optimal Flexible Skyline (PO) 

We now introduce the second operator, called Potentially Optimal Flexible Skyline 

(PO), which returns a set of tuples considered optimal (the best) according to some 

monotone scoring functions F. 

Definition 2.7: The set of Potentially Optimal Flexible Skyline (PO) of a dataset s with 

respect to a set of monotone scoring functions F ⊆ MF, is defined as: 

 

 𝑃𝑂(𝑠; 𝐹) = {𝑡 ∈ 𝑠 | ∃𝑓 ∈ 𝐹 . ∀𝑢 ∈ 𝑠.  𝑢 ≠ 𝑡 → 𝑓(𝑡) < 𝑓(𝑠)} (2.7.1) 

 

We have that a tuple t that is potentially optimal is certainly also ND, but the fact that 

it is not F-dominated is only a necessary condition for t to be potentially optimal and 

not sufficient. There are two ways to find the PO set: start from the whole dataset and 

find the set in one step or find the ND set first and then compute PO from that. In both 

cases, we have to solve some LP and there are two strategies: solve the Primal or the 

Dual PO test. 

 

Theorem 3: (Primal PO Test) Let F be a set of MLW functions subject to a set C = {C1,...,Cc} 

of linear constraints on weights, where Cj = ∑ aji
d
i=1 wi ≤ kj (for j ∈ [1,c]) and 

𝑁𝐷(𝑠;  𝐹) = {𝑡1,  𝑡2, … , 𝑡σ, t}. Then 𝑡 ∈ 𝑃𝑂(𝑠; 𝐹) if and only if the following LP problem 

in the variables 𝑊 = (𝑤1, … , 𝑤𝑑) and ϕ has a strictly positive optimal solution: 

 maximize   ϕ, 

subject to  ∑ 𝑤𝑖(𝑔𝑖(𝑢[𝑖]) − 𝑔𝑖(𝑡𝑗[𝑖])𝑑
𝑖=1 + 𝜙 ≤ 0       𝑗 ∈ [1, 𝜎],        

 𝑤𝑖 ∈ [0,1]       𝑖 ∈ [1, 𝑑], 

   ∑ 𝑤𝑖 = 1𝑑
𝑖=1 , 

   ∑ 𝑎𝑗𝑖𝑤𝑖 ≤ 𝑘𝑗
𝑑
𝑖=1      𝑗 ∈ [1, 𝑐]. 

 

(2.7.2) 
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Theorem 4: (Dual PO Test) Let F be a set of MLW functions subject to a set C = {C1,...,Cc} 

of linear constraints on weights, W(1), … , W(q) be the vertices of the convex polytope 

W(C) and 𝑁𝐷(𝑠;  𝐹) = {𝑡1,  𝑡2, … , 𝑡σ, t}. Then 𝑡 ∈ 𝑃𝑂(𝑠; 𝐹) if and only if the following 

linear system in the variables α =  (𝛼1 , . . . , 𝛼𝜎 ) is unsatisfiable: 

 
∑ 𝑤𝑖

(𝑙)
(∑ 𝛼𝑗

𝜎

𝑗=1
𝑔𝑗(𝑢𝑗[𝑖])) ≤

𝑑

𝑖=1
∑ 𝑤𝑖

(𝑙)
𝑔𝑖(𝑡[𝑖]),       𝑙 ∈ [1, 𝑞]

𝑑

𝑖=1

 

𝛼𝑗 ∈ [0, 1]    𝑗 ∈ [1, 𝜎],   

∑ 𝛼𝑗 = 1.
𝜎

𝑗=1

 

 

(2.7.3) 

2.2.4 Properties 

The first property of the Flexible Skyline operators regards the relationship with the 

Skyline operator SKY, in fact we have that when the monotone scoring function set 

coincides with the infinite set of all monotone scoring functions MF, we have that ≺MF 

coincides with ≺ and thus: 

 

 𝑃𝑂(𝑠; 𝑀𝐹) = 𝑁𝐷(𝑠; 𝑀𝐹) = 𝑆𝐾𝑌(𝑠) (2.8.1) 

From this property we can deduce that: 

Property 1: PO is a subset of ND and ND is a subset of SKY: 

 

 𝑃𝑂(𝑠; 𝐹) ⊆ 𝑁𝐷(𝑠; 𝐹) ⊆ 𝑆𝐾𝑌(𝑠) (2.8.2) 

 

Another property of ND and PO is that they are monotone operators with respect to 

the set of scoring functions. 

Property 2: Given two sets F1 and F2 of monotone scoring functions, if F1 ⊆  𝐹2 then: 

 

 𝑁𝐷(𝑠; 𝐹1) ⊆ 𝑁𝐷(𝑠; 𝐹2) 

𝑃𝑂(𝑠; 𝐹1) ⊆ 𝑃𝑂(𝑠; 𝐹2) 

(2.8.3) 

 

 



14 2|Preliminaries 

 

 

From this property we can see that both the ND and PO sets become smaller as the 

constraints become more restrictive. 

Property 3: Let F be a set of MLW functions subject to a set C of linear constraints on 

weights. For any dataset S, we have that 𝑃𝑂(𝑠; 𝐹) = 𝑃𝑂(𝑁𝐷(𝑠; 𝐹); 𝐹) 

This property tells us that we can calculate the PO set either from the original dataset 

S or from the ND set. 
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3 Sequential Algorithms 

This chapter will present some of the sequential algorithms for both the computation 

of the Skyline and the ND and PO sets. All the algorithms we will see in this chapter 

are taken from the literature. 

 

Symbol Meaning 

S Input dataset 

t, u Tuples 

C Constraints 

F Family of MLW functions. 

W Vertices of W(C) 

SKY Skyline set 

nd ND set 

po PO set 

f Sorting Function 

n Number of partitions 

P Partitions 

d Number of dimensions 

r Number of representatives 

LS Local Set 

GS Global Set 

Table 5.1: Table of Notation 
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3.1. Skyline Algorithms 

3.1.1. Block Nested Loops (BNL) 

The first algorithm we will see for sequential Skyline computation was introduced by 

Borzsony et al. [5] and is called Block Nested Loop (BNL). The basic idea is to use a 

memory called window (SKY), initially empty, in the main memory. We scan the 

original dataset S without performing any sorting and for each new tuple t we check 

whether or not it is dominated by the tuples in SKY. If there is a tuple u in SKY that 

dominates t, i.e. u ≺ t, then t is discarded, otherwise added to SKY. If the tuple is added 

to SKY then we must check whether there are tuples in SKY previously added that are 

dominated by the new addition. In this case, we sequentially scan SKY and discard all 

tuples dominated by t from it. At the end of the scan of the entire dataset, only the 

tuples belonging to the Skyline will be left. 

 

Algorithm 1 Block Nested Loops (BNL) 

 

 

1: 

Input: S: dataset 

Output: SKY: Skyline Set 

SKY ←  [ ] 

2: for t in S do 

3:       for u in SKY do 

4:              if u ≺ t then continue to line 2 

5:       for u in SKY do 

6:              if t ≺ u then SKY ← SKY \ { u } 

7:       SKY ← SKY ∪ { t } 

8: return SKY 

 

The advantage of this algorithm is that it is very simple and can be applied to a dataset 

without doing any kind of data pre-processing, but is not very efficient when 

increasing the cardinality of the dataset.  
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3.1.2. Sort Filter Skyline (SFS) 

The SFS algorithm is an improvement of the BNL algorithm introduced by Chomicki et 

al [7]. The algorithm is very similar to BNL, except that there is a pre-processing of the 

data in which the tuples are sorted using a monotone function f. By performing this 

sorting, we are sure that no tuple coming after a certain tuple t dominates it. So the 

functioning of SFS is very simple, first the dataset is ordered using a monotone 

function f, after which BNL is applied without, however, having to perform a check 

on the set SKY as in BNL, because we are sure that once a tuple t has been added to 

the set SKY, there can be no tuple within SKY that can be dominated by t.  

 

Algorithm 2 Sort Filter Skyline (SFS) 

 

 

1: 

Input: S: dataset, f: sort function 

Output: SKY: Skyline Set 

SKY ←  [ ] 

2: S_sorted ← f(S) 

3: for t in S_sorted do  

4:       for u in SKY do 

5:                                       if u ≺ t then continue to line 3 

6:       SKY = SKY ∪ { t } 

7: return SKY 

 

Compared to BNL, we have greatly reduced the number of comparisons, however the 

pre-processing phase could be heavy for very large datasets.  
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3.1.3. Sort and Limit Skyline algorithm (SaLSa) 

This algorithm [8] was born with the idea of improving SFS by trying to avoid reading 

the entire dataset S. The basic idea is that if the dataset is sorted using a monotone 

function f, there is no need to check the entire dataset S but we can stop earlier. In 

general, the number of comparisons may decrease a lot depending on the type of 

function we use to sort the data.  

The algorithm involves the initialization of a set of unread tuples U equal to the dataset 

S and a stop point pstop, which will be used to stop the algorithm in advance. First we 

need to perform the sorting using a monotone function f. After that we scan the set U 

sequentially and compare it with the set SKY which will be initially empty. If no point 

in SKY dominates the point under evaluation then we add it in SKY, and if necessary 

update the value of the stop point. At the end of each iteration, the algorithm verifies 

whether it can terminate by making a check. This check consists of seeing if the stop 

point dominates all points in the set U that have not been read yet. If yes, the algorithm 

terminates, otherwise it continues. 

 

Algorithm 3 Sort and Limit Skyline algorithm (SaLSa) 

 

 

1: 

Input: S: dataset, f: sort function 

Output: SKY: Skyline Set 

SKY ←  [ ], U ← S, stop ← false, pstop ← undefined  

2: U ← f(U) 

3: while not stop ∧ U ≠ ∅  do  

4:       p ← get next point from U, U ← U \ {p} 

5:       if not SKY ≺ p then SKY ← SKY ∪ {p}, update pstop 

6:                                if pstop ≺ U then stop ← true 

7: return SKY 

 

The key factors that influences the performance of SaLSa are the choice of the sorting 

function and the strategy for updating the stop point. 
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3.2. Flexible Skyline Algorithms 

3.2.1. ND computation 

There are two strategies for computing ND [3], the first is to start from the skyline set 

and then calculate the ND set (2-phase), the second is to start from the entire input 

dataset (1-phase). In the first case, no restriction is placed on the algorithm for 

computing the skyline set, we will see two variants, one unsorted which uses BNL and 

one sorted which uses SFS instead. It is also valid for the one-step version to choose 

whether or not to order the input dataset. The main difference between these 

algorithms is the way of checking the F-dominance, whether to verify it with Theorem 

1 by solving LP, or to use Theorem 2 by solving a system of inequalities.  

The main steps can be summarized by first choosing the number of phases: 1-phase if 

we want to compute ND directly from the input dataset, 2-phase if we want to 

compute ND after having computed the Skyline. After that, we choose whether or not 

to apply sorting ('U' for the unsorted version, 'S' for the sorted version) to produce a 

topological sort with respect to the F-dominance relation, i.e. if a tuple t precedes a 

tuple u in the sorted input dataset, then u ⊀F t. To get the topological sort, we will use 

as sort function a weighted sum in which the weights are the coordinates of the 

centroid of the polytope W(C). Next, we choose the way in which to verify F-

dominance, and to do so we have seen two alternatives: the first by solving an LP 

problem as done in Theorem 1 (denoted ‘LP’ in the name of the algorithm), and the 

second by verifying whether the tuple is part of the dominance region of another tuple 

as in Theorem 2, using the vertex enumeration of the polytope W(C) (denoted ‘VE’ in 

the name of the algorithm).  

We’ll see in chapter 7 that the Sorted algorithms are faster than the Unsorted, and the 

second strategy to check the F-dominance with Vertex Enumeration is much faster 

than the LP strategy. For this reason, we’ll see only the sorted 1-phase VE strategy. 
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3.2.1.1. ULP2 and SLP2 

The first two algorithms we will see are ULP2 and SLP2, the principle of both is the 

same, the only difference is the algorithm with which the skyline is computed from, 

since they are 2-phase algorithms. ULP2 uses BNL to compute the skyline, while SLP2 

uses SFS with a sorting function that is equal to the weighted sum with the coordinates 

of the centroid of W(C) as weights. 

 

Algorithm 4 ULP2 

 

 

1: 

Input: S: dataset, C: constraints, F: family of MLW functions. 

Output: nd: ND Set 

skyline ←  BNL(S)  

2: nd ←  skyline 

3: for s in skyline do  

4:       for t in nd in reverse order do 

5:             if s == t then continue to line 4 

6:                                      if t ≺F  s then nd ← nd \ {s} and continue to line 3 

7: return nd 

Algorithm 5 SLP2 

 

 

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions. 

Output: nd: ND Set 

1: S ← sort(S, W) 

2: skyline ← SFS(S) 

3: nd ←  [ ] 

4: for s in skyline do  

5:                                for t in nd do 

6:             if t ≺F  s then continue to line 4 

7:       nd ← nd ∪ {s} 

8:  return nd 

 

ULP2 after computing the skyline with BNL, initializes the ND set equal to the skyline, 

and sequentially scans the entire skyline set comparing it with the ND set. Using 

Theorem 1, it removes from the ND set all points F-dominated by the point under 

consideration. SLP2, on the other hand, exploits initial sorting, so no tuple will ever be 

removed from the ND set for the sorting property, and the vertices of the polytope 

W(C) are computed only once at the beginning. So if a tuple is not F-dominated by all 

the tuples in the ND set, it can be added to it and will never be removed from it. 
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3.2.1.2. UVE2 and SVE2 

These two algorithms are the unsorted and sorted versions of the strategy that 

performs the F-dominance check using Vertex Enumeration and thus Theorem 2. Being 

two 2-phase algorithms, as always there is the first phase where there is the skyline 

computation using BNL for the Unsorted version and SFS for the Sorted version. 

 

Algorithm 6 UVE2 

 

 

1: 

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions. 

Output: nd: ND Set 

skyline ←  BNL(S)  

2: nd ←  skyline 

3: for s in skyline do  

4:       compute left-hand side of Inequalities 

5:       for t in nd do 

6:                                      if s == t then continue to line 4 

7:             if t ≺F  s then nd ← nd \ {s} and continue to line 3 

8: return nd 

Algorithm 7 SVE2 

 

 

1: 

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions. 

Output: nd: ND Set 

S ← sort(S, W) 

2: skyline ← SFS(S) 

3: nd ←  [ ] 

4: for s in skyline do  

5:       Compute left-hand side of inequalities 

6:                                for t in nd do 

7:             if t ≺F  s then continue to line 4 

8:       nd ← nd ∪ {s} 

9:  return nd 

 

UVE2 after computing the skyline with BNL, initializes the ND set equal to the skyline, 

and sequentially scans the entire skyline set, computing the left-hand side of the 

inequalities one time for each point, and then compare it with the ND set. UVE2 scans 

the unordered skyline set to verify that the point into consideration is part of the ND 

set, compares it with all the different points in ND, and for each computes the right-

hand side of the inequalities.  

If there is at least one point in the ND that by Theorem 2 F-dominates the point into 

consideration, then it will be removed from the ND set and the iteration will continue, 

otherwise if no point F-dominates it then it will be kept in the ND set. SVE2 on the 
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other hand, taking advantage of initial sorting and its property that a tuple that comes 

later in the sorted dataset cannot F-dominate one that comes earlier, initializes the nd 

set empty, and adds, by scanning the skyline set, the points that are not F-dominated 

by any point within the ND set, according to Theorem 2. 

3.2.1.3. SVE1 and SVE1F 

Now we move on to the one-phase algorithms, but we will only consider the sorted 

and VE ones because they are the fastest compared to the unsorted and LP versions. 

SVE1 and SVE1F are both two algorithms that start from the original input dataset and 

not from the skyline set like the others we have seen, and their peculiarity is that they 

check the points one by one simultaneously verifying if they are skylines and if so if 

they are part of the ND set or not.  

 

Algorithm 8 SVE1 

 

 

1: 

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions. 

Output: nd: ND Set 

S ← sort(S, W) 

2: nd ←  [ ] 

3: for s in S do  

4:       for t in nd do  

5:             if t ≺ s then continue to line 3 

6:                                compute left-hand side of Inequalities 

7:       for t in nd do 

8:             if t ≺F  s then continue to line 3 

9:       nd ← nd ∪ {s} 

10: return nd 

Algorithm 9 SVE1F 

 

 

1: 

Input: S: dataset, C: constraints, W: vertices of W(C), F: family of MLW functions. 

Output: nd: ND Set 

S ← sort(S, W) 

2: nd ←  [ ] 

3: for s in S do  

4:       compute left-hand side of Inequalities 

5:       for t in nd do 

6:                                      if t ≺ s ∨ t ≺F  s then continue to line 3 

7:       nd ← nd ∪ {s} 

8: return nd 

The difference between the two algorithms lies in the dominance check, SVE1 first 

checks if the point is dominated by the ND set using simple skyline dominance and 

then does the same with F-dominance. SVE1F on the other hand, combines both 
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dominance tests by doing a single scan of the ND set unlike SVE1 which in the worst 

case will have to do it 2 times. The advantage of SVE1F is that if F-dominance has more 

effect in making selection than simple dominance, we could decrease the number of 

dominance tests a lot compared to SVE1. 

 

3.2.2. PO computation 

For the computation of PO [3], as for ND, several strategies can be implemented, such 

as starting from the original input dataset or given property 3 for which 𝑃𝑂(𝑠; 𝐹) =

𝑃𝑂(𝑁𝐷(𝑠; 𝐹); 𝐹), starting from the ND set. Since checking for optimality is very time 

consuming, we will see in this thesis two algorithms that both start from the ND set 

that can be computed with any algorithm seen so far. The difference between the two 

algorithms is in the Optimality test: the first algorithm use the Primal PO Test (Theorem 

3), the second instead, the Dual PO Test (Theorem 4).  

In both algorithms, a heuristic optimization technique can be used to try to reduce the 

number of optimality tests, which will attempt to discard non-optimal tuples using an 

incremental strategy. This strategy attempts to limit the number of σ tuples with which 

to test whether a tuple t is potentially optimal or not. The test is done by solving an LP 

problem that takes into account the marginal scores of all the σ + 1 tuples in the set, 

but when σ is large this procedure may be too costly in terms of time. And here the 

heuristic optimization technique comes into play: we solve an LP problem using only 

a subset of σ tuples: if the solution to Theorem 3 or 4 tells us that t is not potentially 

optimal, then we can safely discard t. This allows us to discard some tuples that are 

not potentially optimal with small LP problems, so that the check with all σ tuples is 

performed only for those tuples that cannot be discarded with smaller LP problems. 
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Algorithm 10 PO non-incremental(Primal and Dual) 

 

 

1: 

Input: nd: nd set, C: constraints, W: vertices of W(C), F: family of MLW functions 

Output: po: PO set 

po ←  nd 

2: for t in po in reverse order do 

3:       if isNonPO(t, po \ {t}) then po ← po \ {t} 

4: return po 

Algorithm 11 PO (Primal and Dual) 

 

 

1: 

Input: nd: nd set, C: constraints, W: vertices of W(C), F: family of MLW functions 

Output: po: PO set 

po ←  nd 

2: σ ←  2;  lastRound ←  false 

3: while not lastRound do  

4:       if σ ≥ |po| - 1 then lastRound ←  true 

5:       for t in po in reverse order do 

6:                                      T ← first min(σ, |po| - 1) tuples in po \ {t} 

7:             if isNonPO(t, T) then po ← po \ {t} 

8:      σ ← σ * 2 

9: return po 

 

In the non-incremental method we perform the Optimality Test of each tuple against 

all the tuples in po except t. In the incremental method, instead, we initialize σ = 2, 

which will give us small LP problems initially, this condition is necessary for pruning 

but not sufficient, so if the non-optimality check of a tuple gives a negative answer it 

does not necessarily mean that tuple is potentially optimal. For each t in PO we check 

if it is not potentially optimal compared to the first σ tuples in PO, since according to 

the order they are the best. In the last round where all remaining tuples are considered, 

they are compared with all the other tuples still in PO, which now becomes a necessary 

and sufficient condition for pruning. To check whether a tuple is not potentially 

optimal in line 7, we can use either the Primal PO Test as in Theorem 3 or the Dual PO 

Test as in Theorem 4. 
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4 Parallel Algorithms 

This chapter presents algorithms that enable us to parallelize the computation of the 

Skyline and Flexible skyline operator, resulting in decreased computation time. These 

algorithms operate by decomposing the dataset into multiple partitions, where each 

partition is responsible to compute a skyline without having to consider all the points 

in the dataset but only its assigned points, the resulting set of points is known as the 

local set of a specific partition. Subsequently, a sequential phase is performed, where 

the final skyline set, called global set since it collects all skyline points in the entire 

dataset, is determined by merging the previously found local sets. 

 

Algorithm 12 Parallel Algorithm 

 

 

1: 

Input: S: dataset, n: number of partitions 

Output: GS: global set 

LS ←  [ ], P←  [ ]  

2: P ←  PartitionAlgorithm(S, n) 

3: for p in P do  

4:       LS ←  LS ∪ ComputeLocalSet(p) 

5: GS ←  SequentialPhase(LS) 

6: return GS 

 

Let us take the Skyline computation as an example, but the same applies to the Flexible 

Skyline operators: we take a dataset S and we decompose it into n partitions S0, S1, ..., 

Sn. We will have that 𝑆𝐾𝑌(𝑆) = 𝑆𝐾𝑌(𝑆𝐾𝑌(𝑆0) ∪ 𝑆𝐾𝑌(𝑆1) ∪ … ∪ 𝑆𝐾𝑌(𝑆𝑛)). The parallel 

algorithm is divided into two phases, the first in which each partition i is assigned to 

a thread that computes its local skyline set SKY(Si), and the second which involves 

merging these local skyline sets and computing their global set SKY(S). 

By applying specific partitioning to the initial dataset, we aim to reduce the time it 

takes to complete the algorithm. The effectiveness of the partitioning directly impacts 

the workload, with smaller local sets being preferred to decrease the workload in the 

final sequential part, which is the slowest. 

In this chapter we are going to introduce 4 types of partitioning taken from the 

literature with the goal of dividing the workload and improving the algorithm's 



26 4|Parallel Algorithms 

 

 

efficiency. Our task in will be to present them and explain how the algorithms assign 

points to a given partition.  

Our final conclusions will be that all algorithms speed up execution time compared to 

the centralized version because they are able to parallelize work on several partitions 

simultaneously, but as we will see in chapter 7, some types of partitioning are more 

effective than others depending on how they partition the space.  

 

From now on, we will see these algorithms applied to 3 different types of datasets, 

independent, correlated and anticorrelated. The difference between these is that an 

independent dataset does not exhibit any proportional relationship between 

dimensions, while the other two do. An anticorrelated dataset is characterized by 

points in one dimension that have an inverse proportionality relationship with all the 

points in another dimension. In contrast, a correlated dataset is one where the points 

are directly proportional to one dimension.  

 

 

Figure 4.1: The upper-left image displays an independent dataset, while the upper-

right a correlated one. In the bottom we have an anticorrelated dataset. All are 2d 

datasets. 
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4.1. Random Partitioning 

The initial partitioning method we will examine is Random Partitioning. This technique 

was initially proposed in [9] with the goal of ensuring that each set Si represents a 

sample of S that has similar structural characteristics. To achieve this, points are 

randomly distributed among the various partitions, with the number of points evenly 

allocated to the n partitions. 

This partitioning method's key benefit is its simplicity since the random assignment of 

points eliminates the need for pre-processing the data, as is required by other 

techniques such as index computation or sorting. On the other hand, this method's 

drawback is that it produces a comparatively large local skyline set in comparison to 

other partitioning techniques. As a result, the sequential phase will require more effort, 

and the algorithm's overall runtime will be impacted. 

 

 

Figure 4.2: Application of Random Partitioning to three distinct datasets, each 

containing 2000 points and 8 partitions where a different colour corresponds to a 

different partition. The upper-left image displays an independent dataset, while the 

upper-right a correlated one. In the bottom we have an anticorrelated dataset. 
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4.2. Grid Space Partitioning 

The next partitioning technique we will examine is Grid Partitioning, which was first 

introduced in [10]. This method entails dividing the space into an nxn grid to enable 

parallel computation on different partitions. In this approach, each dimension is 

divided into n parts, resulting in a total of nd partitions, where d denotes the total 

number of dimensions. The simplest approach is to compute the local sets for all nd 

partitions, combine them and sequentially compute the global set.  

Despite this, this partitioning method is efficient because it enables us to eliminate 

partitions that cannot contain points that belong to the global set. To accomplish this, 

we employ a principle that is comparable to dominance between tuples, although it 

involves a dominance relationship between partitions, with the corner points serving 

as the basis for comparison. We use p.max and p.min to respectively represent the 

maximum and minimum corners of a given partition p. 

A partition's maximum corner p.max is the corner that has the highest (worst) values 

on all dimensions, while its minimum corner p.min is the corner that has the lowest 

(best) values on all dimensions. 

Therefore, we can group every tuple between the best and worst representative point 

together, enabling us to compute the local skyline of each square in the grid. An index 

is computed for each specific point, and then all points with the same index are 

grouped together within a specific partition: 

 

𝑖𝑛𝑑𝑒𝑥(𝑥𝑖) = ∑⌊𝑥𝑖 ∗ 𝑁⌋ ∗ 𝑁𝑖−1

𝑑

𝑖=1

 

 

where xi is the point for which we are computing the index and N is the number of 

partitions per dimension. 
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Example: Let us consider the following independent dataset of 40 points in two 

dimensions, in which we want to apply grid partitioning with N=4 partitions per 

dimension. We will then have a total of 42 partitions (grids). 

 

 

Figure 4.3: An independent dataset with grid partition where a different colour 

corresponds to a different partition. 

 

This figure show us how grid partitioning works and how the points are distributed 

between the partitions.  

Using this type of partitioning, we will have many points in the local set that will be 

dominated later in the computation of the global set, and this leads us to lose a lot of 

time. In the next chapter, we’ll see how to use grid filtering to prune certain partitions 

before the parallel phase, thereby saving some time. 
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With Grid Partitioning, we have no control on how many points the different 

partitions will have, and we have limited control over the number of partitions since 

they will depend on the number of dimensions and the number of slices per dimension 

assigned to them, unlike Random Partitioning which manages to divide the work 

equally between the various partitions and you can select as many partitions as you 

want. However, it does manage to group the points within partitions better, managing 

to eliminate many points in the parallel phase compared to random partitioning, thus 

greatly reducing the local set. 

 

 

Figure 4.4: An example of how data are partitioned using Grid Partitioning in a 2d 

independent (upper-left), correlated(upper-right), anticorrelated (bottom) datasets 

with 42 partitions where a different colour corresponds to a different partition. 

As we can see from Figure 4.4, Grid Partitioning succeeds in dividing the dataset 

equally in the case of independent datasets, but in the case of anticorrelated datasets, 

which will be the ones to which we will give our attention in the experimental results, 

it divides the load into some partitions, leaving some of them empty or almost empty. 

This as we shall see in Chapter 7 will be a disadvantage because the parallel phase will 

last longer than the others, since some partitions will be heavier. 
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4.3. Angle-based Space Partitioning 

Introduced in [11], the Angle-based Partitioning technique aims to address the issue of 

local sets containing an excessive number of successively dominated points and the 

problem of load sharing between partitions, which was observed in previous 

partitioning techniques. The technique involves mapping the Cartesian coordinate 

space to a hyperspherical space and partitioning the resulting data space into N 

partitions based on the angular coordinates. 

 

 

Figure 4.5: An example of angular partitioning on a independent 2d dataset with 4 

partitions where a different colour corresponds to a different partition.  

 

The angle-based approach can achieve a better balance of workload, as each partition 

includes both good and bad points in the data space. This results in a larger number 

of points being dominated in the local set computation phase compared to grid 

partitioning and Random Partitioning, leading to a smaller set of local sets and 

reducing the workload for the sequential phase.  As a result, the execution time is 

reduced. Unlike grid partitioning, angular-based partitioning does not allow for 

pruning. However, in the next chapter, we will explore methods for performing 

filtering before partitioning in order to address this limitation. 
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Like the grid technique, every point in the dataset needs to be assigned an index and 

allocated to a corresponding partition based on that index. The index for each point is 

computed by first transforming its Cartesian coordinates into Hyperspherical 

Coordinates, which includes a radial coordinate r and d-1 angular coordinates φ1, φ2, 

…, φd-1. This transformation can be accomplished using set of equations: 

 

𝑟 = √𝑥𝑛
2 + 𝑥𝑛−1

2 + ⋯ +  𝑥1
2 

tan (φ1) =
√𝑥𝑛

2 + 𝑥𝑛−1
2 + ⋯ + 𝑥2

2

𝑥1
 

      …….. 

tan (φ𝑑−2) =
√𝑥𝑛

2 + 𝑥𝑛−1
2

𝑥𝑛−2
 

tan (φ𝑑−1) =
𝑥𝑛

𝑥𝑛−1
 

 

Then , we can compute the index of each point in the dataset, for a given number of 

partitions N, using this formula:  

 

𝑖𝑛𝑑𝑒𝑥(𝑥) = ∑ ⌊𝜑𝑖  × 𝑁𝑖 ×
2

𝜋
⌋

𝑑−1

𝑖=1
 

 

The difficulty with this type of partitioning lies in finding the best number of partitions 

so as not to have too much parallel work and at the same time to have partitions as 

large as possible so as to be able to obtain local sets as small as possible.  It suffers from 

the same problem as Grid Partitioning where we are limited in choosing the number 

of partitions because it will depend on the number of sizes and the number of slices 

per size we choose. 
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Figure 4.6: An example of how data are partitioned using Angular Partitioning in a 

2d independent (upper-left), correlated(upper-right), anticorrelated (bottom) datasets 

with 8 partitions where a different colour corresponds to a different partition. 

 

As we can see from the figure, Angular Partitioning manages the division of the 

workload better than Grid Partitioning, being able to divide the load between all 

partitions more or less equally, but never as well as Random Partitioning, even for 

anticorrelated datasets without leaving empty partitions. 

 

 

 

 

 

 

 



34 4|Parallel Algorithms 

 

 

4.4. One-dimensional Slicing (Sliced Partitioning) 

 

The last partitioning method we will see is called Sliced Partitioning. It is introduced in 

[12] and the basic idea is to overcome one of the limitations of grid and angular 

partitioning methods which is that we have no control over how many partitions we 

can use and how many points there will be in each partition. The idea of this 

partitioning algorithm is to sort the dataset on one dimension and divide it between 

the partitions equally, so that each partition will have the same number of points and 

we decide how many partitions to have.  

We must keep in mind, however, that sorting on one dimension is not a topological 

sort and that therefore the property for which a tuple that comes after another cannot 

dominate the one that comes before is not verified in this case. This method does 

indeed return false positives in the case of algorithms that use sorting to terminate 

execution first such as SFS. These false positives, however, will be dominated in the 

following sequential phase during the computation of the global set. 

 

The functioning of the algorithm 13 is very simple, first we sort the dataset on the basis 

of the first dimension in ascending order, and after that we assign each partition a 

unique id, which will be assigned a number of points from the sorted dataset within a 

range. Each partition will have points ranging from id * section to (id+1) * section. After 

that the local set for each partition is computed and finally the set of these local sets is 

returned. 

 

 

Algorithm 13 Sliced Partitioning 

 

 

1: 

Input: S: dataset, n: number of partitions  

Output: LS: Local Set 

Sorted_dataset ←  sort(S[0])      //sort on the first dimension 

2: P ←  [ ] , LS ←  [ ]                     

3: section ←  
𝑆.𝑙𝑒𝑛𝑔𝑡ℎ

𝑁
  

4: for id in [0, N-1] do 

5:       P.add (id) 

6: for id in P do  

7:       data ←  Sorted_dataset[id ∗ section, (id + 1) ∗ section] 

8:       LS ←  LS ∪  ComputeLocalSet(data)  

9: return LS 
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Figure 4.7: An example of how data are partitioned using Sliced Partitioning in a 2d 

independent (upper-left), correlated(upper-right), anticorrelated (bottom) datasets 

with 8 partitions where a different colour corresponds to a different partition. 

 

With this type of partitioning we manage to divide the workload equally among all 

the partitions, and as we will see in chapter 7 it will be the one that will be able to 

eliminate more points in the parallel phase by returning a smaller local set. 
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5 Improvement of Parallel Algorithms 

This chapter introduces techniques to improve parallel algorithms by reducing their 

execution time. As we have seen in the previous chapter, the type of partitioning we 

apply is very important in affecting the execution time, because it will be important in 

putting together within the same partition as many dominatable points as possible 

with points of the global set, so as to have at the end of the parallel phase a local set as 

small as possible, since the sequential part will be the one that takes the longest. 

The first technique called Grid Filtering introduced in [11] for the Skyline computation 

involves eliminating as many partitions as possible using the Grid Partitioning before 

computing the local sets, but as we shall see in the case of anticorrelated datasets it 

does not work well because it eliminates few points. 

The second technique called Representative Filtering introduced in [12] for the skyline 

computation set, involves selecting a few points that will act as representatives (better 

points) and will be used to remove as many points as possible. We will see several 

techniques for choosing these representatives, the one proposed in this thesis is to take 

the first n sorted points of each partition after the angular partitioning technique. As 

we shall see, however, for independent and correlated datasets, the proposed method 

is better than the one proposed in [12], while with anticorrelated datasets, the latter 

succeeds in filtering more, so that we prefer it since we are going to use anticorrelated 

datasets for our experiments. 

The last technique we will see called All Parallel is used to avoid performing the 

sequential part, by performing two parallel phases, passing in the last one to each 

partition the union of the local sets found during the first parallel phase. We will see 

how this technique has a positive impact on the total duration of the algorithm, since 

the part that takes the longest is the final sequential phase in parallel algorithms. Our 

original contribution here will be to create an algorithm without a sequential part that 

is good for the computation of the two Flexible Skyline operators ND and PO.  

These techniques are applied for both the computation of skylines and the 

computation of Flexible Skylines operators. However, the filtering technique is only 

applicable for computing the Skyline and ND, while for PO, since we start with the 

ND set, we can use these techniques for the initial computation of ND but not for the 

computation of PO.  Regarding the All Parallel technique, it can also be applied to PO. 
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5.1. Grid Filtering 

This technique introduced in [11] addresses the issue of simple Grid Partitioning, 

where the number of local sets can become unmanageable. When employing the 

standard grid partitioning approach, local sets are computed for all partitions, 

including those containing points that will surely be dominated in the next phase. To 

overcome this challenge, the grid filtering technique is implemented, which removes 

points in dominated partitions before starting the parallel phase. 

The technique operates by first determining the best and worst points of each partition 

and then assigning all the points belonging to each partition. The next step involves 

comparing two partitions, and if one partition dominates another, all the points within 

the dominated partition can be safely excluded from the global set. We use p.max and 

p.min to respectively represent the maximum and minimum corners of a given 

partition p. 

A partition's maximum corner p.max is the corner that has the highest (worst) values 

on all dimensions, while its minimum corner p.min is the corner that has the lowest 

(best) values on all dimensions. 

 

Definition 5.1: (Partition dominance) A partition pi dominates partition pj (pi ≺ pj) only 

when pi.max dominates pj.min. This means that pi ≺ pj is equivalent to pi.max ≺ pj.min. 

 

Thanks to Definition 5.1, we have that if pi ≺ pj for every t in pi and u in pj, t ≺ u. 

As result of this dominance, we can carry out a filtering step that involves eliminating 

all points within dominated partitions, so as to decrease the number of points in the 

initial dataset efficiently. Once the value N representing the number of partitions per 

size has been set, we will have a total of Nd partitions (grids). Each partition p will thus 

have a worst point p.max and a best point p.min equal to: 

 

𝑝𝑖. 𝑚𝑎𝑥 =
⌊

1
𝑁𝑖−1⌋ 𝑚𝑜𝑑 𝑁

𝑁
+

1

𝑁
 

𝑝𝑖. 𝑚𝑖𝑛 =
⌊

1
𝑁𝑖−1⌋ 𝑚𝑜𝑑 𝑁

𝑁
 

We can observe that the best and worst tuple’s difference is an identity vector 

multiplied by the constant value 1/N. 

By executing this step, as many dominated points as possible are eliminated before 

proceeding with partitioning and running the parallel algorithm. 
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Figure 5.1: Example of partition dominance in an independent dataset using grid 

filtering. 

 

As depicted in the figure above, using grid partitioning, we can remove points that 

belong to dominated partitions.  The red-colored partitions located in the upper right-

hand corner are dominated, with partition 00 dominating all the red partitions. 

Similarly, partition 04 dominates 09 , 10, 11, 13, 14 and 15 and so on. 
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Algorithm 14 Grid Filtering 

 

 

1: 

Input: S: dataset, n: number of partitions per dimension 

Output: T: filtered dataset 

T ←  [ ], ContainerList ←  [ ] 

2: d ←  len(S[0])                     //number of dimensions 

3: for I in [0, nd] do  

4:       for j in [0, d] do 

5: 
            worst[j] ← 

⌊
𝑖

𝑛𝑗
⌋𝑚𝑜𝑑 𝑛

𝑛
+

1

𝑛
 

6: 
            best[j] ← 

⌊
𝑖

𝑛𝑗⌋𝑚𝑜𝑑 𝑛

𝑛
 

7:       ContainerList[i] ← (worst, best, [ ]) 

8: for s in S do  

9:       index ←∑ ⌊𝑠[𝑖] ∗ 𝑛⌋ ∗ 𝑛𝑖𝑑−1
𝑖=0  

10:       ContainerList[index] ← ContainerList[index] ∪ s 

11: ContainerList.sort(min(best)) 

12: for c in ContainerList do 

13:       for t in T do  

14:             if t.worst ≺ c.best then continue to line 11 

15:       T  ← T ∪ c 

16: return T.lists 

 

This algorithm 14 involves an initial step where the best and worst points are 

computed for each container (partition), which is then initialized as empty. Next, an 

index is computed for each point in the dataset and is added to the container with that 

index. After that, the containers are sorted based on the value of the best tuple of each 

container. Finally, we sequentially scan the containers and compare them with the 

non-dominated set T, which is initially empty. During each comparison, we verify if 

the container being scanned is dominated by any of those in set T. If not, it is added to 

set T. Once finished, we return the list of points of non-dominated containers. 
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Figure 5.2: Percentage of filtered data using different types of 4d datasets and 84 

partitions. 

 

As depicted in Figure 5.2, the grid filtering approach exhibits distinct behaviour based 

on the dataset type. Regarding the independent datasets, 58% of the points being 

filtered for various dataset sizes, indicating effective filtering. On the other hand, for 

correlated datasets, the filtering performance is superior, with over 90% of the points 

being filtered. In contrast, the grid filtering approach does not offer much advantage 

for anticorrelated datasets, where only 16% of the points are filtered, resulting in a time 

loss. In the following section, we will explore a filtering method that works effectively 

for all three dataset types. 
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5.2. Representative Filtering 

Another method of filtering could be to choose a few “best” points and pass them to 

each partition to try to delete as many dominated points as possible in a short time. 

The choice of these representative points can be done in several ways, and the 

effectiveness of the algorithm depends precisely on the choice of these points, which 

the better they are the more points they will dominate, thus drastically decreasing the 

size of the input dataset. 

There are various methods to select representative points, one of which is to randomly 

choose them. However, this approach is unreliable as it may include weak points that 

are not part of the global set. A more effective method would be to select the first points 

in the sorted dataset. This approach is promising as we know that, by virtue of the 

sorting property, a tuple that comes later in the sorted dataset cannot dominate the 

tuple that comes earlier. Especially in the case of computing the ND set, we could use 

as sort function a weighted sum in which the weights are the coordinates of the 

centroid of the polytope W(C).  

In this thesis, we will present an algorithm that exploits angular partitioning to search 

for the best points to make as representatives. Its operation is simple, it simply 

partitions the points using angle partitioning and for each partition returns the best 

points based on a sorting function. 

Another method would be to take points that have a larger dominance region, as seen 

in [12]. In [12] the objective was to apply filtering before computing the skyline set, our 

objective in this thesis will be to apply the same type of filtering but adapting it to the 

computation of ND. To compute the dominance region of a point we need to compute 

the area between the point and the limit point, which in the case of normalized datasets 

between the interval [0,1] is equal to [1]d. This filtering technique therefore only works 

if we have a limit to the maximum value a tuple can take, and thus the dataset must 

first be normalized to the interval [0,1]. There are other methods for computing 

representatives, again in [12] there is a method that takes all points within a radius 

with the origin as centre.  
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Algorithm 15 Representative Filtering  

 

 

 

Input: S: dataset, r: number of representatives, f: sorting function, n: number 

of partitions 

Output: T: filtered dataset 

1: T ←  [ ], representatives ←  [ ], P ← [ ] 

2: representatives ← getRepresentatives(S)     

3: P ← PartitioningAlgorithm(S,n)            //partitioning the dataset 

4: for p in P do 

5:       for data in p do 

6:             for rep in representatives do 

7:                   if rep dominates data then continue to line 5 

8:       T ← T ∪ data 

9: return T 

 

Now we present a method to choose the representatives taking advantage of angular 

partitioning that partitions in the best possible way, and our task will be to take the 

first r points of each partition, since they will be the 'best' according to a sorting 

function. 

 

Algorithm 16 Representative Filtering SKY(Sorted method) 

 

 

 

Input: S: dataset, r: number of representatives, f: sorting function, n: number 

of partitions 

Output: T: filtered dataset 

1: T ←  [ ], representatives ←  [ ], P1 ← [ ], P2 ← [ ] 

2: P1 ← AngularPartitioning(S,n)             

3: for p in P1 do 

4:       p.sort(f) 

5:       representatives ← first r tuples in p 

6: representatives ← SFS(representatives)    //discard dominated t 

7: P ← PartitioningAlgorithm(S,n)            //partitioning the dataset 

8: for p in P do 

9:       for data in p do 

10:             for rep in representatives do 

11:                   if rep  ≺ data then continue to line 9 

12:       T ← T ∪ data 

13: return T 
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This, instead, is the dominance Region method seen in [12] that selects the best points 

according to the area they cover. 

 

Algorithm 17 Representative Filtering SKY (Dominance Region method) 

 

 

Input: S: sorted dataset, r: number of representatives, d: dimensions 

Output: T: filtered dataset 

1: T ←  [ ], representatives ←  [ ], P ← [ ] 

2: P ← Partitioning(S,d)                    // part. the dataset in d partitions 

3: for index in [0, len(P)] do 

4:       R ← [ ] 

5:       for data in S do 

6:             area ←∏ (1 − 𝑡[𝑖])𝑑−1
𝑖=0  

7:       if area > 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋]. 𝑎𝑟𝑒𝑎 then 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋] ← (area, data)  

8:       for rep in R do  

9:             representatives ← representatives ∪ rep.data 

10: representatives ← SFS(representatives)    //discard dominated t 

11: P ← PartitioningAlgorithm(S, n)            //partitioning the dataset 

12: for p in P do 

13:       for data in p do 

14:             for rep in representatives do 

15:                   if rep  ≺ data then continue to line 13 

16:       T ← T ∪ data 

17: return T 

 

The algorithms  16 and 17 exhibit differences in how they choose representative points. 

In the first algorithm (16),after we have partitioned using angular partitioning, we take 

the best points from each partition by simply taking the first r points in the set of points 

sorted. The partitions are sorted using a sorting function, which may be based on the 

Euclidean distance from the origin or the weighted sum of the points with the 

centroids of the polytope W(C) as weights. Next, the dominated points in the set of 

representatives are discarded, if any. After obtaining the representative points, the 

computation is split into multiple partitions by dividing the original dataset. Each 

partition is designed to contain both good and bad points, ensuring that each partition 

has similar computation time. Within each partition, a sequential scan of the points is 

conducted, and each point is compared to the set of representatives. If a point is not 

dominated by any representative, it is added to the set of non-dominated points. 

The second algorithm (17) introduced by [12] has the same working principle, only the 

representatives are chosen according to their dominance region, the larger this is, the  

stronger the points are and thus the more representative. The computation of the 

dominance region is equal to the area between the points and the maximum point they 
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can reach. This is why it is important to normalize the data in the interval [0,1] so that 

the limit point equals [1]d otherwise this algorithm does not work. 

The advantage of the first method is that the computation of the representatives is very 

simple and there is no need to normalize the dataset, unlike the second method which 

requires a step of computing the representatives and does not work with non-

normalized datasets.  

We will now see the behaviour of the two filtering algorithms in different types of 

datasets with respect to execution time and the percentage of filtered points aimed at 

computing the skyline set. 

 

 

Figure 5.3: Comparison of the two algorithms in terms of time taken to filter the data 

and percentage of filtered data using 4d independent datasets of different sizes 

 

Figure 5.4: Comparison of the two algorithms in terms of time taken to filter the data 

and percentage of filtered data using 4d correlated datasets of different sizes 
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Figure 5.5: Comparison of the two algorithms in terms of time taken to filter the data 

and percentage of filtered data using 4d anticorrelated datasets of different sizes 

 

Based on the characteristics of the dataset, the optimal approach for selecting 

representatives may vary. For independent or correlated datasets, the method that 

filters the most is the Sorted Method even if it takes a little longer. However, in the 

case of an anticorrelated dataset, the same method cannot be used since this is not the 

best measure of the goodness of a point, as we can see from Figure 5.5, and therefore 

the best method is to compute the dominance region for each point and select 

representatives according to the size of their respective dominance regions.   

In all cases, the Sorted Method is a little slower in finding representatives due to the 

sorting function that takes some time, whereas with the dominance region method no 

sorting is needed. 

Since our experiments will be carried out on anticorrelated datasets, representative 

filtering with the dominance region method will be used from now on. 

So far we have seen these algorithms being applied for skyline computation and in 

particular using the SFS algorithm. This algorithm works for both Skyline and Flexible 

Skyline computations, in the sense that if points are filtered that are not Skyline for 

sure, then they can also be discarded because they are not ND since ND ⊆ SKY.  

However, this type of filtering can be better adapted for the computation of ND using 

a modified version that we will introduce in this thesis. The difference lies in the 

number of filtered points, which with the second method will filter many more points 

than the first since it will also check F-dominance. 
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Algorithm 18 Representative Filtering ND (Dominance Region method) 

 

 

Input: S: sorted dataset, r: number of representatives, d: dimensions 

Output: T: filtered dataset 

1: T ←  [ ], representatives ←  [ ], P ← [ ] 

2: P ← Partitioning(S,d)                    // part. the dataset in d partitions 

3: for index in [0, len(P)] do 

4:       R ← [ ] 

5:       for data in S do 

6:             area ←∏ (1 − 𝑡[𝑖])𝑑−1
𝑖=0  

7:       if area > 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋]. 𝑎𝑟𝑒𝑎 then 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑟⌋] ← (area, data)  

8:       for rep in R do  

9:             representatives ← representatives ∪ rep.data 

10: representatives ← SVE1F(representatives)    //discard dominated t 

11: P ← PartitioningAlgorithm (S, n)            //partitioning the dataset 

12: for p in P do 

13:       for data in p do 

14:             for rep in representatives do 

15:                   if rep  ≺ data ∨ rep ≺F  data then continue to line 13 

16:       T ← T ∪ data 

17: return T 

 

The algorithms 17 and 18 have the same step of computing the representative points, 

which may be done by the sorted method or by the computation of the dominance 

region, in this case we have used the dominance Region method. The different lines of 

code between the two algorithms are highlighted in red in Algorithm 18. Unlike the 

filtering algorithm aimed at computing the skyline set, the one aimed at computing 

ND when checking between partition points and representative points, not only 

checks for simple dominance but also for F-dominance. If the point is neither 

dominated nor F-dominated then it is added to the set of points not dominated by the 

representatives. 
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Figure 5.6: Comparison of the two algorithm aimed at computing SKY and ND in 

terms of time taken to filter the data and percentage of filtered data using 4d 

anticorrelated datasets of different sizes 

 

In Figure 5.6, we compare two filtering methods: one based only on simple dominance, 

and the other based on both simple dominance and F-dominance. The latter approach 

filters a greater number of points but incurs slightly longer computation time. We will 

see that this extra time it takes to filter the dataset will be recovered by running it faster 

when we perform the final sequential phase that takes the longest to compute. 

Therefore, having fewer points in the local set, the final sequential part will take much 

less time. 
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5.3. All parallel Algorithm without sequential phase 

 

So far, we have explored methods for speed up the parallel phase of local set 

computation and partitioning techniques that minimize the size of local sets to prevent 

overloading the final sequential phase, which is typically the most time-consuming 

aspect of the execution. Our objective now is to present an algorithm that eliminates 

the need for the final sequential step and enables parallel computation of the global 

set.  

The algorithm originally introduced in [12] consists of two distinct phases. During the 

first phase, the local sets are computed as usual for each partition. However, instead 

of computing the global set sequentially from the local sets, we divide the set of local 

sets into multiple partition and pass to it the entire set of local sets. This enables each 

partition to have its own set of points to extrapolate non dominated points and 

compare against the entire set of local sets. This method guarantees that every point 

that returns every partition in the last parallel phase will be part of the global set. So 

this method allows us to bypass the final sequential step and perform parallel 

computation of the global set.  

In this thesis we present an improvement that leverages the sorting property, which 

dictates that a point that comes after another in the sorted dataset cannot dominate it. 

As a result, the improvement only works with sorted algorithms such as SFS for 

Skyline computation and ‘S’ algorithms for ND operator computation.  

 

Algorithm 19 All Parallel (Improved version) 

 

 

Input: S: dataset, n:number of partitions 

Output: GS: global set 

1: GS ←  [ ], P1←  [ ], P2←  [ ] 

2: P1←  PartitioningAlgorithm(S,n) 

3: for p in P1 do  

4:       LocalSet ←  LocalSet ∪ ComputeLocalSet(p) 

5: P2←  PartitioningAlgorithm(LocalSet, n) 

6: for p in P2  do 

7:       p.sort() 

8:       for data in p do      

9:             for s in LocalSet do  

10:                   if s == data then GS ← GS ∪ data and continue to line 8 

11:                   if s dominates data then continue to line 8 

10: return GS 

As with all algorithms, we can carry out an initial filtering phase, thus making our 

algorithm three phases. The first phase involves a filtering phase, in our case as seen 
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earlier, the fastest and most selective is representative filtering using as representatives 

the points with the greatest dominance region in the case of anticorrelated datasets.  

The second phase is to perform a parallel step by taking the unfiltered points and 

dividing them into several partitions to find the local sets. Once the local sets have 

been found, there is a third phase which is to compute the final global set, which in 

this algorithm involves dividing the points of the local sets into several partitions and 

passing the entire set of local sets to each one so that the dominated points can be 

deleted.  

We also propose an improvement to this algorithm that involves unifying the first and 

second phases. This is done by computing the local sets together with the filtering 

phase, thus saving some time. 

 

 

Figure 5.7: Block diagram of the All Parallel algorithm 

 

Figure 5.7 shows a block diagram with all the steps of the All Parallel algorithm. From 

the dataset S, we perform a partitioning algorithm where we compute the local sets in 

each partition. After that we take the union of the local sets and partition again by 

passing the local global set to each partition. At the end, each partition will return the 

points that will be part of the final global set. 
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Algorithm 20 All Parallel SKY  

 

 

Input: S: dataset, n: number of partitions 

Output: SKY: global set SKY 

1: SKY ←  [ ], P1←  [ ], P2←  [ ], P3 ← [ ] 

2: LocalSet ←  [ ], representatives ←  [ ] 

3: P1 ← Partitioning (S,d)                    // part. the dataset in d partitions 

4: for index in [0, len(P1)] do 

5:       R ← [ ] 

6:       for data in S do 

7:             area ←∏ (1 − 𝑡[𝑖])𝑑−1
𝑖=0  

8:       if area > 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑛⌋]. 𝑎𝑟𝑒𝑎 then 𝑅[⌊𝑡[𝑖𝑛𝑑𝑒𝑥] ∗ 𝑛⌋] ← (area, data)  

9:       for r in R do  

10:             representatives ← representatives ∪ r.data 

11: representatives ← computeLocalSet(representatives)    //discard dominated t 

12: P2 ← PartitioningAlgorithm(S, n)            //partitioning the dataset 

13: for p in P2 do 

14:       R ← [] 

15:       for data in p do 

16:             for rep in representatives do 

17:                   if rep ≺ data then continue to line 15 

18:             R ← R ∪ data 

19:      LocalSet ← LocalSet ∪ SFS (R)   

20: LocalSet.sort() 

21: P3←  PartitioningAlgorithm(LocalSet, n) 

22: for p in P3  do 

23:       p.sort() 

24:       for data in p do      

25:             for s in LocalSet do  

26:                   if s == data then SKY ← SKY ∪ data and continue to line 24 

27:                   if s ≺ data then continue to line 24 

28: return SKY 

 

This algorithm (20) provides an initial phase in which the representatives are found on 

the basis of their dominance region and once found, the dataset is divided into n 

partitions and the representatives are passed to each one. After that each partition is 

responsible to delete all the points dominated by these representatives and when 

finished perform the SFS algorithm with the points remaining in the partition not 

dominated by the representatives so as to find the local set of each partition. Once all 

the local sets have been found, the points present in the union of the found local sets 

are repartitioned, passing the global local set to each partition. Each partition will have 

to sort its points and scan them sequentially comparing them with the points in the 
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local set which are also sorted, exploiting the topological sort property according to 

which a point that comes after another cannot dominate it, if the point we are analysing 

is compared with itself in the global local set then we add it to the global set since all 

the points that come afterwards will certainly not be able to dominate it, otherwise, if 

is dominated by a point that comes before it in the sorting then it is discarded. In the 

end, each partition will return a set of points that will be part of the final global set. 

 

Algorithm 21 All Parallel ND 

 

 

Input: S: dataset, n: number of partitions, W: vertices of W(C) 

Output: ND: global set ND 

1: ND ←  [ ], P1←  [ ], P2←  [ ],  LocalSet ←  [ ], 

2: representatives ← computeRepresentatives (S)     //same as SKY 

3: P1 ← PartitioningAlgorithm(S, n)            // partitioning the dataset 

4: for p in P1 do 

5:       R ← [] 

6:       for data in p do 

7:             compute left-hand side of Inequalities 

8:             for rep in representatives do  

9:                   if rep == data then continue to line 11 

10:                   if rep ≺ data or rep ≺F  data then continue to line 6 

11:             R ← R ∪ data 

12:      LocalSet ← LocalSet ∪ SVE1F (R)   

13: LocalSet.sort(W) 

14: P2←  PartitioningAlgorithm(LocalSet, n) 

15: for p in P2  do 

16:       p.sort(W) 

17:       for data in p do      

18:             compute left-hand side of Inequalities 

19:             for s in LocalSet do  

20:                   if s == data then ND ← ND ∪ data and continue to line 17 

21:                   if s ≺ data or s ≺F  data then continue to line 17 

22: return ND 

 

The difference between the algorithm 20 and 21 are highlighted in red in the algorithm 

21. The all parallel ND algorithm is similar to the SKY one in the computation of the 

representatives, with the difference that when we go to compute the local sets by 

dividing into partitions, in addition to testing the simple dominance we have to also  

test the F-dominance, and once the dominated points have been eliminated, we run an 

ND algorithm like SVE1F in each partition to find the local sets. Finally, the last parallel 
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part is similar to that of SKY with the difference that we also test here both simple 

dominance and F-dominance. 

 

 

Algorithm 22 All Parallel PO 

 

 

Input: ND: nd set, n: number of partitions, W: vertices of W(C) 

Output: PO: global set PO 

1: PO ←  [ ], P1←  [ ], P2←  [ ], LocalSet ←  [ ], 

2: P1←  RandomPartitioning(ND, n) 

3: for p in P1  do 

4:       LocalSet ← LocalSet ∪ PO_incremetal_computation(p) 

5: P2←  PartitioningAlgorithm(LocalSet, n) 

6: for p in P2  do 

7:       for data in p reversed do 

8:             if isNonPO(data, LocalSet \ {data}) then p ← p \ {data} 

9:       PO ← PO ∪ p 

10: return PO 

 

The all parallel PO algorithm differs from the others because starting from the ND set 

it does not perform any initial filtering step, except for the computation of ND. Once 

the ND set is obtained we partition it and for each partition we compute the local set 

by performing the incremental or non-incremental PO computation with the points in 

each partition. Once all local sets are obtained, in the same way as SKY and ND we 

partition the local set and pass the global local set to each partition. Another time we 

can use both methods to compute PO, and each point that the partitions return will be 

part of the global set. 
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6 Experimental Settings 

 

In this chapter, we will explain the framework used for parallelization and the 

environment used to execute the algorithms. After that, we will list all the packages 

used and their specific tasks for computing the various algorithms and the dataset 

generator used. 

 

6.1. Pyspark framework 

 

Apache Spark [13] is an open source framework for distributed computing. Unlike the 

MapReduce [14] paradigm which processes data on disk, Spark processes them in 

memory providing much better performance for the same applications. Spark 

applications run as a set of independent processes in a cluster and are coordinated by 

the SparkContext object in the main program, called the driver program. The 

SparkContext object tells Spark how to access a cluster and to create a SparkContext 

we first need to build a SparkConf object that contains information about our 

application.  

Every Spark application consists of a driver program that executes the main user 

function and performs various parallel operations on a cluster. Spark provides a 

resilient distributed data set (RDD) that is an abstraction, i.e. a collection of partitioned 

elements between cluster nodes on which parallel operations can be performed.  

Spark supports multiple widely-used programming languages like Java, Python, R, 

and Scala. In this thesis we will use  Pyspark that  is an interface for Apache Spark in 

Python.    

The parallel computation using Pyspark takes place by making use of the parallelize 

API, which allows to divide the dataset into multiple partitions, with the number of 

these that can be input by the user. 
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6.2. Computational environment and packages utilized 

 

In this thesis, we use Python as a programming language, which is a high-level 

language very suitable for parallel computing. It is a language that has developed a lot 

in recent years, and thanks to the numerous packages it contains, it is very useful for 

the work we will do in this thesis. In particular, here are some of the main packages 

used for the computation of the algorithms seen in this thesis: 

Pycddlib: Is used for generating all vertices (i.e. extreme points) and extreme rays of a 

general convex polyhedron given by a system of linear inequalities. 

Pulp: Is an LP modeler in python used to solve linear problems. 

Gurobipy: Gurobi Optimizer is a mathematical optimization software library for 

solving linear and mixed integer quadratic optimization problems. 

FindSpark: package that contains findspark.init() that is used to make pyspark 

importable as a regular library. 

 

The code implemented for the parallel computation of the algorithms can be reached 

using the link [18]. 

For the experiments, we will use synthetic datasets created using a dynamic points 

generator from code.  

All the experiments will be performed on two different machines, the first being a 

computer running on Windows 10 with 8 GB of RAM and a processor Intel(R) 

Core(TM) i7-7500U CPU @ 2.70GHz with 4 cores. The second is a virtual machine 

granted by the Polimi Datacloud running on Ubuntu 22.04 with 8 GB of RAM and a 

processor with 30 cores. 
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7 Experimental Results 

 

In this chapter, we will run the various algorithms for the skyline computation set and 

the Flexible Skyline ND and PO operators. Our goal will be to evaluate the various 

parallel algorithms seen in this thesis and try to understand which algorithms perform 

best and in what setting. The various algorithms will be run on two different machines, 

a local machine with 4 cores and a virtual machine with 30 cores. The substantial 

difference between the two machines will be seen in the much shorter duration of the 

parallel algorithms, because since we have more cores, we will be able to take much 

more advantage of parallelization by having several workers running tasks in parallel. 

We will evaluate how long the various algorithms we have seen take to compute the 

global Skyline set and the ND and PO global sets in the parallel versions. We will only 

look at the centralized version for SFS, because since some are very time-consuming, 

the centralized version would take too long to return the final global set. We will 

evaluate the performance of these algorithms by changing the cardinality of the 

dataset, the dimensionality of the data, the number of partitions and the number of 

cores used for the parallelization.  
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7.1. Summary of findings 

 

We will see that for both the skyline computation and the computation of ND, the best 

algorithm is Sliced Partitioning which manages to return the smallest local set in the 

shortest possible time in both cases, thus impacting less on the final sequential part. 

Compared to the Angular Partitioning algorithm for Skyline computation, we see that 

in the case where an anticorrelated dataset with 4 dimensions and 3 million points is 

taken into account, the execution time goes from 244.97 seconds of Angular to 184.55 

seconds of Sliced Partitioning. This increased speed is due to the size of the returned 

local set which goes from the 66251 points of Angular to the 40251 of Sliced, thus 

having a lighter and consequently faster sequential phase. As far as the computation 

of the PO set is concerned, on the other hand, the best algorithm is not Sliced 

Partitioning, which will perform worse than both Random and Angular Partitioning 

since for the computation of the PO set sorting on one dimension is not important for 

the computation of the global set, but it is Random Partitioning that succeeds in 

dividing the load equally between the partitions.  

We will see how the improvements in Chapter 5 will affect the standard algorithms, 

in particular Grid Filtering will not bring any advantage by eliminating a few points 

in the filtering phase, instead, Representative Filtering manages to eliminate many 

more points bringing an advantage over the standard version by returning a smaller 

local set. Thanks to representative filtering, we are able to go from 184.55 seconds for 

the version of Sliced Partitioning without filtering to 164.1 seconds for the version with 

filtering in the case of the skyline computation with a 4-dimensional anticorrelated 

dataset with 3 million points. 

The best algorithm for all 3 types of skyline computation is the All Parallel Algorithm. 

This algorithm is the only one which, by eliminating the final sequential phase and 

computing the global set in parallel, manages to making the most efficient use of the 

parallelization and, as we shall see, will take much less time than the version of the 

same algorithm with the final sequential part. In this case for the skyline computation 

set we have a duration of 38.17 seconds, while the same algorithm with the final 

sequential part has a duration of 164.1 seconds which is 4.29 times longer. For the 

computation of the ND set instead, using a 2-million point dataset manages to finish 

in 99.66 seconds, about 6.5 times faster than the same version with the final sequential 

part. 

We are going to evaluate how the algorithms behave when changing the number of 

partitions, size and cores. By changing the number of partitions, we will see how the 

duration of the algorithms is affected, because if it is true that increasing the number 

of partitions increases the speed of the parallel part, on the other hand, having more 

partitions the size of the local set returned will be greater, affecting the duration of the 

final sequential part.  
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By changing the number of dimensions, on the other hand, we will see how the 

duration of the algorithms follows an exponential trend because by increasing the 

dimensionality of the dataset we will greatly increase the size of the global set, 

resulting in very high execution times.  

Finally, we will see how changing the number of cores affects the execution speed of 

parallel algorithms. All the algorithms, by increasing the number of cores, will 

decrease the execution time, with the duration of the parallel part becoming smaller 

and smaller as the number of cores increases, but since they always have to perform a 

final sequential part, this advantage is not so great. It is a different matter for PO 

computation, which, since it has partitions that have to compute many LPs, will have 

a parallel part with a considerable duration, thus improving the execution time by a 

significant amount. On the other hand, for the all parallel algorithm, which manages 

to make the most of parallelization, the change in the number of cores helps reduce the 

duration by a factor of 2.37 for the skyline computation, 2.28 for the computation of 

the ND set and 3.53 for the PO set. 
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7.2. Execution Time of the Serial Algorithms 

 

In this section, we will look at the durations of the various sequential algorithms to see 

which of them are the best in terms of execution time so as to apply parallelization to 

these only. We start with the algorithms for skyline computation, as we can see from 

figure 7.2.1, the slowest algorithm is the BNL algorithm because it has to do many 

more comparisons than SFS and SaLSa. After that SFS is faster because it uses 

topological sort to make fewer comparisons than BNL, but it needs a data pre-

processing step where we sort the dataset. SaLSa on the other hand manages to go 

faster than SFS because we can not check the entire dataset but can stop earlier. 

 

 

Figure 7.2.1: Execution time of the Centralized Skyline Algorithms using 4d 

anticorrelated datasets. 

  

However, SFS is highly dependent on the sorting function we use, the better this is, 

the faster the algorithm will terminate. In figure 7.2.2 we use a sorting function that is 

equal to the weighted sum with the coordinates of the centroid of W(C) as weights, i.e. 

the sorting function used to compute ND. As we can see, the execution time drops 

dramatically, so we are going to evaluate the behaviour of SFS using parallel 

algorithms. We cannot use the same sort function for SaLSa because in order to stop 

the execution of the algorithm earlier, we need a symmetric sort function. We have 

that a function F on d variables is symmetric if it is not invariant under any 

permutation of the variables, i.e. the function does not privilege any attribute over the 

others, so all attributes play the same role, therefore this type of sorting function cannot 

be used since it imposes weights on the attributes by giving them different importance. 



7|Experimental Results 61 

 

 

 

Figure 7.2.2: Execution time of the Centralized SFS with centroids as weights of the 

sorting function using 4d anticorrelated datasets 

 

In the same way, we can verify which algorithm for computing ND and PO is the best 

in terms of execution time. For this check, only the algorithms in the sorted ('S') version 

will be used, since as we have also seen for the skyline computation, topological 

sorting helps us to decrease the duration of the algorithms compared to the unsorted 

version. Small datasets will be used for the results, as the running time of the LP 

algorithms is very expensive. 

 

Figure 7.2.3: Execution time of the Centralized ND Algorithms using 4d 

anticorrelated datasets. 

 

As we can see from figure 7.2.3 in which we compare the two algorithms in the two-

phase sorted version in which the former uses the LP technique and the latter the VE 
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technique, the VE version is much faster than the LP version which has to solve an LP 

problem with each comparison, as opposed to the VE technique where the 

computation of the vertex enumeration of the polytope which introduces the most 

significant overhead is performed only once. 

So now we are going to compare the algorithms using the VE technique in the one-

phase and two-phase versions to see which are the fastest. 

 

 

Figure 7.2.4: Execution time of the VE centralized ND Algorithms using 4d 

anticorrelated datasets 

 

From the figure 7.2.4 we can see that the one-step algorithms are faster, and in 

particular we note that the SVE1F algorithm is the one that takes less time to finish 

than its variant SVE1 where the only difference is the way they verify simple 

dominance and F-dominance. 
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In this last figure 7.2.5, we see the difference between the version with PO computation 

using the Dual PO Test and the Primal, both in the incremental version. We can see 

that the duration of the two algorithms does not differ much, with a small advantage 

in terms of execution time for the Primal. 

 

 

Figure 7.2.5: Execution time of the centralized PO Algorithms using 4d anticorrelated 

datasets 

 

Having this preliminary information on which algorithms have the shortest execution 

time for skyline (SFS), ND (SVE1F) and PO (PO Primal Test) computation, we will go 

on to apply the parallel algorithms only to these which will be the most promising. 
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7.3. Execution Time of the Parallel Algorithms 

 

In this section we will look at the duration of the parallel algorithms applied using the 

SFS algorithm for skyline set computation, the SVE1F algorithm for ND computation 

and finally the incremental algorithm using the PO Primal Test for PO computation. 

In detail, we will see how the algorithms using random partitioning, grid partitioning, 

angular partitioning and finally one-slice partitioning perform. As far as SFS is 

concerned, the parallel algorithms, together with the centralized version, will run on 

both the local machine with 4 cores and the virtual machine with 30 cores. 

On the other hand, for SVE1F and PO incremental Primal, only the parallel algorithms 

will be executed without a centralized version on the virtual machine, as this will be 

the fastest one. 

For the experiments we will use anticorrelated synthetic datasets generated, ranging 

from 100k points up to 3 million points, with the number of dimensions fixed at 4. We 

will see the execution time on two different machines, one with 4 cores and the other 

with 30, where we will see that having more cores using Spark's parallelization will 

drastically decrease the execution time. 

 

 

Figure 7.3.1: Execution Time of the SFS algorithm in the centralized and parallel 

version using 4d anticorrelated datasets and the local machine with 4 cores. 
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Figure 7.3.2: Execution Time of the SFS algorithm in the centralized and parallel 

version using 4d anticorrelated datasets and the virtual machine with 30 cores. 

 

From the figures 7.3.1 and 7.3.2, we can immediately see how the execution time drops 

dramatically between the centralized version and the distributed version on both 

machines. As we can see between the local machine and the virtual machine, there is 

a difference in the duration of the algorithms themselves, especially the parallel ones 

in which it is able to utilise the full power of the 30 cores to best parallelize the 

computation. In the following figures we see the power of all the algorithms to 

compute the local Skyline sets with the amount of time it takes to finish each one. 

We immediately notice that the parallel algorithm that applies random partitioning is 

the one that takes the longest to finish. We expected this, however, because as 

discussed in the previous chapters, it is true that it is the simplest type of partitioning 

of all and the one that divides the work best between all the partitions, but it is also 

true that we have no control over what type of points will occur in the partitions, for 

example, only "good" points may occur in some partitions and therefore the local set 

of these partitions will be very large, thus having the risk of local sets that are too large.  

Next we see how we can improve speed with grid partitioning and angular 

partitioning, both of which partition better than random partitioning leading to an 

improvement in execution time.  

The best partitioning algorithm as also demonstrated in the thesis [12], however, is 

sliced partitioning, which succeeds in returning the smallest local sets in the shortest 

time so as to have the least heavy sequential phase. 
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Figure 7.3.3: Execution time of the parallel phase of the SFS Algorithms and 

percentage of the dominated points in 4d anticorrelated dataset using the virtual 

machine. 

 

Algorithm’s Name Number of Local 

Skyline points 

Execution time 

Parallel phase 

Execution time 

Sequential Phase 

Random Partitioning 134690 27.5 348.97 

Grid Partitioning 79361 46.3 289.01 

Angular Partitioning 66251 23.6 244.97 

One-Slice Partitioning 40251 14.9 184.55 

Table 7.1: Time of parallel and sequential phases of the SFS Algorithms using a 4d 

anticorrelated dataset with 3 million points and 30071 SKY points on the virtual 

machine. 

 

As we can see from figure 7.3.3 and table 7.1, the algorithm that applies the best 

partitioning is One-Sliced Partitioning. Taking table 7.1 as a reference, we see how the 

One-Sliced algorithm manages to eliminate almost 98.66% of the data in the parallel 

phase, in a time of about 14.9 seconds. We can see that grid partitioning manages to 

eliminate several points in the parallel phase, almost as good as One-Slice and 

Angular, but it takes too long to perform the parallel phase. This is because since it is 

a technique that uses grids to partition neighbouring points, and since we are 

evaluating anticorrelated datasets that have a high concentration of points in certain 

areas, we will have some partitions being very heavy, as opposed to others that will 

have very few points if any. 

From now on, all algorithms will be executed only on the virtual machine, which as 

we have seen is the fastest one. 
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We will now look at the same algorithms without the centralized version but applied 

to the computation of the ND set, specifically using the SVE1F algorithm. For the 

experiments we will use anticorrelated synthetic datasets generated, ranging from 

100k points up to 2 million points, with the number of dimensions fixed at 4. We use 

only one constraint which is:  𝑤1 − 𝑤2 ≥ 0. 

 

 

Figure 7.3.4: Execution Time of the SVE1F algorithm in the parallel versions using 4d 

anticorrelated datasets and the virtual machine. 

 

As we can see from the graph in figure 7.3.4, even with the computation of ND using 

SVE1F we have the same behaviour as with SFS. Once again, the worst performer is 

Random Partitioning, while the best performer is One-Sliced Partitioning. This is due 

to the fact that once again the partitioning types return local sets, which in the case of 

One-Slice Partitioning are much smaller than the other partitioning techniques. In the 

following figure 7.2.5, we will look in detail at the amount of data dominated in the 

parallel phase by all partitioning techniques and the time it takes. 
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Figure 7.3.5: Execution time of the parallel phase of the SVE1F Algorithms and 

percentage of the dominated points in 4d anticorrelated dataset using the virtual 

machine. 

 

Algorithm’s Name Number of Local ND 

points 

Execution time 

Parallel phase 

Execution time 

Sequential Phase 

Random Partitioning 140512 51.9 1480.16 

Grid Partitioning 39946 325.6 970.05 

Angular Partitioning 33971 68.33 776.98 

One-Slice Partitioning 28051 14.8 679.3 

Table 7.2: Time of parallel and sequential phases of the SVE1F Algorithms using a 4d 

anticorrelated dataset with 2 million points and 16781 ND points. 

 

As we can also see from figure 7.3.5 and table 7.2, once again the best algorithm is One-

Slice Partitioning, which in this case manages to delete almost 98.6% in a very small 

amount of time compared to the other partitioning algorithms. Again, grid 

partitioning has a low number of local skyline points, much lower than random 

partitioning and similar to angular, but as we can see compared to angular it is 4.76 

times slower for the parallel phase, while compared to one-sliced partitioning it is 

more than 20 times slower. 
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Finally, we evaluate these algorithms for the computation of the PO set using the 

incremental version that makes use of the Primal PO Test. For the experiment, we will 

only consider the time it takes the algorithm to find the PO set from the ND set, thus 

not taking into account the time for the computation of the ND set. 

This time since we will have to solve LP we would like the partitions to have more or 

less the same number of points. For this reason we will not use Grid Partitioning 

because with anticorrelated datasets we will have some partitions with many points 

and others almost empty, incurring in a high overhead in the parallel phase.  

For the experiments we will use anticorrelated synthetic datasets generated, ranging 

from 100k points up to 2 million points, with the number of dimensions fixed at 4. We 

use only one constraint which is:  𝑤1 − 𝑤2 ≥ 0. 

 

 

Figure 7.3.6: Execution Time of the PO algorithm starting from the ND set in the 

parallel versions using 4d anticorrelated datasets and the virtual machine. 

 

Looking at figure 7.3.6, we notice a completely different behaviour of the partitioning 

algorithms compared to the Skyline and ND computation. As we can see, random 

partitioning together with angular partitioning are the algorithms that finish in the 

shortest time, which is almost indistinguishable, while this time the worst is One-Slice 

partitioning.  
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Figure 7.3.7: Execution time of the parallel phase of the PO Algorithms and 

percentage of the dominated points starting from the ND set in 4d anticorrelated 

dataset using the virtual machine. 

 

Algorithm’s Name Number of Local PO 

points 

Execution time 

Parallel phase 

Execution time 

Sequential Phase 

Random Partitioning 3990 36.82 77.42 

Angular Partitioning 1544 72.4 48.97 

One-Slice Partitioning 5108 46.58 504.52 

Table 7.3: Time of parallel and sequential phases of the PO Algorithms using a 4d 

anticorrelated dataset with 16781 ND points and 150 PO points. 

 

In figure 7.3.7 and table 7.3 we see in detail the size of the local sets returned by the 

parallel partitioning of the various algorithms and the duration of the final sequential 

phase. The difference lies precisely in the number of local points returned by the 

various algorithms. If for SFS and SVE1F the One-Slice returned the smallest local set, 

this is not the case for the PO computation. This is due to the fact that the PO set is a 

very small set of points compared to ND, e.g. in the case of 2 mil from 16781 ND it goes 

to 150 PO, so sorting the dataset by one dimension does not help in the computation 

of PO, while the random factor helps speed up the process. Angular partitioning 

compared to random partitioning manages to return a smaller local set but takes much 

longer to compute because we will have some partitions with more points than others 

and since we have to solve LP to compute the PO set, having many points in some 

partitions does not help. This time that we lose in the parallel computation is recovered 

in the sequential part leading to having the same duration for both algorithms. 
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7.4. Execution Time of the Improved Parallel 

Algorithms 

 

In this section, we are going to test the execution time of the improved parallel 

algorithms seen in Chapter 5. We will apply these improvements to the Angular and 

One-Slice partitioning algorithms, which, as seen in the previous section, are the 

fastest. In detail we will see how the Angular algorithm behaves with an initial grid 

filtering phase, Angular and One-Slice with representatives filtering using the 

Dominance Region method to find representatives, which as seen in Chapter 5 is the 

best at filtering data.  

Finally we will look at the All Parallel algorithm in which the initial parallel phase is 

performed using One-Slice partitioning with representatives. As we will see, the best 

results are given by One-Slice partitioning with representatives which manages to 

speed up the version without initial filtering, but the best of all is the All-Parallel 

algorithm which eliminates the final sequential part and uses a final parallel part 

instead. By exploiting parallelism and the 30 cores of the virtual machine with this 

algorithm we manage to finish the computation, taking SFS as an example, 4.71 times 

sooner than the same version of One-Slice partitioning in which the final sequential 

part is used. 

 

 

Figure 7.4.1: Execution Time of the improved parallel algorithms using SFS with 4d 

anticorrelated datasets and the virtual machine. 
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Looking at the execution time of the algorithms we see that grid filtering gives no 

advantage over the same version without initial filtering of angular partitioning, in 

fact it performs worse because the initial filtering phase has a duration and the number 

of filtered points is not enough to bring an advantage. This is always due to the 

problem of grid filtering, which with anticorrelated datasets does not partition the 

dataset well. The advantage over the standard versions is given by the representative 

filtering, which by performing the initial filtering phase manages to eliminate many 

points before performing the parallel computation leading to an advantage. Finally, 

the last algorithm is the All Parallel that manages to exploit the parallel computation 

to take advantage over the versions with the final sequential part, arriving for 3 million 

points and 30071 skyline points to have a duration of 38.17 seconds, while the same 

algorithm with the final sequential part has a duration of 164.1 seconds which is 4.29 

times longer. 

 

 

Figure 7.4.2: Execution time of the parallel phase of the Improved parallel 

Algorithms using SFS and percentage of eliminated points in 4d anticorrelated 

dataset using the virtual machine. 
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Algorithm’s Name Number of Local 

Skyline points 

Execution time 

Parallel phase 

Execution time 

Sequential Phase 

Angular Partitioning 66251 23.6 244.97 

One-Slice Partitioning 40251 14.9 184.55 

Grid Filtering + Angular 

Partitioning 

59253 73.15 201.29 

Angular Representative 

Filtering 

55512 39.9 194.82 

One-Slice Representative 

filtering 

36268 15.9 164.1 

Table 7.4: Time of parallel and sequential phases of improved Parallel Algorithms 

using SFS with a 4d anticorrelated dataset with 3 million points and 30071 SKY 

points. 

 

Let us look in detail at how long these algorithms take to perform the parallel phase 

and how many points they manage to eliminate compared to the basic version. As we 

can see from table 7.4, the algorithms with initial filtering manage to eliminate many 

more points in the parallel phase than the standard versions, but they take longer to 

execute. As far as Grid Filtering is concerned, it is very time-consuming, so even if we 

manage to reduce the size of the Local Skyline compared to the standard version, the 

extra time we put in for the parallel phase does not give us any advantage in terms of 

final execution time, leading to a slowdown of the algorithm. As far as Representative 

Filtering is concerned, as we can see for both Angular Partitioning and One-Slice 

Partitioning, even though it takes longer to compute the parallel phase (not as long as 

Grid Filtering), it returns a Local Skyline set that is much smaller than the basic version, 

and we are therefore able to speed up the final sequential part.  
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We are now going to evaluate how these algorithms perform in the case of ND set 

computation. 

 

 

Figure 7.4.3: Execution time of the parallel phase of the Improved parallel 

Algorithms using SVE1F and percentage of the local set size in 4d anticorrelated 

dataset using the virtual machine. 

 

The behaviour of these algorithms for the computation of ND set using SVE1F is very 

similar to that of the skyline set computation using SFS. Also in this case we have that 

Grid Filtering in the case of anticorrelated datasets does not bring any advantage in 

terms of final execution time compared to the basic version, while the Representative 

Filtering manages to speed up the duration of the algorithm compared to the version 

without. The Representative Filtering used is the one aimed at the computation of ND 

set computation as opposed to the previous one used for the computation of SFS, 

which as we have seen in Chapter 5 speeds up the total duration of the algorithm by 

eliminating many more points in the parallel part during the computation of local sets. 

Once again, as with SFS, the best algorithm is the All Parallel algorithm with One-Slice 

Representative Filtering, which in the case of a 2-million point dataset with 16774 ND 

points manages to finish in 99.66 seconds, about 6.5 times faster than the same version 

with the final sequential part. 
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Figure 7.4.4: Execution time of the parallel phase of the Improved parallel 

Algorithms using SVE1F and percentage of the local set size in 4d anticorrelated 

datasets using the virtual machine. 

 

Algorithm’s Name Number of Local ND 

points 

Execution time 

Parallel phase 

Execution time 

Sequential Phase 

Angular Partitioning 33971 68.33 776.98 

One-Slice Partitioning 28051 14.8 679.3 

Grid Filtering + Angular 

Partitioning 

31765 133.5 749.4 

Angular Representative 

Filtering 

29640 85.4 731.99 

One-Slice Representative 

filtering 

23104 30.36 647.49 

Table 7.5: Time of parallel and sequential phases of improved Parallel Algorithms 

using SVE1F with a 4d anticorrelated dataset with 2 million points and 16781 ND 

points. 

 

As we can see from table 7.5, the algorithms applying initial filtering succeed in 

reducing the size of the Local Set computed during the parallel phase, but as far as 

Representative Filtering is concerned, it brings advantages over the standard version 

of the same algorithm, whereas Grid Filtering takes too long to return the Local Set, 

thus bringing a disadvantage in terms of duration compared to the basic version.  

Finally, we will evaluate the behaviour of the All Parallel algorithm in the case of PO 

computation. Since we start from the global set ND to compute PO, we cannot apply 
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the Representative and Grid Filtering algorithms to the computation of PO, but we can 

apply the All Parallel algorithm to try to decrease the duration of the algorithm by 

eliminating the final sequential part, which for this type of algorithm where many LPs 

have to be solved, brings a huge advantage to be able to parallelize the execution. 

Since, as seen above, One-Slice partitioning does not bring any advantage for PO 

computation, in fact in figure 7.3.6 we can see that it reduces the speed by a lot 

compared to random and angular partitioning, we are going to use the all parallel 

algorithm using for the initial parallel part where we are going to compute the local 

sets, both angular and random partitioning. 

 

 

Figure 7.4.5: Execution time of All Parallel algorithms to compute PO in 4d 

anticorrelated datasets using the virtual machine. 

 

Looking at figure 7.4.5, we can see that for the computation of the PO set, partitioning 

the data according to the position of the points in space using Angular or One-Slice 

partitioning does not bring any advantage. In fact, the best algorithm for computing 

PO as we can see from the same figure is Random Partitioning, which manages to 

finish executing the All Parallel algorithm in the shortest possible time. This is because 

partitioning with angular we have some partitions that will be heavier than others 

leading to a longer duration of the first parallel phase where we go to compute the 

local set as we can see from figure 7.3.7. Random on the other hand manages to divide 

the load on all partitions in the best possible way. 
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In this section we have seen algorithms that have allowed us to speed up the standard 

parallel algorithms, but as we have seen, the best of all for the computation of both the 

skyline and the F-Skyline operators ND and PO is the All Parallel Algorithm. In Figure 

7.4.6 we will evaluate how this algorithm behaves when we increase the number of 

points in the 4-dimensional anticorrelated dataset to as many as 10 million points. 

 

 

Figure 7.4.6: Execution Time of the All Parallel Algorithm for computing the Skyline, 

ND and PO sets using a 4d anticorrelated dataset. 

 

# Data 500 K 1 M 2 M 3 M 5 M 10 M 

# Skyline 

Points 

4480 11619 23354 29974 39685 73245 

# ND points 3307 7954 16781 20623 26996 53142 

#PO points 83 117 150 196 215 285 

Table 7.6: Number of Skyline, ND and PO points per cardinality of the 4d dataset. 
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7.5. Change the cardinality 

 

In this section we are going to evaluate the behaviour of the parallel algorithms as the 

cardinality of the anticorrelated dataset used changes. The dimensionality of the 

dataset will remain fixed at 4 and we will only change its cardinality. 

 

 

Figure 7.5.1: Execution time of the Parallel Algorithms to compute the Skyline using 

SFS changing the cardinality of the 4d anticorrelated datasets. 

 

Figure 7.5.2: Execution time of the Parallel Algorithms to compute ND using SVE1F 

changing the cardinality of the 4d anticorrelated datasets. 



7|Experimental Results 79 

 

 

 

Figure 7.5.3: Execution time of the Parallel Algorithms to compute PO changing the 

cardinality of the 4d anticorrelated datasets. 

 

As we can see from the figures 7.5.1, 7.5.2 and 7.5.3, changing the cardinality of the 

dataset increases the execution time for the skyline set computation and for ND and 

PO and we have more or less linear trend for the computation of all three sets. As the 

cardinality of the dataset increases, so does the size of the skyline, ND and PO set.   

Once again, we can see that the best algorithm is the All Parallel for the computation 

of all three sets, because it makes the best use of parallelization. Instead, among the 

algorithms with sequential final part, we have that One-slice partitioning performs 

best for the computation of Skyline and ND sets, while for the computation of PO both 

random partitioning and angular partitioning perform almost equally well. 
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7.6. Change the number of dimensions 

 

In this section we are going to change the number of dimensions of the dataset to see 

how the parallel algorithms for skyline, ND and PO set computation perform. We will 

only look at the algorithms that have been the best so far which are Angular 

Representative filtering, One-Slice Representative Filtering and All Parallel Algorithm. 

For the experiment we are going to use generated datasets anticorrelated by 1 million 

points to which we are going to change the number of dimensions. 

 

 

Figure 7.6.1: Execution Time of the Improved Parallel Algorithms using SFS in an 

anticorrelated dataset of 1 million points. 

 

# dimensions 2 4 6 7 

# Skyline Points 1830 16711 70182 120769 

# ND points 6 11621 58123 106366 

#PO points 5 169 942 2152 

Table 7.7: Number of Skyline, ND and PO Points per dimension. 

 

As we can see from graph 7.6.1, increasing the number of dimensions considerably 

increases the execution time of all the algorithms, because increasing the 

dimensionality of the dataset consequently increases the number of points that will be 
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part of the Skyline set (see table 7.7) and therefore the duration of the algorithms to 

find them since they will have to make many more comparisons. All three algorithms 

show an exponential trend as the dimensions increase. As always, the best algorithm 

is the All Parallel algorithm because as the most expensive part is the final sequential 

part, which with this algorithm we have eliminated and we are able to exploit all the 

power of the virtual machine with its 30 cores. 

Since angular and one-slice algorithms for large dimensions take too long due to the 

final sequential phase, for the computation of ND and PO we will only evaluate how 

the All Parallel algorithm performs. 

 

 

Figure 7.6.2: Execution time of the All Parallel Algorithm for the computation of ND 

and PO using an anticorrelated dataset of 1 million points. 
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7.7. Change the number of partitions 

 

In this section, we will see how changing the number of partitions impacts the parallel 

algorithms for the computation of the skyline and ND sets. For the experiments, we 

will use an anti-correlated 4d dataset generated with 1 million points.  

 

 

Figure 7.7.1: Execution Time of the Parallel Algorithms using SFS and SVE1F with an 

anticorrelated 4d dataset of 1 million points changing the number of partitions. 

 

From Figure 7.7.1 we can see how changing the number of partitions affects the 

duration of the algorithms. The first graph shows how the grid and angular algorithms 

vary as the number of slices per dimension changes. In the case of Grid Partitioning, 

the number of partitions will be equal to nd whereas for Angular Partitioning it will be 

equal to nd-1. The first thing we notice is that for both the skyline computation with SFS 

and the computation of ND set with SVE1F, when it comes to algorithms with final 

sequential part, it is never advisable to choose a number of partitions that is too high, 

because it is true that the parallel part will be faster, but the number of points in the 

returned local set will be greater, affecting the duration of the final sequential part. 

Different reasoning with the All Parallel algorithm, which by increasing the number 

of partitions is able to better parallelize the computation. 
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Figure 7.7.2: Execution time and cardinality of the local set after the parallel phase 

using a 4d anticorrelated dataset of 1 million points changing the slice per dimension 

 

Figure 7.7.3: Execution time and cardinality of the local set after the parallel phase 

using a 4d anticorrelated dataset of 1 million points changing the number of 

partitions. 

 

In Figures 7.7.2 and 7.7.3, we can see how changing the number of partitions reduces 

the duration of the algorithms in their parallel phase, but as a result, the cardinality of 

the local set is increased, resulting in a longer time for the computation of the global 

set in the final sequential phase. We need to find the right compromise, which as we 

can see from figures 7.7.1 in this specific case, seems to be 5 slices per dimension for 

Grid (54 partitions) and Angular (53 partitions)  partitioning while 100 partitions for 

One-Slice partitioning and consequently All Parallel for bot Skyline and ND 

computations. 
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7.8. Change the number of cores 

 

In this section, we will see how changing the number of cores used by Pyspark for 

parallelization impacts the parallel algorithms for the computation of the skyline, ND 

and PO sets. For the experiments, we will use an anti-correlated 4d dataset generated 

with 1 million points and we will test the behaviour of the algorithms as the cores vary 

from 5 to 30. 

 

 

Figure 7.8.1: Execution time of the Parallel Algorithms to compute the Skyline using 

SFS changing the number of cores used. 

 

 

Figure 7.8.2: Execution time of the Parallel Algorithms to compute the ND set using 

SVE1F changing the number of cores used. 
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Figure 7.8.3: Execution time of the Parallel Algorithms to compute the PO set 

changing the number of cores used. 

 

From the figures 7.8.1, 7.8.2 and 7.8.3, we can see that by increasing the number of 

cores, the execution time decreases. As for parallel algorithms with a sequential final 

part, we can see that the execution time decreases but not as much between the 30 cores 

version and the 5 cores version. This is due to the fact that the parallel part in these 

algorithms covers a much smaller part than the final sequential part and using more 

cores leads to a speeding up of the parallel part but does not affect the sequential part 

which will still be very long. Having said that, using more cores for these types of 

algorithms will speed up the parallel part a little, but the sequential part will not be 

affected and will not bring a big advantage in execution time. 

Taking One-Slice Partitioning with representative filtering as an example, we go from 

79.3 seconds of the 5-core version to 53.5 seconds of the 30-core version for SFS, thus 

speeding up the algorithm by a factor of 1.48. The same applies to the other algorithms 

and the computation of ND, where the same algorithm is speeded up by a factor of 

1.3.  A different case is made for PO computation, as each partition has to compute so 

many LPs, that the execution time of the parallel partitioning has a significant 

duration, thus speeding up Random Partitioning using the 30 cores compared to the 5 

cores by a factor of 2.96. 

Finally, the All Parallel algorithms are those that benefit most from parallelization and 

we can see how the execution speed decreases much more than the other algorithms 

as the number of cores increases. This is because being an algorithm that does 

everything in parallel, having more cores at work speeds up the execution time a lot. 

For the skyline computation we have that the execution time goes from 34.44 seconds 

of the 5 cores version to 14.5 of the 30 cores version, speeding up the algorithm by a 

factor of 2.37. For the computation of ND, on the other hand, we go from 124.56 

seconds in the 5-core version to 54.4 in the 30-core version, speeding up the algorithm 
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by a factor of 2.28. Finally, the All Parallel for PO computation goes from 181.3 seconds 

for the 5-core version to 51.3 seconds for the 30-core version, speeding up the algorithm 

by a factor of 3.53. 
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8 Related work 

 

We have seen several algorithms for skyline computation, but there are many more. 

One such algorithm is the Divide and Conquer (D&C) approach [5], which partitions 

the data space into multiple regions, computes the skyline in each region, and 

combines the regional skylines to obtain the final skyline. Papadias et al. [15] proposed 

a branch and bound algorithm for progressively outputting skyline points from a 

dataset indexed by an R-Tree, with a guaranteed minimum I/O cost. 

There are various methods, such as F-Skyline, that extend the concept of Skyline by 

taking user preferences into account. For example, Prioritized Skyline (P-skyline) 

[reference] queries allow users to specify which attributes are more important in 

skyline queries. As we have seen with F-Skyline, P-Skyline also returns a smaller set 

compared to Skyline. The key difference with F-Skyline is that P-Skyline assumes a 

strict priority between attributes. 

One of the earliest parallel frameworks for computing the skyline query was Apache 

Hadoop, which utilizes the MapReduce computational paradigm [14]. This framework 

breaks down every job into two tasks: the mapping task and the reducing task. In the 

mapping task, the framework takes the input dataset and divides it into independent 

portions. Then, it maps each point in the dataset into key-value pairs. The utilization 

of these two fundamental functionalities has led to the creation of numerous efficient 

distributed algorithms for skyline query computation like [16][17]. Given that 

MapReduce operates on disk-based data processing, as opposed to Spark's in-memory 

approach, we can anticipate that the same applications implemented on Spark will 

likely exhibit improved performance, particularly for small datasets that can be fit in 

memory. 

In this thesis, we have applied parallel algorithms for computing Skyline and F-Skyline 

operators. As shown in [12], we have found that One-Dimensional Slice partitioning is 

the most effective method for computing the Skyline set. Moreover, in this thesis, we 

have demonstrated that this approach is also the best for computing the ND set, as it 

returns the smallest local set in the shortest amount of time. The situation is different 

for the PO set, where One-Dimensional Slice partitioning is not the most effective 

method. Instead, we have found that random partitioning performs significantly 

better.  
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An alternative method for parallel skyline computation is introduced in [6] in which 

the authors employ a multi-disk design with a single processor, and they leverage the 

parallel R-Tree. The central aim of this paper is to enhance the efficiency of eliminating 

non-qualifying points by accessing multiple entries from various disks concurrently. 

While this approach focuses on optimizing the distribution of nodes in the parallel R-

Tree, the methods we have seen so far addresses the problem of data space partitioning 

in a parallel share-nothing architecture. 
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9 Conclusion and future developments 

In this thesis, we introduced several parallel algorithms and applied them to the 

computation of Skylines and the Flexible Skyline ND and PO operators using the 

PySpark framework.  

We saw that for both skyline computation and ND, the parallel algorithms behave 

more or less the same in the case of anticorrelated datasets. Random Partitioning does 

not perform very well despite the fact that unlike Grid and Angular Partitioning it 

succeeds in dividing the dataset into partitions of equal size, but the fact of joining 

random points does not bring any advantage, in fact the computed local set is very 

large, thus introducing a high overhead compared to the others in the final sequential 

part. Grid Partitioning, on the other hand, manages to eliminate enough points in the 

parallel phase by returning a smaller local set than Random Partitioning, but in anti-

correlated datasets, as we have seen, it has some partitions that are much heavier than 

others, thus incurring a fairly large computation time for the parallel phase. Angular 

partitioning succeeds in overcoming the problem of Grid Partitioning by being able to 

divide the dataset more evenly while returning small local sets. Finally, One-Slice 

partitioning succeeds in overcoming the problems of Grid and Angular Partitioning 

by managing to partition the dataset equally between partitions and still return the 

smallest local set of all the parallel algorithms. 

Improvements have been made to these algorithms. Grid filtering as we have seen 

brings no advantage in terms of execution time, because once again, the dataset being 

anticorrelated, grid partitioning fails to divide the space well, leaving many more 

points in some partitions than in others, leading to the elimination of many partitions 

with few points. The real improvements are found with Representative Filtering, 

where the algorithms manage to return a smaller local set than the standard version, 

thus reducing the duration of the global set computation in the final sequential part by 

using a few "better" points to filter the dataset before performing parallel computation. 

We have seen that the results obtained are in line with the thesis [12] in which One-

Slice Partitioning turns out to be the best partitioning algorithm among those proposed 

for skyline set computation. In this thesis, we were able to establish that it is also the 

best algorithm for ND set computation, being able to return the smallest local set in 

the shortest time. On the other hand, different considerations apply to the computation 

of PO, which is much more efficient when starting from the ND set and partitioning 

the space randomly or using Angular partitioning, preferring the former as it succeeds 
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in dividing the set more evenly between the partitions without overloading them too 

much since the computation of LP is very onerous. 

Finally, we have seen that the best algorithm is the All Parallel since it manages to 

eliminate the final sequential part, which is the longest. The algorithm performs best 

when using the virtual machine with 30 cores, managing to finish execution 4.29 times 

earlier than the same version with the final sequential part for the skyline computation, 

6.5 times earlier for ND and 2.1 times earlier for PO. 
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