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Extended summary

Lithium-Ion batteries have become the most widespread energy storing system, and are
used as a power source for many applications. Industries, as well as private users, have
many interests in optimizing the way lithium batteries are used. First of all safety:
batteries behavior is very sensitive to the condition of usage, and it may happen that
they overheat, or even burst if they are, for example, used under a voltage range not
suitable for it, or at a degradation level beyond the fixed failure threshold; some Tesla
Model S caught fire due to a short-circuit of the lithium-ion cells in 2013 [28]; an electric
scooter blew up during charging in 2018 [16].

There are also financial reasons: lithium-ion batteries are very expensive components,
and optimizing their use conditions helps to maximize their life spawn, and minimize
costs. Prognostic measurements on the duration of the batteries and on their failure, help
schedule the appropriate maintenance on time, optimizing the availability of the system.
This thesis gives a contribution to this optimization process by providing one solution for
estimating the State of Health (SoH) of the batteries, and one solution for predicting
the Remaining Useful Life (RUL). The SoH is a value that measures the health of the
battery by taking into account the remaining capacity, compared to the nominal capacity
that the same battery had when it was new. Knowing with accuracy the SoH of a battery
improves the accuracy in which other parameters, like the State of Charge (SoC), are
measured. For instance, having a precise measure for the SoC allows the user to use the
device in the proper range of charge, and helps to plug or to unplug in the correct way,
optimizing safety and battery life.

From the industrial point of view, having an accurate prediction for RUL allows saving
money by scheduling appropriate maintenance on time, reducing the downtime of the
service, and reducing the risk of dangerous component failures which may endanger the

assets of the industry.

In literature, many approaches have been used for SoH estimation and RUL prediction,
like model-based or statistic approaches, but now in the big data era, data-driven and
machine learning solutions are the most appealing and promising. In particular support

vector machine and random forest algorithms, and recurrent neural networks gave the
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most promising results.

In our thesis, we decided to use support vector regression (SVR) algorithm for the SoH
estimation task, and an LSTM neural network for RUL prediction. The performance
of our solutions has been validated on two publicly available datasets: one from the
Prognostic Center of Excellence at NASA and another from a MIT-Toyota cooperation.
The NASA dataset is small if compared to the MIT-Toyota, for this reason, we decided
to use support vector machine (for regression, namely support vector regression), which
is able to perform also with a few data, to work on the NASA dataset. The MIT-Toyota

dataset is way bigger and allowed us to produce more sound results.

The first approach we had to RUL prediction, before to start developing our solutions, has
been to replicate the work proposed in [3]. They proposed a hybrid approach that mixes
a physic model component along with an echo state network (ESN), for predicting RUL
using the NASA dataset. They start from a capacity degradation model called Double
Exponential, from which they derived a semplified version called Single Exponential.
They use this model to estimate the state space of the batteries up to a fixed prediction
cycle, and from this state-space they generate another dataset, representing the degra-
dation of the battery up to the prediction cycle k. The descriptor of this dataset is the
number of cycles from 1 to k. Finally, they use this sequence to train the network and
use the network to predict the rest of the degradation curve of the battery.

We’ve been able to state that this approach is not solid since the network is not able to
learn the full degradation pattern of the battery, because in training phase are used only
data about the first phase of the degradation, The approach could give more interesting
results if more batteries are used to train the network, and their complete degradation

profile is used.

The next step is to build a model with SVR algorithm for SoH estimation, and train
it with the 3 batteries available in NASA dataset. In particular, is important to state
that SoH normally can be measured with a method called Coulomb counting, but at one
condition: the battery must go through a full charge + discharge cycle. This condition
is not reliable in many real applications, for example electric vehicles. So we developed a
feature-based approach that estimate the SoH by extracting features from a small portion
of the charging curve, which is a condition that is more likely to happen in real cases.
This is called partial charging curve approach.

We extracted the charging time from different voltage steps, in different voltage ranges.
We picked the optimal voltage ranges and steps by picking the one with the lowest cross-
validation error. The optimal values were 3.9-4 V range, and 0.5 V steps, so the final

descriptors of the data were the charging time from 3.9 V to 3.95 V, and the charging
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time from 3.95 V to 4 V, for every cycle. The validation R? is 0.95 which is an excellent

result, but the solution has to be validated also on bigger datasets.

In the next step, we perform RUL prediction over the MIT-Toyota dataset, using a bidi-
rectional LSTM neural network. We decided on this approach since RUL prediction is
a task for which is important to take into account the past history of the sequence, to
somehow infer how the battery is going to behave in the future, and from this, predict an
appropriate RUL.

Despite the characteristic of neural networks of begin able to find meaningful features
and internal representation, we decided to use our knowledge to extract features that are
human interpretable. Starting from what [23] discovered, we adapted 3 of the features
they elaborated so that they can be computed for any prediction cycle, and we can have
a continuous RUL prediction from the beginning to the end of life of the batteries. The
first two features for cycle k are the variance and the minimum of the curve obtained
by subtracting the discharge curves of Q as a function of V, at cycles 10 (reference cycle)
and cycle k. These two features have the property of representing on a linear space the
input data, battery-wise. The third feature is the sum of the average cycle temperature,
from cycle 2 to cycle k, that we call temperature feature. PCA analysis allowed us to
eliminate the second feature, the minimum since it contained the same information of the
variance feature.

We tuned the network with a 5-fold cross-validation and tested it over 10 samples obtain-
ing excellent RMSE values for almost all of them. Exceptions are made by those batteries
whose life is much longer than the average of the batteries in the dataset, since not enough
data is present to describe them, and also the LSTM limitation about the length of the

sequences that can be memorized must be taken into account.

The final step of the thesis has been to apply the SVR solution to estimate the SoH
on Toyota-MIT dataset, that, unlike NASA dataset, has many different policies for the
charging phase of the batteries. Those policies vary in the charging current and in other
important charging details. This makes it impossible to adopt the same partial charging
curve approach we had, so instead, we used the same feature we just described for RUL
prediction, with the difference that we computed them considering only a small part of
the discharge curve of Q(V), instead of the full curve. This is called partial discharge
curve. In particular, we picked the interval from 2.8 V to 3.1 V. The fist important thing
to note is that the variance feature, which in the case of the full discharge curve generates
a linear pattern, with partial discharge curve it loses most of its information, and it is
almost totally noise. On the other end, the minimum feature keeps almost entirely its

information. So in the final SVR model, we used two features: the minimum feature and
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the temperature feature. We again validated the models with a 5-fold cross-validation.
The results show an R? value of 0.97 which is beyond our expectations. Some of the
samples present noise in the estimation, which is due to the noisy nature of the features

used.

Anyway, the partial discharge curve assumption is more strong than the partial charge
curve, in fact for the majority of the real applications, an approach based on the charg-
ing curve would be preferred. Unfortunately, no available dataset at the moment is big
enough, and with the right charging pattern, to allow us to properly test the solution on
the partial charging curve.

What can be done in the future to improve this work, is to further reduce the discharge
interval to extract the feature, and explore different voltage ranges to make the assump-
tion as weak as possible.

Regarding RUL prediction, a possible future development is to adopt a sliding window
approach to crop the longest sequences to smallest ones, and overcome the memory limi-
tations of LSTM Network. Another approach to be carried out, in order to fully exploit
the power of Neural networks, is to quit the feature-based approach and feed the network

with sequences of raw measurements instead.



Abstract

Nowadays, batteries, and in particular Lithium-Ion batteries, have become enormously
used in many systems and applications, and are absolutely the most widespread energy
storing system. Optimizing the usage of batteries thus is very important to increase the
safety of systems like electric vehicles or portable devices, to reduce economic loss in in-
dustrial environments, and to increase the availability of such environment services. An
accurate Remaining Useful Life (RUL) prediction is key for this optimization process to
succeed since it allows us to know battery conditions, and to schedule proper mainte-
nance. At the same time, State of Health (SoH) estimation is important to improve the
accuracy of other diagnostic measures, like State of Charge (SoC).

In this thesis work we propose one approach for SoH estimation, based on Support Vector
Regression machine learning algorithm and a smart feature extraction process, finding a
good trade-off between applicability, light computation effort, and accuracy of results.
Performances are measured on 2 different datasets, one from the Prognostics Center of
Excellence at NASA and another from a MIT-Toyota cooperation. Another approach
based on LSTM Recurrent Neural Network is proposed to perform RUL prediction, and

its performances are evaluated on the MIT-Toyota dataset.

Keywords: RUL, SoH, aging prediction, neural networks, machine learning, lithium-

ion batteries, degradation prognostic.






Abstract in lingua italiana

Oggigiorno, le batterie, ed in particolare le batterie agli ioni di litio, vengono enormemente
usate in molti sistemi ed applicazioni, e sono in assoluto il pitu diffuso sistema di stoccaggio
energetico. Ottimizzare I'utilizzo di tali batterie ¢ molto importante per poter aumentare
la sicurezza dei sistemi che le adottano, come veicoli elettrici o dispositivi portatili di
varia natura, oltre che per ridurre perdite in termini economici nei sistemi industriali ed
aumentare la disponibilita dei servizi che tali sistemi offrono. Una accurata predizione
della Vita Utile Rimanente (RUL) delle batterie & la chiave perché questo processo di
ottimizzazione possa avere successo, perche tale predizione ci permette di conoscere al
meglio le attuali condizioni delle batterie in uso, e programmare un’adeguata manuten-
zione. Allo stesso tempo, la stima dello stato di salute (SoH) delle batterie & importante
per migliorare 'accuratezza di altre misure diagnostiche, come ad esempio lo stato di
carica (SoC).

Questo lavoro di tesi propone un approccio alla stima dello stato di salute, basata sull’
algoritmo di machine learning della Regressione a Vettori di Supporto (SVR) e su un
particolare processo di estrazione delle feature, cercando di stabilire un buon equilibrio
tra applicabilita del metodo, leggerezza del carico computazionale e accuratezza dei risul-
tati. Le performance di questo approccio sono misurate su 2 dataset, uno proveniente
dal Prognostic Center of Excellence alla NASA e un altro da una cooperazione tra MIT
e Toyota. Un altro approccio, basato su una rete neurale ricorrente a moduli LSTM é
proposto per effettuare la predizione del RUL, e le performance di questo approccio sono
valutate sul dataset MIT-Toyota.

Parole chiave: Vita utile rimanente, Stato di salute, predizione dell’invecchiamento,

reti neurali, machine learning, batterie agli ioni di litio, prognostica della degradazione.
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]_ ‘ Introduction

Today’s world is moving toward a future that is more and more dependent on energy stor-
age systems. We all have multiple battery-powered devices like smartphones, notebooks,
tablets, and headphones, and in about 10 years we’re all going to drive only battery-
powered vehicles. Many industrial fields rely on batteries as energy storage systems too,
as well as many critical applications like aircraft and satellites [11|. The global transition
to clean and renewable energy heavily depends on our ability to store that energy, which
is also the bottleneck of the transition process.

Lithium-Ion batteries are the most used batteries because of their very high density of
potential and minor self-discharge, along with a very long lifetime, thus there is a massive
demand for them [2].

The high need for batteries and their high cost highlight the need of a Battery Manage-
ment System (BMS) which is capable of monitoring the degradation of the battery with
high enough accuracy in order to optimize the battery usage and its cost. In particular
is of critical importance to have a BMS which evaluates with precision when failures can
happen, in other words, a BMS is able to compute the State of Health and Remaining
Useful Life of batteries early enough to avoid the use of the batteries under dangerous
degradation conditions, schedule appropriate maintenance, and therefore avoid unsafe sit-
uations, maximize the availability as well as the lifetime of the batteries, and reduce costs.
The BMS is mounted on battery-equipped systems, and uses sensors to take measurements
during the usage of batteries, like surface temperature, current, voltage. Those mea-
surements are however rough compared to the many micro phenomena that take place
inside the battery, and whose entanglement causes a strongly non-linear and hardly mould-
able degradation [14]. Those phenomena are impossible to measure in real-life applica-
tions, and interact with each other, resulting in various and different aging and capacity
degradation shapes [1], thus we need solutions that can model degradation by using BMS
measurements.

The objective of this thesis is to employ data-driven and machine learning approaches as
possible solutions to RUL and SoH estimation problems, in particular, Support Vector

Machine algorithm is used to perform SoH estimation, since it is lighter and faster in
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computation, and could be potentially used on every portable device, increasing the pre-
cision of parameters like the SoC, that is the % of battery remaining, leading to a more
comfortable and optimized usage of the device, while Recurrent Neural Network is
used for RUL prediction, which unavoidably needs for the sequential structure of the past

and the future conditions of the battery to be taken into account.

The results of SoH estimation show the validity of the proposed approach, and in par-
ticular, of the proposed features. Performances reach a good accuracy along with a fast
fitting and prediction time, highlighting the potential applicability in real-time scenarios.
RUL prediction solution shows the suitability of Recurrent Neural Networks to battery
degradation time series applications. In fact, we obtained good prognostic measurements
from the very first moments of the time series, especially for those data sequences that
lie near the mode of the dataset. For longer-lasting batteries, on the other hand, which
are the great minority of the data, predictions are a bit noisier, yet fairly good, due to
the data distribution. This shows the importance of finding new datasets, more balanced

and possibly richer, on which to further validate our solutions.

This thesis is organized as follows. Chapter 2 introduces the concepts of State of Health
and Remaining Useful Life and delves into why we need good estimators and predictors
for them. Chapter 3 describes different methods SoH estimation and RUL prediction
are approached, discussing, in particular, the advantages of machine learning. Chapter 4
explains more in detail the algorithms and models we are using in this thesis. In chapter
5 we explain and discuss the datasets that we are using. Chapter 6 is about the hybrid
approach presented in [3], how we replicated it, and the results we obtained. In chapter 7
we present our solutions for SoH estimation and for RUL prediction. Finally, in chapter

8 we draw conclusions and discuss possible future work and developments.



2 SoH and RUL for batteries

If we take into consideration the most general case of a system, the study of its health or
that of some of its components revolves around the computation of some figure of merit
of the condition of the given system or component.

Our approach towards the study of the health of batteries is aimed at computing two
quantities, characterizing the condition of the batteries, which are State of Health (SoH)
and Remaining Useful Life (RUL). In particular, in this thesis we investigate and apply
different Machine Learning techniques for making Estimation of State of Health, and

Prediction of Remaining Useful Life of Lithium Ion Batteries.

2.1. State of Health

The State of Health of a battery is a percentage value, defining the actual health condition
and performance, in relation to the initial ones, when the battery was brand new and at
its maximum.

There’s not a unique mathematical definition of SoH, it may change according to the
application field, but primarily it can be defined in two ways: in terms of the increasing
internal resistance, in this case, a loss in health condition is described by a loss in potential
current output. Or, it can be defined in terms of decreasing capacity: in this case the
health condition is described by the total charge that the battery can store [30].

SoH changes as a function of the Number of Cycle k, which is the number of charging +
discharging cycles the battery has gone through, since the beginning of its life.

In our case, the SoH at time (intended as cycle) k, is defined in terms of the maximum

capacity, as follows:

SoH,, = % -100 (2.1)

(2.2)

Where C}, is the capacity of the battery at cycle k, and C' is the Nominal Capacity, namely
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the capacity that the battery had at the beginning. From now on we will refer to SoH as
in this formulation.

SoH is then a quantity ranging from 0 to 100, indicating in fact the percentage of residual

health. Figure 2.1 shows the capacity fade over cycles of one sample battery, along with

the relative SoH degradation.
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Figure 2.1: Capacity and State of Health of 1 sample battery.

SoH is an important parameter in deciding how reliable a battery is, and also influences
other important parameters like State of Charge (SoC), whose measurement may become
erroneous as the health of a battery decreases. An accurate SoH estimation translates in
an accurate SoC, which allows the user of the device to follow the proper discharge-charge
pattern: for instance to prevent the real SoC of the device from dropping too low, or for

suddenly shut down before even reaching 0%.

2.1.1. SoH Measuring and Estimation

There are many methods for obtaining SoH, like Coulomb Counting Integration, which
under the appropriate conditions are quite effective; but doing it in an accurate way is
not an easy task.

SoH is an internal property of the battery which cannot be directly measured, instead

we "compute" it starting from other sensor measurements like voltage, current, and in



2| SoH and RUL for batteries 5

our case charge. SoH has a strong variability, and it’s strongly affected by environmental
conditions like temperature, but also by smaller internal parameters combinations given by
electrochemical reactions (like electrolyte decomposition and SEI film generation, acting

on electrodes) in the same way we described for the battery degradation.

In Coulomb Counting Method which may be also known as the Current Integration
Method, the discharge (or charge) current I is integrated in time over the whole cycle, to
obtain a measure of the energy which was contained inside the battery (or that is being

introduced into).

To apply the existing methods, the battery has to go through a complete charge + dis-
charge cycle in order to measure the total current that it is capable to store and then
provide, and in addition, for those measurements to be accurate, the temperature of the
surrounding environment and many other conditions have to be controlled and fixed.

Such conditions are not always reproducible, depending on the context. As an exam-
ple, consider measuring the SoH of the battery pack of an electric vehicle: temperature is

not controllable, and performing a full cycle of the battery is money and time-consuming.

What has just been said is so important in understanding the reasons for the need of a SoH
estimation system, and why research puts effort in the study of methods and techniques

capable to estimate the SoH of batteries.

2.2. Remaining Useful Life

Remaining Useful Life is a parameter that applies to any kind of system and indicates the
time instants that remain, from a given prediction time k, up to the End of Life (EoL)
of the system. The correct evaluation of the system’s RUL has a strong impact on its
maintenance, since a precise RUL allows to schedule a proper substitution/maintenance of
the system or of its components, and therefore to mitigate or prevent critical failures. This
reflects directly into major safety, optimized resource-saving, and improved availability of

the system.

RUL prediction is a complicated task since it is not only a function of the past and present
condition, as it is SoH, but also on the future operational profile that the system is subject
to. This means that information on the future usage of the system has to be known or at
least inferred from the patterns in the history of the system. Of course, there will always
be uncertainty in the future usage of the system, thus there will always be an essential

uncertainty in the RUL prediction, which transcend our capacity to forecast.

For all these reasons, RUL forecasting accuracy has the intrinsic behavior of improving
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the more the prediction time & is moved forward, and the more information on its past we
have. Since for maintenance purposes we are mostly interested in having good predictions

close to the failure point, lower accuracy in the first-time instants is accepted.

RUL prediction research is active in various fields and applied to several systems, from

aircraft engines to MOSFETs, any kind of industrial assets, and batteries.

2.2.1. RUL for batteries

Battery RUL from a cycle k is defined as the number of cycles in which the battery reaches
the EoL threshold, from cycle k.

The EoL of a battery is conventionally fixed at 80% of its SoH, but depending on the
application we're considering, this threshold may vary: more critical applications might
require a SoH not lower than 90%, while for more relaxed ones, 60% SoH is also accepted.
This is because, for many applications, there is not an actual battery failure threshold,

but a point after which the usage of a battery is no longer profitable.

RULk = CycleEOL —k (23)
(2.4)

Where k is the cycle at which we make the prediction, and Cycle.,; is the cycle at which
EoL is reached.

2.2.2. RUL and SoH connection

Battery RUL and SoH are tied together, indeed many approaches to compute the battery
RUL, as first step compute the whole battery SoH curve (also called degradation curve),
in order to find out at which cycle SoH reaches 80%;

So we can state that SoH and RUL are described by very similar physical properties, but
when it comes to computing them, there are different difficulties to face, which will be

explained more in detail later on.



3 ‘ Approaches for estimating SoH
and RUL

In literature, we find lots of different studies and approaches to deal with SoH and RUL,
and those can be divided into three macro-categories: Model-Based, Data-Driven,
and Hybrid [30].

3.1. Model-based

Model-based solutions are approaches that build mathematical models from the physi-
cal knowledge of the batteries (sometimes are referred to as Physic-Based approaches).
Those models try to shape the internal phenomena of the battery in the most precise way
possible, in order to approximate its degradation and decay. These techniques have been
deeply studied and developed, but the big number of internal actions and reactions that
happen and interact inside batteries makes these approaches really hard to develop and
refine. In addition, such solutions are very battery specific, and also condition-specific,
since a change in any physical factor would destabilize the model; therefore model-based
solutions are not able to generalize.

Even though this approach has strong theoretical foundations and results, it is not applica-
ble in real situations for the reasons listed above, and because some needed measurements
would require to literally open up the battery, making it unusable.

Two subcategories can be defined:

e Electrochemical Models, which rely on the knowledge of the internal structure

and behaviour of battery.

e Equivalent Circuit Method, applying electrotechnics, and considering the bat-
tery as a blackbox.

Some examples of electrochemical models are |25], where the authors studied the dissolu-

tion of the lithium salt close to the SEI of the negative electrode, obtaining a connection
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with the fade of capacity, and [6], where a solvent oxidation reaction was considered; here

in [27], they used an equivalent circuit approach to select the first-order Thevenin model.

3.2. Data-driven

Data-driven methods have taken hold over the model-based approach in the last years,
and a lot of research has been made and still there’s to do about it. The data-driven
approach allows to partially transcend from the knowledge of the battery domain, do not
model internal reactions thus are generally easier to develop. They rely instead on a huge
amount of data from which to model the degradation behaviour.

These methods are more flexible and adaptable, so more able to generalize, and more
adapt to real usage, since less modeling and less tough measurements are required.
Nevertheless, the amount of data that is required is quite a drawback, which makes the
approach heavily dependent on the availability of good datasets. Big data era, data min-
ing, and data analysis fast evolution are pushing data-driven methods ahead, but still,
battery-related data are slow and costly to collect, so there are still few datasets publicly
available, that are suitable to apply for battery degradation studies.

Using a data-driven approach also implies the handling of the data, cleaning and manip-
ulating them, understanding and rendering, which are delicate phases that condition the

results.

According to various papers, [30], [26] data-driven methods can be divided into various

subcategories, which are mainly resumed in:

e Filtering methods: Are generally used to elaborate signal containing noise, com-
puting the probability distributions of data. Examples are Kalman Filter (KF),
and its variations Unscented Kalman Filter (UKF) and Extended Kalman
Filter (EKF), used respectively by [32| for RUL prognosis, and [29], that proposed
an EKF combined with genetic algorithm, and Particle Filtering (PF or UPF)
[10].

Filtering methods have shown good results in the prognostic field, but have some
difficulties in handling non-linear data; for this the extended versions of the algo-
rithms were developed, slightly improving on this front.

Furthermore, filtering methods computational complexity does not scale well with
the quantity of data.

Since battery degradation pattern is strongly non linear, KF and PF alone are not

enough, and are often used in hybrid configurations.
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e Statistical methods: Like Wiener Process (WP) and Gaussian Process
(GP), applied to the regression problem of battery degradation, estimate a new

step of the degradation pattern using statistical data [12, 15].

e Machine Learning Supervised machine learning techniques are able to learn from
the data the aging patterns of batteries, and can be used for prediction and esti-
mation. Many ML algorithms have the advantage of handling non-linear patterns,
which is key in the case of battery aging, and also perform easier calculations with
respect to other approaches, leading to more scalable models, and being applicable

In more situations.

In literature, many ML algorithms have been applied and tested on degradation
estimation problems, on various kinds of datasets coming from different scenarios,
different batteries, conditions and so on. For instance [13] used Support Vector
Machine (SVM) to estimate values for capacity and resistance for electric vehicles
batteries, [4] applied Random Forest (RF) with a feature-based approach, to
estimate the SoH from measurements of a small portion of the charging curve of
batteries. [24] used simple and multiple Linear Regression along with a feature-
based approach, on a dataset of over 100 aged batteries. [7] instead used Artificial
Neural Networks to predict the SoH, using past values of internal resistance and

capacity.
Overall, we can group the most used ML algorithms so far:

— Support Vector Machine: It is one of the most classical and used ML al-
gorithm, successfully applied in countless fields. Support Vector Regression
(SVR), which is the version of SVM adapted to perform regression, has the ad-
vantage of working pretty well also with few data with respect to other models,
in particular, the choice of the kernel allows to handle the dimensionality of
your data, i.e. if you have few or many features, with respect to the data points.
In addition it is quiet robust to noise and doesn’t suffer from local minima is-
sue, which instead affects Artificial Neural Networks. In [5], a LS-SVM model

that is based on arbitrary entropy is created to estimate the SoH.

— Artificial Neural Networks: The main advantages are that ANNs are good
in catching non-linear patterns, and they generally don’t need human knowl-
edge about the context, to work. ANNs can be adapted to the complexity of
che context just by adding neurons, or layers of neurons (in this case we talk
about Deep Neural Networks). They have the capability of finding rela-

tions among the variables, without the need of knowledge of the context.
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One variation of the ANNs, is the Recurrent Neural Network, which,
thanks to recurrent connections, acquires the capability of memorizing rela-
tions with previous inputs, and is able to deal with the concept of sequences or
time series. An application is [22|, where maximum available capacity is used
to show the SoH based on a back propagation (BP) neural network. In [20]
the battery SoH is estimated given a time series of capacity over cycles. Qu
proposed in [19] a prediction model for SoH through LSTM, and predicts SoH

based on a moving window.

— Random Forest: It is an ensembling technique, namely, a technique that puts
together more weak learners (decision trees) to “build” a stronger learner. The
main advantage is that is quite easy to build and set up, and gives in output
also a ranking of features importance. Last but not least, it is easily adjustable

to face overfitting by changing the number of decision trees used.

3.3. Hybrid Models

Is a very general category of techniques, which fuses together different techniques, usually
model-based and data-driven, to exploit the strengths of both. In [3], a hybrid solution
of a physics-based degradation model, along with an Echo State Network (ESN) has
been applied to RUL prediction. Zhao et al. [31] proposed a hybrid method based
on an empirical degradation method and a data-driven method. They decoupled the
degradation process into two types: capacity regeneration and normal degradation. Then,
they predicted the battery State of Health by using the relevance vector machine (RVM),
which is a technique similar to the support vector machine but uses Bayesian inference

to obtain solutions for regression or probabilistic classification.
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4.1. Support Vector Machine

Support Vector Machine is one of the most classic and used ML supervised learning mod-
els, which performs binary classification. Given a set of samples, SVM finds the separating
hyperplane with the biggest distance from each training point, so not only tries to clas-
sify the points but also to find the best and most robust possible hyperplane to do so.

The problem is that in many cases, the points are not linearly separable in the input space,
and a higher (even infinite) dimensional feature space is needed to find a linear hyper-
plane which can divide them. The Kernel Trick allows to move the data from the input
space to a higher-dimensional space, keeping feasible the computational burden of the dot
products between arrays of points: the dot product between 2 points in a N dimensional
space where N is arbitrarily big, can become computationally unfeasible. Thanks to the
kernel function, the dot products are no longer computed but are represented in terms
of a Kernel Function K(z,y). In other words, the kernel method represents the data
only through a set of pairwise similarity comparisons between the original data observa-
tions, which are lower in dimension, instead of explicitly applying the transformations to

a higher dimension.

The separating hyperplane will be defined in terms of the feature vector of data points,
as a linear combination with parameters «;. Those parameters are different from 0 only
for those data points (called support vectors) which lie nearest to the hyperplane, and in
fact define it. So the separating boundary is defined only as a function of the support

vectors. [8] discuss the theory and applications of SVM.

4.1.1. Support Vector Regression

SVR is a version of SVM adapted to perform regression tasks. Compared to normal linear
regression which finds the minimum of the squared error for the target values, SVR just

fits the error of its predictions within a limit ¢, while minimizing the L2 loss:
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N
mm§ﬂﬂ

Y, — (X, +b)] <e Vn

(4.1)

where (3 and " are the weights array respectively normal, and transposed, Y,, are the target
values, X! is the transposed descriptor array, and b is the bias, and € is the maximum
allowed divergence between the target value and predicted value. Given that is not always
possible to satisfy the e constraint, it is relaxed by adding what are called the Slack
Variables. Any error greater then € is now accepted but is considered in the loss function

with a weight. This approach is called Soft Margin. The equations stated before become:

(

N
min g9+ C3 6+ )

Y, — (X, 8+4+b) <e+&, Vn
(XoB+0) =Y, <e+ & Vn

where &, and ¢ are the slack variables for each point, and C represents the weight asso-
ciated with them: C' = 0 means that slack variables are not considered, and no error is
allowed, while a high value of C' leads to a more relaxed problem. Figure 4.1 from [1§]

gives a better visual understanding of the problem and the parameters.

The loss function at this point considers only the errors which are greater then e:

0 it |Y — f(z)] <
Loss, = | fa)l<e (4.3)
Y — f(z)| — € otherwise

Now, if we write the optimization problem, the loss function and the constraints, in its
dual Lagrange form, the problem is more easily solvable and the parameters g of the
model, as well as the predicted value for new observations, become a function of the

training samples, according to this formulation:
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Figure 4.1: SVR epsilon-tube around f(x), and slack variables.
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FX) = (an —a})(X,X) +b

where «,, and o, are the Lagrangian multipliers, and if a sample has either «,, or o, differ-
ent from 0, then it is a support vector, and are those points which lie outside the e-tube.
This particular behaviour is granted by the KKT Conditions, which are optimization
constraints required to obtain optimal solutions. In particular they indicate that all ob-
servations that is strictly inside the epsilon tube must have Lagrange multipliers «,, = 0
and o = 0. It follows that any point having either a,, or o equal to 0, lays outside the

boundaries, and becomes a support vector.

As for SVM, in case the problem is not linearly solvable, Kernel functions are used to
map the data in higher feature space where they are more likely linear. In this case, the
dot product (X/ X) in the prediction formula is changed into G(X,,, X), where G is the

Gram Matrix containing the kernel values computed for all the couples of points.
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4.2. Artificial Neural Networks

Artificial neural networks (ANN), a sub-branch of the Machine Learning field, are
computing models which are inspired by the internal structure of the brain and neuron

connections.

4.2.1. ANNs Structure

Artificial Neural Networks are composed by units called neurons, distributed in structures
called layers, which are interconnected among each other, through links (or edges), which
simulates the brain mechanisms of propagating signals through neurons.

Each edge is associated with a weight W, which is multiplied by the signal passing
through it and is tuned during the training phase. Each neuron has in input one edge
from every neuron of the previous layer, plus another single value called bias, and its job
is to take the linear combination of all input values and apply the activation function
to it.

The activation function generates the output of the neuron which is propagated to the
next layer of neurons; using a non-linear activation function allows the network approx-
imate non-linear patterns in the input data. Typical activation functions are sigmoid,

hyperbolic tangent, rectified linear unit.

gla) =a
fso- "

Equation (4.5) is linear activation, codomain is R.

1
9) = T o e pe— (46)

g'(a) = g(a)(1 — g(a)

Equation (4.6) is sigmoid activation function, codomain is [0, 1]

_ expa —exp—a
~ expa+exp—a (4.7)
g'(a) =1—g(a)®

g9(a)
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Equation (4.7) is hyperbolic tangent activation function, codomain is [—1, 1]

The input of the network travels across the layers, converging in the final layer, which
contains a number of neurons equal to the number of desired outputs. Figure 4.2 from [17],
shows the structure of a (deep feedforward) Artificial Neural Network, and the structure

of a neuron.

(a) X1

X2

i :>y]

Xn
(b) Input 15t hidden 2" hidden Output
layer layer layer layer

yj=f[ x,-w,-J yk=f(2x,w,-] yﬁi{ kaJ

Figure 4.2: a. Structure of a neuron, input arcs, signals combinations, and activation

function - b. Layers structure of an ANN.

4.2.2. ANNs training

According to the supervised learning paradigm, training samples are provided to the
network in the form of input and known result, so that the model can learn to reproduce
patterns, make decisions, take an action, without being specifically programmed for that.

Other learning paradigms exists, but we will focus on supervised.

In neural networks the learning mechanism is implemented by minimizing a loss function
that measures the error between the predicted output and the real output of the training
samples. Examples of loss functions are cross entropy (binary or categorical), or Mean
Squared Error (MSE).

Loss functions are functions of the weights of the model, and for minimizing them in
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ANNSs usually (Stochastic) Gradient Descent is used: this method takes small steps
following the opposite direction of the gradient of the loss function with respect to the
weights, in order to converge toward the minimum. It follows that the loss function is
required to be fully continuous and differentiable. The gradient is computed in an efficient
way with backpropagation: it exploits the chain rule by expressing the gradient of the
loss function as different gradients for each weight, computing them step by step, starting

from the last layer, back up to the first.

Backpropagation together with gradient descent allow to efficiently train high dimensional
models, with a drawback: the method doesn’t find the global minimum, like a direct
computation of the entire gradient would do, but moves toward local minima and may

even get stuck in them.

The training phase involves multiple iterations of error computation and weight adjust-
ment, over the training set. Every time the entire training set is fed to the network, we
call it an epoch.

The number of epochs determines how long the training lasts. Generally we want it to

stop when there’s not significant improvements in the validation error, to avoid overfitting.

4.2.3. Overfitting

It is a phenomena which easily afflicts Neural Networks due to their complexity, and hap-
pens either if the model has been trained too much, or it is too complex (namely: with
too many weights to train). It literally means that the model is learning too well the
pattern of the training data, even their noise and fluctuations, and approximates them
with a very low error. As a consequence, the model loses in generalization capacity, and
will perform poorly on new data. Figure 4.3 shows the difference between a model that
overfits, underfits, or fits well the data.

Underfitting Good fitting Overfitting

— Model — Model
— True function . — True function
s Samples

— Model
— True function
es Samples

s Samples

Figure 4.3: a. Structure of a neuron, input arcs, signals combinations, and activation

function - b. Layers structure of an ANN.
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A more wide understanding of overfitting is given by the study of the Bias-Variance
Tradeoff: models parameters have a measure of bias, which states the difference between
predicted and real values, and variance, that is how inconsistent is the model in predicting
over different datasets. We can understand that, ideally, we want our model to have low
bias and low variance at the same time, but ML theory says that bias and variance are tied
by an inverse proportionality: you can reduce bias by increasing variance and vice-versa.
Back to our topic, we can relate an high variance to overfitting, and an high bias to
underfitting. Finding a good model for our context means to find the good trade-off

between variance/overfitting and bias/underfitting.

4.2.4. ANNs hyperparameters and cross-validation

In order to develop and optimize a neural network some parameters called hyperparam-
eters have to be tuned in order to best fit the data to the working context.
Unlike weights, hyperparameters do not train automatically with epochs iteration, instead

the developer does the selection. Examples are:

e Neurons: The number of initial and final neurons has to be decided in function of
the input and output dimension to match the shape of the problem. The number
of neurons in the hidden layers can be used to introduce complexity in the model,

if it is required from data.

e Layers: As well as neurons, adding more hidden layers (middle layers between
input and output layers) increases the complexity of the network, adding weights to

train, and thus dimensions in the function.

e Learning rate: Gradient descent algorithm takes steps towards the minimum er-
ror, proportional to the gradient of the function. Learning rate is an adjustable
parameter which is multiplied to the step size and allows to control the speed of
convergence to the local minimum. A high learning rate reduces the training time

at the price of some accuracy.

Since the training loss only includes the error given by the bias of the model, we need to
compute the results on another independent set called validation set, to evaluate also the
error given by the model variance.

Running trainings with different values for the hyperparameters, finding those with the

optimal validation error is the way to tune the model.

Depending on the dataset variance and how the validation set is selected (usually ran-

domly), it may not reflect the real distribution of the dataset, and the validation error
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can be biased and misleading.

To mitigate this problem, is good habit to use Cross Validation methods to have an
unbiased error estimation: run multiple training and validation error evaluation sessions,
changing the validation set every time. After that, the global validation error is computed

by the mean of the obtained errors. Most used strategies are:

e KFold: K equal-sized sets are selected. For each, one model is trained on the
remaining K — 1 sets, and evaluated on the Kth. The final error is computed on

the K measures obtained.

e Leave One Out: N models are trained, where N is the number of samples in
the training sets. Each model is trained on N — 1 elements, and evaluated on the

remaining one.

4.2.5. Recurrent Neural Networks

RNNSs are a type of neural networks in which recurrent connections are built, such that a
neuron at timestep ¢ + 1, gets in input the new data, and in addition the previous output
of that same neuron at time t¢.

This mechanism empowers the network to produce outputs based on outputs at previous
steps, so it has some sort of virtual memory, and the capacity of handling and forecasting
temporal sequences and not only unrelated data points. This is a strong property which
is perfectly suitable for predicting the degradation pattern of batteries and for this reason
in our approach we used an LSTM network, a particular form of a Recurrent Neural
Network.

4.2.6. LSTM

Long Short-Term Memory was initially developed to deal with the vanishing gradient
problem, which affects RNNs, by vanishing or exploding the weight upgrade steps if the
gradient was initially lower or grater then zero.

LSTM structure is composed of modules which can be stacked both vertically or horizon-
tally, as shown in Figure 4.4. Each module controls 3 gates: input, output and forget
gates. Modules have an element called cell which contains the information and makes it
flow through the network. This flow is controlled by the gates, which modify the content
of the cell and the information flow by the weights that the gates have associated.
Information contained in the network is also elaborated through activation functions, and

moved to following layers up to the last, like in normal feed forward networks.
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Figure 4.4: Horizontally stacked LSTM layers. X; is the input and H; is the output at

timestep .
Source: Image from Christopher Olah, Understanding LSTM Networks, 2015,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The cell makes the information flow from the previous to the next module without apply-
ing any activation functions. It just keeps the value going from one module to the next

one, as showed in Figure 4.5.
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Figure 4.5: Cell of an LSTM module.
Source: Image from Christopher Olah, Understanding LSTM Networks, 2015,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The input gate uses an hyperbolic tangent layer to generate a new value C; to be added

to the cell value. C; is weighted by 4, generated by a sigmoid layer; Figure 4.6.



20 4| Adopted models

§

he_1

A

Figure 4.6: Input gate of an LSTM module, composed by a sigmoid and a tanh layer
Source: Image from Christopher Olah, Understanding LSTM Networks, 2015,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The forget gate in Figure 4.7 decides how much of the current cell value we want to keep
and how much to forget. This is done with a sigmoid layer whose output is multiplied to

the cell state.

Figure 4.7: Forget gate of an LSTM module.
Source: Image from Christopher Olah, Understanding LSTM Networks, 2015,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The output gate filter the cell state with tanh layers, and with sigmoid weights how much
of that is going to be the output of the module; Figure 4.8.
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Figure 4.8: Output gate of an LSTM module.
Source: Image from Christopher Olah, Understanding LSTM Networks, 2015,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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5 ‘ Datasets

Data-driven techniques strongly rely on data to operate. For successfully applying Ma-
chine Learning techniques to prognostic modeling, having quality dataset is essential.
Building a dataset of battery measurements which is suitable for prognostic applications is
not an easy task: a Data Acquisition System is required, which runs charge and discharge
tests over multiple batteries, and uses sensors to measure diagnostic values like voltage or
temperature, at a fixed time interval. This process could take months to be completed,
and in order to have the best possible quality of data, the environment conditions have
to be kept stable, especially the chamber temperature.

Different patterns can be used to test the battery. Typically the test cycles are divided
in two types: aging cycles and capacity measurement cycles, since fixed conditions are
required for measuring the capacity, and aging pattern is not guaranteed to be so. The
aging phase can be composed of charging and discharging cycles, or built following more
particular patterns like electric vehicle driving simulations. Still, in some cases aging
cycles and capacity cycles can coincide.

In a dataset specifically built for degradation prognostic purposes, batteries have to be
tested to failure, so to their End of Life.

Due to the complicated setup that a Data Acquisition System requires, and the time re-
quired to test the batteries, not so many datasets are available and suitable for prognostic
tasks, even though, in the last years the interest in battery prognostic is increasing, and

so does the number of companies that research on it and provide quality data.

5.1. NASA dataset

NASA Ames Prognostics Center of Excellence (PCoE) published a data repository com-
posed of 6 datasets of aged Li-TIon batteries [21]. According to their guidelines, only the

first of these datasets is suitable for prognostic degradation prediction.
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5.1.1. Properties

The tests have been carried out in a climatic chamber to keep the environment tempera-
ture under control. The dataset is composed of 4 batteries run to failure, which is fixed
at 70% of the remaining capacity (from 2 Ah to 1.4 Ah). The charging phase is divided
into a constant current mode, with 1.5 A until the voltage gets to 4.2 V, and after that
with a constant voltage phase, until charging current lowers to 20 mA. While the charge

phase is equal for each battery, the discharge phase for each of them is:
e B0005: 2 A current, down to 2.7 V.
e B0006: 2 A current, down to 2.5 V.
e B0007: 2 A current, down to 2.2 V.
e B00018: 2 A current, down to 2.5 V.

In this case, an addition type of cycle is performed and used to measure the impedance,
through an electrochemical impedance spectroscopy (EIS) frequency sweep from 0.1 Hz
to b kHz. This kind of procedure discharges a tiny part of the battery charge, therefore
doesn’t impact on its aging. Figure 5.1 shows the degratation process over time of battery
B0005, and Figure 5.2 shows the voltage profile describing and entire charge + discharge

cycle.

1.9

1.8

Capacity (Ah)
e

14} \/ .

1‘2 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Timesteps (cycles)

Figure 5.1: Capacity degradation over cycles. Battery sample 5
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Figure 5.2: Voltage profile over time, of charge + discharge phases of 1 cycle

5.1.2. Structure

The top level of the structure contains the set of records of the cycles tested. Each record

contains general information about the cycle, resumed in the following fields:

e Type: indicates the operation that is performed in this cycle: charge, discharge,

or impedance.
e Ambient temperature: is the chamber temperature during this cycle.
e Time: the date and time of the start of the cycle.

e Data: a nested structure containing the sensors measurements within that cycle,

for various parameters. For charge and discharge cycle this field contains:

— Time: vector of time stamps (sec) which beats the time at which the sensors

read the measurements.
— Voltage: voltage level of the battery.

— Current: current (Ampere) flowing into the battery. Positive is charging

current, negative is discharging.
— Temperature: battery temperature (degree C°).
— Voltage charge: Voltage measured at charger (Volt)

— Current charge: Current measured at charger (Volt)
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— Capacity (only disch): Battery capacity (Ah) for discharge till 2.7 V.

5.1.3. Pros and Cons

It is one of the first datasets made available for battery prognostic by a trustful entity,
and it is well structured. This made it become one of the most used data repositories
in research, and for this reason it is easy to find information about it and and make
comparison with other solutions.

NASA adopted, for all the batteries in this dataset, the same charging policy, which also
is constant in current over all the charging phase. This detail is not obvious, and allows
us to extract valid features from the charging curves.

Unfortunately, being only 4 batteries available for prognostic purposes, and a number of
tested cycles lower then 200 for each of them, this dataset is not particularly suitable to
exploit the full potential of data-driven solutions, besides the battery number 18 quite

diverges from the other 3, making it an outlier and hard to use.

5.2. Toyota-MIT dataset

Toyota and Massachusetts Institute of Technology (MIT) developed together a repository
of tested Li-Ion batteries which is one of the most recent and rich datasets publicly
available. It contains data of 124 commercial lithium-ion batteries, specifically lithium-
ion phosphate (LFP)/graphite cells, manufactured by A123 Systems (APR18650M1A),

cycled to failure, under fast charging conditions.

5.2.1. Properties

The batteries have been tested on a 48-channel Arbin LBT potentiostat, in an environ-
ment with temperature fixed at 30 °C, and the voltage cut-offs are 2.0 V and 3.6 V. Since
the purpose of this dataset was to optimize the fast charging for Li-Ion batteries, different
charging policies have been applied to them, leading to multiple different patterns of aging
and charging phase curves. Also because of this reason, and because of the strong non
linearity of the degradation, and its dependence on many factors all the batteries have
drastically different life duration, from around 150 to 2200 cycles, even though all of them
have an initial capacity of 1.1 Ah.

The charging phase is carried out with 2 steps of constant current, which are switched at
a given State of Charge (SoC), and a 1 A CC-CV step which starts at 80% SOC. We

will see that in some cases the switching between the first and second steps matches 80%



5| Datasets 27

SOC, meaning that in these cases, there’s only one step for constant current instead of
two, after that CC-CV phase starts. In Figures 5.7 and 5.8 are reported the most used
charging policies.

For completing the parallelism with NASA dataset, it is important to specify that in this
case, the discharging phase is constant and equal for all the batteries, which wasn’t in
case of NASA dataset. Discharge current is fixed at 4 A.

5.2.2. Structure

The 124 batteries couldn’t fit in the 48 channels available, so the dataset has been split in
3 smaller batches. Each batch contains 1 record for each of the 48 channels. Each record

contains these fields:

e Policy: 2 fields containing the charging policy applied to the battery, in 2 slightly

different formats.
e Barcode: a unique identifier of the battery.
e Channel-id: the channel to which the battery was attached in cycling phase.
e Cycle-life: number of cycles that the battery run over before failure.

e Cycles: nested structure, containing all the measurements done for each cycle of
the battery.

— t: vector of time stamps (sec) which beats the time at which the sensors read

the measurements.
— Q charge: cumulative moved charge in the charge phase (C).

— I: current (Ampere).

V: voltage (Volt).

— T: temperature (°C).

Q discharge: cumulative moved charge in the discharge phase (C).

Discharge dQdV: derivative of Q(V) in the discharge phase.

e Summary: nested structure containing summary overall information about each

cycle (1 value per cycle):

— Q discharge: charge moved in the discharge phase of each cycle.
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— Q charge: charge moved in the charge phase of each cycle.

— Tmax: maximum temperature reached in the cycle (battery surface).
— Tmin: minimum temperature reached in the cycle (battery surface).
— Tavg: average of the cycle temperatures (battery surface).

— Chargetime: time needed for a full charge.

— Cycle: number of cycle.

— IR: measured internal resistance, obtained during charging at 80% SOC by
averaging 10 pulses of +3.6 C with a pulse width of 30 or 33 ms.

In Figures 5.3 and 5.4 is shown respectively the degradation over time (less noisy than
degradation of NASA dataset batteries) and the voltage profile of a sample battery from
the MIT dataset. In the voltage profile, we can see a step between cycles 300 and 400,

which represents the voltage switching of the considered charging policy.
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Figure 5.3: Capacity degradation over cycles. Battery sample 20

5.2.3. Pros and Cons

As mentioned before, this dataset is one of the largest available and is way bigger than the
NASA dataset we discussed previously. Furthermore thanks to the different fast-charging
policies which have been applied to the batteries, the dataset contains a big variety of data
and measurements. This makes this repository perfectly suitable for applying Machine
Learning and data-driven solutions to find and understand patterns and relationships.
Its structure makes it easy to handle and many group measurements and calculations,

like average temperature, or discharge derivative dQQdV have already been carried out,
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Figure 5.4: Voltage profile over time, of charge + discharge phases of 1 cycle

increasing its completeness.

One of the most remarkable difference we can notice among the different batteries is the
length of their life in terms of cycles. In Figure 5.5 it is clearly shown that there’s a
wide discrepancy between the longest and shortest battery lives, with an average value
settled around 700-800 cycles. We'll see that some of the most extreme cases will cause
problems to the algorithms in the prediction because they have to be considered outliers,
especially the very short ones. Figure 5.6 shows that the majority of the batteries are
distributed between 400 and 1000 cycles life length, and very few are distributed outside

these boundaries.

We analyzed the batteries life lengths by grouping them according to their charging policy.
The charging policy is specified in the format:

Initial Current (% of SoC for current switch) Current after switching

Since all the tested batteries are equal in the model and initial condition, we would
expect a general trend with batteries under the same policy having around the same life
length. Figures 5.7 and 5.8 show instead a different situation with no general recognizable
patterns, except for some isolated cases.

For example policy 4.8C(80%)-4.8C which is standard and pretty linear, has batteries
going from 450 to 1800+ cycles in length.

This is probably caused by very intrinsic physical differences in the chemical components
of the batteries, their conditions, and their manufacturing. It’s well known indeed that
battery degradation is also due to very complex combinations of little internal factors,
chemical and physical which can’t be measured, estimated, or known in any suitable way

but doing an internal inspection of the battery.
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Figure 5.5: Life length of the batteries, in cyles. Descending order
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Figure 5.6: Distribution of the batteries according to the length of their life in cycles.
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Figure 5.7: Capacity degradation of batteries with same charging policy. First 4 most
populated policies

In this dataset, those intrinsic differences are strongly present and noticeable.

The repository, in the form which is provided, requires some cleaning before being used:
the failure threshold of the batteries is fixed at 80% SoH (0.88 Ah). Even if the batteries
are said to be aged until failure, actually some of them don’t reach the failure point,
making them useless for most purposes like RUL prediction. Those samples have to be
discarded.

In addition, measures of batteries 8, 9, 10, 16, and 17 of the 2nd batch are actually the
continuation of the batteries from 1 to 5 of the first batch.
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6 ‘ Hybrid approach: Neural
Networks and physic-based

models

The first approach we had to RUL prediction comes from the solution proposed in [3].
They proposed a hybrid approach that mixes a physic model component along with an
Echo State Network, which is one of the first created NNs before the back propagation
was developed to train actual NNs. In this work, they used the NASA dataset we described

before.

6.1. Approach description

They start by taking into consideration a capacity degradation model called Double Ex-
ponential, which is well known and widely used in literature to describe the degradation

of systems performance. The model is:

Q) = aexp(bk) + cexp(dk)

where a, b, c and d are the parameters of the model and have to be estimated, while k is the
number of cycles. From here, given a prediction cycle k, from the capacity measurements

available up to k, the state space X, is estimated

X, = las; b, ¢ d,]

which is the set of parameters a,b, c,d which best fits the double exponential function

over the capacity degradation function from the initial time to cycle k.
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Q. = a, exp(b.k) + ¢, exp(d.k)

They proposed then an alternative degradation model called Single Exponential, which

is similar but simpler compared to double.

b,
Q=Cy+a, exp(z) + cexp(dk)

Using these 2 models, they estimated the state space of batteries B0005, BO006, BO007
and B0018 of the NASA dataset, at prediction cycles respectively [80,100,120], [80,100],
[80,100,120], and [80] for both models. The curves generated by the state spaces are then
used to create a new dataset of fixed size, by sampling them, which follows the shape of
the model used (single or double exp).

This new dataset is fed to the Neural Network, which predicts the remaining part of the
capacity degradation curve, that is from the prediction cycle to the last cycle.

At this point, they find the cycle for which the capacity falls below the failure treshold,

according to the formulas:

RU Lineas = EOLmeas - Kpred
EOLeqs = minK, = min{kr|Cy, < FTH}
K, = {kr\Ckr < FTH}V]CT € [kpred,n]

FTH = 0.7C,4teq = 1.4AR

RU Lineqs) 1s the measured value of the RUL, EOLy,qs is the cycle in which the end of
life is reached. K,,.q is the prediction cycle. Cy, is the capacity at cycle k,, and K, is the

set of cycles indices, from prediction cycle to the last cycle, for which the capacity is less
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then the failure threshold FT H. C,4eq is the nominal capacity of the battery.

The descriptor of the data they give as input to the network is the sequence of numbers

of cycle of the degradation curve until prediction cycle k.

We tried to replicate their approach adopting an LSTM network instead of an ESN, com-
posed by 1 Input layer, 1 LSTM layer, 1 Fully connected layer and 1 Regression
layer, and applying their method on battery B0007.

6.2. Results and discussion

The results we found prove that their approach is not very solid and sound.

We were able to replicate the results they had using a dataset of 100 points from the one
generated by the single exponential state space (like the procedure they described), and
giving it as a sequence to train the network. We then used the network to predict the
remaining part of the degradation curve. We did this for prediction cycles 80, 100, and
120, thus we trained 3 different networks, with 3 different state spaces, each estimated
using the Matlab fitting tool.

Figure 7.6 and Table 6.1 show good results very similar to the original ones, but we've
been able to obtain them only out of a lucky training configuration. Since one model
per prediction cycle is built and only one battery is used to train the network, only one
sequence is used by the network to learn the pattern and predict another sequence, which
is in a completely different degradation phase compared to the training one. So one data
point has been used to train a model which then predicts another data point which in the
input space is very far from the training sample, since the only descriptor is the number
of cycle, which is always different and constantly increasing from the first known phase
of the curve, to the last unknown phase.

This approach is not to be considered data-driven, and doesn’t exploit the potentiality of
the dataset. In addition, a neural network is likely a too complex model to use with such

approach.
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Figure 6.1: B0007 Capacity degradation predicted using LSTM network, trained with
Single Exponential Model, for prediction cycles 80, 100, 120.

B0007 Good fit RUL error

Model Kprea | RUL prediction error
80 1
Single Exponential | 100 2
120 0

Table 6.1: Error in RUL prediction from cycles 80, 100 and 120. Error is expressed in

cycles.
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Figure 6.2: B0007 Capacity degradation predicted as before, but with model retrained.

Time step is measured in cycles.

B0007 Standard Fit RUL error

Model Kprea | RUL prediction error
80 20
Single Exponential | 100 -
120 5

Table 6.2: Error in RUL prediction from cycles 80, 100 and 120. Error is expressed in

cycles.

The results we get if we retrain the network multiple times are similar to the ones reported

in Figure 6.2 and Table 6.2. In fact, the only part of the curve that the network can learn
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is the part before the prediction cycle. Not having any data available about how a battery
behaves in the unknown part, the prediction becomes all the times a random continuation
of the pattern of the first half of the curve.

For this reason, the prediction is very sensitive to any small change in the configuration
of the network, like training epochs, learning rate, and so on. For example, we get a
different random prediction for the second part just by adding or removing one training
epoch. Looking at the curves predicted in Figure 6.2 we can notice how each predicted
curve just tends to flatten sooner or later, following the inertia of the curve of the first
part.

The particular case of the prediction from k£ = 100 in Figure 6.2 doesn’t even get to

predict the value of capacity low enough to compute the RUL.

The only way in which we can obtain solid results over different runs of the algorithm is
by using the data to predict also as a validation set, and by telling the network to output
the model with the best validation error, at the end of the training.

This is of course a case of overfitting over the test set, as well as an impossible solution

to apply in real cases.
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7 Our solution

The solution we propose here is articulated through the first phase of SoH estimation,
performed on both NASA and MIT/Toyota datasets, and the second phase of RUL pre-
diction applied on the MIT dataset only. We made this decision in light of the results we
obtained on RUL prediction on the MIT dataset: the three sequences of battery degrada-
tion measures in the NASA dataset would not be enough to properly train and validate
the neural network we used in our approach, and obtain meaningful results.

SoH and RUL are closely tied together since they both represent the degradation of the
system, and in the particular case of the battery, a frequently used approach for comput-
ing the RUL, is predicting the SoH at future cycles, locating that point when SoH reaches
failure ( <EoL threshold), and then measuring the cycles remaining until that point.
Despite this, SoH estimation and RUL prediction are still very different tasks to carry
out, and this difference lies between the concepts of estimation and prediction, which is

important to understand in order to properly understand the steps of this work.

Estimation process requires to use data collected up to time ¢, to infer the value of
something at the same time ¢, so we have to guess some state and we can use all the

possible information available which led to that state, to make our guess.

Prediction instead requires to use data collected up to time t (called prediction time)
to guess the value of something at some future time #;, which, however, depends on ev-
erything that happens from the beginning to the end. In the case of batteries, the RUL
at cycle k depends on the aging cycles before and after k, to the last cycle (failure). This
means that we need a way to evaluate also how the battery behaves in the time window
for which we have no measures. For doing this we adopted a model able to represent the
sequential structure of the system life, and not only consider one cycle and the relative
measures as one point in the dataset, but as one point within a sequence with a precise
beginning and end. This allows the model to catch how the battery did behave from the

beginning to cycle k, and use this information to approximate also its future behavior.
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Is well known that battery degradation has an intrinsic time-series structure, indeed mod-
els like Recurrent Neural Networks, which handle sequential structures, are by nature the

best suited to deal with battery aging.

7.1. SoH estimation: NASA dataset

Support Vector Regression technique has been proved to be effective in battery degra-
dation estimation, and used in many researches even with this very same NASA dataset,
because of its ability to work with data scarcity. We applied it to our SoH estimation
problem along with a feature-based approach oriented to the extraction of features that
are both meaningful in explaining the data, and easily exploitable in most contexts of
real-scenarios usage.

For instance, some industrial applications of batteries may make constant and reliable
usage of them during the time, performing full charge and discharge cycles of the cells,
with regularity over time, and these cases allow to extract measurements and feature from
the entire cycle. These features are more likely to properly describe the data and the state
of the battery because they explore the full range of the battery state of charge.

There are other applications instead, like electric vehicles, in which the usage of the cells
is not regular: the user could make use of the battery for a small portion of its capacity,
then charge it for a while, then discharge it again, and so on, and this would make im-
possible to take measurements and feature from a continue charge + discharge cycle of
the cell.

Our solution proposes to extract features from the cycling of the cells that could be easily
extracted in almost any real case of use, at the price of a small portion of the descriptive

power of the features themselves.

7.1.1. Partial charging curve features

In most applications, the charging phase is guaranteed to be carried out under constant
current, since it is given by the charger device. Also it is likely to be carried out com-
pletely since it is good habit and convenient to wait for the charge to be at 100%, before
unplugging, but this is not guaranteed. We decided then to use a small portion of the
charging curve to extract the features.

Other studies have been done on degradation estimation using partial curves, for instance,
in [9] a portion of the charging curve of batteries is taken and the degradation is estimated
by similarity, finding the 2 batteries in the training set with the same partial curve being

the most similar. In this work specifically, the features we extract are the time required
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by the battery to recharge some little voltage steps, defined within a voltage interval. For
instance, we can define a voltage interval from 3.5 to 4 V, of 0.5 V, and a voltage step of
0.1 V. We will obtain 5 features, each being the time taken by the battery to cover that
recharge step.

The interval and the steps considered become hyperparameters to tune.

(Vi =V(t) = (Vi + V) = V(L)

feature; =ts, — 14

i+ Vo) =V(ts,) = (V1 +2V)) = V(L)

featurey = tg, —tg, (7.1)

Vi+ (n=1DVe) = V(s ) = (Vi +nVe) = V(Ls,)

| feature, =t,, —1

Sn—1

We can see from Figure 7.1 that, as we expected, the time of recharge decreases while the
battery ages, and this is because of the global capacity reduction due to the degradation.
We can actually see how the charging time is halved near to final cycles, with respect to
the first.

We see also that the first part of the charging phase is almost vertical, which means that
voltage raises rapidly in time, and it is hard to appreciate the time differences between
different cycles. The middle phase instead is the more suitable to extract time features
since it is the most extended over time, and we expect it to contain more variance over

the cycles set of the battery.
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Figure 7.1: Charging curves B0005 at different cycles
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Figure 7.2: Time needed to charge voltage steps of 0.1 V from 3.6 to 4.1 V, for all cycles
of battery B0005

In Figure 7.2 we can see the result of sampling the charge times for voltage steps of

0.1 V, in the interval 3.6 - 4.1 V. Each line in the plot is a voltage step and a potential
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feature. As expected, the plots from the lower part of the spectrum of the voltage curve
result in almost flat features, showing no variance over the life cycles of the battery.
Similar behavior occurs in the higher voltage steps, where the green line again tends to
flatten.

The same results hold for batteries BO006 in Figure 7.3 and B0007 in Figure 7.4 so we

decided to consider the middle range from 3.8 to 4 V for feature extraction.

PCC Voltage steps charge time - B0006
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Figure 7.3: Voltage steps for all cycles of battery B0006
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Figure 7.4: Voltage steps for all cycles of battery BO007

7.1.2. Models and results

We developed 6 models with different subsets of features, gathered from the 3.8 - 4 V
range. We measured the fitting capacity of the model through R? value: also called the
coefficient of determination, it is a measure used in statistics, indicating how much a
hypothesis describes the variance of the thesis. In other words, it is used to describe how

well a model can fit observed data. R? formula is:

( SS,
2 — 1 _ T
1 S'S;
SST - Z(yl fz)2
88 =3 (v 9 (72)
N
Yy=—- Yi
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where S5, and SS; are the residual sum of squares and total sum of squares. y; is the target
value, f; the estimated value. ¥ is the mean of the target values. The descriptor values of
the data have been standardized feature-wise before fitting the model. Standardization is
a normalization procedure that is a good habit to apply in machine learning applications.
It sets the variance of the data to 1, and the mean to 0, without changing its distribution.
Standardization improves the numerical stability of the model and may reduce training

time.

Hyperparameters of the SVR model have been tuned initially with the Matlab built-in
function using Bayesian optimization run for 100 iterations, to define a starting good

range for the hyperparameters:

¢ Box Constraint: SVR solves the optimization problem of finding weights beta s.t.:

Yo — (2,8 +D) < e (7.3)
(7.4)

while minimizing the norm value:
. 1 /
j(B) = 55 g (7.5)

as explained in Equations 4.1 and 4.2.
When slack variables are introduced to deal with unfeasible constraints, they are

weighted by a factor called Box Constraint BC.

N
i) = 298+ BOY (6 +€) (7.6

Box Constraint helps controlling overfitting, balancing how flat the fit will be, and
how much to weight those points who lie outside the boundary defined by e.

e Kernel Scale: rescales the predictors: each value in the predictors are divided by
the KS value.

e Epsilon: it is the value € defining the radius of the Epsilon Tube where the
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algorithms tries to contains the points, or in other words according to Equation

(7.3), the maximum error allowed.

After this procedure, further tuning of the hyperparameters has been done during the
validation procedure.

The kernel function has been chosen to be linear since the features represent in a pretty
much linear way the target value to estimate, and other kinds of kernel functions led to

lower validation accuracy.

SVR Hyperparameters

Hyperparameter Value
1 Box Constraint 0.1989
2 Kernel Scale 11.55
3 Epsilon 0.030
4 Kernel Function  Linear

Table 7.1: contains the tuned hyperparameters values for the considered SVR model

We evaluated the performance of the models, and tuned the hyperparameters by Leave
One Out Cross Validation among the 3 batteries B0005, 6 and 7. The Table 7.2 reports

the models used and the relative validation errors.

The best accuracy is provided by the 3.9 - 4 V range since either model with one feature
or two performs better in that range (Model 2 and Model 4). Since two features also
gave better results then 1, we tried to extract charge time from 0.025 V steps in the same
range (Model 6), to understand if more complexity would benefit the performance, but it
didn’t. We suppose that if more data were available, and our dataset had more variance

in it, we could have exploited successfully more complex models.
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Leave one out cross-validation results

49

N° of features

Features

Validation R?

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

1

Charge time of 0.1V step from 3.8 to 3.9 V

0.1V step from 3.9 to 4

0.05V steps from 3.8 to 3.9 V

0.05V steps from 3.9 to 4 V

0.05V steps from 3.8 to 4 V

0.025V steps from 3.9 to 4 V

0.918

0.932

0.939

0.950

0.945

0.935

Table 7.2: Results of leave one out cross-validation for different subsets of features
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Figure 7.5: Results of the proposed model. Each estimation has been made by training
on the other 2 batteries.

7.2. RUL Prediction Toyota-MIT dataset

The second step of this thesis work is to perform RUL prediction, and to do so we moved
on the Toyota-MIT dataset: it contains many more different samples and more variance,
which allows us to dig deeper into the subject and obtain more sound results.

RUL prediction as we said before is a more complex task to accomplish, we approached
it using artificial neural networks, in particular a bidirectional LSTM Neural Network,
which we introduced in Subsection 4.2.5, and has the ability to handle the battery aging
as time series.

We use this property to make the network learn the past aging pattern that the battery
has been subject to, so that it can estimate also the future aging, and guess the value for
RUL.

We again used a feature-based approach, slightly different from the previous one, because,
as we mentioned, batteries now have been charged with many different policies, thus
any features collected from the charging measurements is not suitable to compare the
degradation state of different batteries and thus not suitable to train a model and make

predictions.
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According to [23] there’s much more information about degradation contained in the Q
discharge curves of each cycle rather than in the degradation curve itself. They indeed
analyzed the Toyota-MIT dataset and extracted different features from the discharge curve
of the Q as a function of voltage, and used them to produce a linear regression model for
predicting RUL at a fixed prediction cycle 100.

Starting from their studies, we used their approach a re-adapted some of the features
they computed, so that we can predict RUL at any prediction time, and not only for the
beginning as they did. In this way we expect to have a result for predictions at cycle
100 very similar to their result, and to increase the accuracy step by step while we move
toward the EoL of the battery.

7.2.1. RUL Features

Neural Networks are known for their capacity to abstract from the domain of the data
they are operating on, by computing their internal representation of the data, which we
could call features, that would not be human interpretable. Despite this, we still keep a
feature-based approach, since we are able to exploit our knowledge of the battery domain

and we gain in interpretability.

The first 2 features derive from the fact that the analyzing the Q provided during the
discharge phase, and how it changes over cycles, we can describe the progressive degra-
dation of the battery performance.

We consider the Q(V) function of voltage for each cycle (discharge phase). Since the
discharge voltage window is equivalent for all batteries and for all cycles, we can actually
compare the curves for different cycles putting in relation different cycles and about the
occurred performance loss.

Figures 7.6 and 7.7 show the discharge curve of Q as a function of V, for a sample bat-
tery, at two different cycles. In particular, they show that the gap in the curves between
the initial reference cycle (we chose 10th cycle as a reference) and the prediction cycle
constantly increases. The area between the 2 curves can be seen as the capacity lost due
to aging from cycle 10 to cycle k.

To have a measure of the gap between the curves, we subtract them, but other methods
like measuring directly the area between the curves, could be used.

We applied an interpolation with a common base of voltage values to both the arrays of
Q values. This step is needed so that we can subtract the curves point by point on the

same domain.
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Figure 7.6: Q(v) discharge curves cycles 10 and 100, from a sample battery
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Figure 7.7: Q(v) discharge curves cycles 10 and 700, from a sample battery
For each cycle k of each battery, Qx(v) is subtracted to @(10)(v), obtaining Figure 7.8,
and from this we compute the variance of each difference curve. The result is a fea-

ture space on which the data are almost linearly distributed as a function of the length of

the battery life, that is, after subtracting the prediction cycle, the RUL we want to predict.

From the same curves in Figure 7.8, we obtained a second feature by measuring the min-
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imum value of each curve, for each cycle, for each battery. This is a similar description of
the very same phenomena we computed with the first feature, indeed the data projected
on the space of this second feature have a pretty similar shape of the previous.

PCA analysis will confirm that this second feature doesn’t bring any new knowledge of

the variance of the dataset.

In Figures 7.9 and 7.10 it is shown the value of the Log10 Variance feature and Logl0 Min
feature, for cycle 100 and cycle 700, and we see that for both fresh and aged batteries,

they are linearly described according to their remaining useful cycles.

The third feature we computed is the sum of temperature: for every cycle k of each
battery, the average temperature of each cycle from the 2nd is summed up to the k — th.
Figure 7.11 shows the 3rd feature for all batteries at cycles 100 and 700.

;

Ftry = log (|]% Z(AQk(V) - A—Qk(v))ﬂ)
Ftri = log (Imin(AQx(V))])
k

FtT’z = Z Tcycle
cycle=2 (77)
AQx(V) = Qr(V) — Quo(V)

AQL(V) = % > AQuv)

Nmeasures

1
cycle — E
Nmeasures —
\ 1=

N

Equation 7.7 explains the 3 three features we used and how we computed them. Each of
them as a value for each cycle of each battery. Q10(V), Qx(V) are the discharge capacity
as a function of voltage, at reference cycle 10, and cycle k (Figure 7.7), p is the number
of values in the curve AQ.(V), hence AQ(V) is the mean of that curve, for cycle k. T;

is a single temperature measurement, and 7,q. is the mean temperature over one cycle.
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7.2.2. LSTM Network and Training

We used an LSTM Recurrent Network composed like this:

Sequence Input Layer: This let us to give in input an entire sequence to the

network.

Bidirectional LSTM Layer: Compared to the classic module, bidirectional puts
together 2 modules that cross the network from left to right, and from right to left.
Bidirectional LSTM is slightly more powerful than the classic LSTM module. This
layer will output a sequence of 1 value for each input. Each value is the prediction
associated with all the inputs and outputs prior to this timestep. Each value is also

an input for the next step of prediction.

3 Fully connected layers: respectively with 200, 50, and 50 neurons each. Those
are called hidden Layers, and elaborate on the internal representation of the data
which is produced by the LSTM module, to obtain the final output. Our LSTM

layer is composed of 20 hidden units.

3 Dropout layers: One right after each hidden layer, with a dropout factor of 0.4.
This layer randomly shuts down a percentage of neurons, specified by the dropout
factor, at each iteration. This is used to prevent overfitting, and acts like a sort
of regularization. Since dropouts are only applied during training, as a drawback
sometimes this leads to a validation error constantly lower then the training error,

which is an unwanted behaviour because is hardly interpretable and misleading.

Fully Connected layer: one last fully connected layer with only one neuron (the

number of outputs we need).

Regression Layer: computes the final output response and the corresponding loss

value.

The memory capacity of Recurrent Neural Networks is limited in any case, and generally

LSTM module hardly deals with sequences longer than around 500-600 time steps, (or

slightly more depending on other factors) without incurring in the Vanishing Gradient

problem, which reduces the weights update to 0 due to the subsequent multiplication of

the gradients in the chains rule.
To deal with this, we decided to limit the target RUL wvalue of all the samples to 800

cycles. The price for this is that we're not going to have a prediction for the first cycles

of those batteries which are longer than 800 cycles, but this is not a problem from the

point of view of RUL prediction, since it is intended to become useful and more precise
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near to the end of the life of the battery, so to schedule appropriate maintenance.
For this reason, in the results plot, we show the full RUL prediction for those batteries
whose life is shorter than 800 cycles, while for long-lived batteries prediction will be done

only for the last 800 cycles.

Before training the network we ordered the sequences by length. We used a Batch
Size=8, to give the sequences in input to the network 8 at a time and thus smooth the
gradient direction by averaging it over 8 samples per time. The sequences are not all the
same length though, and padding is added to each sequence to match the longest within
the same batch.

We can see then that in order to add less padding possible it is important for sequences
in the same batch to be as close as possible in length, so they have to be ordered.

We used a soft L2 regularization to further help reduce overfitting, and a dynamic
Learning Rate schedule starting from LR = 0.002, and decreasing by a factor of 1/2
every 300 epochs.

We applied 5-fold Cross Validation to tune the hyper parameters: hidden layers, number
of neurons and hidden units, batch size and dropout factor, and the dynamic of the
learning rate.

Instead for training the final model, another validation set has been used to early stop
the training and pick the best general model possible, avoiding overfitting.

10 batteries have been left out from the rest of the set, in order to test the model. It is
important to keep the test set only for the final evaluation of the generalization capacities
of the model, and do not produce any changes in the strategy, based on the test error,
otherwise, we risk overfitting the test set, and we won’t have any other unknown sample

to perform a final unbiased error estimation.

Again it is important to specify that data have been standardized to have mean = 0 and

variance = 1, before the training.

7.2.3. Results

To measure the goodness of the results we used the Root Mean Squared Error metric:

N . — 2
RMSE — \/anl(réj/(} Un)

where 7, is the predicted value, and v, the target. We computed RMSE over every test

sequemnce.
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The training phase lasts around 15 minutes running on a GPU environment Nvidia
GeForce 1070 with 2GB dedicated. Training time can be reduced by adjusting the dy-
namic schedule of the learning rate.

Prediction phase is about seconds.

Figures 7.12 and 7.13 show the prediction results for the test samples. For batteries whose
life length is less then 800 cycles, the prediction is made for the entire battery life. In-
stead, if the battery has more then 800 cycles, the prediction is made only for the last
800 cycles.
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Figure 7.12: RUL prediction results, test samples 1-6
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Figure 7.13: RUL prediction results, test samples 7-10

The blue line in the plot is the measured RUL, which is, for each time instant, the
remaining amount of cycles until the aged batteries reach the failure cycle. Since RUL
and x axis have the same unit of measure (cycles), the measured RUL is a perfect straight

line.

The network successfully predicts RUL with high precision and a very low RMSE value,
especially for those sequences long between 400 and 900 cycles.

Instead we see that for longer sequences the model loses a bit in accuracy, and predictions
are slightly more noisy, but not so drastically, indeed RMSE values are still low and
acceptable, especially in the final part, which is the most important since it is near to
the failure point. We see indeed that test samples 10 and 1, which are longer then the
average, increase the gap between prediction and measurements around RUL value of 400
(measured), but converge again to a fairly good prediction right around 200 RUL value
(measured).

The noise in the very same predictions instead is likely due to the features we used:
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the difference in the charge provided by batteries during discharge phases, in different
cycles, is naturally more pronounced for those cells which age and degrade faster, instead
a battery with a long life time is aged slowly, thus the feature becomes less sensitive and

loses variance, and as a consequence generates more uncertain and noisy predictions.



62 7| Our solution

7.3. SoH estimation: Toyota-MIT dataset

The third and last step of the thesis attempts to close the circle between RUL prediction
and SoH estimation on the Toyota-MIT dataset, indeed we want to perform SoH estima-
tion on this dataset, which is bigger and more sound than NASA dataset, and works as
a litmus test for the SoH approach we presented.

Unfortunately, as we told, Toyota-MIT dataset has many different charging policies ap-
plied on its batteries, and this makes it impossible to adopt the same partial charging
curve approach we had on NASA dataset because there won’t be coherence among the
same feature for different policy-charged batteries. Furthermore the charging policies are
build to switch the charging current in the middle of the charging phase. This causes the
interruptions of the charging voltage curves, creating steps in the curves themselves, as
we have shown in Figure 5.4, that fake the measurements, making it hard also to find an

interval of voltage without the presence of any steps for all the available batteries.

We then decided to measure Partial Discharging Curves instead, and from them
computing the same features we used for RUL prediction.
Although this assumption is not as strong as the assumption on partial charging was, still

being able to record a small enough partial discharge phase is a good compromise.

7.3.1. Partial Discharging Curve features

Similarly to what we did for the Partial Charging Curve, we analyzed the structure of the
discharge curve Q(V'), and together with cross validation, we found an optimal interval

for extracting the the 3 features described in Equation (7.7):

e Variance: Logl0O of the variance of the curve obtained by subtracting discharge
curve Q(V) at cycle k to Q(V) at cycle 10.

e Minimum: Logl0 of the minimum of the curve obtained by subtracting discharge
curve Q(V) at cycle k to Q(V) at cycle 10.

e Temperature sum: Summation of the average cycle temperature from cycle 2 to

cycle k.

These give us 3 descriptors values for each cycle of each battery.

Instead of using the full voltage spectrum from 2 to 3.4 V, we selected the window 2.8 to
3.1V.
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Figure 7.14: Partial discharge curve Q(V) at cycles 10 and 100

The first consideration is that by reducing the window for collecting measurements we lose
a part of the information describing the variance of the data. We’ve seen in Figures 7.9
and 7.10, and also through PCA analysis, that the features that we called variance fea-
ture and minimum feature, if collected over the full discharge window, contain quite
the same information. Instead, if varianc feature is collected over the considered partial
discharge curve, it loses its property of linearity over the battery samples, as we can see
by comparing Figure 7.15 and Figure 7.9a.

On the other hand, the minimum feature keeps its properties and its linear shape over

the different samples, as shown in Figure 7.16.

7.3.2. Model and results

We used Minimum feature and Temperature sum feature, to train the same SVR
model we used for SoH estimation on NASA dataset.
We 5-fold cross validated the model to tune the hyperparameters of the model. The

procedure results are in Table 7.3.

In this case, it has been of primary importance to use a non-linear Kernel Function to

handle the non linearity of the data and the features, in particular, Gaussian kernel



64

7| Our solution

341
® °
°
£ ° se
[e)) 32+ °
c °
@ o ¢
—1 & ®
L ) og®g o °
3 o0
(D) ® ®
O 0.9
(- ~ o ©® )
o i L LIPS
S 2.8 %% % °
o o Q@
(b]
n 26+
o
h
(@)]
O 24+
|
2.2 1 1 1 1 1
6.5 -6 5.5 -5 4.5

Log10 Var(DeltaQ)

-3.5

Figure 7.15: Partial (Logl0) Variance of delta Q(v) at cycle 100, over all dataset samples.

34
o ©

- ° o °
Szt o
c °
® ¢’
=5l .pf°
(D) ® J *
e "0 .n,’
% 28 - ([ J ‘.
O " )
()]
n 26
(@)
~—
(@)]
O 24Ff
—

2.2 1 1 1 1 1 1

2.2 -2 1.8 1.6 1.4 1.2

Log10 Min(DeltaQ)

-0.8

Figure 7.16: Partial (Logl10) Minimum of delta Q(v) at cycle 100, over all dataset samples.

gave the best results in term of validation R2.
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SVR Hyperparameters

Hyperparameter  Value
1 Box Constraint 0.1
2 Kernel Scale 1
3 Epsilon 0.006
4 Kernel Function  Gaussian

Table 7.3: contains the tuned hyperparameters values for the considered SVR model.

PCA analysis on all the 3 features shows that the third in order, that is the Variance,
accounts for less then 10 of the total variance (Figure 7.18).
We could then remove it to reduce the complexity of the model and the training time, al-

most without losing any appreciable level of performance, according to the cross-validation
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Figure 7.18: PCA analysis for all 3 features, in order: minimum, temperature sum,

variance.
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The overall model has been trained on 110 battery samples, and tested on 10. We achieved
an average R? value over all the test samples of 0.97.

Data have been standardize to have mean = 0 and variance = 1, before the training.

Results are shown in Figures 7.19, 7.20 and 7.21.
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Figure 7.19: SoH estimation results, test samples 1-6
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Figure 7.20: SoH estimation results, test samples 7-10
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8 ‘ Conclusions and future

developments

We proposed a feature-based batterySoH estimation system whose results are very
promising on both the datasets we considered, and the partial curve feature extraction
method gave good results, for both long and short life batteries. The approach applied
on the MIT-Toyota dataset has a bit stronger assumption though, compared to the
NASA one: indeed is less likely that any device is discharged from 3.1 V to 2.8 V
without interruptions, compared to how likely is the partial charging condition to be
verified. For this reason, a future development of this work could be testing the solution
with a reduction of the discharge voltage window explored, and more in general, try
different variations of such voltage window, and compare results. Even better, apply the
partial charging curve solution to a dataset with the same proportions of MIT-Toyota
dataset, but with constant and equal charging policy for all the batteries, since NASA
dataset results can only be considered validated over batteries with very similar aging

among each other, due to the reduced dimension of such dataset.

RUL prediction model also produced excellent results for prediction all along the 800
cycles window considered. Indeed for the majority of the batteries, RUL prediction is
accurate also at early cycles, thanks to the high population of the dataset, especially for
those batteries whose life length is around the average. In fact many samples in this
dataset are close to the average, leading to good predictions for such samples. Not the
same can be said for batteries with longer life: even though results are still very accurate,
the trend is that predictions are more noisy, and the error slightly bigger, in the earliest
cycles of the predictions. Predictions anyway converge to very accurate RUL values while
getting closer to the End of Life, which is the behaviour we expect RUL predictions to
follow.

An idea for future development is to adopt a sliding window approach to crop the longest
sequences to smallest ones, and overcome the memory limitations of LSTM Network.
Another approach to be carried out, in order to fully exploit the power of Neural Network,

is to quit the feature-based approach and feed the network with sequences of raw mea-
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surements instead, so that we can totally forget about any knowledge on the context. To
do this, many issues have to be faced, first of all dealing with the fact that a cycle (which
is the time unit that measures our time sequences) has a huge amount of measurements,
that can be different from the number of measurements at all other cycles, and we need

a way to synchronize them without having to cut out a big amount of information.
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