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Abstract

In the context of the worldwide phenomenon of aging, the decline of
cognitive functions has been one of the main focuses of healthcare poli-
cies due to the high costs for diagnosis and maintenance of patients.
Since speech and language capacity is a well-established early indicator
of cognitive deficits including dementia, speech processing methods of-
fer great potential to automatically screen for prototypical indicators in
real-time. Therefore, this work aims at analyzing cognitive and func-
tional decline from spontaneous speech-extracted acoustic features via
machine learning techniques. First, machine learning performances have
been evaluated with acoustic features computed at different time scales
(5-10-15s) on 3 datasets of different idioms, Italian, Spanish, and En-
glish, respectively. The objective was to find the optimal duration on
which to compute the features to speed up the computational time. The
binary classification between subjects with no cognitive impairment and
those with a mild one was performed yielding 71%, 69%, and 67% in
accuracy on the test set, respectively for each dataset. Regarding the
multiclass classification task, performances were good on the 3 classes,
providing a good discrimination power (66%, 55%, and 49% on test set).
Finally, prediction of Mini-Mental State Examination was performed for
the first time on Italian and Spanish subjects, whereas the results ob-
tained with the English dataset were compared to those outlined in the
ADReSS challenge, since the starting dataset was the same. For the
first 2 datasets, MMSE prediction showed promising results, while for
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the last one, prediction was slightly improved with respect to the chal-
lenge. This work shows that good outcomes can be obtained even with
features computed at shorter time-lengths and regardless of the language
involved, suggesting that longitudinal language-independent monitoring
of cognitive decline can be obtained. In this regard, it would be useful
to develop a mobile application to run in background during phone calls

for automatic feature extraction.

Keywords: acoustic features, dementia, MMSE, machine learning
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Sommario

Il declino delle funzioni cognitive & uno dei principali focus delle politiche
sanitarie per via degli elevati costi per la diagnosi e la cura dei pazienti.
Poiché il parlato e la capacita di linguaggio sono degli indicatori pre-
coci di deficit cognitivi, come la demenza, i metodi di elaborazione dei
segnali sul linguaggio sono un’importante risorsa per lo screening auto-
matico in tempo reale. Pertanto, questo lavoro mira ad analizzare il
declino cognitivo e funzionale a partire da parametri acustici estratti dal
linguaggio spontaneo tramite tecniche di machine learning. In primo lu-
0go, le prestazioni dei modelli di machine learning sono state valutate
su parametri acustici calcolati a diverse scale temporali (5-10-15s) su 3
set di dati di lingue diverse, rispettivamente italiano, spagnolo e inglese.
Un primo obiettivo ¢ stato trovare la durata ottimale su cui calcolare le
caratteristiche per velocizzare i tempi di calcolo dei parametri. La classi-
ficazione binaria tra soggetti senza decadimento cognitivo e soggetti con
decadimento lieve é stata eseguita ottenendo un’accuratezza sulla vali-
dazione rispettivamente di 71%, 69%, e 67% sul test set per ciascun set
di dati. Per quanto riguarda il compito di classificazione multiclasse, le
prestazioni sono state buone sulle 3 classi, fornendo un buona capacita
di discriminazione (66%, 55%, and 49% sul test set). Infine, la previ-
sione del Mini-Mental State Examination é stata eseguita per la prima
volta su soggetti italiani e spagnoli, mentre i risultati ottenuti con il
dataset inglese sono stati confrontati con quelli riportati nel challenge

ADReSS, poiché il dataset di partenza era lo stesso. Per i primi 2 set



di dati, la previsione del’MMSE ha mostrato risultati promettenti, men-
tre nell’ultimo caso, la previsione ¢ stata leggermente migliorata rispetto
alla sfida. Questo lavoro mostra che € possibile ottenere buoni risultati
anche con parametri calcolati su durate temporali piu brevi e indipen-
dentemente dalla lingua coinvolta, suggerendo che é possibile ottenere un
monitoraggio longitudinale indipendente dalla lingua del declino cogni-

tivo.

Parole chiave: parametri acustici, demenza, MMSE, machine learning
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]_ ‘ Introduction

According to The 2021 Ageing Report by the European Commission,
life expectancy is shown in continuous trend both for both males and

females over the past years [1]. Moreover, this increase is projected to
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Figure 1.1: Life Fxpectancy at birth in the last 60 years

continue over the period 2019-2070, causing a shift in the composition of

population based on age, as it can be seen in Figure 1.2.

As life expectancy keeps increasing in Western countries, so does the
need for care due to the outburst of chronic illnesses that cause decline
of physical and cognitive functions.

Alzheimer’s Disease (AD) has become one of the most expensive chronic
diseases in society [2]. In comparison with other diseases, the costs en-

tailed for people suffering from AD and other forms of dementia are more



2 1| Introduction

EU - Population by age group and gender

] s+ [N\ |
85-89
20-84
75-79
TO-74
65-68
G0-64
55-59
50-54

™
45-49
A40-44
35-39
30-34

i

25-29
20-24
15-19
10-14 |

5-9
u-a

20000 15000 10000 5000 o la ] 5000 10000 15000 20000
C——IMales 2070 Males 2019 [CCJFemales 2070 Females 2019

1

Figure 1.2: Population shift from 2019 to 2070

than double those of patients of the same age suffering from cancer, and
74% higher than patients with cardiovascular diseases [3|. Besides the
high costs of diagnosis and pharmacological costs, costs of care for people
with dementia are high and constitute the major expense, making it a
burden for patients and families. According to [4] the care of a person
with dementia requires, more than 25 hours per week more than for peo-
ple without it.

Since there is no effective cure for these diseases, there is the need to have
sensitive tools to detect very subtle changes in the pre-clinical popula-
tion (65-year-old people) in order to react before damage becomes worse.
In this context, analysis of acoustic features of speech can be used as a

method to early detect the decline of the cognitive functions.

The current work focuses on the analysis of acoustic features of speech
by means of machine learning techniques to recognize cases of the cogni-
tive decline. The long-term goal is to develop a mobile app for large-scale
remote monitoring, hence there is the need to automatically extract the

acoustic features. For this reason, features must be computed on smaller
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time-lengths, i.e. at most on 15s, to reduce computational cost, and
hence avoiding storage of recordings. Therefore, the same features have
been computed in Matlab at different time scales of 5-10-15 seconds and
performances obtained at different scales have been evaluated. The fea-
tures have then been analyzed with SHAP explainer to see which ones
contributed the most in the prediction of cognitive decline.

Moreover, the extracted features from the different time lengths were
considered altogether, and their performances were compared with the
results obtained from the datasets with features computed at a singular
scale.

The current approach has been tested on three different datasets, two
of Latin languages (Italian and Spanish) and the other one of non-Latin

language (English).
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2 State of the Art

In this chapter, the previous works related to voice analysis and an
overview of the main techniques employed to detect cognitive decline will

be outlined.

2.1. Voice as a diagnostic tool

Voice is one of the most studied digital biomarkers in recent years.
It is widely employed since it allows an ecological and rapid acquisition
of measures concerning many assessments that must usually occur in
presence of clinicians, thus allowing these trials to be carried out during
everyday activities [5]. The use of digital biomarkers facilitates frequent
testing, promising to provide richer and more detailed data, yielding more

sensitive measures of symptoms and disease.

It has been demonstrated that alterations in voice and speech prosody
encode information about different aspects of physiological and patholog-
ical states. Indeed, speech offers insights into cognition and function and
it is affected by many psychiatric and neurodegenerative diseases. The
analysis of its features allowed for example the detection of people with

depression |6, 7|, schizophrenia, 8] and autism spectrum disorder |9, 10].

In [6], for example, for the prediction of depressed subjects, it was
found that there are indeed vocal differences in loudness, and in the Cep-

stral Coefficients between the groups, regardless of the emotion involved.
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In particular, these features are lower in people with depression with
smaller variances than in healthy people. These vocal differences indicate
that the depressed voice is untoned, low-pitched, and weak. Moreover,
regarding studies for Autism Spectrum Disorder (ASD), [10] a shift in
pitch frequencies is noticed between ASD patients during the standard-
ized test for Autism diagnosis (ADOS-2 test) and the control group, as
well as changes in loudness. Indeed, ASD is associated with lower pitch
value and a wider loudness range compared to those with typical devel-
opment (TD).

Moreover since the outbreak of the COVID-19 pandemic, speech and
coughs have been studied as an attempt to diagnose the disease in a rapid,
inexpensive and non-invasive way [11, 12]. The breakout of the pandemic
indeed reinforced the concept of telemonitoring patients in a non-invasive
way, boosting the development of new toolboxes for the analysis of voice

and a new outbreak in the study of its parameters.

2.2. Evaluation of cognitive decline

In the recent years, voice has been widely employed to study the
onset of cognitive decline in elderly people. Indeed, the increase of life
expectancy in industrialized countries is associated with a severe increase
in geriatric diseases. The most common one is dementia, a chronic pro-
gressive disease accompanied by loss of autonomy in everyday life.
Dementia is a category of neurodegenerative diseases that entails a long-
term and usually gradual decrease in cognitive functioning. It is charac-
terized by a set of symptoms including memory loss, thought difficulties,
poor executive functions (e.g. problem-solving, decision-making, plan-
ning), language impairment, motor problems, lack of motivation, and
emotional distress. Throughout the disease, the severity of these symp-
toms increases, reducing the patient’s autonomy and well-being, as well
as their caregivers’. Those cognitive symptoms may be a consequence
of the neuropathology of different diseases, such as Alzheimer’s Disease

(AD; 50% of dementia cases), cerebrovascular disease (25% of cases, in-
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cluding those that also manifest AD), Lewy body disease (15% of cases),
and other brain diseases (5%), including Parkinson’s, frontotemporal de-

mentia and stroke[13].

Current diagnostic procedures require a thorough examination by
medical specialists, which are too cost- and time-consuming to be pro-
vided on a large scale. Since speech and language capacity is a well-
established early indicator of cognitive deficits including dementia, speech
processing methods offer great potential to automatically screen for pro-
totypical indicators in real-time. Moreover, they allow to present fast
analyses and results to the medical specialists so that they can be in-
cluded as additional information sources when diagnosing cognitive deficits
[14].

There is a need for cost-effective and scalable methods for the de-
tection of dementia from its most subtle forms, such as the preclinical
stage of Subjective Memory Loss (SML), to more severe conditions like
Mild Cognitive Impairment (MCI) and Alzheimer’s Dementia (AD) it-
self. These pathologies, caused by brain damage and neural functional
disruption, start silently up to 20 years before there are clear and observ-
able cognitive symptoms, and there is no effective treatment for them.
Therefore, it is fundamental to find strategies to detect the problem as

early as possible, to enhance therapy effectiveness and quality of life [13].

Although memory loss is often considered the main symptom of AD,
language is a valuable source of clinical information, as well. Moreover,
the efficiency and easiness of speech acquisition and processing has led
to a large number of studies investigating speech and language features
for the detection of AD [15].

It is important to stress that with the onset of AD, emotional re-
sponse capacity is also affected and behavioral changes are often de-
tected, probably due to memory loss [16]. Emotions and rationality are
the main characteristics of human beings. They affect the perception and
daily life, for example, the communicative process and decision-making

and they are expressed through speech, facial expressions, gestures and



8 2| State of the Art

other non-verbal clues. Differences between emotional states can also be
considered as one of the most important evaluation criteria to measure
the performance of cognition processes|3|. In this regard, an analysis of

literature about speech emotion recognition can be found in Appendix
A.

2.3. Voice features to assess alterations in
cognitive functionality

Over the years, several acoustic parameters have been employed to

assess cognitive functionality. The most popular ones are those described
by:

e the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)
[17]

e the emobase feature set [18]
e the ComParE feature set [19]
The eGeMAPS comprises 25 Low-level descriptors (LLD) such as:

e frequency related parameters - pitch, jitter, first 3 formant fre-
quencies, their bandwidth and their related energy and Harmonic-
to-Noise Ratio (HNR)

e Amplitude or energy related parameters - energy, shimmer,loudness

e Spectral parameters - first 4 Mel-Frequency Cepstral Coefficients
(MFCCs) and Spectral flux

For each of them statistics such as mean, standard deviation and per-

centile are usually computed, reaching a total of 88 features [17].

The emobase feature set is mainly used for Speech Emotion Recog-
nition tasks, but, since many features in the former task overlap with
those employed for early detection of cognitive decline, it has been widely

employed and tested in this field of research. It contains the following
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low-level descriptors (LLD): Intensity, Loudness, 12 MFCC, Pitch (Fy),
Probability of voicing, envelope, 8 LSF (Line Spectral Frequencies), Zero-
Crossing Rate. Delta regression coefficients are computed from these
LLD, and the following functionals are applied to the LLD and the delta
coefficients: maximum and minimum value and respective relative posi-
tion within input, range, arithmetic mean, 2 linear regression coefficients
and linear and quadratic error, standard deviation, skewness, kurtosis,
quartile 1-3, and 3 inter-quartile ranges, yielding 988 acoustic features

for each speech utterance.

The acoustic COMPARE feature set is the one defined in the INTER-
SPEECH 2013 Computational Paralinguistics ChallengE which provides
65 LLDs and their related statistics for a total of 6 373 static features
[19].

The aforementioned features sets are all extracted via the openSmile
toolbox, an open-source toolkit for audio feature extraction and classi-
fication of speech and music signals. In the current work, however, a
Matlab feature extractor algorithm with a lower number of features de-
vised in [20] has been employed and it has been optimized by adding new
parameters. The extracted features will be described more in detail in
Section 3.1.

2.4. Tasks for speech induction - an overview

Feature extraction is usually carried out via processing of audio
recordings of vocal signals obtained during the accomplishment of dif-

ferent tasks. The most recurring ones are:
o Interviews

Movie recalls

Day descriptions

Event descriptions (positive or negative)

Recalling of a dream
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e Picture description

The Picture description task is indeed the most common one. One of the
main reasons why this task is widely exploited is because of its great test-
retest reliability [21], as well as high degree of agreement among raters
(inter-rater reliability). Moreover, it has the advantage of focusing atten-
tion and overcoming interference from memory difficulties, thus enabling
even those subjects with severe memory problems to stay on track more
easily [22]. It has been employed in several studies to detect different
stages of cognitive decline, such as MCI, AD, Primary Progressive Apha-
sia (a neurodegenerative disorder in which an alteration in speech is one
of the first clinical symptoms), Parkinson’s disease and depression. A
variety of parameters and acoustic characteristics can be evaluated, e.g.

intonation and prosody, discourse fluency and speech rate.

There exists a variety of pictures to be administered from the most
complex ones such as "Chaos" to the simplest ones e.g. the Rockwell’s
"Easter Morning" picture and the "Cookie Theft" of the Boston Diagnos-
tic Aphasia Examination test in Figure 2.1. The latter is the most used
one as well as one of the tasks that have been employed in the current

work for cognitive evaluation.

2.5. Mini-Mental State Examination

When dementia is suspected, its diagnosis is usually performed by
using Mini-Mental State Examination (MMSE, presented in Appendix
B), that provides a score from 0 to 30 where 0 corresponds to the major
cognitive decline and 30 to no cognitive decline at all [5]. It is based
on 30 questions to address short and long-term memory, attention span,
concentration, language and communication skills, ability to plan and
ability to understand instructions. The aim of the test alone is not to
provide a diagnosis for any particular disease but to give an indication
of onset of cognitive impairment. A score of 26 or higher is usually
classified as normal. If the score is below 25, the result highlights a

possible cognitive impairment which may be classified as follows [23]:
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N

N

Figure 2.1: Cookie Theft picture

e mild — 21 < MMSE score < 25
e moderate — 10 < MMSE score < 20
e severe — MMSE score < 10

Although the test is highly employed and handy, it needs to be per-
formed with the help of a clinician, hence slowing times for diagnosis.
Therefore, there is the need to develop other faster non-invasive meth-
ods that can be used for large-scale monitoring of dementia in every-day

activities.

2.5.1. The ADReSS challenge

In the context of prediction of Mini-Mental State Examination score
without a thorough examination, but instead by employing acoustic fea-
tures, the ADReSS challenge plays a key role.

Indeed, previous studies related to this topic have outlined several signal
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processing and machine learning methods for this task, but the field still
lacked a balanced and standardised datasets on which these different ap-
proaches could be systematically compared.

Therefore, the ADReSS challenge provides researchers with the very first
available benchmark, acoustically pre-processed and balanced in terms

of age and gender. ADReSS defines two different prediction tasks:

e the AD recognition task, which requires researchers to model par-
ticipants’ speech data to perform a binary classification of speech

samples into AD and non-AD classes;

e the MMSE prediction task, which requires researchers to create
regression models of the participants’ speech in order to predict
their scores in the Mini-Mental State Examination (MMSE)

The challenge has been based on audio recordings collected in the Pitt
corpus which contains audio recordings of 459 English-speaking subjects
whose age is between 55 and 80 years old. Each subject has been asked to
describe the cookie theft picture in Figure2.1 adding as much details as
possible. The audio recordings are distributed by DementiaBank which
is an online shared database of multimedia interactions for the study of

communication in dementia.

2.6. Supervised Learning

In the context of searching for tools that are able to detect mental dis-
ease and cognitive decline from a set of data related to patients, artificial
intelligence techniques such as Supervised Learning plays a paramount

role.

Supervised Learning is a subcategory of machine learning and arti-
ficial intelligence to detect patterns and relationships between the input
data and the output, allowing to predict accurate labeling results when
new unseen data are presented. Given a set of N training samples in the
form (x1,41), ..., (s, yn) so that x; is the input feature vector of the i-th

sample and y; is the output, called label, a learning algorithm seeks a
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function that can be defined as:
g: X =Y (2.1)

where ¢ is the function that maps the independent variables z onto the
output target variable Y. A general model works as follows: since it
learns by example, it has a training phase during which the model is fed
with a set of input variables and the corresponding correct labels. In this
way, the algorithm can learn how the output (the label) is related to each
input value. The evaluation of the best algorithm is then performed on
the validation set, which is a set of samples separated from the training
to avoid the overestimate of model performance. The validation set is
usually employed to tune the hyperparameters of a model and for model
selection: it is indeed exploited to compare the performance of different
candidates and choose the best one. Finally, the trained model is pre-
sented with test data, which is a set of data that has not been seen by the
algorithm either in training or in validation phase. During this phase,
data has been labeled, but the labels have not been revealed to the al-
gorithm. Therefore the testing phase aims at measuring how accurately

the algorithm performs on unseen data.

In supervised learning, the two main approaches that are widely used,

each one addressing a type of data analysis problem, are:
e (Classification
e Regression

They will be further explained in the next sections.

2.7. Classification

Classification is the process of categorizing a set of data into classes,
often referred to as label or categories. The main goal is to identify
which class or category the new data will fall into, by approximating the

mapping function from the input variables to discrete output variables.
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In the next sections, the following models that are employed for the

classification task will be further explained:
e Logistic Regression
e Support Vector Classifier

e CatBoost Classifier

2.7.1. Logistic Regression

Binary logistic model is a statistical model that estimate the proba-
bility of one event out o 2 occurring by computing the log-odds (logarithm
of the odds) for the event as a linear combination of independent vari-
ables. Logistic regression estimates the parameters of the logistic model.
In binary logistic regression there is a binary dependent variable, that
takes the values 0,1. The corresponding probability of the value labeled
"1" can vary between 0 (certainly the value "0") and 1 (certainly the
value "1").

The function that converts log-odds to probability is the standard logistic

function, also known as sigmoid function.

B 1
e (@—n)/s

p(x) (2.2)

where p is the midpoint of the curve and s is a scale parameter. There-
fore, the posterior probability P(y|x) of the target conditioned on the

vector X is given by:

1
Py = = — 2.
(v=01%) = T (23)
ew’x
Ply=1lx) = ———— 2.4
(=11 = s (2.4)

where w is the vector of the slope regression coefficients. An example of

how Logistic Regression works is represented in Figure 2.2.
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Figure 2.2: Example of Logistic Regression algorithm

2.7.2. Support Vector Machines

The aim of Support Vector Machines (SVM) is to find an hyper-
plane in an N-dimensional space, where N is the number of features, that
classifies data points. An hyperplane is a decision boundary that help
classify data points. There are several hyperplanes that can be selected.
The objective of SVM is to find the plane that maximizes the distance
between data points. Therefore, Support Vector Machines identify a set
of samples, called indeed support vectors, which are the most represen-
tative observations for each target class, playing therefore a more critical
role than the other samples, by defining the position and orientation of
the separating hyperplane generated by the classifier in the space of fea-
tures.

SVM maps training samples to points in space so as to maximize the
distance between the classes. New samples are then mapped into that
same space and predicted to belong to a category based on which side
of the gap they fall. The output of the linear function is taken and if

that output is greater than 1, it is identified with one class whereas if
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the output is -1, with another class. Therefore, the reinforcement range
of values([-1,1]) is obtained which acts as margin. A good separation is
achieved when the hyperplane has the maximum distance to the separa-
tion margin, that are the nearest data points of any class, because the

larger will the margin be, the higher the generalization power.

It often occurs that classes are not linearly separable in space, there-
fore, it is easier making the separation by mapping the original space
into a higher-dimensional one. In this case, a penalty parameter is intro-
duced, guaranteeing a trade-off between increasing the margin size and
the new samples being of the correct side of the hyperplane. Therefore,
in the non-separable case, the optimization problem can be formulated
as follows: N

mmw,b,d%y\wuz + A;di (2.5)
The objective function is composed of the weighted sum of two terms
representing respectively the reciprocal of the margin of separation and
the empirical error. The parameter A is introduced in order to guaran-
tee a trade-off between the generalization capability, represented by the
reciprocal of the margin, and the accuracy on the training set, evaluated

as the sum of the slack variables [24].

Figure 2.3: Maximal margin separating hyperplanes for a nonlinearly

separable dataset
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2.7.3. CatBoost Classifier

CatBoost (Categorical Boosting) is one of the best boosting algo-
rithms, developed by Yandex researchers and engineers. Main advantages
of this model are that it achieves high prediction performances even with-
out parameter tuning, it improves accuracy by reducing overfitting and
it works well with less data. Moreover, it works well in heterogeneous

datasets, hence with data with high variability of types and formats [25].

Boosting is an ensemble learning technique in which several models
(weak learners) are sequentially generated, giving more weight to the er-
rors obtained with the previous models. Indeed, the final model will be
an ensemble model with the best accuracy of each constituting model.
In particular, CatBoost is based on gradient boosted decision trees. Dur-
ing training phase, a set of decision trees is built consecutively, modify-
ing at each iteration tree’s parameters in order to reduce loss function.
Therefore, each successive tree is built with reduced loss compared to
the previous ones. Training stops when loss function satisfies some spec-
ified constraints or there are no improvements on the validation set or
the maximum number of trees is reached. A general schema of Gradient

Boosting is showed in Figure 2.4.
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Figure 2.4: Gradient Boosting Schema|26]

2.8. Regression

The purpose of regression models, also known as explanatory mod-
els, is to identify a functional relationship between the target variable,
which in this case is continuous, and a subset of the remaining attributes
contained in the dataset. Moreover, they are used to predict the future
value of the target, based upon the identified relationships.

The following regressors will be further explained in the next sections:
e Ridge Regression
e Support Vector Regressor (SVR)

e CatBoost Regressor

2.8.1. Ridge Regression

Ridge regression is a linear model, i.e. a model that assumes a linear
relationship between the input variables (x) and the single output vari-

able (y). More specifically, as with linear regression, the target y can be
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calculated from a linear combination of the input variables (x).

To estimate the values of the coefficients, the Ordinary Least Squares
(OLS) is one of the most common techniques. The Ordinary Least
Squares procedure seeks to minimize the sum of the squared residuals.
This means that given a regression line through the data the distance
from each data point to the regression line is calculated, squared, and
all of the squared errors are summed together. Defining w = (wy, ..., w;)
as the coefficients of the linear model, X as the input data and y as the
target, linear regression seeks to minimize the residual sum of squares
between the observed targets in the dataset, and the targets predicted

by the linear approximation, therefore:

mmw||Xw—y||§ (2.6)

The main difference with linear regression is that ridge regression ad-
dresses Ordinary Least Squares through the regularization of the weighys
by imposing a penalty on the size of the coefficients, which is why ridge
is also called weight decay. Indeed, the ridge coefficients minimize a pe-

nalized residual sum of squares:

ming || Xw —yll; + aflwlf2 (2.7)

The complexity parameter o > 0 controls the amount of shrinkage: the
larger the value of «, the greater the amount of shrinkage and thus the

coefficients become more robust to collinearity.

2.8.2. Support Vector Regressor

Support Vector Regressor is more flexible with respect to Linear Re-
gression since it allows to define how much error is acceptable and will
find an appropriate line (or hyperplane in higher dimensions) to fit the
data. Contrary to Ordinary Least Squares, the aim of the objective func-
tion of SVR is to minimize the coefficients and not the squared error. The

error term is instead considered in the constraints, where the absolute
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error is set less than or equal to a defined margin, named maximum er-
ror, €, that can be tuned to gain the desired accuracy of the model. The

objective function is:
1 2
Zllw 2.8

and constraint:
ly: — wixi| <€ (2.9)

2.8.3. CatBoost Regressor

As for the classifier, CatBoost Regressor belongs to the family of
gradient boosting algorithms. For regression problems, boosting is a
form of "functional gradient descent". It applies a numerical optimization
technique for minimizing the loss function by adding, at each step, a new
tree that best reduces the loss function. The first regression tree is the
one that, for the selected tree size, maximally reduces the loss function.
For each following step, the focus is on the variation in the response
that has not been explained by the model so far [27]. General algorithm

formulation F,, for the prediction of y; considering the input data z; is:

Ji = Far(r:) =) () (2.10)

m=1

where h,,, are the weak learners, in this case decision tree regressors. The

algorithm is built in a greedy fashion:

Fo(z) = F,_1(x) + hy(x), (2.11)

where h,, is fitted to minimize the sum of losses L,,, therefore:

hpy = argming Ly, = argminy, Z Uyiy Frne1 () + h(xy)), (2.12)

=1

where [(y;, F'(z;)) is the considered loss function to be minimized.
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2.9. Model evaluation techinques

To have an estimation of the model performances on data, the most
common validation technique is k-fold cross-validation. It consists in
splitting the whole set into k parts. Iteratively, for i in the range from 1
to k, the i-th part of the k folds is kept out, while the k-1 parts are used
to fit the model. Performance score is then evaluated on the i-th fold.
In the end, there will be k scores that will be averaged to obtain mean

performance score (e.g. accuracy for the classification tasks).

When standard Cross-Validation is applied on a dataset with a small
number of samples, there is a higher risk to obtain a biased test set, hence
overestimating model performances. To have a less biased and more cor-
rect estimation of the model capability, Nested k-fold Cross Validation. It
is a more complex procedure compared to the one previously described to
simultaneously select the best and most robust machine learning model
for the dataset and to tune the best set of hyperparameters, which in-

volves two loops, an outer and an inner one.

The procedure involves treating model hyperparameter optimization
as part of the model itself and evaluating it within the broader k-fold
cross-validation procedure for evaluating models for comparison and se-
lection. The k-fold cross-validation procedure for model hyperparameter
optimization is nested inside the k-fold cross-validation procedure for
model selection. The use of two cross-validation loops also leads the pro-
cedure to be called "double cross-validation”. The algorithm is describe
in Algorithm 2.5 [28].

In particular, in the outer loop, the dataset is split into k sets. Iter-
atively, for each k, the k-th set is chosen as test set while the other k-1
sets are involved in the training set as it happens with the traditional
k-fold Cross-Validation.

In the internal loop, each training set from the outer loop is split into
I sets. Again, iteratively, for each i, the i-th set is kept as the inner test

set, while the other I-1 sets yield the inner training set.
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Algorithm 2.1 Nested K-fold Cross-Validation

1: Define hyperparameters combination C, for current model (C is
empty if there are no hyperparameters)

[\

: Divide data in K folds with approximately equal distributions of
classes

3: for Parameter combination c in C do
4:  for fold k; in the K folds do

5: Set the fold k; as test set

6: for Fold k; in K — 1 folds do

7: Set fold k; as validation set

8: Train model on K — 2 folds

9: Evaluate model performance on fold k;

10: end for

11: Calculate average performance on K — 2 folds

12:  end for

13:  Train model on K —1 folds using hyperparameter combination that
produced best performance in inner loop

14:  Evaluate model performance on fold k;
15: end for

16: Calculate average performance over K folds

The validation set scores in the inner loop are averaged on k*I sets.
The best average score of validation scores, associated with a certain set
of hyperparameters is used to establish the optimal hyperparameters for
that model.

In the end, the best model with the tuned hyperparameters is re-trained
on the outer test set and evaluated on the outer test set, averaged on k

Scores.

Under this procedure, during hyperparameter search, the opportu-

nity to overfit is highly reduced with respect to other validation methods
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since it uses only to a subset of the dataset provided by the outer cross-
validation procedure. In this way, the risk of overfitting is highly reduced,
almost eliminated, giving an estimate of a model’s performance on the
dataset with a lower bias.

A downside of nested cross-validation is the dramatic increase in the
number of model evaluations performed. In the case of Nested 10-fold
CV, there is an increase of 10 times in computational cost. In Figure 2.5
the schema of Nested k-fold CV is shown.

Training and Validation Test

Training Validation

— Inner

Outer - Loop

Loop

!

Validation Training

Test Training and Validation

Figure 2.5: Nested k-fold schema

2.10. Model explainability - SHAP

SHapley Additive exPlanations (SHAP), is a method based on co-
operative game theory, used to increase transparency and interpretability
of machine learning models. It is a solution concept in cooperative game
theory. Cooperative games are games in which it is possible to forge al-
liances between players forming "coalitions". In this case the considered
players are the features of the dataset. Therefore, by analyzing features
through the framework of cooperative game theory, the focus will be on
predicting which coalitions will be formed, and the resulting collective
payoffs. To understand the impact of the introduction of a specific fea-

ture on the final prediction, for each observation, SHAP computes the
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marginal contribution of each feature on the output of the model. It
starts with base values for prediction based on a-priori knowledge. For
each feature all the combinations with the other features are evaluated;
then the same prediction is computed without considering the specific
feature, obtaining the marginal contribution of the feature as the differ-
ence between the two outcomes.

The main difference with other algorithms for feature importance evalu-
ation is that they usually compute score for all input features, evaluated
individually, whereas SHAP, having foundation in game theory evaluates

contribution of features inside the coalitions.

The contribution of the features in SHAP for each instance can be ex-
plained through summary plots which combine feature importance with
feature effects. An example of summary plot can be seen in Figure 2.6.
A summary plot is a density scatter plot of Shapley values for each fea-
ture. Indeed, each point corresponds to a Shapley value for a feature and
an instance, whereas the color represents the value of the feature from
low (blue) to high (red). Moreover, features are ordered based on their
importance on the y-axis in descending order. Finally, the position along

the x-axis gives indications of the impact on the prediction.
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Figure 2.6: Ezample of SHAP summary plot|29]

2.11. Prediction based on acoustic features
from speech

In the following sections the most relevant results in predicting cog-
nitive decline - via classification - and MMSE - through regression - from

acoustic features will be outlined.

2.11.1. Classification of cognitive level

In [30], Authors analysed the temporal parameters of reading flu-
ency to discriminate between Spanish-speaking asymptomatic subjects
and those with AD. The algorithms applied to the recordings were capa-
ble of differentiating between AD patients and controls with an accuracy
of 80% (specificity 74.2%, sensitivity 77.1%) based on speech rate.
Moreover, in [31] it has been demonstrated that it is possible to differen-

tiate between several kinds of dementia and Mild Cognitive Impairment
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both in binary and multiclass scenarios, through free speech tasks with
high classification accuracy. In [32], it was showed that acoustic param-
eters such as speech rate, hesitation ratio, number of pauses and artic-
ulation rate yield significant results in the discrimination between MCI
and healthy subjects in the movie recall task, obtaining an F1-score of
78.8%. Moreover, in [33] Authors were able to discriminate between con-
trols and MCI subjects with Random Forest and Support Vector with a
high F1-score of around 75% with the nested-leave-one-subject-out cross-
validation.

Finally, some studies have been carried out in a multimodal context, by
employing both vocal and eye-tracking features, such as in [34], in which
Fraser et al. discriminated between a cohort of 26 MCI subjects and 29
healthy, with a series of cascaded classifiers with multimodal features,

obtaining an accuracy of 83%.

2.11.2. Prediction of MMSE

In literature there are few evidences of attempts at prediction of Mini-
Mental State Examination score. The main contribution is the ADReSS
challenge at INTERSPEECH 2020 which defines a shared task through
which different approaches to the automated recognition of AD based on
spontaneous speech can be compared|[15]. The Authors have established
a baseline RMSE of 6.14 for acoustic features. In this context, with
the same dataset, Authors of [35] obtained a RMSE of 7,1 and a MAE
of 6,2 with support vector machine and linear regression, with features
from the ComParE set. In [36], a RMSE of 6,49 was obtained with
prosody features and support vector regressor. In [37], Authors chose
the mean absolute error (MAE) as their score for performance evaluation
and the lowest one that they achieved was of 3.83, by computing features
correlation for selecting the top 40 features. In [38], linear regression
analysis showed that fusion of acoustic features, age, sex and years of
education provided better results (MAE = 4.97, and R2 = 0.261) with
respect to the use of acoustic features alone (MAE = 5.66 and R2 =
0.125).
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With respect to the previous work, the main novelties of this thesis are:

e Evaluation of optimal duration of speech segments for feature ex-

traction

e Optimization of Matlab feature extraction algorithm with addition

of new features

e Prediction of Mini-Mental State Examination from Italian and Span-

ish voice segments

e Validation of model performances through Nested 10-fold cross-

validation
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3 | Methods

This work aims at classifying cognitive decline in elderly people as
well as predicting Mini-Mental State Examination score from voice fea-
tures. The feature extraction code was optimized from a previous work
[20, 39] with the introduction of new features. Moreover, while in [39]
features were computed on the whole length of the audio recordings, in
the current work different time segments have been taken into account
to analyze dependence of features with time and to find the optimal du-
ration length for features extraction. The workflow of the main phases

of this work is shown in Figure 3.1.

3.1. Optimization of Matlab algorithms for
features extraction

With the new Matlab Audio Toolbox [40], the following features have
been added to the original set:

e Pauses

e Spectral centroid

e Mel-Frequency Cepstral Coefficients
e Speech temporal regularity

Moreover, the mean fundamental frequency (mean F0) has been sub-
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Figure 3.1: Workflow of the study

stituted with mean pitch and its standard deviation, computed with the

same window-length and overlap of [20].

3.1.1. Pauses

The number of pauses and their mean duration inside each segment
have been computed with the function detectSpeech from the Matlab
Audio Toolbox [40]. The function uses a thresholding algorithm based
on energy and spectral spread on each frame to highlight the indices
corresponding to the boundaries of speech signals, as it is shown in Figure
3.2.
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Figure 3.2: Example of pauses calculation

3.1.2. Spectral centroid

The spectral centroid is the center of ‘gravity’ of the spectrum. The

value of spectral centroid, C;, of the i*" audio frame is defined as:

Zbi 1 Trsk
Cy = (3.1)

k=by Sk
with fi being the frequency in Hz corresponding to bin £, s; the spectral
value at bin k£ and b; and b, being the band edges over which to calculate
the spectral centroid. The Matlab function returns a centroid for each
frame as it can be seen in Figure 3.3. To compute a singular value for
each time segment, the length of the frame was set equal to the length

of the segment with no overlap.
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Figure 3.3: Spectral Centroid distribution over a 10s audio segment

3.1.3. Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) are a type of cepstral
representation of the signal, where the frequency bands are distributed
according to the mel-scale, instead of the linearly spaced approach. They
are the coefficients making up a Mel-Frequency Cepstrum (MFC), a rep-
resentation of a short-term power spectrum of a sound [41]. In Figure
3.4 the Mel-Frequency Cepstrum is shown, which is the information of
rate of change in spectral bands. In Matlab, the first 16 coefficients were

computed.
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Figure 3.4: Mel-Frequency Cepstrum of a 10s audio segment

3.1.4. Speech Temporal Regularity

Speech temporal regularity captures the temporal structure of speech
segments. It is calculated as the sum of the absolute values of the first 16
cepstrum coefficients (MFCC1 - MFCC16) which yields the measure of
the temporal regularity of the sequence. In normal voices, the duration
of the contiguous speech segments tends to be longer - in the order of a
few seconds on average - and more ‘“regular”’, which typically results in
higher values of MFCC1 - MFCC16. Conversely, for AD cases, the dura-
tion of the contiguous speech segments tends to be shorter, often tenths

of a second, and less “regular”, which typically results in lower average
values of MFCC1 - MFCC16 [42].

The final set of acoustic features is summarized with a brief descrip-

tion in Table 3.1, along with an indication of how they change in subjects
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with dementia with respect to healthy subjects.

Table 3.1: Summary table of extracted features

Type Feature Description Trend with dementia
) Percentage of aperiodic parts in the audio
Unvoiced percentage 0
segment
. . Mean, median, 15 and 85 percentile of the
Voiced and unvoiced ) ) ) ) ] ]
. parts of the signal with and without peri- | | voiced and 1 unvoiced
Voice parts ]
L odic nature
periodicity )
Pitch Contour of fundamental frequency FO +
Random cycle-to-cycle temporal changes
Shimmer of the amplitude of the vocal fold vibra- K
tion
. Percentage of distances between consecu-
Glottal pulses | Total voice breaks ) ) T
tive glottal periods
Standard deviation of ) )
Formants degree of tonal modulation of the voice T
the 3rd formant
Speech Rate Number of syllables per second +
. Percentage of syllables throughout the
Phonation Percentage ) 4
speech signal
Number of syllables over the phonation
Syllables Articulation Rate _ Y P !
time
Intersyllabic time Duration between syllables T
Intrasyllabic time Duration of syllables T
Pauses Number of pauses for each audio segment T
Pauses ) Mean duration of pauses for each audio
Duration of pauses 0
segments
First 16 Mel-Frequency Cepstral Coeffi-
MFCC . K
clents
Spectral Speech Temporal Reg-
) Temporal structure of speech segments 4
features ularity
. Location of the center of mass of the spec-
Centroid T

tral signal
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3.2. Data

Prediction of cognitive decline was carried out on three already exist-
ing datasets, two of which of Latin-derived-language speaking subjects
(Italian and Spanish) and the other one of a non-Latin language (En-
glish). The following section will describe them in terms of participants

and acquisition protocol.

3.2.1. MoveCare datasets

The first two datasets come from a previous European project, namely
MoveCare, which developed a multi-actor platform for the independent
living of the elders at home by monitoring and promoting activities to
contrast decline and social exclusion [43]. The project took place in Italy
and Spain, therefore the two datasets are composed by 153 Italian and
150 Spanish-speaking subjects, respectively.

Experimental protocol and excluding criteria are described in [20]. Ba-
sic requirement for patient recruitment was an age over 65. Exclusion

criteria were:

Subjects with MMSE score < 10

Non-native speaking subjects

Depressed subjects

Subjects affected by hearing loss

Participants have been divided in three groups based on the Mini-Mental
State Examination (MMSE) score they achieved. Therefore, the Italian

recruitment groups were composed as follows:
e Group 1: 62 subjects with MMSE > 26
e Group 2: 46 subjects with 20 < MMSE < 26
e Group 3: 45 subjects with a 10 < MMSE < 20

Whereas, the Spanish recruitment groups were:



36 3| Methods

e Group 1: 60 subjects with MMSE > 26
e Group 2: 45 subjects with 20 < MMSE < 26
e Group 3: 45 subjects with 10 < MMSE < 20

The distribution of the scores of MMSE are shown in Figures 3.5 and
3.6, for the Italian and Spanish dataset respectively.
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Figure 3.5: Distribution of MMSE  Figure 3.6: Distribution of MMSE
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Each participant carried out the following tasks:
e 3 story-telling tasks
e Picture description task

For the first three tasks, subjects were asked to tell three short stories in

an interrupted way for approximately two minutes each:
1. Positive story

2. Negative story

3. Episodic story, an event in the recent past that did not involve

strong emotions, in a neutral tone

Within the picture description task, subjects were asked to describe a
picture freely in an uninterrupted way, trying to add as many details

about the scene as possible. The picture was the Cookie Theft picture
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of the Boston Diagnostic Aphasia Examination test, presented in Fig-
ure 2.1, considered an ecologically valid approximation to spontaneous
speech [44].

To avoid having depressed participants among the healthy group,
subjects from Group 1 filled out the Geriatric Depression Test (GDS,
presented in Appendix C), which is a self-report assessment used to iden-
tify depression in the elderly population [45]. One point is assigned to
each answer and the cumulative score is rated on a scoring grid. For
the Short-Form GDS, subjects fill in a 15-item questionnaire about their
satisfaction on life, their interests and social interactions. Subjects with
a score over 6 are considered mildly depressed and severely as the score
increases to 9. Concerning the Long-Form GDS, instead, subjects fill in
a 30-item questionnaire about the same topics outlined above. In this
case, subjects with a score over 9 are considered mildy depressed and a
score over 20 corresponds to severe depression. As for the MMSE, the
GDS questionnaire does not provide a definitive diagnosis, but it is a first
indication of probable depression. In this study, the [talian subjects filled
the Long-Form GDS whereas the Spanish subjects filled the Short-Form,
therefore, only the subjects with score < 10 have been included for the
Italian dataset and those with a score < 7 for the Spanish dataset. In
this way, 43 subjects were kept from Group 1 of the Italian dataset and
44 subjects for Group 1 of the Spanish dataset, guaranteeing also more

balanced classes.

3.2.2. Pitt corpus

Pitt corpus contains audio recordings of 459 English-speaking sub-
jects whose age was between 55 and 80 years old. Each subject was asked
to describe the Cookie Theft picture adding as much details as possible.
In this case as well, to each subject a Mini-Mental State Examination

score was associated after they underwent the related test.

The database is distributed by DementiaBank which is a shared

database of multimedia interactions for the study of communication in
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dementia. Access to the data in DementiaBank is password protected
and restricted to members of the DementiaBank consortium group.

For the Pitt corpus, subjects were divided in 3 groups according to their
MMSE, as well, therefore, obtaining:

e Group 1: 211 subjects with MMSE > 26
e Group 2: 115 subjects with 20 < MMSE < 26
e Group 3: 113 subjects with MMSE < 20

In this case the classes were unbalanced and no exclusion criterion was
introduced.
The distribution of the MMSE score among subjects of the Pitt Corpus

is shown in Figure 3.7.

The composition of the 3 final datasets after the exclusion criteria are
summarized in Tables 3.2 and 3.3. In Table 3.2, each row corresponds
to a specific dataset whereas on the columns, the number of subjects
contained in each group of cognitive decline is specified. In Table 3.3, for
each group, mean and standard deviation of age, years of education and

MMSE are reported, as well as the ratio between men and women.
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Table 3.2: Summary of the composition of the datasets - numerosity for

each group
Group 1 | Group 2 | Group 3 | Total
ITALY 44 45 44 133
SPAIN 43 45 45 133
PITT 211 115 113 459
Table 3.3: Dataset Compositions
Dataset Group 1 | Group 2 | Group 3
Age(years)* 76,6 (4,9) | 82,8 (4,6) | 86 (5,7)
Men /Female 6/39 11/33 7/37
ITALY
Years of education® | 12,4 (3,6) | 8,7 (4,3) | 7,4 (4,5)
MMSE* 29 (1) 24 (2) 16 (3)
Age(years)* 79,7 (7,5) | 82,4 (6,9) | 85,5 (6,6)
Men /Female 22/21 9/36 17/28
SPAIN
Years of education® | 6 (4,2) 5 (3,2) 6,3 (3,9)
MMSE* 28 (1) 23 (2) 7(2)
Age(years)* 64,6 (8,3) | 71,2 (8,4) | 72,1 (8,4)
Men/Female 89/122 40/75 40/73
PITT
Years of education® | 14 (2,6) | 12,7 (2,9) | 11,8 (2,7)
MMSE* 29 (1) 23 (2) 15 (4)
*. Mean (standard deviation)
3.3. Analysis of time scales for feature ex-

traction

In the previous work, features were computed considering the whole
length of the audio signals, that lasted on average 2 minutes each [20].
Thanks to the outburst of telemonitoring, the monitoring and delivering
of therapy at a distance in an automatic way is frequently employed and
its use is constantly increasing. In this context, it would be useful, in the

near future, to develop a mobile app for automatic real-time acquisition
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of voice features. Therefore, in order to compute the features through an
app, there would be the need to reduce computational cost by computing
features on smaller time scales. Hence, it was analyzed how machine
learning performances change when extracting features at different time
scales, to find the optimal time interval. Recordings have been divided in
segments of a pre-defined length on which features were computed. The
process has been done by considering the duration of segments in the
range between 5 and 15s with a 5s step. As a result, 9 different starting
datasets were obtained (3 datasets from the Italian dataset, 3 from the
Spanish one and 3 from the Pitt Corpus). Moreover, a further analysis
was carried out, by considering datasets in which the features computed

at different scales were considered altogether.

In order to reduce noise, for each one of the features mean and stan-
dard deviation or median and interquartile range have been computed
over the 4 recordings, depending on whether their distribution was nor-
mal or not. In this way, in the final dataset each subject is represented by
a single entry. Therefore, a normality distribution check for each feature
was carried out through Matlab by performing the Anderson-Darling test
(adtest).

3.3.1. Anderson-Darling Test

The Anderson-Darling test is commonly used to test whether a data
sample comes from a normal distribution. It measures the distance be-
tween the hypothesized distribution (i.e. normal), F'(x), and the empir-

ical cumulative distribution function (cdf) F,(z) as
/ (Fo(z) — F(2))*w(x)dF(z) (3.2)

over the ordered sample values 1 < x5 < ... < x,,, where w(x) is a weight
function and n is the number of data points in the sample. The weight

function for the Anderson-Darling test is

w(z) = [F(z)(1-F(x))] (3:3)
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that places higher weight on the observations in the tails of the distri-
bution. In this way, the test is more sensitive to outliers and better at
detecting deviation from normality in the tails of the distribution [46].

In adtest, the decision to reject or not the null hypothesis is based on
comparing the p-value for the hypothesis test with the specified signifi-
cance level, not on comparing the test statistic with the critical value.

Normality check was done for each dataset and for each patient and in
the end the feature distribution was considered normal if in the majority

of the patients it presented that specific nature.

3.4. Data Normalization

The extracted features in Matlab were used for the aforementioned
three tasks (binary and multiclass classification, and regression). To
reduce computational cost and improve models’ performances, data were
pre-processed in Python. In particular, each feature was normalized and
rescaled in the range [0,1]. Considering x as a single feature, the following

transformation has been applied:

r — min(x)

(3.4)

Fscaled = max(z) — min(x)

From previous studies, it has been demonstrated that age, sex, and
years of education are strong indicators of cognitive level, but in an aim
of monitoring cognitive decline over time, it was chosen to study if the
results obtained only with acoustic features were similar to those obtained
with demographic characteristics as well. Therefore, each dataset was

tested twice, considering:
e Dataset 1 — only acoustic features

e Dataset 2 — acoustic features, plus age, sex and years of education
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3.5. Classification tasks

Classification was evaluated with the following 2 strategies:
e Binary classification
e Multiclass classification

Binary classification was performed to distinguish between Group 1 (no
cognitive decline) and Group 2 (Mild cognitive decline), to evaluate the
capability of the model to detect early stages of dementia. Multiclass
classification between the three classes was implemented considering the
One vs All technique.

To perform classification, the following standard Machine Learning clas-

sifiers were applied:
e Logistic regression (LR)
e Support Vector Machines (SVC)
e CatBoost (CATBOOST)

Each classifier was implemented in Python using the Scikit-learn libraries
and catboost library and trained and validated on each one of the afore-
mentioned datasets [47, 48|.

The performances of the different classifiers were compared in terms
of Fl-score. Moreover, accuracy, recall, and precision were measured on
the test set. Accuracy is the proportion of correct outcomes, therefore
the sum of true positives (TP) and true negatives (TN), among the total

number of cases examined:

TP +TN
TP+TN+ FP+ FN

Accuracy = (3.5)

where FP = False Positive and FN = False Negative.

Recall is also defined the true positive rate or sensitivity and it repre-

sents the proportion of correctly-predicted positive instances with respect
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to the total positive instances:

TP
R@CCL” = m—m (36)

Precision instead descibes the quality of a positive prediction made
by the model, thus it is the proportion of true positives with respect to
the total number of positive predictions.

TP

Precision = 7—'P—|——F1P (37)

F1 score summarizes contribution of precision and recall since it is
calculated as their harmonic average:
2T P

jall _ .
T TP Y FP+ FN (3.8)

It is important to stress that in the case of multi-class classification,
the true positive condition is associated to one specific class and the true

negative one to the other two.

3.6. Regression analysis

Regression was applied in order to predict the MMSE score. In this
case, the target variable is not considered categorical, instead continuous.

The following standard Machine Learning regressors were applied:
e Ridge Regression
e Support Vector Regressor (SVR)
e CatBoost Regressor

Regression performances were evaluated by computing mean absolute

error (MAE), which compares the predicted versus the observed value by
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calculating the average absolute difference between the two.
o ly: —
MAE = =t 3.9
; N (3.9)

where y; is the i-th observation (the true value) and g; is the i-th pre-
dicted value of the total N samples.

Moreover, for the test set, root mean squared error (RMSE) was com-
puted. RMSE represents the square root of the second sample moment

of the differences between predicted values and observed values.

RMSE = \/ zfil(%_ o)’ (3.10)

Due to the relatively small number of subjects involved, to obtain
a more robust testing, both classification and regression algorithm were
validated with Nested 10-fold Cross-Validation procedure.
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4: Experiments and results

In this Chapter, the results of this thesis are illustrated, from the
perspective of the performances of the selected subsets in the machine
learning tasks. For each dataset, results of binary classification, multi-
class classification, and MMSE regression are presented. For each task,
two summary tables compare all the employed models. The first one is
related to the dataset in which only acoustic features are considered and
the latter refers to the one that considers the acoustic features, plus age,

sex, and years of education of each patient.

4.1. Italian Dataset

4.1.1. Binary classification

The performance of binary classification models in dividing Italian-
speaking subjects between group 1 and group 2 is shown in Tables 4.1 and
4.2. The models were applied on datasets of features computed at 5, 10,
and 15s and then on the dataset with the features at the different time
scales altogether. The comparison was carried out in terms of Fl-score
on the validation sets and when the performances were the same, the
simplest model was chosen as the best one. The choice of the best model
was carried out only by comparing the results obtained by the dataset
with the acoustic features, in an aim to employ these algorithms for

longitudinal monitoring.
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Table 4.1: Classification - Binary settings - Only Acoustic Features -

Italy
Time segment Accuracy Recall F1-score
5 0,78 (£0,02) 0,76 (£0,05) 0,76 (£0,03)
10 0,78 (+0,02) 0,76 (£0,02) 0,76 (+0,03)
CATBOOST
15 0,77 (£0,03) 0,74 (£0,05) 0,77 (£0,03)
5-10-15 0,77 (£0,03) 0,74 (£0,04) 0,74 (%0, 03)
5 0,73 (£0,02) 0,70 (£0,04) 0,71 (£0,03)
10 0,71 (£0,03) 0,65 (£0,04) 0,67 (£0,04)
SVM
15 0,68 (£0,03) 0,58 (£0,04) 0,63 (%0, 05)
5-10-15 0,71 (£0,04) 0,68 (£0,06) 0,68 (£0,05)
5 0,74 (£0,03) 0,68 (£0,04) 0,71 (£0,04)
LR 10 0,72 (£0,02) 0,66 (£0,03) 0,69 (£0,04)
15 0,72 (£0,03) 0,63 (£0,04) 0,68 (£0,04)
5-10-15 0,72 (£0,03) 0,67 (£0,04) 0,69 (£0,03)

Table 4.2: Classification - Binary settings - Acoustic Features with

Demographic Information - Italy

Time segment Accuracy Recall F1l-score
5 0,84 (£0,04) 0,83 (£0,05) 0,83 (£0,03)
10 0,84 (+0,02) 0,82 (4+0,03) 0,83 (40,04)
CATBOOST
15 0,84 (+0,02) 0,83 (+0,04) 0,83 (+0,02)
5-10-15 0,82 (+0,03) 0,78 (£0,04) 0,80 (£0,02)
5 0,78 (£0,01) 0,73 (£0,02) 0,76 (£0,03)
10 0,75 (+0,04) 0,70 (£0,04) 0,73 (£0,04)
SVM
15 0,78 (£0,04) 0,73 (£0,04) 0,76 (£0,04)
5-10-15 0,74 (£0,04) 0,70 (£0,05) 0,71 (£0,04)
5 0,79 (£0,03) 0,74 (£0,03) 0,76 (£0,04)
LR 10 0,77 (£0,03) 0,70 (£0,03) 0,74 (£0,04)
15 0,78 (£0,03) 0,71 (£0,04) 0,76 (£0,04)
5-10-15 0,76 (+0,03) 0,71 (£0,03) 0,74 (£0,03)

Performances on the validation set are similar, regardless of the time
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scale of the features. Overall, CatBoost achieves the best accuracy, re-
call, and Fl-score. In particular, the best model is CatBoostClassifier
with the features computed at 15s which in validation reaches 77% both
in accuracy and Fl-score, and on the test set, it achieves 71% and 66%,
respectively in accuracy and F1-score, as it can be seen in Table 4.3. Ta-
ble 4.2 confirms the results from literature that states that performances
of the models indeed improve when the demographic information is added

to the acoustic feature set, reaching even 84% with CatBoostClassifier.

Table 4.3: Classification - Binary settings - Performance on test set -

Ttaly
Time segment Model Accuracy Precision Recall F1l-score
15 CATBOOST 0,71 0,74 0,63 0,66

35

30

True label

- 20

- 15

Predicted label

Figure 4.1: Classification - Binary settings - Confusion Matrix on test
set - Italy
Class 1 represents Group 1 subjects (MMSE>26) and Class 2 represents
Group 2 subjects (20< MMSE<26).



48

mean_F3std
median_prctile85_unvoiced parts
mean_speech _temporal_regularity
mean_mean_centroid
std_articulationRate
igr_mean_unvoiced parts
mean_speechRate
median_mean_interSyll
std_speechRate
std_mean_pauses_duration
std_shimmer

mean_unvoiced percentage
std_phonationPercentage
median_median_unvoiced parts
igr_pauses
mean_voice_breaks_total
mean_phonationPercentage
std_prctile85_voiced_parts
median_prctilel5 unvoiced parts

igr_prctilel5_unvoiced_parts

4| Experiments and results

1 ‘I.I‘ﬂ ilt‘.*l ssoe ff T snlf meshimrsss T .
o oo pibin A A L
t ool o |wtrduas vgead
. --|MH-I-I.- afan . .

| olfs wlBlF oo 'ﬂ*‘iﬁ

| T Y

.‘._...n.....

cPlora e .

=/ (LT

—[;.4 —C;'.E I:I.ID D.I2 EI.I4 D.IEL
SHAP value (impact on model output)

Figure 4.2: Classification - Binary settings - Feature ranking - Italy

The confusion matrix of the best model - CatBoostClassifier - with fea-

tures computed on 15s segments- shown in Figure 4.1 confirms the good

performances stated by the metrics.

From the feature ranking in Figure 4.2, it can be seen that the most dis-

criminating features are the standard deviation of the 3" formant (the

tonal modulation of the voice), the number of voiced parts, temporal

regularity, and the the speech and articulation rate. In particular, lower

values of F3 and articulation rate suggest a subject with no cognitive

impairment. On the contrary, low values of speech temporal regularity

suggest that the subject has mild cognitive impairment, which is in line

with the literature [42].

High

Feature value
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4.1.2. Multiclass classification

The performance of multiclass classification models in discriminating
subjects in the 3 groups is shown in Tables 4.4 and 4.5. The models
were applied on datasets of features computed at 5-10 and 15s and then
on the dataset with the features computed at the different time scales
altogether. The comparison was carried out in terms of Fl-score on the
validation sets and when the performances were the same, the simplest
CatBoost overall obtains the best

results for all the time scales. The model with all the features computed

model was chosen as the best one.

at 5-10-15s altogether is the one that performs better with an F1l-score
of 64% on the validation set.

Table 4.4: Classification - Multiclass settings - Only Acoustic Features -

Ttaly
Time segment  Accuracy Recall F1-score
5 0,66 (+0,02) 0,66 (£0,02) 0,63 (0,02)
10 0,66 (+0,02) 0,67 (+0,02) 0,63 (+0,02)
CATBOOST
15 0,65 (+£0,02) 0,65 (£0,02) 0,62 (0,02)
5-10-15 0,65 (+£0,03) 0,65 (£0,03) 0,64 (£0,03)
5 0,53 (£0,03) 0,53 (£0,02) 0,50 (%0, 03)
10 0,52 (£0,05) 0,52 (£0,05) 0,49 (£0,04)
SVM
15 0,52 (+£0,03) 0,52 (£0,03) 0,48 (+0,02)
5-10-15 0,52 (£0,03) 0,52 (£0,03) 0,50 (%0, 05)
5 0,54 (£0,03) 0,54 (£0,03) 0,51 (£0,03)
LR 10 0,54 (£0,03) 0,54 (£0,03) 0,51 (%0,03)
15 0,55 (£0,02) 0,55 (£0,02) 0,51 (£0,02)
5-10-15 0,54 (£0,02) 0,54 (£0,02) 0,52 (£0,04)
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Table 4.5: Classification - Multiclass settings - Acoustic Features with

Demographic Information - Italy

Time segment  Accuracy Recall F1-score
5 0,69(+0,02) 0,69 (+0,02) 0,67 (£0,01)
10 0,66 (£0,02) 0,67 (£0,02) 0,63 (£0,02)
CATBOOST
15 0,65 (+0,02) 0,65 (£0,02) 0,62 (£0,02)
5-10-15 0,68 (+0,03) 0,69 (£0,03) 0,66 (+0,03)
5 0,59 (+0,02) 0,59 (£0,02) 0,56 (£0,03)
10 0,66 (+0,04) 0,56 (£0,04) 0,53 (£0,04)
SVM
15 0,60 (+0,03) 0,60 (£0,03) 0,56 (+0,03)
5-10-15 0,55 (£0,03) 0,55 (£0,03) 0,53 (%0, 05)
5 0,59 (£0,03) 0,59 (£0,03) 0,56 (£0,03)
LR 10 0,69 (+0,03) 0,70 (+0,03) 0,68 (£0,03)
15 0,65 (£0,02) 0,65 (£0,02) 0,62 (£0,02)
5-10-15 0,55 (+0,03) 0,55 (£0,03) 0,53 (£0,04)

From Table 4.5, it can be seen that the information about age, sex,
and years of education indeed improves the model performances, mainly
increasing the metrics of the simpler models, obtaining high recall (70%)

and F'l-score even with Logistic Regression.

Table 4.6: Classification - Multiclass settings - Performance on test set

- Ttaly
Time segment Model Accuracy Precision Recall F1l-score
5-10-15 CatBoost 0,66 0,68 0,66 0,63
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Figure 4.3: Classification - Multiclass settings - Confusion Matriz on
test set - Italy
Class 1 represents Group 1 subjects (MMSE>26), Class 2 represents
Group 2 subjects (20< MMSE<26) and Class 3 represents Group 3
subjects (MMSE>26).

In Table 4.6, all the metrics - i.e. accuracy, precision, recall, and F1-
score - of the performance on the test set of the best model are shown.
From validation to test set, metrics do not change much suggesting that
there is no overfitting, with a good generalization power, although the
large number of features. On the test set, considering that the prediction
was between 3 classes (hence if a model predicted the outcomes in a ran-
dom way 33% in accuracy would be expected), performances were good
obtaining 66% in accuracy. From the confusion matrix in Figure 4.3 it
can be seen that healthy patients and subjects with a severe cognitive
impairment can be well distinguished, whereas the group with mild de-

mentia tends to be confused, but overall they are correctly predicted.
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Figure 4.4: Classification - Multiclass settings - Feature ranking - Italy

The ranking in Figure 4.4 shows that the most significant features are

mainly estimated on 5 and 15s segments. In this case, the most discern-

ing ones are related to the speed of speech, in particular, the variation of

the percentage of syllables in the time window and the mean number of

syllables per second, which have a great contribution to predicting group

1 (healthy) subjects and group 3 (high cognitive impairment) subjects.

Instead, the most informing feature for group 2 (mild cognitive impair-

ment) subjects is the speech temporal regularity computed on segments
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of 15s.

4.1.3. Regression analysis

The performance of regression models for predicting MMSE scores
among the Italian-speaking participants is shown in Table 4.7. Dataset 1
corresponds to the dataset with only acoustic features; dataset 2 instead
represents the dataset with the addition of age, sex, and years of educa-
tion. The models were applied on datasets of features computed at 5-10
and 15s and then on the dataset with the features at the different time
scales altogether. The comparison was carried out in terms of mean ab-
solute error on the validation sets, in order to reduce the error between
the predicted value and the real target. When the performances were
the same, the simplest model was chosen as the best one. The errors ob-
tained were similar overall, slightly worse with Support Vector Regressor
(SVR) with respect to the other two models. However, Ridge Regression
(LR in Table, since it is a Linear Regression) with features computed at
15s proves to be the best model, achieving a mean absolute error of 3,46
in the validation set. In this case, a simpler model performs not only in
a comparable way, but better than a much more complex model such as
CatBoost.

Table 4.7: Regression - MMSE prediction - Italy

Time segment CATBOOST SVR LR

5 3,52 3,75 3,65

Dataset 1 10 3,01 3,68 3,66
15 3,47 3,50 3,46

5-10-15 3,48 3,92 3,62

5 3,40 3,77 3,49

Dataset 2 10 3,39 3,80 3,57
15 3,33 352 3,37

5-10-15 3,42 401 351

Mean absolute error in predicting MMSE score (range 0-30)
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Table 4.8: Regression - MMSE prediction - Performance on test set -

Italy
Time segment Model MAE RMSE
15 RIDGE REGRESSION 3,39 4,16
0.08 ~
0.06
5

0.04 4
0.02 4
0.00 T T T T T T T T

-15 -10 =5 0 5 10 15 20

Figure 4.5: Regression - MMSE prediction - Density plot of residuals on
test set - Italy

In Table 4.8, the mean absolute error and root mean absolute error
of the performance of the best model on the test set are shown, achieving
for the former 3,39 and the latter 4,16. The improvement - decrease -
in the mean absolute error from validation to test shows that the model

does not overfit, thus having a good generalization power.

Although in Figure 4.5 residuals have quite a normal distribution
overall, the boxplot of residuals in Figure 4.7 suggests that there is a
slight polarization, especially for the lower scores to be predicted that
should need further investigation, which is confirmed by the density plot

in Figure 4.6.
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Figure 4.6: Regression - MMSE prediction - Density plot of residuals

per class on test set - Italy
Group 3 corresponds to the plot of residuals in predicting subjects with
MMSE<20, Group 2 to residuals obtained when predicting scores of the
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Figure 4.7: Regression - MMSE prediction - Box-plot of residuals on
test set - Italy
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Figure 4.8: Regression - MMSE prediction - Feature ranking - Italy

As for binary classification, in Figure 4.8 it can be seen that the most
informant features are the 3" formant and speech temporal regularity,
as well as information about the number of pauses and their mean dura-
tion. In particular, as for the classification, lower values of 3"¢ formant
yield higher MMSE scores, hence no cognitive impairment, whereas lower
values of temporal regularity suggest lower scores, therefore cognitive im-

pairment.

4.2. Spanish Dataset

4.2.1. Binary classification

The performance of binary classification models in dividing Spanish-

speaking subjects between group 1 and group 2 is shown in 4.9 and 4.10.
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The models were applied on datasets of features computed at 5-10 and
15s and then on the dataset with the features at the different time scales
altogether. The comparison was carried out in terms of Fl-score on the
validation sets. Accuracy, recall, and F1-score are comparable to those
obtained in binary classification with the Italian dataset. CatBoost is
still the classifier that overall performs better, increasing performances
by 10% with respect to Support Vector Machines and Logistic Regression.
Indeed, considering the F1-score, the best model for the Spanish dataset
is CatBoost with features computed on 15s lengths, which achieves an

F1-score of 76% and an accuracy of 77%.

Table 4.9: Classification - Binary settings - Only Acoustic Features -

Spain
Time segment  Accuracy Recall F1-score
5 0,76 (+0,04) 0,76 (£0,05) 0,74 (£0,03)
10 0,76 (£0,02) 0,72 (£0,03) 0,74 (£0,03)
CATBOOST
15 0,77 (£0,03) 0,74 (£0,05) 0,76 (+0,03)
5-10-15 0,75 (£0,03) 0,69 (£0,05) 0,72 (£0,03)
5 0,63 (£0,04) 0,62 (£0,06) 0,62 (£0,04)
10 0,64 (+0,03) 0,60 (£0,05) 0,62 (£0,04)
SVM
15 0,58 (£0,04) 0,54 (£0,05) 0,55 (£0,06)
5-10-15 0,61 (£0,02) 0,63 (£0,04) 0,60 (%0, 05)
5 0,65 (£0,02) 0,67 (£0,04) 0,66 (£0,04)
LR 10 0,64 (£0,03) 0,60 (£0,04) 0,62 (£0,03)
15 0,62 (£0,04) 0,60 (£0,05) 0,60 (£0,05)
5-10-15 0,63 (+0,01) 0,61 (+0,03) 0,61 (+0,03)
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Table 4.10: Classification - Binary settings - Acoustic and Demographic

Features - Spain

Time segment  Accuracy Recall F1-score
5 0,76 (+£0,03) 0,74 (£0,04) 0,75 (£0,04)
10 0,76 (+0,02) 0,72 (£0,05) 0,74 (£0,04)
CATBOOST
15 0,75 (£0,03) 0,70 (£0,04) 0,72 (£0,03)
5-10-15 0,75 (+£0,03) 0,70 (£0,06) 0,73 (£0,03)
5 0,63 (£0,03) 0,66 (£0,05) 0,64 (£0,05)
10 0,63 (£0,02) 0,64 (£0,03) 0,62 (£0,03)
SVM
15 0,62 (£0,04) 0,62 (£0,05) 0,61 (£0,05)
5-10-15 0,61 (£0,04) 0,62 (£0,04) 0,61 (£0,05)
5 0,65 (£0,03) 0,68 (£0,05) 0,66 (£0,03)
LR 10 0,66 (+0,03) 0,63 (£0,04) 0,64 (£0,04)
15 0,65 (£0,03) 0,65 (£0,03) 0,65 (£0,03)
5-10-15 0,62 (£0,02) 0,65 (£0,04) 0,60 (£0,03)

Table 4.11: Classification - Binary settings - Performance on test set -

Spain
Time segment Model Accuracy Precision Recall Fl-score
15 CATBOOST 0,69 0,72 0,70 0,69

In Table 4.11, all the indicators of the performance on the test set of
the best model are shown.
On the test set performances worsen slightly achieving an accuracy of
69% and an Fl-score of 69% as well, thus slightly overfitting, anyway by
looking at the confusion matrix on the test set in Figure 4.9, it can be seen
that the algorithm still performs well, succeeding in the discrimination

between the two classes.
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Figure 4.9: Classification - Binary settings - Confusion Matrix on test

set - Spain
Class 1 represents Group 1 subjects (MMSE>26) and Class 2 represents
Group 2 subjects (20< MMSE<26).
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Figure 4.10: Classification - Binary settings - Feature ranking - Spain
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In Figure 4.10, it can be seen that for the Spanish dataset, the most
significant features are different than the ones from the Italian dataset,
highlighting indeed there is high variability in acoustic features among
languages. In this case, the most discriminating ones are the variation of
the duration of pauses, the duration between syllables, and the variation
of shimmer (changes in amplitude of vibration of the vocal fold). In
particular, low values of these features suggest healthy subjects, whereas

higher values are noticed in subjects with mild cognitive impairment.

4.2.2. Multiclass classification

The performance of multiclass classification models in discriminat-
ing Spanish-speaking subjects among the three groups is shown in Ta-
bles 4.12 and 4.13. The models were applied on datasets of features
computed at 5-10 and 15s and then on the dataset with the features at
the different time scales altogether. The choice of the best model was
carried out in terms of Fl-score on the validation sets and when the per-
formances were the same, the simplest model was chosen as the best one.
CatBoost overall has higher accuracy, recall, and F1-score with respect
to the other two models. In Table 4.13, the performances of the dataset
with the addition of age, sex, and years of education do not improve
much. Considering only the datasets with acoustic features, in an aim of
longitudinal monitoring, with an accuracy of 64% and F1l-score of 62%,

the best model is CatBoost with features computed on 15s segments.
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Table 4.12: Classification - Multiclass settings - Only Acoustic Features

- Spain
Time segment  Accuracy Recall F1-score
5 0,64 (+0,02) 0,64 (£0,02) 0,62 (£0,02)
10 0,62 (£0,03) 0,63 (£0,03) 0,61 (£0,03)
CATBOOST
15 0,64 (+0,03) 0,64 (+0,02) 0,63 (£0,03)
5-10-15 0,65 (£0,03) 0,64 (£0,03) 0,62 (£0,03)
5 0,51 (£0,03) 0,51 (£0,02) 0,50 (£0,03)
10 0,52 (+0,03) 0,52 (£0,03) 0,50 (£0,03)
SVM
15 0,50 (£0,03) 0,51 (£0,03) 0,49 (£0,03)
5-10-15 0,51 (£0,02) 0,51 (£0,02) 0,49 (£0,05)
5 0,54 (£0,02) 0,54 (£0,02) 0,54 (£0,02)
LR 10 0,53 (£0,02) 0,53 (£0,02) 0,51 (£0,02)
15 0,52 (£0,03) 0,52 (£0,03) 0,50 (%0, 02)
5-10-15 0,51 (£0,03) 0,51 (£0,03) 0,50 (£0,05)

Table 4.13: Classification - Multiclass settings - Acoustic Features with

Demographic Information - Spain

Time segment  Accuracy Recall F1-score
5 0,65(+0,03) 0,65 (£0,03) 0,64 (£0,03)
10 0,64 (£0,03) 0,64 (£0,03) 0,63 (£0,03)
CATBOOST
15 0,64 (£0,03) 0,64 (£0,03) 0,63 (+0,03)
5-10-15 0,65 (£0,03) 0,66 (£+0,03) 0,64 (+0,03)
5 0,53 (+0,02) 0,54 (£0,02) 0,52 (%0, 03)
10 0,52 (£0,03) 0,52 (£0,03) 0,51 (£0,04)
SVM
15 0,53 (£0,02) 0,53 (£0,02) 0,52 (£0,03)
5-10-15 0,51 (£0,02) 0,51 (£0,02) 0,49 (+0,05)
5 0,52 (£0,03) 0,57 (£0,03) 0,57 (£0,03)
LR 10 0,54 (£0,02) 0,54 (£0,02) 0,53 (£0,02)
15 0,55 (£0,03) 0,55 (£0,03)  0,54(=£0,02)
5-10-15 0,54 (£0,02) 0,54 (£0,02) 0,52 (£0,04)
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Table 4.14: Classification - Multiclass settings - Performance on test set

- Spain
Time segment Model Accuracy Precision Recall F1l-score
15 CATBOOST 0,55 0,56 0,54 0,53

25

True label

- 10

T —-5
1 2 3

Predicted label

Figure 4.11: Classification - multiclass settings - Confursion matriz of

test set - Spain
Class 1 represents Group 1 subjects (MMSE>26), Class 2 represents
Group 2 subjects (20< MMSE<26) and Class 3 represents Group 3
subjects (MMSE>26).

In Table 4.14, all the indicators of the performance on the test set
of the best model are shown. On the test set, the model yields an accu-
racy of 55%, thus, unfortunately, showing overfitting. By looking at the
confusion matrix in Figure 4.11, it can be seen that the model mainly
struggles to distinguish between group 1 (healthy subjects, class 1 in the

figure) and group 2 subjects (mild cognitive impairment subjects, class
2 in the figure).
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Figure 4.12: Classification - multiclass settings - Feature ranking - Spain

The feature ranking in Figure 4.12 shows that the most important
features are the duration of syllables and the time interval between them
- as for the binary classification - as well as the mean percentage of

syllables among the audio segments, i.e. the phonation percentage.

4.2.3. Regression analysis

The performance of regression models for predicting MMSE scores
among the Spanish-speaking participants is shown in Table 4.15. Dataset
1 corresponds to the dataset containing only acoustic features, whereas
Dataset 2 is the one with the addition of age, sex, and years of education.
The models were applied on datasets of features computed at 5-10 and
15s and then on the dataset with the features at the different time scales

altogether. The comparison was carried out in terms of minimization of
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mean absolute error on the validation sets and when the performances

were the same, the simplest model was chosen as the best one. Overall,

CatBoost and Ridge Regression (in Table 4.15 referenced as LR, since it

is a Linear Regression) performed better than Support Vector Machines.

Moreover, the addition of the demographic features in Dataset 2 shows an

improvement in the mean absolute error for all three regressors. Anyway,

considering only the performances of the acoustic features alone, the

best model is CatBoost with features computed on 5s segments, which

achieves a mean absolute error of 3,57 on the validation set.

Table 4.15: Regression - MMSE prediction - Spain

Time segment CATBOOST SVR LR

5 3,57 4,19 3,78

Dataset 1 10 3,67 4,20 3,76
15 3,70 4,19 3,79

5-10-15 3,64 451 3,97

5 3,54 3,97 3,57

Dataset 2 10 3,59 3,93 3,62
15 3,58 3,78 3,58

5-10-15 3,55 4,03 3,68

Mean absolute error in predicting MMSE score (range 0-30)

Table 4.16: Regression - MMSE prediction - Performance on test set -

Spain

Time segment Model MAE RMSE

5 CATBOOST 3,70

4,50

In Table 4.16, mean absolute error and root mean squared error ob-

tained with CatBoostRegressor on the test set are shown, respectively

3,70 and 4,50.
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Figure 4.13: Regression - MMSE prediction - Density plot of residuals

on test set - Spain
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Figure 4.14: Regression - MMSE prediction - Density plot of residuals
on test set - Spain
Group 3 corresponds to the plot of residuals in predicting subjects with
MMSE<20, Group 2 to residuals obtained when predicting scores of the
subjects with 20< MMSE<26, and Group 1 to the distribution of
residuals when predicting subjects with MMSFE> 26
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Figure 4.15: Regression - MMSE prediction - Box-plot of residuals on
test set - Spain

By looking at the density plot of the residuals in Figure 4.13, overall
residuals have a normal distribution, but more in-depth, in the density
plot per class in Figure 4.13 it can be seen that the model tends to
overestimate the lower scores and underestimates the higher ones. This
trend is confirmed by the boxplots of the residuals per score in Figure
4.15, as well.
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Figure 4.16: Regression - MMSE prediction - Feature ranking - Spain

Feature ranking in Figure 4.16 corroborates the previously shown
feature rankings of the other two tasks (binary and multiclass classifica-
tion) since it can be seen that the most important features are still the
phonation percentage, shimmer, and the duration between the syllables.
Higher values of shimmer tend to predict lower scores, whereas higher
values of phonation percentage suggest higher scores, results that are

consistent with the ranking seen in Figure 4.10.

4.3. Pitt Corpus

4.3.1. Binary classification

The performance of binary classification models in dividing English-

speaking subjects between group 1 and group 2 is shown in Tables 4.17 and 4.18.



68 4| Experiments and results

Table 4.17: Classification - Binary settings - Only Acoustic Features -
Pitt Corpus

Time segment  Accuracy Recall F1-score
5 0,73 (£0,02) 0,66 (+0,04) 0,64 (£0,04)
10 0,72 (£0,01) 0,70 (£0,06) 0,63 (£0,04)
CATBOOST
15 0,72 (+0,02) 0,68 (£0,03) 0,63 (£0,04)
5-10-15 0,73 (£0,02) 0,68 (£0,04) 0,63 (£0,03)
5 0,64 (£0,01) 0,62 (£0,07) 0,55 (£0,04)
10 0,66 (+0,01) 0,49 (£0,08) 0,58 (£0,01)
SVM
15 0,68 (+£0,01) 0,62 (£0,05) 0,55 (£0,06)
5-10-15 0,66 (£0,01) 0,46 (£0,05) 0,41 (£0,05)
5 0,65 (£0,01) 0,51 (£0,04) 0,54 (£0,06)
LR 10 0,62 (+£0,06) 0,45 (£0,04) 0,42 (£0,05)
15 0,55 (£0,03) 0,55 (£0,03)  0,54(40,02)
5-10-15 0,67 (+£0,01) 0,41 (£0,03) 0,45 (£0,04)

Table 4.18: Classification - Binary settings - Acoustic Features with

Demographic Information - Pitt Corpus

Time segment  Accuracy Recall F1-score
5 0,76 (+£0,03) 0,74 (£0,04) 0,75 (£0,04)
10 0,76 (£0,02) 0,72 (£0,05) 0,74 (£0,04)
CATBOOST
15 0,76 (£0,02) 0,68 (£0,03) 0,67 (£0,05)
5-10-15 0,76 (+0,02) 0,71 (+0,04) 0,68 (+0,05)
5 0,63 (£0,03) 0,66 (£0,05) 0,64 (£0,05)
10 0,63 (£0,02) 0,64 (£0,03) 0,62 (£0,03)
SVM
15 0,71 (£0,01) 0,40 (£0,04) 0,47 (£0,05)
5-10-15 0,70 (£0,04) 0,43 (£0,03) 0,59 (£0,05)
5 0,65 (£0,03) 0,68 (£0,05) 0,66 (£0,03)
LR 10 0,66 (£0,03) 0,63 (£0,04) 0,64 (£0,04)
15 0,71 (£0,01) 0,67 (£0,05) 0,46 (£0,05)
5-10-15 0,71 (£0,01) 0,41 (£0,01) 0,49 (£0,03)
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Table 4.19: Classification - Binary settings - Performance on test set -
Pitt Corpus

Time segment Model Accuracy Precision Recall F1l-score

5 CATBOOST 0,67 0,55 0,52 0,52

The models were applied on datasets of features computed at 5-10
and 15s and then on the dataset with the features at the different time
scales altogether. The comparison was carried out in terms of F1l-score
on the validation sets and when the performances were the same, the
simplest model was chosen as the best one. CatBoost has slightly bet-
ter accuracy with respect to Support Vector and Logistic Regression,
whereas in recall and F1-score it has much better scores. In the end, the
model with the best performance on the validation set is indeed CatBoost
with features computed on segments of 5s, providing an accuracy of 73%
and Fl-score of 64%.

Overall the addition of demographic information in Table 4.18 mainly
improves accuracy, recall, and Fl-score, although, in Support Vector
Machines with features computed at 15s, it can be seen that recall and

F1-score worsen, as if the addition of new features confuses the algorithm.
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Figure 4.17: Classification - Binary settings - Confusion Matrixz on test
set - Pitt Corpus
Class 1 represents Group 1 subjects (MMSE>26) and Class 2 represents
Group 2 subjects (20< MMSE<26).

In Table 4.19, accuracy, precision, recall, and Fl-score of the per-
formance on the test set of the best model are shown. On the test set
accuracy, recall, and Fl-score lower, to 67%, 52%, and 52% respectively,
struggling to predict the subjects with mild cognitive impairment, as
can be seen in Figure 4.17. This phenomenon may be explained by the

strong imbalance between the 2 classes (211 subjects in group 1 versus
115 subjects in group 2).
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Figure 4.18: Classification - Binary settings - Feature ranking - Pitt

Corpus

Feature ranking in Figure 4.18 shows that the most important fea-
tures are those related to the number of pauses, and those related to the
syllables, i.e. the phonation percentage, articulation rate, and speech
rate. In particular, for these last three features, higher values (hence
a higher speed in speech) encode healthy subjects, whereas lower speed

suggests a mild impairment.

4.3.2. Multiclass classification

The performance of multiclass classification models in discriminat-
ing English-speaking subjects among the three groups is shown in Ta-
bles 4.20 and 4.21. The first one corresponds to the dataset with only

acoustic features, whereas the latter considers the dataset with the addi-
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tion of demographic information. The models were applied on datasets
of features computed at 5-10 and 15s and then on the dataset with the
features at the different time scales altogether. The comparison was
carried out in terms of F1-score on the validation sets and when the per-
formances were the same, the simplest model was chosen as the best one.
Moreover, the best model was chosen by considering the performances
obtained with acoustic features only, to evaluate the capability of the
models to be applied for longitudinal monitoring. The addition of demo-
graphic information does not improve much the prediction between the
three groups, confirming that it is possible to obtain good classification
performances with acoustic features only, hence good performance on lon-
gitudinal monitoring. As in the binary classification, the best model was
CatBoost which reached an accuracy of 64% and an Fl-score of 62% on

the validation set, with the dataset with features computed on segments
of 5s.

Table 4.20: Classification - Multiclass settings - Only Acoustic Features
- Pitt Corpus

Time segment  Accuracy Recall F1-score
5 0,64 (£0,02) 0,64 (£0,02) 0,62 (£0,02)
10 0,62 (£0,03) 0,63 (£0,03) 0,61 (£0,03)
CATBOOST
15 0,64 (+0,03) 0,64 (+0,02) 0,63 (£0,03)
5-10-15 0,65 (£0,03) 0,64 (£0,03) 0,62 (£0,03)
5 0,51 (£0,03) 0,51 (£0,02) 0,50 (£0,03)
10 0,52 (+0,03) 0,52 (£0,03) 0,50 (£0,03)
SVM
15 0,50 (£0,03) 0,51 (£0,03) 0,49 (+0,03)
5-10-15 0,49 (£0,04) 0,49 (£0,04) 0,48 (£0,05)
5 0,54 (£0,02) 0,54 (£0,02) 0,54 (£0,02)
LR 10 0,53 (£0,02) 0,53 (£0,02) 0,51 (+0,02)
15 0,52 (£0,03) 0,52 (£0,03) 0,50 (£0,02)
5-10-15 0,51 (£0,03) 0,51 (£0,03) 0,50 (£0,05)
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Table 4.21: Classification - Multiclass settings - Acoustic Features and

Demographic Information - Pitt Corpus

Time segment Accuracy Recall F1-score
5 0,65(+0,03) 0,65 (+0,03) 0,64 (£0,03)
10 0,64 (£0,03) 0,64 (£0,03) 0,63 (+0,03)
CATBOOST
15 0,64 (£0,03) 0,64 (£0,03) 0,63 (£0,03)
5-10-15 0,64 (£0,03) 0,64 (£0,03) 0,63 (£0,03)
5 0,53 (£0,02) 0,54 (£0,02) 0,52 (+0,03)
10 0,52 (£0,03) 0,52 (£0,03) 0,51 (0,04)
SVM
15 0,53 (£0,02) 0,53 (£0,02) 0,52 (+0,03)
5-10-15 0,51 (£0,02) 0,51 (£0,02) 0,49 (£0,05)
5 0,57 (£0,03) 0,57 (£0,03) 0,56 (+0,03)
LR 10 0,54 (£0,02) 0,54 (£0,02) 0,53 (£0,02)
15 0,55 (£0,03) 0,55 (£0,03)  0,54(+0,02)
5-10-15 0,54 (£0,02) 0,54 (£0,02) 0,52 (+0,04)

Table 4.22: Classification - Multiclass settings - Performance on test set

- Pitt Corpus

Model

Time segment

Accuracy Precision Recall

F1l-score

b} CATBOOST

0,49

0,46 0,46

0,45
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Figure 4.19: Classification - multiclass settings - Confursion matriz of
test set - Spain
Class 1 represents Group 1 subjects (MMSE>26) and Class 2 represents
Group 2 subjects (20< MMSE<26) and Class 3 represents Group 3
patients (MMSE<20).

In Table 4.22, all the indicators - namely accuracy, precision, recall,
and Fl-score - of the performance on the test set of the best model
are shown, highlighting that on the test set its metrics worsen, reaching
an accuracy of 49%. This value is still acceptable considering that the
prediction occurs among three classes, therefore a score indicating ran-
domness of prediction and inability to correctly classify subjects would
be around 33%. From the confusion matrix, it can still be noticed that
the algorithm struggles to correctly predict mildly impaired subjects, but
overall it correctly discriminates between healthy subjects and severely

impaired ones.
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Figure 4.20: Classification - multiclass settings - Feature ranking - Pitt

Corpus

From the feature ranking in Figure 4.20, the variation of pitch through-
out the audio recording plays a paramount role in discriminating between
healthy patients and severely impaired ones. Shimmer and variation of
speech rate, instead, mainly contribute to the prediction of the subjects

with mild cognitive decline.

4.3.3. Regression analysis

The mean absolute error obtained applying the regression models for
predicting MMSE score among the English-speaking participants is re-
ported in Table 4.23. The models were applied on datasets of features
computed at 5-10 and 15s and then on the dataset with the features at

the different time scales considered altogether. Dataset 1 corresponds to
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the dataset with only acoustic features, whereas dataset 2 corresponds
to the one with the addition of information related to age, sex, and
years of education. The comparison was carried out in terms of min-
imization of mean absolute error on the validation sets and when the
performances were the same, the simplest model was chosen as the best
one. In this case, MAEs are generally slightly higher with respect to
those seen for the Italian and Spanish datasets, reaching overall more
than 5 with dataset 1, while with dataset 2 the metric improves, proving
once again that demographic information help in the evaluation of the
MMSE score. Anyway, regarding the dataset with only acoustic features,
CatBoost with the dataset that considers the features computed at the
different scales altogether slightly improves performances, decreasing the

mean absolute error up to 4,93 on the validation set.

Table 4.23: Regression - MMSE prediction - Pitt Corpus

Time segment CATBOOST SVR LR

D 5,05 5,18 5,21

Dataset 1 10 5,06 529 5,29
15 5,06 517 5,12

5-10-15 4,93 5,53 5,18

D 4,64 473 4,72

Dataset 2 10 4,63 4,73 4,71
15 4,56 4,62 4,64

5-10-15 4,58 4,97 4,79

Mean absolute error in predicting MMSE score (range 0-30)

Table 4.24: Regression - MMSE prediction - Performance on test set -
Pitt Corpus

Time segment Model MAE RMSE
5-10-15 CATBOOST 4,27 5,47

In Table 4.16, the mean absolute error and root mean squared error of
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the performance on the test set of the best model are shown. On the test
set, the performance improves, lowering the mean absolute error (MAE)
to 4,27. Although the errors may seem high considering the scoring
range that has to be predicted - from 0 to 30 - results are perfectly
consistent with the performances obtained with this dataset by the other

participants of the challenge [38].

0.08 4

0.07

0.06

0.05

0.04

Density

0.03

0.02 A

0.01 4

0.00 - T
—-20 -10 0 10 20

Figure 4.21: Regression - MMSE prediction - Density plot of residuals
on test set - Pitt Corpus

The overall density plot of the residual in Figure 4.21 does not have

exactly a normal distribution, suggesting some bias in the results.
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—— Groupl
—— Group2
—— Group3

Figure 4.22: Regression - MMSE prediction - Density plot of residuals

on the test set per class - Pitt Corpus
Group 3 corresponds to the plot of residuals in predicting subjects with
MMSE<20, Group 2 to residuals obtained when predicting scores of the
subjects with 20< MMSE<26, and Group 1 to the distribution of
residuals when predicting subjects with MMSE> 26

"

10 3.0 5.0 7.0 8.0 9.0 100 110 12.0 130 140 150 160 17.0 180 19.0 200 210 220 23.0 240 250 26.0 27.0 280 29.0 30.0
True Value

Figure 4.23: Regression - MMSE prediction - Box-plot of residuals on
test set - Pitt Corpus
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Regarding the plot of residuals in Figures 4.23, it can be seen that it
still highly overestimates the scores of the class with severe impairment
which is confirmed in the density plot per class of the residuals in Fig-
ure 4.22, probably due to the higher range of score in this group, and the

lower numerosity for each score, but it still needs further investigation.

High
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iqr_phonationPercentage_3 . 'W' .
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iqr_mean_voiced parts 1 MH‘M'
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std_phonationPercentage 2 e g - &
median_speechRate_3 e ol -‘-
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igr speechRate 3 o el L A —
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SHAP value (impact on model output)
Figure 4.24: Regression - MMSFE prediction - Feature ranking - Pitt
Corpus

The feature ranking in Figure 4.24 confirms that in this case, the
model finds it difficult to find a good generalization rule since there is
no clear separation between feature values and their contribution to the
model. Overall, higher values of pauses between syllables (median_mean_
interSyll_2) as well as shimmer computed on the 10s segments seem to

be found in subjects with lower scores.
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5 | Discussion and
Limitations

In the context of the worldwide increase in life expectancy, and there-
fore cognitive decline in elderly people, this thesis presents the analysis
of acoustic features extracted from speech of different languages. Three
different datasets have been employed in order to evaluate the ability of
the acoustic features derived from spontaneous speech to discriminate
between different levels of cognitive decline and normal aging, regardless

of the language involved.

Similar results were achieved regardless of the time scale used for the
computation of features. This shows that there is no need for long audio
recordings and it allows to speed up computational time. Considering
the features computed at the different scales altogether does not signif-
icantly improve performances, but it should need further investigation.
Moreover, the addition of the demographic information of subjects does
improve the prediction of cognitive impairment, but not in a significant
way, and performances in the detection of cognitive decline are good even
leaving out this demographic information, hence promising good results

for an application in longitudinal monitoring.

Results highlighted that different sets of features are relevant de-
pending on the considered idiom and on the specific task. Overall, an

increase in phonation percentage, as well as speech rate in healthy sub-
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jects, is noticed in the three datasets. Shimmer is shown to be signif-
icant in Spanish-speaking subjects, highlighting that a larger variation

throughout the segments is predictive of higher cognitive impairment.

The addition of new features such as speech temporal reqularity and
mean duration of pauses highly contribute to the detection of cognitive
impairment, mainly in the Italian and Spanish datasets respectively, as
can be seen in the feature ranking plots in Figures 4.2, 4.10, and 4.8.
Moreover, speech temporal regularity confirms the trends described in
literature since lower values are shown in subjects with higher Mini-
Mental State Examination scores, therefore healthy subjects, and higher
values (hence higher values of the Mel-Frequency Cepstral Coefficients)

are seen in subjects with cognitive decline [42].

Results for the Italian dataset by considering only smaller segments
for feature extraction have obtained comparable performances to those
in [39] that evaluated instead the whole recordings of more than two min-
utes. In particular, for binary classification the best model of this work
yields on the validation set an accuracy of 77% without the addition of
age, sex and years of education, compared to the 72% achieved in [39],
whereas for multiclass classification it achieves 64% in accuracy without
the demographic information with respect to 56% in [20]. Moreover, in
this work, with nested 10-Fold CV, it was possible have an estimate on
how the model performs on unseen data, whereas in the aforementioned
work the Authors have only validated results with standard 5-fold Cross-
Validation, without estimating the model performance on unseen data.
With respect to [33], Fl-score in binary classification was lower, but, in
the case of the current work it was obtained without considering demo-
graphic features such as age and years of education, important indicators
of cognitive decline, to evaluate the possibility to employ acoustic fea-
tures for longitudinal monitoring.

Still, the models seem to overfit since performances on unseen data
worsen, thus there is the need for further investigation. The problem
may be the lack of generalization power of the model, therefore it would

be useful to implement a feature selection algorithm to keep only the
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most significant features.

Regarding the Spanish dataset, classification was performed on a
larger dataset than the one in [30], obtaining slightly worse performances
on the binary classification. Still, SHAP analysis in Figure 4.10 confirmed
that fluency is an important aspect of the evaluation of cognitive decline

from spontaneous speech.

Finally, the prediction of the Mini-Mental State Examination (MMSE)
score from acoustic features overall obtained a mean absolute error of
about 4 in all the 3 datasets. Although this error seems high with re-
spect to the range of scores 0-30 on the test, it is perfectly in line with
the few results found in the literature [15]. Furthermore, it achieves bet-
ter results than both [35] and [36] with the same starting Pitt Corpus
dataset. Yet, regression task seems to yield high mean absolute errors
with respect to the prediction of the MMSE. Anyway, it was shown that
different rating styles among clinicians that administer the MMSE and
variance in test-retest scoring can lead to a within-subject inter- and
intra-rater standard deviation of 3.9 to 4.8, with higher variation in low-
scoring subgroups of subjects [49], therfore the MAE obtained from the

three datasets in the present work is comparable to such variability.
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6 | Conclusions and Future
Developments

The purpose of this work has been to analyze cognitive decline based
on acoustic features to improve early detection in elderly people, by de-
signing new acoustic features and employing machine learning techniques
for classification, and regression applied to datasets of different languages.
First, the former algorithm for feature extraction was optimized by adding
new features and allowing segmentation of the audio recordings. Then,
an analysis of the duration of the segments was carried out by evaluat-
ing the performance of each model, for both the classification and the

regression tasks.

The good performances obtained without considering the demographic
characteristics are promising to define an application for longitudinal
monitoring of cognitive decline in elderly people, e.g. the development of
an application for automatic feature extraction. In particular, the results
obtained from the analysis of the duration of segments suggest that it
would be feasible to design for example a real-time acoustic feature ex-
traction mobile app. Moreover, instead of pre-defined buffers on which to
compute the features, it would be useful to identify and segment speeches

into homogeneous regions or to compute them in different ranges.

To avoid the generally seen overfitting of the performances on the

test sets, it may be useful to employ existing feature selection algorithms
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or implement one ad-hoc. For example, a recursive feature elimination
algorithm could be implemented starting from the SHAP values: at each
iteration, the model would compute the Shapley values and the last fea-
tures in the ranking would be eliminated. In the end, the final set of
features would be the one that optimizes the chosen scoring function.

Moreover, future work should employ larger sets to validate and test the
models and investigate other languages to verify whether the defined fea-
tures are as a matter of fact idiom-independent. It would be interesting
to use deep learning methods not only for the machine learning tasks
but for the feature extraction as well. Indeed, other works in this field

showed promising results [50].

Further improvements in the recognition of cognitive decline would be
to evaluate and predict the emotional state of the subjects since previous
studies have widely shown the influence of emotion on acoustic features.
In this regard, in Appendix A the main findings in the literature on
Speech Emotion Recognition and the assessment of emotions are outlined

for completeness.

In conclusion, the results of this work show that the extracted acous-
tic features from spontaneous speech provide a good discrimination power
between healthy subjects and those with signs of cognitive decline, as well
as in predicting Mini-Mental Score from voice, regardless of the language
spoken. The use of small-time segments allows to compute the features
in a faster way, thus this work represents a first step to enabling the
implementation of applications for large-scale, real-time monitoring the
process of cognitive impairment in everyday activities, without directly

involving clinical assessments and visits.
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A. ‘ Speech Emotion

Recognition

A.1. Alterations of acoustic profiles in emo-
tion expression

There is evidence that emotion produces changes in respiration, phona-
tion and articulation [51]. Banse and Scherer in [51] studied how vocal

parameters varied depending on the staged emotion.
Fourteen emotions have been considered in this case, including
e Hot and cold anger
e Panic fear and anxiety
e Despair and sadness
e Happiness and contempt
e Disgust and boredom

It has been noticed that for intense emotions such as despair, hot anger,
panic fear, fundamental frequency (mean F0) is the highest whereas the
lowest for contempt and boredom. The remaining emotions — happiness,
anxiety, sadness, disgust and cold anger — are located in the middle

range.
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A similar pattern is displayed for the energy, since its high correlation
with fundamental frequency. The mean energy for sadness, although its

FO is in the middle range, has the lowest mean in energy.

Moreover, Sadness is characterized by a particularly low speech rate.
Hot anger and panic fear display an increase in speech rate, whereas

despair shows a slight decrease.

A.2. Acoustic features for emotion recog-
nition
A literature review about acoustic features for emotion recognition

has been carried out. The most informative acoustic features can be

divided in 4 categories:
e Frequency related

e Vocal tract related

Energy related

Spectrum related

Syllable related

A.2.1. Frequency related features

The pitch signal, also known as the glottal waveform, is produced
from the vibration of the vocal folds and it contains information about
emotion, since it describes the tension of the vocal folds and the sub-
glottal air pressure. The main feature that is considered in this case is
the vibration rate of the vocal folds which is called fundamental frequency
of FO or pitch frequency. An example on how pitch affects emotion can
be seen for harsh emotions such as anger and disgust, since they are

characterized by low velocity, therefore a lower frequency [52].
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A.2.2. Energy

The short-term speech energy is usually used for emotion recognition,

since it represents the arousal level of emotions.

A feature of this kind is the energy related to certain frequency bands.
There are many contradictions in identifying the best frequency band of
the power spectrum in order to classify emotions. Anyway, the Mel-
frequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980)
provide a better representation than the frequency bands since they ad-
ditionally exploit the human auditory frequency response. These param-
eters are derived from the short-term Fourier spectrum of the acoustic
signal. MFCCs are preferred over Linear Frequency Cepstral Coefficients
(LFCCs) since they allow better suppression of insignificant spectral vari-

ation in the higher frequency bands.

A.2.3. Vocal tract features

The shape of the vocal tract is modified by the emotional states. The

features used to describe the shape of the vocal tract include:
e Formants
e Frequency-related coefficients

The formants are one of the quantitative characteristics of the vocal tract.
They represent resonances of vocal tract. In the frequency domain, the
location of vocal tract resonances depends on the shape and the physical
dimensions of the vocal tract, forming the the overall spectrum, thus
the definition of formants. Each formant is characterized by its center
frequency and its bandwidth. In this context, subjects during stress or
under depression do not articulate voiced sounds with the same effort
as in the neutral emotional state [53]. The formants can be used to
discriminate the articulated speech from the relaxed one. In the first
case, the formant bandwidth is gradual, whereas in the latter the formant

bandwidth is narrow with steep sides.
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A.2.4. Spectral features

The spectral centroid is a measure used in digital signal processing
to characterise a spectrum. It indicates where the center of mass of the
spectrum is located. Perceptually, it has a robust connection with the

impression of brightness of a sound.

It is calculated as the weighted mean of the frequencies present in
the signal, determined using a Fourier transform, with their magnitudes
as the weights [54].

A.2.5. Syllable-related features

These parameters are linked to speech fluency. One of the main in-
dicators is articulation rate which is defined as the number of syllables
produced in a timed speech sample discarding all silent parts from the
sample. Moreover, duration of articulation and duration of voiced seg-

ments can be used as (inverse) measures of speech rate or tempo.

A.3. Dimensional approach for emotion rep-

resentation

An alternative way to emotion analysis is the dimensional approach,
according to which, emotions can be represented using specific dimen-
sions that stem from psychophysiology [55, 56]. In particular, emotions
are mainly represented in a 2D or 3D space where each point corresponds

to a separate emotion state [57.

The most universal model seems to be Mehrabian’s Pleasure-Arousal-
Dominance (PAD) model which measures emotional tendencies and af-

fective states along three dimensions:
e Pleasure (also called valence)

e Arousal
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e Dominance

Its continuous nature allows to model intermediate states of emotions

that may not have an a-priori label [58].

An example of the 3D space is showed in FigureA.l.

Happiness Dominance

E(ey2) Anger
1

0
P «—Ff—»N Peace Excitment Pleasure

Sadness

1-D Coordinate 2-D Coordinate 31.D Coordinats

Figure A.1: PAD space
On the right, 1D space defined by valence; centre: 2D space defined by
Valence and Arousal; left: 3D space defined by Valence, Arousal and
Dominance

The three dimensions vary from -1 to 1. Valence characterizes whether
the feeling showed is positive or negative. Arousal represents the intensity
of the emotion ranging from calm to active. Lastly, dominance describes

how much the emotion is present and important inside the subject.

Russell [59] showed that two dimensions of the PAD Model - Pleasure
and Arousal - helped account for the main portion of the variance in

affective states.

A.3.1. Self-Assessment Manikin (SAM)-Likert Scale

When mapping of emotions in PAD space, sometimes it is used the
Self-Assessment Manikin (SAM)-Likert Scale, a pictographic scale that
allows to annotate valence, arousal and dominance independently with a
point from 1 to 5 60, 61].
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Figure A.2: Self-Assessment Manikin Likert Scale
First row corresponds to valence, second row to arousal and the last one
to dominance.

A.4. Classification of emotional level

In article [62] feasibility of real-time emotion recognition was studied.
Features were computed through openSmile software. A search problem
was carried out through WEKA software, employed for machine learning,
to detect the optimal set of features. The whole sentence is considered,
for computing the features, even though it is real-time evaluation. In
this case, emotions displayed were rated by two researchers with a psy-

chological background and no self-assessment was carried out.

In [56], speech segments coming from vocal messages from weChat
were mapped in the 3D PAD space. The considered emotions were hap-
pyness, sadness, anger, surprise, fear, and neutral whose coordinates in
the space were estimated through Support Vector Regression. The recog-

nition rate was more than 80% for each emotion.
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Similar results were obtained in [63] where Multi-Layer Perceptron,
Network-Based Fuzzy Inference System and Generic Self-Organizing Fuzzy
Neural Network were employed to estimate coordinates in Valence-Arousal
space of speech segment from Berlin Emotional Speech Database and
later through K-means clustering, areas corresponding to different emo-

tions are detected.

In [64] before emotion classification the Authors achieved a better
performance reaching 90% of accuracy. In this case, as a previous step be-
fore actual classification, gender detection was performed and 2 separate
algorithms were developed. Indeed, it was showed that gender-specific
classifiers or regressors give higher accuracy in mapping of emotions.
In both [63, 64], the Berlin emotional speech database (Emo-DB) has
been used for training and testing. Emo-DB is considered the standard

database for emotion recognition, indeed.

Some studies have been conducted in music emotion recognition, as
well. For example, in [65], audio segments are mapped in the 2D space,
defined by arousal and valence. In this case, features were extracted with
PsySound and Marsyas, two open-source toolboxes for psychoacoustic
feature extraction (such as loudness, pitch and dissonance), to construct
a 114-dimension feature space. A further dimensionality reduction was
then performed through WEKA software, obtaining an r? of about 58%

for arousal and 20% for valence.

In [66] 6 emotions were considered: happiness, fear, sadness, neutral,
surprise, and disgust. PRAAT was used for feature extraction and the
study was carried out with the SAVEE database, containing audio sig-
nals of 4 male actors performing 7 different emotions, for a total of 480
British English utterances. Decision trees or random forests were the
classifiers used since they allow an automatic feature selection. In [55],
comparison between human and automatic annotations has been carried
out for mapping scenes from 30 movies of different genres. Finally, in [67]
a multiple combination of features was tried on Emo-DB and an Indian

database, showing that among all the features, spectral ones are the most
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significant for detecting emotions.
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MINI MENTAL STATE EXAMINATION
(Folstein M.F., Folstein S.E., McHugh P.R. “Mini Mental State” a practical method for grading
the cognitive state of patients for the clinicians. J Psychait Res 1975; 12: 189 — 198)

AREE INDAGATE PUNTEGGIO

ORIENTAMENTO

Il paziente sa riferire: giorno del mese, anno, mese, giornodella| (0) (1) (2) (3) @) (5
settimana e stagione.

Il paziente sa riferire: luogo in cui si trova, a quale piano, citta, | (0) (1) (2) ) @) (5)
regione, stato

MEMORIA

L’esaminatore pronuncia ad alta voce tre termini (casa, pane, | (0) (1) (2) ()
gatto) e chiede al paziente di ripeterli immediatamente.

L’esaminatore deve ripeterli fino a quando il paziente non li
abbia imparati (max 6 ripetizioni).

Tentativi n.

ATTENZIONE E CALCOLO

Partendo da 100 far contare sottraendo 7 all’indietro fermandosi | (0) (1) (2) (3) (4) (5)
dopo le prime cinque risposte.

In caso di difficolta di calcolo far scandire al contrario la parola
“mondo” (“odnom”).

RICHIAMO DELLE TRE PAROLE (RICHIAMO ALLA MEMORIA)

Richiamare i tre termini precedentemente imparati. © @O @ @O
LINGUAGGIO
Il paziente deve riconoscere due oggetti. o @O @

Come si chiama questo (matita)?
Come si chiama questo (orologio)?




Il paziente deve ripetere la frase “TIGRE CONTRO TIGRE” O (1

Il paziente deve eseguire un compito su comando: a) prendaun | (0) (1) (2) (3)
foglio con la mano destra, b) lo pieghi a meta; c) e lo butti dal

tavolo/metta sul pavimento.

Far eseguire al paziente il comando scritto “CHIUDA GLI O (1

OCCHI”

Far scrivere al paziente una frase di senso compiuto formata 0) (1

almeno da soggetto e verbo.

N.B. conservare il materiale

Far copiare al paziente un disegno (pentagoni intersecati). O (1

N.B. conservare il materiale

Totale complessivo

Totale complessivo aggiustato

/130

/130

NOME E COGNOME DEL PAZIENTE (iniziali):

DATA SOMMINISTRAZIONE:
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O 01N DN B Wi~

Geriatric Depression Scale (GDS)

(Yesavage JA, Rose TL, Lum O, Huang V, et al. Development and validation of geriatric

depression screening: a preliminary report. J Psychiatr Res 1983;17:37-49)

E’ soddisfatto della sua vita?

Ha abbondonato molte delle sue attivita e dei suoi interessi?
Ritiene che la sua vita sia vuota?

si annoia spesso

Ha speranza nel futuro?

E’ tormentato da pensieri che non riesce a togliersi dalla testa?
E’ di buon unore per la maggior parte del tempo?

Teme che le stia per capitare qualcosa di brutto?

Si sente felice per la maggior parte del tempo?

Si sente spesso indifeso?

Le capita spesso di essere irrequieto € nervoso?

Preferisce stare a casa, piuttosto che uscire a fare cose nuove?
Si preoccupa frequentemente per il futuro?

Pensa di avere piu problemi di memoria della maggior parte delle persone?
Pensa che sia bello stare al mondo, adesso?

Si sente spesso abbattuto e triste. adesso?

Trova che la sua condizione attuale sia indegna di essere visstuta?
Si tormenta molto pensando al passato?

Trova che la sita sia molto eccitante?

Le risulta difficiel iniziare ad occuparsi di nuovi progetti?

Si sente pieno di energia?

Pensa di essere in una situazione priva di speranza?

Pensa che la maggior parte delle persona sia in una condizione migliore della sua?

Le capita spesso di turbarsi per cose poco importanti?
Ha frequentemente voglia di piangere?

Ha difficolta a concentrasi?

Si alza con piacere la mattina?

Preferisce evitare gli incontri sociali?

Le riesce facile prendere delle decisioni?

ha la mente lucida come prima?

Punteggio totale
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GDS - Geriatric Depression Scale (forma breve)

|1. E fondamentalmente soddisfatto della sua vita? H Si H No
2. Ha abbandonato molte delle sue attivita e dei suoi N

interessi? S| No
3. Sente che la sua vita & vuota? [ Si | No
|4. Si annoia spesso? H Si H No
|5. E di buon umore la maggior parte del tempo? H Si H No
6. Ha paura che qualcosa di brutto stia per succederle? | Si | No
|7. Si sente piu felice nella maggior parte del tempo? H Si H No
8. Si sente spesso impotente? [ Si | No

9. Preferisce restare a casa piuttosto che uscire e fare S No
cose nuove?
10. Ritiene di avere piu problemi con la memoria della S No
maggior parte delle persone?
|11. Pensa che la vita sia meravigliosa? H Si H No
112. Si sente piuttosto inutile cosi com’'é? I Si |  No
|13. Si sente pieno di energie? H Si H No
114. Ha limpressione che la sua situazione sia disperata? | Si | No
15. Pensa che la maggior parte delle persone sia migliore s
o Si No
di lei?
Punteggio: /15 Normale 312
Un punto per “No” alle domande 1, 5, 7, 11, 13
Un punto per “Si” alle altre domande Lievemente
+
depresso 73

Molto depresso 12+ 2

Adattata da Sheikh JI, Yesavage JA: “Geriatric depression scale (GDS): Recent evidence
and development of a shorter version,” in Clinical Gerontology: A Guide to Assessment
and Intervention, edited by TL Brink. Binghamton, NY, Haworth Press, 1986, pp. 165-173.
© By The Haworth Press, Inc.
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