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Abstract - A new approach for a

frequency-domain subspace-identi�cation

for linear periodic time-varying (LPTV)

systems is presented in this thesis, based

on the most recent publications about this

�eld of study. Hence, it will be evalu-

ated using a real physical-based example,

considering di�erent levels of added noise,

with the aim to prove its suitability for

this kind of identi�cation. Then, the pros

and cons after using it can be evaluated

in order to determine if it would be possi-

ble to use this method to perform real-life

LPTV systems identi�cation.

I. Introduction

Many systems in engineering and also in biol-
ogy require, at least, a LPTV model to cover
the entire problem without risk of losing any
dynamics. Problems such as wind turbines,
rotor bearing systems, aircraft models or power
distribution network are examples of �elds
where LPTV models apply. In the mid-1990s,
a considerable development about this kind of
systems was performed. However, the com-
putational cost of working with these systems
lead to a reduced applicability. Nowadays, with
the raise of new willings for current prototypes

and systems, and the improvement of the
computation capabilities, the interest on LPTV
model subspace-identi�cation is raising, mainly
to contrast them to physical-based models [1].

The key of this project is to develop an algo-
rithm in which, from a periodic input-output
data, a frequency-domain identi�cation of a
LPTV system can be performed. This is done
through a speci�c parametric structure of
Fourier series coe�cients associated with the
original system. As these coe�cients (that are
the harmonics of the periodic functions that
compose the state-space matrices) are preserved
when the transformation to the harmonic space
state (HSS) representation is computed, the
results of the identi�cation process are the
coe�cients of the harmonic expansion of each
function of the state-space matrices. In general,
this process may not provide the original
state-space matrix coe�cients, but what is
always guaranteed is that the identi�ed system
can be associated to the original one through
a similarity transformation. In the �nal part,
some numerical examples will be presented
including noise to the output signal before
performing the identi�cation to assess the
performance of the algorithm in presence of a
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realistic signal-to-noise ratio (SNR).

The rest of the document is organized as fol-
lows. Section II describes the basic LPTV sys-
tem model. Section III provides the identi�ca-
tion method. Hence, Section IV provides the
results of the performed numerical simulation.
Finally, Section V brings up the main conclu-
sions of the project.

II. LPTV system model

First of all, some assumptions should be made:

* The algorithm is developed for SISO sys-
tems in time-domain.

* The period of the system, Tm, or, equiva-
lently, its main frequency, ωm, is known.

* To design the identi�cation experiement, a
Ti-periodic signal is chosen for the input,
being Ti proportional to Tm.

* The number of states desired for the iden-
ti�ed system are set to np.

* The truncation number N of the Toeplitz
matrices and the number of harmonics de-
sired in the identi�ed model, Nmh, are de-
sign parameters.

* The output signal is assumed to be at
steady-state.

Take an input, which is a sum of cosines, de�ned
as follows:

u(t) =

Ni∑
k=1

2Kk cos(ωk t+ φk)

ωk = k
2π

Ti
, k = 1, ..., Ni

φk =


0, k = 1

φk−1 −
π k2

Ni
, k = 2, ..., Ni,

(1a)

(1b)

(1c)

holding ωm ̸= 0.5 q ωk, q ∈ Z to avoid any
coincidence in harmonic responses of the single-
cosine input. The phasing was introduced to
avoid a lumped impulse at the beggining of the
period with a residual oscillation in the rest of it.

Consider now the continuous-time state-space
LPTV system, de�ned as follows:

ẋ(t) = Ac(t)x(t) +Bc(t)u(t)

y(t) = Cc(t)x(t) +Dc(t)u(t),
(2)

Then, the objective is to have a constant sys-
tem matrix A ̸= A(t), to simplify the identi�-

cation part and to transform this system into a
discrete-time one. To avoid the risk of ending up
with a non-reversible system, it is recommend-
able to use �rst the Floquet-Lyapunov theory
to obtain a constant Ac matrix. This will lead
to �nd a transformation matrix S(t) such that
x̄(t) = S(t)x(t), leading to the following system:

˙̄x(t) = Āc x̄(t) + B̄c(t)u(t)

y(t) = C̄c(t) x̄(t) + D̄c(t)u(t).
(3)

Finally, using the time-varying bilinear (Tustin)
transformation to discretise the system with a
Ts sampling time, the �nal system will be the
desired one:

x(k + 1) = Ad x(k) +Bd(k)ud(k)

y(k) = Cd(k)x(k) +Dd(k)ud(k).
(4)

Now, in order to lift the matrices and vectors
that compose the system, an exponentially mod-
ulated periodic (EMP) transformation, is used.
In discrete-time, the system frequency is de�ned
as ωm = 2π Ts/Tm. Now, if Nf = Tm/Ts, con-
sider it even for the sake of simplicity, the ex-
pansion cannot be in�nitely long, but it is con-
strained to the Nyquist frequency [2]. Consider
also N , even as Nf , the truncation number for
the harmonic expansion. Take into account that
N can be chosen in the range [2, Nf ] ∈ Z. Once
chosen N , the interval In = [−N/2, N/2− 1] is
de�ned to set the considered harmonics. Then,
the expansion is de�ned as follows:

Q(t) = zt
N/2−1∑
n=−N/2

Qn e
jnωm t. (5)

Consider lifting, using the EMP transformation,
setting z = 1, the output signal, y(t), and the
input signal, u(t), leading to Y and U respec-
tively, looking as follows:

V =
[
V−N/2, . . . , V−1, V0, V1, . . . VN/2−1

]T
. (6)

In the same manner, using the EMP transforma-
tion, each matrix of the state-space system can
be lifted using Toeplitz matrices, leading to:

Q =


Q0 Q−1 · · · Q−N/2 QN/2−1 · · · Q1

Q1 Q0 · · · Q−N/2+1 Q−N/2 · · · Q2
...

...
...

...
...

Q−1 Q−2 · · · QN/2−1 QN/2−2 · · · Q0

 . (7)
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This now de�nes the following equivalent LTI
system:

zNdX = AX + B U
Y = C X +DU

(8)

where Nd = blkdiag{ej nωmIn×n | n ∈ In}, be-
ing In×n the squared identity matrix of n dimen-
sion. From this structure, the harmonic transfer
function (HTF) can be de�ned just by relating
the input harmonics and the output harmonics
vectors:

G (z) = C (zNd −A)−1 B +D (9)

Finally, with the objective to obtain a measure-
ment of the uncertainty of the identi�ed param-
eters, a numberNmont of added-noise output sig-
nals can be computed, to perform a Monte Carlo
analysis in order to compute the mean and vari-
ance values of each identi�ed parameter.

III. Identification method

The algorithm presented in this thesis is based
on the approach of Uyanik et al. [2], to
transform a LPTV discrete-time state-space
system (with the system matrix constant) into
an equivalent LTI one, which is the identi�ed
system. With some di�erent approaches, this
method intends to avoid the counterparts of
the referenced method.

The �rst step is focused on obtaining a
time-domain output signal to perform the
identi�cation. To ensure the obtained signal is
in steady state, output signal will be computed
by computing the HTF from the reference
system and also lifting the input signal. Then,
Y = G(z = 1)U . Once the lifted output vector
is computed, it is returned to the time domain
using the EMP de�nition, provided in equation
(5), by setting also z = 1. Finally, to consider
the added Gaussian noise of the output signal
in discrete-time, y(k) = ȳ(k) + w(k), where
w ∼ G(0, σ2) and σ2 = ypow/ SNR, being ypow
the power of the noise-free signal, which will
be the degree of freedom to select the desired
amount of added noise.

Then, take the output signal, y(k), and the
input signal, u(k), and lift them, using the
EMP transformation, setting z = 1, obtaining
the Y∗ and U vectors.

Consider now the state-space matrices but Ad,
which is constant. Then, each of the com-
ponents of each matrix can be expanded in a
trigonometric Fourier series, denoted as follows:

Qi(k) = Qi0 +

Nharm∑
n=1

(Qcin cos (nωm Ts k)

+ Qsin sin (nωm Ts k)) ,

i = 1, ..., np

(10)

where Q(k) stands for Bd(k), Cd(k) and Dd(k),
while Nharm the number of harmonics desired
for the expansion. Using the EMP transforma-
tion de�nition, each matrix of the state-space
system can be lifted using Toeplitz matrices,
which will contain each of the harmonics of
the trigonometric expansion, as shown in
equation (7), leading to the equivalent LTI
system in equation (8), and �nally, to the HTF
in equation (9).

The next step is to set now the number of in-
puts, ni, outputs, no, and states, np that the
identi�ed system will have, as well as the num-
ber of harmonics, Nharm, for the Bd(k), Cd(k)
and Dd(k) functions. Hence, all the harmonic
values are collected into a vector, Θ, including
also the coe�cients of Ad. This vector is de�ned
as follows:

Θ =
[
ΘT

A, Θ
T
B, Θ

T
C , Θ

T
D

]T
ΘA =

[
A11, A21, ..., Anp 1, ..., Anp np

]T
ΘQ =

[
Q10, Qc11 , ..., Qs11 , ..., QsnpNharm

]T
,

Q = B, C, D.

(11)

Now, for each added-noise output realisation
that was computed and lifted, Y∗ an optimiza-
tion process will be performed to obtain the de-
sired parameters. The procedure for each itera-
tion would be the following:

* SelectΘ and compute Ad, Bd(k), Cd(k) and
Dd(k).

* Lift the time-domain matrices to compute
the Toepliz matrices AF , BF , CF and DF
as shown in (7).

* Compute the Nd matrix.
* Compute the HTF matrix, G(z) as it was
de�ned in equation (9). Set z = 1.

* Compute YF (Θ) = G(z = 1)U .
As a consequence of the uncertainty compu-
tations, this procedure will be repeated Nmont
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times for each case. Hence, the problem to op-
timize is the following:

Θ̂ = argmin
Θ

∥YF (Θ)− Y∗∥2 (12)

To solve the optimization problem, the chosen
method is the one implemented in MATLAB's
fmincon with a custom con�guration. Once
the optimizer provides a result, called Θ̂, the
state-space model matrices, Âd, B̂d(k), Ĉd(k),
D̂d(k), can be reconstructed. To compute
the uncertainty of each identi�ed parameter,
the mean, µ, variance, σ2 and coe�cient of
variation, σ/µ, are computed from the obtained
dataset. This will be helpful to decide the
in�uence of each parameter on the actual
system.

If desired, the original system can be recov-
ered by returning �rst to the continuous-time
domain, by using the inverse bilinear (Tustin)
transformation. As the data was computed
in discrete-time, the intersample data will
be missing. This can be obtained via linear
interpolation. Finally, applying back the
Floquet transformation, x(t) = S(t)−1 x̄(t),
the original state-space system can be recovered.

Finally, notice that, if instead of imposing
the Fourier trigonometric expansion in equation
(10), each term is free to have a di�erent num-
ber of harmonics, this will lead to a black-box
identi�cation. Using this method will simplify
the steps, but it will not probably return the
desired system (or at least, one with physical
meaning), but an equivalent one.

IV. Numerical example

In this section, a numerical case study is related
to illustrate the performance of the presented
algorithm, as well as to verify its robustness
and accuracy in di�erent situations. The con-
sidered example is a model for the out-of-plane
bending of a helicopter rotor blade developed
by Bittanti and Lovera [3], that takes the
commanded pitch angle, and once de�ned the
rotor characteristics and the �ight condition,
it provides a time-periodic SISO space-state
model that returns the vertical shear force as
the output.

This model has two degrees of freedom, which
are the rotor advance ratio, µ, which is a non-
dimensional number that de�nes the forward
velocity of the rotor with respect to the hover
velocity of the blade tip, and the number of
bending modes considered for the blade, called
nmodes. Due to the model derivation, the
system size will be 2 × nmodes. As the hover
�ight condition (µ = 0) is time-invariant, it
has been chosen the maximum value of the
advance ratio, with physical meaning according
to the literature, to exploit the perodically-time
varying characterisation of the model. Hence,
µ = 0.35 for all the performed examples. Some
other parameters that have been set for all the
examples are Nharm = 3, N = 120, Ts = 0.01
s, Nmont = 20. The input has been designed to
be a sum of cosines of 56 di�erent frequencies,
with Kk = 0.05∀k ∈ [0, 56], leading to an input
period of Ti = 4.68 s.

The carried out examples were nmodes = 1 and
nmodes = 2. Then, as a real �exible system
has an in�nite number of modes, it was desired
to select a di�erent number of modes for the
reference output signal and for the identi�ed
model, setting nmodes sys = 1 with nmodes ref = 2
for the third case and nmodes sys = 1 with
nmodes ref = 5 for the last performed case. Once
set this, the only degree of freedom for each
case is the SNR for the added Gaussian noise.

Focusing now in the two �rst cases, the output
signal was sucessfully recovered, as well as the
majority of the terms that compose the state-
space system. An example of the algorithm per-
formance is provided in Figure 1.

As it can be noticed, the estimated output cap-
tures the behaviour of the reference one. How-
ever, the presence of noise may a�ect the results,
but the output is captured anyways. Then, in
order to quantify the sensitivity with respect to
the added noise, some errors can be de�ned:

εA = ∥Aref − Âident∥2

εQi =

∫ fmax inp

0

∣∣∣|Qi|ref(f)− |Q̂i|id(f)
∣∣∣df

εTot = ∥
∑

εQi∥2,
i = 1, ..., np

Q = B,C,D,

(13a)

(13b)

(13c)

and a trend of the errors with respect to the
SNR value is provided in Figure 2 in order to
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Original Sys Estimated Sys

Figure 1: Example of the method perfor-
mance in the bending model numerical example.
nmodes = 2. SNR = 100 & 3

understand the range of noise values in which
the method provides reasonable results.

εA

εB

nmodes = 1
nmodes = 2

εC

εD

εTot

E
rr

or
s

Figure 2: Errors in the bending model numerical
example. nmodes = 1 & 2

As it can be seen, the error grows with the
number of modes, since the number of parame-
ters to identify increases exponentially. These
errors are mostly in B̂d and Ĉd matrices, where
the amplitude of the harmonics is not perfectly
captured. However, despite of these errors,
the identi�ed matrices are still similar to the
reference ones, in the sense of maintaining the
same order of magnitude, and the estimated
output is still close to the reference one, even
in the worst-noise case.

With respect to the third and the fourth cases,
considering the application of this example to
real life, the blade will have a in�nite number of
modes. Therefore, the next step is to test the

behaviour of the method identifying a system
which is not exactly the same as the reference
output source. The results of this analysis prove
that the method recovers the output signal when
the SNR value is higher than 3. However, as the
reference system is now di�erent from the iden-
ti�ed one, the comparison must be performed
using another method. Regarding the HTF def-
inition, it can be understood as follows:

G(z) =



. . .
...

...
...

· · · G0(z · z−1
m ) G−1(z) G−2(z · zm) · · ·

· · · G1(z · z−1
m ) G0(z) G−1(z · zm) · · ·

· · · G2(z · z−1
m ) G1(z) G0(z · zm) · · ·

...
...

...
. . .

 , (14)

where zm = ej ωm . Hence, as a direct compar-
ison between the reference and the estimated
HTF would add some numerical errors that are
meaningless, a better analysis can be performed
regarding the functions the main modes of the
system. These system main modes can be com-
puted from the ratio between the output and
the system period,

Hn = n
Toutput

Tsystem
= 30n, n ∈ Z. (15)

Notice that, as the magnitude of the mode de-
creases as n increases, the most relevant modes
are H0 and H1. Then, Figure 3 shows the
comparison between the �rst two system main
modes of the reference system and the estimated
one.

Original Sys Estimated Sys

Figure 3: H0 and H1 bode-like charts.
nmodes signal = 5, nmodes system = 1. SNR = 10

To provide a comparison between all the com-
puted cases, an error de�nition can be per-
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formed:

εm =
1∑

i=0

∫ fmax inp

fmin inp

|Hi, ref(f)−Hi, id(f)| df. (16)

This de�nition leads to Figure 4, which shows
at a glance what has been commented before.
With respect to the behaviour in noise presence,
the algorithm performs worse as the SNR value
decreases, which means that the added noise in-
creases. However, it can be noticed that this be-
haviour is not logaritmic, but there is a point in
which the error cannot be lower even if the refer-
ence output signal is a�ected by a low amount
of noise. On the other part, with respect to
the number of modes considered in the reference
output signal, increasing it without making the
size of the identi�ed model bigger, will mean
that the errors will grow.

Figure 4: Errors comparsion between
nmodes signal = 2 and nmodes signal = 5

V. Conclusions

In this Thesis, a new method for a frequency-
domain subspace-identi�cation method for
LPTV systems was developed. It starts taking
a LPTV continuous-time system in state-space
form, to transform it into an equivalent discrete-
time LTI system. This procedure required the
use of a bilinear (Tustin) transformation and,
later, a frequency-domain lifting. Then, the
LTI system was estimated in the output-error
framework. Finally, the algorithm was tested
using a physical-based rotorcraft model, with
several cases to exploit a range of possibilities
to prove its e�ectiveness and robustness in
several cases of application. With respect to
the results, it has been proved that the method

provides good results in the sense of recovering
the original system in several modes and noise
conditions. Also, even if it has not been fully
tested in this thesis, this method also works well
if a black-box identi�cation is desired, providing
also good results, but possibly, without any
phyisical meaning.
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Abstract

The purpose of this thesis is to present a new approach for a linear periodic
time-varying (LPTV) identification methodology, based on the most recent pub-
lications about this field of study. Nowadays, the development of more complex
systems that cannot be modeled as linear time-invariant (LTI) has lead to the
study of the identification of LPTV systems. Then, with the emergence of those
complex systems and the improvement of the processors computing power, the
development of LPTV identification methods is raising, mostly to contrast real
data acquired from real systems with physical-based models. This procedure is
focused on the frequency-domain subspace-identification method, with the objec-
tive of recovering the original LPTV system from input-output data. At the same
time, this method will be evaluated in a real physical-based example, proving its
suitability for this kind of identification. Accordingly, the final ambitions of this
project is to propose a method for LPTV systems identification, to test it and to
capture its pros and cons after using it and, eventually, to determine if it would
be possible to use this method to perform real-life LPTV systems identification.
This has been achieved by developing a procedure that has been implemented in
MATLAB so as the procedure and the optimizer could be configured there. After
testing the algorithm with noise-free data with sucessful results, as a physical-
based system was used to test the model, some added white noise was considered
so as the robustness of the method could be also guaranteed. The results show
that with a reasonable amount of added noise (comparable to the requirements of
certain signal processing procedures), in terms of signal-to-noise ratio, the identifi-
cation is not compromised. On the other hand, the method shows also robustness
when a deformable model (in a modal expansion) is considered, approximating
the real system to a less complex identified one. In this case, the method is more
noise sensitive than in the previous cases. Finally, the results raise up the fact
that the algorithm is implementable and useful for this kind of applications.
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Sommario

Lo scopo di questa tesi è quello di presentare un nuovo approccio per una metodolo-
gia di identificazione sui sistemi lineari che variano periodicamente nel tempo
(LPTV), basato sulle più recenti pubblicazioni relative a questo campo di stu-
dio. Al giorno d’oggi, lo sviluppo di sistemi più complessi che non possono essere
modellati come sistemi lineari invarianti nel tempo (LTI) ha portato allo studio
dell’identificazione di sistemi LPTV. In seguito, con l’emergere di questi sistemi
complessi e il miglioramento della potenza di calcolo dei processori, lo sviluppo di
metodi di identificazione LPTV sta aumentando, soprattutto per mettere a con-
fronto i dati reali acquisiti da sistemi reali con modelli basati sulla fisica. Questa
procedura si concentra sul metodo di identificazione nel dominio della frequenza,
con l’obiettivo di recuperare il sistema LPTV originale dai dati di input-output.
Allo stesso tempo, questo metodo sarà valutato in un esempio basato su un mod-
ello fisico reale, dimostrando la sua idoneità per questo tipo di identificazione. Di
conseguenza, l’obiettivo finale di questo progetto è quello di proporre un metodo
per l’identificazione di sistemi LPTV, di testarlo e di coglierne i pro e i contro
dopo averlo utilizzato e, infine, di determinare se sia possibile utilizzare questo
metodo per eseguire l’identificazione di sistemi LPTV nella vita reale.
L’obiettivo è stato raggiunto mediante lo sviluppo di una procedura che è stata
implementata in MATLAB in modo che la procedura e l’ottimizzatore potessero
essere configurati l̀ı. Dopo aver testato l’algoritmo con dati privi di rumore con
risultati positivi, poiché per testare il modello è stato utilizzato uno basato su
un sistema fisico, è stata considerata la possibilità di aggiungere rumore bianco
in modo da garantire la robustezza del metodo. I risultati mostrano che con
una quantità ragionevole di rumore aggiunto (paragonabile ai requisiti di alcune
procedure di elaborazione dei segnali), in termini di rapporto segnale/rumore
(SNR), l’identificazione non viene compromessa. D’altra parte, il metodo mostra
robustezza anche quando si considera un modello deformabile (in un’espansione
modale), che approssima il sistema reale a un sistema identificato meno complesso.
In questo caso, il metodo è più sensibile al rumore rispetto ai casi precedenti. In-
fine, i risultati dimostrano che l’algoritmo è implementabile e utile per questo tipo
di applicazioni.



VI



Contents

Acknowledgments I

Abstract III

Sommario V

List of figures IX

Abbreviations XI

Introduction 1

1 General overview 3
1.1 Time-variant examples . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Time-variant systems . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Time-periodically varying systems . . . . . . . . . . . . . . 4
1.1.3 Linear time-periodically varying systems . . . . . . . . . . 6

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Mathematical preliminaries 11
2.1 Linear time-varying system . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Linear periodically time-varying (LPTV) systems . . . . . . . . . 12
2.3 Floquet-Lyapunov theory . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Frequency-domain reformulation . . . . . . . . . . . . . . . . . . . 15

2.4.1 Fourier expansion series . . . . . . . . . . . . . . . . . . . 16
2.4.2 Exponentially Modulated Periodic Signals . . . . . . . . . 16
2.4.3 Harmonic State-Space Model . . . . . . . . . . . . . . . . 18
2.4.4 Harmonic Transfer Function . . . . . . . . . . . . . . . . . 19

3 State of the art 21
3.1 Identification of LPTV systems using periodic seqs. . . . . . . . . 21
3.2 Nonparametric tracking of time-varying dynamics of weakly NLPTV

systems using periodic inputs . . . . . . . . . . . . . . . . . . . . 23



VIII CONTENTS

3.3 Continuous-time identification of periodically parameter-varying state-
space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Model-based flight control of kites for WPG . . . . . . . . . . . . 27
3.5 Frequency-domain subspace identification of LTP systems . . . . . 29
3.6 LPTV system identification with grouped atomic norm regularization 31

4 State-space LPTV model identification 35
4.1 Identification part . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Black-box modelling . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Numerical examples 43
5.1 Out-of-plane bending of a rotor blade . . . . . . . . . . . . . . . . 43
5.2 Simulation part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Identification with nmodes = 1 . . . . . . . . . . . . . . . . . . . . 46
5.4 Identification with nmodes = 2 . . . . . . . . . . . . . . . . . . . . 56
5.5 Identification with nmodes = 1 system and nmodes = 2 signal . . . . 66
5.6 Identification with nmodes = 1 system and nmodes = 5 signal . . . . 79

Conclusions 95



List of Figures

1.1 Dynamic model of a rotor system considering manufacturing defects
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Example of a MAV and its dynamics modelling . . . . . . . . . . 5
1.3 Two main approaches used to analyze NLTP systems [2] . . . . . 5
1.4 Schematic view of the wind-turbine rotor & tower model system [3] 6
1.5 Bell V-280, FVL prototipe, in hover configuration [4] . . . . . . . 7
1.6 Formation keeping reference systems scheme [5] . . . . . . . . . . 9

2.1 LTI vs LPTV sinusoidal input-output comparison . . . . . . . . . 16

3.1 M -periodic LPTV system scheme as M LTI systems switched at
output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Block-schematic equivalent representations of a LPTV system by
weigthed sum of LTI systems . . . . . . . . . . . . . . . . . . . . 24

4.1 Input Schroeder’s cosine phasing comparison . . . . . . . . . . . . 36
4.2 Algorithm diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Simple black-box identification performed on the numerical exam-

ple on [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 AW109 [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Bending model numerical example. nmodes = 1, SNR= 100 . . . . 48
5.3 Bending model numerical example. nmodes = 1, SNR= 10 . . . . . 49
5.4 Bending model numerical example. nmodes = 1, SNR= 3 . . . . . . 51
5.5 Bending model numerical example. nmodes = 1, SNR= 1.6 . . . . . 53
5.6 Bending model numerical example. Variance and CV. nmodes = 1 . 55
5.7 Bending model numerical example. Errors. nmodes = 1 . . . . . . . 56
5.8 Bending model numerical example. nmodes = 2, SNR= 100 . . . . 58
5.9 Bending model numerical example. nmodes = 2, SNR= 10 . . . . . 60
5.10 Bending model numerical example. nmodes = 2, SNR= 3 . . . . . . 62
5.11 Bending model numerical example. nmodes = 2, SNR= 1.6 . . . . . 64
5.12 Bending model numerical example. Variance and CV. nmodes = 2 . 65
5.13 Bending model numerical example. Errors. nmodes = 2 . . . . . . . 66



X LIST OF FIGURES

5.14 Bending model numerical example. nmodes signal = 2, nmodes system =
1, SNR= 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15 Bending model numerical example. nmodes signal = 2, nmodes system =
1, SNR= 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.16 Bending model numerical example. nmodes signal = 2, nmodes system =
1, SNR= 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.17 Bending model numerical example. nmodes signal = 2, nmodes system =
1, SNR= 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.18 Bending model numerical example. nmodes signal = 2, nmodes system =
1, SNR= 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.19 Bending model numerical example. Variance and CV. nmodes signal =
2, nmodes system = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.20 Bending model numerical example. H0 and H1 Bode-like charts.
nmodes signal = 2, nmodes system = 1 . . . . . . . . . . . . . . . . . . . 79

5.21 Bending model numerical example. nmodes signal = 5, nmodes system =
1, SNR= 10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.22 Bending model numerical example. nmodes signal = 5, nmodes system =
1, SNR= 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.23 Bending model numerical example. nmodes signal = 5, nmodes system =
1, SNR= 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.24 Bending model numerical example. nmodes signal = 5, nmodes system =
1, SNR= 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.25 Bending model numerical example. nmodes signal = 5, nmodes system =
1, SNR= 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.26 Bending model numerical example. Variance and CV. nmodes signal =
5, nmodes system = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.27 Bending model numerical example. H0 and H1 Bode-like charts.
nmodes signal = 5, nmodes system = 1 . . . . . . . . . . . . . . . . . . . 92

5.28 Bending model numerical example. Errors comparsion between
nmodes signal = 2 and nmodes signal = 5 . . . . . . . . . . . . . . . . . 93



Abbreviations

Notation Description

ACS Attitude Control Systems.
AFCS Aircraft Flight Control System.

CV Coefficient of Variation.

DFT Discrete Fourier Transform.

EMP Exponentially Modulated Periodic.

FIR Finite Impulse Response.
FRF Frequency Response Function.
FVL Future Vertical Lift.

HHC High Harmonic Control.
HSS Harmonic State-Space.
HTF Harmonic Transfer Function.

ITF Instantaneous Transfer Function.

LAC Load Alleviation Control.
LEO Low Earth Orbit.
LMS Least Mean Squares.
LPTV Linear Periodically Time-Varying.
LPV Linear Parameter-Varying.
LSTV Linear Switched Time-Varying.
LTI Linear Time-Invariant.
LTP Linear Time-Periodic.
LTV Linear Time-Varying.

MAV Micro Air-Vehicle.



XII ABBREVIATIONS

Notation Description

NLTI NonLinear Time-Invariant.
NLTP NonLinear Time-Periodic Systems.
NPLTV NonLinear Periodically Time-Varying.

PTV Periodic Time-Varying.

SIMO Single-Input Multiple-Output.
SISO Single-Input Single-Output.
SNR Signal-to-Noise Ratio.
SVD Singular Value Decomposition.



Introduction

In this Master Thesis, a subspace-identification method for linear periodic time-
varying (LPTV) systems based on frequency-domain is introduced. Many systems
in engineering and also in biology require, at least, a LPTV model to cover the en-
tire problem without risk of losing any dynamics. Systems such as wind turbines,
rotor bearing systems, aircraft models or power distribution network are examples
of fields where LPTV models apply. Therefore, in Section 1.1, several examples
will be provided to raise conciousness of the importance of LPTV systems for pe-
riodic systems dynamics modelling. In the mid-1990s, a considerable development
about this kind of systems was performed. However, the computational cost of
working with these systems lead to a reduced applicability. Nowadays, with the
raise of new willings for current prototypes and systems, and the improvement of
the computation capabilities, the interest on LPTV model subspace identification
is raising, mainly to contrast them to physical-based models.

The PhD Thesis of Wereley [8] sets the basis for a frequency-domain analy-
sis method for LPTV systems. The concept was to expand the periodic system
matrices in time-domain expressed in a LPTV space-state formulation into their
Fourier series coefficients. Using the principle of harmonic balance, the harmonic
transfer function (HTF) could be obtained. This conception, as it will be detailed
in Chapter 2, led to doubly infinite HTF in continuous-time. This was, at first,
problematic for a numerical implementation. However, this was finally adapted
to discrete-time systems, which leads to finite-dimensional matrices.

To the date of publication of this thesis, the literature is more focused on using
this input-output methodology through HTF than utilizing the harmonic space-
state representation (HSS). This does not mean there are no previous contributions
to identification methods that use the HSS representation. These contributions
are equivalent to identification methods often used for linear time-invariant (LTI)
systems. In fact, in Chapter 3 a review with different examples is provided to
context the choice and the development of this project.

The key of this project is to develop an algorithm in which, from a periodic
input and output, a frequency-domain identification of a LPTV system can be
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performed. This is done through a specific parametric structure of Fourier series
coefficients associated with the original LPTV system. As these coefficients (that
are the harmonics of the periodic functions that compose the state-space matrices)
are preserved when the transformation to the HSS representation is computed, the
results of the identification process are the coefficients of the harmonic expansion
of each function of the state-space matrices. In general, this process may not pro-
vide the original state-space matrix coefficients, but what is always guaranteed is
that the identified system can be associated with the original one through a sim-
ilarity transformation. In Chapter 5, some numerical examples will be presented
including noise to the output signal before performing the identification to assess
the performance of the algorithm in presence of a realistic signal-to-noise ratio
(SNR).

The aim of this thesis is to apply a novel approach for a LPTV idenfication
methodology, based on [6], which is oriented to exploit the subspace identification
method, so as the original LPTV system can be recovered. Then, the algorithm
will be tested on a physical-based example of rotorcraft field, demonstrating that
it is suitable for this kind of identification. As a consequence, the final goal of
this project is to propose a method for the LPTV systems identification, test it
on some examples and extract the pros and cous of its use and to determine if it
would be useful for the identification of real-life LPTV systems.

The thesis is organized as follows:

� In Chapter 1, a general overview is provided about different examples of
time-varying systems, periodic or not, linear or not, and latest published
identification methods for LPTV systems.

� In Chapter 2, some mathematical preliminaries are provided to help the
reader with the understanding of the methods that can be mentioned and
also with the developed one.

� In Chapter 3, a review of the state of the art of the novel approaches pub-
lished regarding the LPTV systems identification is presented.

� In Chapter 4, a detailed description of the developed LPTV system idenfi-
cation algorithm is carried out.

� In Chapter 5, a physical-based LPTV model based on rotorcraft is explained
and used to test the method developed in the previous chapter.

� In Chapter 6, some final conclusions are provided and future developments
that could be interesting to research related to the presented project.



Chapter 1

General overview

This chapter aims to be an introductory part for the reader who is not used to
work with LPTV systems to get some real-life examples and also latest published
identification methods for this kind of systems.

1.1 Time-variant examples

The purpose of this section is to cover some of the different types of time-variant
systems that model some physical effects that can be found in nature. From
generic time-variant systems to linear periodically time-varying (LPTV) systems,
some examples will be provided, so the reader can understand the importance of
these systems and also can apply all the theory developed in this thesis to actual
systems.

1.1.1 Time-variant systems

Over the years, rotor systems have widely spread in several fields, as manufactur-
ing, aerospace or energy industry. For example, the vibration performance and the
operational reliability of the machinery with rotor systems may be considerably
influenced by their internal bearings behaviour [9]. In fact, the existing imperfec-
tions due to manufacturing process or a rough operation environment may cause
several defects on the bearings, whether localizated or distributed ones. The nega-
tive point is that it is not possible to detect these imperfections within reasonable
time to apply the corrective actions on it. The consequence of this is that the
rotor can exhibit some malfunctions that can finally lead to catastrophic disasters.
This is why modelling them can be helpful to develop a better understanding of
the vibration effect.

In [1], the main goal is to analyze the effects of the bearing defects on the
dynamic behaviour of a rotor system, by modelling it as a rotor with rolling
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Figure 1.1: Dynamic model of a rotor system considering manufacturing defects
[1]

element bearing supported with an eccentricity representing the manufacturing
defects (see Figure 1.1). The resulting model shows the impact of the diverse
effects that can be taken into account (the impact and the response of distributed
and/or localized defects), arriving at a non-linear time-variant system that must
be solved with an integrator. This was one of the many examples that can be
found in multiple disciplines of engineering.

1.1.2 Time-periodically varying systems

Systems with periodic dynamics also exist across several engineering fields, such as
spacecraft, rotorcraft, wind turbines or jet engines. A line of investigation that has
been developed in the last years is the flight dynamics of flapping-wing micro air-
vehicles (MAVs). These cover the flapping kinematics, the aerodynamic modelling
and the dynamic equations of motion [10]. The multi-disciplinary nature of these
vehicles leads to a multiobjective kinematics optimization that includes control
authority, maneuverability, and aerodynamic performance.

This results on a nonlinear time-periodic system (NLTP), that needs to be
preprocessed either for its stability or identification analysis [12]. Two main ap-
proaches are considered for the stability analysis of NLTP systems [2], one based
on Floquet theory and the other one based on averaging methods. The first one is
based on solving the dynamic equations to find the periodic orbit and linearizing
the system along this periodic orbit to end up with a linear periodically time-
varying system (LPTV). The mathematical transformation of the LPTV into a
linear time-invariant (LTI) one will be discussed in the next chapter. The second
one uses the averaging techniques to transform the NLTP systems into equivalent
nonlinear linear time-invariant (NLTI) systems in a way that the original periodic
orbit collapses to a single point in the state-space. Figure 1.3 presents a more
visual explanation of this.
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(a) An example of a MAV [11] (b) MAV dynamics and control scheme [10]

Figure 1.2: Example of a MAV and its dynamics modelling
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Figure 1.3: Two main approaches used to analyze NLTP systems [2]

Although the averaging approach is commonly used in vibrational analysis
[13], because it avoids direct calculation of the periodic orbit, the Floquet-based
approach is more used in applications for the dynamic analysis, identification and
control of rotorcraft [14].

With respect to the spacecraft field, attitude control systems (ACS) are fun-
damental in the operation of spacecraft, constituing a necessary component for
the successful satellite operation. In practice, there exist a number of possible
solutions for attitude control. However, a particularly effective and reliable one
has been developed, based on the use of electromagnetic actuators, being specially
effective for low Earth orbit (LEO) satellites. Despite the use of magnetic coils
for satellite control has been considered since the 1960s, the feasibility of periodic
techniques for the small satellites control using magnetic actuators started to be
an active research topic from the 2000s. In this sense, Silani and Lovera, [15],
collected a review of the existing approaches, up to the date of the publication,
based on linear and nonlinear control theory, focusing particularly on periodic
control, as well as a solution to the problem in terms of model-based predictive
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control.

Some examples can also be found in the wind turbines area, in which the
preventive analysis is one of the main tasks for guaranteeing the structural in-
tegrity of wind turbines. In the last years, with the development of large offshore
wind turbines, this task has become increasingly complex and very demanding.
Then, the fact of developing new techniques that allow reducing their operative
and maintenance cost is, at the very least, one of the most challenging goals of
wind engineering for the next years [16]. Actually, wind turbines have a highly
nonlinear periodically time-varying behaviour. Hence, their response to wind and
control inputs may vary dramatically over their operational domain. Therefore,
for controlling them, nonlinear model-based control can be used, but it usually
requires a simple but accurate model [3]. Improved control allows optimal use of
the existing generating machinery, as well as better utilization of the local wind
resource. In addition, control may extend the service-life of turbines by reducing
undesired motion [17].

Figure 1.4: Schematic view of the wind-turbine rotor & tower model system [3]

1.1.3 Linear time-periodically varying systems

Finally, LPTV systems, that have been widely used in the many fields, are being
proposed in academia for future research lines, either for new ones or to improve
existing ones. In this cases, one can find proposals as:

� Using LPTV systems for flight envelope limit detection and protection in
rotorcraft, since they are a viable and numerically effective manner to predict
envelope limits. In the past, some other methods had been proposed, like
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Figure 1.5: Bell V-280, FVL prototipe, in hover configuration [4]

stochastic ones or neural networks [18] [19]. However, LPTV systems are
deterministic and may be identified across the entire flight envelope. In
[20], LPTV systems derived from a high-fidelity FLIGHTLAB© simulation
model of a UH-60, was used to predict and limit rotor loads.

� The development on active control systems for the attenuation of vibrations
in helicopters has increased through years [21] [22], to improve the comfort
of the crew and passengers and to reduce the fatigue that the rotor and
the structure of the aircraft may suffer, as well as to protect the on-board
equipment from damage. The analysis of this problem is performed in pub-
lications as [23] or [24], where the LPTV model developed in [25] is used for
the analysis. This model will be relevant in Chapter 5 to test the algorithm
developed in this thesis.

� Flight control design based on LPTV models identified from flight-test data
can be useful for the U.S. Army plan to develop a new generation of mil-
itary helicopters with increased capabilities and reduced maintenance and
operational cost. This is the so-called Future Vertical Lift (FVL) project
[26]. The new generation of helicopters will operate at significantly higher
speeds than current helicopters. This would request the study of the higher
harmonic rotor loads to alleviate them and reduce the maintenance cost.
Then, LPTV physics-based and identified models will be necessary for the
future implementation of higher harmonic control (HHC) and load allevia-
tion control (LAC) on their design and production.

� Subspace Model Identification has been used in many cases, whether in aca-
demic research or in industry, with successful results. However, the LPTV
model identification may become a complex task. The motivation behind
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using existing subspace methods, that can be extended to LPTV models,
is that using them would allow to keep ease of use and implementation,
numerical robustness and non-iterative nature. These facts represent such
great advantages, that is why they can be really considered as a solution
for LPTV modelling and identification problems. Another fact to be taken
into account is that early developments in this field took place in the at
mid-1990s [27], where the computational capacity was not quite large, and
could be a real problem. Nowadays, the development of the technology has
arrived to a point in which that is not a problem anymore and any personal
computer can process a vast amount of data without taking such a long
time.

� The aeroacoustics of the main and the tail rotor can be also considered in an
NLTP system that represents the rotorcraft flight dynamics. Then, as it was
explained above, the NLTP model can be approximated to an LPTV one by
linearizing about a period with a certain flight condition. Then, the LPTV
system can be harmonically decomposed into an LTI system (see Chapter
2), which can be used to achieve an active noise-reduction flight control laws
that can be derived by means of time-invariant control theory.
Then, two main approaches have been developed regarding this. The first
one uses primary flight controls to reduce the generated noise in maneuvering
flight [28]. The second one is based on the use of a high-order LTI model to
design combined HHC-AFCS control laws that reduce the noise in trimmed
flight [29].

� Orbit control of satellites, in the case of Zeng et al. [30], aims at an accurate
regulation of the error between the desired trajectory and the actual one. If
the reference orbit is circular, then the control problem can be formulated
with reference to the Euler-Hill linearised model for relative motion, which is
time-invariant. However, when the reference orbit is elliptical, the equations
of the relative motion becomes LPTV [31].

1.2 Literature review

In [14], Saetti and Lovera carried out a review about the LPTV systems and the
different models for time-periodic models for rotorcraft and their expansion to
high-order time-invariant systems. This survey also includes a list of novel ap-
proaches that have been developed in the last years, both in time and in frequency
domain. This thesis studies these new approaches and chooses one of them for its
development, test and the analysis of its pros and cons of its implementation into
a real-life model. The following publications have been collected and are presented
to the reader as a review. Later, on Chapter 3, a more technical presentation of
them will be provided.



1.2 Literature review 9

Figure 1.6: Formation keeping reference systems scheme [5]

� In [32], Wutao and Mehr developed a frequency-domain identification method
for finite impulse response (FIR) LPTV systems in discrete-time by using
the discrete Fourier transform (DFT). By choosing an input the period of
which is a multiple of the period of the system, the period of the output can
be computed, as it is equal to the largest one. Then, the identification is
reduced to a least-squares solution of a set of linear equations.

� In [33], Louarroudi, Pintelon and Lataire presented a non-parametric esti-
mation so as the evolution of the dynamics of a periodic time-varying (PTV)
system (both for continuous and discrete time and for linear and non-linear
systems) can be tracked by applying a multisine input, in an output-error
framework. From the non-parametric estimates, the evolution of the dy-
namics is described by the instantaneous transfer function (ITF). Finally,
an application of this methodology is applied to a NPLTV electronic exam-
ple circuit.

� In [34], Goos and Pintelon described a frequency-domain identification tech-
nique to estimate multivariate linear parameter-varying (LPV) continuous-
time state-space models, where a periodic variation of the parameters is
imposed. The proposed identification method designs a periodic input sig-
nal, taking the periodicity of the parameter variation into account. It is
shown that, when an integer number of periods is observed for both the
input and the scheduling, the state-space model representation has a spe-
cific, sparse structure in the frequency domain. Then, a weighted non-linear
least-squares algorithm minimizes the output error. Finally, two initializa-
tion methods are explored to generate starting values, one based on a LTI
approximation and another one focused on LTV input–output differential
equations, from which a corresponding state-space realization is computed.

� In [35], Wood performed a dissertation about model-based identification
and control of kites for wind power generation. The deviation of a kite
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from a periodic cycle can be modelled as a LPTV system. Therefore, a
subspace identification method is derived from input and output data to
obtain periodic state-space models. This identification method approach is
called Energy (cumulative spectrum) bound noise fitting. Finally, the black-
box modelling method is illustrated on a simulation case study.

� In [6], Uyanik, Ankarali, Cowan and Morgul proposed a new methodology
for subspace-based state-space identification for LPTV systems. As LPTV
systems can be lifted to equivalent LTI systems, firstly the input–output
data from an unknown LPTV system is lifted as if they were collected from
an equivalent LTI system. Then, a frequency-domain subspace identification
method is used to find the LTI system estimate. Subsequently, the proposal
for a novel method to obtain a time-periodic realization for the estimated
lifted LTI system is provided by exploiting the specific parametric structure
of Fourier series coefficients of the frequency-domain lifting method. This
method can be used to obtain state-space estimates for unknown LPTV
systems as well as to obtain Floquet transforms for known LPTV systems.

� In [36], Yin, Iannelli, Khosravi, Parsi and Smith proposed a new methodol-
ogy in LPTV system identification. In contrast to other methods that totally
separate dynamics at different tag times for identification, this method is
focused on imposing appropriate structural constraints on the LTI refor-
mulation of LPTV systems. This method adopts a periodically-switched
truncated infinite impulse response model for LPTV systems, where the
structural constraints are interpreted as the requirement to place the poles
of the non-truncated models at the same locations for all sub-models. This
constraint is imposed by combining the atomic norm regularization frame-
work for LTI systems with the group lasso technique in regression. As a
result, the estimated system is both uniform and low-order, which is hard
to achieve with other existing estimators. Then, Monte Carlo simulations
used to show that the grouped atomic norm method not only shows better
results compared to other regularized methods, but also outperforms the
subspace identification method under high noise levels in terms of model
fitting.



Chapter 2

Mathematical preliminaries

In this chapter, an overview of the mathematical properties and definitions around
the LPTV systems will be provided to help the reader with the understanding of
the following chapters.

2.1 Linear time-varying system

Following the formulation that can be found in [37] and [38], and starting from
scratch, let T be the time domain of t, so as T = {t ∈ R : 0 ≤ τ ≤ t} in continuous
time, while T = {t ∈ Z : 0 ≤ τ ≤ t} in discrete time. Notice that τ stands for
the initial time. Now let x ∈ Rn be the state vector. The simplest definition of a
LTV system is the following:

ẋ(t) = A(t)x(t) in continuous-time

x(t+ 1) = A(t)x(t) in discrete-time

x(τ) = xτ

(2.1)

where A : T → Rn×n is the system matrix (by definition, a square matrix) which
computes the derivative of the state, for continuous-time, or the state at t+1, for
discrete-time, for a given t and a given x(t), and x(τ) ∈ Rn, also noted as xτ , is
the initial state. Notice that A(t) does not depend on the state.

The solution of the state equation can be represented as follows:

x(t) = ΦA(t, τ)xτ (2.2)

where ΦA : T × T → Rn×n is the transition matrix of A(t), that maps the initial
state to the current one. This matrix has the following properties:

Φ̇A(t, τ) = A(t) ΦA(t, τ) in continuous-time

ΦA(t, τ) = A(t− 1)A(t− 2) · · ·A(τ), t > τ in discrete-time

ΦA(τ, τ) = In×n, ∀τ ∈ T
(2.3)



12 Mathematical preliminaries

where In×n is the square identity matrix of dimension n. The transition matrix
also holds the following properties:

ΦA(t, τ) = ΦA(t, τ1) ΦA(τ1, τ), (2.4)

both in continuous-time and in discrete-time, and

ΦA(t, τ)
−1 = ΦA(τ, t)

d

dτ
(ΦA(t, τ)) = −ΦA(t, τ)A(τ),

(2.5)

only in continuous-time.

Considering Abel’s identity [39], the following can be stated:

det(ΦA(t, τ)) = exp

(∫ t

τ

tr(A(s)) ds

)
. (2.6)

This means that, in continuous time, the transition matrix is never singular (its
determinant is always positive, as the exponential function, for a real argument, is
always positive), which means it is always invertible. However, for a general case
it is not possible to obtain an explicit expression for the transition matrix, because

the exponential solution is not valid in every case
(
ΦA(t, τ) ̸= exp

(∫ t
τ
A(s) ds

))
.

In fact, according to Rugh [40], the previous solution will only hold when:

A(t)

∫ t

τ

A(s) ds =

∫ t

τ

A(s) dsA(t), ∀ t, τ. (2.7)

2.2 Linear periodically time-varying (LPTV) sys-

tems

A particular case of a LTV system is the LPTV system, that can be represented
by a coefficient matrix of T -periodic functions. This can be represented by adding
to the system described in equation (2.1) the following condition:

A(t) = A(t+ T ), T = 2π/ω > 0. (2.8)

In this case, the transition matrix is bi-periodic:

ΦA(t+ T, τ + T ) = ΦA(t, τ). (2.9)

A special case of the transition matrix can be defined exploiting the property of
periodicity of the transition matrix:

ΨA(τ) = ΦA(τ + T, τ) (2.10)
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which is called monodromy matrix at time τ . The eigenvalues of the monodromy
matrix (λ) do not depend on time (or τ), being called characteristic multipliers of
A. Whatsmore, and according to equation (2.6), all the characteristic multipliers
in a continuous-time system must be not null, but not necessary in a discrete-time
system.

The characteristic multipliers describe the stability of the system. That is to
say, the system will be asymptotically stable if and only if its characteristic mul-
tipliers belong to the open unit disc.

It should be taken into account that the stability conditions can be formulated
according to the Lyapunov equations:

−Ṗ (t) = A(t)T P (t) + P (t)A(t) +Q(t) in continuous-time

P (t) = A(t)T P (t+ 1)A(t) +Q(t) in discrete-time

Q(t) = Q(t+ T ), xTQ(t)x > 0 ∀t, ∀x ̸= 0.

(2.11)

The steady-state solution P̄ (t) of this equation will describe an asymptotically
stable periodic system if and only if it is unique, periodic and positive definite.

So far, the treatment and definitions were made considering a free response
system, but this can be extended to a forced-response linear state-space model
[14]. Therefore, a general LPTV state-space model can be written, in continuous-
time, as:

ẋ(t) = Ac(t)x(t) +Bc(t)u(t)

y(t) = Cc(t)x(t) +Dc(t)u(t)
(2.12)

or in discrete-time as:

x(t+ 1) = Ad(t)x(t) +Bd(t)u(t)

y(t) = Cd(t)x(t) +Dd(t)u(t)
(2.13)

where:

� u : T → Rni×1 is the input vector

� y : T → Rno×1 is the output vector

� B : T → Rn×ni is the input matrix

� C : T → Rno×n is the output matrix

� D : T → Rno×ni is the feedthrough matrix

being ni and no the number of inputs and outputs, respectively. These matrices
also hold the T -periodic property shown in equation (2.8). The smallest T for
which these periodicity conditions hold is defined as the period of the system.
Notice that T ∈ R in continuous-time while T ∈ Z in discrete-time.
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2.3 Floquet-Lyapunov theory

Let x(t) ∈ Rn be a solution of a LPTV system defined in equation (2.12) or
equation (2.13), depending on the considered time domain. Then, as stated in
[41], it is possible to find a T -periodic invertible state-space transformation, x̄(t) =
S(t)x(t), such that in the new coordinates, the system matrix is time-invariant
(Ā(t) = Ā). This will lead to the following:

˙̄x(t) = Ṡ(t)x(t) + S(t) ẋ(t)

=
(
S(t)A(t)S(t)−1 + Ṡ(t)S−1

)
x̄(t) in continuous-time

x̄(t+ 1) = S(t+ 1)x(t+ 1)

=
(
S(t+ 1)A(t)S(t)−1

)
x̄(t) in discrete-time

(2.14)

Then:

Ā =

{
S(t)A(t)S(t)−1 + Ṡ(t)S−1 in continuous-time

S(t+ 1)A(t)S(t)−1 in discrete-time
(2.15)

The quest now is to find a pair S(t) and Ā that satisfies the following differential
equation (in the continuous-time case):

Ṡ(t) = Ā S(t)− S(t)A(t), S(τ) = In×n. (2.16)

The solution can be found by solving eĀ T = ΨA(τ), where τ is any given time
point. Then, the appropriate (T -periodic) transformation matrix is the following:

S(t) = e(t−τ)ĀΦA(τ, t). (2.17)

The discrete-time case is not that straightforward because it can lead to a non-
reversible system. However, in the reversible case (that is, A(t) is non-singular
∀t), the Floquet representation always exists and the matrix Ā can be computed
by solving ĀT = ΨA(τ)

� and the transformation matrix is defined by:

S(t) = Āt−τ ΦA(τ, t). (2.18)

So far, a relationship between the monodromy matrix and the time-invariant
system matrix has been provided, among others. Therefore, the eigenvalues of Ā
are named characteristic exponents. According to this relationship, the associated
characteristic exponents (ρ) can be defined as follows:

ΨA(τ) =

{
eĀT

ĀT
→ λ =

{
eρT in continuous-time

ρT in discrete-time.
(2.19)

�Notice that T stands for the system period and not the transpose operator T
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Notice that the characteristic exponents are not uniquely defined due to the poly-
dromy of the complex exponential functions. In continuous-time:

e(a+i b)T+i 2 k π = eaT (cos (b T + 2 k π) + i sin (b T + 2 k π)) , k ∈ Z, (2.20)

whatever the value of k, the same number is computed. It also happens in discrete-
time, where

(a+ i b)T = rT e(θ+2 k π)T = rT eψ(k)T

= rT (cos (ψ(k)T ) + i sin (ψ(k)T )) , k ∈ Z,
(2.21)

being r =
√
a2 + b2 and θ = atan2 (a, b), in which, as in the previous case, the

same number can be computed whatever the value of k.

2.4 Frequency-domain reformulation

In 1990, a frequency response formulation analogous to the classical LTI Bode gain
and phase response was developed for continuous-time LPTV systems at MIT.
Thanks to Wereley and Hall contributions [42], [43] and [44], the development
of a comprehensive open-loop analysis theory for LPTV systems, characterising
poles, zeros and their directional properties, a generalised Nyquist criterion or a
complete frequency domain interpretation arose.

On one hand, it is possible to recall the fundamental Bode notion in LTI
systems: a sinusoidal input with a given frequency will be mapped by the LTI
frequency response function operator into sinusoidal output of the same frequency
but where the amplitude and/or the phase may change. On the other hand, if
a sinusoidal input is applied to a LPTV system, the steady-state output will be
the sum of infinite sinusoids that will appear in the output at the input frequency
plus or minus the multiples of the LPTV fundamental frequency, each one with a
different amplitude and/or phase (see Figure 2.1).

In LTI theory, this fact suggested the existence of a transfer function that
mapped the input to the output. For LPTV systems, this concept of transfer func-
tion was developed, being commonly called harmonic transfer function (HTF).
This harmonic transfer function maps periodic input signals to steady-state peri-
odic output signals. The following subsections will explain all the formulation up
to the HTF construction.
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Ai

x(t) = Ai sin(ωi t)

ωi

LTI

LPTV
at ωm

Ao∠φo

yLTI(t) = Ao sin(ωi t+ φo)

ωi

Ao∠φo

A−2∠φ−2

A−1∠φ−1
A1∠φ1

A2∠φ2

yLPTV (t) =
∑

k∈ZAk sin ((ωi ± kωm) t+ φk)

ωi ωi + ωmωi − ωm ωi + 2ωmωi − 2ωm

Figure 2.1: LTI vs LPTV sinusoidal input-output comparison

2.4.1 Fourier expansion series

Considering the system of equation (2.12), let us consider now a complex Fourier
series expansion of each matrix at the fundamental system frequency:

Q(t) =
∞∑

n=−∞

Qn e
jnωm t (2.22)

where Q(t) can be any of the space-state matrices of the system.
Notice that in the discrete-time form, the system frequency would be ωm =
2 π Ts/T , being Ts the sampling time and T the period of the system, to be
consistent with the developed formulation. Now, if Nf = T/Ts, consider it even
for the sake of simplicity, the expansion cannot be infinitely long, but it is con-
strained to the Nyquist frequency [6]. Consider also N , even as Nf . At the end
of this section, its meaning will be detailed. Then, the expansion is defined as
follows:

Q(t) =

N/2−1∑
n=−N/2

Qn e
jnωm t. (2.23)

2.4.2 Exponentially Modulated Periodic Signals

The class of exponentially modulated periodic (EMP) signals is an extension of the
class of periodic signals, in which an exponential modulation, with a frequency,
which is a complex scalar, that can be freely chosen according to what is desired,
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is added. Then the modulated expansion would be as follows:

Q(t) =

{
e s t
∑∞

n=−∞Qn e
jnωm t in continuous-time

zt
∑∞

n=−∞Qn e
jnωm t in discrete-time.

(2.24)

This class of signals is a generalization of the class of T -periodic signals. Actually,
if s = 0/z = 1, an ordinary time-periodic signal expansion is recovered. The use
of EMP signals is well-extended in the treatment of T -periodic signals, mostly, to
derive an EMP steady-state form of a T -periodic system in the frequency domain.

Expanding equation (2.12) or equation (2.13) using the EMP expansion in
equation (2.24) [42]:

0 =
∑
n∈Z

(
snXn −

∑
m∈Z

An−mXm −
∑
m∈Z

Bn−m Um

)
es t e jnωm t

0 =
∑
n∈Z

(
Yn −

∑
m∈Z

Cn−mXm −
∑
m∈Z

Dn−m Um

)
es t e jnωm t.

(2.25)

The discrete-time form would be similar, as it was developed before. Let In the
interval [−N/2, N/2− 1]:

0 =
∑
n∈In

(
ze jnωmXn −

∑
m∈In

An−mXm −
∑
m∈In

Bn−mUm

)
zt e jnωm t

0 =
∑
n∈In

(
Yn −

∑
m∈In

Cn−mXm −
∑
m∈In

Dn−m Um

)
zt e jnωm t.

(2.26)

Therefore, the set of exponentials {e jnωm t|n ∈ Z} constitutes an orthonormal
basis in the range [0, T ]. This leads, by the principle of harmonic balance, to the
result that each term enclosed in the parentheses must be zero to ensure that the
overall sum is null. Hence, the systems (2.25) and (2.26) hold the following:

snXn =
∑
m∈Z

An−mXm +
∑
m∈Z

Bn−m Um

Yn =
∑
m∈Z

Cn−mXm +
∑
m∈Z

Dn−m Um
(2.27)

in continuous-time, and
z e jnωmXn =

∑
m∈In

An−mXm +
∑
m∈In

Bn−m Um

Yn =
∑
m∈In

Cn−mXm +
∑
m∈In

Dn−m Um
(2.28)

in discrete-time version.
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2.4.3 Harmonic State-Space Model

However, for a better manipulation, these summations can be expressed in a ma-
trix form, using Toeplitz matrices. Actually, a T -periodic matrix can be expressed
in terms of its harmonics (Fourier coefficients) as a doubly infinite block-Toeplitz
matrix, which is called the Toeplitz form:

Q =



. . .
...

...
...

...
...

· · · Q0 Q−1 Q−2 Q−3 Q−4 · · ·
· · · Q1 Q0 Q−1 Q−2 Q−3 · · ·
· · · Q2 Q1 Q0 Q−1 Q−2 · · ·
· · · Q3 Q2 Q1 Q0 Q−1 · · ·
· · · Q4 Q3 Q2 Q1 Q0 · · ·

...
...

...
...

...
. . .


. (2.29)

Notice that in the discrete-time domain, these matrices will not be infinite but
they will be limited by the maximum harmonic that can be computed (recalling
the In interval). Then, the discrete-time version would be as follows:

Q =


Q0 Q−1 · · · Q−N/2 QN/2−1 QN/2−2 · · · Q1

Q1 Q0 · · · Q−N/2+1 Q−N/2 QN/2−1 · · · Q2
...

...
...

...
...

...
Q−1 Q−2 · · · QN/2−1 QN/2−2 QN/2−3 · · · Q0

 . (2.30)

However, the state, input and output are vectors, which can be also expressed
in a doubly infinite vectors composed by the harmonics of their Fourier series
expansion, as shown in equations (2.24), leading to the following structure:

V =


...
V−1

V0
V1
...

 . (2.31)

In the discrete-time case, these vectors will not be infinite but they will be limited
to the In interval.

Using the Toeplitz form of the matrices, the systems (2.27), (2.28) can be ex-
pressed as EMP steady-state response systems composed by constant coefficients.
This is called the harmonic state-space (HSS) model, which represents a lifted LTI
equivalent for a periodic class of input-output signals. These models are defined
as follows:

sX = (A−Nc)X + B U
Y = C X +DU

(2.32)
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for the continuous-time form, and:

zNdX = AX + B U
Y = C X +DU

(2.33)

for the discrete-time form. Notice that the matrices Nc and Nd are a consequence
of the delay between Xn and Xm in the systems (2.27) and (2.28). Therefore,
these N matrices are defined as block diagonal matrices containing the delay of
each equation of the system:

Nc = blkdiag{j n ωm In×n} = Nd = blkdiag{ej nωmIn×n} =
= blkdiag{nC} = = blkdiag{enD In×n} =

. . .
...

...
...

...
...

· · · −2C 0 0 0 0 · · ·
· · · 0 −C 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 C 0 · · ·
· · · 0 0 0 0 2C · · ·

...
...

...
...

...
. . .





e−
N
2
D I · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · e−D I 0 0 · · · 0
0 · · · 0 I 0 · · · 0
0 · · · 0 0 eD I · · · 0
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · e(
N
2
−1)D I


(2.34)

where C = j ωm In×n, D = j ωm and I = In×n defined for the sake of simplicity of
notation.

2.4.4 Harmonic Transfer Function

Once the systems are defined, the harmonic transfer function can be defined just
by relating the input harmonics and the output harmonics vectors:

G (s/z) =

{
C (s I − A+Nc)

−1 B +D in continuous-time

C (zNd −A)−1 B +D in discrete-time
(2.35)

G(s/z) =


. . .

...
...

...
· · · G0(s− sm/z · z−1

m ) G−1(s/z) G−2(s+ sm/z · zm) · · ·
· · · G1(s− sm/z · z−1

m ) G0(s/z) G−1(s+ sm/z · zm) · · ·
· · · G2(s− sm/z · z−1

m ) G1(s/z) G0(s+ sm/z · zm) · · ·
...

...
...

. . .

 (2.36)

where sm = j ωm and zm = ej ωm . Each term of the matrix can be defined using
indices, expressing them as Ga b = Ga(s− b sm/z · zbm). The index b expresses the
corresponding harmonic of the input, while the index a expresses the harmonic
delay between the harmonic of the input and the harmonic of the output.
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An example may clarify the definitions. If the considered system was a LTI
one, then, the HTF would only have non-zero values on the main diagonal, this
is, G0 b. This links with Figure 2.1, where there is no frequency delay between the
input and the output in a LTI system. This explains why all the terms in which
a ̸= 0 are null.

Notice also that the variable s/z is the chosen one when the exponential modu-
lation is performed. Then, if it is not desired to modulate the signal, s = 0/z = 1.
Also, notice that G (s) is actually an infinite-dimensional operator and that it
cannot be implemented exactly in a numerical code. This difficulty can be cir-
cumvented by setting a parameter N , as in the discrete-time case, that will set
the number of the harmonic where the truncation will be done. In fact, this pa-
rameter was already defined in the discrete-time fomulation, at the beginning of
this section. The effect of this parameter is that the truncation can be also used
in case that the parameter Nf becomes so large that the computation time would
become excessive. This is why, in this case, N ∈ [2, Nf ] ∈ Z. However, the study
of the impact of the truncation will not be discussed further in this thesis.



Chapter 3

State of the art

In this chapter, the main objective is to provide a review of the latest research lines
about reformulations for identification algorithms for LPTV systems provided in
Section 1.2, focusing more now on the mathematical aspects. This will let us
justify later, in Chapter 4, some decisions that were made. The order of this
chapter will be the same as in Section 1.2, each section being dedicated to each
publication.

3.1 Identification of linear periodically time-varying

systems using periodic sequences

In the publication by Wutao and Mehr [32], the main goal is to perform an
idenfication in frequency domain by converting the LPTV system into a linear
switched time-varying (LSTV) blocked system. Then, applying a periodic input,
the steady-state of the output will be also periodic. Considering now the DFT of
the input and the output, a least-mean-square (LMS) algorithm can be used for
the identification.

Consider a M -periodic LPTV system. Then, the input-output response can
be expressed as the infinite sum of the product of g(m, i), which is the system
response at time m to an impulse applied at time i in its input, and x(i), the
input at time i. As an inherent property of LPTV systems, the system response
operator is bi-periodic, g(m+M, i+M) = g(m, i), ∀m, i. Then, a new operator
can be defined as h(m, i) = g(m,m− i) leading to:

y(m) =
∞∑
i=0

g(m, i)x(i) =
∞∑
i=0

h(m,m− i)x(i). (3.1)
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Now, setting the impulse response

Hm(z) =
∞∑
i=0

h(m, i) z−i = Hm+M =
∞∑
i=0

h(m+M, i) z−i, (3.2)

a representation of the LPTV system is obtained by setting M LTI subsystems
that will be switched at the output, as shown in Figure 3.1. This switch is con-
nected to the output of the m-th LTI subsystem Hm at time m, until time M − 1
is reached, then, the switch comes back to time 0 and restarts the period. To
model the switch, the output of the m-th LTI subsystem at time n is multiplied
by the factor (1/M)

∑M−1
ℓ=0 W

(n−m) ℓ
M = (1/M)

∑M−1
ℓ=0 e−j 2π/M (n−m) ℓ.

Figure 3.1: M -periodic LPTV system scheme as M LTI systems switched at
output

Then, the output Y (z) can be modeled as the sum of Ym(z), m ∈ [0,M − 1],
where

Ym(z) =
1

M

M−1∑
ℓ=0

W−mℓ
M Hm

(
zW−ℓ

M

)
X
(
zW−ℓ

M

)
. (3.3)

Now, one assumption made by the authors is that the impulse response of each
subsystem is of finite length. This lets us define an upper limit for the sum in
equation (3.2), defining Lm as the length of the m-th branch. By substitution,
Hm(z) = eTm(z)hm, where h

T
m = [h(m, 0), h(m, 1), · · · , h (m,Lm − 1)] and eTm(z) =[

1, z−1, · · · , z−(Lm−1)
]
. This leads to the following:

Ym(z) =
1

M

M−1∑
ℓ=0

W−mℓ
M X

(
zW−ℓ

M

)
eTm
(
zW−ℓ

M

)
hm

=
[
c(0)m (z), c(1)m (z), · · · , c(Lm−1)

m (z)
]
hm = cTm(z)hm.

(3.4)

Finally, this leads to a matricial expression for the output in the frequency domain,

Y = cT(z)h, (3.5)
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where hT =
[
hT0 , h

T
1 , · · · , hTM−1

]
and cT(z) =

[
cT0 (z), c

T
1 (z), · · · , cTM−1(z)

]
.

To design the identification experiment, a N -periodic signal is chosen, being
N = KM, K ∈ Z, obtaining also a N -periodic output. Due to the periodicity of
the signals, the DFT of them can be computed. Now, evaluating (3.5) at z = W−k

N ,

Y [k] = Y
(
W−k
N

)
= cT

(
W−k
N

)
h = cT [k]h (3.6)

defines the DFT coefficients of the output.

Consider some Gaussian noise (w ∼ G(0, σ2)) in the output signal. This can
be expressed as the vector, W , which is the N -point DFT of the noise which
accounts for the measuring error and system noise. Then, the system to identify
is defined as Y = Ch+W , where

Y =


Y [0]
Y [1]
...

Y [N − 1]

 , C =


cT0 [0] cT1 [0] · · · cTM−1[0]
cT0 [1] cT1 [1] · · · cTM−1[1]
...

...
. . .

...
cT0 [N − 1] cT1 [N − 1] · · · cTM−1[N − 1]

 . (3.7)

Finally, the identification problem is reduced to a minimization problem over
h, which is:

ĥ = argmin
h

∥Y − Ch∥2 = C†Y , (3.8)

where C† = (C∗ C)−1 C∗ stands for the Moore–Penrose inverse and C∗ for the
conjugate transpose.

3.2 Nonparametric tracking of the time-varying

dynamics of weakly nonlinear periodically

time-varying systems using periodic inputs

In this paper [33], Louarrondi, Pintelon and Lataire present a procedure for
(N)LPTV systems by applying multisine excitations as input. The main idea
is that a LPTV can be decomposed into infinte series of HTFs. Then, using a
local polynomial approximation, the HTFs are identified in an output-error frame-
work, using data from a single experiment. From these nonparametric estimates,
the evolution of the dynamics, described by the instantaneous transfer function
(ITF), can then be recovered in a simple manner.

A general input-output relation of a general LPTV system can be provided
using the convolution integral of the time-varying kernel, g(τ, t), and the input.
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Thus, due to the periodic property of g(τ, t+Tsys) = g(τ, t), this can be expressed
as a Fourier series, becoming what follows:

y0(t) =
+∞∑
l=−∞

(gl(t) ∗ u0(t)) ejlωsyst (3.9)

being ∗ the convolution product.

Then, the ITF of a LPTV system can be described as an infinite sum of
independent HTFs, Gl(ω), (see Figure 3.2a). From a practical point of view, this
infinite sum needs to be truncated to a Nb order, leading to:

GNb
(ω, t) =

+Nb∑
l=−Nb

Gl(ω) e
jlωsyst, (3.10)

and to the following truncated output:

yNb
(t) = G[Nb] {u0(t)} =

1

2π

∫ +∞

−∞
GNb

(ω, t)U0(ω) e
jωt dω. (3.11)

(a) The triangle blocks denote a time-domain
multiplication, while the gains stand for
ej lωsyst

(b) The gains are interchanged with the dy-
namic blocks

Figure 3.2: Block-schematic equivalent representations of a LPTV system by
weigthed sum of LTI systems

On the other side, the input signal is a band-limited periodic random phase
multisine defined as follows:

u0(t) =
1√
Nexc

∑
k∈±Kexc

Uk e
j(kωexct+ϕk), (3.12)
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being Kexc the set of excited frequencies. With respect to the phases, ϕk, they
have been selected to distribute uniformly the inputs. Also, ωsys = p/q ωexc, where
p, q ∈ Z, are design parameters. It is also important to remark that the input
u0 and the output y0 are observed at steady-state so they are both periodic with
period T = p Tsys.

Since the identification will be done in the frequency domain, the model has
to be converted to the frequency domain. The authors justify this fact stating
that it is straightforward to select the frequency band that covers the system
dynamics of interest. Now, by applying model equivalences (see Figure 3.2b),
Gl(ω) = Hl (ω + lωsys) can be defined. Hence, the input-output relation in the
frequency domain can be expressed as:

Y0(k) =

+Nb∑
l=−Nb

Hl (ωk)U0(k − pl). (3.13)

The next step is to set up the noise model for the identification scheme: Y (k) =
H (ωk)U(k)+W (k), with U(k) = U0(k), being this one the input vector contain-
ing the shifted versions of the input spectrum U(k) = [U (k − pNb) . . . U(k) . . .
U (k + pNb)]

T , H (ωk) = [HNb
(ωk) . . . H0 (ωk) . . . H−Nb

(ωk)] and W (k) the term
containing the errors due to the output noise and output stochastic non-linear
distortions.

Therefore, the frequency response function (FRF), H (ωk), can be locally ap-
proximated by a polynomial of degree R: H (ωk+l) ≃ H (ωk)+

∑R
r=1 hr(k)l

r. This
leads to the final structure of the model:

Y(k) = Θ(k)K(k) +V(k) (3.14)

where the structure of each matrix isQ(k) = [Q(k − n), Q(k − n+ 1), . . . Q(k), . . . ,
Q(k + n)], while Q(k) stands for Y(k), K(k) and V(k). Solving this equation in
the least-squares sense, the local polynomial estimate of the FRF is computed,
and then, an estimate of the ITF is obtained by applying equation (3.10).

3.3 Continuous-time identification of periodically

parameter-varying state-space models

In [34], Goos and Pintelon present a frequency domain identification method based
on estimating multivariate LPV continuous-time state-space models, with a peri-
odic variation of the parameters. The proposed method designs a periodic input
signal, which is related to the periodicity of the parameter variation. On their
publication, a sparse structure in the frequency domain is developed to speed up
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the estimation computation. Finally, a weighted non linear least squares algo-
rithm is used to minimize the output error.

A general definition for a LPV system can be given as follows:{
ẋ(t) = A(p(t))x(t) +B(p(t))u(t)

y0(t) = C(p(t))x(t) +D(p(t))u(t),
(3.15)

where the matrices are defined as Q(p(t)) =
∑Np

i=1Qiϕi(p(t)), while the input is
defined as a multisine excitation at different frequencies and uniformly distributed
phases.

This structure can be transformed into the frequency domain by the DFT.
The continuous-time state-space in frequency domain is:{

sX(k) = A(P (k)) ∗X(k) +B(P (k)) ∗ U(k)
Y (k) = C(P (k)) ∗X(k) +D(P (k)) ∗ U(k),

(3.16)

where ∗ stands for the circular convolution product of the spectra and k ∈
[−N/2 + 1, N/2] denotes the DFT bin number. Imposing now the parametriza-
tion defined above on this system and rewriting the circular convolution as the
product of a Toeplitz matrix and a vector, a compact notation of the state-space
system is provided in equation (3.17), where the definitions of each component
are defined in equation (3.18).{

EX = αPxX + β Pu U

Y (θ) = γ PxX + δ Pu U
(3.17)

E = INx ⊗ j diag
(
ω0, ω1, . . . , ωN

2
, ω−N

2
+1, . . . , ω−1

)
α =

[
A1 ⊗ IN A2 ⊗ IN . . . ANp ⊗ IN

]
β =

[
B1 ⊗ IN B2 ⊗ IN . . . BNp ⊗ IN

]
γ =

[
C1 ⊗ IN C2 ⊗ IN . . . CNp ⊗ IN

]
δ =

[
D1 ⊗ IN D2 ⊗ IN . . . DNp ⊗ IN

]
Px =


Toeplitz

(
P1, P

H
1

)
⊗ INx

...

Toeplitz
(
PNp , P

H
Np

)
⊗ INx



Pu =


Toeplitz

(
P1, P

H
1

)
⊗ INu

...

Toeplitz
(
PNp , P

H
Np

)
⊗ INu

 ,

(3.18a)

(3.18b)

(3.18c)

(3.18d)

(3.18e)

(3.18f)

(3.18g)
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where Ai, Bi, Ci and Di are the original real time-domain matrices, IN is a N×N
identity matrix and ⊗ stands for the Kronecker product.

From this compact notation, it can be noticed that the matrices are actually
only defined by a limited number of constant real parameters that compose the
model parameter vector θ to be identified. In order to perform the identification,
the weighted output error has been chosen as the optimization criterion, and the
Gaussian Maximum Likelihood Estimator is formulated in the frequency domain,
defining the output error as ε(θ) = Y (θ) − Y . Then, the minimization problem
can be formulated, under several assumptions, as follows:

θ̂ML = argmin
θ

ε(θ)H C−1
e ε(θ), (3.19)

where ε(θ)H is the complex conjugate of ε(θ) and Ce is the error covariance matrix,
which can be estimated non-parametrically in the frequency domain, by simply
observing multiple periods of the output signal. As only stationary output noise
is considered, the noise is uncorrelated over frequency, and Ce becomes a (non-
constant) block diagonal matrix (the noise can still be correlated over the different
outputs).

3.4 Model-based flight control of kites for wind

power generation

In this Doctoral Thesis [35], Wood developes a model-based identification and con-
trol focused on Airborne Wind Energy, which is a new methodology to capture
energy stored in the wind using tethered aircraft. Focusing on the identifica-
tion chapter of the thesis, its work is based on giving a formal representation of
LPTV system and introducing a subspace identification method to obtain low-
order state-space realisations from input and output data. This allows to obtain
periodic state-space models. This identification method approach is called Energy
(cumulative spectrum) bound noise fitting.

The first step of this algorithm is to select a set of data structure parameters
(s, c) that are sufficiently large, given the system period, P , and a data length,
M . Also, it is necessary to select the singular value threshold, s̄, and weighting
parameters from λ0, ..., λP−1.

Then, for a series of values, ε ∈ [εmin, εmax], the algorithm follows to solve the
nuclear norm minimisation problem given in equation (3.20) with constraint set,

W = W(ε)
E (or W = W(ε,η)

C ),

minw
∑P−1

τ=0 λτ∥S
(s,c)
τ (ỹ − w)Π⊥

τ ∥∗
s.t. w ∈ W ,

(3.20)
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where w is the optimisation variable that can be understood as the residual signal
meant to emulate a noise realisation, ỹ is the output data affected by additive
noise (ỹ = y + σy, being σy the additive output noise), Π⊥

τ stands for the full-

rank input annihilator matrices, that hold U
(s,c)
τ Π⊥

τ = 0, ∀τ = 0, ..., P − 1, and

S(s,c)
τ is the stacking operator for a finite sequence of a discrete-time signal, v =

(v0, v1, . . . , vM−1), vk ∈ Ri:

S(s,c)
τ (v) =


vτ vP+τ · · · v(c−1)P+τ

vτ+1 vP+τ+1 · · · v(c−1)P+τ+1
...

... · · · ...
vτ+s−1 vP+τ+s−1 · · · v(c−1)P+τ+s−1

 (3.21)

with s, c ∈ Z++ and M ≥ (c− 1)P + τ + s. Hence, the optimiser will be denoted
as w(ε)∗.

Before going on with the algorithm, it may be necessary to define the con-
straints. The energy bound noise constraint (equation (3.22a)) is a bound on the
energy of the emulated noise signal, w. According to its definition, [wk]i is the i-th
element of the noise candidate vector at time instant k, and ε bounds the energy
of the noise for each output. However, if a more complex constraint is used to
enforce noise-like properties of the estimated residual, the cumulative spectrum
noise constraint can be imposed (equation (3.22b)). In its definition, the tolerated
deviation from cumulative spectrum linearity, η is used and also the DFT of w,
W .

W(ε)
E =

{
w

∣∣∣∣∣
M−1∑
k=0

|[wk]i|
2 ≤ ε , i = 1, . . . , o

}

W(ε,η)
C =

{
w

∣∣∣∣∣ 1M
j−1∑
k=0

|[Wk]i|
2 ≤

(
η +

j

M

)
ε ,

i = 1, . . . , o

j = 1, . . . ,M

} (3.22a)

(3.22b)

Returning to the algorithm, for each considered noise level, ε, and all tags,
τ = 0, ..., P − 1, the projected output structure is approximated by truncating
singular values below the threshold, s̄,

S(s,c)
τ

(
ỹ − w(ε)∗)Π⊥

τ = Û∗
τ,1Ŝ∗

τ,1V̂∗
τ,1 + Û∗

τ,2Ŝ∗
τ,2V̂∗

τ,2 ≈ Û∗
τ,1Ŝ∗

τ,1V̂∗
τ,1, (3.23)

calculating also, the candidate state dimension, n̂
(ε)
τ = rank

(
Ũ∗
τ,1

)
, and the sys-

tem order, n̂
(ε)
max = maxτ=0,...,P−1 n̂

(ε)
τ .

Thus, for each of the values of n̂
(ε)
max of interest, it is necessary to find the

corresponding minimum ε. And finally, for all resulting ε, an estimate peri-
odic state-space realisation can be computed using the estimated system output,
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ŷ = ỹ − w(ϵ)∗, instead of ỹ.

As all the black-box algorithms, this one generates a series of models with
different orders. From this set of models, the selection of one is done based on a
desired trade-off between the model order and the fit to the data set. Then, the
dimension of the state vector at different tags can be emphasised with the weight-

ing parameters by setting λτ = 1/
∥∥∥S(s,c)

τ (ỹ)Π⊥
τ

∥∥∥
∗
for τ = 0, ..., P − 1. This allows

to discourage tags for which the sum of the singular values of the raw output data
matrix is large to dominate the cost function.

An upper bound for ε can be found from intuition as the smallest value for
which ỹ ∈ WE

εmax = max
i=1,...,0

M−1∑
k=0

|[ỹk]i|
2 . (3.24)

This corresponds to the noise level required to assign all of energy in the measured
output to noise. Then, all models of order greater than zero correspond to lower
values of ε and can be found by gridding or interactive searching for values for
which n̂

(ε)
max changes.

3.5 Frequency-domain subspace identification of

linear time-periodic (LTP) systems

The proposal of Uyanik et al. in [6] is based on a new methodology for subspace-
based state-space identification for LPTV systems. The approach is based on
lifting a discrete-time LPTV system to an equivalent LTI one by doing so with
the input-output data�. Then, using frequency-domain identification methods, the
LTI system is identified. Finally, by exploiting the specific parametric structure
of Fourier series coefficients of the frequency-domain lifting method, the time-
periodic realisation for the estimated system is performed. The authors also state
that this method can also be used to obtain a Floquet transformation for known
LPTV systems.

Regarding to the Floquet-Lyapunov theory developed in Section 2.3, an LPTV
system can always be expressed in the following form:

ẋ(t) = A x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t).
(3.25)

Now, to move this continuous system into a discrete-time one, the time-varying
bilinear (Tustin) transformation is used, leading to Ad, Bd(k), Cd(k) and Dd(k),

�see Section 2.4.3 for a better understanding of the lifting concept.
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that are the discrete-time state-space matrices of the system.

Then, the state-space is lifted using the Toeplitz forms. Notice that, as Ad is
time-invariant, its Toeplitz form will be a block diagonal matrix of this one: Ad =
blkdiag {Ad}. This leads to the HSS model that was developed in Subsection 2.4.3.
Now, if the modulation matrix is inverted, new definitions arise: AdN = N−1

d Ad,
BdN = N−1

d Bd, and the HSS model is expressed as follows:

zXd = AdN Xd + BdN Ud
Yd = Cd Xd + Dd Ud.

(3.26)

Remember that, since a discrete-time version of the HSS is being used, the ma-
trices will not be infinite but the lifting will be limited to the interval In =
[−N/2, N/2− 1].

Regarding the chosen input, it is a sum-of-cosines (u(t) =
∑M

m=1 2Km cos (ωmt))
with a chosen frequency so as ωm ̸= 0.5 k ωp, k ∈ Z, where ωp is the system fre-
quency. Then, each term of the sum can be divided into two terms (uc(t) =
2K cos (ωmt) = Kejωmt + Ke−jωmt = u+c (t) + u−c (t)). Let us consider from now
onwards just the positive part of the decomposition, u+c (t). The next step now
is to modulate each u+c (t) term as an EMP signal with a z = ejωm as the mod-
ulation term. Since a (half-)cosine in ωm is modulated with its same frequency,
the resulting lifted vector will be equivalent to the same (half-)cosine in the zero
frequency. Then, this leads to Ud = [0, ..., K, ..., 0]T being K positioned in the
middle term of the vector, which is the N/2 + 1 position.

Consequently, the operations BdN Ud and Dd Ud can be performed in an equiv-

alent manner as BdN Ud and Dd Ud, where BdN = N−1
d

[
B−N/2, ..., B0, ..., BN/2−1

]T
and Dd =

[
D−N/2, ..., D0, ..., DN/2−1

]T
are the column N/2 + 1 of the original

Toeplitz matrices and Ud = K. This transformation leads to a single-input
multiple-output (SIMO) equivalent LTI system.

Noting that Qm(k) = Q∗
−m(k) for any coefficient of a Fourier expansion and

looking for a real-value identification, the state and output vectors can be trans-
formed by X (k) = TxXd(k), Yd(k) = Ty Yd(k), where:

Tx = 0.5


2Inp 0 0 0
0 I(N/2−1)np 0 J(N/2−1)np

0 0 2Inp 0
0 −jJ(N/2−1)np 0 jI(N/2−1)np

 (3.27)

with a similar expression for Ty, being In the n × n identity matrix and Jn the
n × n antidiagonal matrix. This leads to the following real-valued state-space
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system:
ejωmX = TxAdN T −1

x X + Tx BdN Ud

Y = Ty Cd T −1
x X + Ty Dd Ud.

(3.28)

Now, using black-box identification methods such as CVA [45], N4SID [46]
or MOESP [47], the identification is performed. Then, to obtain an equivalent
lifted LTI system, it is needed to backsubstitute the Ty transformations, leading

to Ĉ = T −1
y Ĉ, D̂ = T −1

y D̂.

The drawback of this process is that it requires extra processing after the
idenfication part to unlift the matrices. This part is performed by a similarity
transformation Tc = diag{γ1, ..., γn}, that can be computed by setting V Γ = 0,
where V includes all the constraint equations for all Fourier series coefficients,

Γ =
[
γ1, γ2, . . . , γ(2Nh+1)

]T
and Nh is the number of harmonics in the state. Then,

as V is rank deficient with a nullspace dimension equal to 2, the SVD is used
to find its eigenvectors. It is necessary to select two eigenvectors corresponding
to the least significant singular values as the basis of the nullspace of V . Then,
defining Γ = α1 v1 + α2 v2, being α1, α2 free, the similarity transformation Tc can
be constructed and the LPTV system can be recovered.

3.6 Linear time-periodic system identification with

grouped atomic norm regularization

Yin et al. propose a new methodology for LPTV system identification in [36],
focusing on imposing appropriate structural constraints on the LTI reformulation
of LPTV systems. This constraint is imposed by combining the atomic norm
regularization framework for LTI systems with the group lasso technique in re-
gression. As a result, the estimated system is both uniform and low-order.

The discussion starts from a discrete-time LPTV state-space system and the
assumptions that the period P is known, that the system is stable and that the
state dimension is much lower than the number of periods observed. This method
is based on the switched reformulation model that was explained in Section 3.1.
Then, using the input-output definition provided in equation (3.1), and changing
the notation g(t, i) = gti , the following matrix can be defined:

g =


g11 g21 · · · gP1
g12 g22 · · · gP2
...

...
. . . · · ·

g1N g2N · · · gPN

 ∈ RN×P , (3.29)

where N is the truncation term of the infinite sum.
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It will be also necessary to introduce the atomic norm. The underlying idea
is to replace the search for a rank-revealing system matrix with the search for
an order-revealing decomposition of the system. Then, consider a set of stable
first-order systems

A =

{
aw(q) =

1− |w|2

q − w
| w ∈ D

}
, (3.30)

where D is the open unit disk. Hence, assuming also that the sub-models have
no repeated poles, i.e., the monodromy matrix is diagonalizable, the sub-models
can be decomposed as linear combinations of atoms by performing partial fraction
expansions of the transfer functions:

Gτ (q) ≈
np∑
k=1

cτk · awk
(q) = cTτ a(q), (3.31)

where the infinite atom set is approximated by fine gridding {wk} with an atom

vector a(q) =
[
aw1(q), ..., awnp(q)

]T
. The vector cτ =

[
cτ1, ..., c

τ
np

]T
denotes the

corresponding coefficients, and np is the number of atoms in the grid.

Then, the algorithm for LPTV system identification with grouped atomic norm
regularization is described as follows:

Given the input, u, the noise-added output, z, and the dataset for cross vali-
dation, uv(t) and zv(t), select N , {wk}, and weighting factor vector γgrid. Then,
compute ga =

[
ga1, ...,g

a
nn

]
, where gak is the N -truncated impulse response of

awk
(q).

Now, it is suggested to proceed with the optimization problem for each γ ∈
γgrid:

min
c

VLS (g
ac) + γ · JGA(c),

s. t. cτk = conj (cτl ) ,∀wk = conj (wl) , τ = 1, 2, · · · , P,
(3.32)

where the cost functions are defined as:

VLS(g | u(t), z(t)) =
P∑
τ=1

n−1∑
k=0

[
z(kP + τ)−

N∑
i=1

gτi u(kP + τ − i)

]2

JGA(c) =

np∑
k=1

∥∥c(k)∥∥
2
,

(3.33a)

(3.33b)

and the error can be defined as ϵ(γ) = VLS(g
a c(γ) | uv(t), zv(t)).
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Once finished the loop, solve the optimization problem

γ∗ = argmin
γ

ϵ(γ), (3.34)

and denote c∗ = c(γ∗), from which the LPTV system can be reconstructed.
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Chapter 4

State-space LPTV model
identification

In this chapter, a different approach for subspace-based state-space frequency-
domain identifcation for LPTV systems is developed. It is based on the first steps
of the approach of Uyanik et al. [6], but modifying several steps so as the objetive
is to match the identified model with the real one. The approach is based on lift-
ing a discrete-time LPTV system to an equivalent LTI one by doing that with the
input-output data, but with a different approach for the modulation part. Then,
as each of the components of the state-space matrices will be T -periodic, their ex-
pansion into trigonometric Fourier series is performed, and choosing the harmonic
truncation number, the list of parameters to identify is obtained. Performing now
the identification in the output-error framework, and considering white Gaussian
noise in the output measurement, the parameters are identified. As the identified
parameters are the trigonometric harmonics of each component, the LPTV system
is inmediately recovered. Finally, to quantify the uncertainty over the identified
parameters, a Monte Carlo approach is used by idenfying the system several times
but changing the noise realisation, keeping its variance content.

First of all, some assumptions should be made:

� The algorithm is developed for single-input single-output (SISO) systems in
the time-domain.

� The period of the system, Tm, or, equivalently, its main frequency, ωm, is
known.

� To design the identification experiment, a Ti-periodic signal is chosen for
the input, being Ti an integer multiple of Tm.

� The structure of the identified state-space model is chosen beforehand, this
is, the number of states desired for the identified system, np.
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� The index for the truncation N of the Toeplitz matrices and the number of
harmonics desired in the identified model, Nmh, are design parameters.

� The output signal is assumed to be at steady-state.

With respect to the input, it is defined as an infinite sum of cosines, phased
following the Schroeder formula [48]. This phasing lets us have an uniform am-
plitude for the input, instead of having a lumped impulse at t = k Ti, k ∈ Z.
This effect is due to all the cosines being maximum in these time instants, and
the input the sum of the amplitudes of the cosines (see Figure 4.1a). The input
is prescribed as follows:

u(t) =

Ni∑
k=1

2Kk cos(ωk t+ φk)

ωk = k
2π

Ti
, k = 1, ..., Ni

φk =


0, k = 1

φk−1 −
π k2

Ni

, k = 2, ..., Ni

(4.1a)

(4.1b)

(4.1c)

where Kk is freely chosen for each input. According to what is stated in [49],
the input frequencies must hold ωm ̸= 0.5 q ωk, q ∈ Z. Therefore, the unsuitable
frequencies from equation (4.1b) will be removed.

(a) Input without considering the cosine phasing (b) Input considering the Schroeder’s cosine phas-
ing

Figure 4.1: Input Schroeder’s cosine phasing comparison

As Figure 4.1 shows, the fact of having a lumped impulse in the input gener-
ates a damped-oscillatory response, due to the residual input. Notice that the rest
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of the input is almost null with respect to the values at t = k Ti, k ∈ Z. Hence,
the output is more related to the impulsive input than to the rest of it, which
is not desired in this case. Therefore, to measure all the output, a sensor with
a very wide accuracy range may be needed. On the other hand, the Schroeder
phasing provides a more distributed amplitude in the input. The consequence of
this is a more uniform response, which can be measured in a better manner, since
its magnitude is always contained in the same range.

With respect to the system, given a continuous-time state-space model as the
one described in equation (2.12),

ẋ(t) = Ac(t)x(t) +Bc(t)u(t)

y(t) = Cc(t)x(t) +Dc(t)u(t),
(4.2)

the objective now is to apply the Floquet-Lyapunov theory (Section 2.3) to obtain
an equivalent system with constant A matrix.

Focusing now on a numerical approach, consider τ = 0. This will be helpful
to compute, for example, the transition matrix, which will be a function of Ac(t),
tau and τ + Tm. Notice that the choice of τ is arbitrary. Then, it is necessary to
solve the differential equation in equation (2.3) numerically. Setting ΦA(τ, τ) =
Inp×np , the tolerances of the integrator and a vector of time from τ to τ +Tm, the
integration can be performed. Notice that ode45 [50] does not solve differential
equations expressed as matrices. A solution to this would be to reshape ΦA(τ)
as a vector that contains all its columns, creating also a block diagonal matrix of
Ac(t) (see equation (4.3)). Once the integration is performed, an inverse reshape
should be done to recover the matrix form. This manner, the resultant matrix
will be ΨA(τ), the monodromy matrix.

Φ̇11

Φ̇21
...

Φ̇(np−1)np

Φ̇np np

 =


Ac(t) 0 · · · 0
0 Ac(t) · · · 0
...

...
. . .

...
0 0 · · · Ac(t)




Φ11

Φ21
...

Φ(np−1)np

Φnp np

 (4.3)

Once the monodromy matrix is computed, and according to the definition
provided in equation (2.19), the time-invariant matrix can be defined as

Āc =
1

Tm
ln (ΨA(τ)) . (4.4)

The next step is to compute now the transition matrix, S(t), according to
equation (2.17), S(t) = e(t−τ)Āc ΦA(τ, t). Once this matrix is computed, the new
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state-space system can be defined as follows:

B̄c(t) = S(t)Bc(t), C̄c(t) = Cc(t)S
−1(t), D̄c(t) = Dc(t),

˙̄x(t) = Āc x̄(t) + B̄c(t)u(t)

y(t) = C̄c(t) x̄(t) + D̄c(t)u(t).

(4.5a)

(4.5b)

Now, it is necessary to transform this continuous-time system into a discrete-
time one, using the time-varying bilinear (Tustin) transformation, which is the
following:

Ω =

(
2

Ts
Inp×np − Āc

)−1

, Bd(k) =
2√
Ts

Ω B̄c (kTs) ,

Ad =

(
2

Ts
Inp×np + Āc

)
Ω , Cd(k) =

2√
Ts
C̄c (kTs) Ω,

Dd(k) = D̄c (kTs) + C̄c (kTs) Ω B̄c (kTs) ,

(4.6)

where Inp×np is the identity matrix of np × np dimensions, and Ts stands for the
sampling time. The last term to transform is the input, that can be easily dis-
cretized as ud(k) = u(kTs). This leads to the following discrete-time state-space
system:

x(k + 1) = Ad x(k) +Bd(k)ud(k)

y(k) = Cd(k)x(k) +Dd(k)ud(k).
(4.7)

4.1 Identification part

First of all, consider lifting the output signal, y(k), denoted as Y∗ and the lifted
input signal, denoted as U .

Considering now the state-space matrices but Ad, which is constant, each of
the components of each matrix can be expanded in a trigonometric Fourier series,
denoted as follows:

Qi(k) = Qi0 +

Nharm∑
n=1

(Qcin cos (nωm Ts k) +Qsin sin (nωm Ts k)),

i = 1, ..., np

(4.8)

where Q(k) stands for Bd(k), Cd(k) and Dd(k).

The next step is to set now the number of inputs, ni, outputs, no, and states,
np that the identified system will have, as well as the number of harmonics, Nharm,
for the Bd(k), Cd(k) and Dd(k) functions. Then, each Qi0, Qcim and Qsim value is



4.1 Identification part 39

collected into a Θ vector, which will be the parameters vector, including also the
coefficients of Ad. This vector is defined with the following structure:

Θ =
[
ΘT
A, Θ

T
B, Θ

T
C , Θ

T
D

]T
ΘA =

[
A11, A21, ..., Anp 1, A12, ..., Anp np

]T
ΘQ =

[
Q10, Qc11 , Qc12 , ..., Qs11 , Qs12 , ..., Q20, ..., QsnpNharm

]T
,

Q = B, C, D.

(4.9)

Therefore, the number, nΘ, of parameters to identify can be computed as:

nΘ = n2
p︸︷︷︸

A(t)

+2np (2Nharm + 1)︸ ︷︷ ︸
B(t)+C(t)

+2Nharm + 1︸ ︷︷ ︸
D(t)

. (4.10)

This raises the importance of the Floquet transformation, as nΘ grows quadrati-
cally with np, keeping Nharm fixed.

Then, for each added-noise output signal, y(t), that was computed and lifted,
an optimization process will be performed to obtain the desired parameters. The
procedure for each iteration would be the following:

� Select Θ and compute Ad, Bd(k), Cd(k) and Dd(k).

� Lift the time-domain matrices to compute the Toepliz matrices AF , BF , CF
and DF .

� Compute the Nd matrix according to equation (2.34) in the discrete-time
domain version.

� Compute the HTF matrix, G(z) as defined in equation (2.35) in the discrete-
time domain version. Set z = 1.

� Compute YF(Θ) = G(z = 1)U .

Hence, the optimization problem to be solved is:

Θ̂ = argmin
Θ

∥YF(Θ)− Y∗∥2 (4.11)

A flow diagram of the algorithm is shown in Figure 4.2 to help the reader get
on a better understanding of it.

The last thing to configure is the optimizer. In this case, the chosen one
is MATLAB’s fmincon function [52], which was configured with the following
options:
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Simulation

Input

Guess
Θ

Select
N

ȳ(t)

w

Ad
Bd(k)
Cd(k)
Dd(k)

u(t)

y(t)

Nd

AF
BF
CF
DF

Y∗

U

G(z = 1) YF(Θ)

min ∥YF(Θ)− Y∗∥2 Θ̂

Optimizer
iteration

+

Figure 4.2: Algorithm diagram

� Algorithm: ’interior-point’ which is suggested from MATLAB’s docu-
mentation. This method is a large-scale algorithm that handles large, sparse
problems, as well as small dense problems. As our problem may become
large, its choice is justified.

� CheckGradients: Since the gradient is not provided, the option false is
chosen.

� MaxFunctionEvaluations: A very large number is chosen so as the optimiza-
tion does not depend on this parameter.

� MaxIterations: A number larger than default is chosen. Depending on the
specific problem, this value may change.

� ObjectiveLimit: set to 10−3, since a better result cannot be obtained due to
noise.

� UseParallel: To decrease the time of gradients computation, parallel com-
putation is set to true.

Once the optimizer provides a result, called Θ̂, the state-space model matrices,
Âd, B̂d(k), Ĉd(k), D̂d(k), can be reconstructed. To compute the uncertainty of
each identified parameter, the mean, µ, variance, σ2 and coefficient of variation,
σ/µ, are computed from the obtained dataset. This will be helpful to decide the
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influence of each parameter on the actual system.

If desired, the original system can be recovered by returning first to the
continuous-time domain, by using the inverse bilinear (Tustin) transformation:

Ωc =
(
Inp×np + Âd

)−1

, B̂c(t) =
2√
Ts

Ωc B̂d (k) ,

Âc =
2

Ts
Ωc

(
Âd − Inp×np

)
, Ĉc(t) =

2√
Ts
Ĉd (k) Ωc,

D̂c(t) = D̂d (k)− Ĉd (k) Ωc B̂d (k) ,

(4.12)

while the intersample data can be obtained via linear interpolation. Finally, re-
turning to equation (4.5a) and backmultiplying, the original state-space system
can be recovered.

4.2 Black-box modelling

Imposing the Fourier expansion on equation (4.8) means to use a grey-box method,
since a structure of the matrices is being imposed in some manner. However, if this
expansion cannot be computed, or a black-box modelling is desired, the change
would be just to add to Θ each of the possible harmonics of each component of
the state-space matrices. The resulting system will not probably be the desired
one, but an equivalent one, up to a transformation matrix. However, from this
equivalent system the user may tell the position of the main harmonics (see Figure
4.2).

(a) B matrix in time domain (b) B matrix in frequency domain
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(c) C matrix in time domain (d) C matrix in frequency domain

Figure 4.2: Simple black-box identification performed on the numerical example
on [6]

Notice that, despite all the possible harmonics of the matrices (from −N/2 to
N/2 − 1) are excited, the most relevant peaks can be associated with the main
frequency of the system. Nevertheless, this procedure is very inefficient, since the
number of parameters is much larger than using a grey-box approach, and leads
to much higher computation time to obtain the results. Then, using this black-
box approach, some relevant information can be collected to use later a grey-box
approach as the one explained in Section 4.1.



Chapter 5

Numerical examples

In this chapter, a numerical case study is related to illustrate the performance of
the algorithm developed in the previous chapter, as well as to verify its robustness
and accuracy in different situations.

5.1 Out-of-plane bending of a rotor blade

Bittanti and Lovera developed in [25] a model for the out-of-plane bending of a
helicopter rotor blade based on the physical derivation provided in [53] in order
to investigate its non-minimum phase characteristics.

The formulation of the model starts from the bending equation, considering
the bending moment acting on every section of the blade. This bending moment
must be equilibrated by the other forces acting on the blade, that are the inertial
forces and the aerodynamic loads. Integrating each section and considering the
rotor angular frequency, Ω as constant (which is reasonable in normal conditions),
equation (5.1) is obtained. This describes the structural response of the blade to
the external distributed loading, called LS.

d2

dr2

[
E(r)I(r)

d2z(r, t)

dr2

]
− d

dr

[(∫ R

r

m(ρ)Ω2ρdρ

)
dz(r, t)

dr

]
+

+m(r)z̈(r, t) = LS(r, t),

(5.1)

where EI is the blade stiffness, while m stands for the distributed mass of the
beam, being all of them a function of the radius from the hub of the rotor.

To solve equation (5.1), a modal expansion is performed using the separation of
variables method (z(r, t) =

∑kmax

k=1 ηk(r) e
iνk t, where ν is the frequency associated

with the free vibration of the mode shape η(r)). After the expansion, a remark
suggests that the modal expansion must be finite and mostly covers ranges from
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1 to 5 modes.

Considering now blade element theory [54] for the aerodynamic loads, the lift
of each section, ∆L(r, t), and the inflow angle, ϕ(r, t) are defined in equations
(5.2a) and (5.2b).

∆L(r, t) =
1

2
ρ u(r, t)2 c cl(r, t)

ϕ(r, t) = tan−1

(
up(r, t)

ut(r, t)

)
ut(r, t) = Ω r + V cosα sinψ

up(r, t) = V sinα + vi + ż(r, t) + z′(r, t)V cosα cosψ

u(r, t) =
√
up(r, t)2 + ut(r, t)2,

(5.2a)

(5.2b)

(5.2c)

(5.2d)

(5.2e)

where ρ stands for the air density, u(r, t) is the velocity of each blade section,
decomposed in vertical, up(r, t), and horizontal, ut(r, t), components respectively,
c is the chord of the section, cl is the two-dimensional lift coefficient, α is the angle
of attack of the blade section, while ψ is the angular position of the blade in the
horizontal plane with respect to a reference. Finally, V stands for the forward
velocity of the rotor and vi is the induced velocity of the rotor. Then, under
the small angle assumption, the vertical aerodynamic load can be determined as
follows:

LS(r, t) ≃ ∆L(r, t) cos(ϕ(r, t)) = ∆L(r, t)
ut(r, t)

u(r, t)
. (5.3)

Then, the formulation of the model is complete. Nevertheless, some parame-
ters should be defined to characterise the modeled rotor. These non-dimensional
parameters are, the blade Lock number γ, and the rotor advance ratio, µ, defined
as follows:

γ =
ρ a cR4

Iq1
, µ =

V cosα

ΩR
, (5.4)

where a defines the slope of the lift coefficient, R the total radius of the blade and
Iq1 the first modal moment of inertia.

The Lock number is the ratio of aerodyinamic to inertial forces, which char-
acterises each rotor. According to [53], the value of this parameter is typically
8 to 10 for articulated rotors and 5 to 7 for hingeless rotors, while high-stiffness
blades can reach 14. The rotor advance ratio is the ratio of the forward velocity
to rotor tip velocity, it is a non-dimensional velocity to describe the forward flight
condition (or the hovering one if µ = 0). Its value may depend on the technology
of the considered rotor.



5.2 Simulation part 45

Finally, the model takes the commanded pitch angle, and once defined the
rotor characteristics and the flight condition, it provides a time-periodic SISO
space-state model that returns the vertical shear force as the output. The model
size is np = 2nmodes, where nmodes stands for the selected number of modes. The
considered rotor in [25] was the AgustaWestland AW109, a fully articulated, four-
bladed helicopter, and so was done in this example.

Figure 5.1: AW109 [7]

Number of blades N [-] 4
Rotor angular freq. Ω [rad/s] 40.32
Rotor radius R [m] 5
Blade chord c [m] 0.3
Mass per unit length m [kg] 4.98
Stiffness EI [Nm2] 1.8E 3
Lift-coefficient slope a [rad−1] 5.7
Lock number γ [-] 7.8
Rotor advance ratio µ [-] 0÷ 0.35

Table 5.1: Main parameters of the AW109

According to [25], if the rotorcraft is in hover condition (µ = 0), the behaviour
can be modeled as a LTI system. However, as µ increases, the response can be
modeled as a LPTV system. Taking this into account, µ = 0.35 was selected for
all the performed examples.

With respect to the application of the method, the parameters to define are
N = 120 and Ts = 0.01 s. The choice of these parameters, and some others as
nmodes or Nmont, are based on a trade-off between time of computation and ob-
tained results. The examples were run using MATLAB 2021b under a Intel Core
i7-9750H (@ 2.60 GHz).

Regarding the input, a realisation composed by sum of 56 cosines, with Kk =
0.05∀k ∈ [0, 56] is used. This signal is characterised by Ti = 4.68 s. This input
is made so as it can excite all the possible frequencies available with the N value
choice.

5.2 Simulation part

This step is focused on obtaining a time-domain output signal to perform the
identification. Focusing on simulation, there are many ways of getting the output
signal. Nevertheless, to ensure the obtained signal is at steady state, the HTF
will be computed by lifting the matrices of the system and the input signal,
following the methodology explained in Section 2.4. Once the lifted output vector
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is computed, it is returned to the time domain using the definition of Fourier
expansion, provided in equation (2.23):

ȳ(k) =

N/2−1∑
n=−N/2

Yn e
jnωm k, (5.5)

remembering that, in discrete-time, ωm = 2π/Tm Ts.

Considering now the noise modelling, some Gausian noise (w ∼ G(0, σ2)) is
added using the MATLAB function awgn [51]. This function takes as inputs the
zero-noise signal, ȳ(t), the signal-to-noise ratio (SNR) in dB and the signal power,
in dBW, to return the added-noise signal, y(k) = ȳ(k) + w(k). The signal power
is computed as follows:

ypow[dBW] = 10 log10
(
ȳ2RMS

)
= 10 log10

(
1

N

N∑
n=1

|ȳn|2
)
. (5.6)

This definition provides a direct relationship between the SNR and the vari-
ance of the added noise, which is: σ2 = ypow/ SNR, where both data is expressed
in decimal units.

To obtain a measurement of the uncertainty of the identified parameters, a
number Nmont of added-noise realisations can be computed, to perform the same
number of identification processes and compute the mean and variance values of
the parameters.

5.3 Identification with nmodes = 1

The first case that was considered is the rigid-body model, which is nmodes = 1.
This leads to nΘ = 39 if Nharm = 3. The last parameter to be modified is the
added Gaussian noise by modifying the SNR value.

For SNR = 100, which is equal to add noise with σ2 = 4.69 · 10−4 variance,
the results are shown in Figure 5.2.
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(a) Input-output chart

ρref =

[
0.9954 + 0.0091i
0.9954− 0.0091i

]

ρident =

[
0.9954 + 0.0092i
0.9954− 0.0092i

]

(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.2: Bending model numerical example. nmodes = 1, SNR= 100

For SNR = 10, which is equal to add noise with σ2 = 4.69 · 10−3 variance, the
results are shown in Figure 5.3.

(a) Input-output chart

ρref =

[
0.9954 + 0.0091i
0.9954− 0.0091i

]

ρident =

[
0.9954 + 0.0093i
0.9954− 0.0093i

]

(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.3: Bending model numerical example. nmodes = 1, SNR= 10
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For SNR = 3, which is equal to add noise with σ2 = 1.57 · 10−2 variance, the
results are shown in Figure 5.4.

(a) Input-output chart

ρref =

[
0.9954 + 0.0091i
0.9954− 0.0091i

]

ρident =

[
0.9954 + 0.0089i
0.9954− 0.0089i

]

(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain
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(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.4: Bending model numerical example. nmodes = 1, SNR= 3

For SNR = 1.6, which is equal to add noise with σ2 = 2.94 · 10−2 variance, the
results are shown in Figure 5.5.
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(a) Input-output chart

ρref =

[
0.9954 + 0.0091i
0.9954− 0.0091i

]

ρident =

[
0.9954 + 0.0090i
0.9954− 0.0090i

]

(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.5: Bending model numerical example. nmodes = 1, SNR= 1.6

The charts show that in all the cases, the output signal is recovered, as well
as the harmonics that compose the state-space matrices. In fact, the presence
of noise disturbs the model identification, but keeping always the magnitude. In
general, it has been proved that for small systems, the method is very reliable,
because the number of parameters is relatively small. It is also remarkable that
the eigenvalues are successfully recovered, which is an important part in the sys-
tem characterisation.

As it was explained in the previous chapter, for each computation, a Monte
Carlo analysis was performed, changing the added-noise realisation, but main-
taining its SNR. By doing this, the mean and the variance of each value can be
computed by using standard formulas (see equation (5.7)). In this case, Nmont

was set to 20.

µp =
1

Nmont

Nmont∑
i=1

Θ̂pi , σ2
p =

1

Nmont − 1

Nmont∑
i=1

(
Θ̂pi − µp

)2
(5.7)

Since the number of non-zero parameters is not very large for each matrix,
the computed variance for each one can be plotted with respect to the SNR, to
understand the behaviour of the optimizer when the added-noise increases. The
fact of plotting the variance, and also the coefficient of variation (CV), may help
to discard some non-zero mean parameters that are not relevant for the system.
This means to discard, for example, those parameters which have a CV higher
than a threshold.
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(a) Âd matrix variance (b) Âd matrix CV

(a) B̂d matrix variance (b) B̂d matrix CV

(c) Ĉd matrix variance (d) Ĉd matrix CV
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(e) D̂d matrix variance (f) D̂d matrix CV

Figure 5.6: Bending model numerical example. Variance and CV. nmodes = 1

As expected, in the majority of the cases, the variance and the CV decrease
as the SNR increases. Nevertheless, some parameters as B21c, B22c, D3s and D3c

may be discarded due to their high CV.

At last, as it may be difficult to evaluate an identification taking into account
all of those charts, (taking into account that for higher systems, the number
of charts will incrase exponentially), a measurement of the error between the
identified and the reference model can be computed through some definitions,
that will help to rate the algorithm performance.

εA = ∥Aref − Âident∥2

εQi =

∫ fmax input

0

∣∣∣|Qi|ref(f)− |Q̂i|ident(f)
∣∣∣ df, i = 1, ..., np

Q = B,C,D

εTot = ∥
∑

εQi∥2.

(5.8a)

(5.8b)

(5.8c)

Then, a trend of the errors with respect to the SNR added-noise value can be
plotted so as to understand the range of SNR value in which the method provides
reasonable results.
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Figure 5.7: Bending model numerical example. Errors. nmodes = 1

Except for the B̂d matrix, the rest of the matrices show an almost logarithmic
behaviour with respect to the SNR increasement. This unexpected behaviour of
B̂d may become from a relative low value considered for Nmont, which value was
selected mosly due to computation power reasoning.

5.4 Identification with nmodes = 2

The following case to be considered is the one with nmodes = 2. This leads to
nΘ = 79 leaving Nharm = 3.

For SNR = 100, which is equal to add noise with σ2 = 4.29 · 10−4 variance,
the results are shown in Figure 5.8.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =

[
0.9945± 0.0065i
0.9964± 0.0275i

]

(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.8: Bending model numerical example. nmodes = 2, SNR= 100

For SNR = 10, which is equal to add noise with σ2 = 4.29 · 10−3 variance, the
results are shown in Figure 5.9.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =

[
0.9949± 0.0066i
0.9965± 0.0289i

]

(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.9: Bending model numerical example. nmodes = 2, SNR= 10

For SNR = 3, which is equal to add noise with σ2 = 1.43 · 10−2 variance, the
results are shown in Figure 5.10.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =

[
0.9948± 0.0065i
0.9958± 0.0286i

]

(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.10: Bending model numerical example. nmodes = 2, SNR= 3

For SNR = 1.6, which is equal to add noise with σ2 = 2.68 · 10−2 variance, the
results are shown in Figure 5.11.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9954± 0.0091i

]

ρident =

[
0.9950± 0.0071i
0.9948± 0.0279i

]

(b) Âd matrix eigenvalues comparison



5.4 Identification with nmodes = 2 63

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.11: Bending model numerical example. nmodes = 2, SNR= 1.6

In this case, also a Monte Carlo analysis was performed, as it was explained
in the nmodes = 1 case, maintaining Nmont = 20. Despite the number of non-zero
parameters is much higher in this case, the uncertainty plots are provided, for
each matrix, just to understand the general trend.

(a) Âd matrix variance (b) Âd matrix CV
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(a) B̂d matrix variance (b) B̂d matrix CV

(c) Ĉd matrix variance (d) Ĉd matrix CV

(e) D̂d matrix variance (f) D̂d matrix CV

Figure 5.12: Bending model numerical example. Variance and CV. nmodes = 2
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As in the previous case, many parameters are likely to be discarded, due to
their high standard deviation with respect to their low mean value (high CV).
However, many parameters show a very small variation with respect to the SNR
value, which would mean that the estimated value is not noise sensitive.

Finally, as in the previous case, the trend of the errors of the identified system
with respect to the reference one is provided in Figure 5.13

Figure 5.13: Bending model numerical example. Errors. nmodes = 2

With respect to the nmodes = 1 results, the errors have grown, due to the
increase of parameters to identify, the double. These errors are mostly in the B̂d

and Ĉd matrices, where the amplitude of the harmonics is not perfectly captured.
It is also remarkable that the error in the eigenvalues of the identified system
with respect to the reference one has grown in this case. However, despite these
errors, the identified matrices are still similar to the reference ones, in the sense of
maintaining the same order of magnitude, and the estimated output is still close
to the reference one, even in the worst-noise case.

5.5 Identification with nmodes = 1 system and

nmodes = 2 signal

So far, the identification has been performed using the same nmodes value for the
computed output signal and for the identified state-space system. However, con-
sidering the application of this example to real life, the blade will have an infinite
number of modes. Therefore, the next step will be testing the behaviour of the
method identifying a system which is not exactly the same as the obtained output.
To perform this, in the following case, nmodes = 2 to compute the output signal
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and the identified system will have the nmodes = 1 size.

In this analysis, an identification with an added-noise signal in which SNR =
10000 (σ2 = 4.29 · 10−6) to test a case with a very low amount of added noise. In
this case, the results are shown in Figure 5.14.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =
[
0.9958± 0.0082i

]

(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain
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(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.14: Bending model numerical example. nmodes signal = 2, nmodes system = 1,
SNR= 10000

For SNR = 100, which is equal to add noise with σ2 = 4.29 · 10−4 variance,
the results are shown in Figure 5.15.
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(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =
[
0.9959± 0.0082i

]

(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.15: Bending model numerical example. nmodes signal = 2, nmodes system = 1,
SNR= 100

For SNR = 10, which is equal to add noise with σ2 = 4.29 · 10−3 variance, the
results are shown in Figure 5.16.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =
[
0.9950± 0.0094i

]

(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.16: Bending model numerical example. nmodes signal = 2, nmodes system = 1,
SNR= 10
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For SNR = 3, which is equal to add noise with σ2 = 1.43 · 10−2 variance, the
results are shown in Figure 5.17.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =
[
0.9952± 0.0143i

]

(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.17: Bending model numerical example. nmodes signal = 2, nmodes system = 1,
SNR= 3

For SNR = 1.6, which is equal to add noise with σ2 = 2.68 · 10−2 variance, the
results are shown in Figure 5.18.

(a) Input-output chart

ρref =

[
0.9954± 0.0091i
0.9964± 0.0264i

]

ρident =
[
0.9955± 0.0241i

]

(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.18: Bending model numerical example. nmodes signal = 2, nmodes system = 1,
SNR= 1.6
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In this case, the presence of noise is more relevant than in the previous cases.
When the noise is such that SNR≤ 3, the method cannot find the combination of
parameters such that the difference between the system output and the simulated
output is minimum with respect to the required tolerance. Therefore, it would
be necessary to apply some filtering. A good option for this would be to use a
periodic filter.

The reasoning for this periodic filter resides in what explained in Figure 2.1.
Since each harmonic in the input excites all the rest of the harmonics in the out-
put, to delete a frequency in the input would mean to modify all the amplitudes
of the frequencies in the output signal. However, the study and application of a
periodic filter will not be discussed in this thesis.

After the Monte Carlo analysis, maintaining the same configuration as the
previous cases, the uncertainty results are provided in Figure 5.19.

(a) Âd matrix variance (b) Âd matrix CV

(c) B̂d matrix variance (d) B̂d matrix CV
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(e) Ĉd matrix variance (f) Ĉd matrix CV

(g) D̂d matrix variance (h) D̂d matrix CV

Figure 5.19: Bending model numerical example. Variance and CV. nmodes signal =
2, nmodes system = 1

As in the previous cases, it may be desired to discard some parameters, as the
ones that increase their CV with the SNR, but it is also noticeable that the un-
certainty of the parameters are more sensitive to the reference output signal noise.

To conclude this section, as in this case it would not make sense to study
the trend of the errors of the identified system with respect to the reference one
because of the structural difference, to perform a comparison, the HTF should
be reviewed, in order to understand the dynamics that are not captured by the
identified model. A primary idea would be to plot the magnitude and the phase
of each element of the HTF matrix, in order to perform the comparison.
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To construct a chart to perform the comparison, it is necessary to shift some
columns of the HTF matrix. Coming back to equation (2.36), and taking into
account the provided definitions in Section 2.4.4, it is possible to shift the columns
so as, for each Ga b, the same index a will be in the same row, mantaining that
the same index b will be in the same column. Equation (5.9) can be illustrative.
This shifted matrix will be denoted as G∗(s/z).

G∗(s/z) =


. . .

...
...

...
· · · G−1(s− sm/z · z−1

m ) G−1(s/z) G−1(s+ sm/z · zm) · · ·
· · · G0(s− sm/z · z−1

m ) G0(s/z) G0(s+ sm/z · zm) · · ·
· · · G1(s− sm/z · z−1

m ) G1(s/z) G1(s+ sm/z · zm) · · ·
...

...
...

. . .

 (5.9)

However, due to high amount of information that it shows, it is not practical.
Another possibility would be to study the main system modes, that can be defined
as the ration of the output signal period and the system period,

Hn = n
To
Tm

= 30n, n ∈ Z, (5.10)

where To stands for the period of the output signal. These modes correspond to
GaHn . Since the magnitude of the main system modes is higher than the other
values, it is justified to compare just them.

This comparison can be done using Bode-like charts. Also, as the magnitude
of Hn will decrease as n increases, only H0 and H1 will be studied. Physically, in
this case, the meaning of H0 would mean applying a collective input to the rotor,
in which the system would behave as a LTI one, because the resultant force is
time-invariant. In the case of H1, the physical meaning would be a cyclic input
to the rotor. Hence, these charts are provided in Figure 5.20.

(a) H0, SNR = 10000 (b) H1, SNR = 10000
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(c) H0, SNR = 100 (d) H1, SNR = 100

(e) H0, SNR = 10 (f) H1, SNR = 10

(g) H0, SNR = 3 (h) H1, SNR = 3
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(i) H0, SNR = 1.6 (j) H1, SNR = 1.6

Figure 5.20: Bending model numerical example. H0 and H1 Bode-like charts.
nmodes signal = 2, nmodes system = 1

As it can be noticed, a better comparison can be performed regarding H0 and
H1. In these charts, it must be taken into account that, despite the Nyquist
frequency is 50 Hz due to the chosen sampling time (0.01 s), the charts only show
the range of frequencies of the input, which is lower than the total available range.
As it was expected, the lower the noise, the better the results. However, at some
frequencies, mostly at those lower than 1 Hz and those higher than 10 Hz, the
phase is not well captured. Even so, it can be said that the entire system is well
captured by the method, which motivates the try with a higher modes signal.

5.6 Identification with nmodes = 1 system and

nmodes = 5 signal

According to [25], a reasonable modal expansion would take the first 5 modes to
consider the behaviour of the blade. Therefore, to perform case, nmodes = 5 to
compute the output signal and the identified system will have the nmodes = 1 size.

For SNR = 10000, which is equal to add noise with σ2 = 4.79 · 10−6 variance,
the results are shown in Figure 5.21.
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(a) Input-output chart

ρref =


0.9901± 0.1172i
0.9939± 0.0791i
0.9958± 0.0492i
0.9954± 0.0091i
0.9963± 0.0265i


ρident =

[
0.9958± 0.0082i

]
(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain
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(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.21: Bending model numerical example. nmodes signal = 5, nmodes system = 1,
SNR= 10000

For SNR = 100, which is equal to add noise with σ2 = 4.79 · 10−4 variance,
the results are shown in Figure 5.22.
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(a) Input-output chart

ρref =


0.9901± 0.1172i
0.9939± 0.0791i
0.9958± 0.0492i
0.9954± 0.0091i
0.9963± 0.0265i


ρident =

[
0.9959± 0.0082i

]
(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.22: Bending model numerical example. nmodes signal = 5, nmodes system = 1,
SNR= 100

For SNR = 10, which is equal to add noise with σ2 = 4.79 · 10−3 variance, the
results are shown in Figure 5.23.

(a) Input-output chart

ρref =


0.9901± 0.1172i
0.9939± 0.0791i
0.9958± 0.0492i
0.9954± 0.0091i
0.9963± 0.0265i


ρident =

[
0.9961± 0.0165i

]
(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain
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(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.23: Bending model numerical example. nmodes signal = 5, nmodes system = 1,
SNR= 10

For SNR = 3, which is equal to add noise with σ2 = 1.60 · 10−2 variance, the
results are shown in Figure 5.24.

(a) Input-output chart

ρref =


0.9901± 0.1172i
0.9939± 0.0791i
0.9958± 0.0492i
0.9954± 0.0091i
0.9963± 0.0265i


ρident =

[
0.9963± 0.0213i

]
(b) Âd matrix eigenvalues comparison
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(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain

(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.24: Bending model numerical example. nmodes signal = 5, nmodes system = 1,
SNR= 3
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For SNR = 1.6, which is equal to add noise with σ2 = 3.00 · 10−2 variance, the
results are shown in Figure 5.25.

(a) Input-output chart

ρref =


0.9901± 0.1172i
0.9939± 0.0791i
0.9958± 0.0492i
0.9954± 0.0091i
0.9963± 0.0265i


ρident =

[
0.9955± 0.0241i

]
(b) Âd matrix eigenvalues comparison

(c) B̂d matrix in time domain (d) B̂d matrix in frequency domain
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(e) Ĉd matrix in time domain (f) Ĉd matrix in frequency domain

(g) D̂d matrix in time domain (h) D̂d matrix in frequency domain

Figure 5.25: Bending model numerical example. nmodes signal = 5, nmodes system = 1,
SNR= 1.6

After the Monte Carlo analysis, maintaining the same configuration as the
previous cases, the uncertainty results are provided in Figure 5.26.
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(a) Âd matrix variance (b) Âd matrix CV

(a) B̂d matrix variance (b) B̂d matrix CV

(c) Ĉd matrix variance (d) Ĉd matrix CV
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(e) D̂d matrix variance (f) D̂d matrix CV

Figure 5.26: Bending model numerical example. Variance and CV. nmodes signal =
5, nmodes system = 1

The parameters uncertainty behave as in the previous case, being remarkable,
also in this case, the sensitivity of the parameters variance and CV to the noise
variation.

Finally, as in the previous case, Figure 5.27 provides the Bode-like charts of
H0 and H1 of the identified and reference systems.

(a) H0, SNR = 10000 (b) H1, SNR = 10000
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(c) H0, SNR = 100 (d) H1, SNR = 100

(e) H0, SNR = 10 (f) H1, SNR = 10

(g) H0, SNR = 3 (h) H1, SNR = 3
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(i) H0, SNR = 1.6 (j) H1, SNR = 1.6

Figure 5.27: Bending model numerical example. H0 and H1 Bode-like charts.
nmodes signal = 5, nmodes system = 1

In this case, much more differences can be noticed. This proves the existence
of more non-negligible modes in the system. If there would be an interest into
capturing the maximum number of modes as possible, without compromising the
algorithm performance, a possible procedure would be to raise the identified model
size until no variations in these Bode-like charts are noticed.

With respect to the results, for low-noise signals, the estimated system seems
to capture the mean pattern of the reference one. Unfortunately, this behaviour
is lost when the signal noise increases, which is consistent with the previous plots
in which the recovered output signal was not close to the error tolerance required
to stop the optimization.

Regarding the charts of this case and also the ones of the previous case, an
error definition can be also made in order to rate the quality of the identified
system with respect to the reference one, which is presented in equation (5.11).

εm =
1∑
i=0

∫ fmax input

fmin input

|Hi ref(f)−Hi ident(f)| df. (5.11)

This definition leads to Figure 5.28, which shows at a glance what has been
commented before. With respect to the behaviour in noise presence, the algorithm
performs worse as the SNR value decreases, which means that the added noise
increases. However, it can be noticed that this behaviour is not logaritmic, but
there is a point in which the error cannot be lower even if the reference output
signal is noise-free. On the other part, with respect to the number of modes
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considered in the reference output signal, increasing it without making the size of
the identified model bigger, will mean that the errors will grow up.

Figure 5.28: Bending model numerical example. Errors comparsion between
nmodes signal = 2 and nmodes signal = 5
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Conclusions

In this Thesis, a new method for a frequency-domain subspace-identification
method for LPTV systems was developed. After reviewing some recent publi-
cations, one of them was chosen as reference but the others were used to select
some procedures. Then, after developing it, it was tested using a physical-based
rotorcraft model, with several cases to exploit a range of possibilities to prove
its effectiveness and robustness in several cases of application. However, since
the fields of application of LPTV systems are many and very different, the fact
of testing this algorithm with a rotorcraft model does not mean it will not able
to provide good results if it is used in other field. In fact, the intention was to
develop a model in order to be used in any field of LPTV investigation.
With respect to the results, it has been proved that the method provides good
results in the sense of recovering the original system in several modes and noise
conditions. Regarding the added noise, a value of SNR≥ 3 would be a reasonable
value to consider the output measure as good, so as the method will be able to
provide good results, in the sense of the defined errors. It must be also taken into
account that the algorithm was developed in the output-error framework, and this
approach may be modified if some other kind of considerations are desired. On
the other hand, regarding the number of modes of the reference output signal,
the method has shown ability to return an equivalent system that provides a very
similar output with respect to the reference one. Later, it has been proved that
the mean pattern of the modes is captured, since the degrees of freedom of the
identified system are less than the reference one. Also, even if it has not been
fully tested, this method also works well if a black-box identification is desired,
providing also good results, but possibly, without any phyisical meaning.
Considering the possible future continuations of the present thesis, two main lines
can be developed: the first one, to improve the algorithm, modifying the data pro-
cessing as well as finding a better cost function for the optimizer. The objective of
this is to reduce the computation time and to be able to increase the complexity
of the problem, because this is the most counterpart of the developed algorithm.
The computation time was about 20 min in the best case and 3 hours in the worst
case using an Intel i7-9750H (@ 2.60 GHz). In fact, it testing this approach with
a complete rotorcraft model would be a final test to show its effectiveness and
robustness. On the other hand, it would be interesting, and also necessary, to
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test it with real-life collected data, including sensors uncertainty, another type of
noise, and some other cons that may raise when the identification is perfomed
using real data.
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