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Summary and Conclusions 

Atrial fibrillation (AF) is a progressive disease often initially manifested by 

intermittent episodes terminating spontaneously and eventually leading to 
sustained forms of AF for a subset of patients. This rhythm disorder is the most 
common arrhythmia encountered in clinical practices with predictions of affecting 6-
12 million people in the USA by 2050 and 17.9 million in Europe by 2060. However, 
the underlying mechanisms are still under investigation. 

The main objective of this thesis is to propose methodological advancements for the 
characterization of the AF triggers and episodes detected by implantable cardiac 
monitors (ICM) in cohorts of continuously monitored patients, to attain a better 
understanding of AF and its mechanisms that may lead to improvement in clinical 
decisions, as those related to catheter ablation strategies which could lead to a more 
effective patient triage that could reduce the economic and personal burden of the 
ablation procedure by increasing the success rate of long-term AF termination. 

To accomplish this, the patient population used throughout the thesis was composed 
by combining two different cohorts: the Reveal LINQ Usability study (N=151, 33.1% 
female, 66.9% male, 56.6 ± 12.1 years old) obtained by Medtronic, and a database 
acquired from the National Institute of Cardiovascular Diseases in Bratislava (N=40, 
20% female, 80% male, 55.9 ± 9.9 years old). Due to algorithm requirements, each 
chapter of the thesis uses a different subset of patients extracted from these cohorts. 

In the first part of this thesis, the characterization of AF triggers, and an automatic 
unsupervised AF trigger classification method based on a combination of heart rate 
variability (HRV) features extracted from ICMs in a cohort of continuously monitored 
patients is presented.  These HRV features were evaluated, and principal component 
analysis (PCA) was used to determine the most representative features and compute 
their linear combination, i.e., the principal components. The unsupervised 
classification method used in this study was k-means algorithm in which the triggers 
were placed into different clusters based on their principal components. The 
optimum number of clusters was determined by the silhouette coefficient and any 
cluster which contained fewer than 5% of the observations was discarded as an 
outlier cluster. The results obtained when analysing the HRV features from the 
different clusters extracted from the Flashbacks, the 500 beats preceding the AF 
onset, showed that distinct triggers could be found. Although the inference of clinical 
information from unsupervised classification of patterns has relative reliability, the 
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triggers that could potentially be identified in the clusters ware premature atrial 
complexes (PACs), atrial tachycardia (AT), atrial flutter and spontaneous AF, i.e., no 
trigger. Based on literature, we believe that patients with different triggers might 
respond differently to certain catheter ablation strategies. Therefore, the 
characterization of AF triggers could aid clinicians in selecting the optimum ablation 
strategy for their patients. 

Then, the AF episode characterization involved the modelling of the atrial fibrillatory 
rate (AFR) based on changes in autonomic tone quantified by RR series 
characteristics and the temporal aggregation of AF episodes. For the assessment of 
the modelling of the AFR, the f-wave signals, from which AFR is estimated, were 
extracted using a QRST cancellation process, from a single lead ECG of the first 2 
minutes of the AF episodes. The AFR was then estimated as the fundamental 
frequency of a harmonic model fitted to the extracted f-waves. We used a fixed-
effect (FE) model and compared the results to a mixed-effect (ME) approach to study 
both the population and patient specific effects of RR series in AFR and another ME 
modelling approach which allowed correction for confounding factors such as effect 
of episode duration, previous ablation, and circadian variations, to model the 
variations of AFR based on changes in autonomic tone quantified by RR series 
characteristics. The mixed-effect models were shown to have a better fit to the data 
than the fixed-effect models. This approach also showed that AFR was faster in 
episodes with longer duration, less organized RR intervals and after several ablation 
procedures. For the AF episode patterns characterization, the alternating bivariate 
Hawkes model was used. Two parameters of the alternating bivariate Hawkes model 
were used to characterize the pattern: AF dominance during the monitoring period 
(log (𝜇𝜇)) and temporal clustering of episodes (𝛽𝛽1). This characterization was then 
used to investigate, for the first time, whether post-ablation recurrence of AF could 
be predicted by evaluating episode patterns. In addition, we compared the risk 
assessment of AF recurrence capabilities between the Hawkes parameters and 
stablished measurements of AF dominance and temporal aggregation such as AF 
burden and AF density. While the combination of AF burden and AF density is related 
to a non-significant hazard ratio, the Hawkes parameters showed increased risk of 
AF recurrence within 1 year after the procedure for patients with high AF dominance 
and high episode clustering and may be used for pre-ablation risk assessment. 

Finally, this thesis evaluated the feasibility of using clinical data and heart rate 
variability (HRV) features extracted from an ICM to predict recurrences in patients 
prior to undergoing catheter ablation for AF. HRV derived features were extracted 
from the Flashback and from the first 2 minutes of the last AF episode recorded by 
an ICM before undergoing first catheter ablation. Several single classification 
methods including Support Vector Machines (SVM), with linear, polynomial (SVMp) 
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and Gaussian (SVMg) kernels, Classification and Regression Trees (CART) and K-
Nearest Neighbour (KNN) algorithms are evaluated to predict AF recurrence. In 
addition, the capabilities of ensemble learning methods in which a weighted 
combination of the single classifiers is used as the predictor of AF recurrence was 
explored. The sequential forward floating search (SFFS) algorithm was used to select 
the optimum feature set for each classification method. The results showed that 
clinical and HRV features can be used to predict rhythm outcome using an ensemble 
classifier for superior accuracy. The proposed ensemble algorithm’s performance 
metrics for predicting AF recurrence after catheter ablation where: accuracy 0.82; 
sensitivity 0.76, specificity 0.87, F1-score 0.82 and Area under the ROC curve 0.85. 
This would enable a more effective pre-ablation patient triage that could reduce 
economic and personal burden of the procedure by increasing the success rate of 
first catheter ablation. 

This thesis is based on retrospective analyses that carry certain limitations including 
the relatively low number of patients enrolled from different cohorts, the 
unavailability of clinical and medication information, the heterogeneity of the 
characteristics of the patients, or the lack of validation of an independent cohort. 
Nonetheless, the database offered a unique characterization of patients diagnosed 
with AF and is crucial for deciding the optimum course of treatment such as catheter 
ablation, which has relatively low success rates. ICMs with high AF detection 
accuracy offer the unique advantage of long-term monitoring periods and 
continuous monitoring of the patient. With the rapidly increasing use of these 
devices for AF patients, the need for methods to characterize AF triggers and AF 
episodes which could be used in in tools that can help in clinical decisions, is 
increasingly important. 

In particular and if confirmed in future studies, the use of these characterization 
methods to, for instance, aid clinicians in deciding the best catheter ablation strategy 
is potentially of significant clinical relevance for several reasons: first, catheter 
ablation of AF substrate is a procedure with high economic and personal burden; 
secondly, due to the epidemic character of AF prevalence, these interventions 
cannot be offered (even in countries with developed health-care systems) to all 
patients and third, the selection of patients with higher probability of long-term 
elimination of AF has high priority. With this in mind, once a potential catheter 
ablation candidate is identified, the patient could be implanted and followed up 
while in the waiting list. Using the algorithms proposed and the data collected, the 
clinician could evaluate the status of the patient every couple of weeks and decide 
their position on the waiting list as well as start planning for the ablation strategy: 
that which will increase their chance of long-term AF termination. 
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1.1. Motivation 

Atrial fibrillation (AF) is a progressive disease often initially manifested by 
intermittent episodes terminating spontaneously and eventually leading to 
sustained forms of AF for a subset of patients [1]. As the general population ages, 
the incidence of AF rises from 0.7% in subjects from 55-59 years to almost 18% in 85-
year-old patients [2]. Nowadays, this particular rhythm disorder has become the 
most common arrhythmia encountered in clinical practice with predictions of 
affecting 6-12 million people in the USA by 2050 and 17.9 million in Europe by 2060 
[3]. However, the underlying mechanisms are still under investigation. 

Over the decades, catheter ablation, and more specifically, pulmonary vein isolation 
(PVI), has become a common treatment of AF patients [4], especially for those whose 
antiarrhythmic drug therapy was inefficient (or not tolerated) for rhythm 
stabilization [5,6] or those who were highly symptomatic [7]. However, long-term 
efficacy of catheter ablation reported in AF single-procedures does not exceed 70% 
[8]. These relatively low success rates are translated not only into an increase of the 
personal burden of the patient which have higher rates of emergency department 
visits (43.4% vs. 32.2%: p<0.001) and subsequent hospitalizations (35.6% vs. 21.5%; 
p<0.001) but also, in an increase of medical costs ($52,281 vs. $13,412; p<0.001) [9]. 

Several well-established scoring systems aiming at predicting rhythm outcome after 
catheter ablation, including thromboembolic risk predictors like CHADS2 or 
CHA2DS2-VASc, have shown modest prediction capabilities [10]. Other specific 
rhythm outcome predictors such as APPLE [11], SUCCESS [12], and MB-LATER [13] 
have achieved better results. However, most studies have the drawback of relying 
on 24-hour Holter monitoring to detect AF recurrences, which was shown to have a 
rather poor detection rate for subclinical AF of 5.5% [14].  

Implantable cardiac monitors (ICMs) offer the advantage of long-term monitoring 
and use highly sensitive AF detection algorithms, with detection rates up to 96% [15]. 
Some studies have shown how ICMs can be used as a tool to inform medical 
management of post-ablation patients [16] as well as to guide subsequent ablations 
after AF recurrence [17].  

In this thesis, methodological advances are proposed to improve the risk 
stratification of AF patients based on AF trigger and AF episode characterization as 
well as to improve AF recurrence prediction in patients which are continuously 
monitored by an ICM. This could lead to a more effective pre-ablation patient triage 
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that could reduce economic and personal burden of the procedure by increasing the 
success rate of first catheter ablation to achieve long-term AF termination.  

1.2. The Heart 

The heart is a muscular organ with the main function of pumping blood into the 
circulatory system. This fist-sized organ is constituted of four chambers: two atria 
and two ventricles which are connected by the atrioventricular (AV) valves also 
known as the tricuspid and the mitral valve. Each pair of chambers, conformed by 
one atrium and one ventricle, work together to supply blood to the systemic (or 
peripheral) and the pulmonary circulatory systems. Biologically speaking, in the 
cardiac cycle, two different stages can be identified: the ventricular diastole and 
systole. In the late diastole (or ventricular filling), deoxygenated blood from the veins 
and oxygenated blood from the lungs flows from the right and left atria into the right 
and left ventricles respectively through the AV valves. The last phase of the diastole 
is the atrial systole, during which the atria contract so that the remaining blood inside 
them flows into the ventricles. This phase is responsible for filling almost one third 
of the ventricles. The ventricular systole consists of an isometric ventricular 
contraction which increases the pressure inside the ventricles until the aortic and 
pulmonary valves burst open and the ventricular ejection takes place. The ejection 
phase takes 3 times longer than the contraction phase. Finally, the isovolumetric 
relaxation takes place where the ventricular fibres relax causing the pressure to 
drop. When the pressure decreases enough, the AV valves reopen and the atria are 
filled again, restarting the cycle. Figure 1.1 (A) illustrates the different chambers of 
the heart and the course of blood through them. 

In a healthy heart, the cardiac cycle is coordinated by a mass of self-excitable cells 
located in the right atrium called the sinoatrial (SA) node. The SA node is responsible 
of generating autonomously the electrical impulses used to contract the muscles of 
the myocardium, thanks to a property called autorhythmicity. The SA node, the so-
called natural pacemaker of the heart generates the electrical impulses at a rate 
modulated by the autonomic nervous system (ANS). A second system of specialized 
fibers is in charge of distributing these electric impulses throughout the myocardium. 
Three pathways: anterior, middle, and posterior internodal tracts connect the SA 
node to the atrioventricular (AV) node. The passage of the impulse is delayed in the 
AV node, to allow the atrial contraction to further increase the blood volume in the 
ventricles before the systole takes place, before it continues to the bundle of His,  
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Figure 1.1. Anatomic overview of the heart: chambers and blood flow (A) and conduction network (B). 
From [18]. 

which in turn devices into the right and left bundle branch, and finally reaches the 
Purkinje network (Figure 1.1 (B)). The Purkinje network rapidly propagates the 
impulse to the different layers of cardiac muscle in order to achieve a coordinated 
contraction within the ventricles. During the normal functioning of the heart, the 
heart rate (HR) is directly controlled by the rate of impulses from the SA node, 
referred to normal sinus rhythm (SR) and has a rate of about 100 − 120 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑚𝑚𝑚𝑚𝑚𝑚 
in absence of the ANS influence [19]. However, if any of these paths were to be 
blocked or the electrical impulses were to be diffused randomly, different 
pathological heart conditions would arise [20].  

1.3. Atrial Fibrillation 

One of these pathological heart conditions, and the focus of study of this thesis, is 
atrial fibrillation (AF). Atrial fibrillation is a supraventricular tachyarrhythmia 
characterized by chaotic and uncoordinated atrial activation and contraction that 
produces an irregular ventricular response. While the exact mechanisms of AF 
remain unknown, this asynchrony may be due to the appearance of secondary 
(ectopic) pacemaker activity and/or areas of decreased conduction that enable and 
facilitate re-entrant activity. The chaotic activation and contraction of the atrial 
muscles makes the AV node discharge at irregular intervals as after the node is 
activated, its tissue gets depolarized, and it needs to be repolarized before being 
activated again. During the repolarization, and for a certain period after it called the 
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refractory period, the tissue cannot be depolarized again. This limits the number of 
impulses that get through, as several impulses arriving close to each other may not 
all be conducted. Hence, causing a highly irregular rate of ventricular contractions, 
and consequently, a highly irregular heart rhythm often faster than SR (120 −
160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑚𝑚𝑚𝑚𝑚𝑚).  

AF represents a major health problem as it is the most prevalent sustained 
arrhythmia encountered in clinical practice [21], affecting globally over 43.6 million 
individuals [6]. Increasing age is a prominent AF risk factor [22], increasing from 2-
4% in subjects from 55-59 years to almost 18% in octogenarians [2], but other 
comorbidities including hypertension, diabetes mellitus, heart failure (HF), coronary 
artery disease (CAD), obesity and obstructive sleep apnoea are also important. In 
[23] it is stated that “The typical patient with AF is often referred to as an elder one
with diabetes, left ventricular hypertrophy (LVH), and/or other electrocardiographic
pathological findings, coronary heart disease (CHD) or valvular heart disease,
coronary heart failure (CHF), or a history of previous stroke”.

While many patients suffering from AF present a variety of recognizable symptoms, 
most commonly palpitations, chest pain, tiredness and shortness of breath [6], 
approximately one-third of the cases are diagnosed with no or nonspecific 
symptoms, i.e., are asymptomatic [24], suggesting an underestimation of the 
prevalence. AF is not only related to its variety of symptoms and reduced quality of 
life in >60% of patients [25] which is often translated to anxiety disorders [26] and a 
higher burden of depressive symptoms [27], but also constitutes a major risk factor 
for blood clots, stroke, HF and other heart-related complications [6]. Most 
importantly, AF is associated with a 3.5-fold mortality increase [28] generally related 
to HF and stroke, which has a 5-fold risk increase associated with AF [29]. 

The diagnosis of AF is based on rhythm documentation with an electrocardiogram 
(ECG) tracing. On the ECG, AF is observable since P waves, produced by a coordinated 
atrial depolarization during the atrial systole, are replaced with rapid oscillations of 
fibrillatory waves, i.e., f waves, that vary in amplitude, shape, and rate as 
consequence of the chaotic depolarization of atrial tissue. The frequency of these 
fibrillatory waves, i.e., the atrial fibrillatory rate (AFR) is generally accepted as a 
surrogate marker for local refractoriness and is a key characteristic of AF which is 
extensively studied in clinical contexts [30]. Atrial activity characterization through 
AFR has been used to evaluate the effects of Class I and III antiarrhythmic drugs [31–
33] and has been linked to the spontaneous termination of AF [34,35], AF type
(paroxysmal/non-paroxysmal) [36], and the progression of atrial structural
remodelling and fibrosis [37]. The f-waves represent the atrial activity and are
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extracted by removing the ventricular activity from the ECG signal as illustrated in 
Figure 1.2. 

Figure 1.2 Example of f-waves extracted from single-lead ECG. The ECG (top) and the corresponding 
extracted f-wave signal (bottom) are displayed. 

AF is also associated with the heart rate or RR intervals observable in the ECG being 
irregular and frequently faster than in SR. This happens as a result of the AV node 
filter role resulting in a high level of disorganization of ventricular impulses. By 
convention, an ECG tracing of at least 30s showing heart rhythm with no discernible 
P waves and irregular RR intervals is required to establish the diagnosis of AF [38].  

Figure 1.3 shows the ECG tracings typically observed during SR and AF where the 
rhythm becomes irregular, and the P-waves are replaced with f-waves. 

To describe the temporal dynamic pattern of AF, in terms of presence and duration 
of AF episodes, the term AF burden (defined as the amount of time spent in AF) has 
been introduced and subjected to study [39]. By considering AF burden, AF is 
regarded as a quantitative entity and physicians move beyond merely treating AF as 
a binary condition (presence or absence of AF). While the relationship with AF 
burden with specific outcomes is not well characterized [41], it may be associated 
with higher risk of incident HF [42] and all-cause mortality [43]. 
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Figure 1.3 ECG tracing representation of (A) normal sinus rhythm and (B) atrial fibrillation. Modified 
from [40]. 

1.3.1. AF mechanisms 

Atrial fibrillation’s pathology is complex, with different mechanisms influencing the 
onset, duration, and termination of AF episodes.  

Remodelling of atrial structure: Structural heart disease, hypertension, diabetes, 
and AF itself act as stressors which induce structural remodelling in the atria [44]. 
Structural remodelling, usually accompanied by fibrosis, results in an electrical 
dissociation between different regions of the atria [45], which favours re-entry and 
maintenance of AF [46]. The most important pathophysiological alterations in atrial 
tissue associated with AF include changes of the extracellular matrix, fibroblast 
functions and fat cells [47], ion channel alterations [48], myocyte alterations [49], 
endothelial and vascular alterations [50], and changes to the autonomic nervous 
system [51]. 

Electrophysiological mechanisms: Atrial fibrillation causes changes in atrial 
electrophysiology by progressively shortening the atrial refractory period and AF 
cycle length. In contrast, structural heart changes tend to prolong the atrial 
refractory period hence illustrating the heterogeneity of AF in different patients [48]. 
Regarding the generation and maintenance of AF, three main hypotheses are 
identified: (1) a focal initiation and maintenance hypothesis, where a focal source in 
the pulmonary veins can trigger AF and serve as localized re-entry point, and an 
ablation of this source can suppress recurrent AF [52]. (2) A multiple wavelet 
hypothesis, which states that AF can be perpetuated by several independent 
wavelets propagating though the atria in a chaotic manner [53]. This hypothesis 
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postulates that as long as the number of wavefronts remains over a certain critical 
level, they will be capable of sustaining the arrhythmia. (3) The presence of a mother 
rotor defined as a stable, high-frequency rotating pattern that drives AF [54]. 

Genetic predisposition: A strong heritable component, independent of concomitant 
cardiovascular conditions, has been found in AF, especially early-onset AF [55]. 
Changes in atrial action potential characteristics, atrial remodelling, and modified 
penetration of rare gene defects have been suggested as potential mechanisms 
resulting in increased AF risk [56]. 

1.3.2. AF types 

Atrial fibrillation is a progressive disease often initially manifested by short and 
isolated episodes terminating spontaneously and eventually leading to more 
frequent and sustained forms of AF for a subset of patients [1]. Traditionally, based 
on onset, duration, and spontaneous termination of episodes, five different AF 
patterns are distinguished [6]: 

First diagnosed AF: AF which occurs when the arrhythmia has not been diagnosed 
before and its irrespective of its duration or the presence and severity of AF-related 
symptoms. 

Paroxysmal AF (PAF): This type of AF generally terminates spontaneously, usually 
within the first 48 hours, but can be terminated with intervention within 7 days of 
onset. 

Persistent AF: AF which is continuously maintained beyond 7 days, including 
episodes terminated by cardioversion, either with drugs or by electrical 
cardioversion. 

Long-standing persistent AF: Continuous sustenance of AF for more than one year 
in which cardioversion has failed or not been attempted, and rhythm control strategy 
has been adopted. 

Permanent AF: AF that is accepted by the patient and physician. It represents the 
therapeutic attitude of not further attempting to restore and maintain sinus rhythm 
rather than a pathophysiological AF attribute. If and when a rhythm control strategy 
is decided to be adopted, the arrythmia could be re-classified as ‘long-standing 
persistent AF’. 
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The AF type is not considered to be static as, for example, a paroxysmal AF patient 
may very well transition into persistent AF. This classification of AF is still very widely 
used in the clinical setting. However, with the increasing use of implantable cardiac 
monitors capable of long-term monitoring, clinically determined AF patters have 
been found not to correspond well to the AF burden [39,57]. 

1.4. Patient management: ABC pathway 

Reflecting the complex and somehow uncertain underlying mechanisms of AF, 
patient management has remained suboptimal. Recently, a simple Atrial fibrillation 
Better Care (ABC) pathway (‘A’ Anticoagulation/Avoid stroke, ‘B’ Better symptom 
management; ‘C’ Cardiovascular and Comorbidity optimization [58]) was proposed 
to streamline the management of AF patients.  

1.4.1. A – Anticoagulation/Avoid stroke 

AF increases the risk of stroke five-fold as the incomplete contractions of the atria 
may cause blood to coagulate and form blood clots. However, stroke risk in AF is not 
homogeneous and depends on various risk factors. For this reason, the first step in 
avoiding stroke is to identify low risk patients who do not require any antithrombotic 
therapy via validated stroke risk stratification scores, usually, the CHA2DS2-VASc 
score (Congestive heart failure, Hypertension, Age ≥75, Diabetes mellitus, Stroke, 
Vascular disease, Age 65-75 years, Sex (female)). Step 2 is to offer stroke prevention 
to those patients with one or more risk factors of stroke, involving oral 
anticoagulation (OAC) after the proper assessment of bleeding risk. The last step is 
to decide on the preferred OAC which include dose-adjusted vitamin K antagonists 
(VKAs) such as warfarin with a well-managed time in therapeutic range (TTR) or the 
now preferred option in many guidelines: non-VKA oral anticoagulants (NOACs) such 
as rivaroxaban [59]. 
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1.4.2. B – Better symptom control 

After considering the admission of OACs to avoid stroke, the next consideration 
includes management of symptoms (for those symptomatic patients) and deciding 
between one of two options: rhythm control or rate control[60].  

Rhythm control 
The rhythm control strategy focuses on restoration and maintenance of SR, primarily 
indicated for patients with AF-related symptoms in an attempt of improve QoL, and 
can be achieved through a combination of treatment approaches, including electrical 
or pharmacological cardioversion, antiarrhythmic medication, and catheter ablation. 

Cardioversion 
Sinus rhythm can be restored in AF patients through pharmacological or electrical 
cardioversion. Pharmacological cardioversion to SR is indicated in haemodynamically 
stable patients and while it is less effective than electrical cardioversion [61], 
restoring SR in approximately 60-80% of patients with recent-onset AF versus the 
80%-90% restoration rate of electrical cardioversion [62], it does not require 
sedation. Flecainide [63], propafenone [64], vernakalant [65] and amiodarone [66] 
are some examples of effective antiarrhythmic drugs for pharmacological 
cardioversion. For a selected subset of patients with rare paroxysmal AF episodes, a 
“pill-in-pocket” approach, where the patient self-administers an oral dose of 
flecainide or propafenone, might be preferred [67].  

For severely haemodynamically compromised patients, a synchronized direct 
current electrical cardioversion is the method of choice to quickly and effectively 
convert AF to SR [6]. The standard device for electrical cardioversion is the biphasic 
defibrillator [68] with anterior-posterior electrode positions for a more effective 
rhythm restoration [69]. 

Long-term antiarrhythmic drug therapy 
The aim of antiarrhythmic drug (AAD) therapy is to reduce AF related symptoms [6]. 
Clinically successful AAD therapy may reduce rather than eliminate AF and although 
compared to no therapy, AAD approximately doubles SR maintenance [70] , it is less 
effective than AF catheter ablation [71,72]. To reduce the risk of side effects, such as 
adverse events, proarrhythmic events and even death, a shorter duration of AAD 
therapy is preferred [70,73,74]. As an example, treatment with flecainide for 4 weeks 
(short-term) was well-tolerated and prevented up to 80% of AF recurrences when 
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compared to long-term treatment [75]. The main AADs available to prevent AF 
include amiodarone, dronedarone, flecainide, sotalol and dofetilide [70]. 

Catheter ablation 
Over the decades, catheter ablation has become a common treatment of AF patients 
[7], especially for those whose antiarrhythmic drug therapy was inefficient (or not 
tolerated) for rhythm stabilization [5,6] or those who were highly symptomatic [7]. 
Since the common triggers for paroxysmal AF initiation are ectopic beats originating 
from the pulmonary veins (PV) [52], catheter ablation is primarily achieved by 
complete pulmonary vein isolation (PVI) [4]. Pulmonary vein isolation is achievable 
by creating lesions encircling the pulmonary veins by point-by-point radiofrequency 
(RF) ablation or cryoballoon ablation. Figure 1.4 illustrates the PVI procedures using 
cryoballon ablation and RF ablation. 

In the cryoballoon ablation process, ablative lesions are created using intra-catheter 
temperatures at around -50 °C delivered to each pulmonary vein in a “single-shot” 
application. Operators use using fluoroscopic guidance to place the device at each 
pulmonary vein antrum, advancing it toward the pulmonary vein to achieve 
occlusion, and then cooling the tissue by filling the balloon with the liquid refrigerant. 

In the RF process, the PVI is attempted by creating a contiguous circular lesion 
around each pulmonary vein antrum with point-by-point applications of 
radiofrequency energy while navigating the catheter under the guidance of a 3-D 
electroanatomical mapping system [76]. 

While cryoballoon procedures have showed reduced hospitalizations and lower 
complication rates [77], both types of energy have shown similar AF termination and 
maintenance outcomes [78–80]. 

In more advanced AF types such as persistent and long-standing persistent AF, a 
more extensive ablation may have additional benefits [81]. This may include liner 
lesions in the atria, isolation of the superior vena cava or the left atrial appendage, 
ablation of complex fractionated atrial electrograms (CFAE), rotors, or non-
pulmonary foci. However, the additional benefit of PVI plus extra lesions (PVI+) 
against PVI alone, justifying its use during the first procedure, is yet to be confirmed. 
Figure 1.5 illustrates examples of PVI and PVI+ ablation strategies. 

Although AF ablation is more effective than AAD therapy in restoring and 
maintaining SR [71,72] in patients with symptomatic paroxysmal, persistent, and 
long-standing persistent AF, long-term efficacy of catheter ablation reported in AF 
single-procedures does not exceed 70% [8]. 
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Figure 1.4. Pulmonary vein ablation procedure using (A) Cryoballoon ablation, and (B) Radiofrequency 
current ablation. Image from [80]. Used with permission. 
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Figure 1.5 Examples of ablation strategies. (A) Pulmonary vein isolation (PVI), and (B) PVI plus extra 
lesions, in this case, Roof and Mitral lines. 

IVC: Inferior Vena Cava; LIPV: Left inferior pulmonary vein; LSPV: Left superior pulmonary vein; RIPV: 
Right inferior pulmonary vein; RSPV: Right superior pulmonary vein; SVC: Superior Vena Cava  
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These relatively low success rates are translated not only into an increase of the 
personal burden of the patient which have higher rates of emergency department 
visits and subsequent hospitalizations but also, in an increase of medical costs [9]. 

Several risk factors for AF recurrence after ablation have been identified and scoring 
systems aimed at predicting rhythm outcome have been developed. 
Thromboembolic risk predictors such as CHADS2 or CHA2DS2-VASc have shown 
modest prediction capabilities [10]. Other specific rhythm outcome predictors 
including APPLE (one point for Age > 65, Persistent AF, imPaired estimated 
glomerular filtration rate (eGMR < 60 𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚/1.73𝑚𝑚2), LA diameter ≥ 43 𝑚𝑚𝑚𝑚, 
Ejection fraction < 50%) [82], SUCCESS, based on the APPLE score and adding one 
extra point for each previously performed ablation [12], and MB-LATER (one point 
for Male, Bundle branch block, LA diameter ≥ 47 𝑚𝑚𝑚𝑚, Type of AF [0 points for 
paroxysmal, 1 point for persistent, 2 points for long-standing persistent], and ER-AF, 
i.e., early recurrence AF during 3-months blanking period [83])[13] have achieved
better results. While the model variables can be measured before ablation (except
early recurrence in MB-LATER) and could therefore be used pre-procedurally to
predict the likelihood of recurrence, no single score has been presently identified as
consistently superior to others.

Rate control 
Rate control is an integral part of AF management and is often sufficient to improve 
AF-related symptoms. It can be achieved with AV node ablation and pacing or with 
drugs that increase the degree of block that the AV node offers [84], thus decreasing 
the number of impulses that conduct into the ventricles, to sustain a heart-rate 
target of <110 bpm, unless symptoms call for stricter rate control [85]. 

Acute and long-term rate control can be pharmacologically achieved with beta-
blockers, often the first-line rate-controlling agent [6], non-dihydropyridine calcium 
channel blockers (NDCC), such as verapamil or diltiazem which can improve AF-
related symptoms compared to beta-blockers [84], and with cardiac glycosides, such 
as digoxin and digitoxin which, although their prescriptions have been declining in 
the past years [86], they are still commonly prescribed to sicker patients [87]. As a 
last resort, AADs such as amiodarone, dronedarone or sotalol, which also have rate-
limiting properties, can also be used for rate control. However, they should be used 
only for rhythm control. The choice of rate control drugs, or a combination thereof, 
depends on the symptoms, comorbidities, and potential side-effects.  

When medication fails, ablation of the AV node and pacemaker implantation can also 
be attempted to control ventricular rate. The procedure has low complication rate 
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and low long-term mortality risk [88,89] but will render patients pacemaker 
dependent for the rest of their lives. For this reason, AV nodal ablation should be 
limited to patients whose symptoms cannot be managed by pharmacological rate-
control or by reasonable rhythm control strategies [6]. 

1.4.3. C – Cardiovascular and comorbidity risk reduction 

The last component in the ABC pathway includes the identification and management 
of concomitant diseases, cardiometabolic risk factors, and unhealthy lifestyle 
choices.  

Hypertension is the most common cardiovascular risk factor associated with AF 
where hypertense patients have a 1.7-fold higher risk of developing AF compared to 
normotensives [90]. In addition, interactions between AF and heart failure [91] and 
coronary artery disease [92] have been shown. Diabetes mellitus is also an 
independent risk factor for AF, especially in younger patients [93] with a prevalence 
of AF twice as high in patients with diabetes compared with patients without 
diabetes [94]. Obstructive sleep apnoea (OSA), the most common form of sleep-
disordered breathing, is highly associated in increased risk of cardiovascular events 
and mortality [95]. A prospective analysis has also shown that approximately 50% of 
AF patients had OSA compared with 32% of control group [96]. 

AF can also be tackled by targeting lifestyle choices. Obesity [97,98], excessive 
alcohol consumption [99,100], and vigorous physical activity mainly related to long-
term or endurance sport participation [101], have shown to increase the risk of 
incident AF. For this reason, patients are advised to manage their obesity if needed 
[102], reduce their alcohol intake, where alcohol abstinence if preferred [103], and 
while are encouraged to remain physically active to prevent AF incidence or 
recurrence, avoid excessive endurance exercise (such as marathons).  

1.5. Recording techniques 

The diagnosis of AF or detection of AF recurrence post therapy is usually based on 
rhythm documentation using an ECG showing the typical pattern of AF. Undiagnosed 
AF is common [104] as AF often occurs in a subclinical form, i.e., patients have only 
mild and unspecific symptoms, if any [105], or are mostly paroxysmal in nature, 
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making it difficult to be detected by intermittent monitoring such as conventional 
24-, 48- or 72-hour Holter devices [106]. For this reason, AF screening programs, 
especially in older populations (>65 years), are encouraged and several mobile 
health technologies have emerged for AF screening and detection [107], including 
wearables such as smart watches, or patient initiated photoplethysmogram-based 
smartphone apps. Many of them are not clinically validated so caution in their clinical 
use is needed. In order to establish a definitive diagnosis of AF when detected by a 
screening tool, a single-lead ECG tracing of ≥ 30 𝑠𝑠 or 12-lead ECG showing AF 
analysed by an expert physician is needed.  

1.5.1. Holter monitors 

A Holter monitor, also referred to as an ambulatory electrocardiographic system, is 
a small, battery-powered medical device that measures the patient’s cardiac activity 
typically for 24, 48 or 72 hours. This type of devices is mainly used for rhythm 
detection and analysis including to establish the link between palpitations and 
abnormal heart rhythms [108], evaluate transient episodes of cardiac arrhythmias 
[109], monitor the efficacy and safety of pharmacological and non-pharmacological 
therapies [110], or to analyse and evaluate the function of pacemakers or other 
implantable devices [111]. 

The current state Holter technology records and stores data from 2 to 3 ECG leads 
attached to the patient’s chest. Although Holter monitoring has the ability to 
continuously record ECG data without the need for patient participation, the 
relatively short monitoring duration of the monitoring can be inadequate if 
symptoms are infrequent. A study comparing 24-hour Holter monitoring with a 
single-lead adhesive patch-type device (APD) showed that 72-hour monitoring with 
the APD increased the detection rate of paroxysmal AF by 2.2-fold [112].  

1.5.2. Implantable Cardiac Monitors 

Implantable cardiac monitors (ICM) are subcutaneously implanted arrhythmia 
monitoring devices. These leadless devices continuously monitor the cardiac rhythm 
of the patient and record single-lead ECG signals automatically when an episode is 
detected or by patient activation when the patient has a symptomatic episode. ICMs 
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have proven to be significantly superior at AF detection compared to the commonly 
used intermittent follow-up strategy based on quarterly 24-hour Holter monitoring. 
In this study, the ICM was able to identify more AF episodes than intermittent 24-
hour Holter performed every 3 months. The Holter monitoring was shown to have a 
sensitivity of 0.6 with a negative predictive value of 0.64 in identifying AF recurrence 
patients [113]. The use of ICMs for the diagnosis of AF after surgical AF ablation 
[113], catheter AF ablation [16,17,114], atrial flutter ablation [115], and cryptogenic 
stroke [116] has been increasing in the clinical practice. 

This thesis will focus and use the data extracted from the Reveal LINQ (Medtronic, 
Inc).  

Reveal LINQ 
The Medtronic Reveal LINQ is a novel ICM which is 1.18 𝑐𝑐𝑐𝑐3 in size and utilizes 
wireless telemetry for remote monitoring of patients with suspected arrhythmias. It 
continuously monitors the patient’s ECG and other physiological parameters such as 
activity and it’s designed to record the occurrence of an arrhythmia in a patient 
automatically. The following arrhythmias can be detected: tachyarrthymia, 
bradyarrhythmia, pause, atrial tachyarrhythmia, or atrial fibrillation. In addition, 
while experiencing or immediately after a symptomatic event, the patient can 
activate the device to record his/her cardiac rhythm.  

The device is implanted within the fourth intercostal space (V2-V3 orientation) as 
shown in Figure 1.6, and senses and detects the rhythm, storing part of it with a 
sampling frequency of 256 Hz. 

Figure 1.6 Recommended subcutaneous implant locations. Image from Reveal LINQ LNQ11 manual. 
Used with permission. 
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Once an AF episode is detected, the device stores the episode onset date and time, 
the first 2 minutes of the AF episode detected as well as the ventricular sense, i.e., 
the position of the R-peaks, for further clinical validation and, once the episode is 
over, the duration of the episode. The device can store up to 30 episodes of data, 
with the new episode overwriting the oldest one when the buffer is full. In addition, 
the device stores the daily AF burden in minutes for the entire monitoring period as 
well as other physiological parameters such as patient activity, daily heart rate 
variability calculated as the sum of the squares of the median heart rate computed 
every 5 minutes, and daily average heart rate during the day and at night. 

AF detection algorithm 
The AF detection algorithm included in the Reveal LINQ is based on RR interval 
incoherence patterns to compute an AF evidence score every 2 min [15,117] and a 
P-wave evidence score [118,119]. The P-wave evidence score was developed to
reduce inappropriate AF detection in the original RR interval pattern-based
algorithm. A schematic representation of the AF detection algorithm is illustrated in
Figure 1.7.

Figure 1.7 Schematic for the combination of the P-wave evidence algorithm with the RR interval-based 
AF detection algorithm. Modified from [118]. 

The RR interval-based AF detection algorithm is the original AF detection algorithm 
used in the predecessor of the Reveal LINQ, the Reveal XT ICM. This algorithm looks 
for patterns of incoherence in a Lorenz plot of difference in RR intervals (𝛿𝛿𝛿𝛿𝛿𝛿) 
defined as: 

𝛿𝛿𝛿𝛿𝛿𝛿(𝑖𝑖) = 𝑅𝑅𝑅𝑅(𝑖𝑖) − 𝑅𝑅𝑅𝑅(𝑖𝑖 − 1). (1.1) 
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The Lorenz plot is a scatter plot of 𝛿𝛿𝛿𝛿𝛿𝛿(𝑖𝑖 − 1) 𝑣𝑣𝑣𝑣 𝛿𝛿𝛿𝛿𝛿𝛿(𝑖𝑖) which encodes the 
uncorrelated nature of RR intervals in the direction of change of three consecutive 
RR intervals. The different areas of the Lorenz plot are masked and the AF evidence 
score is computed as explained in [117]. 

During sinus rhythm, the centre part of the Lorenz plot is mostly populated as shown 
in Figure 1.8(A), whereas during AF, all segments are populated (Figure 1.8(C)). 
Figure 1.8(B) shows the distribution during a series of premature atrial contractions 
(PACs) leading to irregular RR intervals exhibiting a distribution different from SR and 
AF signature. The points populating the different areas are counted to calculate the 
AF evidence score.  

Figure 1.8 Lorenz plot of 𝛿𝛿𝛿𝛿𝛿𝛿 intervals for 2 minutes of data during (A) normal sinus rhythm, (B) series 
of premature atrial contractions, and (C) atrial fibrillation. The plots exhibit several forms of irregularity. 
The Lorenz plots are extended from -600ms to +600ms along both axes. The differently shaded areas 
mark the masked areas considered when computing the AF evidence score. Modified from [117]. 

In order to reduce the number of inappropriate AF detections due to runs of atrial 
ectopy, oversensing due to noise or T-waves/P-waves, undersensing due to small R-
waves, or bigeminal and trigeminal rhythms for example, the AF evidence score is 
corrected with the P-wave evidence score. The P-wave evidence score is based on 
the presence of a single P-wave and absence of fibrillatory waves (f-waves) or noise 
between two consecutive R-waves [118]. The ECG windows of 600-ms baseline 
before the R-waves of 4 consecutive beats are averaged. Subsequently, the presence 
of P-waves, f-waves, and baseline noise are identified from the morphological 
features. The P-wave evidence is then accumulated over the 2-minute detection 
interval to compute the evidence score as shown in Figure 1.9. 

This algorithm can work in two different modes depending on the intention of usage: 
the “nominal” mode for AF monitoring which enhances AF burden accuracy, and the 
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Figure 1.9 Segment of a 2-minute detection period illustrating the P-wave evidence accumulation 
procedure. The inset illustrates the 4-beat averaging procedure for P-wave detection. For every 4 beats 
that fulfill the rate/irregularity criteria, the baselines of the 600 ms preceding the beats are extracted 
and averaged as can be seen under every 4th criteria-fulfilling beat. If there is presence of a single P-
wave and absence of atrial flutter waves (multiple P-waves) or noise in the averaged baseline, the P-
wave evidence criterion is met, and the P-wave evidence score is incremented. This score is then 
accumulated over 2-minute detection interval and used as evidence against AF. From [118].  

“aggressive” mode designed for AF diagnosis and non-AF patients which increases 
the specificity and improves the diagnostic yield of the algorithm. In case of runs of 
ectopic beats, both the P-wave evidence and the RR interval-based AF evidence 
score will be high. However, in the case of AF, only the AF evidence score will be high. 

The P-wave evidence score is then subtracted from the AF evidence score before 
comparing it to the detection threshold. Once the modified AF evidence score is 
higher than the detection threshold, an AF episode is detected. The AF detection 
threshold is programmed during implant. 
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1.6. Objectives and outline of the thesis 

The main objective of this thesis is to propose methodological advancements for the 
characterization of the AF triggers, i.e., heart rhythms that could induce AF and 
episodes detected by ICMs in a group of continuously monitored patients as 
described in Chapter 2. A better understanding of AF and its mechanisms that may 
lead to an improvement in clinical decisions, as those related to catheter ablation 
strategies which could lead to a more effective patient triage that could reduce the 
economic and personal burden of the ablation procedure by increasing the success 
rate of long-term AF termination. In particular, methodological advances in AF 
trigger characterization based on heart rate variability (HRV) features (Chapter 3), AF 
episode characterization focusing on assessing the circadian variations of fibrillatory 
waves and the temporal aggregation of AF episodes (Chapter 4 and Chapter 5, 
respectively), and a new algorithm designed for catheter ablation outcome based on 
clinical and HRV features extracted from both the last AF trigger and the AF episode 
before the procedure (Chapter 6), are presented. Finally, Chapter 7 and Chapter 8 
present the main conclusions of the thesis, discuss the future extension of the work, 
and list the publications generated throughout the thesis. 

The content of Chapters 3-6 of the thesis are organized as follows: 

Chapter 3: AF Trigger Characterization 

Studies have shown an improvement of catheter ablation for AF termination success 
rate, reaching 89%, in a second ablation procedure in patients with a specific AF 
trigger onset [17]. Motivated by the importance of AF triggers, this chapter explores 
AF trigger characterization and presents an automatic unsupervised AF trigger 
classification method. From a cohort of 132 patients (56 ± 10 𝑦𝑦𝑏𝑏𝑏𝑏𝑦𝑦𝑏𝑏), 528 
Flashbacks, i.e., the trend of around 500 ventricular beats preceding the AF onset 
stored in an ICM, were extracted and heart rate variability (HRV) computed. The 
Flashbacks are classified into 5 different clusters after the Principal Component 
Analysis (PCA) was computed on the HRV features. Two principal components 
explained more than 95% of the variance and were a combination of the mean RR 
interval, square root of the mean squared differences of successive RR intervals 
(RMSSD), standard deviation of the RR intervals (SDNN) and Poincare descriptors, 
SD1 and SD2. Five different clusters were identified using the silhouette coefficient 
and k-means clustering. When evaluating the differences in the HRV features for the 
different clusters, RMSSD and SD1 were significantly different among all clusters 
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(𝑝𝑝 <  0.05, with Holm’s correction) showing that distinct patterns can be found using 
this method. 

Chapter 4: Atrial Fibrillatory Rate 

This chapter investigates the use of heart rate variability (HRV) features as a measure 
of the changes in the autonomic tone to model variations in the atrial fibrillatory rate 
(AFR) in a cohort of atrial fibrillation (AF) patients continuously monitored with an 
implantable cardiac monitor (ICM). This study offers a chance of a more detailed 
characterization for patients diagnosed with AF and a better understanding of the 
patients’ condition. The f-wave signals, from which AFR is estimated, were extracted 
using a QRST cancellation process, from a single lead ECG of the first 2 minutes of 
the AF episodes. The AFR then estimated as the fundamental frequency of a 
harmonic model fitted to the extracted f-waves. This chapter assesses the use of 
both fixed-effect and mixed-effect (ME) approaches. The latter allowing correction 
for confounding factors such as effect of episode duration, previous ablation, and 
circadian variations, to model the variations of AFR. The analysis included the AFR 
from 2453 f-waves extracted from a cohort of 99 patients (57 ± 12 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) which 
were continuously monitored with and ICM monitored for 9.2 (0.2-24.3) months as 
median (min-max). AFR was significantly affected by previous catheter ablations 
(p < 0.05), episode duration (p < 0.05), and irregularity of the RR interval series as 
quantified by sample entropy (p < 0.05). This chapter concludes that AFR was faster 
in episodes with longer duration, less organized RR intervals and after several 
ablation procedures. 

Chapter 5: Temporal aggregation 

AF episode patterns characterization methods have been introduced without 
establishing clinical significance. This chapter includes a description of the 
alternating bivariate Hawkes model which is used to characterize the AF dominance 
and the temporal clustering degree of AF episodes within a certain monitoring 
period. Two parameters of the alternating bivariate Hawkes model were used to 
characterize the pattern: AF dominance during the monitoring period (log (𝜇𝜇)) and 
temporal clustering of episodes (𝛽𝛽1). This characterization is then used to 
investigate, for the first time, whether post-ablation recurrence of AF can be 
predicted by evaluating episode patterns. In addition, this chapter compares the risk 
assessment of AF recurrence capabilities between the Hawkes parameters and 
stablished measurements of AF dominance and temporal aggregation such as AF 
burden and AF density. The four parameters were computed from an average of 29 
AF episodes per patient on a cohort of 54 patients (56 ± 11 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦), with an 
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implantable cardiac monitor, before undergoing the first AF catheter ablation. The 
risk of AF recurrence after catheter ablation using the Hawkes parameters log (𝜇𝜇) 
and 𝛽𝛽1, AF burden and AF density was evaluated. While the combination of AF 
burden and AF density is related to a non-significant hazard ratio, the combination 
of log (𝜇𝜇) and 𝛽𝛽1 is related to a hazard ratio of 1.95 (1.03–3.70; p<0.05). The Hawkes 
parameters showed increased risk of AF recurrence within 1 year after the procedure 
for patients with high AF dominance and high episode clustering and may be used 
for pre-ablation risk assessment. 

Chapter 6: AF recurrence prediction 

Single-procedure catheter ablation success rate is as low as 52% in atrial fibrillation 
(AF) patients. This chapter evaluates the feasibility of using clinical data and heart 
rate variability (HRV) features extracted from an ICM to predict recurrences in 
patients prior to undergoing catheter ablation for AF. HRV derived features were 
extracted from the 500 beats preceding the AF onset and from the first 2 minutes of 
the last AF episode recorded by an ICM of 74 patients (57 ±  12 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦; 26% non-
paroxysmal AF; 57% 𝐴𝐴𝐴𝐴 recurrence) before undergoing first AF catheter ablation. 
Several single classification methods including Support Vector Machines (SVM), with 
linear, polynomial (SVMp) and Gaussian (SVMg) kernels, Classification and 
Regression Trees (CART) and K-Nearest Neighbour (KNN) algorithms are evaluated 
to predict AF recurrence. In addition, the capabilities of ensemble learning methods 
in which a weighted combination of the single classifiers is used as the predictor of 
AF recurrence is explored. The sequential forward floating search (SFFS) algorithm 
was used to select the optimum feature set for each classification method. The 
Optimum Weighted Voting (OWV) method, which used an optimum combination of 
the single classifiers, was the best overall classifier (Accuracy = 0.82, Sensitivity = 0.76 
and Specificity = 0.87). This chapter concluded that clinical and HRV features can be 
used to predict rhythm outcome using an ensemble classifier which would enable a 
more effective pre-ablation patient triage that could reduce economic and personal 
burden of the procedure by increasing the success rate of first catheter ablation. 
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2.1. Motivation 

The algorithms developed throughout this thesis are focused on data extracted from 
the Reveal LINQ implanted in AF patients scheduled for catheter ablation. The 
patients included had to have a particular set of requirements. Generally, the patient 
had to have been implanted with an ICM (the Reveal LINQ), have been followed up 
for a period, referred to as the monitoring period, and during which would have 
undergone a catheter ablation procedure.  

The patient population used was collected by Medtronic combining two different 
cohorts: the Reveal LINQ Usability study, a database obtained by Medtronic, and a 
database acquired from the National Institute of Cardiovascular Diseases in 
Bratislava, Slovakia [120], hereinafter, Slovakia study. 

The patients included in both studies provided written informed consent to the study 
protocols which were reviewed and approved by the human research ethics 
committee of each participating institution in accordance with the Declaration of 
Helsinki. 

This chapter acts as a summary of the patient population common to the different 
chapters to avoid repetition. 

2.2. Usability Study 

The Reveal LINQ usability study is a prospective multicenter single-arm clinical study 
(ClinicalTrials.gov Identifier: NCT01965899) which was designed to have two phases, 
the first enrolling 30 patients with any indication for an ICM and the second enrolling 
121 patients with a documented history of AF and ablation candidates [119].  

The baseline characteristics of the enrolled patients are listed in Table 2.1. 

For phase I, the primary indication for ICM insertion included syncope (n=19), 
suspected AF (n=2), AF ablation monitoring (n=2), AF management (n=2), 
palpitations (n=3), cryptogenic stroke (n=1), or other reason specified as bradycardia 
by conversion of AF (n=1). In Phase II, the primary indication for ICM insertion 
included suspected AF (n=2), AF ablation monitoring (n=103) and AF management 
(n=16). 
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Table 2.1. Baseline demographics of patients enrolled in Reveal LINQ usability study 

Patient Characteristics Enrolled subjects 
(N=151) 

Gender 
   Male 101 (66.9%) 
   Female 50 (33.1%) 
Age, years (mean ± SD) 56.6 ± 12.1 
Primary indication for implant 
   Syncope 19 (12.6%) 
   Palpitations/ suspected AF 7 (4.6%) 
   Cryptogenic stroke 1 (0.7%) 
   AF ablation monitoring/ AF management 123 (81.5%) 
   Other 1 (0.7%) 
Supraventricular tachycardia 130 (86.1%) 
   Atrial fibrillation 126 (83.4%) 

 Paroxysmal 101 (66.9%) 
 Persistent 27 (17.9%) 
 Permanent 2 (1.3%) 

   Atrial flutter/ atrial tachycardia 24 (15.9%) 
Stroke/ transient ischemic attach 13 (8.6%) 
Values are given as no. (%) unless otherwise indicated 
AF: Atrial fibrillation 
SD: Standard Deviation 

2.3. Slovakia Study 

This study enrolled 133 patients (55 ± 9 years at the time of the first catheter 
ablation of AF; 81% males, 19% female) which were hospitalized from October 2005 
to January 2014 at the Department of arrhythmias and pacing of the National 
Institute of Cardiovascular Diseases in Bratislava. The patients’ data was retrieved 
retrospectively from the hospital information system acquired during 
hospitalization, from subsequent patient monitoring and the specific interrogation 
of the ICM device. Out of the 133 patients enrolled, 40 patients had a catheter 
ablation procedure which consisted of circumferential ablation of pulmonary veins 
with additional linear lesions when appropriate. 

The baseline characteristics of the 40 patients are listed in Table 2.2. 
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Table 2.2 Baseline demographics of subset of patients enrolled in Slovakia study 

Patient Characteristics Number of subjects 
(N=40) 

Gender 
   Male 32 (80%) 
   Female 8 (20%) 
Age, years (mean ± SD) 55.9 ± 9.9 
Height, cm (mean ± SD) 175.3 ± 8.1 
Weight, kg (mean ± SD) 90.7 ± 16.1 
Coronary Risk Profile 
   Hypertension 34 (85%) 
   Heart Failure 2 (5%) 
   Stroke 4 (10%) 
   Coronary Artery Disease 7 (18%) 
   Paroxysmal AF 40 (100%) 
   History of persistent AF 25 (63%) 
Values are given as no. (%) unless otherwise indicated 
AF: Atrial fibrillation 
SD: Standard Deviation 

2.4. Cohort Summary 

From the combined cohorts, 191 patients were included in the different analyses 
performed in this thesis. The individual patient cohorts for the different chapters are 
shown in Figure 2.1. 

For Chapter 3, out of the 191 patients, 132 were found to have available Flashback 
information to explore the characterization of AF triggers. For Chapter 4, the 
complete set of 99 patients with pre-ablation data were used to model the atrial 
fibrillatory rate while for Chapter 5 and Chapter 6, a subsegment of them were used: 
54 patient to study the temporal aggregation of AF episodes and 74 patients to 
predict AF recurrence after catheter ablation. In both cases, 19 patients were 
excluded due to previous failed ablation. In addition, 26 patients were excluded from 
Chapter 5 due to model requirements which will be specified in 5.2 and 6 patients 
were excluded from Chapter 6 due to incomplete medical data. 
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Figure 2.1 Patient distribution for the different chapters included in the thesis. 
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3.1. Motivation 

Catheter ablation of AF, specifically PVI, is a common treatment for highly 
symptomatic patients [7]. However, a systematic review study of long-term 
outcomes of catheter ablation in AF reported single-procedure success rates as low 
as 66.6% in paroxysmal AF (PAF) patients and 51.9% in non-paroxysmal AF (NPAF) 
patients [8].  

Pokushalov et al. [17] showed an improvement of the success rate, reaching 89%, in 
a second ablation procedure in patients with a specific AF trigger onset. The data 
used were provided by an implantable cardiac monitor (ICM) equipped with a highly 
sensitive AF detection algorithm (96%) [15] which continuously classifies the heart 
rhythm of a patient by analysing its cardiac cycle. In addition, it stores the trend of 
500 ventricular beats preceding the detection marker of the most recent AF episode, 
hereinafter called “Flashback”. From the Flashback, Pokushalov et al. [17] defined 
different AF triggers such as atrial tachycardia (AT), atrial flutter, premature atrial 
contractions (PAC) or spontaneous AF, when the AF started suddenly and was not 
preceded by any of the previously defined triggers.  

Atrial tachycardia is defined as a rapid atrial rhythm, regular, and originating form an 
unusual location in the upper chambers which causes a fast heart rate (>100 bpm). 
Similarly, atrial flutter represents very high frequency (240-350bpm) atrial 
tachycardia with atrial waves that produce continuous activation of the atrial tissue. 
Premature atrial complexes (PACs) occur when another region of the atria 
(commonly within the pulmonary veins) depolarizes before the sinoatrial node and 
triggers a premature heartbeat. Figure 3.1 illustrates the RR intervals of some 
examples of these onset mechanisms defined in Pokushalov et al’s work and used to 
guide the ablation strategy. 

The success rate shown by the study (89%) was higher than the 78.9% multiple-
procedure success rate reported by Ganesan et al. [8] in the systematic review study. 

Motivated by Pokushalov et al.’s findings, which used the Flashbacks to guide the 
ablation strategy once the patients had an already failed ablation, a study using the 
Flashback to determine the optimum ablation strategy before a first failed ablation 
attempt was designed. However, the visual annotation of the triggers in the 
Flashbacks, especially in large populations of patients is far from being a trivial 
matter. Therefore, an automatic classification of AF triggers is needed. 
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Figure 3.1 Examples of onset mechanisms: (A) sudden onset of AF from SR without a specific trigger; (B) 
AF triggered by atrial flutter; and (C) AF triggered by premature atrial contractions. From [17]. 
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Supervised classification methods rely on having a sufficiently representative set of 
training data which is to be manually selected and annotated, which in turn is 
expensive and time-consuming to obtain, and may introduce bias. Alternatively, 
unsupervised learning classification methods such as k-means can be applied 
without the need for training examples (as the centroids of each category are 
obtained after repeated optimisation starting from randomly selected points) and 
are a viable solution when dealing with large, unstructured data repositories [121] 
(hence, the preferred solution for our study.)  

The aim of this study was to develop an automatic unsupervised classifier of AF 
triggers through Heart Rate Variability (HRV) features extracted from the Flashback, 
as it consists solely of a trend of beats, stored by the Reveal LINQ.  

3.2. Materials 

Flashbacks (around 500 beats preceding an AF episode) were extracted from the ICM 
(Reveal LINQ, Medtronic Inc) in a cohort of the 132 patients (56 ± 10 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) with 
available Flashback data as introduced in Chapter 2. In total, 528 Flashbacks were 
obtained (4 ±  2 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 488 ±  29 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). The histogram in 
Figure 3.2 illustrates the distribution of the duration of the Flashbacks considered in 
the study. In average, the Flashbacks had a duration of 6.7 ±  1.5 minutes. 

Figure 3.2. Duration in minutes of the Flashbacks extracted from the ICM. 
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3.3. Methods 

3.3.1. Feature Extraction 

Features describing variability and irregularity of the RR series were extracted from 
the Flashbacks. The first feature extracted was the mean of the RR intervals 
expressed in milliseconds. The percentage of interval differences (∆RR) of successive 
RR intervals greater than 𝑥𝑥 ms was also calculated (pNN𝑥𝑥, with 𝑥𝑥 = 50 and 20 ms). 
This metric is derived by computing the ratio between the amount of successive RR 
intervals, which have a difference greater than 𝑥𝑥 ms, and the total amount of RR 
intervals. Although pNN50 for interval differences greater than 50 ms is generally 
used. In [122] it was concluded that using 𝑥𝑥 ms values as low as 20 ms also showed 
significant discrimination between several normal and pathological conditions and 
so, pNN20 was also computed. The mean squared differences of successive RR 
intervals (RMSSD) expressed in milliseconds has been calculated using the 
expression: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑅𝑅𝑅𝑅𝑖𝑖+1 −  𝑅𝑅𝑅𝑅𝑖𝑖)2𝑁𝑁−1
𝑖𝑖=1

𝑁𝑁 − 1
 (3.1) 

where 𝑅𝑅𝑅𝑅𝑖𝑖  is the i-th RR interval, 𝑅𝑅𝑅𝑅𝑖𝑖+1 the successive interval, and N is the total 
number of RR intervals. The standard deviation of the RR intervals (SDNN) expressed 
in milliseconds was also computed as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �
∑ (𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑅𝑅𝑅𝑅����)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
(3.2) 

where 𝑅𝑅𝑅𝑅���� is the mean RR interval. 

An estimation of the irregularity of the RR series was computed using the 
approximate entropy (ApEn) and the sample entropy (SampEn). The approximate 
entropy was computed as described in [123] and the sample entropy as described in 
[124]. In the implementation of the ApEn and SampEn, the input parameters (m,r) 
must be selected, where m is the length of the template (length of the window of 
the vectors that are to be compared in the calculation), and r is the noise rejection 
level (magnitude of noise which barely affects the calculation) [124]. In this study, 
those parameters were set to 𝑚𝑚 = 2 and 𝑟𝑟 = 0.2 ∗ 𝜎𝜎, where 𝜎𝜎 is the standard 
deviation as recommended in [124].  
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Three geometric features were also used and were those derived from the Poincaré 
Plot: geometric descriptors SD1 and SD2, and the ratio between them (SD1SD2ratio). 
The Poincaré Plot is a commonly used geometric and non-linear method to assess 
the dynamics of HRV [125]. It represents the RR time series into a space where each 
pair of successive RR intervals (𝑅𝑅𝑅𝑅𝑖𝑖, 𝑅𝑅𝑅𝑅𝑖𝑖+1) defines a point in the plot. The 
descriptors are then computed as: 

𝑆𝑆𝑆𝑆1 =  �𝑣𝑣𝑣𝑣𝑣𝑣 �
𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑖𝑖+1

√2
� (3.3) 

were 𝑣𝑣𝑣𝑣𝑣𝑣 represents the variance, and 

𝑆𝑆𝑆𝑆2 =  �𝑣𝑣𝑣𝑣𝑣𝑣 �
𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖+1

√2
� (3.4) 

where 𝑅𝑅𝑅𝑅𝑖𝑖  and 𝑅𝑅𝑅𝑅𝑖𝑖+1 are vectors defined as 𝑅𝑅𝑅𝑅𝑖𝑖 = (𝑅𝑅𝑅𝑅1,𝑅𝑅𝑅𝑅2, … ,𝑅𝑅𝑅𝑅𝑁𝑁−1) and 
𝑅𝑅𝑅𝑅𝑖𝑖+1 = (𝑅𝑅𝑅𝑅2,𝑅𝑅𝑅𝑅3, … ,𝑅𝑅𝑅𝑅𝑁𝑁) with N again being the total number of RR intervals. 
SD1 is associated with the standard deviation of the instantaneous (short-term) RR 
interval variability while SD2 with the standard deviation of the long-term RR interval 
variability [125]. The SD1SD2ratio was simply calculated by doing the ratio between 
SD1 and SD2. 

3.3.2. Principal Component Analysis 

Once the features were extracted, Principal Component Analysis (PCA) was carried 
out in order to reduce the dimensionality of the data and by doing so, reducing the 
computational cost of the unsupervised clustering method. PCA reduces the 
dimensionality of the data by generating new linear combinatorial features from the 
original features. It maps each example of the dataset present in a 𝑑𝑑 dimensional 
space to a 𝑔𝑔 dimensional subspace such that 𝑔𝑔 < 𝑑𝑑. The new set of generated 
dimensions is referred to as the Principal Components (PC). Each PC represents the 
maximum variance without including the variance which has already been accounted 
for in all its preceding components. Subsequently, the maximum variance is covered 
by the first component while the rest of the components cover lesser values of 
variance. The PC can be represented as: 

𝑃𝑃𝑃𝑃 = 𝑎𝑎1𝑋𝑋1 +  𝑎𝑎2𝑋𝑋3 + ⋯  𝑎𝑎𝑑𝑑𝑋𝑋𝑑𝑑 (3.5) 
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where 𝑃𝑃𝑃𝑃 are the principal components, 𝑋𝑋𝑗𝑗 is the original feature with 𝑗𝑗 = [1,𝑑𝑑], 
and 𝑎𝑎𝑗𝑗 is the loading coefficient for 𝑋𝑋𝑗𝑗 representing the contribution of the original 
feature to the principal components. 

The z-score of the features was applied before the PCA [126]. The normalization of a 
feature is done by scaling the values in such manner that they fall into a specific 
range which ensures that features with lower ranges are not outweighed by those 
with initially larger ranges. 

The Z-score normalization for a feature 𝑋𝑋𝑗𝑗, is based on zero mean and normalized 
standard deviation (SD): 

𝑋𝑋𝑗𝑗′ =
�𝑋𝑋𝑗𝑗 − 𝑋𝑋��
𝜎𝜎𝑋𝑋𝑗𝑗

(3.6) 

where 𝑋𝑋𝑗𝑗′ is the z-scored version of 𝑋𝑋𝑗𝑗, 𝑋𝑋� is the mean of the feature-set 𝑿𝑿, and 𝜎𝜎𝑋𝑋𝑗𝑗  is 
the standard deviation of 𝑋𝑋𝑗𝑗. 

In this manner, the PCs for the study were represented as: 

𝑃𝑃𝑃𝑃 = 𝑎𝑎1𝑋𝑋′1 +  𝑎𝑎2𝑋𝑋′3 + ⋯  𝑎𝑎𝑑𝑑𝑋𝑋′𝑑𝑑 (3.7) 

The criteria to choose the number of Principal Components selected was to have an 
explained variance higher than 0.95, i.e., the PCs contain at least 95% of the 
information. In addition, loading coefficients, also known as principal component 
coefficient will be evaluated and only features with a coefficient higher than 0.3 will 
be considered [127]. 

3.3.3.  Clustering Method 

The k-means algorithm was used to perform unsupervised clustering. It aims to 
partition 𝑛𝑛 observations into 𝑘𝑘 defined clusters, each cluster containing at least one 
observation and each observation being part of one cluster only.  

The clustering is obtained by minimizing the sum, over all clusters, of the within-
cluster sums of point-to-cluster-centroid distances. Given a set of randomly 
initialized 𝑘𝑘 means (centroids) 𝑚𝑚1

(1), … ,𝑚𝑚𝑘𝑘
(1), the algorithm alternates between two 

steps: the assignment and the update step. 
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In the assignment step every 𝑡𝑡 iteration, each data point 𝑥𝑥𝑝𝑝 is assigned to the 𝑖𝑖-th 

cluster 𝐾𝐾𝑖𝑖
(𝑡𝑡) with the nearest centroid, i.e., that with the least distance, even if it

could be assigned to two or more of them. 

Mathematically, 𝑥𝑥𝑝𝑝 is assigned to the cluster 𝐾𝐾𝑖𝑖
(𝑡𝑡) which satisfies:

𝐾𝐾𝑖𝑖
(𝑡𝑡) = argmin

𝑘𝑘
{𝑑𝑑(𝑚𝑚𝑖𝑖

(𝑡𝑡), 𝑥𝑥𝑝𝑝)}, (3.8) 

for each of the 𝑖𝑖 centroids. 

In this study, the distance computed between a given data point 𝑥𝑥𝑝𝑝 and the centroid 

𝑚𝑚𝑖𝑖
(𝑡𝑡) of their assigned cluster 𝐾𝐾𝑖𝑖

(𝑡𝑡) was the Euclidian distance defined as:

𝑑𝑑(𝑚𝑚𝑖𝑖
(𝑡𝑡), 𝑥𝑥𝑝𝑝)2 = �𝑥𝑥𝑚𝑚𝑖𝑖

(𝑡𝑡) − 𝑥𝑥𝑥𝑥𝑝𝑝� �𝑦𝑦𝑚𝑚𝑖𝑖
(𝑡𝑡) − 𝑦𝑦𝑥𝑥𝑝𝑝�

′
, (3.9) 

where  (𝑥𝑥𝑚𝑚𝑖𝑖
(𝑡𝑡) ,𝑦𝑦𝑚𝑚𝑖𝑖

(𝑡𝑡)) and �𝑥𝑥𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑥𝑥𝑝𝑝� are the coordinates of the centroid and the data 

point respectively. 

In the update step, the centroids are recalculated for the observations assigned in 
each cluster: 

𝑚𝑚𝑖𝑖
𝑡𝑡+1 =

1

�𝐾𝐾𝑖𝑖
(𝑡𝑡)�

� 𝑥𝑥𝑝𝑝
𝑥𝑥𝑝𝑝∈𝐾𝐾𝑖𝑖

(𝑡𝑡)

 (3.10) 

where �𝐾𝐾𝑖𝑖
(𝑡𝑡)� is the number of points belonging to cluster 𝐾𝐾𝑖𝑖

(𝑡𝑡).

The assignment and update steps are repeated until the cluster assignments do not 
change, or the maximum number of iterations is reached. 

The optimum number of clusters was determined using the silhouette coefficient. 
This coefficient helps define the number of clusters by evaluating how close each 
point of a given cluster is to the points assigned to the neighbouring clusters [128]. 
The silhouette coefficient ranges between -1 and 1 with values close to 1 indicating 
that the points are very distant from neighbouring clusters and therefore, a good 
clustering.  

Assuming the data has been already clustered into 𝑘𝑘 clusters, for data point 𝑥𝑥𝑝𝑝 ∈ 𝐾𝐾𝑃𝑃 
(data point 𝑥𝑥𝑝𝑝 in cluster 𝐾𝐾𝑃𝑃), let the average inter-cluster distance, i.e., the average 
distance between each point 𝑥𝑥𝑝𝑝 within a cluster be: 



3.3 Methods 39 

𝑎𝑎�𝑥𝑥𝑝𝑝� =
1

|𝐾𝐾𝑃𝑃|− 1
� 𝑑𝑑(𝑥𝑥𝑝𝑝, 𝑥𝑥𝑗𝑗)

𝑥𝑥𝑗𝑗∈𝐾𝐾𝑃𝑃, 𝑥𝑥𝑝𝑝≠𝑥𝑥𝑗𝑗

 (3.11) 

where |𝐾𝐾𝑃𝑃| is the number of points belonging to the cluster 𝐾𝐾𝑃𝑃, and 𝑑𝑑(𝑥𝑥𝑝𝑝, 𝑥𝑥𝑗𝑗) is the 
distance between data points 𝑥𝑥𝑝𝑝 and 𝑥𝑥𝑗𝑗 in the cluster 𝐾𝐾𝑃𝑃 . 𝑎𝑎�𝑥𝑥𝑝𝑝� can be interpreted 
as a measure of how well 𝑥𝑥𝑝𝑝 is assigned to its cluster (the smaller the value, the 
better the assignment). 

Given another cluster  𝐾𝐾𝐽𝐽 (where 𝐾𝐾𝐽𝐽 ≠ 𝐾𝐾𝑃𝑃), the mean dissimilarity of point 𝑥𝑥𝑝𝑝 to 𝐾𝐾𝐽𝐽 
is defined for each data point 𝑥𝑥𝑝𝑝 ∈ 𝐾𝐾𝑃𝑃 as: 

𝑏𝑏�𝑥𝑥𝑝𝑝� = min
𝐽𝐽≠𝑃𝑃

1
�𝐾𝐾𝐽𝐽�

� 𝑑𝑑(𝑥𝑥𝑝𝑝, 𝑥𝑥𝑗𝑗)
𝑥𝑥𝑗𝑗∈𝐾𝐾𝐽𝐽

 (3.12) 

to be the smallest mean distance of 𝑥𝑥𝑝𝑝 to all the points in any other clusters, of which 
𝑥𝑥𝑝𝑝 is not a member. The silhouette coefficient is then defined for each point 𝑥𝑥𝑝𝑝 as: 

𝑠𝑠�𝑥𝑥𝑝𝑝� =  
𝑏𝑏�𝑥𝑥𝑝𝑝� − 𝑎𝑎(𝑥𝑥𝑝𝑝)

max {𝑎𝑎�𝑥𝑥𝑝𝑝�, 𝑏𝑏(𝑥𝑥𝑝𝑝)}
, 𝑖𝑖𝑖𝑖 |𝐾𝐾𝑃𝑃| > 1 (3.13) 

For cluster size |𝐾𝐾𝑃𝑃| = 1, the average inter-cluster distance 𝑎𝑎�𝑥𝑥𝑝𝑝� is not clearly 
defined, in which case: 

𝑠𝑠�𝑥𝑥𝑝𝑝� = 0, 𝑖𝑖𝑖𝑖 |𝐾𝐾𝑃𝑃| = 1. (3.14) 

This choice is arbitrary, but neutral in the sense that it is at the midpoint of the 
bounds -1 and 1, and it is the convention when calculating the silhouette coefficient. 

For a silhouette coefficient close to 1, i.e., the data is appropriately clustered, we 
require 𝑎𝑎�𝑥𝑥𝑝𝑝� ≪ 𝑏𝑏(𝑥𝑥𝑝𝑝). This is due the fact that 𝑎𝑎(𝑥𝑥𝑝𝑝) measures how dissimilar 𝑥𝑥𝑝𝑝 
is from its own cluster, hence a small value means it is well matched, and a large 
𝑏𝑏(𝑥𝑥𝑝𝑝) implies the 𝑥𝑥𝑝𝑝 is badly matched to the clusters it’s not a member of.  

3.3.4. Statistical Analysis 

Once the features were extracted and the clustering was performed, the one-way 
Analysis of Variance Analysis (ANOVA) was computed for the features in the different 
clusters. The null hypothesis 𝐻𝐻0 was defined as: the average value of the dependent 
variable is the same for all the clusters. The unpaired Student’s t-test with Holm’s 
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correction was used to evaluate the one-to-one differences between the features of 
the different clusters [129].  

The feature extraction, PCA, clustering and statistical analysis were conducted using 
Matlab R2019b (The Mathworks Inc., Natick, Massachusetts). 

3.4. Results 

The PCA showed that 2 PCs were enough to explain 95.1% of the total variance (PC1: 
58.7% and PC2: 36.4%). The k-means algorithm was evaluated for 𝑘𝑘 ∈ [2, 20] and 
the optimum number of clusters was chosen as the number of clusters which 
maximized the silhouette coefficient as shown in Figure 3.3. In this study, the 
optimum number of clusters selected was 5 (Silhouette coefficient = 0.568). 

Figure 3.4 shows the result of the clustering. 

The distribution of the observations was the following: Cluster 1 had 31% of the 
observations, Cluster 2: 4%, Cluster 3: 15%, Cluster 4: 35% and Cluster 5: 15%. 

To remove the effect of outliers, clusters containing less than 5% of the total 
observations were excluded from further analysis hence, Cluster 2 was discarded. 

A representative Flashback for each cluster was visually selected and shown in Figure 
3.5. 

Figure 3.3. Silhouette coefficient for different number of clusters with the maximum value marked. 
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Figure 3.4 k-means clustering for PC1 and PC2 into 5 clusters. 

Figure 3.5 Example of the representative flashback for the four selected clusters. 
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Cluster 1 and Cluster 4 contain a high percentage of the patterns analysed (>30% 
each) and both have a relatively stable RR interval around 800-1000 ms. Cluster 3 
and Cluster 5 contain fewer patterns and while Cluster 3 shows a lower average RR 
interval around 600 ms, Cluster 5 has a higher RR interval around 100 ms with a high 
number of ectopic beats. 

A further analysis on the features contributing to the PCs was made. Table 3.1 
summarizes the loading coefficients for the first 2 principal components. 

Table 3.1 Loading coefficients for first 2 principal components (in bold the most relevant parameters) 

Features 
Loading Coefficients 

PC1 PC2 
Mean 0.982 -0.162
pNN50 -0.015 0.164
pNN20 0.003 0.144
RMSSD 0.069 0.619
SDNN 0.100 0.423
TINN < -0.001 < 0.001
ApEn -0.001 < 0.001

SamEn -0.001 0.001
SD1 0.049 0.438
SD2 0.132 0.415

SD1SD2ratio < -0.001 0.001

Those features with loading coefficients higher than 0.3 were regarded as 
contributive. Therefore, for PC1 the feature selected was only the Mean while for 
PC2, the features selected were RMSSD, SDNN, SD1 and SD2. The rest of the analysis 
focused on these 5 contributive features. 

While the mean RR is the predominant contributor to PC1, the rest of the 
contributive features have a similar contribution to PC2. 

The relationship between the contribute features was also explored and the 
correlation between them is shown in Table 3.2. 
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Table 3.2. Correlation between contributive features 

Pearson 
Correlation Mean RMSSD SDNN SD1 SD2 

Mean 1.00 

RMSSD 0.02 1.00 

SDNN 0.15* 0.88* 1.00 

SD1 0.02 1.00* 0.88* 1.00 

SD2 0.21* 0.71* 0.96* 0.71* 1.00 
*: pvalue<0.0001 

The mean RR, the main contributive feature of PC1, is not strongly correlated with 
the rest of the contributive features. Looking at the contributive featues for PC2, 
RMSSD is identical to the non-linear metric SD1, and is moderately correlated with 
SDNN (0.88,𝑝𝑝 < 0.0001) and with SD2 (0.71,𝑝𝑝 < 0.0001). In a similar manner, 
SDNN is also moderately correlated with both SD1 (0.88,𝑝𝑝 < 0.0001) while strongly 
correlated with SD2 (0.96,𝑝𝑝 < 0.0001). SD1 and SD2 show moderate correlation 
between them (0.71,𝑝𝑝 < 0.0001). 

Figure 3.6 shows the distribution of the contributive features in each cluster. 

The statistical analysis showed that the overall null hypothesis 𝐻𝐻0 for every feature 
was rejected according to the one-way ANOVA (𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 <  0.05). When 
computing the unpaired Student’s t-test with Holm’s correction for one-to-one 
comparison between the different features in the different clusters, features RMSSD 
(B) and SD1 (C) were statistically significant for every cluster. However, Mean RR (A),
SD2 (D) and SDNN (E) were not: Clusters 1 and 4 for the Mean, and Clusters 2 and 3
for SD2 and SDNN had non-significant differences and the null hypothesis 𝐻𝐻0 wasn’t
rejected.

3.5. Discussion 

The use of long term ICM devices with robust AF detection will increase our 
understanding of AF triggers and its progression, and aid clinicians with AF 
management and treatment strategies.  

Pokushalov et al. [17] showed an improvement of the success rate, reaching 89%, in 
a second ablation procedure in patients with a specific AF trigger onset. The study  
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Figure 3.6 Boxplots of (A) Mean RR, (B) RMSSD, (C-D) Poincare descriptors SD1 and SD2, and (E) SDNN 
distribution in the different clusters. For every feature, the null hypothesis 𝐻𝐻0 was rejected as p-value 
for ANOVA was < 0.05. (*) shows statistically significant differences between the different features in 
the different clusters according to one-to-one unpaired Student’s t-test with Holm’s correction. 
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defined 2 groups which the patients were randomly distributed to, those with no AF 
trigger study before second AF ablation and those which were treated in accordance 
with the onset mechanism. 3 different treatment possibilities were adjudicated to 
the patients based on their trigger. If AF started suddenly, and was not preceded by 
any other tigger, i.e., patients with spontaneous AF, no reablation was performed 
and the patients continued with AAD. For those patients where the AF onset was 
triggered by atrial tachycardia (AT) or atrial flutter, reablation of the supraventricular 
arrhythmias was performed. Lastly, if PACs triggered the AF, the reablation strategy 
consisted of PVI. The patients with AF triggered, either by AT, atrial flutter or PAC, 
which had a second ablation had success rates of 89%. Conversely, those patients 
with sudden onset which continued with AAD, had 69% of success in AF freedom 
(𝑝𝑝 =  0.003) and those patients which were ablated without considering their 
onset mechanisms only had a success rate of 8% (𝑝𝑝 < 0.0001). These results 
address the need of detecting the onset of AF episodes which may provide crucial 
information to determine the optimal action to take. 

Motivated by these findings but considering the drawbacks of manual annotation of 
AF triggers in larger databases needed to provide reliable supervised classification 
algorithms, this study proposed an automatic unsupervised classifier of AF triggers 
through Heart Rate Variability (HRV) features extracted from the Flashback of a 
continuously monitored cohort. To the best of our knowledge, this is the first study 
to attempt the classification (unsupervised or otherwise) of AF triggers extracted 
from a cohort of patients implanted with an ICM.  

In this study the Flashbacks, i.e., the 500 beats preceding an AF episode, were 
studied. From the Flashbacks, HRV parameters were computed and after PCA, 
unsupervised clustering was performed. Only 2 PCs were enough to explain more 
than 95% of the total variance. The most important features, i.e., those with loading 
coefficients > 0.3, were the mean of the RR intervals, features related to the 
variability (RMSSD and SDNN) and Poincaré descriptors SD1 and SD2. 

The relationship between the Poincaré descriptors and the RMSSD and SDNN has 
been previously described in the literature [125,130]. The RMSSD is identical to SD1 
(1.00,𝑝𝑝 < 0.0001) as they both reflect short-term HRV [131]. Furthermore, the 
mathematical relationship between them is: 

𝑆𝑆𝑆𝑆1 =  
1
√2

∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (3.15) 

which can be derived from Equation (3.1) and (3.3). 
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In addition, SDNN has shown very strong correlation with SD2 (0.96,𝑝𝑝 <
0.0001). This has also been reported previously in the literature [132]. Even though 
the features which contributed to PC2 are highly correlated with each other, there 
is no correlation between those features and the mean RR interval which is the 
predominant contributive feature for PC1. For this reason, the use of these two 
principal components is needed to fully explain the variation of our data. 

Although five clusters were the optimal selected number, only 4 had more than 5% 
of the observations and were analysed. Cluster 1 shows normal rhythm with a mean 
RR interval around 800 ms (75 beats-per-minute) and very few Premature Atrial 
Contractions (PACs) so this could be an example of spontaneous AF (no trigger). 
Cluster 3 has a very stable rhythm with mean RR interval lower than 600 ms (over 
100 beats-per-minute) so the AF trigger could be atrial tachycardia. Cluster 4 is 
similar to Cluster 1 but has a higher number of PACs which could indicate that the 
PACs caused the AF. Lastly, Cluster 5 being a highly unstable rhythm seems to depict 
atrial flutter as a trigger for AF. 

One of the main limitations of this study is the Flashback length. However, while the 
conventional minimum recording for variability features such as SDNN and RMSSD is 
5 minutes [133], researchers have proposed short-term periods from 60s to 240s in 
the case of SDNN and even shorter periods of 10s and 30s for RMSSD [134,135]. In 
any case, 88% of the Flashbacks included in the analysis are longer that 5 minutes.  

Another limiting factor is the fact that inference of useful clinical information from 
unsupervised classification of patters has relative reliability. For this reason, future 
studies including visual inspection and annotation of the Trigger Patterns with their 
corresponding ECG signal are planned with the support of electrophysiologists to 
validate the classification process. 

Nonetheless, this study shows that there are indeed differences between different 
types of clusters albeit there is still a need of a clinical validation of the classification. 
Being the goal of a future study to use the existing differences to discriminate 
between different treatment strategies or patients, the trigger classification 
obtained as a black-box process from unsupervised clustering is still clinically 
relevant. 

3.6. Conclusion 

Seeing the importance in upcoming years of the understanding of the triggers of AF, 
this study extracted and analysed classical HRV features of the 500 beats preceding 
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the onset of AF with the goal of doing an unsupervised clustering of the possible AF 
triggers. Although validation from a group of electrophysiologists is still needed and 
it’s currently ongoing, the study showed 4 distinct trigger patterns found with the 
algorithm which could be classified as Spontaneous AF, PAC, Atrial Tachycardia and 
Atrial Flutter and between which, the differences in their HRV features were 
statistically significant. 
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4.1. Motivation 

The underlying mechanisms of AF are still under investigation and appropriate 
patient selection for treatment still remains a challenge [136,137]. The opportunity 
to find additional ways of characterizing atrial electromechanical and anatomical 
properties and ways of predicting subsequent outcome after therapeutic 
intervention would favour timely therapy selection. More specifically, AF is related 
to a compromised atrial function caused by a fast and irregular atrial depolarization 
which can be characterized from the f-waves in the ECG. There have been many 
parameters introduced in the literature to characterize f-waves including their 
amplitude, frequency, morphology [138,139], and atrial organization [140]. 

The f-wave frequency, often referred to as the atrial fibrillatory rate (AFR) is an AF 
characteristic which has been subject to considerable clinical attention and has been 
shown to be a useful tool for monitoring drug effects [141] as well as predict 
outcomes from clinical procedures such as successful AF cardioversion [142] and 
early AF recurrence [143]. 

The correlation of AFR and several well-known HRV features describing the 
variability and irregularity of RR intervals during AF showed that while it seemed that 
variability parameters were independent from AFR, the irregularity parameters were 
significantly correlated with AFR [144]. However, the extrapolation of their findings 
for all clinical types of AF remains to be determined as the population used in the 
study included only patients with underlying congestive heart failure. In addition, the 
analysis didn’t account for variations on AFR due to circadian cycles, episode 
duration or previous ablations. 

Circadian variations in the AF frequency within a 24-hour period have been studied 
using Holter recordings in pursuit of understanding the underlying mechanisms of 
AF. It was concluded that AFR was significantly lower during night-time than during 
daytime [145–147]. These studies, however, have a drawback as AFR was computed 
from sparce measurements with several hours in between estimates. In addition, in 
one of the studies, two different sets of patients were identified: one which showed 
an increase (minority) while the other showed a decrease (majority) in nocturnal AFR 
[145]. A later study used more advanced signal processing techniques and obtained 
a more robust AF frequency estimate [148]. This study found that circadian 
variations were present in most of the patients with long-standing persistent AF 
analysed (13/18). However, both studies have the drawback of having their insight 
on atrial electrophysiological characteristics during AF constrained to 24-hout long 
Holter registrations and limited datasets of up to 30 patients. In addition, these 
studies were all based on persistent and chronic AF patients. 
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Another study has shown a positive correlation between episode duration and AFR 
(𝑅𝑅 = 0.53,𝑝𝑝 < 0.05) [149]. However, this study was conducted in a small dataset 
with only 31 episodes from 11 paroxysmal AF patients.  

The long monitoring periods spanning several months, thus including several 
episodes per patient, provided by ICMs allow an analysis of the joint effects of HRV 
derived features and circadian variation, episode duration and previous ablations on 
AFR.  

The estimation of AFR from RR series data would enable wearable based assessment 
of AFR, e.g., wristband PPG, which would lead to a better characterization of the 
patient’s condition. The aim of this study is to model variations in AFR using RR series 
features, by correcting for the effect of time of the day of episode onset, episode 
duration and previous ablations on AFR, in a cohort of AF patients continuously 
monitored with an ICM. In a previous study regarding AFR and HRV, the analysis was 
conducted only on patients with underlying congestive heart failure and didn’t 
account for the presence of confounding factors [144]. We used a simple fixed-effect 
(FE) modelling approach using HRV features and compared it to a more complex 
mixed-effect (ME) modelling approach to study both the population and patient 
specific effects of RR series in AFR and another ME modelling approach that allowed 
correction for the effect of episode duration, previous ablations, and possible 
circadian variations. In addition, ME modelling will account for the heterogeneity 
within AF patients. 

4.2. Materials 

The studied population consisted of a subset of the cohorts of patients presented in 
Chapter 2. The clinical baseline characteristics of the analysed patients are shown in 
Table 4.1. 

The devices used in the Usability and the Slovakia studies were the Reveal LINQ and 
Reveal XT (Medtronic Inc, Minneapolis, MN), respectively which were implanted 
within the fourth intercostal space (V2-V3 electrode orientation) near the apex of 
the heart. The feasibility of extracting atrial activation from ICM data has been 
previously explored [150]. Due to memory restrictions, the devices store a single-
lead ECG signal of the first 2 minutes of the AF episode detected as well as the 
ventricular sense, i.e., the positions of the R-peaks. In addition, the devices store the 
detected episode onset date and time and the total duration of the episode.  
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Table 4.1Baseline and clinical data of the study population (n = 99). 

Patient Characteristics Enrolled subjects 
(N=99) 

Age, years (mean ± SD) 57 ± 12 
Coronary Risk Profile 
Paroxysmal AF 73 (74%) 
Hypertension 40 (40%) 
Diabetes 13 (13%) 
Coronary Artery Disease 5 (5%) 
Stroke 3 (3%) 
Previous Ablation 19 (19%) 
Values are given as no. (%) unless otherwise indicated 
AF: atrial fibrillation 
SD: Standard deviation 

This unique database offers the advantage of long monitoring periods and a 
complete monitorization of patients suffering AF which enables studies way beyond 
the scope of Holter monitoring. 

The 99 patients included in the study had the ICM implanted and were followed-up 
for 9.2 (0.2-24.3) months as median (min-max). Figure 4.1 illustrates the monitoring 
period of the patients where 0 represents the ablation time. In this manner, the 
monitoring days pre-ablation (green) are lower than 0 while the monitoring days 
after ablation (white for the 3-months blanking period and orange for the rest of the 
monitoring) are greater than 0. The ablation procedure was performed 5.8 (1.0-14.4) 
months after the implant. The ablation procedures were either pulmonary vein 
isolation (PVI) only (76 patients, 77%) or PVI plus extra lesions, which included roof 
and mitral lines, and ablation of complex fractionated atrial electrograms (23 
patients, 23%). AF recurrence was defined as an AF episode detected by the ICM 
after a 3-month blanking period following catheter ablation and only those episodes 
outside the blanking period were considered in the analysis. 

The blanking period is based on reports describing how early recurrences could be 
caused by post-ablation inflammation or short-term autonomic imbalance rather 
than ablation failure [6]. In the analysed cohort, 31 (31%) had AF recurrence, 38 
(38%) had no AF recurrence, and 30 patients (30%) left the study before the ending 
of the 3-months blanking period so there is no available information of their 
recurrence status. To evaluate the circadian variations of AFR, the episodes occurring 
during the full monitoring period, except the 3-months blanking period, of the 99 
patients included in the study were considered. 
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Figure 4.1. Monitoring days of the patients included in the analysis with the baseline being the ablation 
time. The monitoring time is divided into 3 timeframes: pre-ablation (green), during 3-months blanking 
period (white) and post-ablation (orange). For reasons of clarity, the patients were sorted based on their 
pre-ablation monitoring time. 

4.3. Methods 

4.3.1. Atrial fibrillatory rate 

The atrial activity, from which the AFR is computed, is extracted from ECG signals 
using a QRST cancellation technique included in Cardiolund ECG parser software 
(www.cardiolund.com). The software removes the ventricular activity form the ECG, 
producing a residual ECG signal containing the atrial activity. 

Once the atrial activity (𝑥𝑥(𝑛𝑛)) having a length of 𝑁𝑁 samples is obtained, a harmonic 
f-wave model [151] is used to estimate the local f-wave frequency i.e. the AFR. In
this model, the f-waves are modelled by a complex signal 𝑠𝑠(𝑛𝑛;𝜽𝜽), defined as the sum 
of 2 harmonically related, complex exponentials with fundamental frequency 𝑓𝑓, 

http://www.cardiolund.com/
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𝑠𝑠(𝑛𝑛;𝜽𝜽) =  � 𝐴𝐴𝑚𝑚𝑒𝑒
𝑗𝑗�2𝜋𝜋𝑓𝑓𝑓𝑓𝑠𝑠

𝑚𝑚𝑚𝑚 + 𝜙𝜙𝑚𝑚�,
2

𝑚𝑚=1

 (4.1) 

𝜽𝜽 =  [𝑓𝑓  𝐴𝐴1  𝜙𝜙1   𝐴𝐴2   𝜙𝜙2]𝑇𝑇, (4.2) 

where 𝐴𝐴𝑚𝑚 and 𝜙𝜙𝑚𝑚 define the amplitude and phase, respectively, of the 𝑚𝑚-th 
exponential (first and second), 𝑓𝑓𝑠𝑠 is the sampling frequency and 𝜽𝜽, the parameter 
vector. 

The complex values analytic representation 𝒙𝒙𝒂𝒂(𝑛𝑛) of the observed f-wave signal 
𝒙𝒙(𝑛𝑛), is assumed to be composed of 𝑠𝑠(𝑛𝑛,𝜽𝜽) and white, complex Gaussian noise 𝒆𝒆, 

𝒙𝒙𝒂𝒂(𝑛𝑛) = 𝑠𝑠(𝑛𝑛,𝜽𝜽) + 𝒆𝒆 = 𝒁𝒁(𝑛𝑛,𝜔𝜔0) 𝒂𝒂(𝜽𝜽) + 𝒆𝒆, (4.3) 

where 𝜔𝜔0 = 2𝜋𝜋 𝑓𝑓
𝑓𝑓𝑠𝑠

, 𝒂𝒂(𝜽𝜽) is a 2 × 1 vector containing the amplitude and phase 

information: 

𝒂𝒂(𝜽𝜽) = �𝐴𝐴1𝑒𝑒𝑗𝑗𝜙𝜙1    𝐴𝐴2𝑒𝑒𝑗𝑗𝜙𝜙2�
𝑇𝑇

, (4.4) 

and 𝒁𝒁(𝑛𝑛,𝜔𝜔0) is an 𝑁𝑁 × 2 Vandermonde matrix defined as: 

𝒁𝒁(𝑛𝑛,𝜔𝜔0) =  

⎣
⎢
⎢
⎢
⎢
⎡

1 1
𝑒𝑒𝑗𝑗𝜔𝜔0 𝑒𝑒𝑗𝑗2𝜔𝜔0

⋮
𝑒𝑒𝑗𝑗𝜔𝜔0𝑛𝑛

⋮

⋮
𝑒𝑒𝑗𝑗𝜔𝜔0𝑛𝑛

⋮
𝑒𝑒𝑗𝑗𝜔𝜔0(𝑁𝑁−1) 𝑒𝑒𝑗𝑗2𝜔𝜔0(𝑁𝑁−1)⎦

⎥
⎥
⎥
⎥
⎤

. (4.5) 

The model is evaluated in 5-s windows by locally fitting the model in 𝐾𝐾 0.5-s 
overlapping sub-segments 𝑥𝑥𝑎𝑎,𝑘𝑘 ,𝑘𝑘 = 1, … ,𝐾𝐾 and estimating 𝜽𝜽� using a maximum 
likelihood approach. For each subsegment, the local frequency estimate  𝜔𝜔�0,𝑘𝑘 is 
determined by: 

𝜔𝜔�0,𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎min�𝒙𝒙𝑎𝑎,𝑘𝑘 − 𝒁𝒁(𝒁𝒁𝐻𝐻𝒁𝒁)−1𝒁𝒁𝐻𝐻𝒙𝒙𝑎𝑎,𝑘𝑘�
2
, (4.6) 

where 𝑍𝑍 ≡ 𝑍𝑍(𝜔𝜔0,𝑘𝑘). The local frequency estimates are then averaged over the 5-s 
windows and the AFR of the segment is determined as: 

𝑓𝑓 = �
𝜔𝜔�0,𝑘𝑘𝑓𝑓𝑠𝑠
2𝜋𝜋𝜋𝜋

𝐾𝐾

𝑘𝑘=1

, (4.7) 
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The model’s fit is evaluated using the model error 𝑒̂𝑒(𝑛𝑛) = 𝑥𝑥𝑎𝑎(𝑛𝑛) −  𝑠𝑠�𝑛𝑛;𝜽𝜽�� to 
estimate the signal quality index (SQI): 

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
𝜎𝜎𝑒̂𝑒
𝜎𝜎𝑥𝑥𝑎𝑎

, (4.8) 

where 𝜎𝜎𝑒̂𝑒 and 𝜎𝜎𝑥𝑥𝑎𝑎  are the standard deviation of the model error 𝑒̂𝑒(𝑛𝑛) and 𝑥𝑥𝑎𝑎(𝑛𝑛). The 
SQI is confined between [0,1] with larger values associated to a better fit. A fixed 
threshold is used to indicate whether f-waves have sufficient quality for the analysis. 
For this study, the SQI was estimated every 5-second windows and the SQI threshold 
which determined the usable segments was set to 0.30 as suggested by [151]. Figure 
4.2 shows an example of the f-wave extraction process for the AFR estimation 
illustrating the ECG obtained from the ICM, the atrial activity signal 𝑥𝑥(𝑛𝑛) after QRST 
cancellation, the signal quality index, and estimated frequency (𝑓𝑓) and estimated f-

wave signal �𝑠𝑠�𝑛𝑛;𝜽𝜽��� with the segment with low SQI represented in light grey. 

Figure 4.2. Illustration of f-wave extraction for AFR estimation. From top to bottom: ECG signal extracted 
from ICM, QRST-cancelled signal (x(n)), signal quality index (solid line) with threshold for acceptable 
signal quality (dashed line), estimated frequency (𝒇𝒇�) and estimated f-wave signal (𝒔𝒔�𝒏𝒏;𝜽𝜽��) with signal 
segment with signal quality below the acceptable threshold marked as light grey. 
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For further details on the estimation of AFR and the SQI, the reader is referred to 
[151]. 

4.3.2. Population-based analysis 

As a first approach to evaluate the relationship between AFR and the duration and 
onset time of the episode, the AFR of episodes extracted from the pre-ablation 
period were analysed. 

In addition to the AFR, the relative AFR was also computed as: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (%) =  
𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝑅𝑅′

∗ 100, (4.9) 

where 𝐴𝐴𝐴𝐴𝐴𝐴′ is the average AFR for each particular patient. 

The episodes were then defined as short (episode duration < 20 minutes) or long 
(episode duration ≥ 20 minutes), and the onset time defined as night (00:00-06:00) 
or day (10:00-20:00) as derived from the continuous monitoring of the patients. For 
this first analysis of episode onset, any episodes outside the definition of night and 
day were not considered.  

4.3.3. Modelling 

Fixed-effect (FE) models are statistical models which only contain fixed effects. In 
contrast, mixed-effect (ME) models contain both fixed effects and random effects, 
and are useful when dealing with data involving multiple sources of random error 
such as repeated measures within subjects [152].  

In general terms, for the mixed-effect model in this analysis, we consider 𝑁𝑁 patients, 
with the index 𝑖𝑖 representing the 𝑖𝑖-th patient (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁). In general terms, each 
patient has 𝑛𝑛𝑖𝑖 measurements 𝑦𝑦𝑖𝑖𝑖𝑖, with the index 𝑗𝑗 representing the 𝑗𝑗-th episode (1 ≤
𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖). 𝑃𝑃 then is defined as the total number of episodes included in the analysis 
so that 𝑃𝑃 = ∑ 𝑛𝑛𝑖𝑖𝑁𝑁

1 . There are 𝑀𝑀 random effects considered, and the patient-specific 
random effect is represented by 𝑏𝑏𝑖𝑖𝑖𝑖 (1 ≤ 𝑚𝑚 ≤ 𝑀𝑀). The random effects provide 
inference on population level information which better accounts for correlated 
structures and uncertainty. In this thesis, the random effects constitute a set of 
variables that account for variations in the RR series and the effect of episode 
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duration, previous ablations, and circadian variations in AFR. The 𝑦𝑦𝑖𝑖𝑖𝑖  of each episode 
𝑗𝑗 in each patient 𝑖𝑖 is assumed to follow a Gaussian distribution, specifically: 

�𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖�𝑏𝑏0𝑖𝑖, 𝑏𝑏1𝑖𝑖, … 𝑏𝑏𝑀𝑀𝑀𝑀� ~ 𝑁𝑁�𝜇𝜇𝑖𝑖𝑖𝑖�𝑏𝑏0𝑖𝑖,𝑏𝑏1𝑖𝑖, … 𝑏𝑏𝑀𝑀𝑀𝑀,  𝜎𝜎2�, (4.10) 

where 𝜇𝜇𝑖𝑖𝑖𝑖|𝑏𝑏0𝑖𝑖,𝑏𝑏1𝑖𝑖, … 𝑏𝑏𝑀𝑀𝑀𝑀 is the conditional expectation of the observations, in this 
case the AFR of each episode 𝑦𝑦𝑖𝑖𝑖𝑖, given by random vector 𝒃𝒃𝒊𝒊, containing the patient 
specific random effects [𝑏𝑏0𝑖𝑖,𝑏𝑏1𝑖𝑖, … 𝑏𝑏𝑀𝑀𝑀𝑀], and 𝜎𝜎2 is the dispersion parameter of the 
distribution.  

Linear ME models can be represented as: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆, (4.11) 

where 𝒚𝒚 is the set of 𝑦𝑦𝑖𝑖𝑖𝑖, 𝑿𝑿 is the design matrix for fixed effects, i.e., not dependent 
on the patient, 𝒁𝒁 is the design matrix for random effects, 𝜷𝜷 is a vector of fixed effect 
parameters [𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑀𝑀 ], b contains the 𝑁𝑁 sets of 𝒃𝒃𝒊𝒊, and 𝒆𝒆 contains the random 
errors associated with the 𝑖𝑖𝑖𝑖-th observation. The design matrix 𝑿𝑿 (𝑃𝑃 × 𝑀𝑀 + 1) is 
defined by: 

𝑿𝑿 =  �𝒙𝒙𝛽𝛽0  𝒙𝒙𝛽𝛽1  𝒙𝒙𝛽𝛽2  … 𝒙𝒙𝛽𝛽𝑀𝑀�, (4.12) 

where 𝒙𝒙𝛽𝛽0  is a 𝑃𝑃 × 1 binary vector for patient independent intercept 𝛽𝛽0, and 
�𝒙𝒙𝛽𝛽1 ,𝒙𝒙𝛽𝛽2 , … ,𝒙𝒙𝛽𝛽𝑀𝑀  � is a 𝑃𝑃 × 𝑀𝑀 matrix which contains the values for each of the 𝑀𝑀 
features describing the episodes considered in the analysis. Similarly, the design 
matrix for the random effects 𝒁𝒁 (𝑃𝑃 × 𝑁𝑁 ∗ (𝑀𝑀 + 1)) is defined by: 

𝒁𝒁 =  �𝒁𝒁𝒃𝒃𝟎𝟎  𝒁𝒁𝒃𝒃𝟏𝟏  𝒁𝒁𝒃𝒃𝟐𝟐  … 𝒁𝒁𝒃𝒃𝑴𝑴�, (4.13) 

where 𝒁𝒁𝒃𝒃𝟎𝟎 is the 𝑃𝑃 × 𝑁𝑁 binary matrix for 𝒃𝒃𝟎𝟎, the patient specific intercept vector 
containing [𝑏𝑏01,𝑏𝑏02, … , 𝑏𝑏0𝑁𝑁] intercepts, and �𝒁𝒁𝒃𝒃𝟏𝟏  𝒁𝒁𝒃𝒃𝟐𝟐  … 𝒁𝒁𝒃𝒃𝑴𝑴� contains the values 

𝑧𝑧𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖  which represent the value of feature 𝑚𝑚 describing the 𝑗𝑗-th episode of the 𝑖𝑖-th

patient. 

The maximum pseudo likelihood method is employed for the parameter estimation. 
For ME models with observations 𝒚𝒚|𝒃𝒃 ~ 𝑁𝑁(𝝁𝝁|𝒃𝒃,𝑹𝑹) with 𝒃𝒃~𝑁𝑁(𝟎𝟎,𝑮𝑮), being 𝑹𝑹 and 𝑮𝑮, 
variance matrices for distributions of 𝒚𝒚|𝒃𝒃 and 𝒃𝒃 respectively, the log-likelihood 
equation can be written as [152]: 

lnℒ(𝒚𝒚,𝒃𝒃) =  −�
1
2
� (𝒚𝒚 −  𝑿𝑿𝑿𝑿− 𝒁𝒁𝒁𝒁)′𝑹𝑹−𝟏𝟏(𝒚𝒚 −  𝑿𝑿𝑿𝑿− 𝒁𝒁𝒁𝒁) − �

1
2
�𝒃𝒃′𝑮𝑮−𝟏𝟏𝒃𝒃, (4.14) 

The estimator is then given by: 
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�𝒚𝒚�,𝒃𝒃�� = 𝑎𝑎𝑎𝑎𝑎𝑎max
(𝒚𝒚,𝒃𝒃)

(lnℒ(𝒚𝒚,𝒃𝒃)). (4.15) 

To solve this estimator, the derivatives 𝜕𝜕ℓ(𝒚𝒚,𝒃𝒃)/𝜕𝜕𝜷𝜷′ and 𝜕𝜕ℓ(𝒚𝒚,𝒃𝒃)/𝜕𝜕𝒃𝒃′ are set to 
zero, and the resulting set of equations are solved for 𝜷𝜷 and 𝒃𝒃. In the interest of 
clarity, ℓ(𝒚𝒚,𝒃𝒃) = lnℒ(𝒚𝒚,𝒃𝒃). 

The derivatives are, respectively: 

𝜕𝜕[ℓ(𝒚𝒚,𝒃𝒃)]
𝜕𝜕𝜷𝜷′

= 𝑿𝑿′𝑹𝑹−𝟏𝟏𝒚𝒚 − 𝑿𝑿′𝑹𝑹−𝟏𝟏𝑿𝑿𝑿𝑿− 𝒁𝒁′𝑹𝑹−𝟏𝟏𝑿𝑿𝑿𝑿, (4.16) 

𝜕𝜕[ℓ(𝒚𝒚,𝒃𝒃)]
𝜕𝜕𝒃𝒃′

= 𝒁𝒁′𝑹𝑹−𝟏𝟏𝒚𝒚 − 𝑿𝑿′𝑹𝑹−𝟏𝟏𝒁𝒁𝒁𝒁− 𝒁𝒁′𝑹𝑹−𝟏𝟏𝒁𝒁𝒁𝒁 − 𝑮𝑮−𝟏𝟏𝒃𝒃. (4.17) 

Setting equations (4.16) and (4.17) to zero yields the mixed model equation: 

�
𝑿𝑿′𝑹𝑹−𝟏𝟏𝑿𝑿 𝑿𝑿′𝑹𝑹−𝟏𝟏𝒁𝒁

𝒁𝒁′𝑹𝑹−𝟏𝟏𝑿𝑿 𝒁𝒁′𝑹𝑹−𝟏𝟏𝒁𝒁 + 𝑮𝑮−𝟏𝟏
� �
𝜷𝜷

𝒃𝒃
� = �

𝑿𝑿′𝑹𝑹−𝟏𝟏𝒚𝒚

𝒁𝒁′𝑹𝑹−𝟏𝟏𝒚𝒚
�. (4.18) 

From Equation (4.18), the exact estimates of 𝜷𝜷 and 𝒃𝒃 can be obtained from a single 
calculation if components 𝑮𝑮 and 𝑹𝑹 are known. This is rarely the case, meaning that 
solving Equation (4.18) entails estimating 𝑮𝑮 and 𝑹𝑹 as well. To do so, solving the mixed 
model equations turns into an iterative process where starting values of 𝑮𝑮 and 𝑹𝑹 
enable an initial solution of equation (4.18); the estimates of 𝜷𝜷 and 𝒃𝒃 are then used 
to update 𝑮𝑮 and 𝑹𝑹, and the process continues until convergence, defined as a 
difference on gradient of the objective function < 10−6, or until the maximum 
number of iterations has been reached (10000). 

Fixed-effect models can be represented as in Equation (4.14) but with the random 
effects coefficient b being equal to 0. Hence, the log-likelihood equation can be 
written as:  

lnℒ(𝒚𝒚) =  −�
1
2
� (𝒚𝒚 −  𝑿𝑿𝑿𝑿)′𝑹𝑹−𝟏𝟏(𝒚𝒚 −  𝑿𝑿𝑿𝑿) (4.19) 

and the estimator is given by: 

(𝒚𝒚�) = 𝑎𝑎𝑎𝑎𝑎𝑎max
(𝒚𝒚)

(lnℒ(𝒚𝒚)) ; (4.20) 

In this study, a linear FE model is used to evaluate the effects of automimic tone as 
quantified by RR series characteristics on AFR. In addition, the results obtained will 
be compared to two ME models which will evaluate both the fixed and random 
effects of circadian variations, previous ablations, episode duration and RR series 
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characteristics on AFR. Following the previous formulations, 𝑦𝑦𝑖𝑖𝑖𝑖  corresponds to the 
𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖𝑖𝑖 of the 𝑖𝑖𝑖𝑖-th episode, 𝑿𝑿 and 𝒁𝒁 contain the features comprised by time, number 
of ablations, duration of episode and HRV-derived features, and 𝜷𝜷 and 𝒃𝒃 contain the 
fixed and random effects of the model. 

The FE and ME models (described below) were fitted and evaluated using Matlab 
R2022a (The Mathworks Inc., Natick, Massachusetts). The Akaike Information 
Criterion (AIC) [153] and the deviance residual, i.e., an index of model fit, where a 
model with a higher deviance provides a poorer model fit to the data than a model 
with a lower deviance [154],  are used to select the model which fits best the dataset. 
In addition, to check the goodness of fit of the models, the fitted values of AFR are 
compared to the observed values of AFR, and the coefficients of determination (R2) 
[155] are computed.

Fixed-effect model of AFR 
From the ventricular sense of the AF episode stored in the ICM, HRV derived features 
are computed to represent the variability and irregularity of the episode. For this 
study, the parameters extracted were the mean RR intervals (mean interval between 
ventricular senses in milliseconds), the mean squared differences of successive RR 
intervals (RMSSD) expressed in milliseconds and calculated with Equation (3.1), and 
the sample entropy (SampEn). SampEn estimates the irregularity of the RR series and 
was computed as described in 3.3.1 [124]. 

The 𝑭𝑭𝑭𝑭 model assumes fixed (population) effects of RR mean, RR variability and RR 
irregularity on AFR (Mean RR, RMSSD and SampEn) hence an estimate of AFR 
(𝐴𝐴𝐹𝐹�𝑅𝑅𝑖𝑖𝑖𝑖), for patient 𝑖𝑖 and episode 𝑗𝑗, is given by: 

𝐴𝐴𝐹𝐹�𝑅𝑅𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛽𝛽2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛽𝛽3 × 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 , (4.21) 

where 𝛽𝛽0 is the intercept estimate for the fixed effect. In a similar way, 𝛽𝛽1, 𝛽𝛽2 and 
𝛽𝛽3represent the fixed effects of the Mean RR, RMSSD and SampEn respectively, in 
Model 𝐹𝐹𝐹𝐹.  

Mixed-effect model of AFR 
In order to account for the heterogeneity between patients, an ME model is used. 
The 𝑴𝑴𝑴𝑴 model assumes both the fixed and random effects of changes in RR series 
on AFR by introducing the patient-specific random effects to Equation (4.21): 

𝐴𝐴𝐹𝐹�𝑅𝑅𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝑏𝑏0𝑖𝑖 + (𝛽𝛽1 + 𝑏𝑏1𝑖𝑖) × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + (𝛽𝛽2 + 𝑏𝑏2𝑖𝑖) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖
+ (𝛽𝛽3 + 𝑏𝑏3𝑖𝑖) × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖, (4.22) 
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where 𝑏𝑏0𝑖𝑖 represents the intercept estimate for the patient-specific random effect, 
and 𝑏𝑏1𝑖𝑖, 𝑏𝑏2𝑖𝑖 and 𝑏𝑏3𝑖𝑖 represent the patient-specific random effect of Mean RR, RMSSD 
and SampEn respectively. 

Mixed-effect model of AFR and correct for confounding factors 
There are several variables that could affect AFR and need to be accounted for. In 
this study, the effect of circadian variations quantified by the episode onset time, the 
effect of multiple ablations, the effect of the long monitoring periods quantified by 
the time since ICM implant, and the effect of episode duration will be used to correct 
the 𝑀𝑀𝑀𝑀 model. 

The circadian variations of AFR were modelled by considering the time of the day of 
the onset of each AF episode with sufficient SQI stored in the ICM. In order to relate 
AFR with circadian variation which has a cyclical nature, the time onset parameter 
was transformed into a sinusoid where -1 represents the middle of the day (12:00) 
and 1 represents the middle of the night (00:00) using the following expression:   

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = cos �2𝜋𝜋
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇24ℎ

24
�, (4.23) 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇24ℎ represents the 24-hour based AF onset and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 the modified AF 
onset used in the analysis.   

Furthermore, the patients of this cohort have undergone one or two ablation 
procedures. The “nAblations” parameter represents the number of ablations 
undergone by the patient at the time of the episode onset. This parameter can either 
be 0 for patients with no previous ablations in episodes occurring before their first 
ablation, 1 for patients after their first ablation or before their second ablation, or 2 
for patients with a previously failed ablation and after their second ablation. This 
parameter will correct for the effect on AFR of episodes occurring pre- and post-
ablation as well as for patients with previously failed ablation procedures with 
compromised atria. 

In addition, the patients of this cohort have been followed up for long monitoring 
periods, so the feature “DaysSinceImplant” represents the period between the 
episode onset date and the date the patients were implanted with the ICM. This 
parameter will correct for the effects of the long monitoring periods on AFR; the 
change in “DaysSinceImplant” provides a common timescale for the episodes 
included in the analysis. 

Lastly, the Reveal LINQ also stores the total duration of the episode in minutes: 
“Duration”. 
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The complete 𝑴𝑴𝑴𝑴′ model assumes the fixed and random effects of changes in the 
RR series, and corrects for circadian variation, number of ablations and episode 
duration: 

𝐴𝐴𝐹𝐹�𝑅𝑅𝑖𝑖𝑖𝑖 =  𝛽𝛽0′ + 𝑏𝑏0𝑖𝑖′ + (𝛽𝛽1′ + 𝑏𝑏1𝑖𝑖′ ) × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + (𝛽𝛽2′ + 𝑏𝑏2𝑖𝑖′ ) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖
+ (𝛽𝛽3′ + 𝑏𝑏3𝑖𝑖′ ) × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖  + (𝛽𝛽4′ + 𝑏𝑏4𝑖𝑖′ ) × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
+ (𝛽𝛽5′ + 𝑏𝑏5𝑖𝑖′ ) × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
+ (𝛽𝛽6′ + 𝑏𝑏6𝑖𝑖′ ) × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖
+ (𝛽𝛽7′ + 𝑏𝑏7𝑖𝑖′ ) × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖, 

(4.24) 

where 𝛽𝛽4′, 𝛽𝛽5′ , 𝛽𝛽6′  and 𝛽𝛽7′  represent the fixed effects of the circadian variations, 
number of ablations, period between implant date and onset and episode duration 
respectively, and 𝑏𝑏4𝑖𝑖′ , 𝑏𝑏5𝑖𝑖′ , 𝑏𝑏6𝑖𝑖′  and 𝑏𝑏7𝑖𝑖′  represent the patient-specific random effects. 
𝛽𝛽0′ , 𝑏𝑏0𝑖𝑖′ , 𝛽𝛽1′ , 𝑏𝑏1𝑖𝑖′ , 𝛽𝛽2′ , 𝑏𝑏2𝑖𝑖′ , 𝛽𝛽3′  and 𝑏𝑏3𝑖𝑖′  correspond to the fixed and patient-specific 
random effects introduced in Equation (4.21) and (4.22) but for the 𝑀𝑀𝑀𝑀′ model. 

4.3.4. Statistical Analysis 

Continuous data are presented as mean ± standard deviation if the null hypothesis 
𝐻𝐻0 of the Kolmogorov–Smirnov test (𝐻𝐻0: data is normally distributed) was not 
rejected. Otherwise, continuous data are presented as median (min-max). 
Categorical data are presented as absolute frequency (relative frequency in 
percentage). The null hypothesis was rejected when p < 0.05, then set as the level of 
significance. The relationship between the features was studied using the patient-
average of the features. This average was defined as the mean for those normally 
distributed (such as AFR, Mean RR and SampEn) and the median for those not 
normally distributed (such as onset time and episode duration). The normality of the 
feature was determined by analysing the complete set of episodes. 

The statistical analysis was performed using Matlab R2022a (The Mathworks Inc., 
Natick, Massachusetts).  

4.4. Results 

The distribution of 5-s segments available for analysis after elimination of insufficient 
quality segments is shown in Figure 4.3.  
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Figure 4.3. Number of episodes with percentage of analyzable 5-s segments after application of the SQI 
(SQI>0.3). 

During the monitoring period, the ICMs stored 3739 episodes out of which 2908 
(77%) episodes contained at least one 5-s segment of sufficient signal quality for 
estimation of AFR.  

Out of the episodes included in the analysis, 1796 (62%) occurred before ablation, 
657 (23%) occurred after ablation and 455 (15%) occurred during the 3-months 
blanking period and were excluded from the analysis. Each patient had a median 
(min-max) of 20.5 (2-114) episodes with 16 (0-77) episodes pre-ablation, and for 
those patients which had AF recurrence, 10 (1-61) episodes post-ablation per 
patient. Figure 4.4 illustrates the number of episodes each patient had in the defined 
timeframes, i.e., pre-ablation, during 3-month blanking period and post-ablation. 

The mean AFR of at least one acceptable 5-s segment was considered to be 
representative of the whole segment under the assumption that the AFR was stable 
within 2 minutes of AF. The stability of AFR within the episodes was studied by 
selecting the 24 episodes where more than 80% of the episode had acceptable levels 
of SQI and iteratively computing the mean AFR for decreasing percentages of the 
signal and evaluating the relative absolute error between the mean AFR of the 
reduced signal segments and the mean AFR of the whole acceptable signal. Figure 
4.5 shows the evolution of the relative error (%) for varying percentages of signal. 

The stability analysis showed a maximum relative error of 7.2 (4.4) % so AFR was 
assumed to be stable within the AF episodes. 

The distribution of the AFR extracted from the episodes with at least one acceptable 
5-s segment for each patient is shown in Figure 4.6.
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Figure 4.4. Number of episodes occurring pre-ablation, during blanking period and post-ablation. Data 
sorted in ascending number of episodes. 

Figure 4.5. Relative error evolution with percentage of signal analyzed for those episodes containing 
more than 80% of acceptable segments. 
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Figure 4.6. Distribution of AFR in each patient of the episodes included in the analysis displayed as 
median, interquartile range and 10/90th percentiles. Data sorted in ascending order of median AFR. 

The figure shows that a high proportion (85%) of the AFR extracted from the 
episodes considered in the analysis were comprised between 4 and 6 Hz. 

4.4.1. Population-based analysis 

For the population-based analysis, the AFRs estimated from the 1796 episodes pre-
ablation were included. 897 (50%) episodes were considered to be short, i.e., 
duration less than 20 minutes, and 899 (50%) episodes were considered to be long. 
Exploring the onset times: 840 (47%) episodes occurred during the day, 557 (31%) 
episodes occurred during the night and 399 (22%) occurred outside the defined 
onset and were therefore excluded.  

The relationship between both AFR and relative AFR with episode length and episode 
onset was analysed and their distribution shown in Figure 4.7. 
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Figure 4.7. Relationship between (A) AFR and episode onset, (B) AFR and episode duration, (C) relative 
AFR and episode onset, and (D) relative AFR and episode duration. Statistical significance (p-value < 
0.05) is shown as *. 

AFR was significantly higher (𝑝𝑝 < 0.05, Mann-Whitney U test) in long episodes (≥ 20 
mins) than in short episodes (< 20 mins) where the AFR in long episodes was 5.32 
(0.73) Hz while in short episodes, the AFR was 5.17 (0.75). 

4.4.2. Modelling 

For the FE and ME models, the complete set of episodes was used taking into 
consideration the different patients and the number of ablations the patient went 
through. 

Figure 4.8 shows the AFR of the episodes based on their modified onset time for each 
patient color-coded depending on if the episode onset was before or after their first 
ablation procedure, or before or after their second ablation procedure. As described 
in 4.2, the patients were monitored through only one ablation procedure. Therefore, 
patients either had no previous ablations (labelled as Before 1st Ablation) and had 
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Figure 4.8. Atrial Fibrillatory Rate of AF episodes w
ith their onset for each patient included in the study. Color-coded as before and after first 

ablation, and before and after second ablation. 
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their first ablation during the monitoring time (After 1st Ablation) or have had 1 
previous ablation (Before 2nd Ablation) and underwent their second ablation during 
the monitoring time (After 2nd Ablation). The episodes are evenly distributed through 
the day with 75 (76%) patients having episodes both during Night and Day times, 
defined as between 00:00-06:00 and between 10:00 and 20:00 respectively [156].  

The scatter plots of the average AFR, modified time of AF onset, duration of AF 
episode (in log scale), and HRV derived parameters, Mean RR, RMSSD and SampEn, 
for each patient are shown in Figure 4.9.  

Figure 4.9. The correlation analysis between the studied parameters and the Atrial Fibrillatory Rate 
(AFR). The diagonal shows the histogram of the parameters while the lower triangular area displays the 
distribution of the parameter values by the scatter plots with their title showing the correlation 
coefficient between parameters, and (*, p<0.05) and (**, p<0.001) representing the statistical 
significance. For reasons of clarity, the Duration is plotted in a log scale. 

The average AFR for each patient shows a mild significant correlation with the 
average SampEn (𝑅𝑅 =  0.27,𝑝𝑝 <  0.05). 

In addition, the frequency distribution histograms of the average per patient of the 
features studied are also aligned diagonally on the subpanels of Figure 4.9. The 
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patient averaged AFR shows a mild significant correlation with the SampEn (𝑅𝑅 =
 0.27,𝑝𝑝 <  0.05). Mean RR has a moderate significant correlation with the RMSSD 
(𝑅𝑅 =  0.68,𝑝𝑝 <  0.001). 

In this study, no correlation between the average AFR and the average modified AF 
onset time was found. This frequency distribution histograms show that the patient-
average of the AF episode duration is predominantly short episodes with 54 patients 
(55%) having an average episode duration shorter than 20 minutes. 

Overall, the duration of the episodes had a median of 14 minutes with the minimum 
duration being the detection threshold, i.e., 2 minutes, and the maximum duration 
spanning 62.7 days. 

The results of the different models are summarized in Table 4.2, and the fitted values 
of AFR were plotted against the true values and illustrated in Figure 4.10. 

Table 4.2. Results comparison between the different models. 

Model Input Variable AIC Deviance 𝑹𝑹𝟐𝟐 

𝑭𝑭𝑭𝑭 model 
Mean RR 

5699 5689 0.04 RMSSD 
SampEn 

𝑴𝑴𝑴𝑴 model 

Mean RR 

4424 4394 0.49 RMSSD 

SampEn 

𝑴𝑴𝑴𝑴′ model 

Mean RR 

4298 4208 0.56 

RMSSD 

SampEn 

Time 

nAblations  

DaysSinceImplant 

Duration 
AIC: Akaike Information Criterion 
𝑅𝑅2: coefficient of determination 
nAblations: number of Ablations 
RMSSD: Root mean square of standard deviation 
SampEn: Sample entropy 
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Figure 4.10. True (𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖𝑖𝑖) vs estimated (𝐴𝐴𝐹𝐹�𝑅𝑅𝑖𝑖𝑖𝑖) values for the different models with their coefficient of 
determination (R2). The dashed line represents the perfect fit. 

The 𝐹𝐹𝐹𝐹 model, which only included the fixed effect of changes in RR series had the 
lowest complexity but had also the largest AIC value. When also considering the 
random effects in the 𝑀𝑀𝑀𝑀 model, the values of AIC and the deviance decreased. 
Lastly, when accounting for the circadian variation, the duration of the episode, the 
number of ablations before the episode and correcting for the monitoring period as 
in the 𝑀𝑀𝑀𝑀′ model, the deviance and AIC value is minimum suggesting that the 𝑀𝑀𝑀𝑀′ 
model outweighs the other models also when accounting for the increased model 
complexity. The coefficients of determination (𝑅𝑅2) also corroborate that the 𝑀𝑀𝑀𝑀′ 
model has the better fit as its coefficient is the highest (𝑅𝑅2  =  0.56). 

The irregularity in RR intervals has a significant effect on the AFR (𝛽𝛽3′ = 0.105, 𝑝𝑝 <
0.05) with higher AFR for higher irregularity. The number of prior ablations also has 
a significant effect on the AFR (𝛽𝛽5′ = 0.168, p < 0.05) with higher AFR after multiple 
ablations, and so does the episode duration (𝛽𝛽7′ = 1.182 × 10−5, 𝑝𝑝 < 0.05) with 
AFR being higher for longer episodes. 

The maximum pseudo likelihood method is employed for the parameter estimation 
and the results for the fixed effect coefficients for the 𝑀𝑀𝑀𝑀′ model are summarized in 
Table 4.3. 
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Table 4.3. Fixed effect coefficients for the 𝑀𝑀𝑀𝑀′ model. 

Parameter Associated 
to: Estimate SE p-value

𝛽𝛽0′ Intercept 4.979 0.100 <0.001** 

𝛽𝛽1′ Mean RR 8.853 × 10−5 2.289 × 10−4 0.698 

𝛽𝛽2′ RMSSD 5.453 × 10−4 4.040 × 10−4 0.177 

𝛽𝛽3′ SampEn 0.105 0.047 0.031* 

𝛽𝛽4′ Time -0.021 0.034 0.521 

𝛽𝛽5′
Number of 
Ablations 0.168 0.073 0.022* 

𝛽𝛽6′
Days Since 

Implant −5.323 × 10−5 2.440 × 10−4 0.827 

𝛽𝛽7′ Duration 1.182 × 10−5 3.721 × 10−6 0.002* 

(*, p<0.05) and (**, p<0.001) representing statistical significance 
SE:  Standard Error of the coefficient

The irregularity in RR intervals has a significant effect on the AFR (𝛽𝛽3′ = 0.105, 
p<0.05) with higher AFR for higher irregularity. The number of prior ablations also 
has a significant effect on the AFR (𝛽𝛽5′ = 0.168, p < 0.05) with higher AFR after 
multiple ablations, and so does the episode duration (𝛽𝛽7′ = 1.182 × 10−5, p<0.05) 
with AFR being higher for longer episodes. 

4.5. Discussion 

The rapidly increasing use of continuous monitoring devices for patients diagnosed 
with AF [157] offers the chance of a more detailed characterization and a better 
understanding of the patients’ condition in order to select the most appropriate 
therapy but above all the right timing in order to avoid disease deterioration. 
Continuous assessment of AFR extracted from ECG strips is a non-trivial matter. 
However, the estimation of AFR from RR series data would enable wearable based 
assessment of AFR, e.g., wristband PPG. The aim of the study was to model variations 
in AFR based on changes of RR series characteristics (mean RR interval, RMSSD and 
sample entropy). After a first attempt using FE modelling approach (𝐹𝐹𝐹𝐹 model), the 



4.5 Discussion 71 

results were compared to a more complex ME modelling approaches: considering 
both population and specific effects of RR series (𝑀𝑀𝑀𝑀 model) and allowing correction 
for the effect of episode duration, previous ablations, and possible circadian 
variations (𝑀𝑀𝑀𝑀′ model). In addition, ME modelling would account for the 
heterogeneity within AF patients. In order to apply the different models, the AFR 
stability within the first 2 minutes of the AF episodes was evaluated. In the 24 
episodes with enough data to run the analysis we found that for different 
percentages of signal, the error between the mean AFR of the signal and the mean 
AFR on the remaining segments was 7.2 (4.4) %. With this result in mind, AFR was 
considered stable and the mean AFR calculated on a single segment (5 seconds) was 
considered representative of the whole signal. 

The correlation between AFR and HRV features describing the variability and 
irregularity of RR intervals has been explored before in a cohort of patients with 
underlying congestive heart failure [144]. However, to the best of our knowledge, 
this is the first study to assess the variation of AFR in AF patients without congestive 
heart failure which were continuously monitored over several months. It is also the 
first study to model AFR variations using mixed-effect models which account for the 
heterogeneity of the patient population and confounding factors. 

The model’s parameters showed a significant effect of RR irregularity quantified by 
SampEn (𝛽𝛽3′ = 0.105, 𝑝𝑝 < 0.05), number of ablations (𝛽𝛽5′ = 0.168, p < 0.05), and 
episode duration (𝛽𝛽7′ = 1.182 × 10−5, 𝑝𝑝 < 0.05) on AFR. Due to the heterogeneity 
between patients, the mixed-effect model developed with correction for the 
confounding factors (𝑀𝑀𝑀𝑀′ model) was able to better fit the data compared to the 𝐹𝐹𝐹𝐹 
model, the fixed-effect modelling approach, (𝑅𝑅2   =  0.56 vs 𝑅𝑅2  =  0.04). 

The fact that average SampEn is correlated with average AFR (𝑅𝑅 = 0.27,𝑝𝑝 < 0.05) 
and that has a significant effect on AFR when evaluating the ME model, is in line with 
a previous study [144] which evaluated the relationship between AFR and HRV 
derived features. In the aforementioned study, the regularity statistic quantifying 
the unpredictability of fluctuations in a time series used was the approximate 
entropy (ApEn) and was shown to have a Pearson’s correlation of 𝑅𝑅 =  0.26,𝑝𝑝 <
0.05, indicating that the higher the AFR, the less organized the RR series. In our 
study, the effect the regularity of the RR series has in modelling AFR was further 
evaluated in the 𝑀𝑀𝑀𝑀′ model showing a significant effect (𝛽𝛽3′ = 0.105,𝑝𝑝 <
0.05). Previous studies have shown that the RR irregularity during AF change in 
response to changes in autonomic tone induced by drugs [158–160] and tilt-test 
[161]. However, it should be noted that increased RR irregularity may also be a direct 
effect of changes in atrial electrical activity as quantified by an increased AFR or 
variations in the atrioventricular node conduction [162]. 
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Out of the 99 patients included, 19 (19%) had a previous ablation so the information 
available corresponds to the episodes before and after (if had AF recurrence) their 
second ablation while for the remaining patients, the information available consists 
of the episodes before and after their first ablation. Evidence of negative correlation 
between the percentage of fibrotic tissue in the left atria with the fibrillatory 
frequency have been reported [163]. However, our study suggests that the number 
of ablations has a positive significant effect on AFR (𝛽𝛽5′ = 0.168, p < 0.05) with 
patients having gone through a higher number of ablations, having higher AFR. 
Though further investigation with mapping and electrogram recordings is needed, 
this result suggests that creating lesions in the atria reduces macro-reentrant 
pathways but at the same time, promotes micro-reentrant circuits and/or faster, 
smaller rotors which would increase the fibrillatory rate of the atria. 

Trying to understand AF behaviour, the link between AF episode duration and AFR 
had been previously studied showing a positive correlation between them (𝑅𝑅 =
0.53,𝑝𝑝 < 0.05) [149] where having a higher AFR at the start of the AF episode could 
predict longer episodes. However, this study was conducted in a small dataset with 
only 31 episodes from 11 paroxysmal AF patients and the correlation was describing 
the whole database without explicitly considering intra- and inter-patient effects. 
The results of the present study confirm Bollmann’s results as the episode duration 
had a significant effect on the AFR in the 𝑀𝑀𝑀𝑀′ model (𝛽𝛽7′ = 1.182 × 10−5, 𝑝𝑝 < 0.05). 
Finding of longer episodes of AF having higher AFR could be explained by an increase 
of sympathetic drive with longer duration of arrhythmia [164]. 

In several studies, circadian dynamics of AFR were observed in patients using Holter 
monitoring [145–147]. In these studies, AFR showed a decrease at night and an 
increase during the morning hours, with a peak during the afternoon. In one of those 
studies, two different sets of patients were identified: one which showed an increase 
(minority) while the other showed a decrease (majority) in nocturnal AFR [145]. 
However, the insight in circadian behaviour of atrial electrophysiological 
characteristics during AF was constrained to 24-hour long Holter registrations and 
limited datasets of up to 30 patients. Circadian variation in the AFR is caused by 
autonomic modulation in the atrial electrical activity and could potentially be used 
to guide clinical strategies such as time of the day medication should be 
administered, or which patient would benefit the most from a catheter ablation 
procedure. Hence, as a secondary objective, we wanted to assess the effect of 
circadian variation on AFR. The present study is also based on a larger study 
population (99 patients) and longer monitoring periods (0.2 − 24.3 months) than 
the previous studies. Three additional ME models were evaluated: Model 1C 
modelled the circadian variations in AFR, Model 2C corrected Model 1C for the effect 
of previous ablations and Model 3C corrected Model 2C for the effect of episode 
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duration. None of the models showed significant fixed effect of the onset time 
(quantifying the circadian variations) when modelling the AFR. When analysing the 
patient specific random effects of time in Model 1C, 9 (9%) of the patients in the 
cohort showed circadian variations of AFR. This aligns with the literature describing 
circadian variations only on a subset of patients [148].  

When studying the association between the average of the features extracted from 
each patient, only the average SampEn (𝑅𝑅 =  0.27,𝑝𝑝 <  0.05) showed a mild 
significant correlation with the AFR. However, when taking into account the 
repeated measures in the ME model both episode duration and number of ablations 
showed to also have a significant effect on AFR. For this cohort, longer and more 
irregular episodes after multiple ablations showed to have a higher fibrillatory 
frequency. 

Currently, there is still uncertainty about the optimal selection for catheter ablation 
and overall, the challenges to define clear patients’ phenotypes for appropriate AF 
management are still prominent [165,166]. Our study suggests that continuous 
assessment of AFR has the potential to estimate the impact of therapies and so to 
help the stratification of patients towards AF ablation especially when it can help the 
physician decide when, whether or not to recommend ablation therapy and persist 
in drug treatment. 

To assess the importance of including patient specific dependencies on RR series 
characteristics in the model, the results were compared to an ME model that only 
considered 𝒃𝒃𝟎𝟎. This model had a better performance compared to the 𝐹𝐹𝐹𝐹 model 
(𝑅𝑅2  =  0.37; 𝐴𝐴𝐴𝐴𝐴𝐴 = 4727 vs 𝑅𝑅2  =  0.05; 𝐴𝐴𝐴𝐴𝐴𝐴 = 5699) but had a worse fit to the 
data than the 𝑀𝑀𝑀𝑀 model (𝑅𝑅2  =  0.49; 𝐴𝐴𝐴𝐴𝐴𝐴 = 4424). This shows that the patients 
still have a high heterogeneity not being addressed by the model but some of it is 
found in their RR characteristics. 

This retrospective study combining 2 different cohorts with limited clinical baseline 
data, is based on a patient population implanted with the Reveal LINQ based on 
clinical indications including suspected AF, AF ablation monitoring or AF 
management. Although this unique database offers the advantage of long 
monitoring periods and a complete monitorization of patients suffering AF, some 
limitations should be noted. The patient population included in the study is relatively 
young (57 ±  12 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) compared to the general AF population and with a low 
degree of cardiovascular risk. Due to the retrospective nature of the study, the 
medication administered to each patient during the monitoring period and the 
ablation technique in those patients with a previous failed ablation were not 
available. Hence, possible influence of medication and scar tissue from previous 
ablations on AFR is modelled as a patient specific random effect. The ICM evaluates 
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the rhythm and detects AF episodes based on 2 minutes ECG data. Hence, episodes 
longer than 30s, defined as AF episodes by the guidelines [6], but shorter than 2 
minutes remained undetected. Furthermore, due to the limited memory of the 
device, ECG data was only stored for a subset of the detected episodes; 57840 
episodes were detected by the device out of which ECG data from 3739 (6.5%) were 
stored. The number of episodes detected but not stored is not only linked to the 
number of episodes suffered by the patient but also to the frequency of visits to the 
hospital as the data was downloaded and saved each time the patient had a check-
up. Overall, the patients had a median (min-max) of 130 (1-4564) episodes detected 
pre-ablation out of which 43.4 (1.9-100)% were stored. Post-ablation, the device 
detected 1 (0-4245) episodes out of which 60.2 (2.9-100)% were stored. Another 
limitation of the study is that the Reveal device only stores the first 2 minutes of ECG, 
which may not be representative of the whole episode; results from a previous study 
suggest that AFR may accelerate during the first 3-4 hours [150]. In addition, the 
harmonic f-wave model used for AFR estimation was originally developed for surface 
ECG, and the characteristics of the f-waves in the ECG recorded by the ICM may differ 
from these since the electrodes are placed next to the apex of the heart. However, 
our results indicate that the model fit was sufficient in most cases; 2908 of the 3739 
detected AF episodes in our 99-patient cohort had sufficient signal quality to be 
analysed.  

4.6. Conclusion 

Fixed and mixed effects modelling approaches were used to investigate the effect of 
changes in RR series characteristics corrected for episode onset and duration, 
previous ablations, and onset date, on variations in AFR in a study population of 99 
patients monitored for 9.2 (0.2-24.3) months as median (min-max). The ME 
modelling approach was shown to be superior to the FE modelling approach due to 
the heterogeneity of the patient population and the presence of confounding 
factors. The fixed effects extracted from the 𝑀𝑀𝑀𝑀′ model showed that AFR is slightly 
higher in episodes with less organized RR series and of longer duration and is 
affected by catheter ablations. The use of ME models combined with long term 
monitoring of patients offers the chance of continuously estimating the AFR from RR 
series and episode-based characteristic and will lead to a more detailed 
characterization and a better understanding of the patients’ condition which could 
potentially aid the clinicians in their decision-making process. 
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5.1. Motivation 

With the development of long-term monitoring devices, the binary approach, i.e., 
whether AF is present or absent, is slowly being replaced by an approach involving 
features such as AF burden, i.e., the percentage of time in AF [167] which has been 
found to be a significant predictor of patients at risk of ischemic stroke [168]. 
Nonetheless, this measure does not describe whether AF episodes are clustered or 
distributed evenly throughout the monitoring period despite that characterization 
of the episode pattern may be relevant for better understanding of AF progression 
and risk assessment of AF recurrence post-ablation. 

Characterization of AF patterns has mainly focused on statistical analysis of either 
interepisode intervals, i.e., the interval between consecutive AF episodes [169–171] 
or inter-detection intervals, i.e., the interval between the onset of consecutive AF 
episodes [172], without accounting for episode history in the analysis. While these 
descriptive studies speculated that the information on episode patterns could be 
useful to predict AF recurrence [173], the clinical significance was never established. 

Recently, the alternating bivariate Hawkes model, a novel statistical approach to 
characterize AF episode patterns was proposed where episodes are assumed to be 
history-dependent [174]. In this chapter, the performance of a subset of the model 
parameters is evaluated to predict the risk of AF recurrence. In addition, the 
performance of AF burden and AF density, being one of the very few parameters 
proposed for characterizing the temporal aggregation of the daily AF burden in 
patients using an ICM [175], is evaluated. To the best of our knowledge, there have 
been no studies using this or any other episode pattern characterization method as 
AF recurrence risk predictor. 

5.2. Methods and Materials 

5.2.1. Alternating bivariate Hawkes model 

A statistical approach to characterizing episode patterns in paroxysmal AF (PAF) is 
based on history-dependent point process modelling of the transition times from 
sinus rhythm (SR) to AF and vice versa [174]. With the bivariate Hawkes model, the 
episode pattern is modelled by two alternating point processes {𝑁𝑁1(𝑡𝑡),𝑁𝑁2(𝑡𝑡), 𝑡𝑡 > 0} 
which describe the number of transitions that have occurred up to 𝑡𝑡: one accounting 
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for transitions from SR to AF occurring at times (points) 𝑡𝑡1,1, 𝑡𝑡1,2, …, and another for 
transitions from AF to SR occurring at times 𝑡𝑡2,1, 𝑡𝑡2,2, …; the first subscript describes 
the type of transition (SR-to-AF AF-to-SR are denoted 1 and 2, respectively) and the 
second, the transition number. For simplicity in this study, SR and AF are assumed to 
be the alternating rhythms with only AF interrupting a SR rhythm and vice versa, 
while, in practice, a non-AF rhythm may very well replace SR. 

The counting processes 𝑁𝑁1(𝑡𝑡) and 𝑁𝑁2(𝑡𝑡) are defined by two conditional intensity 
functions of the form [176]: 

𝜆𝜆𝑚𝑚(𝑡𝑡) =  𝜇𝜇𝑚𝑚 + � � 𝛼𝛼𝑚𝑚,𝑛𝑛𝑒𝑒−𝛽𝛽𝑚𝑚,𝑛𝑛�𝑡𝑡−𝑡𝑡𝑛𝑛,𝑘𝑘�

�𝑘𝑘:𝑡𝑡>𝑡𝑡𝑛𝑛,𝑘𝑘�

2

𝑛𝑛=1

 (5.1) 

where 𝜇𝜇𝑚𝑚 > 0, 𝛼𝛼𝑚𝑚,𝑛𝑛 ≥ 0 and 𝛽𝛽𝑚𝑚,𝑛𝑛 ≥ 0 for 𝑚𝑚,𝑛𝑛 = 1, 2. 

The main characteristic of the model is that the conditional intensity function 𝜆𝜆1(𝑡𝑡) 
increases by 𝛼𝛼1,1 immediately after an SR-to-AF transition (self-excitation) and then 
decreases exponentially, defined by the decay parameter 𝛽𝛽1,1, to the base intensity 
𝜇𝜇1 reflecting the mean rate of SR-to-AF transitions. The conditional intensity function 
𝜆𝜆2(𝑡𝑡) characterizes AF-to-SR transitions and behaves similarly to 𝜆𝜆1(𝑡𝑡), defined by 
the excitation parameter 𝛼𝛼2,2, the decay parameter 𝛽𝛽2,2, and the base intensity 𝜇𝜇2. 
As the probability of additional transitions increases immediately after a transition, 
the process can account for clustering behaviour by modelling the chance of a 
transition occurring after a previous transition. In addition to the self-excitation, both 
𝜆𝜆1(𝑡𝑡) and 𝜆𝜆2(𝑡𝑡) contain additional terms, defined by 𝛼𝛼1,2 and 𝛽𝛽1,2 in the case of 
𝜆𝜆1(𝑡𝑡), and by 𝛼𝛼2,1 and 𝛽𝛽2,1 in the case of 𝜆𝜆2(𝑡𝑡), which lets the counting processes 
influence each other (cross-excitation).  

The bivariate Hawkes model in its original formulation does not impose alternating 
transitions, i.e., an SR-to-AF transition is not necessarily followed by an AF-to-SR 
transition, while from the physiological point of view this constrain is required. This 
is obtained by multiplying 𝜆𝜆1(𝑡𝑡) and 𝜆𝜆2(𝑡𝑡) with a binary “occurrence” function: 

𝑜𝑜1(𝑡𝑡) =  �1, 𝑁𝑁1(𝑡𝑡) =  𝑁𝑁2(𝑡𝑡 − 𝑑𝑑2),
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, (5.2) 

and 

𝑜𝑜2(𝑡𝑡) =  �1, 𝑁𝑁2(𝑡𝑡) ≠  𝑁𝑁1(𝑡𝑡 − 𝑑𝑑1),
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, (5.3) 
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which ensures that AF occurs after SR, and that SR occurs after AF, respectively. 

The parameters 𝑑𝑑1 and 𝑑𝑑2 define the minimum duration of AF and SR, respectively. 

Finally, the conditional intensity functions for the alternating, bivariate Hawkes 
process are given by: 

𝜆̃𝜆𝑚𝑚(𝑡𝑡) =  𝜆𝜆𝑚𝑚(𝑡𝑡)𝑜𝑜𝑚𝑚(𝑡𝑡), 𝑚𝑚 = 1, 2. (5.4) 

The structure of 𝜆̃𝜆𝑚𝑚(𝑡𝑡) is identical to that of the bivariate Hawkes process 𝜆𝜆𝑚𝑚(𝑡𝑡), 
except that a SR-to-AF transition can, once a certain time 𝑑𝑑1 has elapsed, only be 
followed by an AF-to-SR transition, and so on. Figure 5.1 shows an AF episode 
pattern, the transition times corresponding to the two alternating point processes 
and the conditional intensity functions associated to those point processes.  

The model parameters, defining the conditional intensity functions, can be 
estimated using the maximum likelihood (ML) method. For a bivariate process, the 
likelihood function is given by [177]: 

lnℒ(𝜽𝜽; 𝒕𝒕) =  � � ln 𝜆𝜆𝑚𝑚(𝑡𝑡𝑚𝑚,𝑘𝑘;𝜽𝜽)
𝑁𝑁𝑚𝑚(𝑇𝑇)
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− � � 𝜆𝜆𝑚𝑚(𝑡𝑡;𝜽𝜽)𝑑𝑑𝑑𝑑
𝑇𝑇

0

2
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 (5.5) 

where the vector 𝒕𝒕 contains the transition times in the observation interval [0, T] and 
the vector 𝜽𝜽 collects all the model parameters, i.e., 𝜽𝜽 =
[𝜇𝜇1, 𝜇𝜇2,𝛼𝛼1,1,𝛽𝛽1,1,𝛼𝛼1,2,𝛽𝛽1,2,𝛼𝛼2,1,𝛽𝛽2,1,𝛼𝛼2,2,𝛽𝛽2,2]. 

The ML estimator is then given by: 

𝜽𝜽� = arg max
𝜃𝜃

(lnℒ(𝜽𝜽; 𝒕𝒕)); (5.6) 

see [17] for details of the ML estimator. 

Due to the alternating nature of the Hawkes model brought by the occurrence 
function 𝑜𝑜𝑚𝑚(𝑡𝑡), only the cross-excitation part of the conditional intensity functions 
(𝛽𝛽1,2 and 𝛽𝛽2,1) are relevant for the modelling.  

The conditional intensity functions for the alternating, bivariate Hawkes process (𝜆̃𝜆1 
and 𝜆̃𝜆2) will only be active after an AF-to-SR transition or a SR-to-AF transition, 
respectively. To illustrate: SR-to-AF transitions are modelled by 𝜆̃𝜆1 which will equal 
𝜆𝜆1 after an AF-to-SR transition and will be governed by 𝛽𝛽1,2. On the other hand, after 
a SR-to-AF transition, 𝜆̃𝜆1 will equal to 0, as there cannot be another SR-to-AF 
transition before an AF-to-SR transition, thereby rendering 𝛽𝛽1,1 irrelevant for the  
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Figure 5.1 (A) Example of real AF episode pattern. (B) Transition times for the episode pattern in (A). The 
marks “o” and “x” indicate SR-to-AF and AF-to-SR transitions, respectively. (C-D) The conditional 
intensity function of SR-to-AF transitions and of AF-to-SR transitions. For reasons of clarity, 𝜆𝜆1(𝑡𝑡) and 
𝜆𝜆2(𝑡𝑡) are displayed rather than 𝜆̃𝜆1(𝑡𝑡) and 𝜆̃𝜆2(𝑡𝑡). 

monitoring. The same happens to 𝛽𝛽2,1 and 𝛽𝛽2,2 when modelling AF-to-SR transitions 
through 𝜆̃𝜆2. It is then assumed that 𝛽𝛽1,1 =  𝛽𝛽1,2 =  𝛽𝛽1 and 𝛽𝛽2,1 =  𝛽𝛽2,2 =  𝛽𝛽2. Hence, 
the conditional intensity functions are defined by a relatively small number of 
parameters and therefore suitable for statistical inference. Note that in the example 
shown in Figure 5.1, 𝜆𝜆2(𝑡𝑡), i.e., the probability of a SR-to-AF transition, doesn’t 
increase whenever there is a SR-to-AF transition having an 𝛼𝛼2,2 = 0. Nonetheless, as 
explained above, 𝜆̃𝜆2 = 0 for the instance after a SR-to-AF transition, and similarly for 
𝜆̃𝜆1 after an AF-to-SR transition, so neither 𝛼𝛼2,2 nor 𝛼𝛼1,1 affect the model. The onset 
of the first AF episode and the end of the last AF episode are assumed to be entirely 
contained in the observation interval. Thus, the first transition for analysis is from 
SR-to-AF and the last from AF-to-SR.  

The base intensity ratio is defined as: 

𝜇𝜇 =
𝜇𝜇1
𝜇𝜇2

(5.7) 

and provides information on the dominating rhythm of the analysed segment: 𝜇𝜇 >
1 indicates dominance of AF (Figure 5.2 (A and D)) and 𝜇𝜇 < 1 dominance of SR 
(Figure 5.2 (B and C)). In the present study, the natural logarithm of 𝜇𝜇 (log (𝜇𝜇)) is 
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used instead of 𝜇𝜇 as 𝜇𝜇 is a ratio, and, therefore, log (𝜇𝜇) exhibits a more linear 
behaviour.  

The decay parameter 𝛽𝛽1, empirically restricted to a range between 0 and 0.3 [174], 
describes the degree of episode clustering, where a value of 𝛽𝛽1 close to 0.3 reflects 
few clusters. This is illustrated in Figure 5.2 (A and C) where the episodes are spread 
out throughout the monitoring period, although the time span differs considerably 
(A in minutes and C in days). Conversely, a value of 𝛽𝛽1 close to 0 reflects high episode 
clustering as illustrated in Figure 5.2 (B and D). In this study, 𝛽𝛽2 is not considered for 
prediction as 𝛽𝛽1 is deemed to play the main role with regard to AF episode clustering 
as it determines the rate at which the probability of a new AF episode onset 
decreases. 

The Hawkes model requires a minimum number of episodes to produce adequate 
parameter estimates, here set to 10, i.e., 20 transitions, as suggested in [174]. 

For further details on the alternating bivariate Hawkes model and the estimation of 
𝜇𝜇1, 𝜇𝜇2 and 𝛽𝛽1, the reader is referred to [174]. 

The Hawkes model was computed using the particle swarm optimization algorithm 
in Matlab R2019b (The Mathworks Inc., Natick, Massachusetts) with the default 
function tolerance equal to 10−6 and the maximum number of iterations set to 3500. 

5.2.2. AF Density 

AF density is defined as the ratio of the cumulative deviation of the patient’s actual 
AF burden level from a hypothetical uniform burden level, to that of the hypothetical 
maximum burden aggregation [175].  

For a patient with a total AF burden 𝑏𝑏 (expressed as the proportion of the observed 
time 𝑇𝑇 in which a patient is in AF), the patient’s AF burden level corresponds to: 

𝐹𝐹(𝑝𝑝;𝑏𝑏) =  
𝑇𝑇(𝑝𝑝; 𝑏𝑏)
𝑇𝑇

(5.8) 

with 𝑇𝑇(𝑝𝑝;𝑏𝑏) denoted as the minimum continuous period required for the 
development of a proportion 𝑝𝑝 of the patient’s total observed burden (𝑏𝑏). This was 
computed by determining what was the minimum continuous time period needed 
for the patient to develop 5-95% (with 5% increments) of their total observed 
burden. 



5.2 Methods and Materials 81 

Figure 5.2. Episode patterns and the estimated Hawkes model parameters μ and 𝛽𝛽1. (A) and (B) are 
short segments around 800 minutes with (A) episode pattern dominated by AF with a lower degree of 
clustering (𝛽𝛽1 ≈ 0.3) and (B) episode pattern dominated by SR with a higher degree of clustering (𝛽𝛽1 ≈
0). (C) and (D) are long segments up to 100 days with (C) episode pattern dominated by SR and a lower 
degree of clustering and (D) episode pattern dominated by AF and a higher degree of clustering. 
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The cumulative deviation of the patient’s actual burden from a hypothetical uniform 
burden level can be evaluated as: 

∫ |𝐹𝐹′(𝑝𝑝; 𝑏𝑏) − 𝑝𝑝| 𝑑𝑑𝑑𝑑1
0 , (5.9) 

where 𝐹𝐹′(𝑝𝑝;𝑏𝑏) is the patient’s actual burden, and 𝐹𝐹(𝑝𝑝;𝑏𝑏) =  𝑝𝑝 corresponds to the 
hypothetical uniform burden level defined by the burden evenly distributed 
throughout the monitoring period. 

Conversely, the hypothetical maximum burden aggregation is defined by the total 
burden comprised in one continuous episode and equation (5.9) can be simplified 
to: 

(1 − 𝑏𝑏)
2

. (5.10) 

Finally, the AF density is defined as: 

𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2
∫ |𝐹𝐹(𝑝𝑝; 𝑏𝑏)− 𝑝𝑝| 𝑑𝑑𝑑𝑑1
0

1 − 𝑏𝑏
, (5.11) 

and assumes values on the interval [0,1], where a value close to 0 indicates a 
homogeneous distribution of AF burden, whereas a value close to 1 indicates that AF 
burden is confined to an interval much shorter than the monitored period. Figure 5.3 
shows examples of temporal aggregation for two patients with similar levels of AF 
burden and monitoring time, with low and high temporal aggregation. 

5.2.3. Cohort 

Out of the 99 patients which had available pre-ablation data introduced in Chapter 
2, 19 were excluded due to previously failed ablation and 26 had less than 10 
episodes before catheter ablation (the minimum number of episodes required by 
the model). Therefore, the analysis included 54 patients (age 56±11 years; 67% men) 
with a documented history of AF (74% PAF, the remaining being persistent AF), and 
ablation candidates. 

The baseline and clinical characteristics of the study cohort are shown in Table 5.1. 
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Figure 5.3. Patients with different types of temporal aggregation but with similar AF burden (≈ 0.12) 
with (A) low aggregation (AF density = 0.17) and (B) high aggregation (AF density = 0.76). 

Table 5.1. Baseline and clinical data of the study population. 

Feature Patient (N = 54) 

Age, years (mean ± SD) 56 ± 11 

Coronary Risk Profile: 

Paroxysmal AF  40 (74%) 

Hypertension  21 (39%) 

Diabetes  7 (13%) 

Coronary Artery Disease 3 (5%) 

Stroke  3 (6%) 

Values are given as no. (%) unless otherwise indicated 
AF: Atrial fibrillation 
SD: Standard deviation  
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5.2.4. Data Collection 

The ICM was implanted for an average period of 2.7 (1–15) months, median (min-
max), before the ablation procedure and the patients had 10.9 (3–4) months, median 
(min-max), follow-up for AF recurrence detection. AF recurrence was defined as an 
AF episode detected by the ICM after a 3-month blanking period following catheter 
ablation. The blanking period is based on reports on the efficacy of catheter ablation 
describing how early recurrences could be caused by post-ablation inflammation or 
short-term autonomic imbalance rather than ablation failure [83]. 

The devices and the AF detection algorithm used in this study have been introduced 
in 1.5.2. The detection algorithm makes a rhythm classification every 2 minutes 
[117]. This provides us the values for 𝑑𝑑1 and 𝑑𝑑2, the minimum duration of AF and SR, 
respectively. Due to memory restrictions described in 1.5.2, only data from the last 
30 episodes before each data download were available. Nonetheless, several 
downloads could be grouped together if temporal continuity existed between them, 
increasing the number of episodes available for characterization. 

In addition to the onset and duration of each AF episode, the device stored the daily 
AF burden in minutes for the entire monitoring period. An example of data extracted 
from the device is presented in Figure 5.4 with the ablation date and the end of the 
3-month blanking period marked by dashed lines. It also shows the rhythm condition
(either SR or AF) of the patient extracted from each session (color-coded) where the
onset and duration of the episodes can be derived, and the daily AF burden stored
for the entire monitoring period highlighting AF burden during the stored sessions.
Figure 5.5 shows the rhythm condition of the last session before catheter ablation
and its daily AF burden corresponding to the second session (orange) shown in Figure
5.4.

5.2.5. Statistical Analysis 

The four parameters log (𝜇𝜇), 𝛽𝛽1, AF burden and AF density were computed using the 
episode information of the last available session, i.e., the last information download 
done by the clinician, before catheter ablation. Continuous data are presented as 
mean ± standard deviation if the null hypothesis 𝐻𝐻0 of the Kolmogorov–Smirnov test 
(𝐻𝐻0: data is normally distributed) was not rejected. Otherwise, continuous data are 
presented as median (min-max). Categorical data are presented as absolute 
frequency (relative frequency in percentage). The primary endpoint (time to AF 
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recurrence) was analysed using the Kaplan–Meier method and the null hypothesis 
was tested by means of the log-rank test. The hazard ratio (HR) and its confidence 
intervals were computed using Cox's proportional hazards models. This study aimed 
at evaluating the risk stratification capabilities of the computed parameters on their 
own and in combination which would account for both AF prevalence (log (𝜇𝜇) or AF 
burden) and AF episode aggregation (𝛽𝛽1 or AF density). 

The combinations analysed were the Hawkes combination (log (𝜇𝜇) and 𝛽𝛽1) and the 
combination of AF burden and AF density. For the one-parameter prediction, the 
patients were dichotomized into high- and low-risk groups based on the optimal cut-
off value chosen to maximize the separation between groups. This was accomplished 
by evaluating the Cox proportional hazard regression in the different groups of 
patients divided by a threshold that varied from quantile 25-75% with 5% 
increments. The regression with the lowest p-value was selected as the optimum 
separation cut-off. In case of  𝛽𝛽1, the parameter was found to be bimodal so the cut-
off was selected as the average between the lower limit (𝛽𝛽1 ≈ 0) and the upper limit 
(𝛽𝛽1 ≈ 0.3). In the two-parameter prediction, a linear combination of the selected 
parameters and the corresponding regression coefficients in the Cox model was 
computed and high- and low-risk groups were defined, based on the median of the 
combination. The Hawkes combination, defined by log(µ) and 𝛽𝛽1, provides 
information on dominating rhythm (AF or SR) and episode clustering. Similarly, the 
combination of AF burden and AF density provides information on dominating 
rhythm and episode aggregation. The null hypothesis was rejected when p < 0.05, 
then set as the level of significance. The statistical analysis was performed using 
Matlab R2019b (The Mathworks Inc., Natick, Massachusetts). 

5.3. Results 

During the monitoring period before ablation, the patients had between 1 and 4 data 
downloads with 96 (20–188) days between scheduled appointments. For the present 
analysis, the focus was set on the last data download before ablation which in 43 
(80%) patients occurred 1 month before ablation (75% during the last week) and 
contained 29 (10–37) AF episodes within a monitoring period of 9.8 (23.3) days, 
ranging from 2.6 h to 7 months.  

The relationship between the parameters was explored and out of the considered 
variables, only AF burden showed high correlation with log (𝜇𝜇) (r = 0.78; p < 0.001). 
Even though both 𝛽𝛽1 and AF density reflect different aspects of episode aggregation, 
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Figure 5.4. Example of data extracted from Reveal LINQ presented as a function of days of monitoring; 
the leftmost dashed line marks the catheter ablation and the following dashed line the end of the 3-
month blanking period. (A) Episodes with onset and duration. (B) Daily AF burden detected in minutes 
(grey) with highlights on the days where the episodes have onset and duration information (color-coded 
as in (A)).  
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Figure 5.5.(A) Episodes with onset and duration downloaded from the last session before catheter 
ablation (second session in Figure 5.4. and (B) daily AF burden detected in minutes during the last session 
before catheter ablation. 
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they were found to be weakly correlated (r = -0.07; p = 0.63), and, therefore, may 
provide complementary information. When studying the distribution of 𝛽𝛽1, it was  

found to be bimodal showing that AF episodes were either highly clustered or 
uniformly distributed throughout the monitoring period. 

In the analysed cohort, 41 patients (76%) had AF recurrence within 15 months 
following catheter ablation and the overall estimated event-free rate at 1 month 
after the blanking period (4 months after catheter ablation) was 39%. The statistical 
analysis of the parameters extracted from the last data download shows that there 
are no statistical differences between patients having had AF recurrence and those 
not having (p > 0.05 for all parameters). 

The one-parameter analysis showed no significant differences (log-rank p > 0.05) 
between high- and low-risk groups for the selected parameters (Figure 5.6).  

In two-parameter Cox analysis, AF burden and AF density were linearly combined 
and weighted with their respective Cox coefficient (0.03 for AF burden and −0.02 
for AF density). The positive coefficient indicates a positive effect of the covariate AF 
burden to the risk of AF recurrence, meaning that more AF would increase the risk 
of AF recurrence. Conversely, a negative coefficient for AF density indicates that a 
higher AF density, i.e., a higher episode aggregation, reduces the risk of AF 
recurrence.  

The combination of AF burden and AF density (Figure 5.7 (A)) is related to a 1.09 
(95% CI, 0.60–2.01; p = 0.77) higher risk of early recurrence between the high- and 
low-risk groups (defined by the median value of the combination); however, the 
results are non-significant for this combination. 

The parameters log (𝜇𝜇) and 𝛽𝛽1 were also linearly combined and weighted with their 
respective Cox coefficient (0.23 for log(𝜇𝜇) and −0.36  for 𝛽𝛽1). The positive effect of 
the covariate log(𝜇𝜇) to the AF recurrence risk indicates that a higher AF dominance 
would increase the risk of AF recurrence, while a negative coefficient for 𝛽𝛽1 indicates 
that a higher 𝛽𝛽1, i.e., less episode clustering, reduces the risk of AF recurrence. In this 
case, the combination of log(𝜇𝜇) and 𝛽𝛽1 is associated with a higher risk of early AF 
recurrence with an HR of 1.95 (95% CI, 1.03–3.70; p < 0.05) (Figure 5.7 (B)). The 
estimated event-free rates at 1 month after the blanking period were 31% for high-
risk patients and 49% for low-risk patients. In addition, 21 (78%) patients at high risk 
had AF recurrence, while 20 (74%) patients at low risk had AF recurrence (chi-
squared p = 0.31). Even though both groups had similar proportions of AF 
recurrence, the survival times for the patients at high risk which had AF recurrence 
was less than 10 months while for those in the low-risk group was 14 months. 
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Figure 5.6. Kaplan-Meier curves for AF freedom after catheter ablation using each parameter as a risk 
predictor: (A) 𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇), (B) 𝛽𝛽1, (C) AF burden and (D) AF density. The legend of each panel shows the 
threshold used and the number of patients in each group, and the panels show the hazard ratio (HR) 
and the 95% confidence intervals with their significance levels. (+) symbolize the censored patients. 

5.4. Discussion 

ICMs with high AF detection accuracy offer the unique advantage of long-term 
monitoring periods spanning several months which can lead to a more detailed 
characterization of AF behaviour. With the rapidly increasing use these continuous 
monitoring devices for patients diagnosed with AF [157] and the relatively high 
recurrence rates post-catheter ablation [83], the need for a method to characterize 
AF episode patterns to evaluate the risk of recurrence is increasingly important. To 
the best of our knowledge, there have been no studies using episode pattern 
characterization method as AF recurrence risk predictor. Our approach is also the 
first one comparing different parameters to determine the risk of AF recurrence in a 
cohort of continuously monitored AF patients outside of the restrictions 24-hour 
Holter devices entail. The main finding of this study is that the combination of   
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Figure 5.7. Kaplan-Meier and 95% confidence intervals curves for AF freedom after catheter ablation 
combining (A) AF burden and AF density, and (B) the Hawkes parameters. The panels show the hazard 
ratio (HR) and the 95% confidence intervals with their significance levels. (+) symbolize the censored 
patients. 
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log(𝜇𝜇) and 𝛽𝛽1 can significantly divide patients into groups of low and high risk of AF 
recurrence.  

In recent years the problem of how to characterize episode patterns has received 
certain attention. However, it has been mainly focused on statistical analysis of 
either interepisode intervals, i.e. the interval between consecutive AF episodes 
[169–171] or inter-detection intervals, i.e. the intervals between onset of 
consecutive AF episodes [172]. The main drawback of this type of analysis is that it 
resides on the assumption that episodes are statistically independent, which may be 
questioned since AF episodes tend to cluster [170]. 

The alternating, bivariate Hawkes model was developed to provide a model-based, 
statistical approach to characterizing the dynamics of episode patterns [174]. While 
that work conjectured that the episode pattern could offer insight into AF and the 
degree of atrial electrical and structural remodelling, the clinical significance of 
log(𝜇𝜇) and 𝛽𝛽1 has not been established previously.  

Numerous risk factors have been linked to recurrent AF after ablation, including 
thromboembolic risk predictors like CHADS2 or CHA2DS2-VASc [10] and other specific 
rhythm outcome predictors such as APPLE [11], SUCCESS [12] and MB-LATER [13]. 
These scores have shown limited risk evaluation capability and have the drawback 
of relying on the detection of AF recurrence in patients using conventional Holter 
devices and the need of image-based parameters such as ejection fraction or left 
atrial diameter. In particular, MB-LATER uses early recurrence of AF as a feature and 
therefore cannot be used to evaluate the risk of AF recurrence before attempting 
the catheter ablation procedure. Conversely, the proposed method uses a subset of 
parameters estimated from a model-based approach which characterizes AF episode 
patterns in a continuously monitored cohort of patients. 

In the analysis of the recurrence predictors, no statistical differences were found 
between the Recurrence and No Recurrence groups. However, when studying 𝛽𝛽1, we 
found that a higher proportion of patients with AF recurrence had more clustered 
episodes, i.e., 𝛽𝛽1 close to 0 (90% vs 69%, chi-squared p = 0.724). Although this gives 
us a first indication that patients with more episode clustering may have a higher risk 
of AF recurrence, the overall proportion of patients with more clustering is also high 
(85%) and the population is biased towards patients with AF recurrence. 

Unsurprisingly, when evaluating the relationships between covariates, log(𝜇𝜇) and AF 
burden had significant correlation (r = 0.78; p < 0.001) as both parameters provide 
information on AF dominance (log(𝜇𝜇) > 0 and AF burden > 0.5). However, 𝛽𝛽1 was 
weakly correlated with AF density, and, while both features describe the degree of 
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episode aggregation, 𝛽𝛽1 extracted from a statistical model and AF density being an 
ad hoc parameter, these parameters may provide complementary information.  

The parameters studied were estimated from the episodes stored from the last 
session available before catheter ablation containing episodes with durations from 
2.6 hours to 7 months. To produce a more homogeneous results and taking 
advantage of the long monitoring periods of the Reveal, the multivariate analysis 
was also computed for the last 4 weeks before the ablation. A monitoring period of 
4 weeks was chosen as it was the minimum pre-ablation period common for the 
cohort. In this case, only AF burden and AF density were computed due to that while 
the Reveal stores the daily AF suffered by the patient, the onset and duration of the 
individual episodes were unavailable. The combination of AF burden and AF density 
showed a non-significant HR of 1.00 (95% CI 0.55–1.84; p = 0.99). This result, 
combined with the non-significant result of the Cox analysis for AF burden and AF 
density estimated over the last session, suggests that both AF burden and AF density 
do not convey significant information for assessing the risk of AF recurrence in this 
cohort. While AF density has not been used to assess risk of AF recurrence before, 
AF burden levels were shown to be able to predict the risk of AF recurrence [178]. 
The study found a lower risk of AF recurrence with a lower pre-ablation AF burden 
in AF patients. However, a significant difference in risk was found between those 
patients with less than 1% AF burden and those with higher levels of AF burden. Our 
patient population has relatively higher AF burden levels as our cut-off threshold 
between high and low burden groups was defined as 30%. 

The risk of AF recurrence for was found to have an HR of 1.95 (95% CI, 1.03–3.70; p 
< 0.05). The combination showed that the risk was significantly higher for patients 
with a higher AF prevalence and associated with more episode clustering. 

The log(𝜇𝜇) and 𝛽𝛽1 parameters of episode clustering may represent an early sign of 
transition from paroxysmal to persistent AF. The observed increased risk of 
arrhythmia recurrence once the novel criteria are present would be well in line with 
lower catheter ablation efficacy in patients with persistent forms of AF. If confirmed, 
this could be used as an early triaging mechanism pointing towards the need of 
accelerated referral for ablation. 

The retrospective analysis carries certain limitations as, for example, it was based on 
a limited patient population from 2 different cohorts implanted with the Reveal LINQ 
ICM, which automatically detects AF episodes longer than 2 minutes. Therefore, 
episodes longer than 30 s, defined as AF episodes by the guidelines [6], but shorter 
than 2 minutes were undetected by the ICM. Furthermore, due to memory 
restrictions, only the onset and duration of the last 30 episodes detected by the ICM 
before each data download are stored. The 96 (41) days between scheduled 
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appointments (and therefore between data downloads) potentially resulted in a loss 
of AF episodes that could have been used to better characterize the episode 
patterns. In addition, due to the retrospective nature of the study, the medication 
administered to each patient during the monitoring period was not available. 
Despite these drawbacks, the advantage of having continuous monitoring of the 
patients before and after ablation greatly outweighs the disadvantages of possible 
information loss due the device resolution or memory restrictions. Using the Hawkes 
model, at least 10 episodes, i.e., 20 transitions, should be available to produce 
adequate results [174]; hence, with 30 stored episodes, the requirement is fulfilled. 

5.5. Conclusion 

The clinical relevance of AF episode pattern characterization using the alternating, 
bivariate Hawkes model is evidenced by its capability to predict AF recurrence post-
catheter ablation. The proposed parameter combination is related to increased risk 
of AF recurrence within 1 year of the procedure for patients with more dominant AF 
and more episode clustering. This approach represents a preliminary step to 
demonstrate the clinical significance of AF episode pattern characterization as well 
as to popularize pre-ablation risk assessment which could be used in a more effective 
patient triage and reduce the economic and personal burden associated with the 
procedure. 
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6.1. Motivation 

Long-term outcomes of catheter ablation in AF reported relatively low success 
rates[8]. Several well-established scoring systems aimed at predicting rhythm 
outcome after catheter ablation, including thromboembolic risk predictors like 
CHADS2 or CHA2DS2-VASc, have shown modest prediction capabilities [10]. Other 
specific rhythm outcome predictors such as APPLE [11], SUCCESS [12], and MB-LATER 
[13] have achieved better results. However, most studies done so far have the
drawback of relying on 24-hour Holter monitoring to detect AF recurrences, which
was shown to have a rather poor detection rate for subclinical AF of 5.5% [14].

Heart Rate Variability (HRV) features have been proven to be predictors of chronic 
AF recurrence after electrical cardioversion [179,180] and extensive work has been 
done in describing the changes in HRV before and after ablation [181–184]. 

This chapter proposed the use of common HRV derived features in conjunction with 
clinical data to predict recurrences within the first 12 months after catheter ablation 
in a continuously monitored patient population. To accomplish this, the work 
evaluated several single classification methods including Support Vector Machines 
(SVM), with linear [185], polynomial (SVMp) and Gaussian (SVMg) kernels [186], 
Classification and Regression Trees (CART) and K-Nearest Neighbor (KNN) 
algorithms. In addition, the capabilities of ensemble learning methods [187] in which 
a weighted combination of the single classifiers is used as the predictor of AF 
recurrence was explored. 

6.2. Materials 

This retrospective study included patients introduced in Chapter 2. Out of the 99 
patients with available pre-ablation data, 19 were excluded due to previously failed 
ablation and 6 due to incomplete data such as no medical and/or ablation records. 
The selected 74 patients (57 ±  12 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦;  26% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) were divided into two 
classes: those with AF recurrence (𝑅𝑅 =  42 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;  57% 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and those 
with no AF recurrence (𝑁𝑁𝑁𝑁 =  32;  43%). AF recurrence was defined as presence of 
an AF episode longer that 2 minutes recorded by the ICM after a 3-month blanking 
period following catheter ablation. The blanking period of 3 months is used as 
suggested by the 2012 Consensus Statement of Catheter and Surgical Ablation of 
Atrial Fibrillation to report the efficacy of the ablation as early recurrences could be 
caused by post-ablation inflammation or short-term autonomic imbalance [188]. 
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Both cohorts had more than 12 months follow-up for AF recurrence after catheter 
ablation. 

The ICM was implanted 5.9 ±  3.8 months before the ablation procedures, which 
were classified as pulmonary vein isolation (PVI) or PVI plus Extra Lesions. These long 
monitoring periods ensure the detection of the AF onset of both paroxysmal and 
non-paroxysmal patients. The devices used in the Usability and the Slovakia studies 
were the Reveal LINQ and Reveal XT (Medtronic Inc, Minneapolis, MN), respectively 
and to optimize memory slots, store the R-peak timestamps and the ECG of the first 
2 minutes of the AF episodes. For the last AF episode recorded, the device also stores 
the timestamps of the beats preceding the AF onset (Flashback). For the analysis, the 
first beats of the last recorded AF episode (477 ± 71 beats) before the catheter 
ablation and its Flashback (483 ± 33 beats) were extracted (D and A in Figure 6.1). 
The last AF episodes occurred between 1 and 183 days before the ablation. 

6.3. Methods 

6.3.1. Data Collection and Feature Extraction 

From these two types of signals (Flashback and last AF episode) 4 different areas of 
interest (AoI) were defined: the whole Flashback (A), the first 300 beats of the 
Flashback (B), the last 100 beats of the Flashback (C), and the first beats of the AF 
episode (D) as shown in Figure 6.1.  

Classical HRV derived features describing the variability and irregularity of the RR 
intervals were computed from the different AoIs and then categorized into 4 groups: 
whole Flashback (FB, AoI: A), Last 100 beats of Flashback (L100, AoI: C), Delta and 
First beats of AF episode (AF, AoI: D). Delta was defined as the percentage difference 
between the first 300 beats of the Flashback (AoI: B) and the last 100 beats of the 
Flashback (AoI: C) and was computed as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓) =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹300(𝑓𝑓) − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿100(𝑓𝑓)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹300(𝑓𝑓) ∗ 100 (6.1) 

with the aim of studying the changes occurring within the Flashback itself. 
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Figure 6.1. Example of available ICM data: A: Whole Flashback, B: First 300 beats of the Flashback, C: 
Last 100 beats of the Flashback, D: First two minutes of the last Atrial Fibrillation (AF) episode recorded 
before Catheter Ablation, illustrating short term changes in the RR intervals (ms) prior to the AF onset 
and the differences in RR intervals between the Flashback (A) and the AF episode (D). 

The classical HRV derived features were Mean RR, pNN50, pNN20, RMSSD, SDNN, 
TINN, ApEn, SampEn and Poincare descriptors SD1, SD2 and SD1SD2ratio and were 
computed as described in Chapter 3. For this section, the triangular index (TRI), i.e., 
the integral of the density distribution of RR intervals [189] , and α1 and α2, the 
scaling components of short- and long- term fluctuations of the RR intervals from the 
detrended fluctuation analysis (DFA) [190], were also computed.  

In addition to variability and irregularity features, clinical information such as the 
Age, AF type (Paroxysmal or Non-paroxysmal), Hypertension presence and Ablation 
type (PVI or PVI plus Extra lesions) were included in the analysis. 14 RR interval 
variability and irregularity features were computed for the 4 areas of interest, except 
pNN50 and pNN20 for Delta as the values for the First 300 beats of these features 
where 0 for some patients and the relative change could not be computed. A total 
of 58 features were considered per patient including the 4 clinical features, and the 
variability and irregularity features. 
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6.3.2. Classification 

Based on the extracted features, 8 classification algorithms were evaluated to 
predict AF recurrence after a 3-months blanking period. As a first step, a test set was 
randomly selected, containing 22% of the data (8 patients with recurrence and 8 with 
no recurrence), which was used to evaluate the performance of the classifiers on 
never-before-seen data. The remaining 78% of the observations were processed by 
the classification algorithm, using 2/3 of the data to train the classification model 
(the training set) and 1/3 to validate the trained model (validation set) as illustrated 
in Figure 6.2. 

The classification algorithm included the feature selection and the model training 
out of which the validation performance metrics were computed. 

Figure 6.2 Schematic representation of the overall method. NR: No Recurrence; R: Recurrence; SFFS: 
Sequential Forward Floating Search 

As a feature selection tool, the sequential forward floating search (SFFS) algorithm, 
was used. This algorithm considers and analyses subsets with different number of 
features by iteratively selecting the features that increase the overall accuracy of the 
model [191]. Briefly, starting from an empty set of features (𝑆𝑆𝑘𝑘), the feature 𝑓𝑓𝑖𝑖 that 
maximizes the objective function (accuracy) when combined with 𝑆𝑆𝑘𝑘, is added. After 
the forward step is repeated and a minimum of 3 features are already added, SFFS 
performs backward steps in which the feature that makes the objective function 
increase when removed from 𝑆𝑆𝑘𝑘, is removed [191]. 

A schematic representation of the algorithm is shown in Figure 6.3 which depicts an 
example of the forward and backward steps once 3 features are selected and the 
accuracy 𝐴𝐴𝐴𝐴𝐴𝐴(3) is computed.  

The trained model was evaluated on the test set, on which the performance metrics 
were computed.  
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The classification was performed using 2 types of classifiers: single classifiers and 
ensemble classifiers. The single classifiers were Support Vector Machines (SVM), 
Classification and Regression Trees (CART), and K-nearest neighbour (KNN); the 
ensemble classifiers were Mean Voting (MV), Accuracy Weighted Voting (AWV), and 
Optimum Weighted Voting (OWV).  

Figure 6.3 Schematic representation of the SFFS algorithm, as an example starting with three features 
already selected. The top rectangle represents the current set of 3 chosen features (grey lines) along 
with the unchosen features (white lines) which have an 𝐴𝐴𝐴𝐴𝐴𝐴(3). In the Forward Selection step, each of 
the remaining features are iteratively added (green line) and the new accuracy 𝐴𝐴𝐴𝐴𝐴𝐴(4)𝑖𝑖  computed. Once 
the feature producing the maximum accuracy is selected and included in the selected set (black line), 
the Backward Selection step takes place. Each of the selected features, except the newly selected one, 
are removed from the selected feature set (red line) and the new accuracy 𝐴𝐴𝐴𝐴𝐴𝐴(3′)𝑖𝑖 computed. If the 
maximum 𝐴𝐴𝐴𝐴𝐴𝐴(3′)𝑖𝑖 is higher than the previous 𝐴𝐴𝐴𝐴𝐴𝐴(3), the feature is removed from the selected 
features set and the Backward Selection is repeated, otherwise the algorithm goes to Forward selection 
where 𝐴𝐴𝐴𝐴𝐴𝐴(5)𝑖𝑖  are evaluated. Modified from [192].  

The aim of SVM techniques is to devise a computationally efficient way of finding 
separating hyperplanes in an N-dimensional space that will minimize the 
generalization error, those which have the largest distance to the nearest training-
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data point of any class (so-called functional margin) [185]. Support vectors are data 
points that are closer to a given hyperplane. This technique was originally designed 
to solve linear problems, however SVM can be adapted to work as a non-linear 
classifier by using non-linear kernels. In this study, in addition to linear SVM (SVM), 
2 different non-linear kernels will be evaluated: Polynomial kernel (SVMp) with 
polynomial order equal to 3, and radial basis function or Gaussian kernel (SVMg) 
[186].  

The CART technique classifies the observations into different groups of objects, a.k.a. 
branches, using decision rules learned from the pattern of features in the training 
data set. The split criterion used in this study was cross entropy which maximized 
the reduction of deviance in the new child branches. The cross-entropy function was 
defined as: 

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  −�𝑝𝑝(𝑖𝑖) log2 𝑝𝑝(𝑖𝑖) ,
𝑖𝑖

 (6.2) 

where the sum is over the classes 𝑖𝑖 at the node, and 𝑝𝑝(𝑖𝑖) is the observed fraction of 
classes with class 𝑖𝑖 that reach the node. A node with just one class, i.e., a pure node 
has cross entropy 0; otherwise, the cross entropy is positive. The branches are 
iteratively created until every branch contains a single observation or the stopping 
criteria is met. No stopping criteria was used in this study. 

The last single classifier used was KNN. This algorithm classifies the input features 
based on the classification of its K neighbours (K=3 in this study) [193]. To find the 
nearest neighbours the Euclidean distance was computed between the input and all 
the previously classified data points. Given an 𝑚𝑚𝑚𝑚-by-𝑛𝑛 data matrix 𝑿𝑿, which is 
treated as 𝑚𝑚𝑚𝑚 (1-by-𝑛𝑛) row vectors 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑚𝑚𝑚𝑚 , and an 𝑚𝑚𝑚𝑚-by-𝑛𝑛 data matrix 𝒀𝒀, 
which is treated as 𝑚𝑚𝑚𝑚 (1-by-𝑛𝑛) row vectors 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑚𝑚𝑚𝑚, the Euclidean distances 
between the vectors 𝑥𝑥𝑠𝑠 and 𝑦𝑦𝑡𝑡 are computed as: 

𝑑𝑑𝑠𝑠𝑠𝑠2 = (𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑡𝑡)(𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑡𝑡)′ (6.3) 

After the distances are calculated and the K-neighbours selected, the classification 
of the input is made based on similarities between the input and its K-neighbours 
[187]. 

For the ensemble classifiers, the 5 classifications of the single classifiers were 
weighed and combined to classify a given observation 𝑥𝑥: 𝐶𝐶(𝑥𝑥), which is the result of 
the scalar product between the weight vector (𝑾𝑾) and the voting vector (𝑽𝑽(𝑥𝑥)): 

𝐶𝐶(𝑥𝑥) =  �
1 𝑖𝑖𝑖𝑖 𝑾𝑾 ∙ 𝑽𝑽(𝑥𝑥)𝑻𝑻  > 0.5
0 𝑖𝑖𝑖𝑖 𝑾𝑾 ∙ 𝑽𝑽(𝑥𝑥)𝑻𝑻 ≤ 0.5

 (6.4) 
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where the weight vector: 

𝑾𝑾 = [𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆,𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑤𝑤𝐾𝐾𝐾𝐾𝐾𝐾] (6.5) 

contains the weights for the single classifiers (𝑤𝑤𝑖𝑖𝜖𝜖[0,1],∑𝑤𝑤𝑖𝑖 = 1), and the voting 
vector: 

𝑽𝑽(𝑥𝑥) = [𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥), 𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥), 𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥), 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥), 𝑣𝑣𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥)]  (6.6) 

is the binary classification of the observation 𝑥𝑥 made by the single classifiers. 

Each ensemble algorithm had a different weight configuration. The MV algorithm 
was defined as the average of all the classifications, thus the single classifiers have 
the same weight: 

𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑤𝑤𝐾𝐾𝐾𝐾𝐾𝐾 = 0.2. (6.7) 

In the AWV method, the weights are proportional to the accuracy on the validation 
set of the single classifiers, thus being: 

𝑤𝑤𝑖𝑖 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

  (6.8) 

with  𝑖𝑖 = {′𝑆𝑆𝑆𝑆𝑆𝑆′, ′𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′, ′𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆′, ′𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′, ′𝐾𝐾𝐾𝐾𝐾𝐾′}. 

Finally, for the OWV method, all possible weight combinations (considering step of 
0.1 for each weight) were iteratively evaluated and the set of weights that maximizes 
the overall accuracy of the validation set was selected. 

The schematic in Figure 6.4 illustrates the general iterative process. Starting with an 
empty dataset with 𝐴𝐴𝐴𝐴𝐴𝐴(0), each of the 𝑁𝑁 features [𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑁𝑁] is evaluated. For 
each feature, the maximum accuracy from the different weight configurations 
[𝑾𝑾1,𝑾𝑾2, … ,𝑾𝑾𝑀𝑀] is chosen as 𝐴𝐴𝐴𝐴𝐴𝐴(1)𝑛𝑛. As shown previously in Figure 6.3, once the 
number of features is higher than 3, the Backward selection step takes place. The 
algorithm finishes when an optimum weight configuration and feature set are 
obtained for the 𝑁𝑁 number of features. 

Leave-p-out cross-validation (where p is 1/3 of the data) was performed with 100 
bootstrap repetitions, i.e., all the above steps were repeated 100 times, randomizing 
the patient selection, allowing patients with both AF recurrence and without to be 
part of the training and validation phases.  



6.3 Methods 103 

 Fi
gu

re
 6

.4
. G

en
er

al
 sc

he
m

at
ic

 o
f t

he
 se

le
ct

io
n 

al
go

rit
hm

. T
he

 F
or

w
ar

d 
se

le
ct

io
n 

st
ag

e 
is 

sh
ow

n 
in

 g
re

en
, a

nd
 th

e 
Ba

ck
w

ar
d 

se
le

ct
io

n 
st

ag
e 

is 
sh

ow
n 

in
 

or
an

ge
. 



104 Chapter 6 AF Recurrence Prediction 

Performance metrics such as accuracy (𝐴𝐴𝐴𝐴𝐴𝐴), sensitivity (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) and specificity 
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) were then averaged over the repetitions while 𝐹𝐹1-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was computed from 
the averaged confusion matrix, and were computed as: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
(6.9) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(6.10) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(6.11) 

𝐹𝐹1-𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  2 ⋅
𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
(6.12) 

where 𝑇𝑇𝑇𝑇 is True Positive, 𝑇𝑇𝑇𝑇 is True Negative, 𝐹𝐹𝐹𝐹 is False Positive, 𝐹𝐹𝐹𝐹 is False 
Negative, and 𝑃𝑃𝑃𝑃𝑃𝑃 is Positive Predictive Value. The feature extraction, selection and 
classification were conducted using Matlab R2019b (The Mathworks Inc., Natick, 
Massachusetts). 

The statistic properties of the optimum set of features used by the classification 
method with the highest accuracy were analysed. Continuous data are presented as 
mean ± SD if the null hypothesis 𝐻𝐻0 of the Shapiro-Wilk test (𝐻𝐻0: data is normally 
distributed) was not rejected and were compared with the unpaired Student’s t-test. 
Otherwise, continuous data are presented as median (IQR), being IQR the 
interquartile range, and compared using the Mann-Whitney U test. Conversely, 
categorical data is presented as absolute frequency (relative frequency in 
percentage) and were compared with the Pearson Chi-Squared method. A p-value < 
0.05 was considered for the rejection of the null hypothesis and set as the level of 
significance. All statistical analyses were conducted using SPSS version 23 (SPSS Inc., 
Chicago, Illinois). 

6.4. Results 

The available clinical baseline characteristics of the patients are shown in Table 6.1. 
Even though there are no statistically significant differences between the clinical 
baseline characteristics used in the analysis of the patients with and without 
recurrences (Age, Paroxysmal AF, Hypertension and Extra Lesions), patients with AF 
recurrence were in average 3.6 years older than those without. 
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Table 6.1 Clinical baseline characteristics of the patients that had No Recurrence and those who did. 

Features 
Patient (N = 74) 

p No Recurrence 
(NR = 32, 43%) 

Recurrence 
(R = 42, 57%) 

Age, years 56 ± 13 59 ± 12 0.20 
PAF 26 (81%) 29 (69%) 0.18 
Hypertension 19 (59%) 26 (62%) 0.83 
Diabetes 1 (3%) 5 (12%) <0.001 
CAD 0 5 (12%) <0.001 
Stroke 3 (9%) 2 (5%) <0.001 
Pre-CA time, months 8.1 ± 3.7 4.3 ± 2.9 <0.001 
Extra Lesions 5 (16%) 10 (24%) 0.39 
PAF: Paroxysmal AF, CAD: Coronary Artery Disease, Pre-CA: Pre-Catheter Ablation 

There was also a higher proportion of paroxysmal AF patients and a lower proportion 
of arterial hypertension patients among those who did not have AF recurrences. 
Diabetes, Coronary Artery Disease (CAD) and Stroke were excluded from the analysis 
as these features were heavily underrepresented. 

The HRV derived features for each group of interest are shown in Appendix A as 
mean ± standard deviation for normally distributed data and as median (IQR) for 
non-normally distributed data. Only pNN20 for the whole Flashback (FB), delta 
triangular index (TRI), and Sample Entropy in the AF episode have a statistically 
significant difference between patients with and without AF recurrences. 

6.4.1. Single Classifiers 

Firstly, the single classifiers were evaluated by computing the accuracy on the 
validation set for subsets with an increasing number of features, as selected by the 
SFFS. Figure 6.5(A) shows the mean accuracies on the validation set of the single 
classifiers as a function of the number of selected features. It can be observed that 
all the classifiers reach a maximum of accuracy for the validation set with a subset 
containing less than 10 features except KNN (number of features = 18). 
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Figure 6.5 (A) Mean accuracy of the single classifiers on the validation set, plotted as a function of the 
number of selected features. (B) Mean and standard deviation of the accuracy of the multiple classifiers 
(line and colored area, respectively) for each subset of features on the validation set. AWV: Accuracy 
Weighted Voting; CART: Classification and Regression Trees; KNN: K-Nearest Neighbours; OWV: 
Optimum Weighted Voting; SVM: Support Vector Machine; SVMg: Support Vector Machine Gaussian 
kernel; SVMp: Support Vector Machine polynomial kernel. 
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For each single classifier, the feature subset that maximizes the validation accuracy 
is selected as the Optimum Feature set, which is used to evaluate the test using the 
trained model The performance evaluators for the test set were then computed in 
every iteration and Figure 6.6 depicts the mean and standard deviation. The F1-
score, however, was computed from the averaged confusion matrix (also shown in 
Figure 6.6) as only the average score was of interest to compare different classifiers. 

Figure 6.6 Mean and standard deviation of the performance metrics on the test set of the different 
classification methods. Table shows the mean values. AWV: Accuracy Weighted Voting; CART: 
Classification and Regression Trees; KNN: K-Nearest Neighbours; OWV: Optimum Weighted Voting; 
SVM: Support Vector Machine; SVMg: Support Vector Machine Gaussian kernel; SVMp: Support Vector 
Machine polynomial kernel. 

When working with never-seen data, SVM had the highest accuracy (0.72 ± 0.11) and 
specificity (0.63 ± 0.20) while, SVMg had the highest sensitivity (0.88 ± 0.14). The 
highest F1-score (0.65) was obtained by SVMp.  

6.4.2. Ensemble Classifiers 

The single classifiers were then combined in an ensemble classifier in which a 
weighted combination of the single classification is used to compute the final 
classification. Figure 6.5(B) shows the mean (bold line) and the standard deviation 
(shaded area) of the accuracy of the validation set for the different ensemble 
classifiers. Similar to the single classifiers, the maximum accuracy was reached with 
less than 10 features. The optimum feature set was determined as the subset that 
maximized the accuracy on the validation set and the results for the ensemble 
classifiers comparison are shown in Figure 6.6.  
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The best overall classifier with the highest F1-score (0.82) is the OWV method in 
which the weights used to combine the different single classifiers are evaluated in 
each iteration. This method also has the highest accuracy (0.82 ± 0.09) and specificity 
(0.87 ± 0.12) on the test set while MV has the highest sensitivity (0.98 ± 0.05).  

This OWV method of classification used a set of 7 features combining geometric delta 
features (“delta SD1SD2ratio”) with complexity delta features (“delta ApEn”), 
statistical delta features (“delta RMSSD”), geometric AF features (“SD2 AF”), 
statistical AF features (“pNN20 AF”), statistical Flashback features (“pNN20”) and 
clinical features (“Extra Lesions”).  

To provide added information and insight on the performance of the different 
classification models, the Receiver Operating Characteristic (ROC) curves from the 
single and the ensemble classifiers are shown in Figure 6.7 alongside their Area 
Under the Curve (AUC) values. SVM had the highest AUC value (0.75) of the single 
classifiers while AWV and OWV both obtained the highest overall AUC value (0.85).  

The frequency of use of each of the feature groups, i.e. FB: Flashback, L100: Last 100, 
Delta, AF and Clinical by the different classification methods was also analysed. 
Figure 6.8 shows the percentage of each feature group used by the different 
methods. 

Features from feature group Delta were the most frequently used by the different 
classifiers. In average, the classifiers used features from Delta group for 31% of their 
selected features, reaching 63% of the selected features for the SVMp method. 
However, it is worth noting that every classifier took at least “Extra Lesions” as one 
of the optimum features in their feature list and classifiers such as SVM, and SVMg 
had features from the Clinical group comprising more than 25% of their features, 
being SVMg the classifier with the highest percentage of use (40%).  

6.5. Discussion 

The main finding of this study is that a reduced set of HRV and clinical features 
extracted from an ICM can be used by an ensemble classifier to predict AF recurrence 
with a mean accuracy higher than 0.8 in patients that underwent single-procedure 
catheter ablation. If confirmed by future studies, these findings are potentially of 
significant clinical relevance for several reasons: first, catheter ablation of AF 
substrate is a procedure with high economic and personal burden; secondly, due to 
the epidemic character of AF prevalence, these interventions cannot be offered 
(even in countries with developed health-care systems) to all patients and third, the 
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Figure 6.7 (A) Receiver Operating Characteristic (ROC) curves of the single classifiers and the Area Under 
the Curve (AUC). (B) Receiver Operating Characteristic (ROC) curves of the ensemble classifiers and the 
Area Under the Curve (AUC). AWV: Accuracy Weighted Voting; CART: Classification and Regression 
Trees; KNN: K-Nearest Neighbours; OWV: Optimum Weighted Voting; SVM: Support Vector Machine; 
SVMg: Support Vector Machine Gaussian kernel; SVMp: Support Vector Machine polynomial kernel. 
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Figure 6.8 Percentage of features from each feature group used by the different classification methods. 
AF: Atrial Fibrillation; AWV: Accuracy Weighted Voting; CART: Classification and Regression Trees; FB: 
Flashback; KNN: K-Nearest Neighbours; L100: Last 100 beats; OWV: Optimum Weighted Voting; SVM: 
Support Vector Machine; SVMg: Support Vector Machine Gaussian kernel; SVMp: Support Vector 
Machine polynomial kernel. 

selection of patients with higher probability of long-term elimination of AF has high 
priority. Until now, the various clinical scoring systems based on phenotypic 
biomarkers used to this aim generate a rather poor prediction of limited clinical 
usefulness.  

HRV has been extensively studied with respect to procedural outcome by analysing 
the changes in HRV features before and after ablation [181–184]. However, these 
studies mainly describe the effect of ablation on HRV and use non-continuous Holter 
monitoring of the patients.  

To the best of our knowledge, this is the first study that reports the combination of 
classical HRV and clinical features to predict AF recurrence in a continuously 
monitored ablation cohort using a variety of classification methods.  

Although all the different HRV and clinical features were initially introduced in the 
algorithm, SFFS iteratively selected the optimum set and only 1 of the 8 different 
methods used had the peak performance with more than 10 features and OWV only 
used 7: delta SD1SD2 ratio, delta ApEn, delta RMSSD, pNN20 AF, SD2 AF and Extra 
lesions. Out of the 7 features found as optimum, only 1 was a clinical feature while 
the others were classical HRV features extracted from 3 different feature groups: 
delta, Flashback and AF. RMSSD and Poincare descriptor SD1SD2ratio both describe 
the variability of the RR intervals and so, when analysing the correlation between the 
features, it was not surprising to observe that they had an 𝑅𝑅 =  0.51,𝑝𝑝 <  0.01 in 
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the 2-tailed Pearson correlation test. The rest of the features had weak correlation 
between them. 

The most used feature group appeared to be Delta with an average use of 31% in the 
different classifiers and a maximum of 63% in SVMp which shows the importance of 
studying the onset of the AF contained within the Flashback. 

Several studies have investigated different methods of AF recurrence prediction by 
analysing the impact of different clinical scores. While thromboembolic risk 
predictors like CHADS2 or CHA2DS2-VASc showed relatively modest prediction [10], 
other specific rhythm outcome predictors such as APPLE [11], SUCCESS[12], and MB-
LATER [13] have been introduced yielding better results. The APPLE score (one point 
for Age > 65 years, Persistent AF, imPaired estimated glomerular filtration rate 
(eGFR) < 60 ml/min/1.73 m2, Left atrial (LA) diameter ≥ 43 mm and Ejection Fraction 
(EF) < 50%) was originally developed to predict AF recurrences after first ablation 
with area under the receiver operating characteristic curve (AUC) of 0.634 [11] but 
has also been tested predicting recurrence in repeated ablations with AUC 0.617 
[82]. Based on this score, the SUCCESS score was created by adding one point for 
each preciously performed ablation and although it did demonstrate an 
improvement over APPLE (AUC 0.657 vs 0.620), the findings were not significant in 
the study [12]. The MB-LATER score (Male, Bundle branch block, Left atrium ≥ 47 
mm, Type of AF [paroxysmal, persistent or long-standing persistent], and ER-AF = 
early recurrent AF) was associated with patients who will develop very late AF 
recurrence i.e. recurrence documented more than 12 months after the ablation 
procedure (AUC 0.782) [13] and was also proven to predict late AF recurrence (AUC 
0.62) [194]. However, this score has the drawback that it uses early recurrence of AF 
as a feature, and it cannot be used as a baseline predictor. All these scoring systems 
have the disadvantage of relying on conventional Holter devices to detect AF 
recurrence in the patients and the need of image-based parameters such as LA 
diameter or EF while the proposed method uses easily obtainable clinical 
information and classical HRV features extracted from a ICM which continuously 
monitors the patient. 

In the review of AF recurrence predictors developed by Balk et al. the relationship 
between success of ablation for AF and clinical features was systematically evaluated 
[195]. The multivariable analyses showed that neither age, AF type nor hypertension 
showed significant association to ablation success. However, in the case of age, Balk 
et al. suggested that this result was due to the limitations of the existing literature 
rather than a true lack of association as only relatively young patients were included 
in the analyses (40-70 years). The patient population analysed in this study was 
relatively young (57 ±  12 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) and this could be the reason why age was not 
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included in the final feature set. Even though the multivariate analyses performed 
by Balk et al. failed to show significant association between AF type and ablation 
success, the univariate analysis found that patients with NPAF had a 60% increased 
risk of AF recurrence compared to those with PAF and it was hypothesized that it 
would be a good clinical indicator of the likelihood of AF recurrence. In this study, AF 
type was chosen by only 2 of the 8 classification methods and while one was AWV, 
that had the second highest F1-score, the other one was SVMp, that had one of the 
lowest. This could be explained by the under-representation in the patient 
population of non-paroxysmal patients (25.7%) which translated into 18.8% of those 
which did not have AF recurrence and 31.0% of those who did. Ablation type was the 
only feature used by every method: from these preliminary results, patients that had 
extra lesions had also higher chance of having AF recurrence. Although there are 
some confounding factors to consider, i.e., the need of extra lesions may be due to 
a more advanced AF with a higher presence of fibrotic tissue in the atria, the extra 
scar tissue could be the foci of new re-entry circuits that could develop and sustain 
AF. Nonetheless, this feature was also heavily biased as most of the patients 
underwent PVI ablations and only 15 patients (20.3%) had also extra lesions so 
further work would have to confirm this. 

This retrospective study was made using a limited patient population from 2 
different cohorts with different clinical information, which limited the clinical 
features that could be used to those which were collected in both studies. 
Furthermore, the features that were included such as AF type and Ablation type 
were heavily biased as Persistent patients (26% of the total number of patients) and 
ablation strategies with extra lesions (20%) were underrepresented. However, the 
main part of this study was focused on HRV features and even though the use of the 
clinical features increased the accuracy and future work should be done to 
understand their impact, the presented classification method and the results are still 
clinically relevant. The sample size for this study is very limited, also when 
considering the partitions needed for the training, validation, and test set. This 
prevented us from using more complex classification approaches such as deep 
learning neural networks due to the risk of overfitting the data. The number of 
features extracted from the database was also concerning and could have increased 
the risk of overfitting the data. For this reason, the SFFS algorithm was used to 
minimize the number of features hence, minimizing the risk of overfitting. In 
addition, due to the retrospective nature of the study, the medication administered 
to each patient during the monitoring period was not available and the possible 
influence of medication on AF recurrence was not studied. The data were extracted 
from the Reveal LINQ ICM which automatically detected AF episodes longer than 2 
minutes and, due to memory restrictions, stored the RR intervals of the episodes 
detected and their Flashbacks. Therefore, episodes longer than 30s, which are 
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defined as AF episodes by the guidelines, but shorter than 2 minutes were 
undetected by the ICM. The lack of stored ECG signals also limited the number of 
features that could be extracted and restricted the analysis to HRV derived features 
that could be extracted from the RR intervals. Despite these drawbacks, the 
advantage of having continuous monitoring of the patients before and after the 
ablation greatly outweighs the disadvantages of possible information loss due to 
device resolution or memory restrictions. Although the study shows promising 
results and serves as proof of the feasibility of the method described, being a pilot 
study, results should need to be validated on an external database. 

6.6. Conclusion 

Recurrence of AF after ablation can be predicted with varying degrees of accuracy 
using simple classification methods and an iteratively selected feature set of easily 
obtainable HRV and clinical features. The best approach is an optimally weighted 
combination of single classifiers which uses HRV (Poincare descriptors SD1SD2ratio, 
pNN20 Approximate Entropy, RMSSD and Triangular index) and clinical (extra PVI 
lesions) features. This could be a first step into a more effective pre-ablation patient 
triage that could reduce economic and personal burden of the procedure by 
increasing the success rate of first catheter ablation to achieve long-term AF 
termination. 
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7.1. Summary and main conclusions 

The objective of this thesis was to propose methodological advancements for the 
characterization of the AF triggers and AF episodes detected by ICMs in cohorts of 
continuously monitored patients, to attain a better understanding of AF and its 
mechanisms. This may lead to improvement in clinical decisions, as those related to 
catheter ablation strategies which could lead to a more effective patient triage that 
could reduce the economic and personal burden of the ablation procedure by 
increasing the success rate of long-term AF termination. These methods have been 
evaluated in clinical conditions. 

First, the AF triggers found in the last 500 beats preceding an AF episode extracted 
from ICMs on a cohort of continuously monitored patients were characterized using 
HRV features. In addition, an automatic unsupervised classification based on the 
linear combination of a subset of the extracted features was evaluated. This 
approach allowed us to find which HRV features were the most representative for 
the different triggers and showed that distinct patterns could be found in the 
different clusters.  

Then, the AF episodes stored in the ICM were characterized by studying the circadian 
variations of their f-wave frequency, and their temporal aggregation.  The circadian 
variations were analysed by modelling the AFR as a function of time of onset using a 
mixed-effect modelling approach. This enabled us to correct the model for the effect 
of episode duration, previous ablations, and changes is autonomic tone quantified 
by RR series characteristics as well as dealing with repeated measures within 
subjects. The temporal aggregation of the AF episodes detected by the ICM was 
achieved using the alternating bivariate Hawkes model. This model outputs the AF 
dominance and the temporal clustering of episodes during the monitoring period. 
This approach allowed us to prove that the risk of AF recurrence within 1 year after 
the catheter ablation procedure was higher for patients with high AF dominance and 
high episode clustering and may be used for pre-ablation risk assessment. 

Finally, a new algorithm was designed for catheter ablation outcome prediction 
based on clinical and HRV features extracted from both the last AF trigger and the 
AF episode before the procedure. The results obtained from this method suggest the 
importance of appropriate characterization of both the AF trigger and the AF episode 
to enable a more effective pre-ablation patient triage strategy that could reduce 
economic and personal burden of the procedure by increasing the success rate of 
first catheter ablation to achieve long-term AF termination. 
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7.1.1. Trigger Characterization 

Catheter ablation of atrial fibrillation (AF), specifically pulmonary vein isolation (PVI), 
is a common treatment for highly symptomatic patients [7]. However, a systematic 
review study of long-term outcomes of catheter ablation in AF reported single-
procedure success rates as low as 66.6% in paroxysmal AF (PAF) patients and 51.9% 
in non-paroxysmal AF (NPAF) patients [8].  

Pokushalov et al. [17] showed an improvement of the success rate, reaching 89%, in 
a second ablation procedure in patients with a specific AF trigger onset. Motivated 
by Pokushalov et al.’s findings, a study using the Flashback to determine the 
optimum ablation strategy before a first failed ablation attempt was designed. 
However, the visual annotation of the triggers in the Flashbacks, especially in large 
populations of patients is a far from trivial matter. Therefore, an automatic 
classification of AF triggers is needed. 

Supervised classification methods rely on having a sufficiently representative set of 
training data which is to be manually selected and annotated, which in turn is 
expensive and time-consuming to obtain, and may introduce bias. 

In this thesis, the data used was provided by an implantable cardiac monitor (ICM) 
equipped with a highly sensitive AF detection algorithm (96%) [15] which 
continuously classifies the heart rhythm of a patient by analysing its cardiac cycle. In 
addition, it stores the trend of 500 ventricular beats preceding the detection marker 
of the most recent AF episode, hereinafter called Flashback.  

The results obtained when analysing the HRV features from the different clusters 
extracted from the Flashbacks showed that distinct triggers could be found. Although 
the inference of clinical information from unsupervised classification of patterns has 
relative reliability, the triggers that could potentially be identified in the clusters are 
premature atrial complexes (PACs), atrial tachycardia (AT), atrial flutter and 
spontaneous AF, i.e., no trigger. As mentioned before, this study is a first step 
towards aiding clinicians in determining the optimum ablation strategy before a first 
failed ablation attempt based on the AF trigger. 

7.1.2. AF Characterization 

This thesis approaches AF episode characterization focusing on two different aspects 
of the episodes. First, analysing individually each AF episode by studying the 
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variations of their f-wave frequency, i.e., atrial fibrillatory rate (AFR), and then, 
analysing the temporal aggregation of the AF episodes detected on a particular 
patient. 

This study investigated the feasibility of modelling AFR based on RR series 
characteristics while accounting for possible effects of previous ablations, episode 
duration and onset date and time. In a previous study regarding AFR and HRV, the 
analysis was conducted only on patients with underlying congestive heart failure and 
didn’t account for the presence of confounding factors[144]. This thesis assesses the 
use of a simple fixed-effect (FE) modelling approach using RR series features and 
compares it to a more complex mixed-effect (ME) modelling approach to study both 
the population and patient specific effects of RR series in AFR, and to another ME 
modelling approach that allowed correction for the effect of episode duration, 
previous ablations, and possible circadian variations. The ME modelling approach 
was shown to be superior to the FE modelling approach due to the heterogeneity of 
the patient population and the presence of confounding factors. The fixed effects 
extracted from the ME model showed that AFR is slightly higher in episodes of longer 
duration and with less organized RR series and is affected by catheter ablations. The 
use of ME models combined with long term monitoring of patients offers the chance 
of continuously estimating the AFR from RR series and episode-based characteristic 
and will lead to a more detailed characterization and a better understanding of the 
patients’ condition which could potentially aid the clinicians in their decision-making 
process. 

In recent years the problem of how to characterize episode patterns has received 
certain attention. However, it has been mainly focused on statistical analysis of 
either interepisode intervals, i.e. the interval between consecutive AF episodes 
[169–171] or inter-detection intervals, i.e. the intervals between onset of 
consecutive AF episodes [172]. The main drawback of this type of analysis is that it 
resides on the assumption that episodes are statistically independent, which may be 
questioned since AF episodes tend to cluster [170]. The alternating, bivariate Hawkes 
model evaluated in this thesis was developed to provide a model-based, statistical 
approach to characterizing the dynamics of episode patterns [174]. This thesis 
compared different parameters to determine the risk of AF recurrence in a cohort of 
continuously monitored AF patients outside of the restrictions 24-hour Holter 
devices entail. The proposed combination of Hawkes parameters, one accounting for 
the dominance of AF during the monitoring period and one describing the temporal 
aggregation of the episodes, was related to increased risk of AF recurrence within 1 
year of the procedure for patients with more dominant AF and more episode 
clustering. The approach presented in this thesis represents a preliminary step to 
demonstrate the clinical significance of AF episode pattern characterization as well 
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as to popularize pre-ablation risk assessment which could be used in a more effective 
patient triage and reduce the economic and personal burden associated with the 
procedure. 

7.1.3. AF Recurrence Prediction 

Catheter ablation, specifically pulmonary vein isolation (PVI), has become over the 
decades a common treatment for AF patients, especially those highly symptomatic 
[7] or those where antiarrhythmic drug therapy has not been sufficient (or tolerated) 
for rhythm stabilization [83]. However, long-term outcomes of catheter ablation in
AF reported single-procedure success rates as low as 66.6% in paroxysmal AF (PAF)
patients and 51.9% in non-paroxysmal AF (NPAF) patients [8]. Several studies have
investigated different methods of AF recurrence prediction by analysing the impact
of different clinical scores. While thromboembolic risk predictors like CHADS2 or
CHA2DS2-VASc showed relatively modest prediction [10], other specific rhythm
outcome predictors such as APPLE [11], SUCCESS [12], and MB-LATER [13] have been
introduced yielding better results. However, these scoring systems have the
disadvantage of relying on conventional Holter devices to detect AF recurrence in
the patients and the need of image-based parameters such as LA diameter or EF
while the method proposed in this thesis used easily obtainable clinical information
and classical HRV features extracted from a ICM which continuously monitors the
patient. This method is based on an optimally weighted combination of single
classifiers which uses HRV and clinical features to predict AF recurrence. As
mentioned before, this could be a first step into a more effective pre-ablation patient 
triage that could reduce economic and personal burden of the procedure by
increasing the success rate of first catheter ablation to achieve long-term AF
termination.

7.1.4. Clinical Significance 

An appropriate characterization of patients diagnosed with AF is crucial for deciding 
the optimum course of treatment such as catheter ablation, which has relatively low 
success rates. ICMs with high AF detection accuracy offer the unique advantage of 
long-term monitoring periods and continuous monitoring of the patient. With the 
rapidly increasing use of these devices for AF patients, the need for methods to 
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characterize AF triggers and AF episodes which could be used in in tools that can help 
in clinical decisions, is increasingly important. 

In particular and if confirmed in future studies, the use of these characterization 
methods to, for instance, aid clinicians in deciding the best catheter ablation strategy 
is potentially of significant clinical relevance for several reasons: first, catheter 
ablation of AF substrate is a procedure with high economic and personal burden; 
secondly, due to the epidemic character of AF prevalence, these interventions 
cannot be offered (even in countries with developed health-care systems) to all 
patients and third, the selection of patients with higher probability of long-term 
elimination of AF has high priority. 

7.2. Future work 

Some future research lines derived from this work are presented below. 

The unsupervised classification of AF triggers offered insight in the different patterns 
that could be found in the beats preceding the AF onset. However, to be able to infer 
useful clinical information from the triggers, future studies including visual 
annotation of trigger patterns with the support of electrophysiologists and the 
development of a supervised trigger classifier are needed and is part of our ongoing 
project. 

While the feasibility of modelling AFR from RR series and episode-based 
characteristics was shown, its clinical significance as AF recurrence risk predictor or 
as an indicator of the patients’ condition was not evaluated. A study of the AFR trend 
before the catheter ablation procedure could offer insight on the progression of AF, 
could give indication on the best ablation strategy, and could help better understand 
the AF mechanics. 

Similarly, the episode patterns studied in the thesis are a snapshot of the patients’ 
condition before the catheter ablation procedure. Future studies evaluating the 
changes and trends of the Hawkes parameters are planned which could also help to 
better predict the catheter ablation outcome as well as potentially predict the 
patients’ condition whether the patient undergoes the procedure or not. 

The clinical annotation of the trigger, the evaluation of the AFR and temporal 
aggregation trends, and the use of other clinical information not accessible at the 
time of this study, could better characterize the patient and improve the AF 
recurrence predictive power of the Optimum Weighted with feature selection 
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algorithm presented in this thesis. With this in mind, a future study including these 
features as inputs for the algorithm is planned. 

Lastly, the validation of the methods proposed with a higher number of patients. 
Throughout this thesis, the cohort of patients used in all the studies, albeit unique 
and with several advantages over studies restricted to 24-hour Holter recordings, 
offered limited clinical evidence. Therefore, increasing the number of patients with 
a prospective study would allow to fully evaluate the clinical significance of this 
thesis. 
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Appendix A 

Table A1 Parameters computed for each HRV derived feature, group and class (NR: No Recurrence, R: 
Recurrence). The groups shown are FB: Flashback, and L100: Last 100 beats. Pair of values with 
significant differences between classes shown in bold for clarity reasons.  

Feature FB NR FB R L100 NR L100 R 

Mean (ms) 824 ± 173 826 ± 172 816 ± 176 820 ± 185 

pNN50 (%) 13.6 (35.8) 39.7 (66.6) 19.1 (43.9) 38.7 (61.6) 

pNN20 (%) 51.3 (45.6)* 65.0 (48.5)* 57.0 (48.4) 64.8 (47.4) 

RMSSD (ms) 96 (75) 129 (146) 93 (93) 122 (126) 

SDNN (ms) 103 (81) 128 (82) 89 (77) 112 (63) 

TINN (ms) 0.14 (0.10) 0.17 (0.14) 0.07 (0.07) 0.09 (0.07) 

TRI 12.5 (7.5) 14.1 (8.5) 8.7 (5.1) 10.3 (8.0) 

ApEn 0.81 (0.42) 0.96 (0.65) 0.61 ± 0.15 0.61 ± 0.15 

SamEn 0.75 (0.59) 1.11 (1.25) 1.01 (0.84) 1.36 (1.12) 

SD1 68.0 (53.3) 91.8 (103.4) 65.8 (65.7) 86.8 (89.1) 

SD2 120 (111) 153 (71) 105 (104) 127 (75) 

SD1SD2ratio 0.54 ± 0.22 0.60 ± 0.28 0.65 ± 0.32 0.70 ± 0.34 

DFA alpha 1 0.75 (0.22) 0.81 (0.36) 0.79 (0.43) 0.87 (0.54) 

DFA alpha 2 0.96 ± 0.25 0.91 ± 0.32 0.83 (0.47) 0.89 (0.68) 

Normally distributed values are given as Mean ± Standard Deviation 
Non-normally distributed values are given as Median (Interquartile Range) 
Pair of parameters with a p-value<0.05 (*) 
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Table A2 Parameters computed for each HRV derived feature, group and class (NR: No Recurrence, R: 
Recurrence) Continued. The groups shown are Delta and AF: first 2 minutes of AF episode. Pair of values 
with significant differences between classes shown in bold for clarity reasons. 

Feature Delta NR Delta R AF NR AF R 

Mean (ms) 0.79 (16.52) 0.48 (11.12) 679 (264) 741 (290) 

pNN50 (%) - - 43.7 (27.5) 55.1 (31.0) 

pNN20 (%) - - 70.2 ± 13.2 75.6 ± 13.3 

RMSSD (ms) -15 (102) -19 (49) 172 (69) 205 (124) 

SDNN (ms) -9 (87) -4 (35) 138 (107) 167 (96) 

TINN (ms) 43.65 (75.49) -12.81 (73.38) 0.12 (0.14) 0.16 (0.16) 

TRI 8.3 (48.1)* 16.9 (48.1)* 11.9 (14.6) 15.6 (10.9) 

ApEn 27.26 (29.69) 20.92 (36.06) 0.89 (0.43) 0.16 (0.16) 

SamEn 2.71 (58.99) -43.52
(110.11) 0.59 (0.64)* 0.97 (0.48)* 

SD1 -14.9 (102.0) -19.7 (49.1) 122.2 (49.2) 0.9 (1.0) 

SD2 -10.72 (67.00) -2.39 (53.58) 156.26 
(130.45) 145.35 (88.18) 

SD1SD2ratio -2.25 (62.79) -25.10 (50.02) 0.75 (0.42) 185.67 (93.90)

DFA alpha 1 -5.95 (72.51) -20.17 (57.27) -1.07x10-15 ±
4.36 x10-16 

-1.09 x10-15 ±
5.04 x10-16

DFA alpha 2 13.96 (81.63) -23.13 (67.83) -2.43 x10-16 ±
7.92 x10-16 

-2.03 x10-16 ±
7.35 x10-16

Normally distributed values are given as Mean ± Standard Deviation 
Non-normally distributed values are given as Median (Interquartile Range) 
Pair of parameters with a p-value<0.05 (*) 
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