
“output” — 2022/1/15 — 13:36 — page 1 — #1

POLITECNICO DI MILANO

MANUALE
DI CORPORATE IDENTITY

MILANO, MAGGIO 2015

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAM IN INFORMATION TECHNOLOGY

THE CASE FOR

RECONFIGURABLE ARCHITECTURES IN

HIGH-PERFORMANCE GRAPH AND SPARSE

INFORMATION RETRIEVAL

Doctoral Dissertation of:
Alberto Parravicini

Supervisor:
Prof. Marco D. Santambrogio

Tutor:
Prof. Raffaela Mirandola

The Chair of the Doctoral Program:
Prof. Luigi Piroddi

2022 – XXXIV Cycle

“output” — 2022/1/15 — 13:36 — page 2 — #2

“output” — 2022/1/15 — 13:36 — page 1 — #3

Ringraziamenti

UN mio grosso difetto, riflettendoci, è che non riesco a esprimere grat-
itudine bene quanto vorrei. Non il provare gratitudine, sia chiaro,
ma esprimerla esteriormente in modo efficace. Non a caso, ho

prima scritto tutto il resto e mi trovo ora a riempire, meditando parola dopo
parola, l’ultima pagina che ancora attende materiale. A confronto, scrivere
decine di pagine dal contenuto esoterico si è rivelato uno sforzo quasi mec-
canico. Definirlo facile sarebbe una bugia, e scrivere bugie in una pagina
dedicata ai ringraziamenti è inopportuno. Tuttavia, mi sono impratichito
nel raccontare gli aspetti tecnici e la visione della mia ricerca, e penso di
riuscirci con più naturalezza di qualche anno fa. Dare forma e ordine al
tutto, in queste pagine, è stato rassicurante.

Fossi un architetto che immagina case, e non un architetto che immag-
ina calcolatori, partirei disegnando fondamenta. E le mie fondamenta, in
questo percorso di crescita, sono state Marco Santambrogio.

Con le fondamenta, vengono poi i pilastri. Le persone senza il cui con-
tributo questa tesi non ci sarebbe, un gran bel problema. Francesco, innanz-
itutto. Un solo aneddoto: quando mi hai proposto la tua tesi, ti dissi che eri
tutto matto. Avevo ragione, ma fortunatamente lo sono anche io. Marco,
compagno di spin di ricerca interminabili, ma di tanto in tanto fruttuosi.
Luca, sarai anche la persona meno puntale del mondo, ma ho sempre ado-
rato l’energia con cui ti butti in ogni nuovo progetto. Un gruppo un poco
bislacco, ma abbiamo proprio fatto dei grandi lavori insieme.

I dettagli della vita da studente iniziano a sfumarsi, ma di alcune persone
di certo non posso dimenticarmi. Senza Luca, cioè Storna, non avrei finito

1

“output” — 2022/1/15 — 13:36 — page 2 — #4

il dottorato perchè molto probabilmente non lo avrei nemmeno iniziato. Mi
ricordo le nostre conversazioni senza capo né ma con un loro filo conduttore
tutto intricato. Mi hai davvero insegnato a immaginare, e a costruire mer-
aviglie partendo dall’immaginazione. E poi Fulvio e Simone, cioè Ripa,
splendidi amici durante tutta l’avventura degli studi di ingegneria. Le oc-
casioni per vederci si sono un po’ diradate, e per questo ho imparato ad
apprezzarle ancora di più. Sono sicuro che in futuro riusciremo a vederci
ancora e ancora, non importa dove saremo o cosa faremo.

Ci tengo a ringraziare di cuore tutti i miei amici, compagni e colleghi del
NECSTLab. Con molti ho avuto di collaborare a stretto contatto, con altri
leggermente meno, ma di tutti ho un ricordo indelebile. Di Davide, con
cui ho condiviso gioie e dolori del dottorato, dell’immancabile sorriso di
Guido, dei preziosi consigli di Rolando, ma anche di Emanuele, Eleonora,
Francesco, Alberto Zeni e Alberto Scolari, Marco, Letizia, Lorenzo, Sara,
Mirko, Andrea, Filippo, Carlotta, Fulvia e della nostra dottoranda ad hon-
orem Silvia. Voglio anche ringraziare Qi ed Edoardo, per avermi tenuto al
loro fianco durante le loro tesi. Spero di avervi insegnato almeno la metà di
quello che voi avete insegnato a me.

Un elemento costante del mio percorso accademico è stata la collabo-
razione con Marco e Arnaud, e poi Rich e Mike. Qui sono riuscito solo di
striscio ad accennare ai frutti del nostro lavoro, e ogni cosa ha bisogno dei
propri spazi per essere apprezzata al meglio. Mi avete donato la libertà di
fare ricerca sui temi più variegati, e di questo vi sono immensamente grato.

Devo assolutamente ringraziare Davide, cioè DBB, il mio spirito guida
nel dottorato. Da te ho imparato a creare e sviluppare ricerca, a dare le
giuste priorità, e tantissime altre cose fondamentali. Tre anni fa mi augurai
di poter lavorare ancora con te, e per fortuna è stato così.

E Rene, inventore, anche un po’ visionario, del meraviglioso progetto
che ho poi ereditato, spero in modo degno. Certamente uno dei miei men-
tori, mi hai insegnato come i dettagli più piccoli sono anche i più importanti.

Nulla vale più di avere il supporto della propria famiglia, e poterlo ri-
cambiare. I miei genitori Annalisa e Ambrogio, mio fratello Stefano, e i
miei nonni e tutti i miei parenti. La convivenza forzata l’anno precendente,
e la lontananza altrettanto forzata quando vivevo all’estero non hanno fatto
altro che confermarmelo. Tralasciando le piccole divergenze quotidiane,
sono davvero fortunato a poter contare su una famiglia unita.

In particolare voglio ringraziare Gianandrea, lo zio migliore che ci sia.
Mi hai trasmesso l’amore per la fotografia e insegnato nuovi modi per es-
primermi. Sei davvero la persona su cui posso sempre contare, un’ancora
inamovibile tanto nei momenti felici che in quelli più difficili.

“output” — 2022/1/15 — 13:36 — page 3 — #5

Infine, Rebecca. Ho una pagina solo per te, per racchiudere poche ma
importanti parole. Tre anni fa dissi che ci avrebbe atteso un futuro roseo.
Una chiara sottostima. Il nostro futuro sarà radioso, e cosa più importante,
saremo noi ad illuminarlo.

“output” — 2022/1/15 — 13:36 — page 4 — #6

“output” — 2022/1/15 — 13:36 — page I — #7

Abstract

GRAPH analytics, information retrieval, and recommender systems
are a pervasive component of our society, helping billions of users
in finding web pages, movies to watch, and products to buy. Sparse

linear algebra is now an essential building block of these workloads. By
not storing redundant information, it enables real-time processing of an in-
creasingly large amount of data. In particular, Sparse Matrix-Vector Mul-
tiplication (SpMV) is the cornerstone of many complex applications, from
graph ranking to approximate search. SpMV does not perform well on
general-purpose hardware architectures with traditional caching strategies,
as it contains little data reuse and unpredictable memory access patterns.

Modern Field Programmable Gate Array (FPGA) accelerator cards have
a few tricks up their sleeve. With abundant on-chip memory and HBM they
enable novel data representations that maximize operational intensity and
parallelism. Reduced-precision fixed-point arithmetic, a distinctive feature
of FPGAs, opens the doors to trade-offs between performance and numeri-
cal accuracy in error-tolerant workloads such as recommender systems.

This thesis proposes a set of SpMV FPGA hardware designs targeted
at the needs of graph analytics and recommender systems. These SpMV
designs can quickly adapt to different workloads, such as graph ranking,
sparse eigensolvers, and sparse embedding similarity search. In all cases,
we provide state-of-the-art performance and energy efficiency and study
the impact of reduced precision on accuracy. Overall, we establish that
FPGAs are a fearsome contender in the race for high-performance sparse
computations in graph analytics and recommender systems.

I

“output” — 2022/1/15 — 13:36 — page II — #8

“output” — 2022/1/15 — 13:36 — page III — #9

Sommario

GRAPH analytics, information retrieval, e recommender systems sono
ormai componenti imprescindibili della nostra società, e permet-
tono a miliardi di utenti di trovare pagine web, film da guardare, e

oggetti da comprare. L’algebra lineare sparsa è un elemento fondamentale
di queste tecnologie. Eliminando i valori ridondanti, permette analisi in
tempo reale di una mole sempre crescente di dati. In particolare, la Molti-
plicazione di Matrice Sparsa per Vettore (SpMV) è alla base di complesse
applicazioni come graph ranking e ricerca approssimata. SpMV non è però
efficace su hardware general-purpose con politiche di caching tradizionali,
avendo scarso riutilizzo di dati e accessi in memoria imprevedibili.

Le più recenti FPGA accelerator card hanno però diversi assi nella man-
ica. Dispongono di abbondante memoria on-chip e di HBM, permettendo
elevato parallelismo e l’uso di nuove strutture dati più efficienti. L’arit-
metica fixed-point a precisione ridotta, un tratto distintivo delle FPGA,
spalanca le porte a compromessi tra performance e accuratezza in appli-
cazioni come recommender system che tollerano approssimazioni.

Questa tesi propone un set di design FPGA per SpMV, ottimizzati per
le necessità di graph analytics e recommender systems. Questi design di
SpMV possono rapidamente adattarsi a svariate applicazioni, come graph
ranking e ricerca approssimata di embedding sparsi. In tutti questi casi di-
mostriamo performance e efficienza allo stato dell’arte, e misuriamo come
la precisione numerica ridotta impatta l’accuratezza. Nel complesso, validi-
amo come le FPGA siano un temibile avversario nella gara per ottimizzare
le computazioni sparse in graph analytics e recommender systems.

III

“output” — 2022/1/15 — 13:36 — page IV — #10

“output” — 2022/1/15 — 13:36 — page V — #11

Contents

1 Introduction 1
1.1 Problem Statement . 3

1.1.1 The Memory Wall Keeps Rising 4
1.1.2 Accelerating Sparse Linear Algebra by Leveraging

Novel Memory Technologies 4
1.1.3 Bringing FPGAs into the Equation 5

1.2 Contributions . 6
1.2.1 A Reduced-Precision Streaming SpMV Hardware De-

sign for Personalized PageRank on FPGA 6
1.2.2 Solving Large Top-K Graph Eigenproblems with a

Memory and Compute-optimized FPGA Design . . . 7
1.2.3 Scaling up HBM Efficiency of Top-K SpMV for Ap-

proximate Embedding Similarity on FPGAs 7
1.3 Publications . 8
1.4 How to Read This Thesis 9

2 Background on Sparse Linear Algebra and Hardware Architectures 11
2.1 Introduction . 12
2.2 Introduction to Sparse Linear Algebra 12

2.2.1 Building Blocks of Sparse Linear Algebra 13
2.2.2 Data Structures for Sparse Linear Algebra 15
2.2.3 Implementing SpMV with COO and CSR 19

2.3 Notions of Numerical Mathematics 21
2.3.1 Notions of Numerical Stability 22

V

“output” — 2022/1/15 — 13:36 — page VI — #12

2.3.2 Machine Real Number Formats 24
2.3.3 Evaluating Accuracy in Information Retrieval 29

2.4 Hardware for Sparse Linear Algebra 33
2.4.1 General-purpose CPUs (GPCPUs) 33
2.4.2 Graphics Processing Units (GPUs) 35
2.4.3 Field Programmable Gate Arrays (FPGAs) 37
2.4.4 FPGA Accelerator Cards 42
2.4.5 Domain Specific Architectures (DSAs) and Custom

Hardware Extensions 45
2.5 Final Remarks . 47

2.5.1 The Importance of Memory Controllers 47
2.5.2 No architecture to rule them all 48

3 A Reduced-Precision Streaming SpMV Hardware Design for Per-
sonalized PageRank on FPGA 51
3.1 Introduction . 52
3.2 Related Work . 53

3.2.1 Numerical Optimizations 53
3.2.2 CPU and GPU Implementations 53
3.2.3 FPGA Implementations 54

3.3 Problem Definition . 55
3.4 The Proposed FPGA Hardware Design 58

3.4.1 Personalized PageRank Hardware Design 58
3.4.2 Customizing SpMV for PPR 59
3.4.3 PPR Buffers Design 60
3.4.4 Host Integration . 64

3.5 Experimental Evaluation 65
3.5.1 Execution time . 67
3.5.2 Energy Efficiency 69
3.5.3 Accuracy Analysis 71
3.5.4 Fixed-point produces faster convergence 73

3.6 Final Remarks . 74

4 Solving Large Top-K Graph Eigenproblems with a Memory and Compute-
optimized FPGA Design 77
4.1 Introduction . 78

4.1.1 Motivation . 78
4.1.2 Contributions . 79

4.2 Related Work . 80
4.3 Solving the Top-K Sparse Eigenproblem 82

“output” — 2022/1/15 — 13:36 — page VII — #13

4.3.1 The Lanczos Algorithm 84
4.3.2 The Jacobi Eigenvalue Algorithm 86

4.4 The Proposed FPGA Hardware Design 88
4.4.1 Lanczos Hardware Design 88
4.4.2 SpMV Hardware Design 89
4.4.3 Jacobi Systolic Array Design 93

4.5 Experimental Evaluation 96
4.5.1 Execution Time . 97
4.5.2 Power Efficiency . 101
4.5.3 Accuracy Analysis of the Approximate Eigencompu-

tation . 102
4.6 Final Remarks . 102

5 Scaling up HBM Efficiency of Top-K SpMV for Approximate Embed-
ding Similarity on FPGAs 105
5.1 Introduction . 106
5.2 Related Work . 108
5.3 Theoretical Contributions 109

5.3.1 Top-K SPMV Approximation 110
5.3.2 The Block-Streaming CSR Matrix Layout 113

5.4 The Proposed FPGA Hardware Design 115
5.4.1 Leveraging URAM for Fast Random Access 116
5.4.2 Top-K SpMV Algorithm Design 117
5.4.3 Lower Precision, More Cores, Better Performance . . 118
5.4.4 Host Integration . 120

5.5 Experimental Evaluation 120
5.5.1 Execution Time . 122
5.5.2 Power Efficiency . 124
5.5.3 Roofline Model Analysis 125
5.5.4 Approximation Accuracy Analysis 127

5.6 Final Remarks . 129

6 Conclusion and Future Work 131
6.1 Limitations and Future Directions 133

6.1.1 A Reduced-Precision Streaming SpMV Hardware De-
sign for Personalized PageRank on FPGA 133

6.1.2 Solving Large Top-K Graph Eigenproblems with a
Memory and Compute-optimized FPGA Design . . . 134

6.1.3 Scaling up HBM Efficiency of Top-K SpMV for Ap-
proximate Embedding Similarity on FPGAs 135

“output” — 2022/1/15 — 13:36 — page VIII — #14

List of Acronyms 143

Bibliography 147

“output” — 2022/1/15 — 13:36 — page 1 — #15

CHAPTER1
Introduction

Graph analytics, information retrieval, and recommender systems process
an always-increasing amount of data, often with strong real-time constraints,
to suggest products, movies, news articles to billions of users. For better or
worse, they are an integral part of our society.

Sparse linear algebra has become a staple of graph analytics and rec-
ommender systems. The original applications of sparse linear algebra were
in the fields of image and signal processing. Now, sparse computations
are seen as the only way to perform numerical computations on enormous
heterogeneous datasets that would be impossible to represent in a dense for-
mat. Sparse representations are inevitable when processing graphs, as so-
cial networks and web graphs keep growing in popularity and scale. With
Deep Learning (DL) and numerical embeddings, now a standard tool of
recommender systems, sparsity is key to train larger models thanks to the
regularization offered by having most weights equal to zero [83]. While
sparse matrices representing weights and embeddings used in DL still have
a high density (0.01, versus the≤ 10−6 typical of graphs), we are observing
a shift towards higher sparsity. An example is the introduction of hardware
components specific to sparsity acceleration, such as Nvidia’s Sparse Ten-
sor Cores in recent Ampere Graphics Processing Units (GPUs) [37, 149].

1

“output” — 2022/1/15 — 13:36 — page 2 — #16

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Sparse matrix A

1 3 3 7 0642

0
24
42
0
30

20
2
0

1
2 4

2
6
3

6

1

3

8

.

A
(x):

A
(y):

A
(val):

01
12

2

5

3

4
4
5

5

5

7 2

7

7

7

6

1
2
4

2

6

3
6
1
8

4 2 3

A
(x):

A
(y):

A
(val):

01
12

2

5

3

4
4
5

5

5

7 2

7

7

7

6

1
2
4

2

6

3
6
1
8

4 2 3

x[A
(y)]:

2
4
3

3

0

0
7
6
3

6

x:

COO of A

y:

.

.

.

.

.

.

.

.

.

+

+

+

y=Ax
SpMV

Figure 1.1: Example of Sparse Matrix-Vector Multiplication (SpMV), a sparse linear al-
gebra operation widely employed in graph analytics and recommender systems. In this
example, the matrix A is mostly composed of 0. We store it with the COO representa-
tion (Section 2.2), and compute y = Ax, where both x and y are dense vectors.

Indeed, sparse linear algebra has drawn the interest of the hardware re-
search community for a long time [45, 50, 51, 139, 232]. This interest is
now higher than ever. The recent popularity explosion of graph analytics
and DL demands novel techniques to process sparse matrices with mil-
lions, billions, or possibly trillions of non-zero entries, representing web-
scale graphs, social networks, or databases of embeddings. In the field
of DL alone, the number of publications related to sparse computing has
increased by 10× over the past ten years [83], with articles related to hard-
ware optimizations now being 15–20 % of the total. However, research on
hardware optimizations for recommender systems is still uncommon, and
many problems are yet to be solved [63].

The challenges related to sparse linear algebra are not limited to scale
but also performance and energy efficiency, as graph analytics and recom-
mender system workloads often have to answer real-time queries from bil-
lions of users. Sparse computations are extremely memory intensive and
present data-dependent and random memory accesses, making them un-
suitable for general-purpose architectures with traditional caching policies.

On the other hand, Field-Programmable Gate Arrays (FPGAs) can fully
leverage sparse data representations and reduced-precision arithmetic to
improve operational intensity and performance in memory-starved com-
putations. Exact numerical accuracy is not critical as long as the most
relevant recommendations are correct. Compared to CPUs or GPUs, FP-
GAs can leverage optimized arbitrary-precision arithmetic and offer fine-

“output” — 2022/1/15 — 13:36 — page 3 — #17

1996 1999 2002 2005 2008 2011 2014 2017 2020
0.1×

1×

10×

100×

1000×

10000×

100000×

1000000×

Pe
rf

or
m

an
ce

 S
ca

lin
g

R10000

Pentium II Xeon

Itanium 2

GTX 580
K40

Radeon Fiji

TPUv2
TPUv3 A100

DDR
GDDR3

GDDR5
HBM

HBM2
GDDR6

HBM2e

PCIe 1.0a
PCIe 2.0

PCIe 3.0
NVLink 1.0 PCIe 4.0

NVLink 3.0

HW FLOPS: 94639×/20 years (3.1×/2 years)
DRAM BW: 41×/20 years (1.5×/2 years)
Interconnect BW: 25×/20 years (1.4×/2 years)

Figure 1.2: Scaling of peak compute power (FLOPS), memory bandwidth (GB/s) and in-
terconnection bandwidth (GB/s) from 1996 to today, adapted from Gholami et al. [64].
Peak compute power has improved by almost 100000× in the last 20 years thanks to
GPUs and DSAs. On the other hand, memory bandwidth has grown by only 40×. As
such, optimizing memory-bound sparse workloads is becoming increasingly difficult,
as the size of data keeps rising.

grained control over the desired target accuracy, providing better perfor-
mance, lower resource utilization, and lower power consumption. Thanks
to their flexibility, FPGAs have proven commercially successful in recom-
mender system workloads since the seminal work of Project Catapult by
Microsoft [33, 165].

Our goal is to improve the performance of Sparse Matrix-Vector Mul-
tiplication (SpMV) (Figure 1.1), the cornerstone operation of sparse linear
algebra, in the context of graph analytics and recommender systems. We
leverage the most recent advancements in FPGA accelerator cards to max-
imize the impact of High Bandwidth Memory (HBM), reduced-precision
fixed-point arithmetic, and streaming computations. As a result, we pro-
pose a novel set of flexible FPGA hardware designs for SpMV, targeted
at high-performance sparse computations in graph analytics and recom-
mender systems.

1.1 Problem Statement

In this thesis, we explore the acceleration of sparse linear algebra in the
context of graph analytics and recommender systems through the use of
modern FPGA accelerator cards and approximate computing. Many re-
search problems are still unsolved in this field. Here, we introduce the most
important ones, which we try to address in this work.

“output” — 2022/1/15 — 13:36 — page 4 — #18

1.1.1 The Memory Wall Keeps Rising

The size of predictive models and datasets used in recommender systems,
information retrieval algorithms, and graph analytics keeps growing at a
steady pace year after year [41, 63, 64, 91, 106]. Large recommender sys-
tems now require 1 to 10 trillions parameters, stored in up to 10 TB of
memory, and this value has increased more than 200× in the past two years.
Databases in recommender systems have been growing just as much. So-
cial network graphs count billions of users, and recommender systems have
millions of products and billions of purchases. In contrast, DRAM avail-
able in accelerator devices such as GPUs or FPGAs has improved by only
2×. Even worse, the scaling of memory bandwidth has been insignificant
compared to the scaling in computing power (Figure 1.2). Peak compute
power has increased by 3.1× every two years or 90000× over the last 20
years. On the other hand, memory bandwidth has grown by just 1.5× every
two years, i.e. a meager 40× over the same 20 years. The insufficient size
and bandwidth of memory create what is known as memory wall, a major
bottleneck of today’s recommender systems due to the low operational in-
tensity of these workloads. Compression and sparsification techniques are
helpful to increase the operational intensity, but results are still insufficient,
given the size of input data (e.g. web-scale graphs) and predictive mod-
els [83]. While most researchers are worried about the ending of Moore’s
Law, the unstoppable growth of this memory wall is equally, if not more,
troublesome. There is an increasing need for computational techniques that
can maximize computation for every bit loaded from memory. In this re-
gard, reduced-precision arithmetic and sparsification techniques are poised
to become more and more necessary.

1.1.2 Accelerating Sparse Linear Algebra by Leveraging Novel Mem-
ory Technologies

Sparse linear algebra is a promising approach to improve the performance
and scale of recommender systems and graph analytics workloads [13, 41,
63, 76]. However, effective parallelization and hardware acceleration of
sparse primitive operations is still an open challenge. Compared to dense
linear algebra, sparse operations have complex memory access patterns
(random or data-dependent) and memory bandwidth is often their perfor-
mance bound. In this area, new memory technologies such as HBM can
be of great help, thanks to their abundant memory bandwidth. However,
fully leveraging this bandwidth is not trivial as it requires many concur-
rent memory transactions on independent memory channels. When dealing

“output” — 2022/1/15 — 13:36 — page 5 — #19

with sparse computations and their unpredictable memory accesses, it is of-
ten necessary to employ problem-specific solutions [93,168,185,220], and
generalization to a wide range of workloads cannot be taken for granted.

1.1.3 Bringing FPGAs into the Equation

Given the challenges that still exist in accelerating sparse linear algebra,
especially in the context of recommender systems and graph analytics, FP-
GAs represent a very attractive architectural choice for a variety of rea-
sons. FPGAs can leverage reduced-precision fixed-point arithmetic, which
is highly effective in error-tolerant workloads typical of recommender sys-
tems. FPGAs are also more energy-efficient than competing hardware and
have predictable execution latency, making them suitable for real-time data
center workloads. FPGA accelerator cards are now equipped with HBM
and provide the memory required by such demanding sparse workloads.

However, leveraging these FPGAs accelerator cards for sparse recom-
mender system and graph analytics workloads is a field yet to be fully
explored, even more so when reduced-precision fixed-point arithmetic is
brought into the equation. Moreover, reaching high HBM bandwidth uti-
lization is more complex than in competing architectures such as GPUs,
often requiring ad-hoc partitioning techniques and memory access patterns.
Finally, FPGAs require well-thought utilization of on-chip memory. Sparse
matrices are usually too large to fit inside on-chip memory, and caches
might not be effective due to the low data reuse in sparse workloads. Once
again, problem-specific caching techniques are often a necessity.

Overall, the following unique circumstances motivates this thesis.

1. Recommender systems and graph analytics are more than ever an in-
tegral part of our society.

2. Sparsity is necessary to represent and process the large-scale datasets
used in recommender systems and graph analytics

3. The output of these workloads is tolerant to numerical approxima-
tions, as they produce rankings instead of precise numerical values.

4. Recommender systems in data centers require low latency and energy
consumption to sustain millions or even billions of daily queries.

5. Sparse linear algebra computations present complex memory access
patterns, and are generally memory-bound instead of compute-bound.

6. Modern FPGA accelerator cards provide flexible reduced-precision
arithmetic and allow deployment of low-power designs with real-time

“output” — 2022/1/15 — 13:36 — page 6 — #20

latency. Their abundant off-chip memory, combined with the FPGA
reconfigurable logic, enable optimized memory accesses and storage
of large sparse matrices.

1.2 Contributions

We propose a novel set of hardware designs based on modern FPGA ac-
celerator cards to improve the performance of sparse linear algebra in the
context of foundational operations encountered in graph analytics and rec-
ommender systems. At the core of this work lies a flexible SpMV hard-
ware design, created to leverage reduced precision fixed-point arithmetic
and adapt to kinds of memories, from on-chip memories such as UltraRAM
(URAM), to off-chip memories such as DDR4 and HBM2.

We prove how this design can be easily adapted to different sparse work-
loads, such as Personalized PageRank (PPR), sparse eigensolvers, and
sparse embedding similarity search. In each case, we study the impact
of reduced precision on performance and accuracy and highlight the chal-
lenges in each application. In detail, we present the following contributions.

1.2.1 A Reduced-Precision Streaming SpMV Hardware Design for
Personalized PageRank on FPGA

In Chapter 3, we first present our FPGA SpMV hardware design in the
context of iterative graph ranking algorithms. PPR, in particular, is often
used as a building block of recommender systems in e-commerce websites
and social networks. In this context, low latency and high throughput are
more valuable than exact numerical convergence, creating the ideal condi-
tion to experiment with reduced-precision fixed-point arithmetic. Through
our novel streaming reduced-precision Coordinate (COO) SpMV design,
we achieve the following results.

• We measure that our PPR design obtains speedups up to 6× over
a state-of-the-art multi-threaded CPU implementation on 8 different
graphs, with up to 42× higher energy efficiency (Section 3.5.1).

• We evaluate that reduced-precision fixed-point arithmetic does not
negatively affect the accuracy. Just 26-bits are enough to provide
almost-perfect results (Section 3.5.3).

• We analyze how fixed-point arithmetic translates to a faster conver-
gence, often 2× faster than floating-point arithmetic (Section 3.5.4).

“output” — 2022/1/15 — 13:36 — page 7 — #21

1.2.2 Solving Large Top-K Graph Eigenproblems with a Memory and
Compute-optimized FPGA Design

In Chapter 4, we extend our SpMV hardware design to sparse eigensolvers,
numerical methods that compute eigenvectors and eigenvalues on large
sparse matrices. Large-scale sparse eigensolvers are a key component of
graph analytics techniques based on spectral methods. In such applications,
an exhaustive computation of all eigenvalues and eigenvectors is impracti-
cal and unnecessary. Even on enormous graphs, spectral methods can re-
trieve their most important properties with only the eigenvectors associated
with the Top-K largest eigenvalues. Moreover, spectral methods adopted in
information retrieval and recommender systems are tolerant to approxima-
tions introduced by fixed-point arithmetic. To the best of our knowledge,
we are the first to propose an FPGA Top-K eigensolver for unstructured
sparse matrices, with the following contributions.

1. We integrate the SpMV hardware design into a mixed-precision eigen-
solver based on the Lanczos algorithm and the Jacobi eigenvalue
algorithm (Section 4.3).

2. We extend our FPGA SpMV hardware design to leverage the flexi-
bility of HBM. Thanks to HBM, we partition the SpMV computation
across multiple Compute Units (CUs), achieving more than 5× better
performance than our original hardware design (Section 4.4).

3. We achieve a speedup of 6.22× compared to the highly optimized
ARPACK library running on an 80-thread CPU, while keeping high
accuracy and 49× better power efficiency (Section 4.5).

1.2.3 Scaling up HBM Efficiency of Top-K SpMV for Approximate
Embedding Similarity on FPGAs

In Chapter 5, we analyze the problem of sparsity in recommender systems
from a different perspective. Instead of optimizing computations on graphs,
we consider the task of approximate similarity search on large sparse em-
bedding tables, which can be efficiently implemented with Top-K SpMV.
This sparse workload does not perform well on general-purpose NUMA
systems with traditional caching strategies. Instead, we further extend our
FPGA SpMV design to handle Top-K SpMV, optimizing the computation
for tall matrices that benefit from on-chip caches. In this chapter, we present
the following results.

“output” — 2022/1/15 — 13:36 — page 8 — #22

1. We create a new approximation scheme for Top-K SpMV, paral-
lelizing the computation over 32 independent SpMV CUs and HBM
pseudo channels, exploiting the FPGA resources to its fullest.

2. We introduce a novel packet-wise CSR matrix compression called
BSCSR. This format is optimized for streaming reduced-precision
computations, and it increases operational intensity of SpMV by up
to 3× over COO.

3. We measure that our FPGA design is 138× faster than a multi-threaded
CPU implementation and 2.1× faster than a GPU with 20 % higher
bandwidth, with 15× higher power-efficiency, proving that FPGAs
are today the optimal solution for Top-K SpMV.

1.3 Publications

The main contributions of this doctoral dissertation refer to and extend the
following articles.

• Alberto Parravicini, Francesco Sgherzi and Marco Domenico San-
tambrogio. A reduced-precision streaming SpMV architecture for Per-
sonalized PageRank on FPGA. In 2021 26th Asia and South Pacific
Design Automation Conference (ASP-DAC). Pages 378 – 383. Jan-
uary 2021 [158].

• Francesco Sgherzi, Alberto Parravicini, Marco Siracusa and Marco
Domenico Santambrogio. Solving Large Top-K Graph Eigenproblems
with a Memory and Compute-optimized FPGA Design. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). Pages 78 – 87. May 2021 [177].

• Alberto Parravicini, Luca Giuseppe Cellamare, Marco Siracusa and
Marco Domenico Santambrogio. Scaling up HBM Efficiency of Top-K
SpMV for Approximate Embedding Similarity on FPGAs. To appear
in 58th Design Automation Conference (DAC). Pages 1 – 6. December
2021 [155].

Other publications, also produced during the Ph.D. research, follow out-
side the specific scope of this dissertation. Relevant excerpts are still men-
tioned whenever appropriate.

• Alberto Parravicini, Rhicheek Patra, Davide Basilio Bartolini and
Marco Domenico Santambrogio. Fast and accurate entity linking via

“output” — 2022/1/15 — 13:36 — page 9 — #23

graph embedding. In Proceedings of the 2nd Joint International Work-
shop on Graph Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA). Pages 1 – 9. June 2019 [157].

• Alberto Parravicini, Arnaud Delamare, Marco Arnaboldi and Marco
Domenico Santambrogio. DAG-based Scheduling with Resource Shar-
ing for Multi-task Applications in a Polyglot GPU Runtime. In 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). Pages 111 – 120. May 2021 [156].

1.4 How to Read This Thesis

For those readers lacking a deep background knowledge of sparse linear
algebra or reconfigurable computing, Chapter 2 provides a comprehensive
overview of the building blocks on which the rest of the thesis is built. The
subsequent chapters are organized to be self-sufficient, to guide the reader
interested in only some of the contributions of this thesis. Chapters 3 to 5
represent the core of this thesis. Chapter 6 concludes the thesis with a
reflection on challenges that are still open and further research directions
opened by the present work. The core chapters can be read independently
and provide an in-depth introduction with all the necessary notions, con-
text, and relevant state-of-the-art required to appreciate them. However, it
is best to read this thesis in order. Each chapter builds on the preceding
ones, tracing a path started by experimenting with SpMV on a relatively
narrow use-case (PPR) and progressively broadening the scope of the re-
search to more complex applications and algorithms. Eventually, we show
how a flexible reduced-precision SpMV hardware design can improve the
performance and efficiency of a wide variety of real-world applications.

“output” — 2022/1/15 — 13:36 — page 10 — #24

Core chapters

Chapter 1: Introduction

Chapter 2: Background
• Sparse linear algebra
• Numerical mathematics
• Hardware for sparse linear algebra

Chapter 3: Reduced-Precision Streaming SpMV for PPR on FPGA
• Novel FPGA SpMV hardware design
• Leveraged to accelerate PPR
• It uses reduced-precision fixed-point arithmetics
• Faster convergence than floating-point

Chapter 4: Top-K Graph Eigenproblems on FPGA
• SpMV hardware design extended to HBM
• It uses partitioning to scale to larger graphs
• It solves eigenproblems using the Lanczos and Jacobi algorithms,

implemented using a systolic array design

Chapter 5: Top-K SpMV for Approximate Sparse Embedding Simi-
larity on FPGA

• SpMV design extended to Top-K computations
• Novel algorithmic approximation & custom sparse data layout
• Exploit full HBM bandwidth
• Better-than-GPU performances

Chapter 6: Conclusion and Future Work

Initial SpMV Design, Graph Processing

HBM, Graph Processing

Recommender Systems

Sp
ar

se
L

in
ea

rA
lg

eb
ra

fo
rR

ec
om

m
en

de
rS

ys
te

m
s

Figure 1.3: Structure of this thesis, with the main contributions of each chapter.

“output” — 2022/1/15 — 13:36 — page 11 — #25

CHAPTER2
Background on Sparse Linear Algebra and

Hardware Architectures

The topic and contributions of this thesis extend to multiple areas of com-
puter science. This chapter introduces the main building blocks required in
the following chapters, to make them accessible to anyone without strong
expertise in sparse linear algebra and reconfigurable architectures.

First, we introduce the language and the challenges of sparse linear
algebra. It will be clear sparse linear algebra employs complex memory
access patterns, and simply providing more computational resources rarely
results in an immediate performance improvement.

Second, we explain how fixed-point arithmetic and approximate com-
puting are appealing solutions in information retrieval, where one can es-
tablish a successful trade-off between performance and accuracy.

Finally, we survey the landscape of hardware architectures in the con-
text of sparse linear algebra, illustrating how each of them has different
strengths, and few can currently leverage approximate computing. The
case of FPGA accelerator cards will be presented, which can easily adapt
to different accuracy requirements, providing top-of-the-line performance
and power efficiency.

11

“output” — 2022/1/15 — 13:36 — page 12 — #26

2.1 Introduction

Given the growing interest in recommender systems that can leverage sparse
linear algebra and the limitations of current hardware architectures on such
workloads, it is critical to provide fast and efficient architectural primitives
for sparse computations. It is no surprise that Deep Learning (DL) is still
dominated by dense linear algebra computations, as they are the simplest to
parallelize on high-performance architectures such as Graphics Processing
Units (GPUs). However, we observe how large-scale recommender sys-
tems, such as the ones used by Facebook [76] show an increasing percent-
age of sparse computations. Their bottlenecks are entirely different from
dense computations – unpredictable memory accesses, embedding lookup,
and manipulation, instead of heavyweight mathematical operations. Even
if dense workloads are still dominant, sparse computations already account
for 20,% of their AI inference cycles [75]. In the case of graph analytics,
the need for high-performance sparse operations is even more evident, as
graphs employed in real-world applications already have sizes that make
dense computations prohibitive. In short, making sparse workloads faster
and more power-efficient is high-priority research with a clear real-world
impact for multiple fields, from computer architecture to machine learning.

This chapter provides the necessary background to sparse linear al-
gebra and its primitive operations (Section 2.2), which will encounter in
graph analytics and Information Retrieval (IR) algorithms, in the following
chapters. We also provide an introduction to the concepts of numerical
stability and fixed-point arithmetic, as both play a significant role in the
approximate computing techniques that underpin this thesis (Section 2.3).
Finally, we survey the landscape of modern hardware architectures in the
context of sparse linear algebra and provide general considerations about
the strengths and weaknesses of each (Section 2.4).

2.2 Introduction to Sparse Linear Algebra

The first step to understanding the content of this thesis is to define the basic
language of sparse linear algebra (Section 2.2.1). While these primitive op-
erations are seemingly equivalent to their dense linear algebra counterparts,
we will see how sparse matrices can be represented with a variety of data
structures, each with different implementations and algorithmic complexity
(Section 2.2.2). Figure 2.1 shows four sparse matrices, giving an intuitive
feeling of how diversified the landscape of sparse matrices is: each matrix
will benefit from specific data structures and algorithms.

“output” — 2022/1/15 — 13:36 — page 13 — #27

(a) Irregular matrix (b) Irregular matrix (c) Diagonal matrix (d) Blocked matrix

Figure 2.1: Patterns encountered in sparse matrices from the SuiteSparse collection [43].
The first two matrices do not have any visible structure. The third has clearly a diago-
nal structure, while the fourth is composed of dense blocks.

2.2.1 Building Blocks of Sparse Linear Algebra

Throughout this thesis, we adopt the following notation. A lowercase letter,
such as a, denotes a scalar value. A bold lowercase letter, such as x or y,
denotes a vector. An uppercase bold letter, such as A, denotes a matrix.
Informally, we identify with typewriter font, e.g. ptr, the data structures
(e.g. arrays) that implement these mathematical objects. Unless otherwise
specified, assume that vectors are dense, i.e. most of their elements are
different from zero, and all the values are explicitly stored. Conversely,
assume that matrices are sparse, i.e. only a small fraction of their values
are different from zero. We call such values non-zeros, or non-zero entries.
We usually denote with uppercase letters the dimensionality of vectors and
matrices. For example, a vector has N elements, while a sparse matrix has
N rows, M columns, and nnz non-zeros. A matrix is sparse if nnz �
NM , or, alternatively, if nnz ∼ O(max(N,M)). A matrix with nnz <
O(max(N,M)) is called hyper-sparse, but these matrices go beyond the
scope of this work. Most vectors and matrices seen in this work contain
real number, i.e. x ∈ RN and A ∈ RN×M . The following two definitions
will also appear very often.

Definition 2.1 (Degree). The number of non-zeros in a row is called degree
of the row, denoted as δ. It is also common to mention the average degree,
the average number of non-zeros per row, obtained as δ = nnz/N .

Definition 2.2 (Sparsity, and density). The fraction of non-zeros in the ma-
trix is called sparsity, and it is sometimes expressed as a percentage. Spar-
sity is computed as s = nnz/(N ·M). Conversely, density is d = 1− s.

While outside the scope of this work, one can also define sparse tensors
by generalizing the notion of sparse vectors and matrices. Intuitively, an
order-1 tensor is a vector, an order-2 tensor is a matrix, while an order-3
tensor is a 3-dimensional matrix, and so on. Sparse tensors are commonly

“output” — 2022/1/15 — 13:36 — page 14 — #28

encountered in DL, and are at the center of very exciting research (Sec-
tions 2.4.2 and 2.4.5). We do not directly work on tensors, although many
of the architectural considerations and optimizations presented in this work
(such as operational intensity optimizations, reduced-precision arithmetic,
and compressed matrix representations) also apply to tensors.

Primitive Operations of Sparse Linear Algebra

Like one can define basic algebraic operations on dense vectors and matri-
ces, such as vector or matrix multiplication, it is possible to do the same
for sparse linear algebra. In the context of dense linear algebra, these
primitive operations are defined by the Basic Linear Algebra Subprograms
(BLAS) specification [115, 141]. A similar set of operations is defined in
the Sparse Basic Linear Algebra Subprograms (Sparse BLAS) specifica-
tion [145]. Operations in BLAS and Sparse BLAS are divided into levels.
Level 1 (L1) is used for operations on vectors. Level 2 (L2) is used for
operations involving matrices and vectors, while Level 3 (L3) indicates op-
erations that combine matrices with other matrices. Here we define the
most important ones.

L1 – Sparse dot-product: a← x · y, or a← 〈x, y〉. Inner product of two
sparse vector. If both x and y have unitary L2 norm, the dot product
is equivalent to the cosine similarity [183].

L1 – Sparse vector update: z← ax+ y. Sum of two sparse vectors, with
one scaled by a constant factor. Also known as sparse axpy.

L1 – Sparse gather: z ← x|y, with x ∈ RN , y ∈ NM , M ≤ N,∀yi ∈
y : yi ≤ N . Assign to z the elements of x with index specified by the
values of y.

L1 – Sparse scatter: x|y ← z. Inverse operation of sparse gather, assign
the elements of z to the indices of x specified by y.

L2 – Sparse Matrix-Vector Multiplication (SpMV): z ← aAx + by.
Product of sparse matrix by dense vector, with A ∈ RN×M being a
sparse matrix and x ∈ RM , y ∈ RN , z ∈ RN being dense vectors.
The core operations which is analyzed and accelerated in this thesis.
In most cases, we assume a = 1, b = 0.

L3 – Sparse Matrix-Dense Matrix Multiplication (SpMM): given A ∈
RN×K sparse, and dense matrices B ∈ RK×M and C ∈ RN×M , com-
pute the dense matrix D ← aAB + C. From a practical standpoint, it
can be seen as a SpMV applied to multiple vectors.

“output” — 2022/1/15 — 13:36 — page 15 — #29

L3 – Sparse Matrix-Matrix Multiplication (SpGEMM): product of two
sparse matrices, with A ∈ RN×K , B ∈ RK×M and C ∈ RN×M be-
ing all sparse matrices. SpGEMM computes the matrix D ← aAB +
C. Conventionally, D is also sparse, but in some implementations,
it might be dense. Sometimes, the name SpMM is used in place of
SpGEMM, e.g. [99]. Efficient algorithms for SpGEMM are extremely
complex to create and, similarly to SpMV, still an active subject of re-
search [60]. The most classic algorithm for SpGEMM is attributed to
Gustavson [77], but many hardware-optimized algorithms have been
recently proposed [99, 159, 218, 226].

The algorithmic space and time complexity of these operations are al-
ways strongly dependent on the data structures used to represent the sparse
data and the characteristics of the underlying hardware.

Representing Graphs with Sparse Matrices

Graphs are also commonly stored using sparse matrices. Using sparse ma-
trices is a perfectly reasonable choice. The friendship graph of a social
network might have millions or billions of users (i.e. vertices), but each
user has, on average, a few hundred friends. Similarly, a web graph repre-
senting links between web pages has billions of pages, but each page only
links to a handful of other pages. When discussing graphs, we define it as
G = (V,E), with V being the set of vertices, and E ⊆ V × V is the set of
edges, i.e. links between pairs of vertices. |V | and |E| are the number of
vertices and edges, respectively. In the context of sparse matrices, a graph
can be represented as a square matrix A ∈ {0, 1}|V |×|V |, where each row
and column represent vertices, and a value of 1 indicates the presence of an
edge for the given pair of vertices. The number of edges |E| is equal to the
number of non-zeros nnz. Edges can have numerical values: in this case,
we store the graph as A ∈ R|V |×|V |.

2.2.2 Data Structures for Sparse Linear Algebra

There exist many different ways to store and represent sparse matrices.
Choosing the most suitable data structure requires knowledge of the ma-
trix content (e.g. if the non-zero elements have a predictable structure), the
target application (e.g. if it is an iterative algorithm), and the architecture
that will operate on the matrix. Each of these data structures has different
advantages and disadvantages, and it is important to understand their algo-
rithmic complexity and implementation details to adopt the most suitable
one. For example, one might want (or have) to choose the data structure

“output” — 2022/1/15 — 13:36 — page 16 — #30

0.5

0.1

0.8

0.8

0.2

0.4

0.4

0.9 0.1

0.6
0.72

6

4

5

7

3
8

10

Graph X
N = M = 9
nnz = 11

x:
y:

val:
COO representation of X

x:
y:

val:
COO representation of X

0
1

1
2 2

2
3 4 4 4

5 5
5
67 7

7
8

0.5 0.1 0.8 0.20.9 0.4 0.10.4 0.8

4
2
0.7

5
7

0.6

(nnz)
(nnz)
(nnz)

ptr:

idx:
val:
CSR representation of X

0

0

1

0 1

2

3 8 9 9

5 5

11

67 7

11

8
0.5 0.1 0.8 0.20.9 0.4 0.10.4 0.8

4

2
0.7

5
0.6

0 1 2 3 4 5 6 7 8

(N+1)

(nnz)
(nnz)

0.5
0.1 0.8

0.2
0.9
0.4 0.1

0.4

0.8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0.7

0.6

(N x M)

ptr:

idx:
val:
CSC representation of X

1

0

2

1 2

4

4 4 7 8

4 4

10

37 7

11

5
0.5 0.1 0.7 0.20.8 0.6 0.40.9 0.4

4

2
0.8

4
0.1

0 1 2 3 4 5 6 7 8

(M+1)

(nnz)
(nnz)

Dense representation of X

COO

CSR

CSC

Figure 2.2: The constellation of Hercules can be stored with different sparse representa-
tions. The dense representation requires 81 values, of which only 11 are different from
zero. Sparse representations are more efficient, requiring only 31 or 33 values. This
difference in efficiency becomes even more visible on large matrices such as the ones
in Chapter 4, where less than 0.001 % of the values are 6= 0.

with the best compression ratio, at the cost of a performance penalty, or
pick a representation with a larger memory footprint but possibly the best
peak performance. Below, we summarize the most common data structures

“output” — 2022/1/15 — 13:36 — page 17 — #31

Table 2.1: Storage size, traversal cost and non-zero lookup cost of conventional sparse
matrix representations. Assume a sparse matrix A ∈ RN×M , with nnz non-zeros, and
B dense blocks in the case of BSR.

Representation Storage size and
traversal cost Non-zero lookup

Dense N ·M 1
COO 3 · nnz O(nnz), or O(log(nnz) + nnz/N) if sorted
CSR 2 · nnz +N 1 +O(nnz/N)
CSC 2 · nnz +M 1 +O(nnz/M)
Banded Problem dependent, ∼ O(N) O(1)

BSR Problem dependent
nnz, O(B) + 1 if storing
start/end coordinates of each block

for sparse matrices. In this section, assume that we deal with square sparse
matrices with N rows and columns. We summarize the main characteris-
tics of each data structure in Table 2.1, and provide a visual example in
Figure 2.2.

Coordinate Format (COO)

The most intuitive way to represent a sparse matrix is to store its non-zeros
in a sequential list, along with their coordinates. The Coordinate (COO)
format requires three vectors of size nnz. The first two, x ∈ Nnnz and
y ∈ Nnnz, store the coordinates of non-zero entries. The third vector,
val ∈ Rnnz, stores the values of non-zero entries. If we are only stor-
ing the topology of a graph, the third array is not necessary. Alternatively,
one can use a single array of triples (xi, yi, vali). Accessing random edges
and iterating on non-zeros of a given row is extremely inefficient (O(nnz),
possibly O(log(nnz) + N) if values are sorted with respect to x and y,
as one can use binary search). However, COO is a highly efficient format
for streaming computations that process all non-zeros in the matrix in a se-
quential fashion, as in SpMV. No nested loops are necessary, reducing the
risk of branch mispredictions and pipeline stalls.

Compressed Sparse Row (CSR)

COO has two main drawbacks. First, it contains redundant information, as
the x coordinates are repeated for every non-zero in the same row. Second,
it does not allow for the traversal of non-zeros in random rows. In COO, if
we want to sum the values of a row, we have to traverse all the nnz entries
in the matrix possibly.

“output” — 2022/1/15 — 13:36 — page 18 — #32

The Compressed Sparse Row (CSR) format solves both problems. It
uses a ptr ∈ NN+1 array that stores the cumulative degree of each row,
starting from 0. In other words, ptr[0] = 0, ptr[i] = ptr[i−1]+δ[i−1],
counting rows starting from 0, and with [·] being the conventional array ac-
cess operation. The column coordinate of each non-zero is stored in the
idx ∈ Nnnz array, while val ∈ Rnnz stores the values of non-zero en-
tries. The non-zero entries of row i (equivalently, the neighbours of vertex
i in a graph) are stored from idx[ptr[i]] (included) to idx[ptr[i + 1]]
(excluded). Iterating over all non-zeros requires only 2 · nnz+N array ac-
cesses, versus the 3·nnz of COO. However, CSR introduces data-dependent
array accesses (i.e. idx[ptr[i]]) which are more difficult to pipeline and
optimize in hardware.

Compressed Sparse Column (CSC)

Compressed Sparse Column (CSC) is a data structure similar to CSR, with
the difference that ptr contains the number of non-zeros in each column
of the matrix, instead of the number of non-zeros in each row. CSC can be
efficient when storing rectangular matrices with more rows than columns
(so that ptr is smaller), or if it is necessary to iterate over the in-neighbors
of a vertex (i.e. the elements of a column), as in PageRank (PR). Storing
a matrix as CSC is identical to storing the transpose of the matrix as CSR.
This property can be useful in numerical algorithms that require access to
transposed matrices (e.g. sparse matrix factorization).

Banded sparse matrix

A banded matrix is a sparse matrix where the non-zeros are located in diag-
onal patterns, usually, but not necessarily, in correspondence with the main
diagonal. These matrices can be stored with one or more arrays contain-
ing the diagonals’ elements with non-zero entries. For example, a banded
matrix with non-zeros along the main diagonal and the two diagonals im-
mediately above and below the main diagonal (i.e. a tridiagonal matrix) is
represented with three arrays, for a total of 3 ·N − 2 values. Such matrices
are common in engineering and numerical problems where matrices have a
diagonal structure (e.g. Finite Element Method (FEM)) but are less relevant
to our applications in graph analytics and recommender systems.

Block Compressed Row (BSR)

Some sparse matrices present a block-like structure, with small patches of
dense values as in Figure 2.3. This phenomenon is common in some nu-

“output” — 2022/1/15 — 13:36 — page 19 — #33

merical applications and sometimes when dealing with graphs with strong
community structures. To represent these sparse matrices, we wrap them
with additional data structures. For example, we can use an array of refer-
ences to the dense matrices. Alternatively, we can use a CSR-like format
where the ptr array stores the cumulative number of non-zeros in each
dense matrix, and dense matrices are stored in a contiguous array. In this
case, ptr identifies the start and end of each dense matrix. This repre-
sentation is called Block Compressed Row (BSR) and assumes that dense
matrices are disposed along the main diagonal. Alternative data structures,
able to store dense blocks with arbitrary locations, do however exist.

A =

A1 0 · · · 0

0 A2 0
...

... 0
. . . 0

0 · · · 0 AB

Figure 2.3: Block diagonal matrix. Each of the B square sub-matrices Ai is dense.

Other formats for sparse matrices

Besides the data structures presented above, there exist other formats used
to store sparse matrices. Such formats are usually optimized for a specific
target architecture or to enable properties that are not available in more
traditional data structures, such as fast insertion of new non-zeros. On
CPUs, Packed Compressed Sparse Row [208], STINGER [52] and Graph-
Tinker [92] are data structures optimized for dynamic sparse matrices and
graphs, while Dynamic Compressed Sparse Row enables similar updates on
GPUs [103]. Chapter 5 will introduce Block-Streaming CSR (BS-CSR), a
representation for streaming reduced-precision sparse linear algebra, opti-
mized for Field-Programmable Gate Arrays (FPGAs). Recently, there have
been attempts to unify all these representations in the context of sparse ten-
sors through the notion of fiber tree to provide a more abstract matrix rep-
resentation that can provide the best sparse representations for each tensor
dimension [189].

2.2.3 Implementing SpMV with COO and CSR

To further clarify the differences between COO and CSR, and to show what
a simple implementation of SpMV looks like, we present the pseudo code
of SpMV implemented using COO (Algorithm 1) and CSR (Algorithm 2).

“output” — 2022/1/15 — 13:36 — page 20 — #34

Algorithm 1 Pseudo-code of COO SpMV. We assume a = 1, b = 0

Require: Input Matrix A = (x, y, val) ∈ RN×M in COO format
Require: vec ∈ RM , dense vector multiplied by the matrix
Require: res ∈ RN , dense vector used as output

1: function COO-SPMV(ptr, idx, val, vec, res, nnz)
2: for i in [0, nnz] do
3: res[x[i]] += val[i] · vec[y[i]]
4: end for
5: return res

6: end function

Algorithm 2 Pseudo-code of CSR SpMV. We assume a = 1, b = 0

Require: Input Matrix A = (ptr, idx, val) ∈ RN×M in CSR format
Require: vec ∈ RM , dense vector multiplied by the matrix
Require: res ∈ RN , dense vector used as output

1: function CSR-SPMV(ptr, idx, val, vec, res,N)
2: for i in [0, N] do
3: for j in [ptr[i], ptr[i+ 1]) do
4: res[i] += val[j] · vec[idx[j]]
5: end for
6: end for
7: return res

8: end function

We see how COO requires just an external loop but more memory ac-
cesses. On the other hand, CSR requires two loops but fewer accesses
overall. To formalize these concepts, we define different types of memory
accesses and the concept of operational intensity.

Sequential access: the simplest type of array access, typical of linear array
scans. We find such accesses, for example, in the matrix accesses
at line 3 of COO SpMV (x[i], y[i], val[i]). Sequential accesses are
easy to predict and pipeline, even when the number of iterations is not
known statically.

Data-dependent access: these are linear accesses whose number depends
on some value obtained through another array access. One example is
the inner loop of CSR SpMV at line 4 (val[ptr[i]], idx[ptr[i]]). The
idx and val vectors are traversed linearly, but the iteration bound-
aries depends on values of ptr, which are not known in advance.

“output” — 2022/1/15 — 13:36 — page 21 — #35

Optimizing such accesses is difficult and usually involves prefetch-
ing of values in ptr. When dealing with low-degree sparse matrices,
data-dependent accesses can be costly, as the pipelined execution of
data-dependent loops will stall at the end of each loop.

Random access: the most problematic type of array access, performed at a
location defined by another array access, making its location impossi-
ble to know in advance. Accesses to the dense x vector are completely
random, in both COO and CSR SpMV. Caches can help if random ac-
cesses present a locality of some kind (for example, we tend to access
values located in similar parts of the array), but otherwise, very little
can be done to improve their performance.

Definition 2.3 (Operational intensity). Also known as arithmetic inten-
sity, operational intensity is the ratio between computation and memory
traffic [184]. The precise evaluation of this value is somewhat problem-
dependent, but we can see it as the number of mathematical operations
done by an algorithm (e.g. in FLOPs) over the amount of data read from
memory (in bytes). Alternatively, we can see it as the number of bytes
read from memory for each input data element being processed or for each
output data element being computed.

SpMV has very low arithmetic intensity. In COO SpMV processing a
non-zero entry requires five memory accesses, and only two arithmetic op-
erations. The arithmetic intensity of CSR SpMV depends on the average
degree. However, we still require more than four memory accesses (and
only two arithmetic operations) to process each non-zero. As we cannot
avoid reading all the input data, we need other optimizations: hiding the la-
tency of memory transactions (≈100 cycles for a single transaction, on FP-
GAs) using pipelined hardware designs, minimizing the number of memory
transactions by reading larger data packets with each transaction, reducing
the impact of random memory accesses by using low-latency caches.

2.3 Notions of Numerical Mathematics

Sparse linear algebra is often encountered in large-scale iterative numeri-
cal algorithms, such as Personalized PageRank (PPR) (Section 3.3) and the
Lanczos algorithm (Section 4.3). Whether these algorithms converge to a
solution or whether numerical errors and other sources of instability prevent
the algorithms from producing meaningful results is determined by precise
mathematical definitions and properties. Section 2.3.1 introduces the main

“output” — 2022/1/15 — 13:36 — page 22 — #36

concepts of numerical stability and convergence. Then, one must consider
how the numerical representation of real numbers on hardware can intro-
duce other approximations, especially when working with matrices con-
taining millions or billions of values, not only in iterative algorithms. As
such, we present a brief overview of floating-point and fixed-point number
representations, with a focus on their accuracy and the impact of rounding
techniques (Section 2.3.2). Finally, we summarize the main metrics used to
assess the quality of recommender systems and information retrieval in the
context of approximate computations (Section 2.3.3).

2.3.1 Notions of Numerical Stability

We briefly present the notions of well-posed problems, condition number,
stability, and convergence, which are necessary for the evaluation of itera-
tive algorithms such as PPR and Lanczos. Further details about the defini-
tions in this section are found in Quarteroni et al. [167].

Define the abstract problem of finding x such that P (x, d) = 0, with
d ∈ D being the set of data from which the solution depends (for example,
the input matrix and the input query), taken from the set of admissible data
D (for example, all possible input matrices and queries). P is the functional
relation between d and x (for example, the recurrence equation of PR, Sec-
tion 3.3). In our context, P (x, d) = 0 is a direct problem as P and d are
given, while x is unknown.

Definition 2.4 (Well-Posed Problems). P (x, d) = 0 is well-posed if:

• A unique solution x does exist.

• The solution x changes with continuity if d changes with continuity.

Well-posed problems are also called stable problems. A problem that is
not well-posed is ill-posed or unstable. The second requirement of well-
posed problems is formalized as

{
P (x, d) = 0 =⇒ ∃δ : d+ δd ∈ D, P (x+ δx, d+ δd) = 0

∃K0 = K0(d) s.t. ∀δd : d+ δd ∈ D, ‖δx‖x ≤ K‖δd‖d
(2.1)

In Equation (2.1), ‖ · ‖x, ‖ · ‖d are arbitrary norms that are suitable for
x and d. The first equation states that, given a solution of the problem, a
small change δ to x and d will still produce a valid solution. The second
equation implies that finite changes to d produce a change to x that must

“output” — 2022/1/15 — 13:36 — page 23 — #37

be bound by a finite term K0. In other words, a finite change to d cannot
produce an infinitely large change in x.

An example of a well-posed problem is finding the eigenvalues of a
symmetric matrix, as scaling the input matrix (i.e. d) by a constant scales
the eigenvalues (i.e. x) by the same amount. On the other hand, finding
the real roots of a polynomial is an ill-posed problem, as changes in the
parameters of the polynomial might change the number of real solutions.
For example, x2 + x+ a = 0 could have 0, 1 or 2 real solutions.

The term K0, which expresses the continuous dependency of x from d,
is not arbitrary. Instead, we can introduce the following definitions.

Definition 2.5 (Relative condition number). For the problem P (x, d) = 0,
the relative condition number is

K(d) = sup
{‖δx‖x/‖x‖x
‖δd‖d/‖d‖d

, δd 6= 0, d+ δd ∈ D
}

(2.2)

Intuitively, K(d) expresses the maximum proportional change on x that
a small change on d can produce.

Definition 2.6 (Absolute condition number). If ‖x‖x = 0 or ‖d‖d = 0, we
define the absolute condition number as

K(d) = sup
{‖δx‖x
‖δd‖d

, δd 6= 0, d+ δd ∈ D
}

(2.3)

Informally, a large K(d) will produce an ill-posed problem in d. Being
ill-conditioned is not a property of a given numerical algorithm: one can
devise stable and unstable algorithms to solve a well-posed problem. The
concept of a stable algorithm, or stable numerical method, is defined sim-
ilarly to a stable problem. To do so, we need to define what a numerical
method is and what properties it can have.

Given a well-posed problem P (x, d) = 0, an approximate numerical
method for the resolution of P (x, d) = 0 creates a sequence of approximate
problems Pn(xn, dn) = 0, n ≥ 1, under the assumption that the sequence
will converge to the exact solution, i.e. xn → x, dn → d, and Pn → P for
n→∞.

Definition 2.7 (Consistency of numerical methods). We say that a numeri-
cal method Pn(xn, dn) = 0 is consistent if

lim
n→∞

Pn(x, d)− P (x, d)→ 0 (2.4)

“output” — 2022/1/15 — 13:36 — page 24 — #38

Similarly, Pn(xn, dn) = 0 is strongly consistent if ∀n Pn(xn, d) = 0, i.e.
x is always a solution for each approximate relation Pn.

Definition 2.8 (Stability of numerical methods). A numerical method is
stable (or well-posed) if and only if the following conditions hold.

1. ∀n, Pn(xn, d) = 0.

2. The sequence xn is unique and reproducible, i.e. the sequence of ap-
proximate solutions produced by Pn with input d is always xn.

3. The sequence xn changes with continuity if d changes with continuity,
with the same definition in Equation (2.1).

Definition 2.9 (Convergence of numerical methods). A numerical method
is convergent if

∀ε > 0 ∃n0(ε), δ = δ(n0, ε) such that
∀n > n0(ε), ∀δdn : ‖δd‖d ≤ δ =⇒ ‖x(d)− xn(d+ δdn)‖x ≤ ε

(2.5)

In other words, for every arbitrarily small ε, it exists an iteration n0 and
a value δ such that for every iteration n after n0 and for each variation of dn
smaller than δ, it is guaranteed that the approximate solution xn has error
≤ ε. To measure convergence error of xn to x, one can use absolute error
and relative error, defined as

Eabs = ‖x− xn‖x Erel =
‖x− xn‖x
‖x‖x

(withx 6= 0) (2.6, 2.7)

2.3.2 Machine Real Number Formats

Real numbers have many possible representations on hardware, each with
its trade-offs in terms of precision, complexity, and flexibility. Floating-
point arithmetic is arguably the most widely known and employed format
in numerical mathematics, with a generic number x encoded as

x = (−1)s · (0.m1m2 . . .mM) · βe1e2...eE (2.8)

with m = m1m2 . . .mM ∈ N representing the mantissa, i.e. the frac-
tional part of the number, expressed in base β, and e = e1e2 . . . eE ∈ N

being the exponent of the number, also in base β [85, 167]. We define
M ∈ N as the number of significant figures in x, and β ∈ N is the basis

“output” — 2022/1/15 — 13:36 — page 25 — #39

sign exponent e (8 bits) mantissa m (23 bits)

1 1 1 1 1 1 1 1 1 1 1 1
31 30 23 22 0

≈ 42.42

sign integer part (6 bits) fractional part f (25 bits)

1 11 1 1 1 1 1 1 1 1 1
31 30 25 24 0

≈ 42.42

Figure 2.4: Floating-point and fixed-point representations of 42.42, using the IEEE 754
single-precision 32-bits floating-point representation, and a S6.25 fixed-point repre-
sentation. Neither representation can encode 42.42 exactly. The floating-point rep-
resentation stores 42.41999816894531, while the fixed-point representation, thanks
to its additional two bits for the fractional part, stores the more accurate value of
42.41999998688697815.

of the number (in binary notation, β = 2). We have that s is the sign bit
∈ {0, 1}, and N = M + E + 1.

The value of e defines an interval between two consecutive powers of
β, i.e. [βe, βe+1). The value m partitions the interval [βe, βe+1) into βM

steps of size (βe+1 − βe)/βM . For example, if M = 3, β = 2 and e = 0,
we divide [0, 1) into 23 = 8 steps of size 1/8 = 0.125. On the other hand,
if e = 3, we partition [8, 16) in 4 steps of size 8/8 = 1. The bigger the
exponent, the lower the resolution of the floating-point representation is.

The IEEE 754 standard provides a commonly accepted definition for
the parameters encountered in floating-point representations. In single-
precision floating-point arithmetic (F32), E = 8, M = 23, and −125 ≤
e ≤ 128; in double-precision floating-point arithmetic (F64), E = 11,
M = 52, −1021 ≤ e ≤ 1024. In other words, IEEE 754 expresses single-
precision floating-point numbers as

x = (−1)s · (1.m) · 2e−127 (2.9)

with m ∈ [0, 223−1], e ∈ [0, 28−1]. For convenience, this representation
normalizes the mantissa to represent the interval [1, 2), and the exponent to
be in [−127, 128].

Conversely, one can simply fix the number of bits used for the integer
and fractional part of a real number. The fixed-point representation of a
number x, encoded with a total of N = I +F +1 bits, of which I are used
for the integer part and F are used for the fractional part, is given by

x = (−1)s[xF+I−1xF+I−2 . . . xF · xF−1xF−2 . . . x0] (2.10)

which is equivalent to the following form

“output” — 2022/1/15 — 13:36 — page 26 — #40

Table 2.2: Summary statistics of IEEE 754 floating-point and fixed-point representations.
Floating-point values are retrieved from Hopkins et al. [85].

F64 F32 S8.23 U1.31 U1.19

Accuracy 2−52 2−23 2−23 2−31 2−19

Minimum (exact) 2−1022 2−126 2−23 2−31 2−19

Minimum (approx.) 2.225 · 10−308 1.175 · 10−38 1.19 · 10−7 4.65 · 10−10 1.9 · 10−6

Maximum (exact) (2− 2−52) · 21023 (2− 2−23) · 2127 28 − 2−23 2− 2−31 2− 2−19
Maximum (approx.) 1.798 · 10308 3.403 · 1038 255.99 . . . 1.9999 . . . 1.9999 . . .

x = (−1)s · β−F

N−2∑
j=0

xjβ
j (2.11)

In this case, the size of the step between any two numbers is fixed, and
does not depend on the magnitude of the number. In this thesis, we de-
note as SI.F a signed fixed-point with I bits of integer part and F bits of
fractional parts (e.g. S8.23). An unsigned fixed-point representation is
denoted as UI.F. Figure 2.4 shows how we can represent the value 42.42
using IEEE 754 32-bits floating-point arithmetic, and with a S6.25 fixed-
point representation. Neither representation is 100 % accurate, although the
fixed-point representation has a 100× smaller error thanks to the additional
bits used in the fractional part.

Table 2.2 summarizes the characteristics of IEEE 754 FP32, FP64, signed
fixed-point with 8 bits for the integer part, unsigned 32-bits fixed-point with
1 bit of integer part, and 20-bits unsigned fixed-point with 1 bit of integer
part. For each representation, we show its ε (i.e. the smallest difference be-
tween two values that can be encoded), its minimum and maximum values,
showing their exact and approximate expression.

In some situations, reduced-precision fixed-point arithmetic is provably
more accurate than single-precision floating-point arithmetic: for example,
computations with bound values such as PR, where fractional values are
bound in [0, 1]. There, an unsigned fixed-point representation with I = 1
and F = 25 is more accurate than single-precision floating-point arith-
metic, despite being 20 % smaller, as its ε is 2−25 instead of 2−23.

From Equation (2.10), it follows that to a real number represented in
fixed-point format, it corresponds an integer whose digits are interpreted
accordingly to the fixed-point definition. Basic arithmetic operations on
fixed-point arithmetic are trivially implemented by operating on the under-
lying integer representation. Given a real number x = [s, i, f] in fixed-point
format, we can define the following operations

“output” — 2022/1/15 — 13:36 — page 27 — #41

Addition: [s, i, f] + [s, i, f] = [s, i, f]

Subtraction: [s, i, f]− [s, i, f] = [s, i, f]

Multiplication: [s, ia, fa]− [s, ib, fb] = [s, ia + ib, fa + fb]

Such operations are implemented using hardware integer arithmetic.
Some additional considerations are required only in the case of multipli-
cation, as the output of multiplication has length s + ia + ib + fa + fb,
instead of s + ia + fa or s + ib + fb (with slight abuse of notation, using
the number’s components to denote their length). In this case, one must
manipulate the result to obtain a representation with the same length of the
original values, introducing a possible loss of precision.

There are multiple ways to truncate a number expressed in a fixed-point
representation. Here, we summarize some of them [85,214]. In the follow-
ing examples, we convert to a S1.3 representation an arbitrary fixed-point
number with I ≥ 1 and F > 3.

Round-to-nearest: it rounds to the closest representable value. In the case
of ties, one can round-up, round-down, or round-to-even (i.e. round to
the nearest value with an even least significant digit). With round-up
or round-to-even, 1.25→ 1.5 and −1.25→ −1.0.

Round-to-nearest, ties-to-zero: it rounds to the closest representable value.
In the case of ties, rounding is towards zero. Redundant bits for pos-
itive values are deleted, while for negative values, one has to add
the least significant bits until the nearest representable value, getting
closer to zero. For example, 1.25→ 1.0 and −1.25→ −1.0.

Round-to-nearest, ties-to-minus-infinity: same as round-down, it rounds
to the closest representable value. In the case of ties, rounding is to-
wards −∞. Redundant bits for positive values are deleted, while for
negative values one has to set the least significant bits, getting closer
to −∞. For example, 1.25→ 1.0 and −1.25→ −1.5.

Round-to-nearest, ties-to-plus-infinity: same as round-up, it rounds to
the closest representable value. In the case of ties, rounding is towards
∞. Redundant bits for positive values are set, while for negative val-
ues, the least significant bits are truncated, getting closer to ∞. For
example, 1.25→ 1.0 and −1.25→ −1.5.

Round-to-nearest, ties-to-infinity: opposite of ties-to-zero, it rounds to
the closest representable value. In the case of ties, rounding is to-

“output” — 2022/1/15 — 13:36 — page 28 — #42

wards −∞ and∞. Redundant bits for both positive and negative val-
ues are set, getting closer to ∞ and −∞, respectively. For example,
1.25→ 1.5 and −1.25→ −1.5.

Truncation: simply remove the additional bits, as if they did not exists. It
always performs a rounding to −∞, not only in the case of ties. For
example, 1.25→ 1.0 and −1.25→ −1.5.

Truncation-to-zero: remove the additional bits for positive vales, and set
the least significant bits for negative values, rounding to zero. For
example, 1.25→ 1.0 and −1.25→ −1.0.

Finding the best rounding technique is not trivial, and it is strongly de-
pendent on the application domain. In the applications presented in the fol-
lowing chapters, we found that simple truncation works best, as other meth-
ods required additional hardware resources without translating to faster ex-
ecution or better numerical accuracy.

The reduced dynamic range of low-precision fixed-point arithmetic can
conceptually lead to faster convergence: intuitively, there are fewer num-
bers than the output values can take. At the same time, low precision might
result in no convergence at all or meaningless results. As a simple example,
consider the task of retrieving from a collection of vectors the ones with the
highest cosine similarity given an input vector (similarly to the problem in
Chapter 5). Suppose the number of vectors is larger than the different sim-
ilarity values that can be encoded with a given numerical representation. In
that case, some of them will inevitably have the same similarity value.

For example, when using 10-bit fixed-point arithmetic to encode vec-
tors’ values and similarity values, it is possible to encode only 210 = 1024
different similarity values. Suppose we have millions of vectors to com-
pare against our input vector. In that case, hundreds, if not thousands of
vectors will likely have the same similarity and be indistinguishable from
each other. In real applications, the effect might be less pronounced as
similarities often follow a Zipfian distribution [163], with very few vectors
having high similarity and the great majority of vectors having little-to-zero
similarity. Even a very low bit-width can provide reasonably good results
in such a situation. From an architectural perspective, one can instead min-
imize this problem by using mixed-precision hardware designs. Values are
stored in off-chip memory using low bit-width to minimize memory uti-
lization and allow for greater operational intensity, as more values can be
loaded with a single memory transaction. Then, arithmetic operations on
these values are done with higher precision arithmetic, and results are con-
verted to the low-precision format only when stored in off-chip memory.

“output” — 2022/1/15 — 13:36 — page 29 — #43

We employ this technique in Chapter 5, achieving great accuracy even when
processing millions of embeddings stored with low-precision arithmetic.

From a hardware perspective, fixed-point arithmetic is vastly cheaper
than floating-point arithmetic, being based on simpler integer operations:
a 32-bit integer adder, almost directly equivalent to a fixed-point adder,
demands 9× less energy and 30× less area than a 32-bit floating-point
adder [85]. Quantization from reduced-precision floating-point to integer
representations is a common strategy in DL, with quantization from FP4
(4-bit floating-point arithmetic) to INT4 achieving 5× faster training time
with no visible accuracy degradation [35, 74, 174, 188]. Strong quantiza-
tion, fixed-point arithmetic, and even binarization of weights are also com-
mon techniques used for inference, and sometimes training, acceleration
of DL on FPGAs and custom hardware architectures [136, 193], achieving
real-time classification even on embedded hardware. Reduced-precision
arithmetic is commonly employed in GPUs also in the context of DL and
numerical mathematics. Yan et al. [217] achieves 1.5× speedup on matrix
multiplication kernels using half-precision floating-point arithmetic on Ten-
sor Cores [12], while Haidar et al. [79] show a 4× speedup in the resolution
of dense linear systems of equations using FP64-to-FP16 mixed-precision,
also on Tensor Cores. Micikevicius et al. [133] obtain 2–6× DL training
using mixed-precision training (FP16 and FP32), compared to a pure FP32
implementation, with no performance loss.

In the specific context of IR, where it is common to rank items from a
collection and compute item similarities, a strong precision reduction might
be unsuitable (as in the example below, with 10-bit fixed-point values).
Still, there is often no need to employ 32-bit precision fixed-point arith-
metic or even floating-point, as shown in the next chapters of this thesis: it
will be shown how 20-bit fixed-point arithmetic is often enough, even when
working with matrices with hundreds of millions of values.

2.3.3 Evaluating Accuracy in Information Retrieval

In this thesis, we focus on applications of sparse linear algebra – specifi-
cally, of SpMV – in the context of graph analytics, recommender systems,
and information retrieval, using algorithmic approximations and reduced
numerical precision to improve their performance. To evaluate the quality
of our accelerated implementations, we cannot simply refer to the intrin-
sic inaccuracy of different number representations, as in Section 2.3.2. In
other words, simply measuring how close the numerical values produced
by our algorithms to a gold-standard reference (produced, for example, by

“output” — 2022/1/15 — 13:36 — page 30 — #44

a double-precision floating-point implementation) might give a mislead-
ing picture of the real-world effectiveness of our implementations. This
phenomenon occurs because algorithms encountered in these application
domains do not require perfect numerical accuracy but can tolerate approx-
imate results to a certain degree. For example, consider the task of rec-
ommending to a user 20 movies that the user might enjoy watching. First,
the accuracy of movies ranked high on the list will be more important than
those of a movie ranked low. It is unlikely that the user might notice that the
20th is more appealing than the 19th, while an error on the top recommen-
dations will have more impact. Moreover, we do not even care about the
individual score of each movie, but we only require its relative order with
respect to the other movies to be correct. As such, it is common to evaluate
different metrics: some simply take into account how many highly-ranked
elements are correctly retrieved, others also judge if their relative order is
correct, or introduce a stronger penalty for highly-ranked items that have
been mispredicted [173]. Most metrics are not evaluated on the entire col-
lection of items that can be ranked, but only for the Top-K, i.e. the K items
with the highest ranking (e.g. Top-10, Top-20, etc.). Clearly, it is usually
irrelevant how well movies (or products, or web pages) in the 1000th or
10000th positions are ranked. We define as N the number of items in the
collection (e.g. N = 106 or more), while K is the number of elements rele-
vant to the ranking (e.g. 10, 20, etc.). The following paragraphs summarize
the metrics used later in our analyses.

Number of errors

The simplest way to evaluate a ranking, i.e. an ordered list of identifiers
(such as the titles of the 20 movies), is to compare it to a gold reference (e.g.
the ranking obtained by an implementation with no approximations), and
count how many elements are placed in the wrong place. Given the ranking
y ∈ NK and the gold-reference ŷ ∈ NN , with K ≤ N , the number of errors
ε is ε =

∑i=K
i=1 1{y 6= ŷ}, with 1{y 6= ŷ} being an indicator function such

that 1{.} = 1 if {y 6= ŷ} and otherwise 1{.} = 0. This accuracy metric
is very coarse-grained, as a single mistake can greatly affect the overall
ranking. For example, if the correct Top-4 ranking is {2, 4, 8, 6} and our
implementation retrieves {4, 8, 6, 2}, this accuracy metric will report four
errors, even though only a single value is displaced.

“output” — 2022/1/15 — 13:36 — page 31 — #45

Edit Distance

A more robust accuracy metric, edit distance compares two rankings in
terms of how many operations (insertion, deletion, substitution) are neces-
sary to transform one ranking into the other [119] It can deal with value
replacements and ordering shifts: in the previous example, the edit distance
is just 1, as we can insert the value 2 at the beginning of the ranking ob-
tained by our implementation, and ignore values located after the first 4 (as
we consider the Top-4 items, in the example).

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) [94] is a common met-
ric used in IR to evaluate ranking quality of search engines and recom-
mender systems. This metric dampens the relevance of a given item by a
logarithmic factor dependent on its position. Items contribute differently to
the gain of the ranking depending on the position that they are given: highly
ranked items contribute more heavily to the cumulative gain compared to
the lower-ranked ones. Given the golden ranking ŷ ∈ NN , and an approxi-
mate ranking y ∈ NK , the relevance reli of item yi ∈ y is its position in ŷ,
i.e. reli = min{j | ŷj = i}. The relevance values can, in principle, be ob-
tained through other means (e.g. by asking them to a user), but simply using
each item’s positions in the golden ranking is also effective when dealing
with large collections of items. Then, we define Discounted Cumulative
Gain (DCG) as in Equation (2.12). The Ideal Discounted Cumulative Gain
(IDCG), instead, is the DCG computed on ŷ with respect to itself. DCG is
normalized by dividing it by the IDCG, as in Equation (2.13).

DCG =
K∑
i=1

reli
log2(i+ 1)

nDCG =
DCG

IDCG
(2.12, 2.13)

Mean Average Error

Mean Absolute Error (MAE) evaluates the difference between the ranking
scores (i.e. the numerical values produced by a ranking algorithm, from
which rankings are produced) produced by a gold-reference implementa-
tion and the ones of an approximate implementation. Given the golden
scores x̂ ∈ RK , and an approximate ranking x ∈ RK , MAE is defined as
in Equation (2.14). If instead of using the absolute difference of scores, we
compute their squared difference, we obtain the Root Mean Square Error

“output” — 2022/1/15 — 13:36 — page 32 — #46

(RMSE) norm, as in Equation (2.15). These two equations represent the
distance of the ranking scores in terms of L1 norm and L2 norm.

MSE =
1

K

K∑
i=1

|x̂i − xi| RMSE =

√√√√ 1

K

K∑
i=1

(x̂i − xi) (2.14, 2.15)

Precision

Precision measures the correctness of rankings in the Top-K without keep-
ing their relative order into account. In other words, it counts how many
items in y ∈ NK also appear in ŷK ∈ NK , the first K positions of the gold-
reference ranking ŷ ∈ NN . Considering y and ŷK as sets of size K (as the
order of their elements does not matter), precision π is defined as

π =
|y ∩ ŷK|
|y ∪ ŷK|

(2.16)

Kendall’s Tau

Kendall’s τ is a correlation coefficient commonly used in hypothesis testing
to statistically validate the ordinal association of ordinal random variables,
and can be seen as a measure of correlation between two rankings [180], as
it penalizes out-of-order items in a ranking when compared to a reference
ranking. Let t ∈ NN be a vector where each position represents an item
in the collection, and ti ∈ [1, N] is its rank, produced by our approximate
ranking algorithm. Let t̂ ∈ NN be an array defined in the same way, but
with rankings produced by the golden-reference algorithm. In other words,
t and t̂ are defined as the rel vector in NDCG.

Consider all the pairs (ti, tj) : ti, tj ∈ t̂ and (t̂i, t̂j) : t̂i, t̂j ∈ t̂, with
i < j. These two pairs are concordant if ti < tj and t̂i < t̂j , or if ti > tj
and t̂i > t̂j . Otherwise, the two pairs are discordant. Any pair containing
elements that appear in t̂ but not in t (or in t but not in t̂) is discordant. C
is the number of concordant pairs, D is the number of discordant pairs.

Then, Kendall’s τ is defined as τ = (C − D)/
(
N
2

)
. To measure τ over

an arbitrary number K ≤ N of items, simply select from t and t̂ the K
highest-ranked items in each vector.

“output” — 2022/1/15 — 13:36 — page 33 — #47

2.4 Hardware for Sparse Linear Algebra

Sparse linear algebra has drawn the interest of the hardware research com-
munity for decades, with optimizations for storage and compilers dating
back to the ’70s [50]. This interest is now stronger than ever. The recent
popularity explosion of graph analytics and DL demands novel techniques
to handle sparse matrices with millions, billions, or possibly trillions of
non-zero entries, representing web graphs, social networks, or databases of
embeddings used in recommender systems [43]. In the field of DL alone,
the number of publications related to sparse computing has increased by
10× over the past 10 years [83].

This section presents an overview of how different hardware architec-
ture, from traditional Central Processing Units (CPUs) to highly customized
Domain-Specific Architectures (DSAs) and Application-Specific Integrated
Circuitss (ASICs), have been used to improve the performance, efficiency,
and scalability of sparse computations. We discuss the advantages and dis-
advantages of each, with a focus on FPGAs, and why they have been cho-
sen as hardware of choice for this work. Finally, we present a brief outlook
of what trends might be observed in the near future in terms of hardware
acceleration of sparse computations.

2.4.1 General-purpose CPUs (GPCPUs)

General-purpose Central Processing Units (GPCPUs) have always been
the starting point for optimized sparse linear algebra, with efforts to op-
timize CPU compilers dating back to the early ’70s [50,65,78]. Nowadays,
basic sparse linear algebra routines have been standardized in the Sparse
BLAS specification, of which there exists many optimized CPU imple-
mentations [51]. Among libraries the implement all or part of the Sparse
BLAS specification, we can mention SPBLAS [51, 145], Eigen [71], Ar-
madillo [176], IntelMKL [88,200], and OSKI [199]. On a similar note, the
GraphBLAS specification defines basic mathematical routines for opera-
tions on graphs, and most of them rely on sparse linear algebra [28,42,101].

Using CPUs to implement sparse linear algebra routines is arguably the
most intuitive choice: they provide quick random memory accesses, sup-
port for complex data structures, and the best performance in sequential
operations. At the same time, the presence of complex architectural com-
ponents such as branch predictors and multi-level caches can be a double-
edged sword for the performance of sparse linear algebra computations.
This phenomenon is evident when working with matrices stored as CSR
that exhibit low average degree (δ < 10) and large degree variance. The

“output” — 2022/1/15 — 13:36 — page 34 — #48

large degree variance will cause the branch predictor to mispredict the num-
ber of non-zero values per row, while the low average degree means that
the misprediction penalties can outweigh the benefits offered by the deep
pipelines of modern CPUs.

Similar considerations occur with caches. In SpMV the sparse matrix is
usually traversed linearly, but to each non-zero entry of the matrix, it corre-
sponds an access to the dense vector multiplied by the matrix. The indices
of these accesses are usually unpredictable and, especially in graphs, might
not follow any visible pattern. As such, caching values of the dense vector
might be infeasible, and each access to it will incur into overheads intro-
duced by cache lookups and miss penalties. At the same time, sparse matri-
ces might have a hidden structure that can be exploited. Social graphs, for
example, are usually composed of densely connected communities. When
traversing such graphs, subsequent memory accesses tend to happen within
the same community.

The sub-field of matrix and graph reordering was born to provide algo-
rithms that identify these structures, and enable the hardware to take ad-
vantage of them [110, 207]. For example, one can move rows (i.e. ver-
tices) with identical degrees close to each other to reduce the number of
branch mispredictions when using a CSR representation. The typical goal
of state-of-the-art reordering algorithms such as Gorder is to minimize the
number of cache misses, and guarantee that subsequent random memory
accesses can be coalesced into a unique memory access through the Miss
Status Holding Register (MSHR) [207]. Another recent technique [54] pre-
serves the original community structure of the input graph, observing how
strongly connected vertices are often processed within a time from one an-
other. It should be kept in mind that these reordering algorithms introduce a
non-negligible overhead, as they need to scan the entire matrix at least once
(and often, multiple times). Such pre-processing overhead is irrelevant if
the same computations are repeated multiple times on the same input matrix
(e.g. with web-graphs that are updated once a day, Section 2.4.4), but are
hardly useful to accelerate one-off computations (e.g. a single SpMV on a
matrix that will not be used again). Graph reordering algorithms are usu-
ally encountered in the context of CPUs, as other architectures (e.g. GPUs,
FPGAs) do not present architectural characteristics that are affected by the
graph structure, such as deep cache hierarchies, out-of-order execution, and
branch prediction. GPUs, however, still show a 1.5 – 1.9× speedup in graph
traversal thanks to reordering [61], if using Unified Virtual Memory (UVM)
on graphs that do not completely fit into the GPU memory. In this case, the
speedup does not come from the GPU hardware itself, but from the min-

“output” — 2022/1/15 — 13:36 — page 35 — #49

imization of data transfer between CPU and GPU. Graph reordering does
not affect the performance of the SpMV FPGA hardware designs presented
in this work, as we do not resort to any speculative execution.

Recently, we observed a resurgence in the high-performance sparse lin-
ear algebra through GPCPUs, with the Fugaku supercomputer holding the
highest score in the sparse High-Performance Conjugate Gradient (HPCG)
benchmark. GPCPUs are still the inevitable choice if large in-memory anal-
yses are required (TB of memory). Moreover, the usefulness of dense linear
algebra accelerators for supercomputing has been put in question [48], and
similar considerations might also be relevant for sparse workloads as their
control flow is more complex and they are inherently more memory in-
tensive. Despite the power of GPCPUs in large-scale sparse computations
for supercomputing, hardware accelerators have proven effective times and
times again in the context of hyperscaler data centers [33, 96, 97, 122, 123,
164]. The success of these accelerators is explained by repetitive Machine
Learning (ML) and IR workloads that do not generally require partitioning
the computation over dozens of nodes (if at all) to answer a given query.

2.4.2 Graphics Processing Units (GPUs)

GPUs are specialized computer architectures, originally intended for graph-
ics rendering, that can process a large amount of data in parallel by running
computational functions – kernels, in the GPU jargon – on each data item
(for example, each pixel in an image, or each element in a list), or small
groups of data items. GPUs have evolved to become more versatile, and
are widely employed in a multitude of fields (computer graphics, artificial
intelligence, engineering, and finance), thanks to their parallel computing
power [1, 66, 108].

The GPU Programming Model

Despite their success and due to their peculiar architecture, GPUs demand
a low-level programming model and lack some of the programming tools
that are widespread for CPUs. GPU programming is largely done in native
languages such as CUDA [175], even though techniques to integrate GPUs
within managed languages and environments [59, 105, 156] have been re-
cently proposed. Their architecture is divided into different levels, roughly
mapped to the logical levels that divide the computation. In GPUs manu-
factured by Nvidia, the computation is split across Stream Multiprocessors
(SMs), each containing multiple Stream Processors (SPs) (or CUDA cores)
that execute the same computational kernel on different data items. Other

“output” — 2022/1/15 — 13:36 — page 36 — #50

...

...
...

(0,0) (N,0)

(0,M) (N,M)
...

Host Memory

PCIe

GPU Device Memory Grid

Block

Threads

(a) Simplified GPU architecture

void axpy(float *x, float *y, float a, float *res, int n) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n) res[i] = a * x[i] + y[i];
}

a •

Block 0 Block 1 Block 2 Block 3
i =

x1 x2 x3x0

y1 y2 y3y0

+ + + +

= = = =
r1 r2 r3r0

0 1 2 3

x4 x5 x6 x7

y4 y5 y6 y7

+ + + +

= = = =
r4 r5 r6 r7

4 5 6 7

x8 x9 x10 x11

y8 y9 y10 y11

+ + + +

= = = =
r8 r9 r10 r11

8 9 10 11

x12 x13

y12 y13

+ +

= =

+ +

r12 r13

=
✕

=
✕

12 13 14 15

✕ ✕

✕ ✕

(b) GPU axpy kernel

Figure 2.5: a Representation of a GPU architecture, with logical subdivision in grid,
blocks and threads, as in the terminology of CUDA. b GPU axpy kernel written in
CUDA, with subdivision in blocks and threads. Each thread processes an array ele-
ment, and conditional expressions are required to avoid out-of-bounds array accesses.

GPU manufacturers, such as AMD, and other GPU programming models,
such as OpenCL, have similar concepts and slightly different terminology.
A simplified representation of the GPU architecture is shown in Figure 2.5a.
At a logical level, the computation is mapped to grids, thread blocks, and
threads, with each thread processing one or more data items [151].

Figure 2.5b shows a simple axpy CUDA kernel, and the subdivision
into threads and blocks that is necessary for its computation. The CUDA
runtime spawns a number of threads at least equal to the number of ele-
ments in the input arrays, but that could be larger due to the chosen grid
structure1. Each block contains an equal amount of threads: in our axpy
kernel, if the user decides to have 128 threads per block, and the array
has 1000 elements, d1000/128e = 8 blocks will be created, for a total of
128 · 8 = 1024 threads. Conditional statements are necessary to avoid out-
of-bounds array accesses. Coordinating array sizes and grid structure is not
trivial: block size is often determined by consideration about performance
(and must lie between 32 and 1024), while the number of blocks is either a
function of the input size or based on the available SMs [81].

GPUs for Sparse Linear Algebra

GPUs, thanks to their massive parallelism and memory bandwidth, have be-
come extremely appealing for sparse linear algebra during the last decade.
One can find many optimized libraries and implementations of sparse lin-
ear algebra routines, including cuSPARSE [139], MAGMA [11, 128, 216],
GraphBLAST (for graph routines based on sparse linear algebra) [219],

1The grid structure defines how many threads each block contains, and how many blocks are employed

“output” — 2022/1/15 — 13:36 — page 37 — #51

GINKGO [10], and more [125, 218].
Modern GPUs deliver higher memory bandwidth than high-end FPGA

accelerator cards or multi-core CPUs. For example, the recent Nvidia A100
has access to 2039 GB/s of bandwidth through its 80 GB of High Band-
width Memory (HBM) memory [148]. Given that the previous two gener-
ations of high-end GPUs had up to 720 GB/s (Tesla P100) and 900 GB/s
(Tesla V100) of memory bandwidth, it is reasonable to expect an even more
impressive bandwidth growth in the next generations of GPUs. However,
existing SpMV implementations are often unable to utilize the available
bandwidth fully [143]. Moreover, the limited support for reduced-precision
arithmetic constraints GPUs’s operational intensity on sparse workloads.
However, recent work explores mixed single and double-precision floating-
point arithmetic [5], and half-precision floating-point arithmetic [2, 79].

Nvidia’s Sparse Tensor Cores in recent Ampere GPUs [37,149] for fine-
grained structured sparsity, as evolution of the original Tensor Cores found
in Volta GPUs [12, 130, 217]. However, Sparse Tensor Cores work well
only on structured sparsity with relatively high density (e.g. 1 %, orders of
magnitude more than what is encountered in real-world graphs – Tables 3.1
and 4.2), while handling low-density unstructured sparsity with the regular
3D grids found in GPUs is far harder, if not impossible. DL workloads,
arguably the primary driver of GPUs’s current popularity, are starting to
adopt sparsification techniques. However, state-of-the-art sparse DL mod-
els present only 90–99 % sparsity, with structured sparsity patterns [83].
However, neural networks are getting sparser and sparser, and there’s no
reason to believe that structured sparsity inherently leads to better accuracy
than unstructured sparsity. GPUs might have to introduce new hardware
components or even revise their programming model to successfully sup-
port unstructured sparsity and remain competitive in DL applications.

2.4.3 Field Programmable Gate Arrays (FPGAs)

FPGAs are integrated circuits whose defining characteristic is being pro-
grammable at the hardware level after fabrication. Developers can con-
figure the electrical circuits of an FPGA to implement arbitrary logic, op-
erations, and interconnections. FPGAs are widely employed to prototype
and test other integrated circuits, such as ASICs, and to create application-
specific hardware accelerators that can outperform, in terms of power ef-
ficiency, throughput or latency, traditional hardware architectures such as
CPUs and GPUs. FPGAs are not only programmable, but also reconfig-
urable, as the digital circuits that they implement can be updated at any

“output” — 2022/1/15 — 13:36 — page 38 — #52

time, usually in a matter of seconds, adapting to new tasks, input data, or
requirements.

An FPGA is composed of a bi-dimensional matrix of Configurable Logic
Blocks (CLBs), of input/output blocks that link the FPGA to external re-
sources, and of a programmable interconnection network that connect CLBs
and other elements of the FPGA [44]. Modern FPGAs also contain other
hardware components, such as Digital Signal Processors (DSPs) and sev-
eral megabytes of on-chip memory, in the form of Block RAM (BRAM)
and similar vendor-specific technologies. CLBs are the core elements of
FPGAs. They can implement combinational and sequential circuits and
provide simple and efficient storage. In turn, CLBs are implemented with a
configurable combinational circuit composed of Look-Up Tables (LUTs).
A LUT is a memory of 2n bits capable of storing any combinational func-
tion with n bits. Such functions are implemented with a truth table: the ta-
ble stores all possible combinations of bits, and the correct output, given a
certain input, is selected through a multiplexer. While the idea behind LUTs
is very straightforward, combining multiple LUTs, and multiple CLBs, en-
ables very complex hardware designs. For context, the CLB found in Xilinx
UltraScale FPGAs (and also used in Alveo accelerator cards) has 8 LUTs
with 6 inputs each, 16 Flip Flops (FFs) to implement sequential logic, mul-
tiplexers to combine the results of different LUTs, and arithmetic carry
logic [210].

In this thesis, we focus on FPGAs manufactured by Xilinx and adopt the
terminology encountered in Xilinx devices. We leverage the Xilinx Vitis
HSL toolchain. Other vendors, such as Intel, provide similar technologies
with small differences in nomenclature, features, and tools. However, it
should be possible to adapt the hardware designs presented in this thesis to
FPGAs by other manufacturers, with minimal performance differences.

Programming FPGAs with High-Level Synthesis

Programming an FPGA requires a configuration file, called bitstream, that
specifies the different FPGA configuration points, including the LUTs’
truth tables, the interconnection network, the on-chip memory, etc. The
bitstream file is the product of a tortuous and vendor-specific synthesis pro-
cess that begins with a description of the hardware design’s functionality.

The traditional way of specifying such hardware description is with a
Hardware Description Language (HDL) like VHDL or Verilog, through a
functional description of the desired design. Such languages, however, are
extremely complex to use and make the resulting design hard to extend to
new hardware or to new applications. An alternative, and arguably more

“output” — 2022/1/15 — 13:36 — page 39 — #53

user-friendly, FPGA programming flow, is based on High-Level Synthesis
(HLS) tools. HLS tools allow developers to write hardware designs using
programming languages such as C++ and OpenCL and translate such high-
level representation to HDL. From there, the bitstream generation proceeds
as if the design was originally written in HDL, transparently to the devel-
oper. HLS programmers use directives to steer the HDL generation pro-
cess and the following synthesis towards the desired optimizations, such as
unrolling small loops with statically-known trip-count or pipelining com-
plex loops to hide the latency of memory transactions. Even more complex
optimizations are possible: in this work, we propose data-flow designs, in
which the FPGA is programmed with independent but interconnected hard-
ware modules that communicate in a pipelined producer-consumer fashion.
The output of one module is provided as input to the next module, and
while the second module processes such value, the first module can already
move to the next. Such hardware designs are highly effective in streaming
computations such as SpMV, where the input is processed as a continuous
stream of data without any reuse of values that have already been processed.
Overall, the creation of a successful FPGA hardware design requires the
following steps.

1. High-level description of the hardware design, using languages such
as C++or OpenCL (optional step).

2. HDL description, or HDL generation if using HLS.

3. Logic synthesis, the process of translating HDL into a netlist, an im-
plementation in terms of FFs and logic gates.

4. Technology mapping, packing and placement, a sequence of steps
that progressively lowers the netlist to a more concrete hardware-
dependent implementation, based on the target FPGA resources.

5. Routing, the task of interconnecting the FPGA resources that have
been previously placed.

6. Timing analysis, to validate the speed of the circuit, and check that
the clock signal can properly propagate across the circuit while re-
specting the timing constraints.

7. Bitstream generation, which converts the results of the previous steps
into the final binary configuration file used to program the FPGA.

This entire process is not fast. The hardware design description is gen-
erally much more complex than an equivalent that traditional CPU or GPU

“output” — 2022/1/15 — 13:36 — page 40 — #54

code even when using HLS. Besides that, the following steps, from logic
synthesis to bitstream generation, can take hours or days, especially when
working with large FPGAs such as the ones found in accelerator cards.

Modern HLS toolchains do much more than simplifying the hardware
design process. Xilinx Vitis and Intel oneAPI, for example, provide inte-
gration with a host application using OpenCL or similar APIs. The host
application can reconfigure the hardware with the chosen bitstream, trans-
fer data to and from the FPGA, and start the computation, using software
interfaces similar to the ones of GPUs.

FPGAs for Sparse Linear Algebra

The optimization of SpMV through FPGAs has been a hot research topic
for years [45, 57, 232]. The work of Grigoras et al. [68] focuses on com-
pressing the sparse matrix, moving the bottleneck from memory accesses
to the decompression of the input data while lowering the storage demand.
Then, Grigoras also proposes optimizations for FPGA SpMV based on
instance-directed tuning, i.e. reconfiguring the hardware based on the input
matrix characteristics [69].

Fowers et al. [57] already proposed a sparse matrix encoding to alleviate
the inefficiencies of the FPGA Double Data Rate (DDR) memory subsys-
tem. Rafique et al. [168] and Burovskiy et al. [30] both worked on mini-
mizing communication in iterative SpMV applications, although they only
targeted banded matrices (Section 2.2.2). Similarly, Grigoras et al. [70] op-
timized SpMV for FEM, working on block diagonal sparse matrices. While
these techniques are very interesting, they do not apply to our case. The
predictable structure of banded matrices is much simpler to handle than the
unstructured matrices and graphs that we consider in our work, as it can be
reconducted to traditional dense linear algebra.

Umuroglu et al. [194–196] leveraged local cache hierarchies and pre-
processing schemes to maximize the amount of time in which values are
kept in a fast local cache hierarchy, to minimize the negative impact of
random accesses in sparse computations. More recently, Sadi et al. [171,
172] proposed an SpMV FPGA implementation that achieves significant
speedup leveraging HBM and a data-compression scheme to reduce off-
chip traffic. Jain et al. propose a modular DSA for SpMV, assembling
a multi-block HLS and HDL desing, through a custom network-on-chip
interconnection overlay. They achieve 92 % of the peak bandwidth of a sin-
gle DDR4 module, although it remains to be seen whether their design can
leverage multi-channel HBM-enabled accelerator cards. Moreover, they
test their design on matrices two orders of magnitude smaller than ours,

“output” — 2022/1/15 — 13:36 — page 41 — #55

and provide performance results on a hardware design that can hold matri-
ces with only 64 thousand rows. It is not clear if their design can scale to
larger input data and what the performance would be.

Xilinx has recently released a new implementation of SpMV, tailored for
HBM and double-precision floating-point arithmetic [215]. It is claimed
that this design can leverage 16 HBM pseudo channels on the Alveo U280,
although we could not find information about what effective memory band-
width this design achieves. Although their performance numbers are promis-
ing, we have not been able to replicate these results, probably due to an
FPGA platform incompatibility on our side.

It is difficult to say whether all these hardware designs are still competi-
tive in terms of performance, given the continuous evolution of FPGA hard-
ware. Since the introduction of HBM, DDR-based designs can no longer
provide comparable peak memory bandwidth, and thus performance, given
how memory-intensive SpMV is. Similarly, previous research has focused
on single or even double-precision floating-point arithmetic. This choice
also limits the performance on SpMV, as floating-point arithmetic requires
more hardware resources – limiting the number of parallel SpMV Com-
pute Units (CUs) – and introduces additional data-dependencies that often
prevents pipelined designs with Initiation Interval (II) of 1.

From an energy utilization perspective, accessing data in sparse matrices
is more expensive than working on dense matrices with an identical mem-
ory footprint. That’s because loading an entry from a dense matrix requires
a single memory access, while loading a non-zero entry from a sparse ma-
trix requires multiple memory accesses (e.g. three accesses for COO). On
the other hand, operations on sparse matrices require fewer arithmetic op-
erations as zero entries are not explicitly stored in the matrix, and they are
simply ignored. There is certainly a trade-off worth exploring in the case of
sparse matrices with high density (as in DL workloads, where 10 % density
is common). However, in the context of graph analytics and recommender
systems, sparse matrices often have extremely low density (< 10−6), and
they are impossible to represent as dense matrices. In this work, we ben-
efit from the intrinsic low energy utilization of FPGAs, but the choice of
using sparse matrices is not motivated by optimizing energy consumption.
Instead, it is the only option to work on data with such scale.

Overall, while FPGAs have many individual highly-optimized hardware
designs for SpMV and other sparse linear algebra operations, they still do
not have any full-blown hardware design library with popularity compa-
rable to Intel MKL or Nvidia cuSPARSE. To the best of our knowledge,
we are the first to study the impact of reduced-precision fixed-point arith-

“output” — 2022/1/15 — 13:36 — page 42 — #56

metic in the context of SpMV hardware designs, showing how lower preci-
sion benefits the performance of graph analytics and recommender system
workloads, with no detriment to accuracy.

2.4.4 FPGA Accelerator Cards

Since the success of GPUs as external co-processors for computationally-
intensive workloads, FPGA vendors have been trying to provide similar
devices, developing what is commonly known as FPGA accelerator cards.
An FPGA accelerator card is an external hardware module that, just like a
GPU, can be connected to a traditional server to offload some computations
from the server’s CPU to the FPGA. They have access to their device mem-
ory, usually in the form of Dynamic Random-Access Memory (DRAM)
or HBM, and have multiple interconnections, such as Peripheral Compo-
nent Interconnect Express (PCIe) and Ethernet. FPGA accelerator cards
are quickly becoming a valid alternative to GPUs for the acceleration of
demanding workloads, with the ability to deliver comparable performance
for a fraction of the Thermal Design Power (TDP).

PCI Express Interconnection

The most common way to deploy FPGA accelerator cards in data-centers
is by connecting them to a host machine (i.e. a general-purpose server)
through a PCIe interconnection. This configuration is used, for example,
by cloud providers such as Amazon AWS [8] and Nimbix [144].

PCIe is a serial expansion bus standard, found commonly found in moth-
erboards of both home computers and data-center servers. It is composed
of different lanes, each of which is used as a full-duplex byte stream. The
bandwidth of a PCIe interconnection is determined by the speed of each
lane (identified by the PCIe generation) times the number of lanes avail-
able. The Xilinx Alveo U200 accelerator card has a 16-lanes PCIe3.0 in-
terconnection, while the Xilinx Alveo U280 accelerator card has an 8-lanes
PCIe4.0 interconnection. In both cases, the total bandwidth is of 16 GB/s.
As most servers support from 40 to >100 PCIe lanes, vendors usually con-
nect up to 4 FPGAs to a single host machine. In this work, we focus on
host machines equipped with a single FPGA accelerator cards. Consider-
ations about the scalability of the proposed hardware designs to multiple
FPGAs are provided in each chapter, as in each of the proposed algorithms
we observe different challenges related to multi-FPGA scaling that must be
addressed (Sections 3.6, 4.6 and 5.6).

The limited bandwidth of PCIe is a major bottleneck in computations

“output” — 2022/1/15 — 13:36 — page 43 — #57

with low arithmetic complexity such as sparse linear algebra, graph ana-
lytics, and database workloads. In all these cases, it is common to find
algorithms whose complexity scales linearly with the size of the data to
be processed (e.g. SpMV, PR, database filter queries, etc.). The execution
of such algorithms greatly benefits from the large memory bandwidth of
hardware accelerators – FPGAs, but also GPUs. However, the end-to-end
processing time, including the time required to transfer the input and the
output from and to the hardware accelerator, might be significantly larger
than the processing time achieved by executing the algorithm on a general-
purpose CPU with significantly lower memory bandwidth.

To better contextualize this phenomenon, let’s consider an SpMV on a
sparse matrix that requires 10 GB of storage. This matrix roughly contains
800 million non-zero entries, assuming a COO storage, i.e. three arrays
x, y, val with size equal to the number of non-zero entries of the ma-
trix. With an 8-lanes PCIe 4.0 interconnection, it takes at least 625 ms to
transfer the matrix to the accelerator card (10 GB

16 GB/s = 625 ms). The transfer
time of the output depends on the number of rows of the matrix, which is
usually much lower than the number of non-zero entries. If we assume an
average degree of 10, consistent with the matrices used thorough this work
(Tables 3.1, 4.2 and 5.3), it takes 10 GB/10

16 GB/s = 62.5 ms to transfer the output
of the SpMV from the hardware accelerator to the host machine. This is
also the transfer time of the dense input vector, for a total transfer time of
625 ms + 2 · 62.5 ms = 750 ms.

The most intuitive FPGA hardware design, in which each of the COO ar-
rays is stored on a different DRAM bank that is accessed at peak bandwidth
(similarly to the design proposed in Chapter 3) will process the matrix at
around 50 GB/s, resulting in 200 ms for the SpMV computation, i.e. 3.75×
less than the transfer time. In other words, the overall SpMV execution
takes 950 ms, of which only 21% is actually spent computing the SpMV on
the FPGA accelerator card. The limited bandwidth of PCIe is even more
problematic as one develops more optimized hardware designs, for exam-
ple, by partitioning the matrix across multiple HBM channels (Chapter 4).

Clearly, the bandwidth problem of PCIe is fully mitigated when employ-
ing workloads with large data reuse, like the ones in this work. Algorithms
with large data reuse are, for example, iterative algorithms such as PR (and
PPR, Chapter 3) and the Lanczos algorithm, which require the computation
of multiple (usually between 5 and 30) sparse matrix multiplications. Al-
ternatively, one can assume that a large number of queries (almost infinite,
for all intent and purposes) are performed on the same data, and the input
matrix is permanently resident on the device. In this context, permanently

“output” — 2022/1/15 — 13:36 — page 44 — #58

would mean that the transfer time of the matrix is orders of magnitude lower
than the time that such matrix stays on the device memory. This is the case
of PPR, where we search for the most relevant vertices for a given input
vertex: different users will provide a different input vertex, but the graph
that is being analyzed does not change between queries. A similar situation
occurs in Chapter 5, where we compute the similarity between an input
embedding and a large collection of sparse embeddings (representing, for
example, movies in the catalog of a streaming platform). In both cases, the
sparse matrix will be updated sparingly (possibly once per day), making its
transfer time a non-concern. Similar conclusions have been drawn in the
context of databases [55,169,179], highlighting how hardware accelerators
such as FPGAs and GPUs give the most benefits when processing data that
are permanently resident on the accelerator device. The device is used as
the main execution unit instead of being treated as a co-processor.

Memory Subsystem of FPGA Accelerator Cards

FPGA accelerator cards, such as the Xilinx Alveo series, integrate multiple
types of memories. Beside traditional on-chip memories typical of FPGAs
such as BRAM or UltraRAM (URAM) (in recent Xilinx FPGAs), FPGA
accelerator cards offer a variety of additional memory interfaces. PLRAM
is a low-latency on-chip memory that the host machine can also access,
and is used as a small cache (≈ 512 kB) for host-device or inter-SLR data-
transfer. Then, the most abundant type of memory comes in the form of
DDR4 and HBM2. Alveo U200 cards have four DDR4 banks, for a total
of 64 GB of DDR and 77 GB/s of off-chip memory bandwidth. Alveo
U280 cards have only two DDR4 banks (32 GB, 38 GB/s of bandwidth),
but provide also 8 GB of HBM2, with 460 GB/s of bandwidth. While the
peak memory bandwidth is still lower than high-end GPUs, FPGAs provide
fine-grained control over the hardware fabric, leading to greater operational
intensity and possibly to higher performance, as shown in Chapter 5. On
the other hand, extracting peak memory bandwidth from the Alveo U280’s
HBM subsystem is not trivial due to the complex nature of this subsystem.

The HBM subsystem is composed of two HBM stacks and of an HBM
controller, created using the FPGA fabric [205, 213]. Each stack is divided
into eight channels, and each channel is divided into two 64-bits pseudo
channels, for a total of 32 pseudo channels. Each pseudo channel provides
about 460/32 = 14.37 GB/s of bandwidth. Users have access to 32 Ad-
vanced eXtensible Interface (AXI) channels that can be mapped to pseudo
channels. An AXI channel cannot be mapped to multiple pseudo channels,
while multiple AXI channels can be mapped to the same pseudo channels.

“output” — 2022/1/15 — 13:36 — page 45 — #59

In this case, AXI channels will share the bandwidth of the pseudo chan-
nel. The interconnection between AXI channels and HBM is implemented
through a switch, although not all 322 connections are directly implemented
in hardware. Instead, the memory controller offers eight smaller switches,
each connected to four AXI channels. In the following, unless otherwise
specified, we do not strictly distinguish between AXI channels, pseudo
channels, and HBM channels, and simply assume that each AXI channel
used by our FPGA hardware designs is mapped to a different pseudo chan-
nel (and vice-versa), with no bandwidth sharing of any kind.

Overall, the necessary conditions to achieve the peak 460 GB/s of HBM2
bandwidth on the Alveo U280 are the following. One has to read 256 bits
per clock cycle using one or more FPGA cores clocked at 450 MHz (alter-
natively, 512 bits per clock cycle at 225 MHz), using all of the 32 pseudo
channels. The FPGA core must be pipelined with an II of 1, and perform
burst transfers of maximum length. An example of such hardware design
is presented in Chapter 5.

Super Logic Regions

Accelerator cards provide FPGAs so large that treating them as a unique
piece of reconfigurable logic would not be feasible because of the extremely
long synthesis process and of the timing constraints introduced by the phys-
ical distance of logic regions. Instead, these FPGAs are divided in Super
Logic Regions (SLRs) [209]. The Alveo U200 and Alveo U280 accelerator
cards both have 3 SLRs. Each SLR is a separate FPGA die slice, and can
be treated as a separate FPGA from the point of view of reconfigurability.
Individual FPGA cores cannot be placed across different SLRs. However,
SLRs can communicate using PLRAM and off-chip memory, and are con-
nected with a silicon interposer. Each SLR has direct access to different
resources: for example, on the Alveo U280, SLR0 has direct access to
HBM. Other SLRs can also access HBM, but additional routing logic is
necessary. Figure 2.6 shows a schematic representation of the Xilinx Alveo
U280 FPGA accelerator card, with its subdivision into three SLRs, and its
complex HBM memory controller [44, 205, 211, 212].

2.4.5 Domain Specific Architectures (DSAs) and Custom Hardware
Extensions

The ambitious goal of making sparse linear algebra faster and more effi-
cient has pushed researchers to develop custom architectures specifically
created to handle the idiosyncrasies of sparse workloads. Some researchers

“output” — 2022/1/15 — 13:36 — page 46 — #60

16
GB

16
GB

DDR[0]
PLRAM
128KB

PLRAM
128KB

PLRAM
128KB

QSFP1 QSFP2

Ethernet

Static Region

HB
M

SLR0 SLR1 SLR2

XCU280
FPGA DDR[1]

DD
R[
0]

DD
R[
1]

32 AXI Channels

Switch

Memory
Controller

HBM
Channel

4GB HBM Stack4GB HBM Stack

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

2G
b

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

Figure 2.6: Schematic representation of the Xilinx Alveo U280 FPGA accelerator card.
The XCU280 FPGA is divided into three SLRs, with a common static region used to
manage the PCIe interface and data transfers. We also show the complex structure of
the HBM memory controller, with multiple switches and memory channels.

created completely new DSAs, while other proposed extensions for current
hardware such as CPUs.

Sadi et al. propose an SpMV architecture that leverages HBM and a
data-compression scheme to reduce off-chip traffic, and can scale to ma-
trices with billions of rows [172]. Xie et al. resort to Processing in Mem-
ory (PIM) for SpMV acceleration, showing how this novel computational
paradigm can provide much greater performance than GPUs with signif-
icantly lower energy consumption. Zhang et al. extend the analysis to
SpGEMM, proposing a new architecture focused on reducing DRAM ac-
cesses through condensed matrix representations, Huffman tree schedulers,
and row prefetchers [226]. Instead of creating a completely novel architec-
ture, Kanellopoulos et al. introduce a low-profile hardware-software exten-
sion for current CPUs [99]. They provide matrices encoded through a hier-
archy of bitmaps and let custom hardware units interpret them efficiently.
With their technique, they accelerate both SpMV and SpGEMM, improv-
ing the CPU performance by 40 %. Pavón et al. extend the x86–64 Instruc-

“output” — 2022/1/15 — 13:36 — page 47 — #61

tion Set Architecture (ISA) with new vector instructions and a scratchpad
memory that is optimized for sparse computations, achieving 4× better per-
formance than their CPU baseline [159].

Besides hardware architectures for generic sparse computational ker-
nels, we observe a growing interest in the hardware acceleration of sparse
operations within recommender systems. Large players such as Facebook
are proposing system-level techniques for fast retrieval and manipulation of
large one-hot encoded embeddings [75,76,140]. Recommender systems at
Facebook account for 79 % of AI inference cycles, with sparse operations
accounting for almost 20 % of the total [76]. Kwon et al. proposed a new
PIM architecture for operations on embeddings and tensors, showing how
sparse features and embedding lookups are limited from memory capac-
ity and bandwidth [109]. We also observe great interest in sparse DSAs
for DL [41], with novel hardware-software codesign techniques [203,220],
and interest in sparsification for both training [166,220] and inference [93].

Most of these custom architectures have been only simulated [166, 185,
203, 220]. A handful of them have prototypes implemented using FP-
GAs [13,171,172] or GPUs [109], although we still classify them as DSAs
as they have not been created with the direct goal of exploiting features
found in FPGAs and GPUs. Finally, a minority of DSAs already have
hardware implementations, and might eventually be found in real deploy-
ments [13, 93, 171, 172]

2.5 Final Remarks

We are certainly observing a growing interest in sparse linear algebra. While
its original applications were mostly in image and signal processing, sparse
operations are now at the core of graph analytics, recommender systems,
and deep learning. Sparse linear algebra is the only way to perform numer-
ical computations on enormous datasets that would be impossible to repre-
sent in a dense format. From this chapter, we can draw a few conclusions
that further motivate the rest of this work.

2.5.1 The Importance of Memory Controllers

Memory controllers are critical to achieving high performance in sparse
computations. These workloads are memory intensive (they have low op-
erational intensity, i.e. few mathematical operations are carried out for each
value loaded from memory) and present unpredictable memory accesses.
Memory controllers found in current FPGA accelerator cards allow users to
choose the memory transaction’s size that works better for their hardware

“output” — 2022/1/15 — 13:36 — page 48 — #62

design. Exploiting this flexibility, FPGAs can reach greater operational in-
tensity than competing architectures. They can access individual bits of
each data packet loaded from memory and leverage compressed data rep-
resentations that are out of reach for GPUs and CPUs. On the other hand,
GPUs memory controllers are much easier to use from the user perspective,
as they provide a unified memory address space instead of forcing users to
deal with multiple pseudo channels. It is reasonable to assume that mem-
ory controllers currently found in FPGAs have been created with dense
computations in mind and, if sparse workloads continue to grow in popu-
larity, future generations of memory controllers will allow greater flexibil-
ity than currently possible. For example, the Alveo U280 HBM memory
controller provides 32 AXI channels and 32 HBM pseudo channels. Reach-
ing peak memory bandwidth requires that each AXI channel uses the full
pseudo channel bandwidth, which is very difficult to achieve when deal-
ing with random or data-dependent memory accesses. One can currently
connect more than one AXI channel to a pseudo channel, but that implies
leaving other pseudo channels unused, as the number of pseudo channels is
the same as the AXI channels. Allowing more than 32 AXI channels is ex-
pensive from a resource standpoint. However, sparse hardware designs are
usually inexpensive because of their low operational intensity (they have
few mathematical operations, to begin with). They could easily bear such
cost if it provided higher performance and flexibility. In this work, we show
how to leverage the memory controllers of current FPGA accelerator cards
at their best, but it is also important to remember the performance improve-
ments that lie just a few interconnections away.

2.5.2 No architecture to rule them all

High-performance sparse linear algebra comes in many different hardware
flavors, from traditional CPUs to exotic DSAs. Some architectures are bet-
ter for the enormous scalability required in supercomputing (CPUs such as
the ones in the Fugaku supercomputer), while other architectures provide
the raw performance required by DL workloads (GPUs). FPGAs deliver
a combination of performance and power efficiency. Most importantly,
FPGAs are renowned for their predictable latency, making them the ideal
choice for real-time applications in data-centers, especially in the context
of recommender systems with billions of daily interactions and strict la-
tency Service-Level Agreements (SLAs). FPGAs also provide access to
optimized reduced-precision arithmetic, opening the doors to fine-grained
trade-offs between performance and numerical accuracy in workloads such

“output” — 2022/1/15 — 13:36 — page 49 — #63

as recommender systems, which are highly tolerant to approximate results.
We also observe a growing interest in DSAs, with novel technologies

like in-memory processing and spatial computing. HBM, while still not
widespread, is already employed in commercial GPUs and FPGAs accel-
erator cards, and also a critical key to success for the results presented
in this work. Some of the largest players in the technology world have
shown commitment in researching hardware acceleration for sparse compu-
tations [93,166,185,203,220,222], and some of these accelerators, such as
Sparse Tensor Cores, are already available in commercial hardware. How-
ever, we are still very far from taming the complexity of sparse computa-
tions, especially for unstructured sparsity in tensors found in DL. Even
the largest neural network models still resort to structured sparsity [56], and
fully exploiting unstructured representations is likely to require a major
shift from the current computation paradigms towards new approaches
such as PIM and spatial computing.

“output” — 2022/1/15 — 13:36 — page 50 — #64

“output” — 2022/1/15 — 13:36 — page 51 — #65

CHAPTER3
A Reduced-Precision Streaming

SpMV Hardware Design for
Personalized PageRank on FPGA

Sparse matrix-vector multiplication is often employed in many data-analytic
workloads in which low latency and high throughput are more valuable
than exact numerical convergence. FPGAs provide quick execution times
while offering precise control over the accuracy of the results thanks to
reduced-precision fixed-point arithmetic.

In this chapter, we introduce the novel streaming FPGA hardware design
for Coordinate Format (COO) sparse matrix-vector multiplication used as
corner stone for this thesis. We study its effectiveness when applied to
the Personalized PageRank algorithm, a common building block of recom-
mender systems in e-commerce websites and social networks. Our imple-
mentation achieves speedups up to 6x over a reference floating-point FPGA
design and a state-of-the-art multi-threaded CPU implementation on eight
different datasets while preserving the numerical fidelity of the results and
reaching up to 42x higher energy efficiency compared to the CPU imple-
mentation. Moreover, we show that our fixed-point FPGA hardware design
reaches convergence 2x faster than floating-point implementations.

51

“output” — 2022/1/15 — 13:36 — page 52 — #66

3.1 Introduction

Sparse Matrix-Vector Multiplication (SpMV) is a computational primitive
widely employed in machine learning, engineering, and, most importantly,
graph analytics [101, 224] as real-world graphs present an extremely high
degree of sparsity. Personalized PageRank (PPR) [18], a variation of the
famous PageRank (PR) algorithm ranks the most relevant vertices of the
graph with respect to an input vertex, and is very often employed as part
of complex graph analytics pipelines. In most cases, PPR must be com-
puted with minimal latency, often on graphs with millions of edges, such
as domain-specific knowledge bases, e-commerce websites, and social net-
works communities [118, 120, 157, 162], to find recommended posts in a
social network while users interact with it, or recommended items for a
given query on an e-commerce platform. Moreover, the precise numerical
values produced by the algorithm are rarely useful, as long as the order
of the top-ranked vertices is correct (consider the problem of recommend-
ing the Top-10 products for a user query). Numerical boundedness of PPR
makes Field-Programmable Gate Arrays (FPGAs) suitable for computing
PPR with throughput beyond the one of traditional architectures, leverag-
ing fixed-point arithmetic to reduce execution time while preserving the
correct ranking, and accelerate convergence.

In this chapter, we propose a novel FPGA architecture for a stream-
ing edge-centric SpMV that uses Coordinate (COO) format matrices, and
represents the cornerstone of this thesis. Here, we explore the application
of our design PPR, given the ubiquity of this algorithm. In the follow-
ing chapters, we extend our SpMV design to use High Bandwidth Memory
(HBM) instead of DDR4, support partitioned matrices, and compute Top-K
Sparse matrix-vector multiplication (Top-K SpMV), showing how our de-
sign can be adapted to a larger set of algorithms encountered in graph ana-
lytics and recommender systems. We leverage the COO format to enable a
fully streaming computation, limiting the effect of exponential degree dis-
tributions [46] of real-world graphs, where degree distribution (the numbers
of neighbors for each vertex) is highly skewed. Through reduced-precision
fixed-point arithmetic, we maximize performance while reducing resource
utilization and preserving the quality of the results.

In summary, this chapter presents the following contributions:

• We introduce an optimized FPGA architecture of SpMV that lever-
ages a COO matrix and reduced-precision arithmetic, which we em-
ploy in a novel implementation of PPR (Section 3.4).

“output” — 2022/1/15 — 13:36 — page 53 — #67

• We validate the practical applicability of our PPR implementation on 8
different graphs against a state-of-the-art multi-threaded CPU imple-
mentation and an equivalent 32-bits floating-point FPGA architecture,
reaching speedups up to 6.8× and up to 42× higher energy efficiency.

• We characterize how reduced precision leads to negligible accuracy
loss and 2× faster convergence on PPR, showing the effectiveness of
reduced precision for graph ranking algorithms (Section 3.5).

3.2 Related Work

Optimizing PR and PPR is a longstanding problem in graph analytics. Ex-
isting implementations focus on the numerical properties of the algorithm
or on finding new ways to exploit the full specific hardware architectures.
In this section, we provide an overview of existing research on the opti-
mization of PR and PPR for different hardware architectures, especially in
the context of hardware-accelerated implementations based on sparse linear
algebra and SpMV.

3.2.1 Numerical Optimizations

PPR is deeply connected to obtaining the main eigenvector of a matrix rep-
resenting the input graph [26]. Numerous attempts have been made to ac-
celerate this computation, by optimizing the Power Method iteration [98,
135], approximating a variation of PR that considers the rank of a subset
of vertices [18, 20], or computing lower bounds for the PR scores [24].
However, the intricate control flow of these implementations is not always
suitable for FPGA acceleration.

3.2.2 CPU and GPU Implementations

Leveraging sparse linear algebra for graph processing is the focus of the
GraphBLAS project [101], which offers early implementations for both
CPU and Graphics Processing Unit (GPU) [27, 219]. Highly tuned im-
plementations of PPR exploit the graph data-layout to maximize cache us-
age [230], or employ multi-machine setups to process trillions of edges [86,
231]. Recently, variations of PPR have found application in the compu-
tation of embeddings, for downstream Machine Learning (ML) applica-
tions [221]. Green-Marl [84] and GraphIt [225] implements PPR using
Domain-Specific Languages (DSLs) that abstract the intricacies of graph
processing, and optimized to fully exploits the CPU hardware. PPR on

“output” — 2022/1/15 — 13:36 — page 54 — #68

GPUs is less common: it is worth mentioning nvGRAPH [146] and Graph-
BLAST [219], that leverage sparse linear algebra to match and possibly
outperform CPU implementations, while the implementation by Guo et
al. [72] is optimized for dynamic graphs. Gunrock [204], instead, is a GPU
graph analytics framework that implements PR with performance compa-
rable to the ones by Nvidia. Finally, the work of Shi et al. optimizes the
computation of Top-K PPR on GPUs for real-time applications [182].

3.2.3 FPGA Implementations

To the best of our knowledge, no existing work specifically addresses the
computation of PPR on FPGA, either using reduced-precision arithmetic or
algorithmic optimizations.

There have been multiple attempts at accelerating PR. Zhou et al. [229]
propose an optimized data layout to guarantee sequential Dynamic Random-
Access Memory (DRAM) accesses, and burst memory accesses to limit the
negative impact of random memory accesses in graph computations. Their
work shows promising results but was evaluated at simulator-level and does
not compare against state-of-the-art CPU implementations. McGettrick at
al. [132] optimize the use of SpMV within PR: however, using double-
precision floating-point arithmetic results in unnecessary computations and
leaves room for significant speedups.

However, optimizing SpMV computations on FPGAs has seen signifi-
cant contributions that are worth mentioning as SpMV represents the main
bottleneck of many PR implementations. The work of Grigoras et al. [68]
focuses on compressing the sparse matrix, moving the bottleneck from
memory accesses to the decompression of the input data while lowering
the storage demand. Umuroglu et al. [195] leverage local cache hierarchies
and pre-processing schemes to maximize the amount of time in which val-
ues are kept in a fast local cache. Using dataset partitioning and complex
memory hierarchies enable SpMV computations on web-scale graphs, as
seen in Shan et al. [178]: clearly, there is a performance trade-off intro-
duced by supporting larger graphs, and a simpler design might be more
beneficial for smaller datasets such as the ones in our intended use-case.
Reduced-precision arithmetic has not been thoroughly studied in the con-
text of graph ranking algorithms, but encouraging results were shown in
numerical analysis and deep-learning [121, 201].

“output” — 2022/1/15 — 13:36 — page 55 — #69

3.3 Problem Definition

In this chapter, we apply a novel SpMV architecture to the computation of
Personalized PageRank. This algorithm provides a personalized ranking of
the graph vertices, such that vertices that are more relevant to an input ver-
tex will have a higher score. PPR is a variation of the famous PR algorithm,
which was originally developed to rank websites based on their importance
by structuring the web as a graph where websites are vertices, and links be-
tween websites are directed edges [152]. On the other hand, the goal of the
PPR algorithm is to provide a personalized ranking of the vertices of the
graph, such that vertices that are more relevant to an input vertex will have
a higher score. From a practical perspective, PPR can provide the users
in a social network that are the most similar to a given user or retrieve the
products in an e-commerce platform that might be of interest to a user who
bought a certain item. We show the first few iterations of a PR and PPR
computation in Figure 3.1. The PR score of each vertex is the sum of the
PR scores of vertices that link to it, and the contribution of vertices with
many outgoing links will be weighted less.

Given a graph G with |V | vertices and |E| edges, we represent it using
the adjacency matrix A and out-degree matrix D (a diagonal matrix with
the number of out-going edges of each vertex). Define X = (D−1A)T as
the probability of transitioning from a vertex to one of its neighbors1, a
personalization vertex v, and a vector pt of PageRank values, personalized
w.r.t. v, computed at iteration t. 1 − α is the probability of moving to any
random vertex, and d is a dangling vector s.t. d̄i = 1 ⇔ Dii = 0, d̄i =
0⇔ Dii 6= 0. d is added to D to ensure that the computation is numerically
stable [89], and pt represents a valid probability distribution. The values in
pt are the probability of being on a given vertex after an infinite number of
transitions starting from the personalization vertex v. The vector v is equal
to 0 except for the element at index v, which is 1. The recurrence equation
(as in [23, Section 3]) of PPR is

pt+1 = αXpt +
α

|V |
(dpt)1 + (1− α)v (3.1)

The first term of the right-hand side is a matrix-vector multiplication,
while the second and third terms (the dangling factor and the personaliza-
tion factor) are obtained with dot-products. From an algorithmic perspec-
tive, PPR is similar to PR, except for the initialization of v. In PR, all the
values in v are identical and equal to 1/|V |, while in PPR the values are de-

1With uniform probability, the probability of moving from vertex x with out-degree d to neighbor y is 1/d

“output” — 2022/1/15 — 13:36 — page 56 — #70

α=0.85, |V|=5, v=[0.2, 0.2, 0.2, 0.2, 0.2]

0

1

4
3

2

Iteration 0 Iteration 1 Iteration 2

0.5

1

1

0.5

0.5

0.5 0.5

1

1

0.5

0.5

0.5 0.5

1

1

0.5

0.5

0.5

p=0+0.064
p=0.25+0.064

p=0.17+0.064

p=0.85+
 0.064

p=0.17+
 0.064

p=0+0.07
p=0.12+0.07

p=0.16+0.07

p=0.1+
 0.07

p=0.27+
 0.07

[...]
α·0.2·0.5

α·0.2·1
p=0.2p=0.2

p=0.2

p=0.2

p=0.2

0

1

4
3

2

0

1

4
3

2

(a) PageRank: initially, all PageRank values are equal to 1/|V |. In the first iteration, we show how values for
vertex 3 are aggregated to update its PageRank value. The dangling term’s contributions (α/|V |)(dpt)1 +
(1 − α)v are highlighted in orange. In the basic formulation of PageRank, all dangling term’s contributions
are identical, as values vi ∈ v are identical and equal to 1/|V |.

α=0.85, |V|=5, v=[0, 0, 0, 1, 0]

0

1

4
3

2

0

1

4
3

2

0

1

4
3

2

Iteration 0 Iteration 1 Iteration 2

0.5

1

1

0.5

0.5

0.5 0.5

1

1

0.5

0.5

0.5 0.5

1

1

0.5

0.5

0.5

p=0+0.034
p=0.25+0.184

p=0.17+0.034

p=0.85+
 0.034

p=0.17+
 0.034

p=0+0.034
p=0.08+0.184

p=0.14+0.034

p=0.09+
 0.034

p=0.37+
 0.034

[...]
α·0.2·0.5

α·0.2·1
p=0.2p=0.2

p=0.2

p=0.2

p=0.2

(b) Personalized PageRank: compared to Figure 3.1a, values in v are not equal: only v3, which corresponds to the
personalization vertex, is 1. As such, dangling term’s contributions will also be different for the personalization
vertex, and the algorithm will output a result different from the one in Figure 3.1a.

Figure 3.1: First three iteration of PageRank a and Personalized PageRank b for a
small example graph, with |V | = 5 and α = 0.85.

termined by the personalization vertices. This subtle difference ensures that
PPR converges to a personalized result, with two practical consequences:

1. Optimizing the storage of the personalization term is less straightfor-
ward, as it might be necessary to store a vector of size |V | instead of a
single scalar value. In practice, as seen in Figure 3.1b, all the person-
alization values except for v3 (the personalization vertex) are identical.
An optimized implementation of PPR will not store the entire person-
alization vector, but only κ + 1 values (with κ being the number of
personalization vertices).

2. While PR provide a global score for the entire graph, PPR gives a
result that is query-dependent. Computing and storing the PPR val-
ues for all the vertices in the graph is infeasible (up to V 2 time and

“output” — 2022/1/15 — 13:36 — page 57 — #71

Graph G:=
0

1

43

0

1

2

3

4

0 1 2 3 4

1 1

1 1

1

1

Matrix A:=

0

1

2

3

4

0 1 2 3 4

X=(D-1A)T:=

0.5 0.5

0.5

1

10.5

x:
y:

val:

0 0 1

1 1

1 1

2

2 2

3 3

3 4

0.5 0.5 0.5 0.5

COO representation of X

2

Figure 3.2: COO representation of the transition matrix X for the sample graph in Fig-
ure 3.1, to perform a PageRank computation. In X, each value val = (x, y) can be
seen as the probability of moving from y to x. For example, from vertex y = 1 there is
a 0.5 probability of moving to vertex x = 0 and a 0.5 probability of moving to vertex
x = 3.

storage). While PR values can be computed when the graph is up-
dated (for example, overnight in recommender system applications),
the PPR is often computed on-demand (i.e. when a user requests a
recommendation), introducing strict real-time latency requirements.

The weighted adjacency matrix X is stored in a sparse format as it is
extremely sparse: in a graph with 106 vertices and average out-degree 10,
only 10 · 106/1012 (i.e. 0.001%) of the entries of X are non-zero.

Compressed Sparse Column (CSC), a common storage format for sparse
matrices [178], can be inefficient for real-world graphs with vertex degrees
that follow an exponential distribution, as it limits pipelined architectures
that demand precise knowledge of data boundaries. Instead, we employ the
COO storage layout, which uses three equally sized arrays, containing, for
each entry, its value and its two coordinates. Figure 3.2 represents a simple
graph as COO: note the drastically lower memory footprint compared to
the dense representation. COO simplifies array partitioning, enables burst
reads from memory, and pipelined hardware designs, as entries are inde-
pendent and the architecture is not bound to knowing the degree of each
vertex. Instead, CSC-based designs often fail to handle graphs with expo-

“output” — 2022/1/15 — 13:36 — page 58 — #72

Until K iterations or convergence ε
Inputs:
- X (COO transition matrix)
- α (dangling factor)
- V (personalization vertices)
- K (max iter) or ε (convergence)

Output:
P1 (final PageRank)

Personalized PageRank Algorithm

A B C D
Initialization
Unit

SpMVScaling
|V| P1d
α P2=XP1

γ= P1=αP2+γ+(1−α)V
PPR update

0

1

4
3

2

0.5

1

1

0.5

0.5

0.5

0.2·0.5

0.2·1
p=0.2

p=0.2

p=0.2

p=0.2

p=0.2

Figure 3.3: Block diagram of the Personalized PageRank algorithm, as implemented in
our hardware design. The SpMV unit aggregates the PageRank values of each vertex’s
in-neighbours, as in Figure 3.1b.

nential distribution, especially if stream-like processing is demanded.
We compute κ personalization vertices in parallel, to batch multiple user

requests. We replace pt with a matrix Pt of size |V | × κ, and v with a ma-
trix V where each column vector refers to one of the κ personalization
vertices. Updating Pt requires reading all the edges only once. This opti-
mization boosts the efficiency of a memory-bound algorithm and enables
higher throughput and scalability. The block diagram of PPR, as imple-
mented in our hardware design, is shown in Figure 3.3: each element of
Equation (3.1) is mapped to a different computational unit, as explained in
Section 3.4.

3.4 The Proposed FPGA Hardware Design

We present the building blocks of our SpMV FPGA hardware design and
how we integrated it in the PPR computation, our intended use-case.

3.4.1 Personalized PageRank Hardware Design

Algorithm 3 contains the pseudo-code of the main PPR computation. The
input graph is read from Double Data Rate 4 (DDR4) DRAM, with edges
as packets of size P_SIZE = 256 to maximize the throughput of memory
transactions, and process B edges per clock cycle (8, if P_SIZE = 256
bits and each value is 32 bits). The initialization stage (lines 2 to 4 and
Figure 3.3 A) resets local buffers and initializes the PPR values in P1 ac-
cording to the input personalization vertices in V. Line 7 correspond to the
computation of the scaling factor (Figure 3.3 B and Algorithm 4), a value

“output” — 2022/1/15 — 13:36 — page 59 — #73

identical for each vertex required to track dangling vertices and guarantee
that P1 is a valid probability distribution. Line 8 of Algorithm 3 is the core
of PPR, i.e the SpMV computation identified in Figure 3.3 C and further
detailed in Algorithm 5 and Figure 3.4. The κ entries of the scaling vec-
tor are the sum of current PPR values of vertices with no outgoing edges.
Values in the dangling bitmap are read in blocks with size P_SIZE (each
value is stored in a single bit), while P is cyclically partitioned to access B
contiguous values in a single clock cycle. Line 9 of Algorithm 3 is the vec-
tor scaling and addition (similar to an axpy BLAS operation [114]) found
in Figure 3.3 D : it uses the same partitioning applied to Algorithm 4. This
operation combines the partial results found in lines 7 and 8 and adds the
contribution of the personalization vertices, representing a probability of
alpha of restarting the PPR random walk from the starting personaliza-
tion vertex. PPR values are stored as reduced-precision fixed-point values.
Quantization truncates to zero the fractional bits with precision higher than
representable in the given fixed-point precision. Other policies (e.g. round-
ing to the closest representable value) resulted in numerical instability.

In our PPR hardware design, all the steps in Algorithm 3 use the same
fixed-point numerical precision (e.g. 25 bits). Given that all numerical
values are in the interval [0, 1], there is no straightforward gain in using
multiple scales or numerical precision. We briefly explored different solu-
tions (such as computing the scaling factor in floating-point arithmetic), but
we did not observe any clear-cut benefit in terms of accuracy. Most likely,
SpMV is the main responsible for the total numerical accuracy of the al-
gorithm. On the other hand, our hardware design in Chapter 4 does use
mixed-precision arithmetic, using fixed-point for bound numerical values
and floating-point arithmetic for unbound values.

3.4.2 Customizing SpMV for PPR

In this section, we present our SpMV FPGA hardware design and how we
optimized it for the computation of PPR.

The SpMV design has 4 main units, highlighted in Algorithm 3 and Fig-
ure 3.4. First, we read a graph packet from DDR4 (line 4 in Algorithm 5,
Figure 3.4 A), and store it in local buffers x, y, val to read and update B
values at once. While we compute κ PPR vectors in parallel, the edges of
the graph are accessed only once. Lines 7–9 in Algorithm 5 (Figure 3.4 B)
compute point-wise PPR contributions for each edge in the current packet.
Parallel accesses to Pt retrieve PPR values for each personalization vertex:
thanks to UltraRAM (URAM), we perform these accesses with low latency,

“output” — 2022/1/15 — 13:36 — page 60 — #74

Algorithm 3 Personalized PageRank

1: function PPR(coo_graph,V,d, α,max_iter)
2: Initialize local buffers to 0

3: for k ← 0, κ do . Set PR=1 on pers. vertices
4: P1[k] = V[k]

5: end for
6: for i← 0,max_iter do
7: scaling_vec← scaling(P1,d) . i.e. α

|V |P1d
8: SpMV (coo_graph,P1,P2) . Xpi in eq. (3.1)
9: P1 = αP2 + scaling_vec+ (1− α)V

10: end for
11: return P1

12: end function

without strong constraints on the graph size. The B aggregator units (lines
10–15 in Algorithm 5, Figure 3.4 C) combine point-wise contributions to
obtain the total contribution of a single vertex, as a packet can contain mul-
tiple edges referring to it (for example, updating p6 in Figure 3.4 requires
the contributions of 2 edges). Aggregators consider edges whose end is in
the range [x[0], x[0] + B], i.e. the maximum range that can be found in
a packet. Local buffers and accumulators employ registers to unroll loops
and perform the computation in O(1) time.

The last unit adds PPR contributions of the current packet to the PPR
arrays stored in URAM (lines 16–29 in Algorithm 5, Figure 3.4 D). Con-
tributions are stored in a buffer of size 2B, with up to B non-zero con-
tiguous values. A Finite-state machine (FSM) with two buffers of size B
accumulates PPR entries and writes them to output at indices multiple of B,
ensuring that updates can be performed in parallel as they are aligned to the
partitioning factor of Pt+1. Each block of res1 is written on URAM only
once to avoid expensive += operations and Read-After-Write (RAW) con-
flicts in unrolled loops. The four main steps of the algorithm (Algorithm 5,
line 2) are separate modules in a streaming data-flow region, enabling ag-
gressive pipelining of loops and better resource allocation.

3.4.3 PPR Buffers Design

A critical aspect of designing a high-performance SpMV hardware imple-
mentation is the optimization of random accesses to the dense vector multi-
plied by the sparse matrix. If we want to process B sparse matrix elements
per clock cycle, we also have to perform B random accesses to the dense

“output” — 2022/1/15 — 13:36 — page 61 — #75

Algorithm 4 Computing the scaling vector of PPR

1: function SCALING(P,d)
2: . Blocks have B elements and size P_SIZE

3: for i← 0, |V |/B do
4: dangling = d[i/(P_SIZE/B)]

5: for k ← 0, κ do
6: for b← 0, B do
7: dp_buf [k, b] = P[k, i ·B + b] + dangling[(i ·B + j) % P_SIZE]

8: end for
9: dangling_vals[k, :] += sum(dp_buf [k, :])

10: end for
11: end for
12: return α · dangling_vals
13: end function

vectors, to locations that are unknown in advance (i.e. before the matrix
packet of size B has been read). A naïve implementation that accesses the
dense vector through a single DDR4 channel cannot guarantee satisfactory
performance, as the hardware design is bound by the 32-bit random access
bandwidth of the DDR4 channel, equal to slightly more than 2 GB/s [205].
The SpMV hardware design in our PPR adaptation performs pipelined burst
reads of 256 bits packets from three DDR4 channels (out of the four avail-
able). As such, we need to guarantee that random accesses to the dense
vector can sustain the full bandwidth of the three DDR4 channels (approxi-
mately, 54 GB/s). To design an SpMV core with such bandwidth, we store
dense vectors either in URAM or HBM.

Storing PPR Buffers in URAM

The SpMV hardware design presented in this chapter stores temporary PPR
values in URAM, a type of memory available in recent Xilinx UltraScale+TM

FPGAs. URAM can be seen as a middle-ground between slow but abun-
dant DRAM and faster, but limited, Block RAM (BRAM). Using a Xilinx
Alveo U200 Accelerator Card, we store up to 90MB of data on URAM,
corresponding to around 20 million different PR values, assuming that the
PR value of each vertex is stored in 32 bits. In practice, reduced fixed-point
precision allows us to store even more vertices and scale to larger graphs.
The maximum number of edges is bound by the available DDR4 and could
reach about 5 billion on the 64 GB of DDR4 available in the Alveo U200
card. Our design can be easily scaled to compute multiple PPR vectors in

“output” — 2022/1/15 — 13:36 — page 62 — #76

xs_old

=xs

T
+= +=

F

F1 F2

F3

res1

res1

res2

res2

Parallel
Reductions

0.1
0.2
0.5
1

10

7

6

6

8

1
8
3

p10

p1

p8

p3

. =
0.1
0.2
0.5
1

p10

p1

p8

p3

p1 p3 p8 p10p1 p3 p8 p10p1 p3 p8 p10p1 p3 p8 p10

p6 p7 p8

UltraRAM or HBM

Scatter Unit

Pt=

Pt+1=

Point-wise results

Gather PPR values

Local Buf fers

Read packet from DRAM

Store PPR

Aggregation Unit

A

B
C

D

COO of X

x:
y:

val: DRAM[0]
DRAM[1]
DRAM[2]

0.1 0.2 0.5 1

10

76 6 8

1 8 3

Figure 3.4: Block-diagram of our PPR SpMV hardware design. The scatter and aggrega-
tion units show the computation for a single vertex, but they are replicated to support
κ vertices. Large arrows represent a streaming transfer between units

parallel if the end-user can provide an upper bound over the number of ver-
tices in its graphs. In our experiments, we achieve optimal performance if
the number of vertices does not exceed 1 million (which is still larger than
what is found in many real applications), and 8 to 16 personalization ver-
tices are computed in parallel, using the same hardware resources required
for a larger graph that does not consider multiple PPR vertices. On paper,
our design can be adapted to FPGAs without URAM, using BRAM as a
replacement. However, an Alveo U200 only has 10MB of BRAM, making
this alternative design usable only on smaller graphs that require storing up
to 2 million PR values.

The size of local memory buffers does not introduce strong practical lim-
itations on the size of the graphs: our PPR implementation targets graphs
encountered in social network communities and e-commerce platforms,
whose size does not fill the available FPGA hardware resources [118] There
also exist partitioning techniques [178, 195] that handle large web-scale

“output” — 2022/1/15 — 13:36 — page 63 — #77

Algorithm 5 COO SpMV for the computation of PPR

1: function SPMV(coo_graph,Pt,Pt+1)
2: for i← 0..|E|/B do
3: . 1. Process COO in packets of size B

4: x← coo_graph.x[i]; y ← coo_graph.y[i]; val← coo_graph.val[i]
5: for k ← 0..κ do . κ personalization vertices
6: . 2. Update edge-wise PPR values
7: for j ← 0..B do
8: dp_buf [k, j] = val[j] · Pt[k, y[j]]

9: end for
10: . 3. Aggregate partial PPR values
11: for b1← 0..B do
12: for b2← 0..B do
13: agg_res[k, x[0]%B + b1] += dp_buf [k, b2] · ((x[0] + b1) == x[b2])

14: end for
15: end for
16: . 4. Store PPR values on each vertex
17: xs ← bx[0]/Bc ·B
18: if xs == xs_old then
19: for j ← 0..B do
20: res1[k, j] += agg_res[k, j]
21: res2[k, j] += agg_res[k, j +B]

22: end for
23: else
24: for j ← 0..B do
25: res[k, j + xsold] = res1[k, j]

26: res1[k, j] = res2[k, j] + agg_res[k, j]
27: res2[k, j] = agg_res[k, j +B]

28: end for
29: end if
30: reset(agg_res); xs_old ← xs

31: end for
32: end for
33: end function

graphs. Although we have not explored graph partitioning for PPR, we do
partition the input graph in the hardware design of the Lanczos algorithm
in Chapter 4, which can be seen as a generalized and more complex version

“output” — 2022/1/15 — 13:36 — page 64 — #78

of PR. The SpMV hardware design in Chapter 4 partitions the graph across
multiple HBM pseudo channels, achieving scalability to much larger graphs
(Table 4.2). Partitioning the computation to handle web-scale graphs is in-
teresting but not strictly required in our PPR use-case or to validate the
performance of the SpMV implementation presented in this chapter. Being
able to easily extend our SpMV core to support larger graphs, as presented
in Chapter 4, is a further testament to the flexibility of our hardware design.

Storing PPR Buffers in HBM

New FPGA accelerator cards such as the Xilinx Alveo U280 provide access
to HBM, a type of DRAM that achieves greater maximum bandwidth than
DDR4 by exposing many parallel pseudo channels (32 on the Alveo U280)
Section 2.4.4. While the work in this chapter focuses on the Alveo U200,
which does not have HBM, we still evaluate the implications of storing the
PPR dense vectors in HBM. Our SpMV hardware design can easily take
advantage of FPGA accelerator cards with and without HBM: Chapters 4
and 5 present extensions of our SpMV core that fully exploit HBM to store
the dense vectors, the input matrix, or both, achieving greater parallelism
and memory access throughput.

Using HBM instead of URAM enables higher clock frequency (up to
450 MHz for the individual SpMV core), as large utilization of URAM in-
troduces strong routing constraints that limit the maximum clock frequency
attainable. However, performing concurrent random accesses to a dense
vector stored in HBM requires data replication as shown in Section 4.4.2,
possibly limiting the number of concurrent personalization vertices that can
be processed in a single batch to a maximum of 7. We need four replicas
for each of the four non-zero values processed in a clock cycle, and we
also need to reserve four pseudo channels to store the output of PPR: as the
Alveo U280 has 32 HBM pseudo channels, we can batch (32 − 4)/4 = 7
PPR requests. Further information about the Alveo U280 memory subsys-
tem are given in Section 2.4.4 and Section 4.4.2. In summary, depending
on the application constraints (maximum throughput or minimal latency),
it is worth having the flexibility of switching between locating the dense
vectors in URAM or HBM, as we do allow in our SpMV hardware design.

3.4.4 Host Integration

Our hardware design follows a host-accelerator model in which the host
(a server) communicates with the accelerator (an FPGA) over Peripheral
Component Interconnect Express (PCIe). The host loads the graph and pre-

“output” — 2022/1/15 — 13:36 — page 65 — #79

processes it, i.e. it computes the val vector (the numerical entries of the
matrix X) and the dangling bitmap (in which each vertex is represented by
a 1 if it has no ingoing edges, 0 otherwise). Pre-processing (e.g. loading the
graph) is done once at the start and not for each computation of PPR, and
does not impact the computation time of PPR: in real workloads, the input
graph is updated much more infrequently than the rate of new PPR queries.
Re-synthesizing the hardware design is required to change the fixed-point
precision, κ, or the maximum number of vertices in URAM, but not for
different graphs.

3.5 Experimental Evaluation

In this section, we analyze the performance of our PPR FPGA hardware
design in terms of execution time and power efficiency, showing how it can
outperform a state-of-the-art CPU implementation running on server-grade
hardware with peak memory bandwidth comparable to our FPGA acceler-
ator card. We then focus our attention on the impact of reduced-precision
fixed-point arithmetic on accuracy and convergence speed, showing how
fine-grained control over the PPR values bit-width can result in 2× faster
convergence with no accuracy loss.

Our hardware design is implemented on a Xilinx Alveo U200 Accelera-
tor Card with 64 GB of DRAM (77 GB/s of total bandwidth) and equipped
with a xcu200-fsgd2104-2-e FPGA offering 960 URAM blocks of
288Kb (with 72 bits port width) and 4320 BRAM blocks with 18Kb size
each. This FPGA platform is mounted on a server with an Intel Core i7-
4770 CPU @ 3.40GHz with 4 cores (8 threads) and 16 GB of DRAM. We
compare our PPR implementation against the floating-point implementa-
tion in PGX 19.3.12, a powerful toolkit for in-memory graph analytics. Its
state-of-the-art implementation of PPR [84] is fully multi-threaded. Ex-
periments with PGX were conducted on a machine equipped with two In-
tel Xeon E5-2680 v2 @ 2.80GHz with 10 cores (20 threads) each, and
384 GB of DRAM. We analyze 5 versions of our design, with different
arithmetic types: 26 bits unsigned fixed-point (U1.25), 24 bits (U1.23),
22 bits (U1.21), 20 bits (U1.19), and a 32-bit floating point version
(F32). Lower bit-width negatively impacts the quality of results, while
higher precision provides minimal gain (Section 3.5.3). The CPU base-
line uses 32 bits floating-point arithmetic, and our CPU does not support
arbitrary precision. Simulated fixed-precision arithmetic resulted in lower
CPU performance and is not a meaningful comparison. Manually batch-

2docs.oracle.com/cd/E56133_01/latest/index.html

docs.oracle.com/cd/E56133_01/latest/index.html

“output” — 2022/1/15 — 13:36 — page 66 — #80

Table 3.1: Summary of graph datasets used in the evaluation

Graph Distribution |V| |E| Sparsity Size (GB)

Gn,p (Erdős-Renyi) 105 1002178 10−4 0.024 GB
2 · 105 1999249 4.9 · 10−5 0.047 GB

Watts–Strogatz small-world 105 1000000 10−4 0.024 GB
2 · 105 2000000 5 · 10−5 0.048 GB

Holme and Kim power-law 105 999845 0.99 · 10−4 0.024 GB
2 · 105 1999825 4.9 · 10−5 0.048 GB

Amazon co-purchasing network 128000 443378 2.7 · 10−5 0.010 GB
Twitter social circles 81306 1572670 2.3 · 10−4 0.037 GB

Table 3.2: Resource usage, power consumption for selected bit-widths of our PPR design.

Bit-width BRAM DSP FF LUT URAM Clock
(MHz)

Power
Cons.

20 bits 14% 3% 4% 26% 20% 220 34 W
26 bits 14% 3% 4% 38% 20% 200 35 W
32 bits, float 14% 48% 35% 89% 26% 115 40 W

Available 4320 6840 2364480 1182240 960

ing multiple requests in PGX through vector properties did not provide a
speedup over the fast default implementation of PPR, which is already fully
exploiting the CPU [225].

Our experimental setup contains 8 graphs: 6 are generated using dif-
ferent statistical distributions offered by the Python networkx library3,
while 2 are real-world graphs from the Stanford Large Network Dataset
Collection [118]. Table 3.1 summarizes each graph used in the evalua-
tion. Synthetic graphs are consistent in size, edge distribution, and sparsity
to real-world graphs used in e-commerce and social network communi-
ties [118]; their COO representation has a size in line with recent work on
sparse matrices on FPGAs [67]. Small-world graphs have large clusters of
vertices (i.e. communities). Erdős-Renyi have uniformly distributed edges
and no obvious communities, possibly increasing the number of vertices
that contribute to the computation of PPR for a given vertex. Power-law

3networkx.github.io/documentation/stable/

networkx.github.io/documentation/stable/

“output” — 2022/1/15 — 13:36 — page 67 — #81

graphs also have well-defined communities of vertices, similar to what is
encountered in social networks. Most vertices have only a few edges, while
a few vertices have many edges, following a power-law degree distribu-
tion. Synthetic graphs with identical sizes highlight how trends are similar
across distributions (Section 3.5.1, Section 3.5.3), and we can extract in-
sights on the convergence and precision of PPR as we change input graph
and bit-width.

3.5.1 Execution time

We measure for each graph the time required to compute the PPR values
for 100 random personalization vertices, to simulate a realistic batch work-
load performed by social networks and e-commerce platforms. Time spent
transferring results from FPGA to CPU is included and is negligible com-
pared to the total execution time. All tests are executed with an α of 0.85,
for 10 iterations each (even a low amount of iterations is enough for con-
vergence, see Section 3.5.3).

Figure 3.5 reports the speedups of different fixed-point sizes compared
to the CPU baseline and an equivalent 32-bits floating-point FPGA hard-
ware design. Reducing the bit-width of fixed-point values does not affect
the number of clock cycles required to perform the computation but posi-
tively correlates with clock frequency and higher speedups. On graphs with
around 106 edges we obtain up to 6.47× speedup, thanks to the reduced
bit-width and the ability to compute 8 PPR vectors at once. Results for
synthetic graphs are averaged, as no difference was observed among distri-
butions. We achieve similar results on real-world graphs, with up to 6.8×
speedup on the highly sparse Amazon co-purchasing network. Processing
100 random requests on the FPGA takes from 280 ms for Amazon to 1000
ms for larger graphs, in line with the real-time requirement of our use-case.
The floating-point FPGA hardware design is 6× slower than the fixed-point
designs, with larger Digital Signal Processor (DSP) usage (48 % vs 3 %),
and negligible accuracy gain compared to 26-bits fixed-point (Figure 3.6).

The clock frequency is between 200 and 220 MHz, but we can reach up
to 350 MHz with a lower number of concurrent PPR vertices κ. The clock
speed increases sublinearly with respect to κ above 200 MHz, limiting the
benefits of very low κ. On larger graphs, the speedups are less significant,
as higher URAM utilization negatively impacts the clock frequency due
to routing congestion. In our experiments, doubling the size of the PPR
buffers lowers the clock speed by around 35-40 %. Resources utilization
(summarized in Table 3.2 for κ = 8), is minimal for BRAM, DSPs and

“output” — 2022/1/15 — 13:36 — page 68 — #82

C
PU F3

2 26 24 22 20

0.0x
1.7x
3.3x
5.0x
6.6x
8.3x
9.9x

0.
90

x
5.

66
x

5.
66

x
6.

29
x

6.
29

x

Gn, p, |E| = 106

CPU Baseline: 2254 ms

C
PU F3

2 26 24 22 20

0.0x
1.8x
3.6x
5.3x
7.1x
8.9x

10.7x

0.
96

x
6.

10
x

6.
10

x
6.

75
x

6.
76

x

Small-world, |E| = 106

CPU Baseline: 2130 ms

C
PU F3

2 26 24 22 20

0.0x
1.6x
3.3x
4.9x
6.6x
8.2x
9.8x

0.
89

x
5.

62
x

5.
63

x
6.

23
x

6.
25

x

Power-law, |E| = 106

CPU Baseline: 1986 ms

C
PU F3

2 26 24 22 20

0.0x
0.7x
1.3x
2.0x
2.6x
3.3x
3.9x

Sp
ee

du
p

0.
46

x
2.

31
x

2.
39

x
2.

51
x

2.
50

x

Gn, p, |E| = 2·106

CPU Baseline: 2743 ms

C
PU F3

2 26 24 22 20

0.0x
0.8x
1.5x
2.3x
3.0x
3.8x
4.5x

0.
51

x
2.

65
x

2.
74

x
2.

87
x

2.
87

x
Small-world, |E| = 2·106

CPU Baseline: 2749 ms

C
PU F3

2 26 24 22 20

0.0x
0.7x
1.4x
2.1x
2.8x
3.4x
4.1x

0.
47

x
2.

43
x

2.
51

x
2.

62
x

2.
62

x

Power-law, |E| = 2·106

CPU Baseline: 2540 ms

C
PU F3

2 26 24 22 20

0.0x
2.0x
4.0x
6.0x
8.0x

10.0x
12.0x

1.
12

x
6.

50
x

6.
59

x
7.

08
x

7.
08

x

Amazon

CPU Baseline: 1970 ms

C
PU F3

2 26 24 22 20

0.0x
1.0x
2.0x
3.0x
4.0x
5.0x
6.0x

0.
63

x
3.

17
x

3.
22

x
3.

50
x

3.
50

x

Twitter

CPU Baseline: 2151 ms

C
PU F3

2 26 24 22 20

0.0x
1.3x
2.6x
3.9x
5.2x
6.5x
7.7x

0.
79

x
4.

48
x

4.
54

x
4.

92
x

4.
92

x
MEAN

CPU Baseline: 2230 ms

CPU F32 FPGA F32 FPGA 26b FPGA 24b FPGA 22b FPGA 20b

Figure 3.5: Speedup of our Personalized PageRank FPGA reduced-precision hardware
design (y-axis) with respect to the CPU baseline and the FPGA floating-point baseline,
for decreasing bit-widths (x-axis).

“output” — 2022/1/15 — 13:36 — page 69 — #83

registers and is not impacted by fixed-point bit-width and PPR vector size.
URAM usage grows linearly with PPR vector size (from 20 % to 40 % in
our experiments). Look-Up Tables (LUTs) usage scales linearly with bit-
width, from 26 % for 20 bits to 38 % for 26 bits.

3.5.2 Energy Efficiency

Our FPGA hardware design uses 35 Watts during execution, measured with
an external power meter monitor, and increasing the PPR buffer or the
fixed-point bit-width does not seem to affect the power consumption. The
CPUs consume around 230 Watts, and our hardware design provides a Per-
formance/Watt gain from 16.5× to 42× compared to it (geomean 28.2×).
Even against a faster CPU or a GPU, our hardware design is likely to offer
higher energy efficiency. Using fixed-point provides 5× higher energy effi-
ciency over the equivalent floating-point design, which, however, provides
2.5×–5× higher energy efficiency than the CPU baseline (geomean 4.3×).

These results allow us to formulate a few insights that also hold for the
following chapters. All hardware designs in the thesis are inexpensive from
a power consumption perspective. Not a single hardware design crosses the
50 Watts mark, far from the 230 Watts of our CPU or > 250 Watts of a
GPU. The result is surprising as Alveo cards are rated for 225 Watts. How-
ever, we never came close to such power draw, even when using complex
floating-point designs (Chapter 4) or reading from HBM at full bandwidth
(Chapter 5). Then, we observe that fixed-point provides a slight reduction in
power consumption, of around 5 Watts (−15 %). This reduction is smaller
than we expected: possibly, the higher cost of floating-point arithmetic is
compensated by the higher clock frequency of fixed-point designs.

Reducing precision does not noticeably affect power consumption. The
memory bandwidth and the frequency of these accesses are not impacted
by the fixed-point bit-width, as we always read one data packet of 256 bits
from each memory channel in each clock cycle. Instead, we store more
non-zero values in each packet, meaning that a reduction in fixed-point bit-
width translates to a higher number of arithmetic operations done by the
FPGA in each clock cycle. Individual arithmetic operations get cheaper
due to the smaller number of bits in each value, but we do more operations
per clock cycle, hiding the benefits of reduced-precision arithmetic from
a power consumption perspective. This consideration might explain why a
reduction of 33 % in terms of bit-width (32 bits to 20 bits) translates to a de-
crease in power consumption of only 1 Watt. Overall, a rough breakdown of
power consumption is that the DDR4 (32 GB) takes about 12 Watts [134],

“output” — 2022/1/15 — 13:36 — page 70 — #84

20 22 24 26
0

10
20
30
40
50

N
um

. E
rr

or
s

Gn, p

20 22 24 26
0

10
20
30
40
50

Ed
it

D
ist

an
ce

20 22 24 26
90%
92%
94%
96%
98%

100%

N
D

C
G

,
hi

gh
er

 is
 b

et
te

r

20 22 24 26
0

10
20
30
40
50

Small-world

20 22 24 26
0

10
20
30
40
50

20 22 24 26
90%
92%
94%
96%
98%

100%

20 22 24 26
0

10
20
30
40
50

Power-law

20 22 24 26
0

10
20
30
40
50

20 22 24 26
90%
92%
94%
96%
98%

100%

Fixed-point Bitwidth

Top-10 Top-20 Top-50

Figure 3.6: Accuracy metrics measured on graphs with 2 ·106 edges, for increasing fixed-
point bit-width. Number of errors and edit distance should be low, while NDCG must
be close to 100 %. We evaluate these metrics for the top 10, 20 and 50 ranked vertices.
In general, all metrics improve with higher numerical precision, although in some
cases (e.g. Power-law graphs) even very low bit-widths guarantee high accuracy.

“output” — 2022/1/15 — 13:36 — page 71 — #85

and the remaining 20–30 Watts come from the FPGA itself.

3.5.3 Accuracy Analysis

We compared the accuracy of the rankings obtained with fixed-point preci-
sion (after 10 iterations) with the ones of the CPU implementation at con-
vergence (with at least 100 iterations), using common Information Retrieval
(IR) ranking metrics [173]. 100 iterations are enough to reach convergence
even in web-scale graphs [113], although 10 iterations would often suffice
(Figures 3.6 and 3.9).

Accuracy metrics

First, we look at the number of errors, i.e. the number of vertices with
wrong ranking in the top 10, 20, and 50 compared to the CPU. This eval-
uation is consistent with the intended applications of PPR, i.e. finding the
vertices more relevant to a given personalization vertex. This metric is very
coarse-grained, as a single mistake can greatly affect the ranking: for exam-
ple, if the correct Top-4 values are {2, 4, 8, 6} and we retrieve {4, 8, 6, 2},
this metric reports 4 errors, although only a single value is displaced.

Edit Distance counts how many operations are needed to transform one
sequence of Top-N vertices into another [119]; it handles ordering shifts:
in the previous example, the edit distance is just 1, as we insert 2 at the
beginning and ignore values after the first N.

Normalized Discounted Cumulative Gain (NDCG) [94] is a common
metric used in IR to evaluate ranking quality of search engines and recom-
mender systems. This metric dampens the relevance of a given vertex by a
logarithmic factor, dependent on its position. Highly ranked vertices con-
tribute more heavily to the cumulative gain compared to the lower-ranked
ones. Given a vector of PPR scores, let reli be the relevance of the i-th
vertex (in our case, reli = |V | − i), then we define Discounted Cumulative
Gain (DCG) as in Equation (3.2). DCG is normalized by dividing it by
the Ideal Discounted Cumulative Gain, i.e. the DCG of the reference CPU
implementation, as in Equation (3.3).

DCG =

|V |∑
i=1

reli
log2(i+ 1)

nDCG =
DCG

IDCG
(3.2, 3.3)

“output” — 2022/1/15 — 13:36 — page 72 — #86

20 22 24 26
0

10

20

30

40

50
Num. Errors

20 22 24 26
0

10

20

30

40

50
Edit Distance

20 22 24 26
90%

92%

94%

96%

98%

100%

NDCG
(higher is better)

20 22 24 26
0.000

0.025

0.050

0.075

0.100

MAE

20 22 24 26
0.80

0.84

0.88

0.92

0.96

1.00

Precision
(higher is better)

20 22 24 26

0.64

0.72

0.80

0.88

0.96

Kendall's τ
(higher is better)

Fixed-point Bitwidth
Top-10 Top-20 Top-50

Figure 3.7: We compute on all graphs the metrics in Figure 3.6 and include all the addi-
tional metrics presented in Section 3.5.3. We show results aggregated on all graphs, for
increasing bit-widths and number of top ranked vertices. Aggregated accuracy metrics
show trends in-line with Figure 3.6, and even low bit-width provides good predictions.

10-5 5·10-5 10-4 5·10-4

40%

60%

80%

100%

Pr
ec

isi
on

(h
ig

he
r

is
be

tt
er

)

5 Iterations

10-5 5·10-5 10-4 5·10-4

40%

60%

80%

100%
10 Iterations

Sparsity value
10-5 5·10-5 10-4 5·10-4

40%

60%

80%

100%
15 Iterations

20 22 24 26

Figure 3.8: Precision value, for decreasing sparsity, and increasing number of iterations,
measured for different fixed-point bit-widths. Sparsity does not affect accuracy, except
for very low bit-width, and 10 iterations are enough for convergence. Other metrics
show similar trends as the Top-50 Precision.

“output” — 2022/1/15 — 13:36 — page 73 — #87

Accuracy Discussion

Figure 3.6 shows how metrics change by lowering the bit-width for each
of the 2 · 106 edges graphs. Figure 3.7 shows additional accuracy met-
rics, aggregated on all graphs: Mean Average Error (MAE), Precision and
Kendall’s τ . MAE evaluates how far FPGA PPR values are from the cor-
rect ones, while Precision measures the Top-N correctness without looking
at the vertices order; just 20 bits are enough to retrieve 90 % of the best
Top-50 items. Kendall’s τ is a ranking metric that penalizes out-of-order
predictions [180]. Results in Figure 3.7 are similar to Figure 3.6, with MAE
and Precision mostly unaffected by a larger set of predictions.

Increasing bit-width is always beneficial, with diminishing returns. Us-
ing 26 bits provides near-to-perfect results, although even 22 or 24 bits pro-
vide satisfactory results, with more than half of the vertices being ranked
correctly. 22 bits show a Top-10 edit distance of 3 and an NDCG value
> 95 %. With 26 bits, the Top-20 edit distance is < 3, i.e. only 3 values
in the first 20 are out-of-place. Results are impacted by graph distribu-
tion: Power-law (Holme and Kim) graphs, for which errors are lower, have
dense communities, similarly to real social networks, while the behavior
of the uniformly-distributed Erdős-Renyi is more unpredictable due to the
lack of communities. Sparsity has a minor impact on accuracy (Figure 3.8):
very low bit-width suffers from high sparsity, but in general results are con-
sistent with Figure 3.6. We display the Top-50 precision, but other metrics
show identical behaviors.

3.5.4 Fixed-point produces faster convergence

Fixed-point arithmetic produces faster convergence (Figure 3.9). We mea-
sure, after each iteration, the Euclidean norm of new and previous PPR val-
ues, to evaluate convergence. Less than 20 iterations are always enough for
convergence, and even 10 iterations provide an error below 10−6 (a com-
mon convergence threshold for PPR [146]). Fixed-point arithmetic con-
verges twice as fast compared to floating-point while preserving accuracy
(Figure 3.6). In real computations, PPR stops when the error is below a
threshold: a 2× faster convergence immediately translates to an additional
2× speedup over a floating-point implementation. To better showcase the
performance improvement given by faster convergence, we compare the
CPU floating-point baseline with our fixed-point FPGA hardware design,
stopping the computation, not after 10 iterations as in Figure 3.5 but after
a convergence error below 10−6 is met. Figure 3.10 shows how a 20-bit
hardware design is an additional 80 % faster (8.95× versus the 4.92× in

“output” — 2022/1/15 — 13:36 — page 74 — #88

4 8 12 16

10−1

10−2

10−3

10−4

10−5

10−6

10−7

C
on

ve
rg

en
ce

 E
rr

or

|E|=~106

4 8 12 16

Amazon

4 8 12 16

|E|=~2·106

4 8 12 16

Twitter

Iteration Number

20 26 Float

Figure 3.9: Convergence error, measured as squared differences of PPR values computed
iteration after iteration, for different bit-widths. Using fixed-point arithmetic results in
faster convergence compared to 32-bits floating-point, often by a factor of 2x. Lines
are truncated once the error is below 10−7.

Figure 3.5) when using convergence as stopping criterion, compared to us-
ing a fixed number of iterations.

It is well-known that reduced-precision arithmetic gives faster conver-
gence in the training of neural networks [133, 188]. However, it was not
clear whether such findings could be applied to iterative graph algorithms
such as PPR. What we find is that reduced-precision arithmetic does in-
deed make convergence faster. However, neural networks often employ
extremely low-precision arithmetic (8 bits, 16 bits, often even less) without
numerical instability or a significant loss of accuracy. In the case of PPR
we observe that the gap between 26 bits and 20 bits is significantly less pro-
nounced than moving from 32-bits floating-point arithmetic to fixed-point
arithmetic. Moreover, accuracy starts rapidly decreasing when using less
than 20 bits. As such, the low-precision arithmetic encountered in neural
networks would not be applicable to the computation of PPR.

3.6 Final Remarks

This chapter presented a high-performance FPGA hardware design of a
COO SpMV algorithm that leverages data-flow computation and reduced-
precision fixed-point arithmetic. We applied our SpMV design to accelerate
the PPR algorithm, outperforming a state-of-the-art CPU implementation
by up to 6.8×, with up to 42× higher energy efficiency. With just 26-
bits fixed-point values, we guarantee a speedup above 5.8× with negligible
accuracy loss, with 2× faster convergence: average Top-10 Edit Distance

“output” — 2022/1/15 — 13:36 — page 75 — #89

C
PU F3

2 26 24 22 20

0.0x
5.3x

10.6x
15.9x
21.1x
26.4x
31.7x

0.
90

x
13

.7
7x

11
.3

2x 17
.7

7x
20

.1
1x

Gn, p, |E| = 106

CPU Baseline: 2254 ms

C
PU F3

2 26 24 22 20

0.0x
2.7x
5.4x
8.1x

10.8x
13.5x
16.1x

0.
96

x
9.

88
x

8.
71

x
9.

83
x

10
.2

4x

Small-world, |E| = 106

CPU Baseline: 2130 ms

C
PU F3

2 26 24 22 20

0.0x
3.2x
6.4x
9.6x

12.9x
16.1x
19.3x

0.
89

x
8.

19
x

8.
77

x 11
.6

6x
12

.2
4x

Power-law, |E| = 106

CPU Baseline: 1986 ms

C
PU F3

2 26 24 22 20

0.0x
2.0x
3.9x
5.9x
7.9x
9.9x

11.8x

Sp
ee

du
p

0.
46

x
4.

74
x 7.

08
x

7.
11

x
7.

51
x

Gn, p, |E| = 2·106

CPU Baseline: 2743 ms

C
PU F3

2 26 24 22 20

0.0x
1.2x
2.4x
3.5x
4.7x
5.9x
7.1x

0.
51

x
4.

28
x

4.
10

x
4.

24
x

4.
48

x

Small-world, |E| = 2·106

CPU Baseline: 2749 ms

C
PU F3

2 26 24 22 20

0.0x
1.3x
2.6x
3.9x
5.2x
6.6x
7.9x

0.
47

x
3.

36
x 4.
55

x
4.

80
x

5.
00

x

Power-law, |E| = 2·106

CPU Baseline: 2540 ms

C
PU F3

2 26 24 22 20

0.0x
3.1x
6.2x
9.3x

12.4x
15.5x
18.6x

1.
12

x
8.

97
x

8.
04

x
9.

46
x

10
.9

8x

Amazon

CPU Baseline: 1970 ms

C
PU F3

2 26 24 22 20

0.0x
1.4x
2.8x
4.2x
5.6x
7.1x
8.5x

0.
63

x
4.

30
x

4.
16

x
4.

87
x

4.
95

x

Twitter

CPU Baseline: 2151 ms

C
PU F3

2 26 24 22 20

0.0x
2.3x
4.7x
7.0x
9.4x

11.7x
14.1x

0.
79

x
7.

00
x

6.
76

x
8.

20
x

8.
95

x
MEAN

CPU Baseline: 2230 ms

CPU F32 FPGA F32 FPGA 26b FPGA 24b FPGA 22b FPGA 20b

Figure 3.10: Speedup of our Personalized PageRank hardware design (y-axis) with respect
to the CPU baseline and the FPGA floating-point baseline, for decreasing bit-widths
(x-axis), when accounting for the faster convergence obtained with reduced-precision
fixed-point arithmetic. In most cases, the effective speedup is more than doubled com-
pared to Figure 3.5.

“output” — 2022/1/15 — 13:36 — page 76 — #90

is below 1 and NDCG is above 99.9% compared to the CPU, showing how
graph ranking algorithms can benefit from approximate computing.

Although the present work focuses on the design of a fixed point COO
SpMV for a specific use-case and is not a general-purpose graph engine,
we deem it valuable to integrate partitioning techniques [178,195] and sup-
port web-scale graphs, and study the optimal trade-off between partitioning
overheads and FPGA resource utilization. To this end, Chapter 4 shows
how to partition the input graph across multiple HBM pseudo channels,
achieving greater throughput and enabling support for larger graphs.

Overall, this chapter has shown how current FPGA accelerator cards
are promising but not yet ideal for high-performance sparse computations.
To achieve state-of-the-art results, it is necessary to fully leverage their
strengths (precise control over numerical precision and predictable through-
put using streaming hardware designs) and to mask disadvantages with ad-
hoc optimizations (limiting the impact of random accesses with batched
requests in URAM or data replication in HBM). The goal of this thesis is
to prove that it is possible to create hardware designs for sparse linear al-
gebra that can be easily reused and extendend to different computations
(such as PPR in this chapter and the Lanczos algorithm in the next chapter,
Chapter 4), providing in each case a general framework that can achieve
excellent performance with minimal adaptation overheads.

The results shown in this chapter go beyond FPGA accelerator cards.
Recent GPUs provide exceptional memory bandwidth (up to 1.5 TB/s on
the Nvidia Tesla A100 [150]), and more and more support for reduced-
precision arithmetic, such as half-precision floating-point arithmetic. With
the general trend of moving towards lower and lower precision arithmetic,
thanks to breakthroughs in Deep Learning (DL) [62], it is not unlikely
that future GPUs will also introduce hardware-accelerated lower-precision
fixed-point arithmetic. If such hardware support becomes a reality, some of
our results (e.g. faster convergence with low bit-width) will become imme-
diately applicable to GPU implementations of PPR.

“output” — 2022/1/15 — 13:36 — page 77 — #91

CHAPTER4
Solving Large Top-K Graph Eigenproblems

with a Memory and Compute-optimized
FPGA Design

Large-scale eigenvalue computations on sparse matrices are a key compo-
nent of graph analytics techniques based on spectral methods. In such ap-
plications, an exhaustive computation of all eigenvalues and eigenvectors
is impractical and unnecessary, as spectral methods can retrieve the rele-
vant properties of enormous graphs using just the eigenvectors associated
with the Top-K largest eigenvalues. In this chapter, we propose a hardware-
optimized algorithm to approximate a solution to the Top-K eigenproblem
on sparse matrices representing large graph topologies. We build upon the
SpMV hardware design presented in the previous chapter, and we proto-
type our algorithm through a custom FPGA hardware design that exploits
HBM, Systolic Architectures, and mixed-precision arithmetic. We achieve
a speedup of 6.22x compared to the highly optimized ARPACK library run-
ning on an 80-thread CPU, while keeping high accuracy and 49x better
power efficiency.

77

“output” — 2022/1/15 — 13:36 — page 78 — #92

4.1 Introduction

Research in information retrieval and recommender systems has spiked
novel interest in spectral methods [228], a class of Machine Learning al-
gorithms able to detect communities in large social and e-commerce graphs,
and compute the similarity of graph elements such as users or products [190].
At the core of many spectral methods lies the Top-K eigenproblem for
large-scale sparse matrices, i.e. the computation of the eigenvectors asso-
ciated with the largest eigenvalues (in modulo) of a matrix that stores only
non-zero entries (Figure 4.1). For example, the famous Spectral Cluster-
ing algorithm boils down to computing the largest eigenvalues of a sparse
matrix representing the graph topology [142]. Other applications of spec-
tral methods include speech separation [17] and image segmentation, by
thresholding eigenvectors [161, 181], or clustering the K-Nearest Neigh-
bor graph of an image [192]. Even the PageRank values of the vertices in
a graph [152] are nothing but the eigenvector corresponding to the high-
est eigenvalue of the modified adjacency matrix presented in Section 3.3.
Despite the rise of theoretical interests for spectral methods, little research
has focused on improving the performance and scalability of the Top-K
sparse eigenproblem solvers, making them applicable to large-scale graphs.

4.1.1 Motivation

Most existing high-performance implementations of eigenproblem algo-
rithms operate on dense matrices and are completely unable to process
matrices with millions of rows and columns (each encoding, for example,
the user’s friends in a social network graph) [137]. Even the highly opti-
mized multi-core implementation of LAPACK requires more than 3 min-
utes to solve the full eigenproblem on a small graph with ∼ 104 vertices
and ∼ 50 · 104 edges on a Xeon 6248, as the eigenproblem complexity
scales at least quadratically with the number of vertices in the graph. Many
implementations that support sparse matrices, on the other hand, are ei-
ther forced to compute all the eigenvalues or require an expensive matrix
inversion before solving the eigenproblem [104].

The need for high-performance Top-K sparse eigenproblem algorithms
goes hand in hand with custom hardware designs that can outperform tradi-
tional architectures in raw performance and power efficiency, given how
applications on-top of Top-K eigenproblem are mostly encountered in data
centers. In this chapter, we tackle both problems by presenting a new Top-
K sparse eigensolver whose building blocks are specifically optimized for
high-performance hardware designs.

“output” — 2022/1/15 — 13:36 — page 79 — #93

0

1

43

2

0

1

2

3

4

0 1 2 3 4

1 1

1

1

1

Graph G:=

1 1

0.5 1.6

1 -10.5

0.5

0.3

0.3

0

-0.5

0.5

0

0.5

Matrix representation of G

e1 e2

λ1

λ2

K=2 (usually < 100)

To
p-

K
ei

ge
nv

ec
to

rs

To
p-

K
ei

ge
nv

al
ue

s

Figure 4.1: Top-K eigencomputation of a graph G, represented as a sparse matrix. While
G can have millions of vertices, we often need just the Top-K eigenvectors (K = 2 in
this example).

4.1.2 Contributions

We introduce a novel algorithm to address the Top-K sparse eigenprob-
lem and prototype it through a custom hardware design implemented on
an Field-Programmable Gate Array (FPGA) accelerator card; to the best of
our knowledge this is the first FPGA-based Top-K sparse eigensolver. Our
algorithm is a 2-step procedure that combines the Lanczos algorithm (to re-
duce the problem size) [111] with the Jacobi algorithm (to compute the final
eigencomponents) [170], as shown in Figure 4.2. The Lanczos algorithm,
often encountered in Top-K sparse eigensolvers [198], has never been com-
bined with the Jacobi algorithm. Part of the reason lies in their different
computational bottlenecks: the Lanczos algorithm demands large memory
bandwidth, while the Jacobi algorithm is strongly compute-bound. Our ap-
proach exploits the strengths of FPGA accelerator cards and overcomes the
limitations of traditional architectures in this class of algorithms.

First, the Lanczos algorithm presents a Sparse Matrix-Vector Multiplica-
tion (SpMV) as its main bottleneck, an extremely memory-intensive com-
putation with indirect and fully random memory accesses (Figure 4.2 B).
Optimizing SpMV requires high peak memory bandwidth and fine-grained
control over memory accesses, without being able to rely on the traditional
caching policies encountered in general-purpose architectures due to the
randomness of these memory accesses. Our hardware design features an
iterative dataflow SpMV with multiple Compute Units (CUs). This design
leverages every High Bandwidth Memory (HBM) channel through a cus-
tom memory subsystem to efficiently handles indirect memory accesses.
We build upon the SpMV hardware design presented in Chapter 3, adding
support for HBM and for graph partitioning, enabling multiple CUs to work

“output” — 2022/1/15 — 13:36 — page 80 — #94

in parallel on different portions of the input matrix.
Then, we introduce a Systolic Array (SA) design for the Jacobi eigen-

value algorithm, a computationally intensive operation that operates on
reduced-size inputs (K ×K) (Figure 4.2 D). The Jacobi algorithm maps
naturally to a SA that ensures O(log(K)) convergence, while traditional
architectures do not ensure the same degree of performance. CPUs can-
not guarantee that all the data are kept in the L1 cache and are unlikely to
have enough floating-point arithmetic units to parallelize the computation.
This results in Ω(K2) computational complexity and execution times more
than 50 times higher than a FPGA (Section 4.5). Instead, GPUs cannot fill
all their Stream Processors, as the input size is much smaller than what is
required to utilize the GPU parallelism fully [38].

Moreover, our FPGA-based hardware design employs optimized mixed-
precision arithmetic, partially replacing traditional floating-point computa-
tions with faster fixed-precision arithmetic. While high numerical accu-
racy is usually demanded in eigenproblem algorithms, we employ fixed-
precision arithmetic in parts of the design that are not critical to the overall
accuracy and resort to floating-point arithmetic when required to guarantee
precise results.

In summary, we present the following contributions:

• A novel algorithm for approximate resolution of large-scale Top-K
sparse eigenproblems (Section 4.3), optimized for custom hardware
designs.

• A modular mixed-precision FPGA design for our algorithm that effi-
ciently exploits the available programmable logic and the bandwidth
of DDR and HBM (Section 4.4).

• A performance evaluation of our Top-K eigendecomposition algo-
rithm against the multi-core ARPACK CPU library, showing a speedup
of 6.22× and a power efficiency gain of 49×, with a reconstruction er-
ror due to mixed-precision arithmetic as good as 10−3 (Section 4.5).

4.2 Related Work

To the best of our knowledge, no prior work optimizes Top-K eigenproblem
for unstructured sparse matrices with custom FPGA hardware designs.

The most well-known large-scale Top-K sparse eigenproblem solver
on CPU is the ARPACK library [117], a multi-core Fortran library that
is also available in SciPy and MATLAB through thin software wrappers.

“output” — 2022/1/15 — 13:36 — page 81 — #95

ARPACK implements the Implicitly Restarted Arnoldi Method (IRAM), a
variation of the Lanczos algorithm that supports non-Hermitian matrices.
Other sparse eigensolvers provide techniques that have been optimized for
specific domains or matrix types, although none is as widely employed as
ARPACK [6, 82, 116, 131].

On GPUs, the cuSOLVER [147] library by Nvidia provides a simple
eigensolver based on the shift-inverse method that retrieves only the largest
eigenvalue and its eigenvector (i.e. K = 1), which is significantly more
limited than the general Top-K eigenproblem. The nvGRAPH library [146],
also developed by Nvidia, provides an implementation of spectral cluster-
ing at whose core lies the Lanczos algorithm. However, the implementa-
tion of the inner Lanczos algorithm is not publicly available. To the best of
our knowledge, there is no publicly available GPU implementation of the
Lanczos algorithm that can solve large-scale sparse eigenproblems required
by spectral methods. The MAGMA library [128] solves the Top-K sparse
eigenproblem through the alternative LOBPCG algorithm [104], which re-
quires multiple iterations (each containing at least one SpMV) to compute
even a single eigenvector, to the contrary of the Lanczos algorithm. Other
GPU-based Top-K eigensolvers are domain-specific, do not support large-
scale inputs, or do not leverage features of modern GPUs such as HBM
memory or mixed-precision arithmetic [49, 53]. Eigensolvers for dense
matrices are more common on GPUs, as they easily exploit the enormous
memory bandwidth of these architectures: Myllykoski et al. [137] focus on
accelerating the case of dense high-dimensional matrices (around 105 rows)
while Cosnuau [38] operates on multiple small input matrices. Clearly,
none of the techniques that operate on dense matrices can easily scale to
matrices with millions of rows as simply storing them requires terabytes of
memory. Graphics Processing Unit (GPU) implementations of the Jacobi
algorithm are rare and only target small dense matrices [34, 202].

Specialized hardware designs for eigensolvers are limited to resolving
the full eigenproblem on small dense matrices through the QR-Householder
Decomposition and Jacobi eigenvalue algorithm. Most formulations of the
Jacobi algorithm [29,73] leverage Systolic Array, a major building block of
high performance domain-specific architectures from their inception [107]
to more recent results [14, 97, 112]. However, hardware designs of the Ja-
cobi algorithm based on SA cannot scale to large matrices, as the resource
utilization scales linearly with the size of the matrix. Implementations of
the QR-Houseolder algorithm face similar problems [15, 197] as they also
leverage systolic architectures, although research research about resource-
efficient designs do exist [47].

“output” — 2022/1/15 — 13:36 — page 82 — #96

SpMVLanczos
Operations 1

K iterations

Inputs:
- graph G (as a sparse matrix)
- K
- v1

Output 1:
Lanczos vectors V
(1 per iteration)

Output 2:
eigenvectors V

and eigenvalues T

Lanczos Algorithm Jacobi Algorithm

A B C D

O(log(K)) iterations

TLanczos
Operations 2

Figure 4.2: Steps of our Top-K sparse eigenproblem solver, which combines the Lanczos
algorithm with a Systolic Array formulation for the Jacobi eigenvalue algorithm.

4.3 Solving the Top-K Sparse Eigenproblem

The core step of algorithms like Spectral Clustering is a Top-K sparse
eigenproblem, i.e. finding eigenvalues and eigenvectors of sparse matri-
ces representing, for instance, graphs with millions of vertices and edges.

Given a sparse square matrix M ∈ Rn×n and an integer K � n the
goal of the Top-K sparse eigenproblem is to find the K eigenvalues with
the highest magnitude, and their associated eigenvectors. While a full
eigendecomposition factorizes M as M = QQT , with Q ∈ Rn×n being
the eigenvector matrix and ∈ Rn×n being the diagonal eigenvalue matrix,
the Top-K sparse eigenproblem produces the approximate decomposition
M ≈ MK = QKKQT

K , with QK ∈ Rn×K and K ∈ RK×K . K is a di-
agonal matrix containing the Top-K largest eigenvalues in modulo, while
QK contains its corresponding eigenvectors. Indeed, computing all the n
eigenvalues of the matrix is intractable for large matrices and redundant
for many applications that require only a handful of eigencomponents. For
example, Spectral Clustering and many of its variations rely only on the
Top-K eigenvectors, with K rarely above ∼ 10.

In this chapter, we propose a novel algorithm to solve the Top-K sparse

α1 β1 0 0 0
β1 α2 β2 0 0
0 β2 α3 β3 0
0 0 β3 α4 β4

0 0 0 β4 α5

Figure 4.3: Example of (5 × 5) tridiagonal matrix, obtained as output of the Lanczos

algorithm for K = 5.

“output” — 2022/1/15 — 13:36 — page 83 — #97

Algorithm 6 Pseudo-code of the Lanczos algorithm for the Top-K eigenvectors

1: function LANCZOS(M,K, v1)
2: β1 ← 0 . Initialization
3: v0 ← 0N
4: for i in 1,K do . Main Lanczos loop
5: . Normalize Lanczos vector obtained in the previous iteration
6: if i > 1 then
7: βi ← ‖w′

i−1‖2
8: vi ← w′

i−1/βi . Compute new Lanczos vector
9: end if

10: . Begin computation of new Lanczos vector
11: wi ← Mvi . Sparse matrix-vector multiplication
12: αi ← wivi

13: w′
i ← wi − αivi − βivi−1

14: Orthogonalize w′
i with respect to V

15: end for
16: . Tridiagonal matrix T and Lanczos vectors V
17: return {T = [α1, . . . , αK], [β1, . . . , βK−1]}
18: return V = [v1, . . . , vK]

19: end function

eigenproblem, combining the Lanczos algorithm and the Jacobi eigenvalue
algorithm. Our technique is particularly suited for highly optimized and
modular hardware designs. The first phase leverages the Lanczos algo-
rithm, taking as input the original matrix M, the number of desired eigen-
components K and an L2-normalized random vector v1 ∈ Rn. We initialize
v1 to have all values equal to 1/n2, but any other L2-normalized initializa-
tion is acceptable. The Lanczos algorithm outputs a K × K symmetric
tridiagonal matrix T (Figure 4.3) and a set of orthogonal Lanczos vectors
V ∈ RK×n. As the second step, we apply the Jacobi eigenvalue algorithm
to T . This algorithm transforms T into a diagonal matrix containing its
eigenvalues, and returns a matrix V with the eigenvectors of T . Each eigen-
value λ of T is also an eigenvalue of the original matrix M. Moreover, if
x is the eigenvector of T associated to λ, then Vx is the eigenvector of M
associated to λ. MK can be obtained as MK = (VV)T (VV)T , although
many applications in spectral analysis only require the Top-K eigenvalues
and eigenvectors of M instead of retrieving MK .

“output” — 2022/1/15 — 13:36 — page 84 — #98

[
ci si
−si ci

] [
α β
γ δ

] [
ci −si
si ci

]
=

[
α′ 0
0 δ′

]
(a) Operations for the Diagonal Processor pii (Figure 4.5A).[

ci si
−si ci

] [
α β
γ δ

] [
cj −sj
sj cj

]
=

[
α′ β′

γ′ δ′

]
(b) Operations for the Offdiagonal Processor pij (Figure 4.5C).[

w x
y z

] [
cj −sj
sj cj

]
=

[
w′ x′

y′ z′

]
(c) Operations for the Eigenvector Processor pij (Figure 4.5D).

Figure 4.4: Operations performed by different processors in the Jacobi eigenvalue Sys-
tolic Array architecture. Values ci and si indicate cos(θi) and sin(θi), with θi =
1
2 arctan 2β

α−δ .

4.3.1 The Lanczos Algorithm

The Lanczos algorithm retrieves the Top-K eigencomponents of a matrix
and is often employed as a building block of large-scale eigenproblem al-
gorithms [32, 65, 117]. The algorithm takes as input a real matrix M, the
value K and an L2-normalized vector v1 ∈ Rn. The K × K output tridi-
agonal matrix T is significantly smaller than the input (K � n) and also
simpler in structure, as elements outside of the band enclosing the main di-
agonal and the ones immediately above and below are zero. Reducing the
dimensionality of the problem instance is crucial for rendering the problem
tractable and preserving only the relevant components of the input matrix.
The pseudo-code of the algorithm is provided in Algorithm 6. For each
of the K iterations, it computes a Lanczos vector vi by normalizing w′

i−1,
obtained at the previous iteration (lines 6–7 and Figure 4.2A). From vi, we
obtain w′

i by projecting the matrix M into vi (lines 11–13 and Figure 4.2B),
followed by an orthogonalization (line 14 and Figure 4.2C). Mathemati-
cally, the algorithm builds an orthonormal basis V for an order-K Krylov
subspace by repeated embedding of the vector v into the matrix M (Algo-
rithm 6, line 11), followed by normalization (line 7–8) and orthogonaliza-
tion (line 14) on the following iteration. The algorithm produces one of the
K vectors in V for each iteration. From V , we derive the eigenvalues and
eigenvectors of M. As we compute only K eigenvectors and K � n., the
Lanczos is algorithm very efficient.

The Lanczos algorithm is particularly efficient on sparse matrices, as its
most expensive operation is an iterative SpMV, bounding its computational
complexity to O(K · E), with E being the number of non zero elements

“output” — 2022/1/15 — 13:36 — page 85 — #99

Algorithm 7 Jacobi eigenvalue algorithm with Systolic Arrays

1: function JACOBI(T)
2: V← 1K . Identity matrix of size K ×K

3: repeat
4: for i in 1,K/2 do . Diagonal CU
5: pii ← T [2i : 2i+ 1, 2i : 2i+ 1]

6: θi ← 1
2 arctan 2β

α−δ

7: Rotate pii . Full equation in Figure 4.4a
8: Propagate ci and si

9: end for
10: for j in 1,K/2− 2 do . Offdiagonal CU
11: i← j + 1

12: Receive ci, cj , si, sj from pii, pjj

13: pij ← T [2i : 2i+ 1, 2j : 2j + 1]

14: Rotate pij . Full equation in Figure 4.4b
15: end for
16: for i in 1,K/2 do . Eigenvector CU
17: for j in 1,K/2 do
18: vij ← V[2i : 2i+ 1, 2j : 2j + 1]

19: Receive cj , sj from pjj

20: Rotate vij . Full equation in Figure 4.4c
21: end for
22: end for
23: Permute rows and columns of T and V . Figure 4.5
24: until T becomes diagonal
25: Output T . Eigenvalues of the input T
26: Output V . Eigenvectors of the input T
27: end function

of M. In our hardware design, we optimize the memory-intensive SpMV
computation through multiple independent CUs, so that we can take advan-
tage of all the available 32 HBM channels of a Xilinx Alveo U280 FPGA
accelerator card (Section 4.4.2).

This algorithm is prone to numerical instability as the Lanczos vectors
V can quickly lose pairwise orthogonality if K is very large. To prevent
instability, we normalize the input matrix in Frobenius norm as eigencom-
ponents are invariant to constant scaling: values of the matrix are in the
range (−1, 1), which implies that eigenvalues and eigenvectors are also
in the range (−1, 1). This property enables the use of fixed-point arith-

“output” — 2022/1/15 — 13:36 — page 86 — #100

metic to improve performance and reduce resource usage (Section 4.5.3).
We further improve numerical stability by adopting a version of the algo-
rithm that reorders operations [153] and reorthogonalizes Lanczos vectors
through Gram-Schmidt orthogonalization in each iteration [154]. The or-
der of operation in Algorithm 6 has been proven to be the most stable [153]
and comes at no implementation cost. Reorthogonalization (Algorithm 6,
line 10) requires K2/2 more operations of cost O(n), increasing complex-
ity to O(K(E + nK2/2)). We also introduce the option of performing
Gram-Schmidt reorthogonalization every 2 iterations, for a lower overhead
of O(n(K/2)2/2), with negligible accuracy loss (Section 4.5.3). In prac-
tice, execution time is usually dominated by SpMV making reorthogonal-
ization a viable option.

4.3.2 The Jacobi Eigenvalue Algorithm

The Jacobi eigenvalue algorithm computes the eigenvalues and eigenvec-
tors of a dense symmetric real matrix. It is an iterative procedure that per-
forms rotations on square submatrices. While being highly computationally
intensive due to the large number of trigonometric operations required for
rotations (Ω(K2) per iteration in a naïve implementation), this algorithm
is particularly well suited to solve eigenproblems on small tridiagonal ma-
trices by exploiting their structure. As many matrix values are zero and
cannot introduce data dependencies in rotations, it is possible to parallelize
the entire computation at the hardware level.

The Jacobi eigenvalue algorithm has sought many formulations to im-
prove its parallelism and resource utilization. The best-known formulation
of the algorithm was proposed by Brent and Luk [25] and has been the stan-
dard for implementing the algorithm on FPGA to this day [29,73]. Our de-
sign improves this formulation with a more resource-efficient procedure for
interchanging rows and columns, and its structure is shown in Figure 4.5.

We employ a SA design that maps the input matrix as 2 × 2 subma-
trices to K2/4 adjacent processors (or CU) (Figure 4.5, A). The systolic
architecture propagates the rotation angles B and the values stored in each
processor E .

Starting from T , the algorithm sets to zero K/2 off-diagonal entries per
iteration using rotations. Diagonal processors annihilate β and γ compo-
nents (Algorithm 7, line 7) with a rotation of angle θ. This angle is propa-
gated (line 8) to the off-diagonal processor (line 9), and to the eigenvector
processor that applies the same rotation to the identity matrix (line 14).

To ensure convergence, diagonal CUs are fed non-zero elements at each

“output” — 2022/1/15 — 13:36 — page 87 — #101

pi,j-1 pi,j pi,j+1
α

β

γ
δ

α
β

γ
δ

α
β

γ
δ

Processing Element pi,i Angle propagation

Column/row swap

α β

γ δ

pi,i
pi-1,i

pi,i-1

pi+1,i

pi,i+1

sinθ, cosθ

A B

C D
E

Off-diagonal
rotation

θi, θj θj

θj

Eigenvector
rotation

sinθ, cosθ
sinθ, cosθ

sinθ, cosθ

Figure 4.5: Steps of the Jacobi eigenvalues computation using Systolic Arrays. Each
Processing Element (PE) pij holds 4 values α, β, γ, δ, and θ = 1

2 arctan 2β
α−δ .

iteration in the β and γ position. New non-zero elements are provided to
the diagonal CUs by swapping rows and columns since eigencomponents
are invariant to linear combinations of the input matrix. We improve the
swap procedures of Brent and Luk [25] by swapping vectors in reverse,
obtaining the same results with fewer resources (Section 4.4.3).

The SA formulation allows performing each iteration of the algorithm
in constant time, enabling complexity equal to the number of iterations,
O(log(K)), instead of having cost above Ω(K2 · log(K)) due to the ma-
trix multiplications [25]. The systolic formulation of the Jacobi eigenvalue
algorithm cannot scale beyond very small matrices (K ∼ 32) due to the
large number of resources required for trigonometric operations. While
resource utilization has prevented widespread adoption of the Jacobi eigen-
value algorithm for general eigenproblem resolution, we do not incur in this
limitation: we apply this algorithm on small K × K inputs by design, as
we first reduce the problem size through the Lanczos algorithm.

“output” — 2022/1/15 — 13:36 — page 88 — #102

4.4 The Proposed FPGA Hardware Design

This section presents our custom FPGA-based hardware design for the
Top-K sparse eigenproblem algorithm previously introduced. The logi-
cal division between the Lanczos and Jacobi algorithms is also present in
the hardware implementation. Our hardware design is composed of two
macro-areas that are mapped to separate reconfigurable Super Logic Re-
gions (SLRs) of the FPGA, to provide more efficient resource utilization
and higher flexibility in terms of clock frequency, memory interfaces, and
reconfigurability. Figure 4.6 shows a high level view of our FPGA design.
We prototyped our hardware design on a Xilinx Alveo U280 accelerator
card with 8 GB of HBM2 memory and 32 GB of DDR4 memory. The ac-
celerator card is equipped with a xcu280-fsvh2892-2L-e FPGA with
3 SLR and whose available resources are reported in Table 4.1. The Lanc-
zos algorithm, being a memory-intensive computation, is mapped to SLR0,
which provides direct access to all the HBM2 memory interfaces on the
accelerator card. SLR1 and SLR2 host different replicas of the IP core im-
plementing the Jacobi algorithm, optimized for different numbers of eigen-
vectors K. SLR2 can either be left empty or reconfigured to provide more
Jacobi cores specialized for multiple numbers of eigenvectors K. For ex-
ample, while a Jacobi core with K = 32 can compute any number of eigen-
vectors k′ < 32, having additional Jacobi cores for k′ = 8, k′ = 16, . . . can
boost performance when computing a number of eigenvectors below 32.

4.4.1 Lanczos Hardware Design

The left part of Figure 4.6 highlights the Lanczos algorithm hardware de-
sign components. Partitions of the sparse input matrix are read from HBM
A and distributed to 5 parallel SpMV CUs B (Algorithm 6, line 11). Par-
tial results from every partition are merged C into a single vector to be used
by the remaining linear operations D (lines 7, 8, 12, 13, 14). Operations
are then repeated K times to produce the 3 ·K − 2 values in the tridiagonal
matrix T and the K Lanczos vectors in V , stored in DDR memory. Al-
gorithm 8 extends the pseudo-code in Algorithm 6 with lower-level details
about our implementation. As the computation is divided on 5 CUs, we
also use a partitioned input matrix M1, . . . ,M5 and partitioned temporary
buffers vtmp, vnxt and vi. Most operations (e.g. SpMV) operate through
independent CUs, with a central control unit handling the control flow of
the algorithm and results’ aggregation (e.g. the loop in line 3 and adding
partial αi in line 11). For simplicity, we show orthogonalization as if it
were done in each iteration. This step is optional, and satisfactory results

“output” — 2022/1/15 — 13:36 — page 89 — #103

SpMV Unit 1

SpMV Unit 2

SpMV Unit 3

SpMV Unit 4

SpMV Unit 5

Lanczos
Operations 1

Merge
Unit

Lanczos
Operations 2

HB
M

DD
R

K iterationsHB
M[

25
:2
9,
31
]

HB
M[

0:
24
,3
1]

DD
R[

0:
1]

HB
M[

0:
31
]

DD
R[

0:
1]

Input:
graph G Output 1:

Lanczos
vectors V

(1 per iteration)

Output 2:
Jacobi

eigenvectors V
eigenvalues T

Lanczos Algorithm

Jacobi Algorithm
B

EA C D

O(log(K))
iterations

T

PLRAM

Figure 4.6: High-level architecture of our Top-K Sparse Eigencomputation FPGA de-
sign. We highlight interconnections between FPGA computational units and the FPGA
board memory. The design is divided into two main parts, mapped to the Lanczos and
Jacobi algorithms. Each part is executed for K and O(log(K)) iterations, respec-
tively. The two parts of the design are located into different SLRs and communicate a
small amount of data: we use PLRAM as a fast scratchpad memory for data exchange.

can be achieved by reorthogonalizing every two iterations as well, reducing
the computational cost of this step (Section 4.5.3).

4.4.2 SpMV Hardware Design

The biggest bottleneck in the Lanczos algorithm is an iterative SpMV com-
putation (Algorithm 8, line 10). While other computations in the Lanczos
algorithm are relatively straightforward to optimize and parallelize, SpMV
is well-known for being a complex, memory-intensive computation that
presents indirect and random memory accesses [143]. Although significant
research has been made into developing high-performance SpMV imple-
mentations on FPGA [68, 90, 155, 172, 195], the Lanczos algorithm intro-
duces circumstances that prevents us from using an out-of-the-box FPGA
SpMV implementation. The SpMV design must perform multiple itera-
tions without communication from device to host, as data transfer and syn-
chronizations would hinder performance. Then, the SpMV must be easily
partitioned and replicated to provide flexibility over the hardware resources.
Finally, we require access to multiple HBM channels to maximize the over-
all memory bandwidth achieved in the computation.

Our final SpMV design extends and improves the one proposed in Chap-
ter 3 in the context of graph ranking algorithms [158], which are also varia-

“output” — 2022/1/15 — 13:36 — page 90 — #104

Algorithm 8 Detailed lower-level pseudo-code of the Lanczos algorithm

Require: Input Matrix M in COO format, partitioned in M1 . . .M5

Require: K, number of output eigenvectors
Require: L2-normalized input vectors v1 := {v11 , v21 , v31 , v41 , v51}
Require: Temporary Vectors vtmp := {v1tmp, v

2
tmp, v

3
tmp, v

4
tmp, v

5
tmp}

Require: Temporary Next Vectors vnxt := {v1nxt, v2nxt, v3nxt, v4nxt, v5nxt}
1: function LANCZOS(M,K, v1, vtmp, vnxt)
2: α1 ← 0; β1 ← 0 . Initialization
3: for i in 1,K do
4: . Normalize and compute new Lanczos vector
5: if i 6= 1 then
6: βi ←

√∑5
j=1 (v

j
nxt)

2 . βi ← ‖vnxt‖2
7: v

[1...5]
i ← ∀j∈[1...5](v

j
nxt/βi) . vi ← vnxt/βi

8: end if
9: . Projection on the Krylov subspace for the next Lanczos vector

10: v
[1...5]
t ← SpMV (M1 . . .M5, v

[1...5]
i)

11: αi ←
∑5

j=1 v
j
i · v

j
t

12: v
[1...5]
nxt ← v

[1...5]
tmp − αiv

[1...5]
i − βiv

[1...5]
i−1

13: . Orthogonalization
14: for j ∈ [1, i] do
15: if j%2 6= 0 then
16: o←

∑5
k=1 vj,k · vt,k

17: v
[1...5]
t ← v

[1...5]
t − o · v[1...5]j

18: else
19: o←

∑5
k=1 vj,k · vn,k

20: v
[1...5]
n ← v

[1...5]
n − o · v[1...5]j

21: end if
22: if i == j then . Copy to temporary vector
23: v

[1...5]
t ← v

[1...5]
n

24: end if
25: end for
26: end for
27: return {T = [α1, . . . , αK], [β1, . . . , βK−1]}; V = [v1, . . . , vK]

28: end function

tions of the power iteration method used by the Lanczos algorithm. Below
we introduce how we leveraged HBM memory in our SpMV design.

“output” — 2022/1/15 — 13:36 — page 91 — #105

Replicas
of w

HBM[0:4] SpMV Result

Other partitions,
HBM[1:4]

Partition 0,
HBM[0]

Dense vector
memory

subsystem

Update dense
vector memory
subsystem for
next iteration

COO

Partition 1, HBM[0]

x:

Other partitions, HBM[1:4]

y:
val:

Matrix Fetch Unit
x[i]:
y[i]:

val[i]:

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4
v0 v1 v2 v3 v4

Read packet from HBM

Dense Vector Fetch Unit
y[i]: y0 y1 y2 y3 y4

w0 w1w2w3 w4

w[i]: w0 w1 w2 w3 w4

Aggregation Unit
x0 x1 x2 x3 x4

v0w0 v1w1 v2w2 v3w3 v4w4

Write-Back FSM

x0_old

=x0
T

+= +=

F

b.

res1

res1

res2

res2

r1 r2 r3 r4r0

a. c.

B

C

D

Merge Unit &
Other Lanczos
Operations

E

A

Figure 4.7: Block diagram of one iterative SpMV CU. Each CU processes a portion of the
input matrix through a 4-stage dataflow design, and results are replicated on the dense
vector memory subsystem after each iteration. Thanks to multiple CUs and the dense
vector memory subsystem we can scale to large matrices while preserving efficient
HBM bandwidth utilization.

SpMV Dataflow Architecture

As SpMV is an extremely memory-intensive computation, a good SpMV
implementation should make efficient use of the memory bandwidth made
available by the underlying hardware. Figure 4.7 shows the structure of
one of our SpMV CUs. We employ a streaming dataflow SpMV design
that reads the sparse input matrix stored using the Coordinate (COO) for-
mat. In the COO format, non-zero entries of the matrix are stored using 3
32-bits values: the row and column index in the matrix and the value itself.
Compared to other sparse matrix data-layouts, such as Compressed Sparse
Row (CSR), the COO format does not present indirect data accesses that
can severely reduce the opportunities for a pipelined design. The Matrix
Fetch Unit in each CU is connected to a single HBM channel and reads, for
each clock cycle, a packet of 512 bits containing 5 non-zero matrix entries
A . Memory transactions happen in continuous bursts of maximum AXI4
length (256 beats): each CU reads the matrix at the maximum bandwidth
offered by the HBM channel (14.37 GB/s, for a total of 71.87 GB/s using
5 CU). For each of the 5 non-zero values in each COO packet, the Dense
Vector Fetch Unit performs a random access to the SpMV dense vector B .

“output” — 2022/1/15 — 13:36 — page 92 — #106

This step is critical to the overall SpMV performance: compared to the
SpMV design in Section 3.4.2 and in Parravicini et al. [158], we leverage
HBM instead of UltraRAM (URAM), achieving better scalability and per-
formance. We detail our Dense Vector Memory Subsystem below and in
Figure 4.8. The Aggregation Unit sums results within a single data-packet
that refers to the same matrix column C . A Write-Back Finite-State Ma-
chine stores results of each CU to HBM D . Each write-transaction is a
512-bits data packet containing up to 15 values, each referring to a single
matrix row. As another improvement over the design in Section 3.4.2, we
reduce the number of write transactions by 3 times the average number of
non-zeros per row. As such, we can store results through the same HBM
channels of the dense vector with no detriment to performance.

To the contrary of the original SpMV design in Section 3.4.2, we support
multiple SpMV CUs that operate on partitions on the COO input matrix,
created by assigning an equal number of rows to each CU. We employ up
to 5 SpMV CUs (Figure 4.6). While in principle it is possible to place more
CUs, our current design is limited by the hardened HBM controller in the
Alveo U280 that prevents using more than 32 AXI master channels, which
we fully employ [213]. Each SpMV CU computes a portion of the output
vector: partial results are aggregated by the Merge Unit (Figure 4.6 C) and
replicated across HBM channels to use them in the following iteration.

SpMV Dense Vector Memory Subsystem

Each SpMV CU processes 5 non-zero matrix entries per clock cycle, and
for each non-zero entry it must perform a random access on a dense vector
of size n (in our case, the Lanczos vector vi at iteration i). As each AXI
master channel can handle only one read transaction per cycle, we need to
replicate the dense vector 5 times, similarly to [102]. The hardened AXI
switch in the Alveo U280 renders it highly inefficient to attach multiple
AXI master channels to the same HBM bank: only 32 AXI master chan-
nels are available, and small memory transactions (32 bits) have the same
performance as larger transactions, preventing sustained bandwidth shar-
ing [36, 126, 205]. We solve the issue by leveraging the abundant HBM
memory on the Alveo U280, and replicating the dense vector 5 times for
each CU, as in Figure 4.8. A more flexible AXI switch would enable mul-
tiple 32-bits read transactions on the same HBM channel in a single clock
cycle, reducing the demand for data replication. Our HBM-based mem-
ory subsystem marks a significant improvement from the design in Sec-
tion 3.4.2, as we avoid URAM to store the intermediate dense vector and
results. Instead of being limited by the FPGA’s 90 MB of URAM, we store

“output” — 2022/1/15 — 13:36 — page 93 — #107

Re
pl
ic
as

of
 w
,
R=
5

Dense Vector Fetch Unit 1

y[i]:
y0 y1 y2 y3 y4

0.1

0.6
0.8

0.2

0.4

w[i]:
w0 w1 w2 w3 w4

Data packet from
Matrix Fetch Unit

Dense Vector packet
to Aggregation Unit

HBM[0]
HBM[1]
HBM[2]
HBM[3]
HBM[4]

r0:
r1:
r2:
r3:
r4:

1 1411 5 7 0.1 0.20.60.4 0.8

Dense Vector Fetch Unit 2
y[i]: y0 y1 y2 y3 y4 w[i]: w0 w1 w2 w3 w4

HBM[5:9]

y4

y[i]: y0 y1 y2 y3 y4 w[i]: w0 w1 w2 w3 w4

HBM[20:24]

Dense Vector Fetch Unit 3
y[i]: y0 y1 y2 y3 y4 w[i]: w0 w1 w2 w3 w4

HBM[10:14]

Dense Vector Fetch Unit 4
y[i]: y0 y1 y2 y3 y4 w[i]: w0 w1 w2 w3 w4

HBM[15:19]

Figure 4.8: Dense vector memory subsystem of our SpMV FPGA design. Index yi accesses
replica ri, guaranteeing a pipelined design with 5 random vector accesses per clock
cycle. Each Fetch Unit accesses 5 different replicas of the dense vector, and provides
the results to its corresponding Aggregation Unit.

the dense vector using individual HBM banks with 250 MB of capacity, al-
lowing computations on matrices with up to 62.4 million rows. Moreover,
high URAM consumption significantly limits the maximum attainable fre-
quency, while we do not incur into this limitation (Table 4.1).

4.4.3 Jacobi Systolic Array Design

The Jacobi eigenvalue algorithm is very computationally intensive. Al-
though it processes a small input of size K × K, unoptimized implemen-
tations still require a significant amount of time as the algorithm contains
a large number of dense matrix multiplications. Moreover, its convergence
rate is implementation-dependent and as high as O(K2). By adopting a
SA-based design, we overcome both issues. By parallelizing the com-

“output” — 2022/1/15 — 13:36 — page 94 — #108

p0,
 K/2-1

pK/2-1,
 0

pK/2-1,
 K/2-1

cosθ
sinθ

sinθ
cosθ

p0,0

sinθ
cosθ

sinθ
cosθ

sinθ
cosθ

sinθ
cosθ

sinθ
cosθ

cosθ
sinθ

cosθ
sinθ

cosθ
sinθ

cosθ
sinθ

cosθ
sinθ

Figure 4.9: Detail of the sin(θ) and cos(θ) propagation between Compute Units in the
Jacobi Systolic Array architecture, for K = 4.

putation through a SA formulation and performing rotations concurrently,
we decrease the number of iterations for convergence to O(log(K)). Ro-
tations, equivalent to multiplications on 2 × 2 submatrices, are unrolled
and performed in constant time. Instead, a traditional CPU implementa-
tion has a cost of O(log(K) · K2.3728596), if employing the matrix mul-
tiplication algorithm by Alman and Williams [7], which is the currently-
known matrix multiplication algorithm with the lowest complexity, equal
to O(K2.3728596).

Our design for the Jacobi algorithm is optimized to compute up to K
eigenvalues. While it can compute a lower amount of eigenvalues without
a reconfiguration, we place in the same FPGA bitstream multiple Jacobi
cores optimized for specific K (4, 8, 16, etc.). We can configure both SLR1
and SLR2 with Jacobi cores to fully utilize the FPGA resources and open-
ing the doors for independent optimization on specific values of K by re-
configuring individual SLRs. The Lanczos Core on SLR transfers only the
3K− 2 values of T to the Jacobi cores on SLR1 and SLR2. We prevent in-
efficiencies in inter-SLR communication by moving data through PLRAM,
while also avoiding the long read-write latency of DDR and HBM.

In practice, the systolic formulation cannot scale beyond very small ma-
trices (K ≈ 32) due to the large number of resources required for trigono-
metric operations in each CU. While resource utilization has prevented

“output” — 2022/1/15 — 13:36 — page 95 — #109

widespread adoption of the Jacobi algorithm for general eigenproblem res-
olution, it is not a limitation for our use case, as we apply the Jacobi eigen-
value algorithm on small K ×K inputs by design.

On CPU, approaches such as QR factorization are more common [31],
because efficient systolic array formulations of the Jacobi algorithm require
full control over cache eviction policies. Moreover, even modern CPUs lack
enough floating-point arithmetic units to perform the operations required
for an iteration at once: even for a small K such as K = 8, the Jacobi
algorithm computes 16 trigonometric operations and about 800 floating-
point multiplications per iteration.

Instead, we leverage the abundant hardware resources of our FPGA plat-
form to perform all these operations concurrently, making it the optimal
choice for our Jacobi SA design.

Diagonal And Offdiagonal CU

Diagonal CU (Algorithm 7, line 4) annihilate elements immediately outside
the diagonal via a matrix rotation. Although the rotation angle is arbitrary,
the fastest convergence is achieved by setting θ = 1

2
arctan 2β

α−δ
, which

eliminates the β and γ components (Figure 4.4a).
Computation of θ is performed via a Coordinate Rotation Digital Com-

puter (CORDIC) core; since the argument of arctan is unbounded, less
resource-intensive methods like Taylor Series Approximation would lead
to inaccurate results as the magnitude of the input increases. On the other
hand, as θ itself is ∈ [−π

4
, π
4
], we can leverage Taylor series expansion to

compute the components of the rotation matrix efficiently. Even an order-3
approximation provides excellent accuracy (∼ 10−6 at ±π

4
), using signifi-

cantly fewer Digital Signal Processors (DSPs) and Block RAMs (BRAMs)
than the CORDIC core. Rotation on the diagonal (Figure 4.5 A) are per-
formed by K/2 parallel cores, propagating rotation values B in constant
time to the Offdiagonal CU (Algorithm 7, line 9).

This propagation step is more clearly visualized in Figure 4.9, for a com-
putation with K = 4. As each CUs holds only 4 elements, matrix multi-
plications are fully unrolled and performed in constant time. Eigenvectors
(Algorithm 7, line 14) D are computed in parallel to the rotation of the
Offdiagonal CU C as they only require rotation values.

Row/Column Interchange

Each CU has 8 connections to propagate input and output values of α, β, γ, δ
values to adjacent processors, in addition to communicating the rotation

“output” — 2022/1/15 — 13:36 — page 96 — #110

Table 4.1: Resource usage and clock frequency in our FPGA hardware design, divided by
algorithm. We also report the total amount of resources available to the FPGA.

Algorithm SLR LUT FF BRAM URAM DSP Clock (MHz)

Lanczos SLR0 42% 13% 15% 0% 16% 225
Jacobi SLR1 40% 42% 0% 0% 68% 225
Jacobi SLR2 15% 17% 0% 0% 34% 225

Available 1097419 2180971 1812 960 9020

value θ. As shown in Figure 4.5E, each processor pi,j with i and j 6=
(1, K/2) propagates its α and γ values to the β and δ slots of pi,j+1 and its
β and δ values to the α and γ slots of pi,j−1.

Processors in the first column (pi,1) propagate β and δ to to the α and γ
slots of pi,2. Processors pi,K/2 propagate β and δ to their own α and γ slots.
Operations for the column interchange are symmetrical. As α and γ of
pi,1 are never propagated, more swaps are performed towards lower indices
than higher indices. These additional swaps require K temporary vectors
to store rows that the swaps would overwrite. To avoid wasting resources
for these temporary vectors, we execute operations in reverse, from K/2 to
1. As row/column swaps do not introduce data dependencies, we perform
them in a single clock cycle with Flip Flops (FFs).

4.5 Experimental Evaluation

To prove that our custom FPGA design is suitable for solving large-scale
Top-K sparse eigenproblems, we compare it against the popular ARPACK
library, measuring how it compares in terms of execution time, power effi-
ciency, and accuracy. The ARPACK library [117] is a multi-threaded Top-
K sparse eigensolver that employs IRAM, and is considered the standard
reference both in terms of performance and numerical accuracy. We run
ARPACK run on two Intel Xeon Gold 6248 (80 threads in total) and 384 GB
of DRAM using single-precision floating-point arithmetic. Our eigensolver
is prototyped on a Xilinx Alveo U280 accelerator card equipped with 8 GB
of HBM2 memory, 32 GB of Double Data Rate 4 (DDR4) memory, and
a xcu280-fsvh2892-2L-e FPGA whose resources are reported in Ta-
ble 4.1, along with the resource utilization of our hardware designs. Results
are averaged over 20 runs.

Tests are carried out using a collection of large sparse matrices repre-

“output” — 2022/1/15 — 13:36 — page 97 — #111

Table 4.2: Matrices/graphs in the evaluation, sorted by number of edges/non-zero entries
(in millions). For each matrix, we report the memory footprint when stored as COO.

ID Name Rows (M) Non-zeros (M) Sparsity (%) Size (GB)

WB-TA wiki-Talk 2.39 5.02 8.79× 10−4 0.06 GB
WB-GO web-Google 0.91 5.11 6.17× 10−4 0.07 GB
WB-BE web-Berkstan 0.69 7.60 1.60× 10−3 0.10 GB
FL Flickr 0.82 9.84 1.46× 10−3 0.13 GB
IT italy_osm 6.69 14.02 3.13× 10−5 0.18 GB
PA patents 3.77 14.97 1.05× 10−4 0.19 GB
VL3 venturiLevel3 4.02 16.10 9.96× 10−5 0.21 GB
DE germany_osm 11.54 24.73 1.86× 10−5 0.32 GB
ASIA asia_osm 11.95 25.42 1.78× 10−5 0.33 GB
RC road_central 14.08 33.87 1.71× 10−5 0.43 GB
WK Wikipedia 3.56 45.00 3.55× 10−4 0.60 GB
HT hugetrace-00020 16.00 47.80 1.87× 10−5 0.61 GB
WB wb-edu 9.84 57.15 5.90× 10−5 0.73 GB

senting graph topologies, each containing millions of rows and non-zero
entries (Table 4.2). All test matrices come from the SuiteSparse collec-
tion [43], and a graphical representation for each matrix, as reported by
the respective authors, is reported in Figure 4.10. While our evaluation is
focused on sparse matrices representing graphs, our Top-K sparse eigen-
problem FPGA design is applicable to other domains such as image analy-
sis [161, 181, 192].

Resource utilization and clock frequency of our design are reported in
Table 4.1. The Lanczos algorithm and Jacobi algorithm have similar utiliza-
tion, with around 20 % LUT utilization each (50 % of the available LUTs in
each SLR). Although the SA architecture of the Jacobi algorithm processes
small K × K inputs, it requires the computation of many trigonometric
operations and multiplications (16 and > 800 for K =8) in each iteration.
Resource utilization of the Jacobi algorithm scales quadratically with the
number of eigenvalues K, while the Lanczos algorithm is not affected.

4.5.1 Execution Time

We measure the execution time speedup of the FPGA-based hardware de-
sign implementing our Top-K sparse eigenproblem solver against the CPU
baseline and report results in Figure 4.11. To better visualize results, we
distinguish between small-scale (Figure 4.11a) and large-scale matrices

“output” — 2022/1/15 — 13:36 — page 98 — #112

(a) wiki-Talk (WB-TA) (b) web-Google (WB-GO) (c) wiki-Berkstan (WB-BE)

(d) Flickr (FL) (e) italy_osm (IT) (f) patents (PA)

(g) venturiLevel3 (VL3) (h) germany_osm (DE) (i) asia_osm (ASIA)

(j) road_central (RC) (k) Wikipedia (WK) (l) hugetrace-00020 (HT)

(m) wb-edu (WB)

Figure 4.10: Graphical representation of the sparsity patterns of matrix used in the eval-
uation, as reported by the respective authors on the SuiteSparse collection [43].

“output” — 2022/1/15 — 13:36 — page 99 — #113

GMEAN WB-TA WB-GO WB-BE FL IT PA VL3

1.0x

2.0x

5.0x

10.0x

20.0x

50.0x

100.0x

Sp
ee

du
p

vs
. C

PU
 (

lo
g-

sc
al

e)

8 8 8 8 8 8 8 812 12 12 12 12 12 12 1216 16 16 16 16 16 16 1620 20 20 20 20 20 20 2024 24 24 24 24 24 24 24

7.80
2.28

7.30
2.39

5.68
1.20

3.40
1.51

3.55
1.78

71.58
6.35

27.92
4.48

116.36
4.59

Median
exec. time [s]

CPU
FPGA

6.
69

x

2.
70

x

3.
29

x

1.
49

x 2.
71

x

28
.6

8x

9.
02

x

64
.6

7x

5.
11

x

2.
76

x

3.
20

x

2.
05

x

2.
32

x

10
.4

1x

6.
82

x

30
.2

9x

5.
04

x

3.
03

x 4.
79

x

2.
21

x

2.
05

x

11
.0

3x

6.
11

x

18
.5

8x

4.
67

x

2.
60

x 4.
86

x

1.
99

x

2.
01

x

8.
22

x

5.
84

x

19
.9

5x

5.
04

x

2.
92

x 5.
32

x

2.
75

x

2.
21

x

7.
76

x

5.
53

x

20
.5

1x

K=8 K=12 K=16 K=20 K=24

(a) Speedup of our Top-K sparse eigensolver vs. the CPU baseline, on small-scale matrices.

GMEAN (no HT) DE ASIA RC WK HT WB

1.0x

2.0x

5.0x

10.0x

20.0x

50.0x

100.0x

Sp
ee

du
p

vs
. C

PU
 (

lo
g-

sc
al

e)

8 8 8 8 8 8 812 12 12 12 12 12 1216 16 16 16 16 16 1620 20 20 20 20 20 2024 24 24 24 24 24 24

82.97
10.84

130.67
10.84

128.57
11.21

164.88
13.18

38.76
7.51

6933.84
15.46

31.64
12.72

Median
exec. time [s]

CPU
FPGA

> 400x

7.
28

x

5.
35

x

15
.3

5x

9.
41

x

7.
34

x

11
36

.0
7x

3.
61

x

8.
77

x

18
.0

8x

14
.9

2x

11
.5

0x

6.
13

x

56
9.

96
x

2.
72

x

8.
14

x

19
.5

6x

11
.2

9x

12
.6

0x

5.
23

x

33
8.

59
x

2.
46

x

7.
85

x

9.
27

x 12
.9

2x

16
.1

6x

4.
55

x

33
9.

46
x

3.
38

x

7.
41

x

8.
02

x 14
.5

9x

12
.2

5x

4.
06

x

31
4.

54
x

3.
83

x

K=8 K=12 K=16 K=20 K=24

(b) Speedup of our Top-K sparse eigensolver vs. the CPU baseline, on large-scale matrices.

Figure 4.11: Speedup (higher is better) of our Top-K sparse eigensolver vs. the ARPACK
multi-core CPU library, for increasing number of eigenvalues K. Matrices are ordered
by size, divided into small matrices a and large matrices b . In b , geomean excludes
the outlier matrix HT, where the speedup of our FPGA design exceeds 400x.

(Figure 4.11b). Despite the difference in size, the two categories present
similar average speedups, showing how the performance of our hardware
design is not negatively affected by the matrix size. We are always faster
than the baseline, with a geometric mean speedup of 6.22×, up to 64× for
specific matrices. Figure 4.11 visualizes the average speedup divided by K,
the number of eigencomponents computed by the algorithm. The speedup
is mostly unaffected by K, showing how our design can efficiently compute
many eigenvalues at once. To understand how different the behavior of the
CPU implementation and of the FPGA hardware design are, we inspect in
Figure 4.12a the time required by each hardware to process a single matrix
value. In the plot, each circle represents a matrix, with the number of non-

“output” — 2022/1/15 — 13:36 — page 100 — #114

5.0·106 1.5·107 2.6·107 3.6·107 4.7·107 5.7·107

Non-zero matrix values [NNZ]

0.0

1.6

3.2

4.8

6.4

8.0

Ti
m

e
fo

r
N

N
Z

[u
s/

N
N

Z]

FPGA
CPU

(a) Single NNZ processing

8 12 16 20 24 28 32 36 40 44
Number of eigenvectors K

0.0

100.0

200.0

300.0

400.0

500.0

Ja
co

bi
 e

xe
cu

tio
n

tim
e

[u
s] FPGA

CPU

(b) Jacobi speedup

Figure 4.12: a Relation between the number of matrix non-zero values and time to pro-
cess a single value. Each circle is a matrix, and we show a linear regression with the
95 % confidence interval bands. b Speedup vs. CPU of our Systolic Array architec-
ture for the Jacobi algorithm, for increasing number of eigenvalues K.

zero entries on the x-axis and the execution time of the CPU and FPGA
executions (as reported in Figure 4.11) divided by the number of non-zeros
on the y-axis. We compute a linear regression on these values, and report
the 95 % confidence interval. The time required by our FPGA design to
process a single matrix value is unaffected by the overall matrix size, while
the CPU behavior is drastically more unpredictable.

We estimate that the Lanczos dominates the overall execution time due
to the SpMV computations, taking more than 99 % of the execution time.
However, optimizing the Jacobi algorithm with a SA design is still worth
the effort compared to running this step on CPU. Figure 4.12b shows the
speedup of our Jacobi SA design compared to an optimized C++ CPU im-
plementation, for increasing number of eigencomponents K: the execution
time on CPU grows quadratically due to repeated matrix multiplications,
becoming a non-negligible part of the execution time for large K. On
the other hand, the FPGA implementation’s scaling is coherent with the
O(log(k)) complexity of our SA architecture in the Jacobi algorithm.

Our hardware design was synthesized at 225 MHz on the Alveo U280
accelerator card. A clock frequency beyond 225 MHz does not signifi-
cantly improve performance as SpMV represents the main computational
bottleneck in the computation, and its performance is bound by HBM band-
width [126]. Each SpMV CU processes data at the maximum bandwidth
offered by the HBM channel from which it reads the matrix (14.37 GB/s,
for a total of 71.87 GB/s using 5 CU).

“output” — 2022/1/15 — 13:36 — page 101 — #115

8 12 16 20 24
Number of eigenvectors K

40°

50°

60°

70°

80°

90°

O
rt

ho
go

na
lit

y,
 h

ig
he

r
is

be
tt

er

8 12 16 20 24
Number of eigenvectors K

-3.1E-03

1.3E-02

2.9E-02

4.5E-02

6.1E-02

7.8E-02

L2
 e

rr
or

 n
or

m
, l

ow
er

 is
 b

et
te

r
No reorthogonalization Reorth. every 2 iter.No reorthogonalization Reorth. every 2 iter.

Figure 4.13: Accuracy of our Top-K sparse eigensolver, in terms of orthogonality and re-
construction error, for increasing K. Applying reorthogonalization guarantees almost-
perfect results, although the implementation without reorthogonalization can still be
useful in approximate ML applications.

We have not been able to compare the performance of our hardware
design against a reference GPU implementation, as no publicly available
GPU implementation of the Lanczos algorithm exists, to the best of our
knowledge. Still, we can make some consideration about the performance
of such implementation. From our later analysis in Section 5.5 and Fig-
ure 5.9 b , we observe how the reference SpMV GPU implementation in
cuSPARSE operates at around 55 % of the peak memory bandwidth of the
GPU, i.e. 250 GB/s out of 450 GB/s. Given that our SpMV hardware
design is limited to 72 GB/s (Section 4.4.2) by the FPGA HBM memory
controller, we expect the Lanczos algorithm on GPU to be no more than
3.5× faster than our design. In practice, the GPU speedup is likely to be
lower. Using reduced-precision arithmetic results in higher operational in-
tensity (Figure 5.9), and the Jacobi algorithm must be executed on the CPU
instead of GPU (Section 4.2) as the input size is too small to utilize the
GPU parallelism fully [38]. Even assuming a GPU implementation 3.5×
faster than our design, we would still have a better Performance/Watt ratio,
as our design requires around 35 Watts versus the 250 Watts of a GPU.

4.5.2 Power Efficiency

We measured via an external power meter that our FPGA design consumes
about 38W during execution, plus 40 Watts for the host server. The CPU
implementation consumes around 300 Watts during execution. Our FPGA

“output” — 2022/1/15 — 13:36 — page 102 — #116

design provides 49× higher Performance/Watt ratio (24× if accounting for
the FPGA host machine): we provide higher performance without sacrific-
ing power efficiency, making our design suitable for repeated computations
typical of data center applications.

4.5.3 Accuracy Analysis of the Approximate Eigencomputation

The Lanczos algorithm is known to suffer from numerical instability [153].
To limit this phenomenon, we reorganize the algorithm’s operations as
in [153] and apply reorthogonalization as in [154]. To assess the stabil-
ity of our design, we measure the eigenvectors’ pairwise orthogonality and
the eigenvector error norm. Eigenvectors must form an orthonormal basis
and be pairwise orthogonal, i.e. their dot product is 0, or equivalently their
angle is π/2. For each pair of eigenvectors, we measure the average angle
that occurs. Then, if λ is an eigenvalue of M and v is its associated eigen-
vector, it must hold Mv = λv. By measuring the L2 norm of Mv − λv
for all v we evaluate how precise the eigenvector computation is. Results
of orthogonality angle and L2 error norm, with and without reorthogonal-
ization, for increasing K, aggregated on all matrices, are reported in Fig-
ure 4.13. Accuracy is excellent if reorthogonalization is applied every two
iterations, but even without this procedure results are satisfactory. Despite
using fixed-precision arithmetic in the Lanczos algorithm, the average re-
construction error is below 10−3, and the average orthogonality is > 89.9
degrees when applying reorthogonalization every two iterations. Orthogo-
nality is not affected by K, while the average reconstruction error improves
as K increases. Spectral methods in machine learning applications use
eigenvectors to capture the most important features of their input and do
not usually require the same degree of precision as other engineering ap-
plications. Reorthogonalization adds an overhead up to O(nK2/2) to the
algorithm compared to Figure 4.11. On large matrices, this overhead is
negligible compared to SpMV, and is a viable option in applications where
maximum accuracy is necessary. Still, our hardware design can provide
excellent accuracy while being significantly faster than a highly optimized
CPU implementation.

4.6 Final Remarks

The computation of the Top-K eigenvalues and eigenvectors on large graphs
represented as sparse matrices is critical in spectral methods, a class of
powerful Machine Learning algorithms that can extract useful features from
graphs. We solved the Top-K sparse eigenproblem with a new algorithm

“output” — 2022/1/15 — 13:36 — page 103 — #117

that is optimized for reconfigurable hardware designs. In the first part of
the computation, we exploited the enormous bandwidth of HBM through
the Lanczos algorithm, showing how the SpMV core presented in Chapter 3
can be extended to support matrices partitioned on multiple HBM pseudo
channels. The second part introduced a systolic array architecture that
efficiently parallelizes the compute-intensive Jacobi eigenvalue algorithm.
Compared to the popular ARPACK CPU library, our hardware design
achieves a geometric mean speedup of 6.22× on 13 graph topologies with
millions of vertices, raising the bar for high-performance Top-K sparse
eigensolvers at a large scale.

As future research directions to build upon this work, we will extend
our hardware design to support non-Hermitian matrices through the Im-
plicitly Restarted Arnoldi Method. Scalability to multiple FPGAs is inter-
esting but not easy to achieve due to the iterative nature of the Lanczos
algorithm. One would have to partition SpMV over multiple devices, with
each device operating on a subset of rows. Aggregating results of each
iteration requires communication through Peripheral Component Intercon-
nect Express (PCIe), and is a major bottleneck in the computation. In this
chapter, we also realized how the limitations of current HBM memory con-
trollers prevent us from scaling to an arbitrarily large number of CUs. In
some computations, such as the Top-K Sparse matrix-vector multiplication
(Top-K SpMV) presented in the next chapter, we can overcome this limit
through custom algorithmic approximations, achieving great performance
with minimal quality degradation of results.

Most importantly, we believe that this work is a perfect case study for
the optimization of applications that benefit from input-aware FPGA re-
configuration. Indeed, when analyzing the complexity of the Lanczos al-
gorithm, we observe how matrices and graphs with relatively low sparsity
(|E| � |V |) benefit from more SpMV CUs, while highly sparse matrices
(|E| ≈ |V |) benefit from a larger partitioning factor in linear operations
(e.g. vector normalization), with possibly a single SpMV CU. Although
the hardware design presented in this chapter is a solid compromise be-
tween these two extremes, it is certainly interesting to evaluate the perfor-
mance trade-offs on additional matrices and extend this analysis to other
algorithms with similar characteristics.

“output” — 2022/1/15 — 13:36 — page 104 — #118

“output” — 2022/1/15 — 13:36 — page 105 — #119

CHAPTER5
Scaling up HBM Efficiency of Top-K SpMV

for Approximate Embedding Similarity
on FPGAs

Top-K SpMV is a key component of similarity-search on sparse embed-
dings. This sparse workload does not perform well on general-purpose
NUMA systems that employ traditional caching strategies. Instead, mod-
ern FPGA accelerator cards have a few tricks up their sleeve. In the chap-
ter, we extend our SpMV FPGA hardware design to support Top-K SpMV.
Our new Top-K SpMV hardware design leverages reduced precision and a
novel packet-wise CSR matrix compression called BSCSR, enabling custom
data layouts and delivering bandwidth efficiency often unreachable even in
architectures with higher peak bandwidth. With HBM-based boards, we
are 138x faster than a multi-threaded CPU implementation and 2.1x faster
than a GPU with 20 % higher bandwidth, with 15x higher power-efficiency,
proving that FPGAs are today the optimal solution for Top-K SpMV.

105

“output” — 2022/1/15 — 13:36 — page 106 — #120

5.1 Introduction

Information Retrieval (IR) and recommender systems process an always-
increasing amount of data, often with strong real-time constraints, to sug-
gest products, movies, news articles to billions of users. Top-K Sparse
matrix-vector multiplication (Top-K SpMV) is a key building block of high-
performance similarity-search applications found in recommender sys-
tems that store items or documents as sparse embeddings, short numerical
representations usually obtained through a neural network [16, 19]. Sparse
embeddings guarantee low memory footprint and reduced execution time,
often without decreasing accuracy, as they capture important information
while filtering out noise [22]. Top-K SpMV computes the highest K val-
ues of the product between a sparse matrix (a matrix where only non-zero
entries are stored) and a dense vector. In our case, it matches an input em-
bedding against a collection of sparse embeddings and finds the K most
similar ones (Figure 5.1).

The computation of Top-K SpMV is extremely memory intensive and
presents sequential, indirect, and fully random memory accesses, making it
unsuitable for general-purpose architectures with traditional caching poli-
cies. Improving its performance through a custom hardware design de-
mands a theoretically sound approach to optimize the data-access strat-
egy. Field-Programmable Gate Arrays (FPGAs) can leverage application-
specific data representations thanks to reduced-precision arithmetic and a
customizable memory subsystem. In agreement with the Roofline method-
ology [184], this approach is key to improving operational intensity and
performance in memory-starved computations. Exact numerical accuracy
for large values of K is not critical, as long as the most similar embeddings
are retrieved: compared to CPUs or Graphics Processing Units (GPUs), FP-
GAs can leverage optimized arbitrary-precision arithmetic and offer fine-
grained control over the desired target accuracy, providing better perfor-
mance, lower resource utilization, and lower power consumption.

To utilize off-chip bandwidth fully, we devise an approximation scheme
based on matrix partitioning that enables a flexible multi-core design.
Each core uses a single High Bandwidth Memory (HBM) channel and
UltraRAM (URAM) for caching high-reuse or random access data (Sec-
tion 5.3.1). The introduction of HBM to FPGA accelerator cards provides
new opportunities to achieve performance beyond traditional Double Data
Rate (DDR) memory: on an Alveo U280 accelerator card, our design ac-
cesses 32 HBM2 pseudo channels with a total bandwidth of 460 GB/s,
compared to the meager 38 GB/s offered by a dual-channel DDR4.

“output” — 2022/1/15 — 13:36 — page 107 — #121

0.2
0.3

0.5

0.5

0.8

0.2

0.30.4
0.2

0.5
0.8

0.6 0.8

0.20.30.50.5 0.8 0.6

M (usually < 1000)
N

(u
su
al
ly
 >
 1
06
)

A xT.

=

0.2 0.2
0.1
0.4

7
2
0
1

0.82

0.64

0.59

0.57

y

M (usually < 1000)

idx val

Top-K (usually < 100)

Figure 5.1: Top-K SpMV between a sparse matrix A (in our case, a collection of sparse
embeddings) and a dense vector x (a dense embedding), with notation as in Section 5.3.

Then, we maximize bandwidth efficiency through a novel streaming
sparse matrix format called Block-Streaming CSR (BS-CSR). This for-
mat leverages coalesced HBM accesses and reduced numerical precision,
and is oblivious to the matrix non-zero entries distribution (Section 5.3.2).
We extend one more time our streaming SpMV FPGA design to include
these improvements and approximate the computation of Top-K SpMV1.
We present the following contributions:

• A new approximation scheme for Top-K SpMV that allows splitting
the computation over an arbitrary number of independent partitions,
with a negligible accuracy cost even when processing matrices with
millions of rows (Section 5.3.1).

• A novel packet-wise sparse matrix data-layout called BS-CSR. Thanks
to arbitrary precision data-types, BS-CSR increases the operational in-
tensity of the computation by a factor of 3× (Section 5.3.2).

• A multi-core Top-K SpMV FPGA design that leverages our new al-
gorithmic approximations and sparse matrix data-layout to effectively
exploit the available HBM bandwidth (Section 5.4).

• A performance evaluation of our FPGA design, showing 138× faster
execution versus a state-of-the-art CPU implementation. We are 2.1×
faster than a GPU with 20 % higher bandwidth, with 15× higher power-
efficiency and no significant loss of Top-K precision (Section 5.5).

1Code is available at github.com/necst/approximate-spmv-topk

github.com/necst/approximate-spmv-topk

“output” — 2022/1/15 — 13:36 — page 108 — #122

5.2 Related Work

To the best of our knowledge, no prior work optimizes the computation
of Top-K SpMV on FPGA or GPU, although existing research covers ap-
proximation techniques on FPGA for dense matrix multiplications and deep
learning [3,206]. On CPUs, sparse_dot_topn is a C++ multi-threaded
implementation that employs the Compressed Sparse Row (CSR) format
and is specialized for sparse embeddings and documents similarity [19].
That said, the CPU performance in this computation is inherently held
back by their limited memory bandwidth and the inability to consistently
perform quick random accesses, as there are no guarantees that requested
values have not been evicted from cache. Approximate similarity-search on
embedding has also seen many alternative algorithms based on approximate
K-Nearest Neighbors (KNN) on dense embeddings, often with GPU and
sometimes FPGA implementations [40, 87, 95]. These techniques usually
employ pre-built graph indices [58] or Locality-Sensitive Hashing (LSH) to
quickly retrieve similar items [127,227]. Sparse Top-K SpMV can either be
a sub-step of these algorithms (to further filter a set of similar embeddings),
or as an alternative pre-selection search technique, where the Top-K em-
beddings retrieved by Top-K SpMV are processed with other downstream
techniques (for example, by re-computing the similarity on their original
dense representation).

Although no existing work specifically optimizes Top-K SpMV on GPU,
there exist multiple highly-optimized implementations of Sparse Matrix-
Vector Multiplication (SpMV) [124, 125, 139, 186]. While modern GPUs
provide higher memory bandwidth than even high-end FPGA accelera-
tor cards (from 549 GB/s of the Nvidia P100 to the 1555 GB/s of the
Nvidia A100), existing SpMV implementations are often unable to utilize
the available bandwidth fully [143]. Optimizations for reduced precision
are currently limited to Half-Precision (HP) floating-point. [2,79]. The lack
of support for reduced-precision fixed-point arithmetic limits their max-
imum operational intensity and precise control over numerical accuracy
(Section 5.5.3), although recent work explores mixed single and double-
precision floating-point arithmetic [5]. Reduced-precision arithmetic has
not yet been thoroughly studied in the context of SpMV, but encourag-
ing results have been obtained in numerical analysis [9, 187] and deep-
learning [80, 121, 138, 201].

Existing research on SpMV acceleration with FPGAs focuses mostly on
sparse matrix compression [68], moving the bottleneck from memory ac-
cesses to the input data decompression. Fowers et al. [57] already proposed

“output” — 2022/1/15 — 13:36 — page 109 — #123

0.2
0.3

0.5

0.8
0.50.2

0.5
0.8

0.20.30.50.5 0.8 0.6A .

0.30.4
0.2

0.6 0.8

0.2 0.2
0.1
0.4

Pa
rt
it
io
n
1

Pa
rt
it
io
n
2

2
0
1

0.64

0.59

0.57

idx val

7
4
6

0.82

0.44

0.29

7
2
0
1

0.82

0.64

0.59

0.57

y

idx val

Top-K

=
c = 2
k = 3
K = 4

N = 8
M = 6

k

xT

Figure 5.2: Simplified approximation scheme for Top-K SpMV. No errors occur if all
partitions have less than k Top-K values.

a sparse matrix encoding to alleviate the inefficiencies of the FPGA DDR
memory subsystem. Umuroglu et al. [195], instead, maximized the time
in which values are kept in a fast local cache hierarchy. More recently,
Sadi et al. [172] propose an SpMV FPGA implementation that achieves
significant speedup leveraging HBM and a data-compression scheme to
reduce off-chip traffic. The efficient use of HBM on FPGA also has re-
ceived the academic community’s attention, with Kara et al. [100] show-
ing how HBM can provide an order of magnitude speedup over CPU on a
variety of data-intensive workloads, and Wang et al. [205] offering a com-
plete characterization of the HBM subsystem in modern FPGA acceler-
ator cards. However, directly employing off-the-shelf SpMV FPGA de-
signs, similar to the ones presented in the previous chapters (Sections 3.4.2
and 4.4.2 [158, 177]), is undesirable: it would waste memory to store for
the entire output vector (which can contain millions of values, Section 5.3)
and demand unnecessary computation to sort the output afterward.

5.3 Theoretical Contributions

Two key theoretical contributions enable our FPGA hardware design. First,
we introduce a partitioning scheme that splits and approximates Top-K
SpMV on independent cores, giving access to the entire HBM bandwidth
(Section 5.3.1). Then, we present BS-CSR, a sparse matrix format opti-
mized for streaming coalesced memory transactions and reduced-precision
arithmetic (Section 5.3.2).

Given a sparse matrix A ∈ RN×M , and a dense vector x ∈ RM×1, the
result of the SpMV y = Ax is a vector y ∈ RN×1. Top-K SpMV does

“output” — 2022/1/15 — 13:36 — page 110 — #124

not track the entire y, but only its largest K values (and the corresponding
indices). Figure 5.1 shows a small example of Top-K SpMV, with a sparse
matrix A being compared against a dense vector x to retrieve the K = 4
most-similar rows in A (each representing a sparse embeddings).

Formally, given A ∈ RN×M and x ∈ RM×1, Top-K SpMV outputs a
vector y ∈ (N×R)K×1, composed of tuples ȳ : (ȳi, ȳv) ∈ N×R (the index
and value, respectively), such that

∀ȳj ∈ y, yj ∈ y : ȳvj ≥ yj (5.1)

If A and x are L2-normalized embeddings, Top-K SpMV retrieves the
rows of A with highest cosine similarity to x. In our task, N is the size
of the embedding collection (usually millions of entries), while M , the
dense embedding size, has only a few hundred values [223]. x is stored
in URAM to perform random accesses in a single clock cycle, which is
infeasible with an unconstrained M . Similarly, we track just the Top-K en-
tries of y on a Look-Up Table (LUT) scratchpad instead of performing data-
dependent write-backs on HBM and sharing bandwidth with read-channels,
which would undermine the maximum memory throughput. x is dense as
many sparsification algorithms operate on dense matrices (e.g. batches of
A) and cannot efficiently sparsify a single vector [4, 129, 191].

5.3.1 Top-K SPMV Approximation

In Top-K similarity-search applications, it is often acceptable to trade max-
imum accuracy on large values of K for lower execution time and power
consumption. Instead of computing the total Top-K values on the matrix A,
we partition it in c sub-matrices with N/c rows each. Each sub-matrix is
processed by an independent FPGA core, which computes the top k < K
results for the partition (with k · c ≥ K). We obtain k · c results, which
represents an approximation of the original Top-K. Figure 5.2 shows the
approximation scheme in action. First, we split A in c = 2 sub-matrices.
In the example, each partition only has four rows/embeddings, but in a real
application, each sub-matrix would still have millions of rows. Then, we
compare x against each sub-matrix to retrieve k = 3 partial results. Finally,
we quickly merge the partial results to obtain the approximate Top-K, with
K = 4 as in Figure 5.1. In this example, the result is exact, with no approx-
imation being visible in the final result.

As the number of sub-matrices c increases, so does the approximation
accuracy. We always retrieve the top k values, and as a consequence, the
approximation does not affect the best-ranked rows.

“output” — 2022/1/15 — 13:36 — page 111 — #125

y= 0.2 0.2 0.8 0.20.60.3 0.80.70.4 0.9 0.6 0.4 0.2 0.1 0.3 0.1

N = 16
c = 4

y1 y3 y2 y4 y0 y5

K = 6
k = 3

bad partition good partition

Figure 5.3: The vector y is divided into c = 4 partitions. In each, we retrieve the k = 3
highest values. As the second partition contains k′ = 4 > k Top-K values, it is flagged
as a bad partition, and the approximation scheme commits an error. If for a given
disposition of Top-K values we do not encounter any bad partition, we successfully
retrieve all Top-K values.

Theorem 1. The expected value of correctly retrieved Top-K values (i.e.
the precision) is expressed in closed form as

E[P] ≈ 1

K

K∑
Ki=1

1−
c ·

∑min(Ki,bN/cc)
ki=k+1

(bN/cc
ki

)(
N
Ki

) (5.2)

Proof. We can model the problem of finding the Top-K elements as having
a vector y ∈ RN×1, and finding the indices ȳi for i ∈ [0, K) of the highest
K values. The vector y is the output of the SpMV Ax, but the computation
of y is not relevant for the proof: we do not perform any approximation to
produce the elements yi of y.

We assume that Top-K values are uniformly distributed over y. The
relative order of those Top-K does not matter, as we only care if a certain
yi belongs to the Top-K, i.e. if (i, yi) ∈ y, following Equation (5.1).

The Top-K elements can arrange in
(
N
K

)
different disposition. Following

our approximation scheme, we divide y in c partitions, each of size bN/cc.
In each partition, we select the k < K highest ranked values. We refer to a
generic partition as ĉ, while c is the number of partitions. We have an error
in partition ĉ if partition ĉ contains k < k′ ≤ K Top-K elements.

Definition 5.1. A bad partition is a partition ĉ that contains k < k′ ≤ K
Top-K elements. A bad disposition for ĉ is a disposition of the Top-K
elements such that ĉ is a bad partition. A good partition is a partition that
is not bad. A good disposition is a disposition of the Top-K elements such
that no partition is bad (i.e. we correctly retrieve all Top-K values). An
example of good and bad partitions is given in Figure 5.3.

A bad dispositions has at least k + 1 Top-K values in it, and a partition
can have at most min(K, bN/cc) Top-K values in it. The number of dis-

“output” — 2022/1/15 — 13:36 — page 112 — #126

Table 5.1: Estimated precision of Top-K indices for increasing number of partitions. We
average the results of 1000 tests.

Number of
matrix rows

Number of
partitions

Top-K Value, with k = 8

8 16 32 50 75 100

N = 106
c = 16 1 1 0.999 0.998 0.983 0.942

c = 28 1 1 1 0.999 0.999 0.996

c = 32 1 1 1 0.999 0.999 0.997

N = 107
c = 16 1 1 1 0.999 0.986 0.947

c = 28 1 1 1 0.999 0.999 0.995

c = 32 1 1 1 0.999 0.998 0.998

positions with k < k′ ≤ K Top-K values for a given partition is
(bN/cc

k′

)
.

As such, we count the sum of bad dispositions for all k′ from k + 1 to
min(K, bN/cc), obtaining the number of bad dispositions for a partition ĉ.

γ(K) =

min(K,bN/cc)∑
ki=k+1

(
bN/cc

ki

)
(5.3)

As we have c partitions, we obtain a total of c · δ(K) bad dispositions.
The fraction of bad dispositions over the total number of possible Top-K
dispositions is c · γ(K)/

(
N
K

)
, so the fraction of good dispositions is

δ(K) = 1− c · γ(K)(
N
K

) (5.4)

This fraction can be interpreted as the probability that any given dis-
position is a good disposition. The value δ(K) gives the probability of a
good disposition for a precise value of K, i.e. the probability of not making
mistakes when looking at exactly K values. Instead of considering a sin-
gle value of K, we also have to evaluate δ(Ki) ∀ki ∈ [1, K], i.e. obtain the
probability of not making 1 error, 2 errors, . . . , K errors.

Finally, to estimate E[P], the expected value of precision P , we average
the probability of errors using the sample average as a non-biased estimator,
and obtain Equation (5.2) as E[P] ≈ 1

K

∑K
Ki=1 δKi.

�

“output” — 2022/1/15 — 13:36 — page 113 — #127

x=
y=

val=

...

...

...

...

...

...

14 14 15 15 15 16 17 17 171414 20
6 68 810 10 1025 2 27 16 21
0.2 0.2 0.2 0.2 0.2 0.20.30.3

19
14
0.30.50.50.40.4

= 480 bit, 5 values

14 14 15 15 15 16 17 17 6 810 1025 2 27 16 0.2 0.2 0.2 0.30.3 0.50.50.4

14 14 15 15 15 610 1025 2 0.2 0.2 0.20.30.4

x: 32 bit • 5 y: 32 bit • 5 val: 32 bit • 5

x: 32 bit • 8 y: 10 bit • 8 val: 20 bit • 8 = 496 bit, 8 values

18
6
0.8

18
10
0.6

18
12
0.4

18
13
0.8

19
7
0.1

Na
ïv
e

CO
O

Op
ti

mi
ze

d
CO

O

++

+ +

Figure 5.4: Naïve Coordinate (COO) allows only 5 non-zero entries in a 512-bits packet.
Using fewer bits for y and val (assuming y < 1024 and val stored as 20-bits fixed-
point) permits only 3 more non-zeros per packet. However, x still contains significant
redundancy.

Precise evaluation of Equation (5.2) for realistic sizes (i.e. N , the num-
ber of rows, at least in the order of millions) introduces problems of numer-
ical accuracy due to the extremely large binomial coefficient involved in the
computation. Instead, we estimate E[P] through a Monte Carlo simulation
for different K and number of partitions, with K from 8 to 100, common
thresholds in IR [39]. Having at least 16 partitions guarantees a minimal
loss of precision, even for large matrices. Using 32 partitions, as in our
final design, guarantees almost no accuracy loss even for K = 100.

5.3.2 The Block-Streaming CSR Matrix Layout

The matrix A is stored in a sparse format to save only non-zero values
and lower its memory footprint. Different storage techniques are possible,
depending on the non-zero elements distribution and the desired type of
access patterns.

The common CSR format is unsuitable for fully-pipelined streaming
FPGA designs as it contains data dependencies to access matrix values and
hiding the memory controller latency is not trivial, given the lack of a built-
in hardware prefetcher. Instead, the COO layout uses three equally sized
arrays to store, for each matrix entry, its two coordinates and the value of
the entry itself. COO allows streaming iterations with burst memory trans-
actions on non-zero matrix entries to saturate bandwidth, as the architecture
does not have to perform data-dependent memory accesses determined by
the number of non-zero values of each row, as in the CSR format. COO
allows coalesced memory transactions of multiple non-zero entries but re-
quires redundant storage of coordinate values, limiting the overall opera-
tional intensity [218]. The COO format also simplifies fine-grained array

“output” — 2022/1/15 — 13:36 — page 114 — #128

x=
y=

val=

...

...

...

...

...

...

14 14 15 15 15 16 17 17 171414 20
6 68 810 10 1025 2 27 16 21
0.2 0.2 0.2 0.2 0.2 0.20.30.3

19
14
0.30.50.50.40.4

= 480 bit, 5 values

14 14 15 15 15 16 17 17 6 810 1025 2 27 16 0.2 0.2 0.2 0.30.3 0.50.50.4

14 14 15 15 15 610 1025 2 0.2 0.2 0.20.30.4

x: 32 bit • 5 y: 32 bit • 5 val: 32 bit • 5

x: 32 bit • 8 y: 10 bit • 8 val: 20 bit • 8 = 496 bit, 8 values

18
6
0.8

18
10
0.6

18
12
0.4

18
13
0.8

19
7
0.1

2 5 6 9 13 14 0 0...0 10 25 2 12 13 7... 0.2 0.30.4 0.4 0.8 0.1...

ptr: 4 bit • 15 idx: 10 bit • 15 val: 20 bit • 15 = 511 bit, 15 values

Na
ïv

e
CO

O

Op
ti

mi
ze

d
CO

O

Bl
oc

k-
St

re
am

in
g

CS
R

new_row
bit

cumulative
non-zeros

zero
padding

++

+ +

+ +

Figure 5.5: BS-CSR drastically reduces the space required for ptr, storing a cumulative
sum similarly to the CSR format, but counting values only in the current packet. For a
packet of size B, ptr takes only dlog2Be · B bits. In this example, BS-CSR enables
storing 15 non-zeros in a 512-bit packet, compared to the 5 to 8 of COO in Figure 5.4.

partitioning, as computation on each non-zero value can be done indepen-
dently from the others.

When working with partitioned or streaming COO data, it is reason-
able to store non-zero entries as (x, y, val) triples, instead of using
separate arrays. Moreover, the HBM memory controller of many architec-
tures, including one of GPUs and of the Alveo U280 [205], reaches higher
throughput with coalesced memory transactions of large data packets (e.g.
512 bits). As such, each memory transaction will load multiple non-zero
entries of the COO matrix, similar to what was done in Section 4.4.2. In
Figure 5.4, we load 512-bits packets each containing 5 COO matrix entries,
as values in x, y and val require 32 bits each (b512/(32 · 3)c = 5. How-
ever, when working with tall matrices (N >> M , as in our use-case) and
reduced-precision arithmetic, one can encode values of y and val with
fewer bits. Storing entries of y using 8 bits each (assuming M < 1024) and
entries of val in 20 bits, we can store 8 non-zero entries in a single 512-
bits data packet. Although we can optimize the encoding of y and val,
the storage of x is still wasteful, because of the 32-bits encoding and of the
redundancy intrinsic of the COO format.

To solve these problems, we propose BS-CSR, a new sparse matrix
storage format that combines the low memory footprint of CSR with the
streaming properties of COO, and is enabled by reduced precision data-
types. As the architecture of the Alveo U280 HBM memory controllers
incentivizes memory transactions of data packets (or blocks) between 256

“output” — 2022/1/15 — 13:36 — page 115 — #129

and 512 bits [205], we build each packet in BS-CSR as an independent
CSR partition (Figure 5.5): values of idx and val are identical to stan-
dard CSR, using less than 32 bits for each value if possible (in our case,
10 bits are enough for idx entries). The ptr vector tracks the cumula-
tive non-zero entries with respect to the packet itself: each entry of ptr is
just dlog2Be bits for a packet with B non-zero entries (4 bits for a packet
B =15), instead of 32 bits like in a naïve CSR or COO (as the number of
rows is not bound). The new_row bit tracks if the first row of a packet con-
tinues the last row of the previous packet. Missing rows are handled with
placeholder 0 values, although rows are never fully empty in our application
domain. BS-CSR does not provide an explicit reference to row indices: this
is not a limitation in streaming algorithms such as SpMV and its variations,
as we process the entire matrix sequentially and track the current rows by
counting non-zero entries in each ptr packet, plus the new_row bit. We
can fit 2 to 3 times as many non-zero entries in each 512-bits packet and
improve the operational intensity by the same amount.

BS-CSR is extremely effective on tall matrices (N >> M) as we can
greatly reduce the number of bits required for ptr and idx. However, it
is still beneficial when working with square matrices representing graphs,
as in Chapter 3 and Chapter 4. Even if storing idx and val with 32 bits
for each entry, a 512-bits packet can contain 7 values, 40 % more than the
5 of COO. By assuming N = M < 224 (as in the largest matrix used in the
evaluation of Chapter 4, Table 4.2) and val stored with 20 bits per entry,
BS-CSR can contain 10 values, compared to the 7 of an equivalent COO.

Although significant work has been made to optimize SpMV on matrices
with irregular row density distribution [172], we avoid the problem entirely
through a fully-streaming data format that is oblivious to the number of
non-zero matrix entries per row. In spite of its simplicity, BS-CSR can be a
life-saver in streaming memory-bound computations (Section 5.5.3).

5.4 The Proposed FPGA Hardware Design

Our Top-K SpMV FPGA design offers multiple low-profile cores that op-
erate independently. Each core processes a partition of the input matrix,
as explained in Section 5.3.1. Each core uses a single HBM channel to
read the input matrix and store its output at the very end of the compu-
tation to guarantee maximum flexibility in terms of the number of cores
placed on the FPGA. As cores read 512 bits per clock cycle (at 225 MHz)
from their respective HBM memory port and memory transactions happen
in continuous maximum length AXI4 bursts (256 beats), our FPGA design

“output” — 2022/1/15 — 13:36 — page 116 — #130

URAM, vector x

2. Aggregation
 unit

aggregated
results

3. Summary unit

1. Scatter unit

4. Top-K update

ne
w-

ro
w

bi
t

0.8 0.2 1 0.4

10
74 6 8

1 8 3

ptr=
idx=
val=

...

...

...

HBM[i]

3
3

0.3

res

Figure 5.6: Simplified block diagram of a single core of our Top-K SpMV hardware design,
for BS-CSR with 5 non-zero y and val entries per packet.

can theoretically operate at the maximum bandwidth offered by HBM, by
coalescing transactions with BS-CSR packets containing multiple non-zero
entries, and without expensive distributed memory controllers. Each core
reads A in packets of size B. B ranges from 7 to 15, depending on the de-
sired numerical precision and the embedding size: at worst we use 32 bits
for idx and val, but realistic size bounds (e.g. idx < 1024) allow much
greater coalescing and operational intensity (Figure 5.9).

5.4.1 Leveraging URAM for Fast Random Access

The input vector x is stored in URAM. Our core performs B random ac-
cesses per cycle on x. As each URAM bank only has 2 read ports, we
replicate x dB/2e times to allow all random accesses. This replication does
not constitute a limitation of our design: x represents a dense embedding
whose size does not go beyond a few hundred values in real applications.
With our implementation, x can have a size up to 80000 (assuming a worst-
case scenario with 32 bits values, 32 cores, and 8 replicas of x per core),
given a URAM size of around 90MB. Compared to the SpMV hardware
design in Chapter 4, we store the dense vector x in URAM instead of using
HBM. By partitioning x on independent URAM cells, we access B arbi-
trary values per clock cycle, without being limited by the number of HBM
pseudo channel as in Section 4.4.2. As such, we can replicate our Top-K
SpMV core 32 times, compared to the 5 of Chapter 4. The original SpMV

“output” — 2022/1/15 — 13:36 — page 117 — #131

Other
cores...

UR
AM
,
ve
ct
or

 x

.
=

0.8 0.2 1 0.4

10
85 7 0

1 8 3

ptr=
idx=

val=

4
3

0.3

r2 r3 r4 r5r1

0.2 0.1 0.1 0.30.3

if < min

0.4 0.5 0.1 0.70.3 1 1 1 01

0.4 0.5 0.1 0.7

0
Finished rowsAggregated results

last row value

2. Aggregation unit

75 6 8ptr= 4

r2 r3 r4 r5r1
Scattered
values

aggregated
results

3. Summary unit

1. Scatter unit

4. Top-K update

1
ne
w-
ro
w
bi
t

B

0.8 0.2 1 0.4

10
74 6 8

1 8 3

ptr=
idx=
val=

...

...

...

HBM[31]

3
3

0.3

res

CORE
[31].

=

0.8 0.2 1 0.4

9
73 5 9

1 8 4

ptr=
idx=
val=

...

...

...

HBM[0]

1
4

0.3

res

CORE
[0].

=

0.8 0.2 1 0.4

10
85 7 9

2 4 3

ptr=
idx=
val=

...

...

...

HBM[1]

2
3

0.3

res

CORE
[1].

=

CORE[1]

Figure 5.7: Block diagram of our multi-core Top-K SpMV, for BS-CSR with 5 non-zero y
and val entries per packet.

design in Chapter 3 also stored dense vectors in URAM. In this chapter,
however, we work with tall matrices (N ≥ M) instead of square matrices
(N = M): storing small vectors of size M in URAM does not introduce
constraints that affect our use-case, and does not cause any slowdown in
the synthesized design’s clock frequency due to excessive congestion.

5.4.2 Top-K SpMV Algorithm Design

The main Top-K SpMV algorithm (Algorithm 9) is implemented as a 4-
stage pipelined data-flow computation, decoupling memory transfer and
computation. A simplified block-diagram of the architecture is given in
Figure 5.6. Each stage processes the input matrix as packets of B elements.
The first stage retrieves B entries from A per cycle from HBM and URAM
and computes point-wise products 1 . Values corresponding to the same
matrix row are aggregated in the second stage 2 . The third stage performs
book-keeping for rows that span more than one packet and finds which rows

“output” — 2022/1/15 — 13:36 — page 118 — #132

have been fully processed in the current packet 3 . The final stage updates
the current Top-K values for each complete row if the row output value is
in the Top-K 4 . Our data-flow design hides the Top-K update cost, an
otherwise expensive part of the computation. Figure 5.7 provides a more
detailed representation of our Top-K SpMV hardware design. Compared to
the previous SpMV designs in Chapter 3 and Chapter 3, we observe how
each core is connected to an independent HBM pseudo channel, and that
BS-CSR results in a simpler summary unit 3 as each BS-CSR provides a
bit that explicitly tracks whether the first row in the packet continues the
last row in the preceding packet. On the other hand, Top-K SpMV requires
a significantly more complex write-back/update unit 4 , as we require mul-
tiple parallel tree reductions to track the highest K entries of the result.

Each core retrieves the top k = 8 values of each matrix partition. Higher
k results in lower clock frequency due to RAW data-dependencies in the
argmin computation, while lower k decreases accuracy. To guarantee
that our design can sustain a pipeline with Initiation Interval (II) of 1 (i.e.
that we read and process B new values in each clock cycle) we store par-
tial results in B different buffers of size K (one buffer for each non-zero
entry in the packet), and update them independently. This optimization is
required as each packet can contain more than one finished row, and we
need to update the Top-K output vector without creating data dependencies
that cannot be handled within a clock cycle. Partial results are aggregated
by the FPGA at the end of the execution. In practice, the similarity value
of a row i is stored in the output buffer B0 if it is the first row to finish in
a given packet; it will be stored in B1 if another row finished before i in
the same packet; it will be stored in B2 if two rows finished before i in the
same packet, and so on.

Output buffers Bi with i > 0 are used only if at least one row is com-
pletely contained in a packet (B0 can be used for rows that started in a previ-
ous packet). It is unlikely that many rows are entirely contained in a single
packet B: we avoid consumption of unnecessary logic by tracking results
for at most r rows per packet. In our experiments, using B/4 < r < B/2
provided resource savings up to 50 % with no accuracy loss.

5.4.3 Lower Precision, More Cores, Better Performance

Our hardware design processes c ·B non-zeros per clock cycle, with c being
the number of Top-K SpMV cores. Maximizing this performance equation
is not trivial, as increasing B increments FPGA resource consumption and
possibly prevents the placement of c = 32 cores, a requirement to achieve

“output” — 2022/1/15 — 13:36 — page 119 — #133

Algorithm 9 Approximate BS-CSR Top-K SpMV

1: function TOP-K-SPMV(bscsr_matrix, vec)
2: xs_old ← 0; last_packet_output← 0

3: for i← 0..NNZ/B do . For each matrix packet
4: . 1. Process BS-CSR in packets of size B

5: for j ← 0..B do . Unroll loops of size B

6: bscsr_packet← bscsr_matrix[i]

7: xloc[j]← bscsr_packet.x[j]; valloc[j]← bscsr_packet.val[j]
8: restmp[j]← valloc[j] · vec[j][bscsr_packet.y[j]]
9: end for

10: . 2. Aggregate partial resloc values
11: for b1← 0..B do . xloc[−1] = 0 by convention
12: rowcurr += (xloc[b1] 6= xloc[b1− 1])

13: for b2← xloc[b1− 1]..xloc[b1] do
14: resagg[b1] += restmp[b2]

15: end for
16: end for
17: rowcurr += bscsr_packet.new_row − 1

18: . 3. Check if first value was split among packets
19: for j ← 1..B do . Find finished rows
20: rowsfin[j]← xloc[j − 1] 6= 0

21: end for
22: if bscsr_packet.new_row then
23: resagg[0]← last_packet_output; rowsfin[0]← true

24: else . This packet continues a previous row
25: resagg[1] += last_packet_output
26: resagg[0]← 0; rowsfin[0]← false

27: end if
28: . 4. Update Top-K values
29: for j ← 0..B do . Process only finished rows
30: if resagg[j] ≥ worstcurr[j] && rowsfin[j] then
31: resloc[j]← resagg[j]; residx[j]← rowcurr + j − 1 ì
32: end if
33: argmin(resloc, worstcurr[j], worstidx[j])

34: end for
35: reset(resagg)

36: end for
37: end function

“output” — 2022/1/15 — 13:36 — page 120 — #134

full HBM bandwidth utilization. Indeed, c is a non-linear function of k, r
and B, with B depending from M and from the number of bits V used for
entries of val, as in B · (dlog2Be + dlog2Me + V) + 1=512. M can be
safely assumed in the order of thousands. Choosing V , k and r requires a
performance-accuracy trade-off: based on theoretical bounds in Table 5.1
we observe that k = 8 is sufficient. A larger value of k drastically increases
resource utilization without translating to observably better accuracy. In
the experiments in Section 5.5.4, we test different values of numerical ac-
curacy V , from 20 bits to 32. Even V = 20 is sufficient to provide great
accuracy. Combined with r between 4 and 8 we guarantee a 32-cores de-
sign that can exploit all HBM channels without significant accuracy loss.
Table 5.2 summarizes characteristics and resource usage of the designs in
our evaluation.

5.4.4 Host Integration

Our proposed Top-K SpMV FPGA hardware design follows a standard
host-accelerator model in which the host (a traditional server) communi-
cates with the accelerator (a Xilinx Alveo U280 accelerator card) over a
PCIe 4.0 interconnection. The host loads the matrix and computes its BS-
CSR compressed representation. While this compression requires a full
scan of the matrix, it is also trivial to parallelize across multiple CPU cores.
Moreover, we can assume that the input matrix, representing a corpus of
embeddings, stays relatively fixed in time and is updated much more infre-
quently compared to the number of input queries.

5.5 Experimental Evaluation

We employ a Xilinx Alveo U280 Accelerator Card equipped with 8 GB
of HBM2 memory (460 GB/s of total bandwidth over 32 channels) and
a xcu280-fsvh2892-2L-e FPGA whose available resources are re-
ported in Table 5.2. Our CPU baseline is sparse_dot_topn, a multi-
threaded C++ implementation of Top-K SpMV [19], running on two Intel
Xeon Gold 6248 and 384 GB of DRAM. We compare our design against
GPUs, using a Tesla P100 (549 GB/s of HBM bandwidth): as we are not
aware of any GPU implementation of Top-K SpMV, we combined a fast
GPU implementation of SpMV (from cuSPARSE [139]) with the GPU
radix sort of Thrust [21], using both single and HP floating-point arith-
metic. To provide a worst-case comparison, we also assume a zero-cost
GPU sorting, as if cuSPARSE already retrieved Top-K values at no cost.

“output” — 2022/1/15 — 13:36 — page 121 — #135

Table 5.2: Resource usage, clock frequency and power consumption of our architecture.
Best values in bold. We report the clock frequencies of the designs in Parravicini et
al. [155] and the best frequencies obtained after further optimizations.

Bit-width Cores LUT FF BRAM URAM DSP Clock
(MHz)

Power
Cons.

20 bits 32 38% 35% 20% 33% 7% 253-336 34 W
25 bits 32 38% 36% 20% 30% 11% 240-322 35 W
32 bits 32 35% 33% 20% 27% 17% 249-306 35 W
32 bits, float 32 44% 37% 20% 26% 19% 204-237 45 W

Available 1097419 2180971 1812 960 9020

We analyze 4 FPGA design: 32 bits unsigned fixed-point (U1.31), 25
bits (U1.24), 20 bits (U1.19), and a 32-bit floating-point version (F32)
(Table 5.2). The number of HBM pseudo channels limits the maximum
number of cores to 32, although we could easily place more cores given
our design’s low resource footprint. The CPU baseline uses floating-point
arithmetic: our CPU does not support arbitrary reduced-precision, and sim-
ulated reduced-precision fixed-point resulted in lower performance. The
experimental setup comprises 19 synthetic and real sparse embedding ma-
trices (Table 5.3), with different sizes and distributions. Sizes are reported
using BS-CSR as in Figure 5.5: if stored as a naïve COO, they would take
3 times as much space. We simulate different non-zero distributions (uni-
form and left-skewed Γ), with 20 or 40 average non-zero entries per row
(a sparsity factor of 2–8 %). The use of synthetic matrices provides full
control over the desired data distribution, as the chosen sparsification pro-
cedure influences the non-zero distribution in real embedding matrices. To
the best of our knowledge, no public dataset of sparse embedding with
sizes comparable to ours (millions of rows) is available. Instead, we spar-
sify the GloVe [160] embedding corpus with the technique in [129]. Our
performance is mostly unaffected by the underlying data distribution (Sec-
tion 5.5.1): as our FPGA design processes the matrix in a streaming fash-
ion, density does not affect performance. Embedding values are normalized
in L2 norm to guarantee that similarities are scaled correctly with respect to
each other and that we can use a single bit for the fixed-point integer part.
We perform each test 30 times, with different random vertices x.

“output” — 2022/1/15 — 13:36 — page 122 — #136

Table 5.3: Matrices in the evaluation, with M =512 and 1024, and memory occupation
using BS-CSR as in Figure 5.5. Distribution controls the number of non-zeros per row.

Distribution Rows Non-zeros (min-max) Size (min-max, GB)

Uniform
0.5 · 107 108 − 2 · 108 0.4 GB− 0.8 GB
1.0 · 107 2 · 108 − 4 · 108 0.8 GB− 1.7 GB
1.5 · 107 3 · 108 − 6 · 108 1.2 GB− 2.5 GB

Γ(k = 3, θ = 4/3)
0.5 · 107 9.7 · 107 − 1.97 · 108 0.4 GB− 0.8 GB
1.0 · 107 1.9 · 108 − 3.95 · 108 0.8 GB− 1.7 GB
1.5 · 107 2.9 · 108 − 5.92 · 108 1.2 GB− 2.5 GB

Sparsified GloVe 0.2 · 107 2.4 · 107 − 4.6 · 107 0.1 GB− 0.3 GB

Table 5.4: Execution time of our Top-K SpMV FPGA hardware designs with different
clock frequencies. Although the HBM pseudo channels of the Alveo U280 supposedly
reach peak performance when reading 512 bits per cycle at 225 MHz, we still observe
a performance improvement even with higher frequencies. Between parenthesis, we
show the relative frequency improvement and the execution time speedup.

Bit-width Frequency (Mhz)
Execution time (ms)

N = 0.5 · 107 N = 1.0 · 107 N = 1.5 · 107 GloVe

20 bits 253 336 (1.32×) 2.76 2.16 (1.27×) 4.80 3.66 (1.31×) 7.04 5.26 (1.32×) 0.86 0.76 (1.15×)
25 bits 240 322 (1.34×) 3.24 2.53 (1.27×) 5.78 4.42 (1.30×) 8.39 6.38 (1.31×) 1.08 0.89 (1.21×)
32 bits 249 306 (1.22×) 3.72 3.03 (1.22×) 5.71 5.41 (1.05×) 9.70 7.86 (1.22×) 1.13 0.95 (1.18×)
32 bits, float 204 237 (1.17×) 6.48 5.47 (1.17×) 11.8 9.98 (1.17×) 17.37 14.94 (1.16×) 1.88 1.53 (1.22×)

5.5.1 Execution Time

We measure the speedup against CPU and GPU implementations, for K=
100, and distinguishing between matrix sizes and non-zero distributions.
Figure 5.8 shows the speedup of each GPU implementation and FPGA
hardware design, using the CPU execution time (reported below each plot)
as the baseline. In the case of GPUs, we show both the speedup of the
implementation with sorting and the speedup of the idealized implementa-
tion with zero-cost sorting. While both GPU and FPGA implementations
are significantly faster than the CPU baseline, our FPGA design achieves
a 2.1× speedup over an idealized GPU Top-K SpMV implementation with
zero-cost sorting, despite the 20 % lower peak memory bandwidth. When
accounting for sorting costs on the GPU, this speedup can be as large as 7×.
We expect to provide competitive performance even against high-end GPUs
with significantly higher memory bandwidth (e.g. Tesla A100, 1.5 TB/s),

“output” — 2022/1/15 — 13:36 — page 123 — #137

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

1x

40x

80x

120x

160x

200x
53

x 62
x

12
5x

10
6x

89
x

50
x

Uniform, N = 0.5·107

CPU Baseline: 262 ms

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

52
x 60
x

13
5x

11
4x

93
x

50
x

Uniform, N = 107

CPU Baseline: 509 ms

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

51
x 59
x

14
2x

11
7x

95
x

50
x

Uniform, N = 1.5·107

CPU Baseline: 750 ms

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

93
x

96
x

15
2x

13
1x

12
2x

76
x

Sparse GloVe

CPU Baseline: 117 ms

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

1x

40x

80x

120x

160x

200x

56
x 63
x

13
2x

11
3x

94
x

52
x

Γ, N = 0.5·107

CPU Baseline: 297 ms

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

51
x 57
x

14
3x

11
6x

95
x

52
x

Γ, N = 107

CPU Baseline: 509 ms

GPU
F32

GPU
F16

FPGA
20b
32C

FPGA
25b
32C

FPGA
32b
32C

FPGA
F32
32C

50
x 56
x

14
1x

11
7x

95
x

50
x

Γ, N = 1.5·107

CPU Baseline: 745 ms

GPU F32, Top-K SpMV
FPGA 20b, 32C

GPU F32, SpMV only
FPGA 25b, 32C

GPU F16, Top-K SpMV
FPGA 32b, 32C

GPU F16, SpMV only
FPGA F32, 32C

Figure 5.8: Execution time speedup on Top-K SpMV of our FPGA designs vs. GPU
and CPU. Results are divided based on the distribution of the non-zero entries in the
matrix, and based on the number of rows in the matrix. We can process over 77 billion
non-zeros per second, 2.1× more than the GPU SpMV.

and always provide greater power-efficiency (Section 5.5.2). Fixed-point
arithmetic guarantees higher speedups than floating-point, thanks to the
pipelines’ lower initiation interval. The largest speedups, both for GPUs
implementations and FPGA designs, are found on the relatively small GloVe
dataset. On the other hand, FPGA designs show the largest performance
gap over GPUs when dealing with the biggest matrices. This phenomenon
is explained by OpenCL overheads that occur in the FPGA computation
scheduling and are better amortized over longer computations. Reduced
precision enables packing more non-zeros per transfer (higher B), resulting
in an increased operational intensity and better performance. Our 32-cores
design can find the Top-K values of a matrix with 107 rows and 200 million
non-zero entries in less than 3 ms and is suitable for real-time applications.

Compared to the results reported in Parravicini et al. [155], we man-

“output” — 2022/1/15 — 13:36 — page 124 — #138

10-1 100 101

Operational Intensity [NNZ/B]

108

109

1010

1011

1012

(b)

CPU Top-K SpMV
GPU SpMV, F32
GPU SpMV, F16
FPGA, 32C 32b
FPGA, 32C 20b

10-2 10-1 100

Operational Intensity [NNZ/B]

108

109

1010

1011

Pe
rf

or
m

an
ce

 [N
N

Z/
s]

1 co
res,

 13.
2 G

B/s
8 co

res,
 105

.6 G
B/s

16 c
ores

, 21
1.2

GB/s

32 c
ores

, 42
2.4

GB/s

B=5 B=15

(a)

32 cores
16 cores
8 cores
1 core

Figure 5.9: Roofline model of our Top-K SpMV architecture. a Operational intensity
increase with BS-CSR. b Comparison of FPGA vs. CPU and GPU. Thanks to BS-
CSR, we provide the highest operational intensity and the best performance.

aged to synthesize our hardware design with higher clock frequencies. The
original clock frequencies, and the best ones that have been achieved, are
reported in Table 5.2. We expected the performance of our hardware design
to plateau at 225 MHz, since the HBM pseudo channels on the Alveo U280
reach peak throughput when reading 256 bits per clock cycle at a frequency
of 450 MHz, or equivalently, 512 bits per clock cycle at a frequency of 225
MHz [205, 213]. Since our hardware design is fully bound by memory
throughput (Section 5.5.3), we expected that higher frequencies would not
improve performance, and possibly introduce stalls in the pipeline due to
discrepancies between the memory controller frequency and the cores fre-
quency. Table 5.4 shows the clock frequencies and execution time of each
FPGA hardware design, aggregated for matrices with the same number of
rows. We observe that increasing the clock frequency above 225 Mhz trans-
lates to an almost-linear speedup. Further analyses with tools provided by
Xilinx revealed that the original design suffered from pipeline stalls, which
might have been mitigated by the higher clock frequency. As a rule of
thumb, we can preliminary conclude that targeting clock frequencies above
the one of the FPGA memory controller can be beneficial, even in FPGA
hardware designs that are heavily memory-bound, such as ours.

5.5.2 Power Efficiency

Our FPGA hardware design consumes about 35 Watts during execution,
plus 40 Watts for the host server, measured with an external power me-
ter monitor. Changing bit-width did not affect the power consumption in

“output” — 2022/1/15 — 13:36 — page 125 — #139

a measurable way. The CPU implementation consumes around 300 Watts
during execution, while the GPU requires 250 Watts (plus 40 Watts for
the host). Our fixed-point FPGA design provides 550× higher Perfor-
mance/Watt ratio than the CPU, and 15× compared to the idealized GPU
implementation (8.1× when accounting for an equal host machine): we
provide higher performance without any sacrifice of power efficiency.

5.5.3 Roofline Model Analysis

Besides looking at raw execution time values, we want to understand how
well our FPGA hardware design leverages the resources available to it, and
how it compares against other architectures. We would expect to be com-
pletely memory bound and to be using most, if not all, of the 460 GB/s
of HBM2 bandwidth offered by the Alveo U280. To answer these ques-
tions, we build a Roofline Model, following the methodology in [184]
(Figure 5.9). On the x-axis, we measure the operational intensity of the
computation. In our case, we evaluate how many non-zero elements of
the sparse matrix we can process for each byte read from off-chip mem-
ory. For FPGA designs, this value is immediately computed from the num-
ber of non-zero entries stored in a data packet (e.g. 5 for COO or 15 for
BS-CSR, Figure 5.5). For CPU and GPU implementations, we obtain an
upper-bound estimate of the operational intensity by counting how many
memory accesses are required to read the matrix fully, and optimistically
assume that the dense input vector is only read once and then kept in cache.
On the y-axis, we display the performance, expressed as non-zeros entries
processed per second. Diagonal lines express the maximum off-chip mem-
ory bandwidth of each architecture and FPGA hardware design (based on
how many HBM pseudo channels it uses). Horizontal lines mark the peak
performance. For CPU and GPU implementations, we use the single and
half-precision floating-point peak performance as given by the hardware
manufacturer. For FPGA designs, the peak performance is estimated by
fitting as many Top-K SpMV cores as possible – 64 in our case – with-
out being limited by the 32 HBM pseudo-channels of the Alveo U280, and
staying within a conservative 80 % resource utilization bound (Table 5.2).

Figure 5.9 a shows that the performance (non-zeros per second) of our
FPGA design scales linearly to the total bandwidth of the HBM channels:
this result enables predicting performance when deploying our design on
an FPGA board with fewer (or more) HBM channels. Most importantly,
BS-CSR increases the operational intensity up to 3× compared to a naïve
COO (B = 15 vs. B = 5), which immediately translates to an equivalent

“output” — 2022/1/15 — 13:36 — page 126 — #140

8 16 32 50 75 100
96%
97%
98%
99%

100%

Pr
ec

isi
on

N = 0.5·107

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

K
en

da
ll'

s
τ

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

N
D

C
G

8 16 32 50 75 100
96%
97%
98%
99%

100%
N = 107

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

8 16 32 50 75 100
96%
97%
98%
99%

100%
N = 1.5·107

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

8 16 32 50 75 100
96%
97%
98%
99%

100%
Sparse GloVe

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

Top-K (from 8 to 100)

FPGA 20b
FPGA F32

FPGA 26b
GPU F16

FPGA 32b

Figure 5.10: Top-K SpMV accuracy (higher is better) for different architectures and types
of reduced-precision arithmetic, aggregated on matrices with the same size.

performance improvement. Figure 5.9 b reports the performance against
CPU and GPU. For the GPU, we provide a worst-case analysis by con-
sidering only the cost of SpMV and assuming zero-cost sorting. When
compared against CPU and GPU, our FPGA design is the best in terms of
operational intensity and bandwidth usage, both in absolute and percent-
age terms. Even with 20 % less bandwidth than the GPU and considering
a Top-K SpMV GPU implementation with zero-cost sorting, the increased
operational intensity of BS-CSR still provide the highest performance.

We see that our FPGA design always operates with a memory band-
width close to the maximum achievable for a given number of HBM pseudo
channels, and its performance scales linearly with respect to the number of
cores and HBM pseudo channels. To further improve performance, we
would need to increase the operational intensity, e.g. by processing more
non-zero entries per clock cycle through additional data compression.

We can also compare the performance of our BS-CSR Top-K SpMV
hardware designs to what we could achieve using alternative designs based
on COO or CSR as sparse matrix storage layout. The COO design has a
matrix fetch unit and a scatter unit identical to the ones in Chapter 4, and
store the dense vector in URAM as in the design presented in this chapter.
The naïve COO encoding in Figure 5.4 stores 5 non-zero entries in each

“output” — 2022/1/15 — 13:36 — page 127 — #141

512-bits data packet, giving the performance shown in Figure 5.9 a for
B = 5. The optimized COO encoding in Figure 5.4 would not fare much
better, being equivalent to B = 8. It is 60 % better than the naïve COO
encoding, but still 2× worse than BS-CSR.

In our experiments, a CSR created by adapting our existing hardware
designs is about 10× slower than naïve COO. We cannot obtain a fully
streaming design due to indirect memory accesses introduced by the ptr
vector in the CSR representation, because it is not possible to know at de-
sign time how many non-zero entries there are in each matrix row.

5.5.4 Approximation Accuracy Analysis

We compare the accuracy of our approximated Top-K SpMV with the exact
CPU results and with the approximated GPU results with HP floating-point.
We look at values of K from 8 to 100 and evaluate accuracy using common
Recommender System evaluation metrics such as Precision, Kendall’s τ ,
and Normalized Discounted Cumulative Gain (NDCG) [180]. Precision
does not penalize out-of-order results; the other two metrics do. Further
explanations of these metrics are given in Section 2.3.3 and Section 3.5.3.
We show accuracy results aggregated over all matrices with a given num-
ber of rows in Figure 5.10. Figure 5.11a presents results for matrices with
uniformly-distributed non-zero entries and for the GloVe dataset, while Fig-
ure 5.11b shows results for matrices with Γ non-zero distribution.

Our accuracy results are in line with the theoretical estimations in Ta-
ble 5.1, showing only a minor accuracy dip for large K. Even 20-bit fixed-
point designs provide excellent accuracy across the board, with Precision
above 97 % when looking at average results in Figure 5.10. Moreover, 32-
bits fixed-point designs provide accuracy above the HP floating-point GPU
implementation, despite our algorithmic approximation.

Accuracy results for matrices with uniformly distributed non-zero en-
tries, and for GloVe, show that our hardware design achieves close-to-
perfect results even for K = 100, and is almost always more accurate than
an exact computation with HP floating-point arithmetic. When non-zeros
follow a Γ distribution we observe a somewhat lower accuracy, especially
in designs with 20-bit fixed-point arithmetic. This lower precision is ex-
plained by having many small rows ending in the same data packet. Due to
our approximations in Section 5.4.3, we might lose track of the similarity
value of some of these rows, resulting in lower accuracy. Still, even in this
case, we can guarantee accuracy results well above 90 % in each metric.

“output” — 2022/1/15 — 13:36 — page 128 — #142

8 16 32 50 75 100
96%
97%
98%
99%

100%

Pr
ec

isi
on

N = 0.5·107

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

K
en

da
ll'

s
τ

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

N
D

C
G

8 16 32 50 75 100
96%
97%
98%
99%

100%
N = 107

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

8 16 32 50 75 100
96%
97%
98%
99%

100%
N = 1.5·107

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

8 16 32 50 75 100
96%
97%
98%
99%

100%
Sparse GloVe

8 16 32 50 75 100
0.950
0.962
0.975
0.988
1.000

8 16 32 50 75 100
0.960
0.970
0.980
0.990
1.000

Top-K (from 8 to 100)

(a) Error on matrices with uniform distribution and GloVe.

8 16 32 50 75 100
80%
85%
90%
95%

100%

Pr
ec

isi
on

N = 107

8 16 32 50 75 100
0.800
0.850
0.900
0.950
1.000

K
en

da
ll'

s
τ

8 16 32 50 75 100
0.800
0.850
0.900
0.950
1.000

N
D

C
G

8 16 32 50 75 100
80%
85%
90%
95%

100%
N = 1.5·107

8 16 32 50 75 100
0.800
0.850
0.900
0.950
1.000

8 16 32 50 75 100
0.800
0.850
0.900
0.950
1.000

8 16 32 50 75 100
80%
85%
90%
95%

100%
N = 0.5·107

8 16 32 50 75 100
0.800
0.850
0.900
0.950
1.000

8 16 32 50 75 100
0.800
0.850
0.900
0.950
1.000

Top-K (from 8 to 100)

FPGA 20b
FPGA F32

FPGA 26b
GPU F16

FPGA 32b

(b) Error on matrices with Γ distribution.

Figure 5.11: Top-K SpMV accuracy (higher is better) for different architectures and types
of reduced-precision arithmetic, divided by matrices with uniform non-zeros distribu-
tion and the GloVe dataset a and matrices with Γ non-zeros distribution b .

“output” — 2022/1/15 — 13:36 — page 129 — #143

5.6 Final Remarks

Top-K SpMV is a cornerstone of IR and recommender systems based on
sparse embeddings similarity and must be computed, guaranteeing real-
time latencies and power efficiency. As these constraints are hardly met
on general-purpose architectures, we presented a novel approximate FPGA
multi-core design for Top-K SpMV that leverages HBM, fixed-point arith-
metic, and our new BS-CSR matrix layout to achieve high-performance
and modularity over the FPGA resources. Our 32-cores 20-bit FPGA
design achieves 138× the performance of a state-of-the-art CPU baseline
and 2.1× the GPU performance with 20 % higher bandwidth. We deliver
real-time results on sparse matrices with hundreds of millions of values
while keeping 15× higher power efficiency than the GPU.

Future work will focus on adaptive compressed matrix representations
by reconfiguring the FPGA in terms of numerical precision to guarantee
desired targets of accuracy or performance. We will also apply our de-
sign to smaller FPGA accelerator cards: with similar memory bandwidth,
the computation can be cheaper and even more power-efficient, with no
performance loss. Finally, we will study how to apply BS-CSR to other
computations and possibly other architectures.

“output” — 2022/1/15 — 13:36 — page 130 — #144

“output” — 2022/1/15 — 13:36 — page 131 — #145

CHAPTER6
Conclusion and Future Work

In this final chapter, we summarize the contributions presented in this the-
sis, illustrate the limitations of our current work, and highlight opportu-
nities created by our research. Throughout this thesis, we addressed the
challenges and the benefits of providing hardware acceleration to graph
analytics and recommender systems using sparse linear algebra and recon-
figurable architectures. Our contributions have shown how novel memory
technologies, combined with reduced-precision arithmetic and custom data
representations, enable low-latency computations with minimal power con-
sumption. Still, further research opportunities do exists, such as extending
our hardware designs to a broader set of problems, and scaling to even
larger computations.

131

“output” — 2022/1/15 — 13:36 — page 132 — #146

Recommender systems are now the majority of AI workloads found
in datacenters [63]. Moreover, sparse computations are seen as the key
to scale to larger datasets and to incorporate heterogeneous information
such as graph topologies and categorical values. A graph with one mil-
lion vertices, a common occurrence in graph analytics, can be stored in a
few megabytes using sparse matrices. A dense representation of the same
graph requires about four terabytes, making it impossible to handle in most
scenarios. Despite this real-world need, hardware optimizations for recom-
mender systems are still a minority, compared to all research targeted at
computer architectures for machine learning [63].

This thesis tried to address open research challenges in hardware ac-
celeration for sparse linear algebra applied to graph analytics and recom-
mender systems. We have seen how the memory wall, the growing memory
gap between peak compute power and memory size and bandwidth, is a ma-
jor cause of concern in sparse computations, as they are extremely memory-
intensive. Breaking this memory wall will require significant technologi-
cal advancements. In the meantime, compression techniques and reduced-
precision arithmetic can successfully mitigate its impact by providing an
increased operational intensity and maximizing the computation on every
bit loaded from memory. Field-Programmable Gate Array (FPGA) accel-
erator cards, thanks to the availability of High Bandwidth Memory (HBM)
and abundant on-chip memory, are a valid solution for high-performance
sparse computations in graph analytics and recommender systems. No
off-the-shelf hardware architecture can provide the same performance per
watt in these workloads while guaranteeing real-time execution latency and
fine-grained control over accuracy versus execution time thanks to reduced-
precision fixed-point arithmetic.

The core of this work was a flexible Sparse Matrix-Vector Multipli-
cation (SpMV) hardware design, created to leverage reduced-precision
fixed-point arithmetic and multiple kinds of memories, such as UltraRAM
(URAM) and HBM2. We have proven how this design can adapt to dif-
ferent sparse workloads, always reaching state-of-the-art performance:
graph ranking algorithms, sparse eigensolvers, and sparse embedding sim-
ilarity search. In detail, we presented the following contributions.

• In Chapter 3 we first presented our FPGA SpMV hardware design
and used it to accelerate the computation of Personalized PageRank
(PPR), obtaining speedups up to 6× over a CPU and 42× higher en-
ergy efficiency. We have also shown how fixed-point arithmetic trans-
lates to a 2× faster convergence, with no significant accuracy loss.

“output” — 2022/1/15 — 13:36 — page 133 — #147

• In Chapter 4 we extended our SpMV hardware design to develop the
first FPGA Top-K eigensolvers for unstructured sparse matrices. We
integrated it into a complex mixed-precision pipeline and shown how
to leverage HBM in sparse computations to partition the SpMV hard-
ware design across multiple Compute Units (CUs). Our eigensolver
achieved a 6.22× speedup versus a highly optimized CPU implemen-
tation while keeping high accuracy and 49× better power efficiency.

• In Chapter 5 we broadened the scope of our analysis by optimizing
approximate similarity search on large sparse embedding tables. We
improved our hardware design to support Top-K SpMV, improved its
operational intensity with a custom sparse matrix representation, and
developed a novel approximation scheme for Top-K SpMV. Through
these contributions, our hardware design was 2.1× faster than a GPU
with 20 % higher bandwidth, with 15× higher power-efficiency, prov-
ing the strength of FPGAs in approximate sparse computations.

6.1 Limitations and Future Directions

For each contribution presented in this work, there is undoubtedly still room
left for growth and improvements. Moreover, each of these contributions
opens further research directions that are worth mentioning.

6.1.1 A Reduced-Precision Streaming SpMV Hardware Design for
Personalized PageRank on FPGA

The PPR hardware design in Chapter 3 represents our first attempt at ac-
celerating graph analytics with sparse linear algebra and reduced-precision
fixed-point arithmetic. Results in Chapter 3 have been achieved with a hard-
ware design that uses DDR4 off-chip memory to store the graph topology,
instead of HBM. As such, we could achieve significant speedups against
a CPU implementation that also employs DDR4 and offers similar maxi-
mum memory bandwidth. However, we expect HBM-based architectures
to provide even better performance, given how memory-intensive SpMV
and PPR are. Moreover, our hardware design required on-chip memory
such as URAM to provide low-latency access to PPR values, limiting the
maximum size of input graphs. To solve these issues, we optimized our
SpMV core to use HBM in Chapter 4, greatly improving its performance
and adding support for larger matrices.

Another remarkable finding is that reduced-precision fixed-point arith-
metic increases convergence speed, with no significant accuracy loss. This

“output” — 2022/1/15 — 13:36 — page 134 — #148

result opens the door to further research in this field, and we are already
observing a general trend of moving towards lower and lower precision
arithmetic. It is not unlikely that other architectures, such as CPUs and
Graphics Processing Units (GPUs) will provide better support for lower-
precision fixed-point arithmetic. Studying the impact of mixed-precision
arithmetic in numerical algorithms and recommender systems, possibly in
the context of different hardware architectures, is certainly a research av-
enue worth pursuing.

6.1.2 Solving Large Top-K Graph Eigenproblems with a Memory and
Compute-optimized FPGA Design

The Top-K sparse eigensolver presented in Chapter 4 is a greatly improved
variant of the hardware design in Chapter 3. By exploiting HBM, we lifted
most limitations of the original SpMV design, such as the inability to pro-
cess partitioned matrices, or the limited scale of input graphs.

Our hardware design assumes that the input matrix can be stored in
HBM memory, limiting its applicability to web-scale graphs with trillions
of edges. That said, the amount of HBM in accelerator devices such as
GPUs is growing steadily, with recent Nvidia Tesla A100 offering 80 GB of
HBM (10× more than the Xilinx Alveo U280 FPGA accelerator card). As
such, we believe that the constraint of HBM size will become less relevant
in the future. Partitioning the computation to multiple FPGAs might be a
way to support extremely large matrices. Multi-device support is, however,
not easy to achieve due to the iterative nature of the Lanczos algorithm.
One would have to partition SpMV over multiple devices, with each de-
vice operating on a subset of rows and results of each aggregation being
transferred through the limited bandwidth of PCIe. Our current work as-
sumes matrices containing real values. Supporting non-Hermitian matrices,
which are encountered in engineering applications but are less common in
recommender systems and graph analytics, requires implementing the full
Implicitly Restarted Arnoldi Method. While we have observed that our ap-
proximate eigensolver can compute accurate results, we have not analyzed
its performance in an end-to-end pipeline for spectral analysis (e.g. inside
spectral clustering). We expect our design to provide high-quality results
still, and quantitative end-to-end analyses would confirm the hypothesis.

Finally, this work is a perfect case study for input-aware FPGA recon-
figuration. Indeed, we observe how graphs with relatively low sparsity
(|E| � |V |) benefit from more SpMV CUs, while highly sparse matri-
ces (|E| ≈ |V |) benefit from a larger partitioning factor in linear operations

“output” — 2022/1/15 — 13:36 — page 135 — #149

(e.g. vector normalization), with possibly a single SpMV CU. While our
current hardware design is a solid compromise between these two extremes,
it is interesting to evaluate the performance trade-offs on additional matri-
ces and extend this analysis to other algorithms with similar characteristics,
such as sparse Conjugate Gradient.

6.1.3 Scaling up HBM Efficiency of Top-K SpMV for Approximate
Embedding Similarity on FPGAs

The hardware design presented in Chapter 5 is quite different from the ones
in the previous chapters, although its starting point, the reduced-precision
SpMV design, was originally the same. As the computation of Top-K
SpMV is not iterative, the hardware design could easily be partitioned
across multiple FPGAs. Such partitioning allows scaling to extremely large
embedding tables without the communication overheads that limit the ef-
fectiveness of a multi-device Lanczos implementation. Indeed, the multi-
device overheads for Top-K SpMV are limited to assembling the partial
Top-K results, a step whose cost is insignificant compared to the rest of
the computation, and we expect an almost-linear performance scaling with
the adoption of multiple FPGAs. Moreover, increasing the number of par-
titions is beneficial to the accuracy of our approximation scheme, further
cementing the advantages of such an implementation.

It is also interesting to study how our Block-Streaming CSR (BS-CSR)
representation benefits other computations, such as PPR or the Lanczos al-
gorithm. BS-CSR is certainly more beneficial to tall matrices than to the
square matrices used to store graphs. Even in the case of square matrices,
BS-CSR provides up to 50 % better operational intensity over a naïve COO
representation. Finally, we focused our current study on multiplication be-
tween a sparse matrix and a dense vector. However, recommender systems
often employ one-hot encoded feature vectors to encode categorical fea-
tures (e.g. users’ categories). Such vectors can effectively be implemented
as arrays of bits. We expect our implementation to provide extremely
high performance when working with arrays of bits and possibly become
compute-bound as a single BS-CSR data-packet could contain more than
30 non-zeros, 2× our current reduced-precision fixed-point design.

“output” — 2022/1/15 — 13:36 — page 136 — #150

“output” — 2022/1/15 — 13:36 — page 137 — #151

List of Figures

1.1 Example of Sparse Matrix-Vector Multiplication (SpMV),
for a sparse matrix A represented as COO. 2

1.2 Scaling of peak compute power (FLOPS), memory band-
width (GB/s) and interconnection bandwidth (GB/s) from
1996 to today . 3

1.3 Structure of this thesis, with the main contributions of each
chapter. 10

2.1 Examples of sparse matrices the SuiteSparse collection . . . 13
2.2 Sparse matrix representations for the constellation of Hercules. 16
2.3 Block diagonal matrix. Each of the B square sub-matrices

Ai is dense. 19
2.4 Floating-point and fixed-point representations of 42.42. . . . 25
2.5 a Representation of a GPU architecture, with logical subdi-

vision in grid, blocks and threads, as in the terminology of
CUDA. b GPU axpy kernel written in CUDA, with subdi-
vision in blocks and threads. 36

2.6 Schematic representation of the Xilinx Alveo U280 FPGA
accelerator card. 46

3.1 First three iteration of PageRank and Personalized PageR-
ank for a small example graph, with |V | = 5 and α = 0.85. . 56

3.2 COO representation of the transition matrix of a graph . . . 57
3.3 Block diagram of the Personalized PageRank algorithm, as

implemented in our hardware design 58

137

“output” — 2022/1/15 — 13:36 — page 138 — #152

3.4 Block-diagram of our PPR SpMV hardware design. The
scatter and aggregation units show the computation for a
single vertex, but they are replicated to support κ vertices.
Large arrows represent a streaming transfer between units . 62

3.5 Speedup of our Personalized PageRank FPGA reduced-precision
hardware design (y-axis) with respect to the CPU baseline
and the FPGA floating-point baseline, for decreasing bit-
widths (x-axis). 68

3.6 Accuracy metrics measured on graphs with 2 ·106 edges, for
increasing fixed-point bit-width. 70

3.7 We compute on all graphs the metrics in Figure 3.6 and in-
clude all the additional metrics presented in Section 3.5.3.
We show results aggregated on all graphs, for increasing bit-
widths and number of top ranked vertices. 72

3.8 Precision value, for decreasing sparsity, and increasing num-
ber of iterations, measured for different fixed-point bit-widths. 72

3.9 Convergence error of PPR, for increasing number of iterations. 74
3.10 Speedup of our Personalized PageRank hardware design when

accounting for the faster convergence. 75

4.1 Top-K eigencomputation of a graph G, represented as a sparse
matrix. 79

4.2 Steps of our Top-K sparse eigenproblem solver, which com-
bines the Lanczos algorithm with a Systolic Array formula-
tion for the Jacobi eigenvalue algorithm. 82

4.3 Example of (5× 5) tridiagonal matrix, obtained as output of
the Lanczos algorithm for K = 5. 82

4.4 Operations performed by different processors in the Jacobi
eigenvalue Systolic Array architecture. 84

4.5 Steps of the Jacobi eigenvalues computation using Systolic
Arrays. 87

4.6 High-level architecture of our Top-K Sparse Eigencomputa-
tion FPGA design. 89

4.7 Block diagram of one iterative SpMV CU. 91
4.8 Dense vector memory subsystem of our SpMV FPGA design. 93
4.9 Detail of the sin(θ) and cos(θ) propagation between Com-

pute Units in the Jacobi Systolic Array architecture, for K = 4. 94
4.10 Graphical representation of the sparsity patterns of matrix

used in the evaluation. 98

“output” — 2022/1/15 — 13:36 — page 139 — #153

4.11 Speedup (higher is better) of our Top-K sparse eigensolver
vs. the ARPACK multi-core CPU library. 99

4.12 a Relation between the number of matrix non-zero values
and time to process a single value. b Speedup vs. CPU of
our Systolic Array architecture for the Jacobi algorithm, for
increasing number of eigenvalues K. 100

4.13 Accuracy of our Top-K sparse eigensolver, in terms of or-
thogonality and reconstruction error, for increasing K. . . . 101

5.1 Top-K Sparse matrix-vector multiplication (Top-K SpMV)
between a sparse matrix A (in our case, a collection of sparse
embeddings) and a dense vector x (a dense embedding), with
notation as in Section 5.3. 107

5.2 Simplified approximation scheme for Top-K SpMV. No er-
rors occur if all partitions have less than k Top-K values. . . 109

5.3 Graphical representation of our approximation scheme for
Top-K SpMV. 111

5.4 Naïve Coordinate (COO) representations of data packets.
Even with reduced-precision arithmetic, each packet con-
tains significant redundancy. 113

5.5 Graphical representation of BSCSR data packets, showing
drastically higher information density compared to COO. . . 114

5.6 Simplified block diagram of a single core of our Top-K SpMV
hardware design, for BS-CSR with 5 non-zero y and val
entries per packet. 116

5.7 Block diagram of our multi-core Top-K SpMV, for BS-CSR
with 5 non-zero y and val entries per packet. 117

5.8 Execution time speedup on Top-K SpMV of our FPGA de-
signs vs. GPU and CPU. 123

5.9 Roofline model of our Top-K SpMV architecture. a Oper-
ational intensity increase with BS-CSR. b Comparison of
FPGA vs. CPU and GPU. Thanks to BS-CSR, we provide
the highest operational intensity and the best performance. . 124

5.10 Top-K SpMV accuracy (higher is better) for different ar-
chitectures and types of reduced-precision arithmetic, aggre-
gated on matrices with the same size. 126

“output” — 2022/1/15 — 13:36 — page 140 — #154

5.11 Top-K SpMV accuracy (higher is better) for different ar-
chitectures and types of reduced-precision arithmetic, di-
vided by matrices with uniform non-zeros distribution and
the GloVe dataset a and matrices with Γ non-zeros distribu-
tion b . 128

“output” — 2022/1/15 — 13:36 — page 141 — #155

List of Tables

2.1 Storage size, traversal cost and non-zero lookup cost of con-
ventional sparse matrix representations. Assume a sparse
matrix A ∈ RN×M , with nnz non-zeros, and B dense blocks
in the case of BSR. 17

2.2 Summary statistics of IEEE 754 floating-point and fixed-
point representations. Floating-point values are retrieved
from Hopkins et al. [85]. 26

3.1 Summary of graph datasets used in the evaluation 66
3.2 Resource usage, power consumption for selected bit-widths

of our PPR design. 66

4.1 Resource usage and clock frequency in our FPGA hardware
design, divided by algorithm. We also report the total amount
of resources available to the FPGA. 96

4.2 Matrices/graphs in the evaluation, sorted by number of edges/non-
zero entries (in millions). For each matrix, we report the
memory footprint when stored as COO. 97

5.1 Estimated precision of Top-K indices for increasing number
of partitions. We average the results of 1000 tests. 112

5.2 Resource usage, clock frequency and power consumption of
our architecture. Best values in bold. We report the clock
frequencies of the designs in Parravicini et al. [155] and the
best frequencies obtained after further optimizations. 121

141

“output” — 2022/1/15 — 13:36 — page 142 — #156

5.3 Matrices in the evaluation, with M = 512 and 1024, and
memory occupation using BS-CSR as in Figure 5.5. Distri-
bution controls the number of non-zeros per row. 122

5.4 Execution time of our Top-K SpMV FPGA hardware de-
signs with different clock frequencies. 122

“output” — 2022/1/15 — 13:36 — page 143 — #157

List of Acronyms

A
ASIC Application-Specific Integrated Circuits.

33, 37
AXI Advanced eXtensible Interface. 44, 45, 48

B
BLAS Basic Linear Algebra Subprograms. 14
BRAM Block RAM. 38, 44, 61, 62, 67, 95
BS-CSR Block-Streaming CSR. 19, 107, 109,

114–122, 124–127, 129, 135, 139, 142
BSR Block Compressed Row. 19

C
CLB Configurable Logic Block. 38
COO Coordinate. 6, 17–21, 41, 43, 52, 57, 63,

66, 74, 76, 91, 92, 113–115, 121, 125–127,
139

CORDIC Coordinate Rotation Digital Computer. 95
CPU Central Processing Unit. 33–35, 37, 43, 48
CSC Compressed Sparse Column. 18, 57
CSR Compressed Sparse Row. 18–21, 33, 34,

91, 108, 113–115, 126, 127
CU Compute Unit. 7, 8, 41, 79, 85–88, 91, 92,

94, 95, 100, 103, 133–135, 138

143

“output” — 2022/1/15 — 13:36 — page 144 — #158

D
DCG Discounted Cumulative Gain. 31, 71
DDR Double Data Rate. 40, 44, 106, 109
DDR4 Double Data Rate 4. 58, 59, 61, 64, 69, 96
DL Deep Learning. 1, 2, 12, 14, 29, 33, 37, 41,

47–49, 76
DRAM Dynamic Random-Access Memory. 42, 43,

46, 54, 58, 61, 64, 65
DSA Domain-Specific Architecture. 33, 40,

46–49
DSL Domain-Specific Language. 53
DSP Digital Signal Processor. 38, 67, 95

F
FEM Finite Element Method. 18, 40
FF Flip Flop. 38, 39, 96
FPGA Field-Programmable Gate Array. 2–8, 19,

21, 29, 33–35, 37–45, 47–49, 52–54, 58,
59, 61, 62, 64–69, 71, 73, 74, 76, 79, 80,
85, 86, 88, 89, 92–97, 99–103, 106–110,
113, 115, 118, 120–126, 129, 132–135,
138, 139, 142

FSM Finite-state machine. 60

G
GPCPU General-purpose Central Processing Unit.

33, 35
GPU Graphics Processing Unit. 1, 2, 4, 5, 12, 19,

29, 34–37, 39, 40, 42–44, 46–49, 53, 54,
76, 81, 101, 106–108, 114, 120, 122–127,
129, 134, 139

H
HBM High Bandwidth Memory. 3–8, 37, 40–46,

48, 49, 52, 61, 64, 69, 76, 79, 88–94,
100, 101, 106, 107, 109, 110, 114–118,
120–122, 124–126, 129, 132–134

HDL Hardware Description Language. 38–40
HLS High-Level Synthesis. 39, 40

“output” — 2022/1/15 — 13:36 — page 145 — #159

HP Half-Precision. 108, 120, 127
HPCG High-Performance Conjugate Gradient. 35

I
IDCG Ideal Discounted Cumulative Gain. 31
II Initiation Interval. 41, 45, 118
IR Information Retrieval. 12, 29, 31, 35, 71,

106, 113, 129
IRAM Implicitly Restarted Arnoldi Method. 81,

96
ISA Instruction Set Architecture. 46

K
KNN K-Nearest Neighbors. 108

L
LSH Locality-Sensitive Hashing. 108
LUT Look-Up Table. 38, 69, 110

M
MAE Mean Absolute Error. 31
ML Machine Learning. 35, 53
MSHR Miss Status Holding Register. 34

N
NDCG Normalized Discounted Cumulative Gain.

31, 32, 71, 76, 127

P
PCIe Peripheral Component Interconnect Ex-

press. 42, 43, 64, 103, 120, 134
PE Processing Element. 87
PIM Processing in Memory. 46, 47, 49
PPR Personalized PageRank. 6, 9, 21, 22, 43,

44, 52–67, 69, 71, 73, 74, 76, 132, 133, 135
PR PageRank. 18, 22, 26, 43, 52–57, 61, 62,

64

R
RAW Read-After-Write. 60

“output” — 2022/1/15 — 13:36 — page 146 — #160

RMSE Root Mean Square Error. 31

S
SA Systolic Array. 80, 81, 86, 87, 93–95, 97,

100
SLA Service-Level Agreement. 48
SLR Super Logic Region. 45, 88, 94, 97
SM Stream Multiprocessor. 35, 36
SP Stream Processor. 35
Sparse BLAS Sparse Basic Linear Algebra Subprograms.

14, 33
SpGEMM Sparse Matrix-Matrix Multiplication. 15,

46
SpMM Sparse Matrix-Dense Matrix Multiplica-

tion. 14, 15
SpMV Sparse Matrix-Vector Multiplication. 3,

6–9, 14, 15, 17, 19–21, 29, 34, 35, 37,
39–43, 46, 52–55, 58–62, 64, 74, 76, 79,
81, 84–86, 88–93, 100–103, 108, 109, 111,
115, 116, 118, 120, 123, 126, 132–135, 138

T
TDP Thermal Design Power. 42
Top-K SpMV Top-K Sparse matrix-vector multiplication.

52, 103, 106–110, 115–118, 120, 122–126,
128, 129, 139, 140, 142

U
URAM UltraRAM. 6, 44, 59–62, 64, 65, 67, 69,

76, 92, 93, 106, 110, 116, 117, 126, 132,
133

UVM Unified Virtual Memory. 34

“output” — 2022/1/15 — 13:36 — page 147 — #161

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Cojean, Jack Don-
garra, Mark Gates, Thomas Grützmacher, Nicholas J Higham, Sherry Li, et al. A survey of
numerical methods utilizing mixed precision arithmetic. arXiv preprint arXiv:2007.06674,
2020.

[3] E. Adams, S. Venkatachalam, and S. Ko. Energy-Efficient Approximate MAC Unit. In 2019
IEEE ISCAS, pages 1–4, 2019.

[4] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Transactions on signal processing,
54(11):4311–4322, 2006.

[5] Khalid Ahmad, Hari Sundar, and Mary Hall. Data-driven Mixed Precision Sparse Matrix
Vector Multiplication for GPUs. ACM Transactions on Architecture and Code Optimization
(TACO), 16(4):1–24, 2019.

[6] Hasan Metin Aktulga, Chao Yang, Esmond G Ng, Pieter Maris, and James P Vary. Topology-
aware mappings for large-scale eigenvalue problems. In European Conference on Parallel
Processing, pages 830–842. Springer, 2012.

[7] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

[8] Amazon. Amazon EC2 F1 Instances. aws.amazon.com/ec2/instance-types/f1
/. Retrieved 2021-07-25.

[9] HT Anson, Gary CT Chow, Qiwei Jin, David B Thomas, and Wayne Luk. Optimising perfor-
mance of quadrature methods with reduced precision. In International Symposium on Applied
Reconfigurable Computing, pages 251–263. Springer, 2012.

147

aws.amazon.com/ec2/instance-types/f1/
aws.amazon.com/ec2/instance-types/f1/

“output” — 2022/1/15 — 13:36 — page 148 — #162

[10] Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak,
Tobias Ribizel, Yuhsiang Mike Tsai, and Enrique S Quintana-Ortí. Ginkgo: A mod-
ern linear operator algebra framework for high performance computing. arXiv preprint
arXiv:2006.16852, 2020.

[11] Hartwig Anzt, William Sawyer, Stanimire Tomov, Piotr Luszczek, Ichitaro Yamazaki, and
Jack Dongarra. Optimizing Krylov Subspace Solvers on Graphics Processing Units. In Fourth
International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), IPDPS 2014,
Phoenix, AZ, 05-2014 2014. IEEE, IEEE.

[12] Jeremy Appleyard and Scott Yokim. Programming Tensor Cores in CUDA 9. develope
r.nvidia.com/blog/programming-tensor-cores-cuda-9, 2017. Retrieved
2021-07-29.

[13] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Sung-Kyu Lim, Hyesoon Kim, et al. Fafnir:
Accelerating sparse gathering by using efficient near-memory intelligent reduction. In 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages
908–920. IEEE, 2021.

[14] Bahar Asgari, Ramyad Hadidi, and Hyesoon Kim. Proposing a Fast and Scalable Systolic
Array for Matrix Multiplication. In 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 204–204. IEEE, 2020.

[15] Semih Aslan, Sufeng Niu, and Jafar Saniie. Fpga implementation of fast QR decomposition
based on givens rotation. Midwest Symposium on Circuits and Systems, pages 470–473, 08
2012.

[16] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-Benchmarks: A Bench-
marking Tool for Approximate Nearest Neighbor Algorithms, 2018.

[17] Francis R Bach and Michael I Jordan. Learning spectral clustering, with application to speech
separation. Journal of Machine Learning Research, 7(Oct):1963–2001, 2006.

[18] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized
PageRank. Proceedings of the VLDB Endowment, 4(3):173–184, 2010.

[19] ING Bank. sparse_dot_topn. "github.com/ing-bank/sparse_dot_topn", 2017.

[20] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of PageRank and reverse PageR-
ank. In Proceedings of the 17th ACM conference on Information and knowledge management,
pages 279–288. ACM, 2008.

[21] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for CUDA. In GPU
computing gems Jade edition, pages 359–371. Elsevier, 2012.

[22] Gábor Berend. Sparse Coding of Neural Word Embeddings for Multilingual Sequence La-
beling. Transactions of the Association for Computational Linguistics, 5:247–261, 2017.

[23] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Pagerank: functional dependencies.
ACM Transactions on Information Systems (TOIS), 27(4):1–23, 2009.

[24] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Shang-Hua Teng. A sublinear time
algorithm for PageRank computations. In International Workshop on Algorithms and Models
for the Web-Graph, pages 41–53. Springer, 2012.

[25] Richard P Brent, Franklin T Luk, et al. The solution of singular-value and eigenvalue prob-
lems on systolic arrays. In Mathematical Programming and Numerical Analysis Workshop,
pages 38–64. Centre for Mathematics and its Applications, Mathematical Sciences Institute,
1984.

[26] Kurt Bryan and Tanya Leise. The $25,000,000,000 eigenvector: The linear algebra behind
Google. SIAM review, 48(3):569–581, 2006.

developer.nvidia.com/blog/programming-tensor-cores-cuda-9
developer.nvidia.com/blog/programming-tensor-cores-cuda-9
"github.com/ing-bank/sparse_dot_topn"

“output” — 2022/1/15 — 13:36 — page 149 — #163

[27] Aydın Buluç and John R Gilbert. The Combinatorial BLAS: Design, implementation,
and applications. The International Journal of High Performance Computing Applications,
25(4):496–509, 2011.

[28] Aydin Buluç, Tim Mattson, Scott McMillan, José Moreira, and Carl Yang. Design of the
GraphBLAS API for C. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 643–652. IEEE, 2017.

[29] Alwyn Burger, Patrick Urban, Jayson Boubin, and Gregor Schiele. An Architecture for Solv-
ing the Eigenvalue Problem on Embedded FPGAs. In André Brinkmann, Wolfgang Karl,
Stefan Lankes, Sven Tomforde, Thilo Pionteck, and Carsten Trinitis, editors, Architecture of
Computing Systems – ARCS 2020, pages 32–43, Cham, 2020. Springer International Publish-
ing.

[30] Pavel Burovskiy, Stephen Girdlestone, Craig Davies, Spencer Sherwin, and Wayne Luk.
Dataflow acceleration of Krylov subspace sparse banded problems. In 2014 24th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), pages 1–6. IEEE,
2014.

[31] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled QR factor-
ization for multicore architectures. Concurrency and Computation: Practice and Experience,
20(13):1573–1590, 2008.

[32] Daniela Calvetti, Lothar Reichel, and Danny Chris Sorensen. An implicitly restarted Lanczos
method for large symmetric eigenvalue problems. Electronic Transactions on Numerical
Analysis, 2(1):21, 1994.

[33] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael
Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, et al. A cloud-
scale acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[34] Lung-Sheng Chien. Jacobi-based Eigenvalue Solver on GPU. "on-demand.gputechco
nf.com/gtc/2017/presentation/s7121-lung-sheng-chien-jacobi-b
ased-eigenvalue-solver.pdf", 2017. Retrieved on 2021-08-12.

[35] Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash Gopalakrish-
nan, Zhuo Wang, and Pierce Chuang. Accurate and Efficient 2-bit Quantized Neural Net-
works. In MLSys, 2019.

[36] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. When HLS Meets
FPGA HBM: Benchmarking and Bandwidth Optimization. arXiv preprint arXiv:2010.06075,
2020.

[37] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky.
Nvidia A100 tensor core GPU: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.

[38] Alain Cosnuau. Computation on GPU of Eigenvalues and Eigenvectors of a Large Number
of Small Hermitian Matrices. Procedia Computer Science, 29:800–810, 12 2014.

[39] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we really making
much progress? A worrying analysis of recent neural recommendation approaches. In Pro-
ceedings of the 13th ACM Conference on Recommender Systems, pages 101–109, 2019.

[40] Dimitrios Danopoulos, Christoforos Kachris, and Dimitrios Soudris. Fpga Acceleration of
Approximate KNN Indexing on High-Dimensional Vectors, July 2019.

[41] Shail Dave, Riyadh Baghdadi, Tony Nowatzki, Sasikanth Avancha, Aviral Shrivastava, and
Baoxin Li. Hardware acceleration of sparse and irregular tensor computations of ML models:
A survey and insights. Proceedings of the IEEE, 2021.

"on-demand.gputechconf.com/gtc/2017/presentation/s7121-lung-sheng-chien-jacobi-based-eigenvalue-solver.pdf"
"on-demand.gputechconf.com/gtc/2017/presentation/s7121-lung-sheng-chien-jacobi-based-eigenvalue-solver.pdf"
"on-demand.gputechconf.com/gtc/2017/presentation/s7121-lung-sheng-chien-jacobi-based-eigenvalue-solver.pdf"

“output” — 2022/1/15 — 13:36 — page 150 — #164

[42] Timothy A Davis. Algorithm 1000: SuiteSparse: GraphBLAS: Graph algorithms in the
language of sparse linear algebra. ACM Transactions on Mathematical Software (TOMS),
45(4):1–25, 2019.

[43] Timothy A Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[44] Emanuele Del Sozzo. On how to effectively target FPGAs from domain specific tools. PhD
thesis, Politecnico di Milano, 2019.

[45] Michael DeLorimier and André DeHon. Floating-point sparse matrix-vector multiply for
FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 75–85, 2005.

[46] Weibing Deng, Wei Li, Xu Cai, and Qiuping A Wang. The exponential degree distribution
in complex networks: Non-equilibrium network theory, numerical simulation and empirical
data. Physica A: Statistical Mechanics and its Applications, 390(8):1481–1485, 2011.

[47] P. Desai, S. Aslan, and J. Saniie. Fpga implementation of Gram-Schmidt QR decomposition
using high level synthesis. In 2017 IEEE International Conference on Electro Information
Technology (EIT), pages 482–487, 2017.

[48] Jens Domke, Emil Vatai, Aleksandr Drozd, Peng ChenT, Yosuke Oyama, Lingqi Zhang,
Shweta Salaria, Daichi Mukunoki, Artur Podobas, Mohamed WahibT, et al. Matrix en-
gines for high performance computing: A paragon of performance or grasping at straws?
In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
1056–1065. IEEE, 2021.

[49] Jérôme Dubois, Christophe Calvin, and Serge Petiton. Accelerating the explicitly restarted
Arnoldi method with GPUs using an autotuned matrix vector product. SIAM Journal on
Scientific Computing, 33(5):3010–3019, 2011.

[50] Iain S Duff. A survey of sparse matrix research. Proceedings of the IEEE, 65(4):500–535,
1977.

[51] Iain S Duff, Michael A Heroux, and Roldan Pozo. An overview of the sparse basic linear
algebra subprograms: The new standard from the BLAS technical forum. ACM Transactions
on Mathematical Software (TOMS), 28(2):239–267, 2002.

[52] David Ediger, Rob McColl, Jason Riedy, and David A Bader. Stinger: High performance
data structure for streaming graphs. In 2012 IEEE Conference on High Performance Extreme
Computing, pages 1–5. IEEE, 2012.

[53] Nikolay M Evstigneev. Implementation of implicitly restarted Arnoldi method on multiGPU
architecture with application to fluid dynamics problems. In International Conference on
Parallel Computational Technologies, pages 301–316. Springer, 2017.

[54] Priyank Faldu, Jeff Diamond, and Boris Grot. A closer look at lightweight graph reordering.
In 2019 IEEE International Symposium on Workload Characterization (IISWC), pages 1–13.
IEEE, 2019.

[55] Jian Fang, Yvo TB Mulder, Jan Hidders, Jinho Lee, and H Peter Hofstee. In-memory database
acceleration on FPGAs: a survey. The VLDB Journal, 29(1):33–59, 2020.

[56] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[57] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg Stitt. A high mem-
ory bandwidth fpga accelerator for sparse matrix-vector multiplication. In 2014 IEEE 22nd
Annual International Symposium on Field-Programmable Custom Computing Machines,
pages 36–43. IEEE, 2014.

“output” — 2022/1/15 — 13:36 — page 151 — #165

[58] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast Approximate Nearest Neigh-
bor Search with the Navigating Spreading-out Graph. Proc. VLDB Endow., 12(5):461474,
January 2019.

[59] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. Just-In-Time GPU
Compilation for Interpreted Languages with Partial Evaluation. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’17, pages 60–73, New York, NY, USA, 2017. ACM.

[60] Jianhua Gao, Weixing Ji, Zhaonian Tan, and Yueyan Zhao. A systematic survey of general
sparse matrix-matrix multiplication. arXiv preprint arXiv:2002.11273, 2020.

[61] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. Travers-
ing large graphs on GPUs with unified memory. Proceedings of the VLDB Endowment,
13(7):1119–1133, 2020.

[62] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt
Keutzer. A survey of quantization methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021.

[63] Amir Gholami, Michael Mahoney, Kurt Keutzer, Suresh Krishna, Ravi Krishna, Zhewei Yao,
Zhen Dong, Sehoon Kim, Tianren Gao, Bohan Zhai Zhai, and Nrusimha Ani. Emerging AI
Applications: Moving Beyond ResNet50 on ImageNet. "amirgholami.org/assets/
talks/2021_02_Intel_ISAS.pdf", 2 2021. Retrieved 2021-08-24.

[64] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, and Kurz Keutzer. Ai and
Memory Wall. https://medium.com/riselab/ai-and-memory-wall-2cb4
265cb0b8, 2021. Retrieved 2021-08-27.

[65] Gene H Golub and Richard Underwood. The block Lanczos method for computing eigenval-
ues. In Mathematical software, pages 361–377. Elsevier, 1977.

[66] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos. Accelerating financial
applications on the GPU. In Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units, pages 127–136. ACM, 2013.

[67] Paul Grigoras. Instance directed tuning for sparse matrix kernels on reconfigurable acceler-
ators. PhD thesis, Imperial College London, 2018.

[68] Paul Grigoras, Pavel Burovskiy, Eddie Hung, and Wayne Luk. Accelerating SpMV on FPGAs
by compressing nonzero values. In 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, pages 64–67. IEEE, 2015.

[69] Paul Grigoras, Pavel Burovskiy, and Wayne Luk. Cask: Open-source custom architectures
for sparse kernels. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 179–184, 2016.

[70] Paul Grigoraş, Pavel Burovskiy, Wayne Luk, and Spencer Sherwin. Optimising sparse ma-
trix vector multiplication for large scale fem problems on fpga. In 2016 26th International
Conference on Field Programmable Logic and Applications (FPL), pages 1–9. IEEE, 2016.

[71] Gaël Guennebaud, Benoit Jacob, et al. Eigen. URl: http://eigen. tuxfamily. org, 3, 2010.

[72] Wentian Guo, Yuchen Li, Mo Sha, and Kian-Lee Tan. Parallel personalized PageRank on
dynamic graphs. Proceedings of the VLDB Endowment, 11(1):93–106, 2017.

[73] K. D. Gupta, M. Wajid, R. Muzammil, and S. J. Arif. Hardware Architecture for Eigenval-
ues Computation using the Modified Jacobi Algorithm on FPGA. In 2019 5th International
Conference on Signal Processing, Computing and Control (ISPCC), pages 243–246, 2019.

"amirgholami.org/assets/talks/2021_02_Intel_ISAS.pdf"
"amirgholami.org/assets/talks/2021_02_Intel_ISAS.pdf"
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

“output” — 2022/1/15 — 13:36 — page 152 — #166

[74] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International conference on machine learning, pages
1737–1746. PMLR, 2015.

[75] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei,
Hsien-Hsin S Lee, David Brooks, and Carole-Jean Wu. Deeprecsys: A system for optimiz-
ing end-to-end at-scale neural recommendation inference. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 982–995. IEEE, 2020.

[76] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen, David
Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al. The architectural
implications of Facebook’s DNN-based personalized recommendation. In 2020 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages 488–501.
IEEE, 2020.

[77] Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Transactions on Mathematical Software (TOMS), 4(3):250–269, 1978.

[78] Fred G Gustavson, Werner Liniger, and R Willoughby. Symbolic generation of an opti-
mal Crout algorithm for sparse systems of linear equations. Journal of the ACM (JACM),
17(1):87–109, 1970.

[79] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J Higham. Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers.
In SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 603–613. IEEE, 2018.

[80] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: Efficient inference engine on compressed deep neural network. ACM
SIGARCH Computer Architecture News, 44(3):243–254, 2016.

[81] Mark Harris. Write flexible kernels with grid-stride loops. developer.nvidia.com
/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops,
2013-04-13. Retrieved on 2021-05-23.

[82] V Hernandez, JE Roman, A Tomas, and V Vidal. A survey of software for sparse eigenvalue
problems. Universitat Politecnica De Valencia, SLEPs technical report STR-6, 2009.

[83] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in Deep Learning: Pruning and growth for efficient inference and training in neural networks.
arXiv preprint arXiv:2102.00554, 2021.

[84] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-Marl: a DSL
for easy and efficient graph analysis. ACM SIGARCH Computer Architecture News,
40(1):349–362, 2012.

[85] Michael Hopkins, Mantas Mikaitis, Dave R Lester, and Steve Furber. Stochastic rounding and
reduced-precision fixed-point arithmetic for solving neural ordinary differential equations.
Philosophical Transactions of the Royal Society A, 378(2166):20190052, 2020.

[86] Guanhao Hou, Xingguang Chen, Sibo Wang, and Zhewei Wei. Massively Parallel Al-
gorithms for Personalized PageRank. PROCEEDINGS OF THE VLDB ENDOWMENT,
14(9):1668–1680, 2021.

[87] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani
Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based retrieval in Face-
book search. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2553–2561, 2020.

[88] Intel. Intel Math Kernel Library. software.intel.com/content/www/us/en/d
evelop/tools/oneapi/components/onemkl.html#gs.8w0k0g.

developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops
developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops
software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.8w0k0g
software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html#gs.8w0k0g

“output” — 2022/1/15 — 13:36 — page 153 — #167

[89] Ilse CF Ipsen and Teresa M Selee. Pagerank computation, with special attention to dangling
nodes. SIAM Journal on Matrix Analysis and Applications, 29(4):1281–1296, 2008.

[90] Abhishek Kumar Jain, Hossein Omidian, Henri Fraisse, Mansimran Benipal, Lisa Liu, and
Dinesh Gaitonde. A Domain-Specific Architecture for Accelerating Sparse Matrix Vector
Multiplication on FPGAs. In 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL). IEEE, 2020.

[91] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion
Stoica, and Joseph E Gonzalez. Checkmate: Breaking the memory wall with optimal tensor
rematerialization. arXiv preprint arXiv:1910.02653, 2019.

[92] Wole Jaiyeoba and Kevin Skadron. Graphtinker: A high performance data structure for dy-
namic graph processing. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 1030–1041. IEEE, 2019.

[93] Jun-Woo Jang, Sehwan Lee, Dongyoung Kim, Hyunsun Park, Ali Shafiee Ardestani, Yeong-
jae Choi, Channoh Kim, Yoojin Kim, Hyeongseok Yu, Hamzah Abdel-Aziz, et al. Sparsity-
Aware and Re-configurable NPU Architecture for Samsung Flagship Mobile SoC. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pages
15–28. IEEE, 2021.

[94] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[95] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 2019.

[96] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Motivation for and evalua-
tion of the first tensor processing unit. IEEE Micro, 38(3):10–19, 2018.

[97] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

[98] Sepandar D Kamvar, Taher H Haveliwala, Christopher D Manning, and Gene H Golub. Ex-
trapolation methods for accelerating PageRank computations. In Proceedings of the 12th
international conference on World Wide Web, pages 261–270. ACM, 2003.

[99] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi,
Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez Luna, and Onur Mutlu.
Smash: Co-designing software compression and hardware-accelerated indexing for efficient
sparse matrix operations. In Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 600–614, 2019.

[100] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and Gus-
tavo Alonso. High Bandwidth Memory on FPGAs: A Data Analytics Perspective. arXiv
preprint arXiv:2004.01635, 2020.

[101] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti, John Gilbert,
Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, et al. Mathemat-
ical foundations of the GraphBLAS. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–9. IEEE, 2016.

[102] Srinidhi Kestur, John D Davis, and Eric S Chung. Towards a universal FPGA matrix-
vector multiplication architecture. In 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, pages 9–16. IEEE, 2012.

“output” — 2022/1/15 — 13:36 — page 154 — #168

[103] James King, Thomas Gilray, Robert M Kirby, and Matthew Might. Dynamic sparse-matrix
allocation on GPUs. In International Conference on High Performance Computing, pages
61–80. Springer, 2016.

[104] Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal
block preconditioned conjugate gradient method. SIAM journal on scientific computing,
23(2):517–541, 2001.

[105] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet, John Mawer, and
Mikel Luján. Heterogeneous Managed Runtime Systems: A Computer Vision Case Study.
SIGPLAN Not., pages 74–82, April 2017.

[106] Suresh Krishna and Ravi Krishna. Accelerating Recommender Systems via Hardware scale-
in. arXiv preprint arXiv:2009.05230, 2020.

[107] Hsiang-Tsung Kung. Why systolic architectures? IEEE computer, 15(1):37–46, 1982.

[108] Fang-An Kuo, Matthew R Smith, Chih-Wei Hsieh, Chau-Yi Chou, and Jong-Shinn Wu. Gpu
acceleration for general conservation equations and its application to several engineering
problems. Computers & Fluids, 45(1):147–154, 2011.

[109] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A practical near-memory pro-
cessing architecture for embeddings and tensor operations in deep learning. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 740–753,
2019.

[110] Kartik Lakhotia, Shreyas Singapura, Rajgopal Kannan, and Viktor Prasanna. Recall: Re-
ordered cache aware locality based graph processing. In 2017 IEEE 24th International Con-
ference on High Performance Computing (HiPC), pages 273–282. IEEE, 2017.

[111] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. Journal of Research of the National Bureau of Standards,
1950.

[112] Martin Langhammer, Sergey Gribok, and Gregg Baeckler. High Density 8-Bit Multiplier
Systolic Arrays For FPGA. In 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 84–92. IEEE, 2020.

[113] Amy N Langville and Carl D Meyer. Deeper inside PageRank. Internet Mathematics,
1(3):335–380, 2004.

[114] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subpro-
grams for Fortran Usage. ACM Trans. Math. Softw., 5(3):308–323, September 1979.

[115] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic linear alge-
bra subprograms for Fortran usage. ACM Transactions on Mathematical Software (TOMS),
5(3):308–323, 1979.

[116] Dongjin Lee, Takeo Hoshi, Tomohiro Sogabe, Yuto Miyatake, and Shao-Liang Zhang. Solu-
tion of the k-th eigenvalue problem in large-scale electronic structure calculations. Journal of
Computational Physics, 371:618–632, 2018.

[117] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

[118] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[119] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

http://snap.stanford.edu/data

“output” — 2022/1/15 — 13:36 — page 155 — #169

[120] Jun Li, Xiaoling Zheng, Yafeng Wu, and Deren Chen. A computational trust model in c2c
e-commerce environment. In 2010 IEEE 7th International Conference on E-Business Engi-
neering, pages 244–249. IEEE, 2010.

[121] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. Fp-BNN: Binarized
neural network on FPGA. Neurocomputing, 275:1072–1086, 2018.

[122] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing Hu. Ascend:
a Scalable and Unified Architecture for Ubiquitous Deep Neural Network Computing: Indus-
try Track Paper. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 789–801. IEEE, 2021.

[123] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. Davinci: A scalable architecture for neu-
ral network computing. In 2019 IEEE Hot Chips 31 Symposium (HCS), pages 1–44. IEEE
Computer Society, 2019.

[124] Weifeng Liu and Brian Vinter. Csr5: An efficient storage format for cross-platform sparse
matrix-vector multiplication. In Proceedings of the 29th ACM on International Conference
on Supercomputing, pages 339–350, 2015.

[125] Yongchao Liu and Bertil Schmidt. Lightspmv: Faster CSR-based sparse matrix-vector
multiplication on CUDA-enabled GPUs. In 2015 IEEE 26th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 82–89. IEEE,
2015.

[126] Alec Lu, Zhenman Fang, Weihua Liu, and Lesley Shannon. Demystifying the memory system
of modern datacenter FPGAs for software programmers through microbenchmarking. In
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2021.

[127] Kejing Lu, Hongya Wang, Wei Wang, and Mineichi Kudo. Vhp: approximate nearest
neighbor search via virtual hypersphere partitioning. Proceedings of the VLDB Endowment,
13(9):1443–1455, 2020.

[128] MAGMA. magma_slobpcg. icl.cs.utk.edu/projectsfiles/magma/doxygen
/group__magmasparse__ssyev.html, 2020.

[129] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning
for sparse coding. In Proceedings of the 26th annual international conference on machine
learning, pages 689–696, 2009.

[130] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S Vet-
ter. Nvidia tensor core programmability, performance & precision. In 2018 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
522–531. IEEE, 2018.

[131] Kristyn J Maschhoff and Danny C Sorensen. P_arpack: An efficient portable large scale
eigenvalue package for distributed memory parallel architectures. In International workshop
on applied parallel computing, pages 478–486. Springer, 1996.

[132] Seamas McGettrick, Dermot Geraghty, and Ciaran McElroy. An FPGA architecture for the
PageRank eigenvector problem. In 2008 International Conference on Field Programmable
Logic and Applications, pages 523–526. IEEE, 2008.

[133] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.

[134] Micron Technology, Inc. How Much Power Does Memory Use? https://www.crucia
l.com/support/articles-faq-memory/how-much-power-does-memory
-use, 2019.

icl.cs.utk.edu/projectsfiles/magma/doxygen/group__magmasparse__ssyev.html
icl.cs.utk.edu/projectsfiles/magma/doxygen/group__magmasparse__ssyev.html
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use

“output” — 2022/1/15 — 13:36 — page 156 — #170

[135] Ioannis Mitliagkas, Michael Borokhovich, Alexandros G Dimakis, and Constantine Carama-
nis. Frogwild!: fast PageRank approximations on graph engines. Proceedings of the VLDB
Endowment, 8(8):874–885, 2015.

[136] Sparsh Mittal. A survey of FPGA-based accelerators for convolutional neural networks. Neu-
ral computing and applications, 32(4):1109–1139, 2020.

[137] Mirko Myllykoski and Carl Christian Kjelgaard Mikkelsen. Task-based, GPU-accelerated
and robust library for solving dense nonsymmetric eigenvalue problems. Concurrency and
Computation: Practice and Experience, 33(11):e5915, 2021.

[138] Zoltán Nagy and Péter Szolgay. Configurable multilayer CNN-UM emulator on FPGA.
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
50(6):774–778, 2003.

[139] M Naumov, LS Chien, P Vandermersch, and U Kapasi. Cusparse library. In GPU Technology
Conference, 2010.

[140] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong Wang, Whit-
ney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal, et al. Deep learning
training in Facebook data centers: Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518, 2020.

[141] Netlib. BLAS (Basic Linear Algebra Subprograms). www.netlib.org/blas/.

[142] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pages 849–856, 2002.

[143] T. Nguyen, S. Williams, M. Siracusa, C. MacLean, and N. Wright D. Doerfler. The Perfor-
mance and Energy Efficiency Potential of FPGAs in Scientific Computing. In IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS), 2020.

[144] Nimbix. Nimbix Xilinx Alveo Accelerator Cards. www.nimbix.net/alveo. Retrieved
2021-07-25.

[145] NIST. Sparse Basic Linear Algebra Subprograms (BLAS) Library. math.nist.gov/sp
blas.

[146] Nvidia. nvgraph. docs.nvidia.com/cuda/nvgraph/index.html, 2019.

[147] Nvidia. cusolver. docs.nvidia.com/cuda/cusolver/index.html, 2020.

[148] Nvidia. Nvidia A100 Tensor Core GPU. www.nvidia.com/en-us/data-center/a
100/, 2020. Retrieved on 2021-08-21.

[149] Nvidia. Nvidia A100 Tensor Core GPU Architecture. images.nvidia.com/aem-da
m/en-zz/Solutions/data-center/nvidia-ampere-architecture-whi
tepaper.pdf, 2020. Retrieved 2021-07-29.

[150] Nvidia. Nvidia Tesla A100 Data-sheet. www.nvidia.com/content/dam/en-zz/S
olutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf, 2020.
Retrieved on 2020-11-12.

[151] Nvidia. Cuda programming guide, thread hierarchy. docs.nvidia.com/cuda/cud
a-c-programming-guide/index.html#thread-hierarchy, 2020-10-27.
Retrieved on 2021-05-23.

[152] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[153] Christopher C Paige. Computational variants of the Lanczos method for the eigenproblem.
IMA Journal of Applied Mathematics, 10(3):373–381, 1972.

www.netlib.org/blas/
www.nimbix.net/alveo
math.nist.gov/spblas
math.nist.gov/spblas
docs.nvidia.com/cuda/nvgraph/index.html
docs.nvidia.com/cuda/cusolver/index.html
www.nvidia.com/en-us/data-center/a100/
www.nvidia.com/en-us/data-center/a100/
images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy

“output” — 2022/1/15 — 13:36 — page 157 — #171

[154] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Society for Industrial and Applied
Mathematics, Philadelphia, 1998.

[155] Alberto Parravicini, Luca Giuseppe Cellamare, Marco Siracusa, and Marco D Santambro-
gio. Scaling up HBM Efficiency of Top-K SpMV for Approximate Embedding Similarity
on FPGAs. In To appear in Proceedings of the 58th Design Automation Conference (DAC),
2021.

[156] Alberto Parravicini, Arnaud Delamare, Marco Arnaboldi, and Marco D Santambrogio. DAG-
based Scheduling with Resource Sharing for Multi-task Applications in a Polyglot GPU Run-
time. In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 111–120. IEEE, 2021.

[157] Alberto Parravicini, Rhicheek Patra, Davide B Bartolini, and Marco D Santambrogio. Fast
and accurate entity linking via graph embedding. In Proceedings of the 2nd Joint Interna-
tional Workshop on Graph Data Management Experiences & Systems (GRADES) and Net-
work Data Analytics (NDA), pages 1–9, 2019.

[158] Alberto Parravicini, Francesco Sgherzi, and Marco D Santambrogio. A reduced-precision
streaming SpMV architecture for Personalized PageRank on FPGA. In 2021 26th Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 378–383. IEEE, 2021.

[159] Julian Pavon, Ivan Vargas Valdivieso, Adrián Barredo, Joan Marimon, Miquel Moreto,
Francesc Moll, Osman Unsal, Mateo Valero, and Adrian Cristal. Via: A Smart Scratch-
pad for Vector Units with Application to Sparse Matrix Computations. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA), pages 921–934.
IEEE, 2021.

[160] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global Vectors
for Word Representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[161] Pietro Perona and William Freeman. A factorization approach to grouping. In European
Conference on Computer Vision, pages 655–670. Springer, 1998.

[162] Maria Pershina, Yifan He, and Ralph Grishman. Personalized Page Rank for named entity
disambiguation. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 238–243,
2015.

[163] David MW Powers. Applications and explanations of Zipfs law. In New methods in language
processing and computational natural language learning, 1998.

[164] Andrew Putnam. Fpgas in the datacenter: Combining the worlds of hardware and software
development. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages 5–5,
2017.

[165] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al.
A reconfigurable fabric for accelerating large-scale datacenter services. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pages 13–24. IEEE, 2014.

[166] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan, Di-
pankar Das, Bharat Kaul, and Tushar Krishna. Sigma: A sparse and irregular GEMM accel-
erator with flexible interconnects for DNN training. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 58–70. IEEE, 2020.

[167] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37.
Springer Science & Business Media, 2010.

“output” — 2022/1/15 — 13:36 — page 158 — #172

[168] Abid Rafique, George A Constantinides, and Nachiket Kapre. Communication optimization
of iterative sparse matrix-vector multiply on GPUs and FPGAs. IEEE Transactions on Par-
allel and Distributed Systems, 26(1):24–34, 2014.

[169] Ran Rui, Hao Li, and Yi-Cheng Tu. Efficient join algorithms for large database tables in a
multi-GPU environment. Proceedings of the VLDB Endowment, 14(4):708–720, 2020.

[170] H. Rutishauser. The Jacobi method for real symmetric matrices. Numerische Mathematik,
9(1):1–10, Nov 1966.

[171] Fazle Sadi. Accelerating Sparse Matrix Kernels with Co-Optimized Architecture. kilthu
b.cmu.edu/articles/thesis/Accelerating_Sparse_Matrix_Kernels
_with_Co-Optimized_Architecture/7583975/1, Jan 2019.

[172] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe, Larry Pileggi, and Franz Franchetti.
Efficient SpMV Operation for Large and Highly Sparse Matrices Using Scalable Multi-Way
Merge Parallelization. In Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 347–358, New York, NY, USA, 2019. Association for
Computing Machinery.

[173] Alan Said and Alejandro Bellogín. Replicable evaluation of recommender systems. In Pro-
ceedings of the 9th ACM Conference on Recommender Systems, pages 363–364, 2015.

[174] Charbel Sakr, Naigang Wang, Chia-Yu Chen, Jungwook Choi, Ankur Agrawal, Naresh
Shanbhag, and Kailash Gopalakrishnan. Accumulation bit-width scaling for ultra-low pre-
cision training of deep networks. arXiv preprint arXiv:1901.06588, 2019.

[175] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

[176] Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear
algebra. Journal of Open Source Software, 1(2):26, 2016.

[177] Francesco Sgherzi, Alberto Parravicini, Marco Siracusa, and Marco D Santambrogio. Solving
Large Top-K Graph Eigenproblems with a Memory and Compute-optimized FPGA Design.
In 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pages 78–87. IEEE, 2021.

[178] Yi Shan, Tianji Wu, Yu Wang, Bo Wang, Zilong Wang, Ningyi Xu, and Huazhong Yang. Fpga
and GPU implementation of large scale SpMV. In 2010 IEEE 8th Symposium on Application
Specific Processors (SASP), pages 64–70. IEEE, 2010.

[179] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental performance
characteristics of GPUs and CPUs for database analytics. In Proceedings of the 2020 ACM
SIGMOD international conference on Management of data, pages 1617–1632, 2020.

[180] Guy Shani and Asela Gunawardana. Evaluating recommendation systems. In Recommender
systems handbook, pages 257–297. Springer, 2011.

[181] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[182] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang. Realtime top-k per-
sonalized PageRank over large graphs on GPUs. Proceedings of the VLDB Endowment,
13(1):15–28, 2019.

[183] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng. Bull.,
24(4):35–43, 2001.

[184] M. Siracusa, M. Rabozzi, E. Del Sozzo, L. Di Tucci, S. Williams, and M. D. Santambrogio. A
CAD-based methodology to optimize HLS code via the Roofline model. In 2020 IEEE/ACM
ICCAD, 2020.

kilthub.cmu.edu/articles/thesis/Accelerating_Sparse_Matrix_Kernels_with_Co-Optimized_Architecture/7583975/1
kilthub.cmu.edu/articles/thesis/Accelerating_Sparse_Matrix_Kernels_with_Co-Optimized_Architecture/7583975/1
kilthub.cmu.edu/articles/thesis/Accelerating_Sparse_Matrix_Kernels_with_Co-Optimized_Architecture/7583975/1

“output” — 2022/1/15 — 13:36 — page 159 — #173

[185] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and Zhiru
Zhang. Tensaurus: A versatile accelerator for mixed sparse-dense tensor computations. In
2020 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 689–702. IEEE, 2020.

[186] Markus Steinberger, Andreas Derlery, Rhaleb Zayer, and Hans-Peter Seidel. How naive is
naive SpMV on the GPU? In 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–8. IEEE, 2016.

[187] Junqing Sun, Gregory D Peterson, and Olaf O Storaasli. High-performance mixed-precision
linear solver for FPGAs. IEEE Transactions on Computers, 57(12):1614–1623, 2008.

[188] Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath
Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Srinivasan, and Kailash Gopalakrish-
nan. Ultra-Low Precision 4-bit Training of Deep Neural Networks. In NeurIPS, 2020.

[189] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks. Synthesis Lectures on Computer Architecture, 15(2):1–341, 2020.

[190] Fengqin Tang, Chunning Wang, Jinxia Su, and Yuanyuan Wang. Spectral clustering-based
community detection using graph distance and node attributes. Computational Statistics,
35(1):69–94, 2020.

[191] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Transactions on information theory, 53(12):4655–4666, 2007.

[192] Frederick Tung, Alexander Wong, and David A Clausi. Enabling scalable spectral clustering
for image segmentation. Pattern Recognition, 43(12):4069–4076, 2010.

[193] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 65–74, 2017.

[194] Yaman Umuroglu and Magnus Jahre. An energy efficient column-major backend for FPGA
SpMV accelerators. In 2014 IEEE 32nd International Conference on Computer Design
(ICCD), pages 432–439. IEEE, 2014.

[195] Yaman Umuroglu and Magnus Jahre. A vector caching scheme for streaming FPGA SpMV
accelerators. In International Symposium on Applied Reconfigurable Computing, pages
15–26. Springer, 2015.

[196] Yaman Umuroglu and Magnus Jahre. Random access schemes for efficient FPGA SpMV
acceleration. Microprocessors and Microsystems, 47:321–332, 2016.

[197] Javier Vázquez-Castillo, Alejandro Castillo-Atoche, Roberto Carrasco-Alvarez, Omar
Longoria-Gandara, and Jaime Ortegón-Aguilar. Fpga-Based Hardware Matrix Inversion Ar-
chitecture Using Hybrid Piecewise Polynomial Approximation Systolic Cells. Electronics,
9(1):182, 2020.

[198] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cour-
napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van
der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

“output” — 2022/1/15 — 13:36 — page 160 — #174

[199] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of automatically
tuned sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 071.
IOP Publishing, 2005.

[200] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan
Wang. Intel math kernel library. In High-Performance Computing on the Intel® Xeon Phi,
pages 167–188. Springer, 2014.

[201] Erwei Wang, James J Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu, Wayne Luk, Peter YK
Cheung, and George A Constantinides. Deep Neural Network Approximation for Custom
Hardware: Where We’ve Been, Where We’re Going. ACM Computing Surveys (CSUR),
52(2):1–39, 2019.

[202] T. Wang, L. Guo, G. Li, J. Li, R. Wang, M. Ren, and J. He. Implementing the Jacobi Algo-
rithm for Solving Eigenvalues of Symmetric Matrices with CUDA. In 2012 IEEE Seventh
International Conference on Networking, Architecture, and Storage, pages 69–78, 2012.

[203] Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen Leng. Dual-
side Sparse Tensor Core. arXiv preprint arXiv:2105.09564, 2021.

[204] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D
Owens. Gunrock: A high-performance graph processing library on the GPU. In ACM SIG-
PLAN Notices, volume 51, page 11. ACM, 2016.

[205] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. Shuhai: Benchmarking High
Bandwidth Memory On FPGAS. In 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 111–119. IEEE, 2020.

[206] Haroon Waris, Chenghua Wang, Weiqiang Liu, and Fabrizio Lombardi. Axsa: On the Design
of High-Performance and Power-Efficient Approximate Systolic Arrays for Matrix Multipli-
cation. Journal of Signal Processing Systems, 8 2020.

[207] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph processing by graph
ordering. In Proceedings of the 2016 International Conference on Management of Data,
pages 1813–1828, 2016.

[208] Brian Wheatman and Helen Xu. Packed compressed sparse row: A dynamic graph represen-
tation. In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages 1–7.
IEEE, 2018.

[209] Xilinx. Large FPGA Methodology Guide. www.xilinx.com/support/documenta
tion/sw_manuals/xilinx14_7/ug872_largefpga.pdf, 2012.

[210] Xilinx. Ultrascale Architecture Configurable Logic Block. www.xilinx.com/support
/documentation/user_guides/ug574-ultrascale-clb.pdf, 2017.

[211] Xilinx. Alveo U280 Data Center Accelerator Card, 11 2019. Rev. 1.2.1.

[212] Xilinx. Alveo U280 Data Center Accelerator Cards Data Sheet, 5 2020. Rev. 1.3.

[213] Xilinx. Axi High Bandwidth Memory Controller v1.0 LogiCORE IP Product Guide. www.
xilinx.com/support/documentation/ip_documentation/hbm/v1_0/p
g276-axi-hbm.pdf, 2020.

[214] Xilinx. Vivado Design Suite User Guide, 1 2020. Rev. v2019.2.

[215] Xilinx. Vitis SPARSE Library, 6 2021. Retrieved on 2021-08-24.

[216] Ichitaro Yamazaki, Hartwig Anzt, Stanimire Tomov, Mark Hoemmen, and Jack Dongarra.
Improving the performance of CA-GMRES on multicores with multiple GPUs. In IPDPS
2014, Phoenix, AZ, 05-2014 2014. IEEE.

www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf

“output” — 2022/1/15 — 13:36 — page 161 — #175

[217] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying tensor cores to optimize half-precision
matrix multiply. In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 634–643. IEEE, 2020.

[218] Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix multiplica-
tion on the GPU. In European Conference on Parallel Processing, pages 672–687. Springer,
2018.

[219] Carl Yang, Aydin Buluc, and John D Owens. Graphblast: A high-performance linear algebra-
based graph framework on the GPU. arXiv preprint arXiv:1908.01407, 2019.

[220] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy Lemieux, and
Mieszko Lis. Procrustes: a dataflow and accelerator for sparse deep neural network training.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 711–724. IEEE, 2020.

[221] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S Bhowmick. Homogeneous
network embedding for massive graphs via reweighted personalized PageRank. arXiv preprint
arXiv:1906.06826, 2019.

[222] Yifan Yang, Joel S Emer, and Daniel Sanchez. Spzip: Architectural Support for Effective
Data Compression In Irregular Applications. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 1069–1082. IEEE, 2021.

[223] Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. In Advances in Neural
Information Processing Systems, pages 887–898, 2018.

[224] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6848–6856, 2018.

[225] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman
Amarasinghe. Graphit: A high-performance graph DSL. Proceedings of the ACM on Pro-
gramming Languages, 2(OOPSLA):121, 2018.

[226] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient architecture
for sparse matrix multiplication. In 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 261–274. IEEE, 2020.

[227] Bolong Zheng, Zhao Xi, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and Christian S
Jensen. Pm-LSH: A fast and accurate LSH framework for high-dimensional approximate NN
search. Proceedings of the VLDB Endowment, 13(5):643–655, 2020.

[228] Qingmei Zhou, Xin Chen, and Jiuya Zhang. Spectral Clustering-Based Matrix Completion
Method for Top-n Recommendation. In Proceedings of the 2019 5th International Conference
on Computing and Data Engineering, ICCDE’ 19, pages 1–6, New York, NY, USA, 2019.
Association for Computing Machinery.

[229] Shijie Zhou, Charalampos Chelmis, and Viktor K Prasanna. Optimizing memory performance
for FPGA implementation of PageRank. In 2015 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2015.

[230] Shijie Zhou, Kartik Lakhotia, Shreyas G Singapura, Hanqing Zeng, Rajgopal Kannan, Vik-
tor K Prasanna, James Fox, Euna Kim, Oded Green, and David A Bader. Design and im-
plementation of parallel PageRank on multicore platforms. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–6. IEEE, 2017.

[231] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A computation-
centric distributed graph processing system. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 301–316, 2016.

“output” — 2022/1/15 — 13:36 — page 162 — #176

[232] Ling Zhuo and Viktor K Prasanna. Sparse matrix-vector multiplication on FPGAs. In Pro-
ceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate
arrays, pages 63–74, 2005.

	Introduction
	Problem Statement
	The Memory Wall Keeps Rising
	Accelerating Sparse Linear Algebra by Leveraging Novel Memory Technologies
	Bringing FPGAs into the Equation

	Contributions
	A Reduced-Precision Streaming SpMV Hardware Design for Personalized PageRank on FPGA
	Solving Large Top-K Graph Eigenproblems with a Memory and Compute-optimized FPGA Design
	Scaling up HBM Efficiency of Top-K SpMV for Approximate Embedding Similarity on FPGAs

	Publications
	How to Read This Thesis

	Background on Sparse Linear Algebra and Hardware Architectures
	Introduction
	Introduction to Sparse Linear Algebra
	Building Blocks of Sparse Linear Algebra
	Data Structures for Sparse Linear Algebra
	Implementing SpMV with COO and CSR

	Notions of Numerical Mathematics
	Notions of Numerical Stability
	Machine Real Number Formats
	Evaluating Accuracy in Information Retrieval

	Hardware for Sparse Linear Algebra
	General-purpose CPUs (GPCPUs)
	Graphics Processing Units (GPUs)
	Field Programmable Gate Arrays (FPGAs)
	FPGA Accelerator Cards
	Domain Specific Architectures (DSAs) and Custom Hardware Extensions

	Final Remarks
	The Importance of Memory Controllers
	No architecture to rule them all

	A Reduced-Precision Streaming SpMV Hardware Design for Personalized PageRank on FPGA
	Introduction
	Related Work
	Numerical Optimizations
	CPU and GPU Implementations
	FPGA Implementations

	Problem Definition
	The Proposed FPGA Hardware Design
	Personalized PageRank Hardware Design
	Customizing SpMV for PPR
	PPR Buffers Design
	Host Integration

	Experimental Evaluation
	Execution time
	Energy Efficiency
	Accuracy Analysis
	Fixed-point produces faster convergence

	Final Remarks

	Solving Large Top-K Graph Eigenproblems with a Memory and Compute-optimized FPGA Design
	Introduction
	Motivation
	Contributions

	Related Work
	Solving the Top-K Sparse Eigenproblem
	The Lanczos Algorithm
	The Jacobi Eigenvalue Algorithm

	The Proposed FPGA Hardware Design
	Lanczos Hardware Design
	SpMV Hardware Design
	Jacobi Systolic Array Design

	Experimental Evaluation
	Execution Time
	Power Efficiency
	Accuracy Analysis of the Approximate Eigencomputation

	Final Remarks

	Scaling up HBM Efficiency of Top-K SpMV for Approximate Embedding Similarity on FPGAs
	Introduction
	Related Work
	Theoretical Contributions
	Top-K SPMV Approximation
	The Block-Streaming CSR Matrix Layout

	The Proposed FPGA Hardware Design
	Leveraging URAM for Fast Random Access
	Top-K SpMV Algorithm Design
	Lower Precision, More Cores, Better Performance
	Host Integration

	Experimental Evaluation
	Execution Time
	Power Efficiency
	Roofline Model Analysis
	Approximation Accuracy Analysis

	Final Remarks

	Conclusion and Future Work
	Limitations and Future Directions
	A Reduced-Precision Streaming SpMV Hardware Design for Personalized PageRank on FPGA
	Solving Large Top-K Graph Eigenproblems with a Memory and Compute-optimized FPGA Design
	Scaling up HBM Efficiency of Top-K SpMV for Approximate Embedding Similarity on FPGAs

	List of Acronyms
	Bibliography

