
Performing SCA Against Block Ci-
phers Using Closest and Furthest
Leakage Models

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Costantino Vincifori

Student ID: 918759
Advisor: Prof. Gerardo Pelosi
Co-advisors: Prof. Alessandro Barenghi
Academic Year: 2020-21

i

Abstract

Nowadays we are experiencing a wide-spreading of embedded systems, sensors and inte-
grated circuits. Such device have to operate in hostile environments that might affect their
intended functionality. Cryptography is one of the most common tools used to safeguard
the correct functionality of such devices.

However, cryptographic implementations on physical systems are subject to side-channel
attacks, that are attacks that exploit physical properties of the targeted device. Such
physical properties are observed while the device is computing encrypting/decrypting
operations. The best attacks that can be employed define a leakage model as the most
accurate relationship that links both secret key used in a cryptographic operation and the
physical property that it is taken into account.

When the leakage model cannot be defined as accurately as intended due to a partial
knowledge or complete lack of knowledge of the actual relationship between secret key
and physical property, the side-channel attack must be reasonably adapted. As leakage
model it has to be used an intermediate value of the implemented cryptographic algorithm
instead.

The aim of the thesis is to research the best leakage models that allow to execute a success-
ful side-channel attacks on such devices. As shown in literature, during this investigation
it was observed that most of the attacks are successful when a leakage model justifies the
observed physical properties.

However, it has also been observed that it could have been performed successful attacks
even when the leakage model was the furthest possible from the correct one, allowing
us to study how cryptographic implementations are vulnerable when attacked with such
models.

Keywords: MIA, mutual information, side-channel attacks, S-Box resilient to side-
channel attacks

iii

Sommario

Al giorno d’oggi siamo sempre più invasi da sistemi embedded, sensori e dispositivi inte-
grati. Questi dispositivi operano in ambienti ostili che potrebbero intaccare il loro corretto
funzionamento. La crittografia è uno degli strumenti che possono essere utilizzati per sal-
vaguardare le funzionalità di tali dispositivi.

Però, le implementazioni crittografiche su sistemi fisici sono soggetti ad attacchi side-
channel, attacchi che sfruttano grandezze fisiche (del dispositivo stesso) osservate durante
una operazione di cifratura/decifratura. Gli attacchi migliori che possono essere applicati
definiscono un modello di leakage come la relazione più accurata possibile che lega la
chiave segreta applicata e la grandezza fisica presa in considerazione.

Quando il modello di leakage non è definibile per via di una conoscenza parziale o nulla
della relazione tra chiave e grandezza fisica, l’attacco side-channel deve essere ragionevol-
mente adattato. Come modello di leakage dovrà essere utilizzato un valore intermedio
estratto dall’algoritmo crittografico implementato.

Lo scopo della tesi è quello di ricercare i modelli migliori che permettono di compiere con
successo attacchi side-channel su tali dispositivi. In questa investigazione di modelli è
stato osservato che, come da teoria, la maggior parte degli attacchi ha successo quando
viene definito un modello che giustifica le proprietà fisiche osservate.

Tuttavia, sono stati osservati anche attacchi altrattanto soddisfacenti quando il modello
di leakage si allontana il più possibile dal modello corretto, dando così la possibilità di
investigare la vulnerabilità di implementazioni crittografiche per tali modelli.

Parole chiave: MIA, mutua informazione, attacchi a canale laterale, S-Box resistenti ad
attacchi a canale laterale

v

Contents

Abstract i

Sommario iii

Contents v

1 Introduction 1
1.1 Basic Terminology and Concepts . 1

1.1.1 Cryptographic Paradigms . 2
1.1.2 Block Ciphers . 2

1.2 Background on Side-Channel Attacks . 8
1.2.1 Power-Based Information Leakage 9
1.2.2 Side-Channel Attacks . 11

1.3 Open Challenges and Goals . 13

2 Side-Channel Techniques 17
2.1 Simple Power Analysis . 17
2.2 Differential Power Analysis . 21
2.3 Correlation Power Analysis . 25
2.4 Mutual Information Analysis . 29

2.4.1 Properties of the Leakage Model . 35
2.4.2 Probability Distribution Estimation 37
2.4.3 Optimizations . 39

2.5 Comparison between CPA and MIA . 40

3 Leakage Model Exploration 45
3.1 Leakage Model Definition . 45
3.2 Side-Channel Attacks Implementations . 47

3.2.1 Mutual Information Analysis Implementation 48

3.2.2 Correlation Power Analysis Implementation 52
3.3 Side-Channel Measurements Simulation . 53
3.4 Data Visualization . 58

4 Experimental Evaluation 59
4.1 AES Substitution Box . 59
4.2 DES Substitution Box . 63
4.3 4x4 Substitution Box . 65

4.3.1 CPA Resilient Substitution Boxes 68
4.3.2 TA Resilient Substitution Boxes . 70
4.3.3 General Evaluation . 71

4.4 5x5 Substitution Box . 72
4.4.1 CPA Resilient Substitution Boxes 74
4.4.2 TA Resilient Substitution Boxes . 78
4.4.3 General Evaluation . 81

5 Conclusions and Future Developments 83

Bibliography 85

List of Figures 89

List of Tables 91

Ringraziamenti 93

1

1| Introduction

This chapter introduces the reader to the basic concepts of cryptography, drawing a
general context of the work. First, it will be described the design of modern ciphers and
how they work; then it will be explained what side channel attacks are and how they are
used in practice. Finally, the reader will be talked into the open challenges and goals of
the work.

1.1. Basic Terminology and Concepts

It is defined as space of message M the set of all possible messages over an alphabet A.
In turn, an alphabet A is defined as a finite set of symbols; in cryptography, the most
common choice for the alphabet A is the binary alphabet (A = {0, 1}). The choice of
A actually reflects the binary representation of words in any computing device, such as
PCs, smartphones and so on.

An element of the space M is a plaintext, and it will be referred to as m. The ciphertext
space C is a set of strings over an alphabet B (this alphabet can coincide with the alphabet
of M, or it can be a whole different one). An element of C is referred to as ciphertext c.

A key space K is a set of elements called keys; the cardinality of this space is one of the
figures of merit used to access the security margin of a cryptosystem.

Given an element e ∈ K, it is defined as encryption algorithm the function Ee : M 7→ C
that maps bijectively an element from M to C; on the other hand, for the inverse function,
given an element d ∈ K, it is defined as decryption algorithm the function Dd : C 7→ M
that maps bijectively an element from C to M.

Given the above definitions, a cryptosystem can be defined as the 6-tuple:

⟨A,M,C,K, {Ee : e ∈ K}, {Dd : d ∈ K}⟩ (1.1)

One of the most fundamental properties of a cryptosystem is Correctness : that is, the
correct plaintext m of a ciphertext c can be obtained from c only if it is employed the

2 1| Introduction

correct key k for decryption. A mathematical definition of it is:

∀e ∈ K ∃! d ∈ K s.t. ∀m ∈M Dd(Ee(m)) = m (1.2)

1.1.1. Cryptographic Paradigms

With respect to the cryptographic paradigm, it can be given an ulterior and more specific
definition of a cryptoscheme. In this work, it will be analyzed symmetric cryptosystems
or secret key cryptosystems.

Symmetric Cryptosystems

These cryptosystems are mainly used for the encryption of data at rest and data communi-
cations. One of the main advantages of these cryptosystems is that they are characterized
by high computational efficiency. Data transmission between users is performed by the
encryption of plaintexts under the same secret key k. Users that want to acknowledge
the original message m from a ciphertext c must hold the same secret key k used for the
encryption, that must not be disclosed under no circumstances. Its disclosure could affect
past communications if it happened that the same key was employed in other communi-
cations. Since both encrypting and decrypting keys are equal, that is e = d, by rewriting
the formal definition of a cryptosystem we will have that a symmetric cryptosystem is
defined as:

⟨A,M,C,K, {Ee : e ∈ K}, {De : e ∈ K}⟩ (1.3)

Asymmetric Cryptosystems

Also known as public key cryptosystems, they are mainly used between two users to estab-
lish and exchange a symmetric secret key for data communications. In this cryptosystems
each user holds two keys: one of the two keys is public to everyone, while the other one
is private and kept secret. Data encryption is performed by using the public key of the
recipient of the message; while data decryption is performed on ciphertexts by applying
the owned private key.

1.1.2. Block Ciphers

With respect on how both encryption and decryption algorithms are defined in a sym-
metric key system, there exist two kind of ciphers: block ciphers and stream ciphers. The
main idea of stream ciphers is that they can be applied to messages of any length. That’s

1| Introduction 3

due to the fact that they have a ’state’ and they can adapt to any plaintext length and
produce a ciphertext with the same length.

Since ciphers analyzed in this work are exclusively block ciphers, it will be delved a little
bit more into their detail.

The basic idea of block ciphers is that they operate on blocks of plaintext m ∈ M (m =

⟨m1,m2, ...,mn⟩, with mi = {0, 1}) and produce blocks of ciphertext c ∈ C (c = ⟨c1, c2, ...,
cn⟩, with ci = {0, 1}) through a key-parametric transformation Ek(·) or Dk(·):

c = Ek(m), m = Dk(c) (1.4)

The block size n is usually in the [64,256] bit range; if it happens that the plaintext is not
multiple of a block size, it will be padded before the encryption. When a padded message
is decrypted, the algorithm will recognize the padding scheme and discard it from the
original message. For messages longer than a block size, a mode of operation is defined
to describe the encryption or decryption sequence. The simplest method will divide the
plaintext in q pieces of length n (equal to the block size), and encrypt them directly with
the same key k. More complex methods will chain the encryption routine by introducing
part of an encrypted block to the encryption of the following one. Then, the encryption
of a block depends on its value and the block right before it. In this work it will be used
plaintexts that will perfectly fit the length of the block cipher under study.

The main components of a block cipher are:

• Cipher State: it is defined as the result of each cryptographic operation performed
by a cipher. It is initially initialized with the plaintext value, and then it will contain
the value of the ciphertext at the end of the encryption;

• Round : it is a sequence of operations applied to the cipher state. It involves part
of the secret key k and both operations that perform confusion and diffusion. The
number of rounds depends on the key length and the overall complexity that it is
wanted to achieve, and therefore the level of security of the block cipher;

• Key Schedule: It is the procedure that expands the original secret key k into key
material to be used for each round. Key schedule is important because it will
introduce to each round fresh key-dependent values.

4 1| Introduction

Substitution Permutation Networks

One of the most employed schemes in the design of ciphers is the Substitution Permutation
Network. A round of a SPN is split in three parts that act on the whole cipher state:

• Key Mixing : It introduces the key (or part of the key material) into the cipher state.
It is usually performed by XOR operation;

• Substitution: It applies a non-linear function to the cipher state. It provides con-
fusion to the cipher (with the help of the secret’s key addition), and it is usually
implemented as a look-up table. Confusion is that property that makes the relation
between plaintext, key and ciphertext as complex as possible. Each digit of the
secret key should influence the correspondence between plaintext and ciphertext in
a non predictable way;

• Permutation: It performs a permutation of bits in the cipher state. It provides
diffusion to the cipher, and it is usually implemented by bit-wise permutations or
both XOR and rotate operations. Diffusion is that property that flattens as much
as possible the frequency distribution of groups of plaintext letters. Having fixed
value for the secret key, a single change of a plaintext bit should drive bits change
in the ciphertext.

Advanced Encryption Standard It is one of the most used ciphers for data encryp-
tion based on Substitution-Permutation Networks. It is a 128-bits block cipher, which
means that it operates on blocks of length 128-bits; it supports three different key sizes,
that are 128-bits, 192-bits and 256-bits long.

The cipher can be seen as a set of operations applied at byte level. In fact, the cipher
state of AES is defined as 4x4-byte matrix: this means that the block in input is divided
into 16 blocks, each large 8-bits in size.

The encrypting operations performed in one round are:

• AddRoundKey : It adds the round key to the cipher state via the logical XOR
operation;

• SubBytes : It performs the substitution operation. It is a nonlinear bijective function,
implemented as a 8-to-8 bit map. It is usually referred to as S-Box. It takes a cipher
state byte (usually updated already with the round key), and it substitutes it with
another byte in a nonlinear fashion. It is implemented as two separate lookup tables,
one for each encryption and decryption computations;

1| Introduction 5

• ShiftRows : It is the first half of the permutation layer; it performs a cyclic shift
on the state matrix. Each row of the state matrix is shifted by different offsets. It
ensures that columns of the state matrix interact with each other;

• MixColumns : It is the second half of the permutation layer; it ensures that rows
of the state matrix interact with each other. It is performed for each column of
the state matrix by mixing with each other the bytes in the same column. It is
implemented by multiplying each column state with a constant matrix.

Then, an AES round is a cascade of SubBytes, ShiftRows, MixColumns and AddRound-
Key operations. The number of rounds of the cipher depends on the key size: with key
sizes of 128-bits, 192-bits and 256-bits are employed 10, 12 and 14 rounds, respectively.
The key schedule will produce as many round keys as the number of rounds. The first
operation performed by the cipher involves a key addition operation with the former value
of the secret key. Then follows a cascade or r rounds that involve the corresponding round
key. In the final round, it is not performed the last MixColumns operation because easily
invertible.

Figure 1.1: AES encryption structure

For what concerns the decryption, it is applied the inverse transformation of each cipher
state in reverse order. That is:

6 1| Introduction

• AddRoundKey : it adds to the ciphertext the relative round key via XOR operation.
This step reverts back the former application of the round key performed during
the encryption;

• InvSubBytes : it applies the inverse nonlinear transformation of the S-Box function;

• InvShiftRows : it rotates the cipher state to the opposite direction (with respect to
ShiftRows);

• InvMixColumns : it inverts the column mixing operation. It is performed by multi-
plying each column state with the inverse matrix used in MixColumns.

The key schedule is performed in the same way for the encryption. The only difference
is that the round keys are applied in reverse, that is, from the last one up to the former
value.

Figure 1.2: AES decryption structure

Feistel Network

Feistel Networks are another important designs used in cryptography. The cipher state
consists in splitting the input block in two sub blocks of equal size, usually referred to as
the couple (L,R). A round of a Feistel Network affects only one of these two sub blocks

1| Introduction 7

by the application of key-dependent (non-linear) function. After each round it is then
swapped the position of the two sub-blocks (and then the other sub block is taken into
account). The decrypting operation exploits the same encrypting scheme, but it applies
the round keys in reverse order. The reason why it is possible to reuse the same encrypting
scheme is due to the invertibility of the round function. A typical round can be defined
as:

Li = Ri−1, Ri = Li−1 ⊕F(Ki, Ri−1) (1.5)

After a round application, the sub-block L at round i is updated with the value of the right
sub-block R at round i-1 ; then the sub-block R at round i is updated by the computation
of the non-linear function F (fed with round key) on sub-block R at round i-1 ; then the
result is XORred with the sub-block L at round i-1.

Data Encryption Standard It is one of the most known algorithms designed with
Feistel Networks. It is a 64-bits block cipher and supports only keys of 64-bits (of which
only 56 are used). The number of rounds is 16; each round performs the same operations,
but on different sub blocks. In addition to the rounds application of the Feistel Network,
it is also performed a bit permutation at both start and end of the encrypting/decrypting
computations. After having divided the 64-bit block as (Li−1, Ri−1), the computation of
F is performed by the following operations:

• Expansion Permutation: it takes as input the 32-bits long Ri−1 block and outputs
a 48-bits block via a fixed scheme (it duplicates some bits and permutes them);

• Round Key Addition: the round key is added via XOR operation to the sub-block
obtained from the expansion permutation operation;

• Splitting : after the round key addition, the 48-bits block is split into 8 6-bits sub-
blocks;

• Substitution: each 6-bits block value is then substituted by an S-Box: for each 6-
bits block it is used an unique and independent S-Box. The output of an S-Box is a
4-bits value, and it is the only step that introduces non-linearity in the system. As
for AES, they are implemented as look-up tables;

• Permutation: it combines eight 4-bits blocks into a 32-bits block and permutes its
value.

The S-Box is a non-bijective function (more specifically, it is non-injective): as the imple-
mentation of the S-Box is a matrix of four rows and sixteen columns, the 1st and 6th bits
in input to the S-Box are used to select the row of the matrix. The value made from the

8 1| Introduction

remaining four bits will be substituted by the non linear scheme of the selected row (of
the selected S-Box). The key schedule will produce sixteen 48-bits long round keys from
the 56-bits one. Starting from the 64-bits key, it is first permuted and all the parity bits
(that is, bits at position 8,16,24,..., 64) are removed from it. This produces a key long
56-bits. Then it is halved in half (into two sub keys of 28-bits), it is applied a cyclic shift
(depending on the round) and it then recombined together (into a 48-bits key). Repeating
these three operations sixteen times will give the sixteen round keys.

Figure 1.3: DES encryption and decryption structures

1.2. Background on Side-Channel Attacks

Most of the symmetric block ciphers that are employed nowadays are implemented in such
a way that they are quite resilient to linear and differential cryptanalysis. Cryptanalysis
is an attack on block ciphers that aims at recovering the secret key with an effort smaller
than performing a brute force attack. Brute force is an attack that blindly tests all the
possible keys of a ciphers on ciphertexts in the attempt to guess the correct secret key.
If the key space K is too large, the computational effort that the attacker is required to

1| Introduction 9

perform is so unbearable that it could not be performed within reasonable time. If the
key space of such ciphers is reasonably big, it is said that the cipher is computationally
secure.

With linear cryptanalysis, the attacker tries to approximate the non-linear behaviour
of non-linear components with linear relations; then, by means of probabilistic analysis
over these linear relations, the attacker might extract enough information over the secret
key. Differential cryptanalysis, on the other hand, takes ciphertext pairs where the relative
plaintexts show a particular difference: the XOR operations between those two ciphertexts
is called differential, and certain differentials may have more probabilities than others of
being observed (with respect to the chosen key). By analysing those probabilities, an
attacker hopes to retrieve the key structure of the correct secret key employed for those
ciphertexts.

Due to the fact that most ciphers are resilient to such techniques, attackers decided
to target the physical implementations of such ciphers. A physical implementation of
a cryptographic algorithm is bound to the physics of the device it is realized on: in an
electrical system there is a strong relation between its power consumption and the relative
cryptographic computation. A physical property that can be captured for such attacks is
called side-channel, and the whole technique exploiting these properties for the extraction
of a secret key of a cryptographic algorithm falls under the name of Side-Channel Attack.
It is also referred as leakage the unintentional leak of information (whether it is physical
or not) from a side-channel.

1.2.1. Power-Based Information Leakage

One of the physical measurements that is largely exploited in the vast majority of SCAs
is the power consumption of the device. In an electrical device, data is represented in
binary format by means of strings of ones and zeros; such strings are actually represented
as vectors of bits (namely binary digits); each bit is physically made of transistors. A
transistor is realized in Complementary Metal Oxide Semiconductor (CMOS) technology,
and can mainly switch between the high logical level ’1’ and the low logical level ’0’ whether
a current is flowing it. The amount of power drawn by a device during the computation of
a cryptographic algorithm is linked to the data that is being processed. Thus, the power
consumption measurements hold information about the various cryptographic operations
that are performed. The total of power consumption of a CMOS circuit is the sum between

10 1| Introduction

dynamic power and static power [26]:

Ptotal = Pdynamic + Pstatic (1.6)

The static power is the power consumed when the device is not switching states. The
dynamic power consumption occurs when the circuit switches between logical values. This
latter contribution, despite being present only in state transitions, it is the predominant
factor for the power consumption [11]. The dynamic power consumption can be defined
as:

Pdynamic = CLV
2
DDP0→1f (1.7)

Where CL is the gate load capacitance, VDD is the supply voltage, P0→1 is the probability
of a switching activity and f is the clock frequency. Then, the current consumed by a
device is linked to the energy needed to change bits from one state to another, which
means that it is linked to the number of bits equal to the logical value ’1’ stored in that
moment. The power consumption can be modeled by the Hamming Weight (or HW) and
it is simply based on the amount of ’1’s in a binary value. E.g., the Hamming Weight of
the binary string ’0b0101’ (5 in decimal) is equal to 2. The Hamming Weight can be used
to model the immediate power consumption of a device in a time instant t.

In addition to it, for power consumption it can be defined a much more detailed model,
that is the Hamming Distance (or HD) model [4]. It is defined as Hamming Distance
between two strings as the minimum number of bit flips that can be performed on one
value to obtain the second one. The Hamming Weight can be seen as the Hamming
Distance with respect to the null string (a string full of zeroes). E.g., the Hamming
Distance between ’0b1010’ and ’0b0100’ is equal to 3 (as the first 3 bits are different in
both strings). The Hamming Distance can be used as a more accurate model for the
power consumption of data computed in two different time instants t and t-1 :

W = aHW (D ⊕R) + b = aHD(D,R) + b

W = aHW (D) + b

(1.8)

(1.9)

Where the first formula defines the power consumption W related to the Hamming Dis-
tance, and the second formula defines the power consumption W related to the Hamming
Weight. The parameter a is a scalar gain between Hamming Distance HD and power
consumed; the parameter b is the power dissipation induced by noise. D is the handled
data by the device and R is the data reference from which the state switches from (and
that is equal to a vector full of zeroes in case of the Hamming Weight).

1| Introduction 11

To measure a circuit’s power consumption, it is put a small resistance (like 50Ω) in series
to the power or ground input; then two probes connected to an oscilloscope are attached to
both ends of the resistor and voltages changes are captured over time. The more accurate
is the oscilloscope, the better the quality of the measurements and thus the better the
quality of the attack. Also the quality of the both probes and resistance may affect the
quality of the measurements, as well as temperature, pressure, and other environmental
factors.

A single power measurement of a cryptographic algorithm is usually referred to as power
trace, and it is represented by the vector tn. A trace is represented as:

tn = [tn0 , t
n
1 , ..., t

n
l]

Where the superscript identifies the n-th acquisition of the power trace, that is, the
acquisition related to the whole cryptographic operation; while the subscript identifies
the l -th sample taken from that cryptographic operation.

A power trace is also susceptible to noise: noise is actually modelled as a random variable ε
having normal distribution with 0 mean and σ deviation standardN (0, σ). Such definition
of the noise is called Gaussian.

Then, a voltage measurement at both ends of a resistor can be defined as[24]:

t(x) = V oltageactual(x) + ε (1.10)

Where V oltageactual is the noise-free value of the voltage, and ε is the additional noise.
Then, a typical operation performed over traces is to average a good amount of measure-
ments (related to the same encryptions with the same input data). In this way it can be
filtered some part of the noise and deal with much cleaner traces.

1.2.2. Side-Channel Attacks

Differential Power Analysis is the first side-channel attack that made use of a leakage
model for a successful attack[24, 14]. A leakage model defines the relationship between
the power consumption of the device and the secret key that is being employed. Such
leakage model is used to compute leakage predictions that will be compared with real
side-channel observations by means of a Distinguisher. A distinguisher is any statistic
used to compare side-channel measurements with hypothesis dependent predictions, and
that are able to point out the correct hypothesis[24]. For each key hypothesis it will
be assigned a score by the distinguisher that will describe how the leakage prediction

12 1| Introduction

and the side-channel measurement are dependent. If an attack is successful, the score
assigned to the correct key hypothesis will be the highest with respect to all the other
scores. Research has investigated several distinguishers throughout the years, such as
Difference of Means [14], Pearson’s correlation coefficient [4], Bayesian Classification[5],
Mutual Information[10], and so on. The implementation of a good distinguisher allows
an attacker to retrieve the correct key hypothesis with the highest Success Rate possible.
The success rate is a metric used in SCAs that gives information about the chances a
distinguisher has to extract the correct key, and it is computed empirically by performing
an attack a certain number of times and to record the average number of successes[28,
17].

In a DPA it is chosen as leakage model one bit from an intermediate value of the crypto-
graphic algorithm. This intermediate value involves the application of both known data
and key hypothesis, and such model it used to point out the power consumption driven
by that bit. Then, for each key hypothesis, the predictions computed by such leakage
model are used to classify side-channel measurements into two distinct classes that will
be compared by means of a distinguisher. In this case, in a simple DPA, as distinguisher it
is used the Difference of Means between those classes. Under the assumption of a correct
key hypothesis, the set of side-channel measurements will be correctly classified into the
relative classes, and the distinguisher will infer the correct by assigning to it the highest
score.

An enhancement of such attack is Correlation Power Analysis [4]. CPA takes DPA a step
further by modelling in the most accurate way possible the power consumption of multiple
bits of an intermediate value of a cryptographic algorithm. Due to the physical properties
of electrical devices used for cryptographic implementations, the most accurate leakage
model that can be used is the Hamming Distance. In fact, an electrical system leaks the
Hamming Distance (or Hamming Weight if the reference state is zero) of binary values.
because of the more complex definition of the leakage model, as distinguisher it is used
a much more sophisticated tool, namely Pearson’s correlation coefficient. This tool is
able to identify any linear relation between two random variables, which in this case are
side-channel measurements and leakage predictions.

In fact, when the device leakage model is known, CPA is renowned to be the best attack
that allows to extract the secret key with the highest success rate possible.

1| Introduction 13

1.3. Open Challenges and Goals

As it was described in the previous chapter, when the leakage model of a target device is
well understood, CPA is the best side-channel attack that can be performed on such cryp-
tographic implementations. When the knowledge of a leakage model is partial, whether
it be partially known or utterly unknown, CPA’s performance will drastically drop[7].

In such scenarios, side-channel attacks must adapt the description of both leakage model
and distinguisher in order to execute a successful attack.

In such circumstances, assumptions on leakage model need to relax, and as leakage model
it is chosen an intermediate value computed by the cryptographic algorithm itself. The
hypothetical leakage model is usually defined as L̂k̂ := f(k̂,M), where k̂ is a key hypothe-
sis, M is a known datum, and f(·) is a suitable function computed from the cryptographic
algorithm.

In contrast with (correlation) power analysis attacks, the complexity of the attack is in
the choice of a suitable distinguisher that must be capable to infer more information from
a relaxed model. In fact, one of the most fitting distinguishing tool is the Mutual Informa-
tion, an instrument capable of extracting any dependency between two random variables.
When two random variables are highly dependent, the value of the mutual information is
very high; when there is almost no relationship between two random variables, the mutual
information value is very small.

Such distinguisher is used in Mutual Information Analysis [10] (or MIA), a generic side-
channel attack characterized by having a high success rate when performed on partially
known or unknown models, and when the hypothesis of noise are not Gaussian. Key
extraction is achieved by computing the maximum of mutual information I(·) between O

and L̂k̂:

maxk̂ I(O|L̂k̂) (1.11)

Where O is the random variable representing all the possible values that could be taken
by the measurements; L̂k̂ is the random variable representing all the possible values that
could be taken from the hypothetical leakage model under that key hypothesis k̂.

Since leakage models cannot be molded as accurately as possible after the physics of the
targeted device, the choice for a suitable model used to justify side-channel observations
is still a burning issue.

In the State of Art of MIA[10] it was presented an instance of a generic side-channel attack

14 1| Introduction

that defined the leakage model after a truncated version of an intermediate cryptographic
value; then it extracted the correct secret key by maximizing the mutual information
between leakage predictions and side-channel observations. The truncation of that value
was necessary for a correct evaluation of the mutual information, which would have been
invalid otherwise.

The challenge that this work takes upon is to investigate the most suitable leakage models
defined as L̂k̂ := maskout & f((k̂,M)&maskin) that can be used for attacks with the
highest success rate. The investigation is accomplished by means of exhaustive search of
combinations of both variables maskin and maskout. The variable maskin allows to control
subsets of arguments that are fed to the intermediate function f(·); in turn it enables to
explore several subsets of observable values of f(·) with respect to key hypothesis k̂. While
the variable maskout allows to investigate different models by truncating combinations of
bits of f(·).

In literature there exist works that investigated and designed functions f(·) that, when
used for modelling the leakage, degrade the overall success rate of CPA attacks[16].

Since there is no work on literature about the study and design of functions f(·) resilient
to MIA, in this work it was seized the opportunity to analyze such functions f(·) presented
in [16] and search out the ones most resilient to MIA.

However, not always it is possible to perform a successful attack when observing the
maximum of mutual information. Unsuccessful attacks may happen when leakage models
used to represent side-channel observations might be completely independent from keys
assumptions, or might not be particularly accurate under the assumption of correct key
hypothesis.

An interesting question would be: What if it can be derived a model that is systematically
wrong? A systematic wrong model would mean that the model will be the most wrong
possible only when it is tested with the correct key hypothesis. Such model will be the
worst at justifying every side-channel observation, and it will perform on average when
interrogated with wrong key hypothesis.

Then, the secret key extraction would fail when key hypothesis are distinguished with
the maximum of mutual information. In contrast, when the worst leakage models are
employed, successful attacks would be observed when looking at the minimum of mutual
information instead.

In literature there is no related work that investigates generic side-channel attacks with
worst leakage models.

1| Introduction 15

The definition of the model L̂k̂ does also allow to investigate for models that are the most
distant possible from the real one only under the assumption of correct key hypothesis.
This investigation is performed by looking at the minimum of mutual information when
it is used such models.

The contributions of this thesis are:

• Offer a systematic analysis of the best leakage models possible L̂k̂ := maskout &

f((k̂,M)&maskin) under the assumption of correct key hypothesis k̂ on several
functions f(·). Such analysis are performed by looking at the maximum of mutual
information maxk̂ I(O|L̂k̂), and it is investigated for those functions f(·) that offer
a particular resilience when attacked with MIA;

• Offer a completely new systematic analysis of the worst leakage models possible
L̂k̂ := maskout & f((k̂,M)&maskin) under the assumption of correct key hypothesis
k̂ when looking at the minimum of mutual information mink̂ I(O|L̂k̂). This analysis
is performed on those functions f(·) that are able to withstand attacks when the
secret key is extracted with the maximum of mutual information.

In the following chapters it is explained how such analysis have been carried out. In
chapter 2, the reader will be introduced to the State of Art of side-channel attacks: it will
be described both CPA and MIA implementations. It will be described what are the most
suitable intermediate values used for model definitions and their main characteristics. In
chapter 3, it will be described in detail how the experiments were organized and then
executed. In chapter 4, it will be shown and discussed the results obtained from such
experiments. Finally it will be wrapped up by expressing some final considerations on the
whole work.

17

2| Side-Channel Techniques

This chapter introduces the reader to the state of art of side-channel attacks. It will be
explained how the most useful techniques are executed and the nuances that hide behind
them. In general, there is one important characteristics that all side-channel attack share
in common: every side-channel attack recollects the secret key used into a cryptographic
encryption by means of a divide-and-conquer strategy. With this strategy, the secret key
gets divided into several sub-keys, and the side-channel technique is then used to extract
the value of each sub-key independently. In this way, an attacker would be able to test
and extract each sub-key in a fast and efficient way. However, this strategy depends to a
great extent on the capability of the attacker to define a suitable model that should be
used to represent the target device under attack.

2.1. Simple Power Analysis

Introduced during 1999 by Kocher et al.[14], Simple Power Analysis (or SPA) is both the
first and the simplest side-channel attack that targeted a cryptographic implementation.
It is based on a graphical analysis of the power consumption over time of a cryptographic
computation. The sole visible inspection of a power trace gives already enough information
about the target device and the type of cryptographic algorithm that is being computed.

Figure 2.1: SPA on a DES encryption

18 2| Side-Channel Techniques

As it can be seen in figure 2.1, it can be observed with naked eye all the 16 rounds of a
DES encryption/decryption computation.

Figure 2.2: SPA on a AES encryption

While in figure 2.2 it can be noticed 10 rounds of an AES computation. Despite both
figures were taken on different target devices, it was still possible to observe the relative
electrical patterns of both cryptographic computations. With a closer inspection to the
AES power trace in figure 2.3, it can be observed the patterns relative to the computation
of the 16 S-Boxes substitutions (blended with the ShiftRows operation), MixColumns and
addRoundKey.

Figure 2.3: SPA on a round computation of AES’ cipher

Thus, SPA can reveal the sequences of instructions performed by a cryptographic im-
plementation. Moreover, this visual attack can be used to extract the key for those
cryptographic techniques where the performed operations rely heavily on the particular

2| Side-Channel Techniques 19

datum that it is being handled. That is, where the execution path depends on the pro-
cessed data. In fact, in RSA (that is an asymmetric cryptosystem), the secret key x is
used for the computation of a value R by the formula R = yxmodn, where n is a public
value, and y can be found by an attacker. The computation of R is performed by the
square and multiply strategy : if in the secret key it is met the bit ’0’, it is only performed
a square; if it is met the bit ’1’, it is also performed a multiply operation. It follows the
pseudo-code of a square and multiply strategy:

Algorithm 1: Square and Multiply right to left
Data: y, x, t = ⌈log2x⌉, x = (xt−1, ..., x1, x0)

Result: c = yx

if x = 0 then
return 1

end
b← y

if x = 1 then
c← y

else
c← 1

end
for i← 1 to t− 1 do

b← b2 mod n

if xi = 1 then
c← c · b mod n

end

end
return c

Thus, it is possible to identify each bit of the secret key by inspecting the patterns in
power consumption during the execution of R. In fact, in figure 2.4 it can be observed the
different power consumption values with respect to each processed bit.

Since with SPA it was possible to observe patterns in the power consumption, the simplest
countermeasure that could be taken was to execute additional operations in order to mask
such patterns. In this way, it would not be possible to visually discern patterns within
measurements and relate them to key bits. On the other hand, this countermeasure comes
with an increase in power consumption and a degradation of performance[14] that can be
quite expensive with respect to the operations that are duplicated.

20 2| Side-Channel Techniques

Figure 2.4: Portion of a power trace of a computation of a RSA private key

Algorithm 2: Square and Multiply right to left with the countermeasure
Data: y, x, t = ⌈log2x⌉, x = (xt−1, ..., x1, x0)

Result: c = yx

if x = 0 then
return 1

end
b← y

q ← 0

if x = 1 then
c← y

else
c← 1

end
for i← 1 to t− 1 do

b← b2 mod n

if xi = 1 then
c← c · b mod n

else
q ← c · b mod n

end

end
return c

But most of cryptographic algorithms do not encode the secret key into cryptographic
operations. For example, symmetric ciphers, due to their design, blend the secret key with
plaintext messages, and perform a fixed set of operations on them. The set of performed
operations is the same, does not change with respect to key bits values. What changes

2| Side-Channel Techniques 21

with respect to the key are the operands on which such operations are performed on.

2.2. Differential Power Analysis

It’s the first statistical SCA developed during 1999 by Kocher P. et al.[14]. It was presented
in combination with SPA at the conference of CRYPTO 1999, and it is considered as the
basis of the following studies over side-channel attacks. With respect to a SPA, in addition
to the measurements, this attack is also the first attack that exploited a selection function
(also known as leakage model), used for the classification of side-channel measurements.

The attack is executed as follows[14]:

1. The attacker observes N encryptions/decryptions performed with the same secret
key k∗, and captures the relative power traces Tn[0..L] along with the relative
plaintexts/ciphertexts values Mn:

Tn[0..L] =

t1

t2
...

tN

 =

t10 t11 · · · t1L
t20 t21 · · · t2L
...

...
tN0 tN1 · · · tNL

 Mn =

m1

m2

...
mN

2. Then it is chosen the selection function. Such function is used to classify side-

channel measurements into two sets of classes. In simple DPA, the selection func-
tion computes one bit value taken from an intermediate value of a cryptographic
operation that employs both a secret key and some known data. The model is de-
fined differently for each cryptographic algorithm, based on how easy it is to test
plaintext/ciphertext values and key hypothesis.

In a cryptographic algorithm, encryption and decryption is performed by repeat-
ing several operation in multiple rounds. In general there are two rounds that an
adversary can choose for a side-channel attack:

• The first round of a cryptographic algorithm allows to exploit the plaintext
message as known data;

• The last round of a cryptographic algorithm allows to exploit the ciphertext
as known data.

Targeting deeper rounds would be possible, but it would require an attacker to

22 2| Side-Channel Techniques

increase the complexity of the attack.

A common target value for the selection function is one bit from the output of a
S-Box computation. In a block cipher, both secret key and known data can be
divided into blocks of same length:

k∗ = {k∗
1, k

∗
2, ..., k

∗
r , ..., k

∗
R}, 1 ≤ r ≤ R

mn = {mn
1 ,m

n
2 , ...,m

n
r , ...,m

n
R}, 1 ≤ r ≤ R

(2.1)

(2.2)

A S-Box is normally implemented as a look-up table indexed by the XOR between
a subset of known data mn

r and hypothesis on a subset of the secret key khyp:
f(mn

r , khyp) = S-Box(mn
r , khyp).

It is formally defined as D(M, b, khyp) the selection function D(·) that takes as
argument the parameters:

• M , that represents the value of the known data;

• khyp, that represents the value of the tested key hypothesis;

• b, that is the position of the bit that is used for traces’ classification.

Then, the selection function can be defined as:

D(M, b, khyp) = S-Box(M,khyp)[b] = S-Box(mn
r , khyp)[b] (2.3)

3. It is computed the value of D(M, b, khyp) for each trace for a specific S-Box. It is
first fixed the value of r. Then it is chosen a suitable position for the output bit b
and it is fixed a key hypothesis khyp. Next, it is plugged into the leakage model the
subset values of recorded plaintexts/ciphertexts mn

r /c
n
r one at a time. The output

of the selection function is binary by construction, and with respect to the outcome
(0 or 1), power traces are collected into two different bins;

4. After having classified all the measurements, it is then performed an average between
all traces within the same bin. That is, all the traces in the bin where D(·) was
equal to ’0’ are averaged together; the same is performed with traces in the other
bin (where D(·) was equal to ’1’). These traces are referred to as master traces;

5. Finally it is performed a final L-sample differential trace ∆D[0..L] by finding the
difference between the two master traces. The differential trace is computed as[14]:

2| Side-Channel Techniques 23

∆D(j) =

∑N
n=1D(mn

r , b, khyp) ∗Tj∑N
n=1 D(mn

r , b, khyp)
−
∑N

n=1(1−D(mn
r , b, khyp)) ∗Tj∑N

n=1(1−D(mn
r , b, khyp))

≈

2 ∗
(∑N

n=1D(mn
r , b, khyp) ∗Tj∑N

n=1D(mn
r , b, khyp)

−
∑N

n=1 Tj

N

)
, with r, b, khyp fixed

If in the vector ∆D(j) it is found some significant values, then the key hypothesis khyp
is correct. Otherwise, if ∆D(j) is flat almost everywhere, the attack is performed
again from step 3. with a different key hypothesis khyp and possibly by taking into
account a different position for the bit b;

6. Cryptographic algorithms implement several S-Boxes, and for each S-Box it is used
part of the secret key k∗ by means of sub-keys k∗

r . A single run of a DPA allows to
extract one sub-key k∗

r used for that particular S-Box that is being analyzed. Thus,
the extraction of the entire key k∗ is obtained by repeating the attack from point 3.
by cycling through all the possible values that the variable r can take on.

If khyp is incorrect, the bit computed using D(·) will differ from the actual value for half

of the Ci values. That is, when khyp is incorrect, there is probability P ≈ 1

2
of guessing

a correct value for the chosen bit for each Ci. Thus the selection function is uncorrelated
to what it is actually computed from the target device. If a random function is used
to divide sets of measurements into two distinct subsets, the difference between the two
master traces would approximate 0 as the number of measurements increases[14]:

lim
n→∞

∆D(j) ≈ 0 (2.4)

However, if khyp is correct, the computed value of D(·) will be equal to the actual value
with probability equal to 1. The selection function will be correlated to the manipulated
bit. Then it will be observed the effect of the bit in the power consumption as the number
of measurements n → ∞. All the other data values, measurements, etc. not correlated
to D(·) approach zero. The plot of ∆D(·) would be expected to be flat almost everywhere
(where data is uncorrelated with D(·)), and some spike in those regions where data being
processed is correlated with D(·). In figure 2.5 it is shown a DPA attack on DES traces:
the first trace represents the average value of a trace; the following three ∆D(·) traces
related to the correct key hypothesis and two wrong keys hypothesis respectively. Thus, by
performing DPA over all sub-keys, it is possible to recollect the entire secret key employed
for the encryption.

The distinguisher presented in the original paper was the DoM (or Difference of Means),
and it used to compare the first moment (or mean) between two classes; later on got

24 2| Side-Channel Techniques

Figure 2.5: DPA attack, with one successful attack and two unsuccessful attack

developed other high-order DPA attacks, where more samples are used at the same time
from within the same power [14, 20, 23]. One important characteristic of this attacks
is that it does not require any particularly expensive set of instruments for a successful
attack.

There were different countermeasures that were proposed in the same paper[14] to reduce
the susceptibility of cryptographic implementations to this kind of attack.

The first approach was to reduce the signal size by reducing the overall Signal-to-Noise
ratio (SNR). This was achieved by choosing operations that leaked less information in
terms of power consumption, for e.g. by using constant execution path code. It could
be also implemented a physical shield so as to isolate the device. This solutions would
not reduce completely the signal size, but instead it would require an attacker to gather
more measurements. In particular, physical shielding does also increase the overall cost
and size of the device where it is implemented on[14].

Another approach would introduce artificial noise into power consumption measurements.
Moreover, it could be also randomized both the execution time and order of some opera-

2| Side-Channel Techniques 25

tions[14]. This could be implemented by inserting fake cycles, use unstable clocking and
random delays. This would allow to desynchronize multiple power measurements taken
from the same sample set.

These two approaches are also known as hiding, and what they do is decrease the cor-
relation between hypothetical power consumption predicted by a model and the power
consumption of the device where the cryptographic algorithm is implemented on[18]. Hid-
ing does not affect the computation of the algorithm (or only in a minimum part), and
decreases the overall SNR.

Hiding, however, can be defeated by averaging multiple measurements taken from the
same cryptographic operation. This technique is called windowing [8], and an attacker is
required to gather and average a lot of measurements.

A third approach would require to design a cryptosystem with some knowledge on the
underlying hardware it will be built on. In this way the designer can use leakage functions
to analyze and improve the overall design[14].

In the same conference of CRYPTO 1999 it was also presented by Chari et al. a paper on
sound approaches against power analysis attacks[6]. Here it was introduced the concept
of masking : this technique would conceal each bit value by splitting it into n shares as:
b0⊕ r1⊕ r2⊕ ...⊕ rn−1⊕ (r1⊕ r2⊕ ...⊕ rn−1), where each ri bit is chosen randomly. From
an attacker perspective, this toughens his ability to predict the right bit values.

But masking alone cannot prevent high-order DPAs. In a high-order DPA, multiple points
from several traces are combined into a single value by means of a preprocessing function.
Then, this value, can be easily attacked by a simple DPA attack. The points taken into
account can be either a masked intermediate value and the value of the mask itself, or
two intermediate values masked by the same mask.

Then, masking alone is not enough, and other diverse countermeasures must be imple-
mented at the same time to obtain a good level of resilience[30].

Both masking and hiding can be implemented on software level and hardware level. The
costs of hardware implementations do increase as it is chosen more fine grained techniques.

2.3. Correlation Power Analysis

Developed in 2004 by Brier et al., it took DPA a step further[4]. CPA is a model-based
approach, but in opposition to (simple) DPA, it takes into account multiple bits from the
selection function. In addition to it, this attack does also exploit the information of the

26 2| Side-Channel Techniques

power consumption model of the target device. Thus, as leakage model it is taken the
Hamming Distance of the whole selection function with respect to an unknown reference
value R. Then, for the key extraction, such model is tested with several key hypothesis
and reference values. Instead of using the difference of average traces, as distinguisher
it is used the Pearson’s Correlation Coefficient. This coefficient is a statistical test that
measures the linear correlation between two random variables X and Y, and it is defined
as:

ρX,Y =
cov(X, Y)

σXσY

=
E[(X − µX)(Y − µY)]√

E[(X − µX)2]E[(Y − µY)2]
(2.5)

Where E is the usual notation for the expected value, σX is the standard deviation of a
random variable X, and cov(·) is the covariance between two random variables. In this
case, the two random variables are the leakage model fed with key hypothesis and the
power traces of cryptographic encryptions with unknown secret key k∗. The Pearson’s
correlation coefficient takes values between the range −1 ≤ ρ ≤ +1. When the two
random variables are totally uncorrelated, ρ approximates to 0; when it is used a perfect
leakage model, ρ approximates to ±1. If the correlation is close to −1, it means that the
random variables are anti-correlated: where one increases, the other decreases, and vice
versa.

The attack goes as follows[4]:

1. The attacker observes N encryptions/decryptions performed with the same secret
key k∗ and captures both power traces Tn[0..L] and their relative plaintexts/ ci-
phertexts Mn:

Tn[0..L] =

t1

t2
...

tN

 =

t10 t11 · · · t1L
t20 t21 · · · t2L
...

...
tN0 tN1 · · · tNL

 Mn =

m1

m2

...
mN

2. Then it is chosen the leakage model. As usual target of a SCA, it is targeted a

function that employs part of the secret key and known data. In block ciphers,
keys and known data are divided into blocks of equal size as in 2.1 and 2.2; the
best candidate function is the Substitution Box, as it is implemented as a look-up
table indexed by key hypothesis and known data f(mn

r , khyp) = LUT(mn
t , khyp). By

taking into consideration how information is leaked from the power consumption of

2| Side-Channel Techniques 27

the device, it can be defined the leakage model as:

Lkhyp := h(mn
r , khyp, R) = HW (S-Box(mn

t , khyp)⊕R) =

= HD(S-Box(mn
r , khyp), R) (2.6)

where R is an unknown but constant reference state. Sometimes the reference R

is systematically set to 0, which in turn it would simplify the leakage model with
just the Hamming Weight L := h(mn

t , khyp) = HW (S-Box(mn
t , khyp)). Otherwise, it

is required to identify the correct value for R by exhaustive search. Generally, this
operation is performed only once[4];

3. It is first fixed the index r related to the attacked S-Box(·), and a key hypothesis
khyp. Then it is computed the Pearson’s correlation coefficient for each sample point
l. These computations allow to obtain a measure of the correlation for each sample
point l between the chosen key hypothesis khyp and all power measurements ti:

ρkhyp,l =

∑N
i=1[(hi,khyp − µhkhyp

)(ti,l − µtl)]√∑N
i=1(hi,khyp − µhkhyp

)2
∑N

i=1(ti,l − µtl)
2
,

0 ≤ khyp ≤ K, 0 ≤ l ≤ L

Where ρkhyp,l is the correlation coefficient with respect to sub-key hypothesis khyp

at sample position l ;

hi,khyp is the value of the power prediction induced by the leakage model for each
power measurement i under key hypothesis khyp. It is computed as hi,khyp =

HW (S-Box(mi, khyp)⊕R);

µhkhyp
is the mean value between all power predictions under key hypothesis khyp.

It is computed as µhkhyp
=

1

N

∑N
i=1 hi,khyp ;

ti,l is the value for each power measurement i at sample point l ;

µtl is the mean value between all power traces at sample point l. It is computed as

µtl =
1

N

∑N
i=1 ti,l;

Then, the computation of ρkhyp,l is executed again for each key hypothesis khyp. In
correspondence with the key hypothesis that maximizes the correlation coefficient
it is found the secret key k∗

r ;

4. A single instance of CPA applied on a leakage model derived from the S-Box(·)
allows to extract a sub-key k∗

r (a share from the actual secret key k∗). By repeating

28 2| Side-Channel Techniques

a CPA attack from point 3. by cycling through all the indexes r of all S-Boxes, it
is possible to recollect all the sub-keys k∗

r and combine them into k∗.

A key hypothesis khyp is wrong if ρ approximates 0 for each sample point l. While, a key
hypothesis khyp is correct if there exists at least a point in ρ that tends to ±1.

When considering a CPA attack, it must also be made some assumptions on the behaviour
of the noise. Noise is considered random, independent from the intermediate state, and
Gaussian. The smaller is the variance of the noise σ2, the closer the Pearson’s correlation
coefficient will be to ±1 under the assumption of correct key hypothesis.

When the reference state R is not known, it could still be possible to extract the correct

key by using the partial correlation coefficient ρpart = ρ

√
l

m
, where l is the number of

bits of the reference R that are known, or that could be found by exhaustive search; m is
the total number of bits of the reference state R. Then, the partial correlation coefficient
would allow to observe the value of the correlation coefficient ρ attenuated by the factor√

l

m
.

An optimization that could be performed for the computation of ρkhyp,l involves storing
explicitly sums of variables. This allows to perform live updates of the correlation factor
ρ by updating such variables with fresh measurements:

ρkhyp,l =
N
∑N

n=1 hn,khyptn,l −
∑N

n=1 hn,khyp

∑N
n=1 tn,l√(

(
∑N

n=1 hn,khyp)
2 −N

∑N
n=1 h

2
n,khyp

)(
(
∑N

n=1 tn,l)
2 −N

∑N
n=1 t

2
n,l

)
This algorithm is also known as Incremental Pearson coefficient[3], and it requires to store
five variables defined as:

s1 =
N∑

n=1

hn,khyp s2 =
N∑

n=1

h2
n,khyp

s3 =
N∑

n=1

tn,l s4 =
N∑

n=1

t2n,l

s5 =
N∑

n=1

hn,khyptn,l

That can be easily updated by simply adding new data. The correlation coefficient may
be re-written as:

ρ =
Ns5 − s1s3√

((s1)2 −Ns2)((s3)2 −Ns4)

2| Side-Channel Techniques 29

Figure 2.6: Correlation values for CPA

In figure 2.6 it can be clearly observed the correlation value for a correct sub-key guess
with respect to wrong key hypothesis. The attacked algorithms is AES, and the leakage
model is defined after a Substitution Box: thus in a single CPA attack it is tested 256
different sub-key values (since S-Boxes are implemented as 8-to-8 bits functions).

For what concerns countermeasures, masking is one of the most effective countermeasure
that can be implemented on a device to protect it against (simple) CPA: such countermea-
sure is able to defeat power analysis since it masks any intermediate value, and it hinders
the ability of an attacker to predict such bit values[4, 14]. As a result, the attacker must
gather way more measurements from target device, and sometimes such big number of
measurements may be unfeasible to be gathered. However, as it happens for high order
DPAs, they cannot prevent high-order CPA attacks[13, 20, 32]. As a consequence, mask-
ing alone is not enough; masking must be combined with heterogeneous countermeasure
to raise the level of security.[30]

2.4. Mutual Information Analysis

Developed in 2008 by Batina et al., Mutual Information Analysis is the first generic
differential side-channel attack of its genre[10]. Its core idea is to identify if there is
any dependence between two random variables by measuring their mutual information.
In fact, mutual information is able to measure any statistical dependence between two

30 2| Side-Channel Techniques

random variables X and Y. Which means it is able to quantify (in terms of bits) the
amount of information it is obtained by one random variable after observing the other
one. Mutual information is defined as:

I(X;Y) = H(X)−H(X|Y) (2.7)

Where H(X) is the Shennon entropy of X. The Shennon entropy is defined as the measure
of the uncertainty of a random variable X on a discrete space X during an experiment:

H(X) = −
∑
x∈X

PX[X = x] log2 PX[X = x],

PX[X = x] =
1

N

N∑
i=1

1xi=x

(2.8)

(2.9)

Where H(X) expresses the uncertainty in bits (due to the base 2 of the logarithm); PX(·)
is computed by counting all the instances of possible values x ∈ X . The function 1A is
the indicator function of A: it is equal to 1 when A is true, 0 if false.

The joint entropy of two random variables (X,Y) expresses the uncertainty about both
random variables and it is defined as:

H(X,Y) = −
∑

x∈X,y∈Y

PX,Y[X = x,Y = y] log2 PX,Y[X = x,Y = y],

PX,Y[X = x,Y = y] =
1

N

N∑
i=1

1xi=x,yi=y

(2.10)

(2.11)

The joint entropy is the largest when the two random variables are independent, and it
decreases by the quantity I(X,Y) as both random variables influence one another. The
conditional entropy H(X|Y) is the measure of uncertainty of a random variable X on
a discrete space X as a measure of its uncertainty during an experiment given that the
random variable Y is known[24]. It is defined as:

2| Side-Channel Techniques 31

H(X|Y) = −
∑

x∈X,y∈Y

PX,Y[X = x,Y = y] log2 PX,Y[X = x|Y = y],

PX,Y[X = x|Y = y] =

∑N
i=1 1xi=x,yi=y∑N

i=1 1yi=y

=
PX,Y[X = x,Y = y]

PY[Y = x]

(2.12)

(2.13)

Then, the mutual information is used as a distinguisher between the leakage model and
side-channel measurements. Due to the generic nature of the attack, the leakage model
is not needed to be as detailed as possible. This means that it is no more necessary to
model the exact power consumption of the targeted device: knowing the cryptographic
algorithm is already enough for the definition of the leakage model. In fact, the generic
property of the attack comes from the distinguisher itself. Mutual information is able
to capture linear, non linear, univariate, and multivariate relationships between random
variables[24] (in this case hypothetical leakage model and observed leakages). But this
huge advantage over the choice of the leakage model comes with a trade off in terms of
traces needed for a successful attack. The attack goes as follows:

1. The attacker gathers N side-channel measurements from the target device along with
the relative plaintext/ciphertext values in vectors Tn[0..L] and Mn respectively. The
traces come from several execution of a known cryptographic algorithm under the
same and unknown secret key k∗.

Tn[0..L] =

t1

t2
...

tN

 =

t10 t11 · · · t1L
t20 t21 · · · t2L
...

...
tN0 tN1 · · · tNL

,

Mn =

m1

m2

...
mN

 , 0 ≤ m ≤M

In general, measurements are saved into a matrix pmf [T][M] as:

32 2| Side-Channel Techniques

pmf [t][m] =

p0,0 p0,1 · · · p0,M

p1,0 p1,1 · · · p1,M
...

...
pT,0 pT,1 · · · pT,M

 , 0 ≤ t ≤ T, 0 ≤ m ≤M

Where M is the total number of possible plaintexts/ciphertexts that can be fed/
gathered from the cryptographic algorithm, and T is the set of distinct discrete
values that could be observed from side-channel measurements. If the values of T
are not discrete, a preprocessing step must be performed on these value T. Then,
for each occurrence of a value t, it is incremented the count by 1 of the variable pt,m,
a variable indexed by the value t itself and the relative plaintext/ciphertext that is
being handled. In block ciphers, plaintext/ciphertexts are divided in R blocks of
equal size. Thus, it can be built R matrixes (for each plaintext/ciphertext block)
pmfr[T][Mr] as:

pmf r[t][m] =

p0,0 p0,1 · · · p0,Mr

p1,0 p1,1 · · · p1,Mr

...
...

pT,0 pT,1 · · · pT,Mr

 , 0 ≤ t ≤ T, 0 ≤ m ≤Mr,

mn = {mn
1 , ...,m

n
r , ...,m

n
R}, 0 ≤ mr ≤Mr, Mr << M

2. Then it is defined the hypothetical leakage model of the target device. The model is
defined after an intermediate value computed from the cryptographic algorithm. In
literature, it is chosen as target a S-Box computation, as it involves the application
of both secret key and known data. A hypothetical leakage model is defined as
L̂khyp := f(m, khyp) = S-Box(m, khyp), where the îdentifies the hypothetical nature
of the model that differs from the real and unknown leakage model Lkhyp . Since the
real leakage model cannot be known, but it can be found a model that is close to the
real one, it will be used interchangeably "hypothetical leakage model" and "leakage
model" unless it is stated differently.

If it is targeted a block cipher, it means that secret keys will be divided as well into

2| Side-Channel Techniques 33

R blocks (as many as plaintext/ciphertext blocks). Thus, it will be implemented R

(possibly different) S-Boxes: a model L̂ defined after such S-Box will then allow to
retrieve a single sub-key k∗

r ;

3. It is first fixed the index r of the attacked S-Box(·) and the key hypothesis khyp.
Being T a random variable representing all the possible (discrete) values that could
be observed from side-channel measurements, it is estimated both PT and PT|L̂khyp

.
PT is the distribution of observed measurements; PT|L̂khyp

is the distribution of

measurements given the random variable of the hypothetical leakage model L̂khyp

under key hypothesis khyp. These values are used for the computation of the mutual
information through the formula:

I(L̂khyp
;T) = H(T)−H(T|L̂khyp

) (2.14)

Where I(L̂khyp
;T) is the mutual information between the two random variables;

H(T) is the entropy of random variable T; H(T|L̂khyp
) is the conditional entropy

of random variable T given L̂khyp
.

The way those two distributions are built is with the histograms technique. The
distribution PT is obtained from the matrix pmf r[t][m] by reducing the matrix to
a column vector, obtained by gathering all the rows values into a unique variable
pt =

∑Mr

i=1 pt,i:

PT ≈ distrsamples[t] =

p0

p1
...
pT

 , 0 ≤ t ≤ T (2.15)

While the conditional distribution PT|L̂khyp
is built from the matrix pmf r[t][m] by

first computing the joint distribution
distrjoint[t][y]. The variable y and distributions are defined as:

y = L̂khyp(m) = S-Box(khyp ⊕m)

PT,Y ≈ distrjoint[t][y] = pmf r[t][y]

PY ≈ distrhyp[y] =
T∑
i=1

distrjoint[i][y]

PT|Y ≈ distrcond[t][y] =
distrjoint[t][y]

distry[y]

(2.16)

(2.17)

(2.18)

(2.19)

And the mutual information is computed with (2.14), by first plugging (2.15) into

34 2| Side-Channel Techniques

Figure 2.7: Mutual information values of MIA

(2.8), and then by plugging (2.17) and (2.19) into (2.12) respectively;

4. It is repeated the third step for each key hypothesis khyp; in correspondence with
the maximum value of the mutual information it is identified the secret key k∗:

I(L̂k∗ ;T) = arg maxkhypI(L̂khyp
;T) (2.20)

5. If the leakage model is defined after a S-Box computation, then a single instance of
MIA will extract one single sub-key of the whole secret key k∗. Then, the attack
must be repeated for each S-Box(·) (fed with different key material) by repeating
the attack from step 3. with different values for r;

6. Then it is repeated MIA for each sample point l. At each sample point l, the mutual
information will be approximate the value ’0’ if there is no relation between secret
keys tested with the hypothetical leakage model and side-channel measurements.
Then, it will be observed significant values only in those sample points of side-
channel measurements where there is actual information about the secret sub-key.

In figure 2.7 it is shown the values of mutual information for each key hypothesis. The
attacked algorithm is an AES implementation, and as leakage model it is chosen the 3MSB
of a S-Box(·) output, that is L̂khyp = S-Box(m⊕ khyp)[5 : 7].

Due to the generality of mutual information, hiding countermeasures alone are not enough
for data protection, since gathering and averaging a lot of measurements is enough to
pursuit a successful attack.

In addition to it, as stated before, MIA is able to extract univariate, multivariate, lin-
ear, and non-linear dependencies between observed measurements and models. Thus, by
adjusting the definition of the entropy to consider multiple points in side-channel mea-
surements, it could be enhanced the attack to high-order mutual information analysis.
This latter attack, is capable to extract a secret key even if protected with masking[2].

2| Side-Channel Techniques 35

Thus, masking alone is not enough, and additional countermeasures must be implemented
for data protection.

2.4.1. Properties of the Leakage Model

The choice of the leakage model L̂ must meet some important requirements[10]. Let L
be a leakage model: it can be defined the set {L0, L1, ..., Ln} as subset of the space L,
the space of all possible leakage values, where each element Li is called atom. E.g. if
the leakage model is the Hamming Weight of a S-Box output, then L = {0, 1, 2, ..., f},
where f is the number of bit used to represent the result of a S-Box output. Otherwise,
if as leakage model it is chosen the cryptographic function computing the S-Box output,
then it would be L = {L0, L1, ..., L2f}. By defining a partition of L as the set of elements
{Lkhyp

0 , ..., L
khyp
2f
} under key hypothesis khyp, each element is defined as:

L
khyp
i = {m ∈ {0, 1}b | L̂(Wkhyp) = i ∧ Wkhyp = (v1, fkhyp(m)) },

0 ≤ i ≤ 2f , 0 ≤ khyp ≤ K, 0 ≤ b ≤ B

(2.21)

Where m ∈ M are all the possible values for the plaintext/ciphertext message; b is the
number of bits used to represent the message; L̂ is the user defined leakage model; the
random variable Wkhyp represents the occurrence of two words within the execution of the
cryptographic algorithm, namely a constant (possibly unknown) reference state v1, and
the attacked cryptographic function fkhyp(m). The latter one will depend on both secret
key hypothesis and plaintext/ciphertext value.

The above formula 2.21 associates all the input values M = m that leak L̂khyp = i

under key hypothesis khyp to the atom L
khyp
i . That is, it partitions all the set of plain-

texts/ciphertexts values with respect to the outcome of the leakage model fed with a
particular key hypothesis khyp and message m. This classification of plaintext/ciphertext
values induces a classification of side-channel measurements, since each side-channel mea-
surement is associated with one value of plaintext/ciphertext.

If the cryptographic function used for the model (in this case the S-Box) is a bijective
function, (that is, there is a one-to-one correspondence between inputs and outputs), then
mutual information will not be able to distinguish the secret sub-key. This problem is
caused by the injective property of the function, since for each input there exists only one
output. If a leakage model is defined after an f -to-f bits S-Box, then there will be 2f

inputs that will be associated with one of the 2f outputs.

By choosing as leakage model the Identity Id(·) of the substitution box output Lkhyp :=

36 2| Side-Channel Techniques

Id(S-Box(khyp,m)) = S-Box(khyp,m), and having fixed a key hypothesis khyp1 , such leak-
age model will define a partition of plaintext/ciphertext values to atoms L

khyp1
i . By

changing key hypothesis khyp2 , the exact same plaintext/ciphertext values that were pre-
viously associated with L

khyp1
i , will be now associated with another atom L

khyp2
i . What

actually happens is that for each key hypothesis the same batch of plaintext/ciphertext
values will be associated to atoms L

khyp
i .

Then, by changing values of key hypothesis, what is actually changed is the "label" used to
represent that particular group of plaintext/ciphertext values. Since what changes is only
the label, changing key hypothesis will not affect the computation of mutual information,
that will be equal for each hypothesis. Thus it will not allow to discern the true key from
the wrong ones.

As workaround it is defined as leakage model as a subset of the output of a cryptographic
function L̂khyp := Subspace(S-Box(khyp,m)) = S-Box(khyp,m)[c : v], where [c : v] defines
a bit range. This workaround, also known as bit dropping strategy, does allow to relax
the injective property of the target function. By relaxing the injectivity, each output will
be associated with more than one inputs: for each key hypothesis, each output it will be
then associated with different inputs.

This would mean that it is possible to associate to each atom L
khyp
i different groups of

plaintexts/ciphertexts with respect to key hypothesis khyp. In turn, the computation of the
mutual information will be different for each key hypothesis, as it is considered a distinct
groups of plaintexts/ciphertext (and thus, distinct groups of side-channel measurements).

In 2014, Gierlichs et al.[25] wrote a paper about some properties of the leakage model
for generic side-channel attacks (like MIA). It was noticed that leakage models defined
by means of the bit dropping strategy applied to bijective target functions were good
characterization of a target device (as they would lead to successful SCAs).

However, for what concerns MIA, side-channel attacks that were carried out with leakage
models defined as L̂khyp := drop(S-Box(khyp,m))b for bits b ∈ {2, 3, 4, 5, 6, 7} were success-
ful. On the other hand, when the leakage model was defined as L̂khyp :=

drop(S-Box(khyp,m))1, it failed unexpectedly.

This phenomenon was noticed when MIA was tested with ideal measurements, in absence
of noise (σn = 0). In fact it was observed that if the standard deviation σn of the noise
would reasonably increase (above a certain threshold), MIA would eventually succeed.
Thus, only in high-SNR scenario, the bit drop would not work.

Moreover, it was observed that for MIA, a leakage model defined by dropping 5 bits

2| Side-Channel Techniques 37

L̂khyp := drop(S-Box(khyp,m))5, would lead to a higher success rate with respect to other
bit dropping combinations with the same number of measurements. The reason why is
thought to be a superposition of two effects[25]:

• As the number of dropped bits increases, the target becomes more "non-injective",
and thus the attack would work better;

• From a number of dropped bits from 5 to 7, the algorithmic noise of the dropped
bits start to become predominant, worsening the performance of the attack.

In the same paper, it was also observed that it could be defined a leakage model L̂khyp

without the need of dropping bits. Instead of attacking directly a S-Box(·), it could be
also targeted deeper operations in a cryptographic round, and it could be possibly identify
a non-injective target.

Such operations would ideally perform a compression of secret key and known data. In
the paper, it was picked out a MixColumns operation of an AES encryption. The first
byte computed by a MixColumn is computed by mixing four input bytes (u, v, w, x) as
z = 2u⊕ 3v ⊕ w ⊕ x.

As leakage model it could be chosen to target a partial intermediate value z = 2u⊕ 3v =

2S-Box(k1 ⊕m1)⊕ 3S-Box(k6 ⊕m6), of which would be considered the entire output.

It was shown that a MIA attack performed with model z, would lead to a successful attack
by testing 216 different values for the couple of keys (k1, k6).

2.4.2. Probability Distribution Estimation

Figure 2.8: Histogram and Kernel method respectively

The estimation of probability distributions PT and PT|L̂khyp
is one important topic since

all the computations depend on them.

38 2| Side-Channel Techniques

In the paper where MIA was introduced[10], it was chosen to use the Histogram Method :
this method makes use of several bins, and estimates the probability distribution of data
in a sample set by counting how many samples fall into a certain bin.

However there is no optimal strategy that can offer the best estimation. In [10] it was
observed that by using as many bins as the total number of distinct side-channel values
that can be observed, it is possible to exploit as much as possible the information present in
measurements. On the other hand, this approach would require way more measurements
so as to fill all the bins.

Less bins will generally imply less information. However, if the measurements are very
noisy, it was observed in [10] that less bins may have the effect of noise reduction. This
would mean that by increasing the bins size (and reducing the amount of bins), it would
be possible to classify correctly measurements that may come from the same datum.

In 2018 it was presented a paper by Chérisey et al.[7] were it was observed that the
best binning size strongly depends on the standard deviation of the noise. The smaller
the standard deviation of the noise, the more bins should be used to extract as much
information as possible. The higher the standard deviation, the smaller must be the
number of the bins.

Another estimating tool that can be used in alternative to histograms is the Kernel
method[2]. A kernel is a function characterized by a shape and a bandwidth. For each
sample, instead of classifying it in a bin of a histogram, it is added to the estimated
distribution a small kernel centered on the value of the computed leakage[2], as it is shown
in figure 2.8. The sum of all these small functions results to be equal to the estimation of
the target distribution. It was also observed that kernels converge faster than histograms
towards the actual true estimation, and are more suitable when estimating continuous
distributions.

2| Side-Channel Techniques 39

2.4.3. Optimizations

Algorithm 3: Fast computation algorithm of MIA
Data: Tn N measurements that take discrete values, tn ∈ T , Mn N

plaintext/ciphertexts, m ∈M
Result: I(tn,y(k))k∈K

for i ∈ {1, ..., N} do
pmf [ti][mi]← pmf [ti][mi] + 1;

end
for t ∈ T do

distrsamples[t]← 0;
for m ∈M do

distrsamples[t]← distrsamples[t] + pmf [t][m];
end

end
for k ∈ K do
∀ t ∈ T , y ∈ Y , distrjoint[t][y]← 0;
for m ∈M do

for t ∈ T do
distrjoint[t][ϕ(f(k,m))]← distrjoint[t][ϕ(f(k,m))] + pmf [t][m] ;

end

end
I(Tn,y(k))← 0;
for y ∈ Y do

distrhyp[y]← 0;
for t ∈ T do

distrhyp[y]← distrhyp[y] + distrjoint[t][y];
end
for t ∈ T do

if distrsamples[t] ̸= 0 and distrhyp[y] ̸= 0 then
I(Tn,y(k))←

I(Tn,y(k)) +
distrjoint[t][y]

N
log2
(Ndistrjoint[t][y]
distrsamples[t]distrhyp[y]

)
end

end

end

end
return I(Tn,y(k))k∈K

40 2| Side-Channel Techniques

In the paper of Chérisey et al. [7] it was also proposed a series of optimizations that could
be performed on MIA for a faster computation of the overall attack.

The leakage model can be defined as L̂khyp := ϕ(f(m, khyp)) = y(khyp). f(·) is an inter-
mediate value of the cryptographic implementation; ϕ(·) is a function chosen with some
(possibly partial) knowledge of leakage model; both f(·) and ϕ(·) are chosen such that they
fulfill the Markov condition[7]. The Markov condition states that the leakage t depends
on the secret key k∗ only through the computed model y = ϕ(f(k∗,m)).

The computation of the probability mass function pmf [T][M] allows to classify side-
channel measurements with respect to the plaintext messages associated to them. Mea-
surements Tn do already take discrete values, thus they can be classified into the matrix
pmf [T][M] by checking in which bin samples fall in.

Then it is computed the distribution of measurements distrsamples[T] that will be used
for the computation of the mutual information I(·).

For each key hypothesis it must be computed the joint distribution matrix distrjoint[T][Y],
indexed by means of discrete measurements values and hypothetical leakage model esti-
mations under key hypothesis khyp.

Then it is optimized the computation of the mutual information analysis: for each index
t, it first computed anew the distribution of values induced by the leakage model, and
then it is updated the mutual information with new material.

The computation of the mutual information of this algorithm allows to perform |T | ∗ |Y|
log2(·) computations (that are the most expensive operations that could be performed
from a computational point of view). With respect on how the space |T | is defined by
means of the histogram method, and on how the leakage model space |Y| is defined by
the attacker, it can be performed a relatively fast computation of MIA.

2.5. Comparison between CPA and MIA

A year after the introduction of MIA, it was presented a paper that evaluated the perfor-
mance of MIA and CPA under Gaussian assumption [21]. It was shown that both CPA
and MIA have similar performance for the same number of side-channel measurements
when it used a power model that approximates the real leakage function of the target
device, e.g., Hamming Weight (or Hamming Distance). However, when it is used an in-
termediate value of a cryptographic algorithm as leakage function, it was noticed that
CPA achieved better results than MIA at discerning the secret key (for the same number

2| Side-Channel Techniques 41

of plaintexts).

In fact, in 2018 Heuser et al. [12] have shown that CPA attack is the optimal attack
that can be performed when the model of a target device is known and when the noise is
Gaussian, that is when N ∼ N (0, σ2).

However, in 2018 it was presented by Chérisei et al. a paper that compared MIA with
CPA [7] in two distinct scenarios that were particularly challenging for a CPA attack.
From the study[7] it was shown that:

• MIA outperforms CPA when the leakage model of the target device is known, while
the noise does not follow the Gaussian assumption;

• MIA outperforms CPA when the leakage model is unknown (or partially known),
with Gaussian noise.

In the first case, the reason why MIA turned out to be better than CPA was due to the
fact that CPA needed a noise that followed a Gaussian assumption for a successful attack.
While, it was observed that MIA performance were not affected by the type of noise, as
the variance of the noise did not influence the mutual information estimation.

In the second case, it was observed that MIA was capable to outperform CPA when the
leakage model was a non-linear function of the Hamming Weight, even if the noise was
Gaussian. In fact, CPA resulted to be optimal when the leakage model was linear; on the
other hand, mutual information was capable to extract any relation between a (suitable)
general leakage model and side-channel measurements.

The test was performed by testing the same models (assuming the device leaked in-
formation as the hamming weight model), and tested the same amount of side-channel
measurements. As figure of merit used to compare CPA and MIA was the Success Rate.
The Success Rate (or SR), is defined as the total number of successful attacks, carried out
for each cryptographic encryption computed with a distinct secret key value, averaged by
the total number of secret key values[7]:

SR =
1

2n

2n−1∑
k=0

Pk(k
∗ = k) (2.22)

This kind of success rate is also known as first-order success rate, as it is considered the
first key that is pointed out form the distinguisher as the most probable for the evaluation
of the efficiency of an attack. However, it can be also considered success rates of higher
order, e.g. second-order success rate, where it is considered also if an attack is successful

42 2| Side-Channel Techniques

with the second most probable key (in addition to the first one). This metric is useful
when there are two keys that are estimated with the same score from a distinguishing

tool; if one of these two keys is the secret key, there will be probability P ∼ 1

2
of choosing

the right key for the attack.

Another metric that can be used to describe the effectiveness of an attack is the Guessing
Entropy [19]. The guessing entropy (GE) can be defined as the average position of the
correct key in a vector of all possible keys (ranked from the most probable to the least
probable). Then, the higher the position of the correct key in the vector, the better are
the performances of an attack.

It was also shown that MIA tends asymptotically (as the number of measurement in-
crease) to the Maximum Likelihood expression in those two distinct case of study. In fact,
the Maximum Likelihood distinguisher is the best distinguisher that can be implemented
capable to maximizes the success rate of a side-channel attack. Since there is no pro-
filing phase, the leakage probabilities are replaced with online estimated probabilities[7]
computed at the moment, right after the sampling phase.

The Maximum Likelihood key estimation expression is defined as:

k∗ = arg maxkhypP̃(T|L̂khyp
) = arg maxkhypI(T|L̂khyp

), (2.23)

P̃(T|L̂khyp
) =

N∏
i=1

P̃(ti|yi) =
N∏
i=1

P̃(ti|y(k,mi)) =
N∏
i=1

P̃
(
ti|ϕ(f(khyp,mi))

)
(2.24)

Where I(·) is the mutual information value, and the distribution P̃(·) is computed online.
Thus the maximum likelihood searches for that key hypothesis that allows to maximize
the conditional distribution. maximizing the distribution P̃(T|L̂khyp

) is equal to minimize
the conditional entropy H(T|L̂khyp

); in turn it will maximize the mutual information
expression (2.7), because H(T)) is constant, and the maximum of mutual information is
achieved when H(T|L̂khyp

) is the smallest possible.

A recent research trend in countermeasures against SCAs did delve into the development
of alternative ways to increase the resiliency of a cryptographic cipher to side-channel
attacks. Since the main target of SCAs are Substitution Boxes outputs, researchers started
to study and develop S-Boxes resilient to side-channel attacks.

In 2017, Lerman et al.[16] developed several S-Boxes resilient to CPAs and TAs (Template
Attacks). Such S-Boxes would require an attacker to gather an increasing number of

2| Side-Channel Techniques 43

measurements in order to pursuit a successful side-channel attack.

The experiment was carried out by searching for small sized S-Boxes (5x5 bits S-Boxes
and 4x4 bits S-Boxes) with genetic algorithms. It was generated and attacked a pool of
S-Boxes, which were then filtered by means of a fitness function that promoted those S-
Boxes that minimised the overall success rate. Then, the study compared the performance
between S-Boxes generated with genetic algorithms and S-Boxes actually implemented in
real applications, and noticed that genetic algorithms were capable to derive S-Boxes that
were more resilient to SCAs than the implemented ones.

The improved resiliency required the attacker to gather more side-channel measurements
from a target device. The way it was observed that generated substitution boxes were
better was to perform several attacks with always an increasing number of measurements,
and save the relative success rate. Then, it was found generated substitution boxes had
overall a lower success rate when comparing attacks with small traces.

As these tests were performed with a SNR higher than 1 (∼ 2.x), it was observed that in
a real scenario, a small reduction of the success rate on a substitution box would require
more measurements in order to perform a successful attack with an acceptable success
rate for that specific substitution box.

From this point on, researchers studied several substitution boxes, looking for non linear
functions with particular characteristics, like resiliency to high-order attacks[15].

45

3| Leakage Model Exploration

The objective of this work is to explore leakage models built over several distinct in-
termediate functions, and identify those functions resilient to MIA when it is used as a
distinguisher the maximum of mutual information. In this process, it is investigated the
success rtae of MIA attacks on leakage models that are the closest possible to the actual
leaking behaviour of the target device.

In addition to it, if it can be identified such functions (and leakage models as a con-
sequence), it is then investigated if it could be also found in a systematic way leakage
models that are the furthest possible to the leaking behaviour of the target device. If this
investigation is successful, then those leakage models would point out the correct secret
key when it is used the minimum of mutual information as key distinguisher.

In this chapter it will be explained how the experiments were set up and how the whole
investigation was carried out.

3.1. Leakage Model Definition

The investigation of the best leakage models L̂khyp with respect to a suitable cryptographic
function f(·) was performed with the application of two non fixed masks maskin and
maskout to arguments in input of f(·) and at the output of f(·) respectively. Thus, for a
suitable choice for f(·), the leakage model would be defined as:

L̂khyp := maskout & f(m&maskin, khyp) (3.1)

The maskin variable allows to explore combinations of inputs to the function f(·); in
turn, maskin allows to explore combinations of output values computed by the target
function itself. If the function f(·) is a non-linear function, then maskin will be able
to control combinations of non-linear outputs. If the function is bijective, varying the
maskin variable would not affect the bijective property, since it could be seen as a way to
limit the amount of inputs fed to f(·).

46 3| Leakage Model Exploration

On the other hand, maskout variable allows to explore bits combinations of the outputs of
f(·). If f(·) is a bijective function, then varying the output mask will break the bijective
property (by breaking the injective property) by compressing inputs values into output
values. In turn it would allow to compute a correct estimation of the mutual information.
The function f(·) would still be surjective since each output value computed form function
f(·) will be associated to at least one input value.

Being f(·) a d-to-g bits function, the number of distinct values taken from the masks will
be 0 ≤ maskin ≤ 2d and 0 ≤ maskout ≤ 2g. If d ̸= g, then the function f(·) would be a
non-injective, surjective (non bijective) function. Leakage models built on such functions
would lead to successful attacks with MIA if the variations of maskin and maskout would
retain the non-injective property of the function.

If d = g, then function f(·) would be an injective, surjective, and thus bijective function.
By varying maskin, the function would still be bijective; on the other hand, varying
maskout would allow to obtain a non-injective function (and thus, non-bijective), and it
lead to a correct estimation of the mutual information.

In general, a leakage model would lead to a successful attack if it is built from a non-
injective d-to-g bits function, with d > g.

As intermediate functions used for the construction of leakage models, it is chosen the
substitution boxes of distinct block ciphers. Since block ciphers encrypt messages by com-
puting several rounds of cryptographic operations, it is possible to dissect the interested
cryptographic operation out of the entire computation.

This setup would allow to test in a fast and efficient way only substitution boxes compu-
tation without computing additional overhead. In the studied block ciphers, substitution
boxes perform a non-linear substitution of the value computed as the logical XOR oper-
ation between a block of plaintext messages and a block of secret key of the same length.

Then, the leakage model for a MIA attack is defined as:

L̂khyp := maskout & S-Box((m & maskin)⊕ khyp) (3.2)

While, the leakage model for a CPA attack is defined as:

L̂khyp := HW
(
maskout & S-Box((m & maskin)⊕ khyp)

)
(3.3)

For the experiment, it was first chosen to analyze the substitution box of AES block

3| Leakage Model Exploration 47

cipher, as it is a 8-to-8 bits substitution box.

It is also analyzed a substitution box that it is non-injective by nature, as the first sub-
stitution box of DES cipher. In fact it is a 6-to-4 bits substitution box, which is clearly
asymmetric. Its analysis allows to confirm that by using the identity model as leakage
model, it does lead to a successful attack when attacked with MIA.

Then, in line with Lerman et al.[16], it is tested leakage models built from the 4x4-bits
substitution boxes of known ciphers, as PRESENT, PRINCE and Klein, and leakage
models built from substitution boxes generated with genetic algorithm identified in [16].
The same analysis is performed with 5x5 bits S-Boxes of renowned ciphers, as ASCON
and PRIMATE, and S-Boxes found in [16].

3.2. Side-Channel Attacks Implementations

For this project, it was implemented via software both CPA and MIA side-channel attacks.
It was chosen to encode both attacks with C programming language. It was chosen the C
programming language simply due to performance reasons. While, the analysis of results
was performed with Python because it offers an environment rich of fast and performant
analysis tools.

The metric used to test both attacks is the success rate. For each leakage model driven by
the combination of variables maskin and maskout, it is performed an encryption for each
secret key, and each encryption is attacked with both CPA and MIA. Then, each successful
attack will be recorded for the computation of the success rate for that particular leakage
model.

Each side-channel attacks will be performed with the same number of side-channel mea-
surements (an thus, plaintext values). CPA is known to need less measurements for a
successful attack[22], but it is not the objective of this work to find the minimum amount
of traces from which a side-channel attack does fail or it does succeed for a particular
leakage model. Instead, it is chosen an amount of plaintexts values that are enough for
both side-channel attacks to be successful.

For each distinct parameter d of d-to-g bits substitution boxes, it is generated a set of
plaintext values made of 10000 records. This set of plaintexts is generated by drawing
an equal number of distinct values for plaintexts in the range [0, 2d]. Then, for each

distinct plaintext, there will be around integer(
10000

2d
)+ p representatives. The function

integer(·) takes only the integer part of the result of the computation of the division
operation. The value p will be equal to 1 if a plaintext value ptxt is smaller than 10000−

48 3| Leakage Model Exploration

integer(
10000

2d
) ∗ 2d; otherwise p will be equal to 0.

3.2.1. Mutual Information Analysis Implementation

It was chosen to implement the Mutual Information Analysis attack by encoding the
pseudo-code Algorithm 3 presented in section 2.4.

However, the algorithm must be adapted to the new definition of the leakage model and
to the computation of synthetic measurements as in Algorithm 4 and Algorithm 5.

For each value of the variable maskin, it is computed a vector m[N] of N plaintext values
multiplied with the logical & operator with maskin.

The functions max(·) and min(·) return the maximum and minimum values of a set of
side-channel measurements, respectively. Once it is identified the entire range of measure-
ments, it is then divided into ranges of equal size, where each range is associated with a
distinct bin.

For each maskout, and each profile of SNR, it is computed via the histogram method the
probability mass function matrix pmf [BIN][M].

Then, each side-channel measurement t[N] is classified into bins with respect to the range
it falls in.

As each side-channel measurement gets classified into a particular bin, it is updated
the counter of the matrix pmf [BIN][M] in correspondence with the bin the sample got
classified into, and the relative plaintext m[N] associated to such sample.

Before the test of key hypothesis khyp, it is first computed the distribution of output
measurements distrsamples[BIN] (as the sample distribution is kept equal for each key
hypothesis test).

Finally, for each key hypothesis khyp, and for each possible value of messages m and
(binned) measurements t, it is computed the joint distribution distrjoint[BIN][Y]. The
space Y includes all the possible values computed by the hypothetical leakage model.

From the joint distribution matrix distrjoint[BIN][Y] it is possible to compute the dis-
tribution of values induced by the leakage model distrhyp[Y].

For the current project it has been investigated a particular bin size strategy. This strategy
relies on choosing a number of bins (with equal width), which is equal to the number of
discernible values that can be obtained from the leakage model. If a leakage model is built
from a d-to-g function, it will be linked to the parameter g as the following definition:

3| Leakage Model Exploration 49

Algorithm 4: Estimation of Distribution with Histograms
Data: Tn N discrete measurements, tn ∈ T , Mn N plaintext / ciphertexts, m ∈M,

BINS number of bins
Result: Estimation of distribution probabilities
for maskin ∈ {1, .., 2g} do

m[1, .., N]← {0};
for i ∈ {1, .., N} do

m[i]← mi & maskin
end
for maskout ∈ {1, .., 2d} do

pmf [BIN][M]← {0};
samplemax, samplemin ←max(t[1, .., N]),min(t[1, .., N]);
range← (samplemax − samplemin)/BINS;
for j ∈ {1, .., N} do

for i ∈ {1, .., BIN} do
if
(t[j] >= samplemin+(i−1)∗range) and (t[j] < samplemin+i∗range)
then
pmf [i][m[j]]← pmf [i][m[j]] + 1;

end
end

end
distrsamples[T]← {0};
for m ∈M do

distrsamples[t]← distrsample[t] + pmf [t][m];
end
for khyp ∈ K do

distrjoint[BIN][M]← {0};
for y ∈ Y do

for t ∈ {1, .., BIN} do
distrjoint[t][y]← distrjoint[t][y] + pmf [t][y];

end
end
distrhyp[Y]← {0};
for t ∈ {1, .., BIN} do

distrhyp[y]← distrhyp[y] + distrjoint[t][y]
end

end
end

end

50 3| Leakage Model Exploration

BINS := 2HW (g &maskout) (3.4)

This strategy was actually used in the first paper of MIA[10], and it will be referred in the
work as batina_bins. This kind of binning method would only makes use of information
about how many distinct values can be captured by the leakage model.

Another strategy that is used in research fixes the number of bins to 256, as it simulates
a real sampling process that quantizes side-channel measurements. Usually, oscilloscope
used for the sampling process have eight bits of resolution. Thus, once it is fixed a range
referred to the order of the target measurements, it can be represented at most 256 distinct
values (as with 8 bits there will be at most 28 = 256 values).

Since there are 256 distinct values that could be observed, 256 bins would allow to classify
each side-channel measurement into a specific bin that is used only for that side-channel
value. This kind of choice does not imply any assumption on the target device, and
aims at exploiting as much as possible the information carried out from side-channel
measurements.

However, it can also be used more expensive instruments with higher resolution, as 12-bits
or 16-bits resolutions, at the cost of an increasing effort from a computational point of
view, and it does require an increasing number of measurements.

Another strategy that is also used in research relies on dividing the side-channel measure-
ments range into a small set of bins of equal size[22, 7]. As cited already in section 2.4, this
choice might actually help in the estimation of distributions with noisy measurements.
This strategy does also boost the overall computation of the mutual information.

A final strategy used to choose a suitable number of bins for the estimation of probability
distribution relies on Scott’s Rule[27] and Freedman-Diaconis rule[9]:

BINS := 3.49 ∗ σ(T) ∗N
−1
3

BINS := 2 ∗ IRQ(T) ∗N
−1
3

(3.5)

(3.6)

Where σ(T) is the standard deviation of observations, N is the total amount of measure-
ments, IRQ is the interquartile range.

The choice of using batina_bins does allow to implement a hybrid strategy that computes
the mutual information faster with small values for the variable maskout, and then perform

3| Leakage Model Exploration 51

more fine-grained computations for bigger values of maskout.

The computation of mutual information is computed in the same fashion of algorithm (3):

Algorithm 5: Mutual Information Estimation
Data: Tn N discrete measurements, tn ∈ T , Mn N plaintext / ciphertexts, m ∈M,

BINS number of bins
Result: I(Tn,y(k))k∈K
for maskin ∈ do

for maskout ∈ do
for k∗ ∈ K do

for k ∈ K do
...
I(Tn,y(k))← 0;
for i ∈ {1, .., BIN} do

for y ∈ Y do
if distrsamp[i] ̸= 0 and distrhyp[y] ̸= 0 then

I(Tn,y(k))←

I(Tn,y(k)) +
distrjoint[i][y]

N
log2
(Ndistrjoint[i][y]
distrsamp[i]distrhyp[y]

)
end

end
end

end
end

end
end
return I(Tn,y(k))

52 3| Leakage Model Exploration

3.2.2. Correlation Power Analysis Implementation

Algorithm 6: CPA implementation
Data: Tn N measurements that take discrete values, tn ∈ T , Mn N

plaintext/ciphertexts, m ∈M
Result: ρ(Tn, k)k∈K

//If S-Box(·) is a d-to-g bitbits function for maskin ∈ {1, ..., 2d} do
for maskout ∈ {1, ..., 2g} do

for k∗ ∈ K do
//It is fixed a secret key
for khyp ∈ K do

//Key guesses
µt ← 0;
for i ∈ {1, .., N} do

µt ← µt + ti;
end

µt ←
µt

N
;

µhhyp
← 0;

hhyp[1, .., N]← (0, .., 0);
for i ∈ {1, .., N} do

hhyp[i]← HW (maskout & S-Box(khyp ⊕ (m & maskin)));
hhyp ← hhyp + hhyp[i];

end

hhyp ←
hhyp

N
;

sumnum, sumden1, sumden2 ← 0, 0, 0;
for i ∈ {1, .., N} do

ti ← ti − µt;
hhyp[i]← hhyp[i]− µhhyp

;
sumnum ← sumnum + tihhyp[i];
sumden1 ← sumden1 + titi;
sumden2 ← sumden2 + hhyp[i]hhyp[i];

end

ρk,T =
sumnum√

sumden1sumden2

;

end

end

end

end

3| Leakage Model Exploration 53

For what concerns CPA, it was chosen to encode the unoptimized CPA attack presented
in section 2.3.

The only difference with the optimized attack is in how fast the coefficient ρ is computed.
Since the pool of measurements chosen for the experiments is relatively small, the overall
computations will not be greatly affected by this choice.

The leakage models used for CPA attacks were defined by assuming that side-channel
measurements leaked information by following the Hamming Weight model (or Hamming
Distance model with null reference R = 0).

The computation of ρ is not affected in the least whether the function f(·) is bijective or
not. Nevertheless, it is chosen to explore leakage models in the same way it is explored
for MIA simply for symmetric reasons.

3.3. Side-Channel Measurements Simulation

Side-channel measurements used for the experiment were built synthetically within the
code. For each side-channel attack (both CPA and MIA), it was chosen to simulate a
device that leaked information in its power consumption under the Hamming Weight
model. For the experiment, it is chosen to store one single value of power consumption in
correspondence of the computation of the substitution boxes.

CPA and MIA are then used to attack leakage models built from Substitution Boxes
S-Box(·) by using these synthetic measurements. Thus, side-channel measurements are
simply made of one sample, and they can be defined as a one dimensional vector:

Tn =

t1

t2
...

tN

 =

t1

t2

...
tN

 (3.7)

Side-channel measurements are computed anew for each side-channel attack on a crypto-
graphic (sub-)key.

54 3| Leakage Model Exploration

Algorithm 7: Computation of ideal side-channel measurements
Data: k∗ secret key, Mn N plaintexts (possibly with a mask applied on)
Result: artificial set of N measurements T
T [1, .., N]← (0, .., 0);
for i ∈ {1, .., N} do

T [i]← HW (S-Box(mi ⊕ k∗));
end
return T

It is first fixed the values of the masks maskin and maskout of the leakage model. Then,
it is fixed the value of the secret key k∗, and it is computed the S-Box(·) function for each
plaintext value mn. For each S-Box computation, it is stored the corresponding Hamming
Weight values into a vector indexed by the values of plaintexts mn as shown in procedure
7.

For the first experiment it was chosen to test both side-channel attacks to ideal synthetic
measurements, thus with zero noise.

Then it was chosen to test both side-channel attacks in different settings of Signal-to-
Noise Ratio. The SNR is defined as the ratio between the variance of a signal and the
variance of the noise:

SNR := 10 ∗ log10
(V ar(signal)

V ar(noise)

)
= 10 ∗ log10

((∑N
i=1

ti − µt

N

)2
(σnoise)2

)
dB (3.8)

Where µt is the average value between all the synthetic measurements, and (σnosie)
2 is the

variance of the noise. The signal, in this case, it is represented by the power consumption
measurements in correspondence with the computation of the substitution boxes. Then
SNR is used to measure the quality of a signal with respect to the noise. The higher is
the ratio, the better the quality of the signal. The smaller is the ratio, the worse is the
quality of the signal with respect to the noise.

It was chosen to test different SNR profiles as they would allow to study which is the best
leakage model that should be employed for a SCA with respect to that particular SNR
profile.

The simulated noise was produced by a method described by Abramowitz and Stegun[1,
29]:

3| Leakage Model Exploration 55

Algorithm 8: noise_generator(·) procedure: draws random samples from a Gaus-
sian distribution with 0 mean and standard deviation equal to 1
Data: null

Result: Output

static U, V ;
static P ← 0;
Output← 0;
if P is equal to 0 then

U =
(rand() + 1.0)

RAND_MAX + 2.0
;

V =
rand()

RAND_MAX + 1.0
;

Output =
√
−2log(U)sin(2πV);

else
Output =

√
−2log(U)cos(2πV);

end
P ← 1− P ;
return Output

Where the static variables value P,U, V are preserved at each call of the random Gaussian
number generator. The values taken by U fall within the range]0,+1[, excluding both 0

and +1. While, the values of V fall within the range [0,+1[, 0 included and +1 excluded.
The domain of sin(·) and cos(·) are in the range [−1,+1]; the values of log(U), with
respect to how it is defined RAND_MAX, is within range [log(1/(RAND_MAX +

2)), log((RAND_MAX + 1)/(RAND_MAX + 2))] ≈ [−9.331929866, 0) (if
RAND_MAX = 2147483647 as it was in the C implementation of the project).

At the first call, it is executed the statements in the body of if. Thus, it is computed
anew U, V, and Output. At the second run, it is computed the statement in the body
of else. Then, the following calls of the function alternate the execution of statements
between the bodies of if and else.

This function is used to produce Gaussian noise with zero mean, and standard deviation
equal to 1, which means samples are drawn from distribution N ∼ N (0, σnoise) ∼ N (0, 1).
To simulate other profiles of standard deviation of the noise, it could be performed
by simply multiplying the standard deviation σnoise with the target standard deviation
σtarget = σnoiseσtarget.

Since it was wanted to generate the same noise succession values for each independent
execution, it is initialized the random function generator with the same seed. This would

56 3| Leakage Model Exploration

allow to compare different side-channel attacks on the same synthetic measurements.

By choosing a suitable value for the SNR, it is computed the standard deviation of the
noise as:

SNR

10
= log10

(V ar(signal)

V ar(noisetarget)

)
≡ 10

SNR

10 =
(V ar(signal)

V ar(noisetarget)

)
⇒

V ar(noisetarget) =
V ar(signal)

10

SNR

10

⇒ σtarget =

√√√√√V ar(signal)

10

SNR

10

(3.9)

(3.10)

While the variance of the signal V ar(signal) is computed anew for each combination of
variables maskin,maskout, and k∗ from the noise-free measurements samples.

By plugging a suitable for the SNR in 3.10, it is then computed the value of the standard
deviation σtarget that can be multiplied to noise samples so as to simulate noisy measure-
ments. Such measurements would still be with zero mean, but they would have updated
their standard deviation N ∼ N (0, σtarget).

It follows the SNR profiles chosen for the study:

• SNR ratios of 10dB hypothesize an attacker that possess expensive and very accurate
tools for the acquisition of side-channel measurements. In fact, the attacker would
be capable to obtain high quality measurements;

• SNR ratio of 1dB hypothesize an attacker that owns decent tools for side-channel
measurements. He would be capable of retrieving side-channel measurements with
a ratio with respect to noise bigger than 1;

• SNR ratio of -10dB hypothesize an attacker with cheap tools for the acquisition
of measurements. He would sample bad quality measurements where the standard
deviation of the noise is predominant with respect to the standard deviation of the
signal. Thus, the measurements is predominantly made of noise.

Then the side-channel measurements computation procedure is updated with the addition
of Gaussian random noise:

3| Leakage Model Exploration 57

Algorithm 9: compute_measurements(·) procedure: computes side-channel mea-
surements with Gaussian noise
Data: k∗ secret key, Mn N plaintexts (possibly with a mask applied on), a value for

SNR ∈ {−10, 1, 10}dB
Result: artificial set of N measurements T
T [1, .., N]← (0, .., 0);
for i ∈ {1, .., N} do

T [i]← HW (S-Box(mi ⊕ k∗));
end
µt ← 0;
for i ∈ {1, .., N} do

µt ← µt + T [i];
end

µt ←
µt

N
;

vart ← 0;
for i ∈ {1, .., N} do

vart ← vart + (T [i]− µt)
2;

end

vart ←
vart
N

;

σtarget ←
√√√√ vart

10

SNR

10

;

for i ∈ {1, .., N} do
T [i]← T [i] + filter(noise_generator())σtarget;

end
return T

Where the filter(·) function caps the values generated by the noise generator to values
within the range [−3,+3]. Since the Gaussian function generates values as a normal distri-
bution with 0 mean and 1 standard deviation, calls to the function noise_generator(·)
would to draw values within the range [−1,+1] 68.27% of the time.

Values between the range [−2,+2] are drawn 95.45% of the time, and values within the
range [−3,+3] are drawn 99.73% of the time.

Capping the values exceeding the range [−3,+3] would only discard the 0.27% of the
information of some outlier values that would not be seen with real measurement instru-
ments. In fact, real side-channel measurements (related to an encryption with fixed values
for m and k∗), get averaged together several times. If any of those outlier values would

58 3| Leakage Model Exploration

appear, their effect would get canceled through the averaging process. In addition to it,
such outlier values would impair the estimation of distributions as they would wrongly
identify the highest and/or the smallest values of side-channel measurements.

3.4. Data Visualization

For each attacked substitution box it is built a heat-map of success rates, where on the
horizontal axis it is reported the hamming weight of the variable maskout, while on the
vertical axis it is reported the hamming weight of the variable maskin. Since for each
distinct hamming weight value there will possibly be multiple permutations of bits within
a binary string mask that lead to same hamming weight value, it is chosen to order the
various model that are equal under the same hamming weight perspective in increasing
order.

(a) A heat-map indexed with
ordinal values

(b) A heat-map indexed with
the hamming weight of ordi-
nal values

For e.g., in the heat-map of figure (3.1b), it is shown a 16x16 cells cluster heat map,
where both x-axis and y-axis are ordered with respect to the hamming weight of the
indexes of figure (3.1a). That is, for the hamming weight equal to 1, it will be aligned in
increasing order the y-axis values along the indexes {1, 2, 4, 8} = {< 0001 >2, < 0010 >2

, < 0100 >2, < 1000 >2}. The vertical bar conveys the success rate value, associating
to each color shade a success rate value. It was chosen this way for data representation
as it was observed that success rate shew interesting patterns with respect to hamming
weights of variables maskin and maskout.

59

4| Experimental Evaluation

In this chapter it will be observed the main results of the experiments, and it will be given
a comment about them.

It will first be observed the behaviour of leakage models built from the substitution box
of AES cipher, which characteristics were already observed in literature[31, 33], and it
were given some probabilistic interpretation on some leakage models [33].

Then it will be verified if the identity model does lead to a successful attack with MIA
when it is used a substitution box that it is non-injective by nature, such as the first
S-Box of DES cipher.

Finally, it will be observed the behaviour of leakage models built over 4x4 bits and 5x5
bits substitution boxes.

4.1. AES Substitution Box

In the paper presented at CRYPTO 2011 by Standaert et al.[31] it was shown that the
estimations of MIA attacks of leakage models L̂khyp := S-Box(m⊕ khyp)1:n built from the
substitution box of AES cipher, with 1 ≤ n ≤ 7, revealed that the mutual information
estimation was the minimum in correspondence to the secret key when 7-bits models and
noiseless measurements were used.

Then it was first chosen to analyze all the leakage models built from AES’ S-Box, and
observe if it could be found some patterns.

It follows the heatmap of success rates of MIA attacks on leakage models built from AES’
S-Box (by tweaking maskin and maskout variables):

60 4| Experimental Evaluation

(a) SR on AES’s S-Box with max MI (b) SR on AES’s S-Box with min MI

Figure 4.1: SR on AES’s S-Box with noiseless measurements

It can be observed that the highest success rates are observed when leakage models are
built from hamming weight values of variable maskin are equal to 8, (that is HW (maskin)

= 8), and for several hamming weight values of maskout (that is, when HW (maskout) =

{1, 2, 3, 4, 5}). For some leakage models where HW (maskout) = 5 there are some cases
where the attack fails. From HW (maskout) = {6, 7, 8} there is no leakage model that
does lead to a successful attack.

It can also be noticed that leakage model build with combinations of maskout and maskin

values where HW (maskout) = 2 and HW (maskin) = {7, 8}, it is observed a higher
success rate range with respect to other models. It can be noticed that MIA fails in
correspondence of any value of maskin and for HW (maskout) = 8, which in turns reflects
what it was expected in theory.

On the other hand, when it is used as a distinguisher the minimum of mutual information,
it could be found that hypothetical leakage models L̂khyp made with binary combinations of
variable maskout such that HW (maskout) = 7 and HW (maskin) = {7, 8}, it leads to side-
channel attacks with high success rate. As always, in correspondence of HW (maskout) = 8

the attack fails, as it is expected in theory.

However, as soon as the side-channel measurements get spoiled with noise, even if the
SNR of samples approximates to 10dB, it could not be possible to identify any leakage
model exploitable with the minimum of mutual information:

4| Experimental Evaluation 61

Figure 4.2: SR on AES’s S-Box with min MI and 10dB SNR measurements

Once it is simulated side-channel measurements with different SNR, it was observed that
only the maximum of mutual information was able to extract the secret key of a crypto-
graphic encryption:

(a) SR on AES’s S-Box with 10dB SNR (b) SR on AES’s S-Box with 1dB SNR

It can be noticed that when side-channel measurements have SNR equal to 1dB, it is ob-
served the highest SR in correspondence of hypothetical leakage models with HW (maskin)

= {7, 8} and HW (maskout) = {1, 2, 3, 4, 5, 6, 7}.

62 4| Experimental Evaluation

(a) SR on AES’s S-Box with -10dB SNR

It could be also observed MIA attacks with a SNR that approximates -10dB is more
successful with respect to measurements with SNR equal to 10dB. As always, in corre-
spondence of HW (maskout) = 8, each MIA attack fails, as it is expected in theory.

A CPA attack on the same leakage models verifies the efficiency of CPA attacks on tar-
get devices when it is known their leaking behaviour. As it can be observed, when
HW (maskout) = 8 and HW (maskin) = 8 CPA does lead to successful attacks since
Pearson’s correlation factor is not affected by the bijectivity of the S-Box:

(a) SR on AES’s S-Box with CPA and
noiseless measurements

4| Experimental Evaluation 63

AES S-Box

Table 4.1: Success Rate with the first most probable key guess

SNR max MI min MI

∞ ✓ ✓

10dB ✓ ✗

1dB ✓ ✗

-10dB ✓ ✗

4.2. DES Substitution Box

DES cipher is made of eight distinct 6x4 substitution boxes. As all the substitution boxes
are non-injective, it was chosen to analyze the first S-Box(·) of DES cipher. The study of
this substitution box is used to verify that the identity model L̂khyp := maskout &

S-Box((m&maskin)⊕khyp) = S-Box(m⊕khyp) does lead to a successful attack with MIA.

(a) SR on DES’ S-Box with max MI
and with noiseless measurements

(b) SR on DES’ S-Box with min MI
and with noiseless measurements

It can be noticed that the mutual information analysis performed by looking at the max-
imum of mutual information does lead to successful attacks when the leakage model is
defined as the identity model (HW (maskin) = 6 and HW (maskout) = 4). It is also
successful when HW (maskin) = {5, 4}, with some degradation of performance when the
hamming weight of maskin is equal to 4.

64 4| Experimental Evaluation

A high success rate is also observed when variables maskin have hamming weight
HW (maskin) = 5, and for some values for maskout, where HW (maskout) = {2, 3, 4}.

Then, as soon as the HW of variables maskin drops to 3, it will not be possible to compress
different distinct inputs into one output value from the S-Box function, and thus the attack
will fail. As it is seen for the AES S-Box, reducing the amounts of distinct plaintexts values
(accomplished by small values for the hamming weight of maskin variables), worsens a
lot the efficiency of the attack.

However, when it was looked for the systematically wrong leakage models, it couldn’t be
found a model that does lead to a successful attack with a high success rate.

As usual, CPA attack on DES’ hypothetical leakage models are more effective then MIA
when it is known how information is leaked from the target device:

Figure 4.7: Success rate of CPA on leakage models built from DES’ first S-Box

4| Experimental Evaluation 65

DES S-Box

Table 4.2: Success Rate with the first most probable key guess

SNR max MI min MI

∞ ✓ ✗

10dB ✓ ✗

1dB ✓ ✗

-10dB ✓ ✗

4.3. 4x4 Substitution Box

In this chapter it will be analyzed the results obtained when leakage models are built from
4x4-bits substitution boxes generated through genetic algorithms [16] and from 4x4-bits
substitution boxes of renowned ciphers.

Starting from substitution boxes implemented in real world applications, it was noticed
that MIA attacks performed with the maximum of mutual information as a key distin-
guisher would not lead to any successful attack with a satisfying success rate:

(a) SR on PRESENT’s S-
Box

(b) SR on PRINCE’s S-Box (c) SR on Klein’s S-Box

Figure 4.8: SR with noiseless measurements and max MI

On the other hand, when it was used the minimum of mutual information as distinguisher,
it was observed that it could be found a leakage model for both Klein and PRINCE ciphers
that would lead to a successful attack with success rate equal to 1 when it was observed
the minimum of mutual information.

66 4| Experimental Evaluation

(a) SR on PRESENT’s S-
Box

(b) SR on PRINCE’s S-Box (c) SR on Klein’s S-Box

Figure 4.9: SR with noiseless measurements and min MI

It can be noticed that when it is analyzed the minimum of the mutual information esti-
mation, only the substitution box of PRESENT cipher does not allow to find a leakage
model that would retrieve a (sub-)key with success rate equal to 1 for an SNR equal to
-10dB. However, when it is analyzed the second-order success rate, it can be found for
PRESENT’s S-Box some leakage models that are close to the leaking behaviour of the
target device, also for a SNR of -10dB. Unfortunately it couldn’t be found additional
leakage models that were actually the furthest from he target one.

PRESENT/PRINCE/Klein S-Box

Table 4.3: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✗/✗/✗ ✗/✓/✓

10dB ✓/✗/✗ ✗/✗/✓

1dB ✓/✓/✗ ✗/✗/✗

-10dB ✗/✓/✓ ✗/✗/✗

Table 4.4: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✓/✓/✗ ✓/✓/✓

10dB ✓/✓/✓ ✗/✗/✓

1dB ✓/✓/✓ ✗/✗/✗

-10dB ✓/✓/✓ ✗/✗/✗

However, the two substitution boxes evolved_to and evolved_cc used as a reference func-
tions in the paper of Lerman et al.[16] were particular resilient to MIA attacks with respect
to minimum of mutual information. Evolved_cc was also particularly resilient to to MIA
attack with respect to the maximum of mutual information as well:

4| Experimental Evaluation 67

(a) SR on evolved_cc S-Box
with max of MI and noiseless
measurements

(b) SR on evolved_cc S-Box
with min of MI and noiseless
measurements

(c) SR on evolved_to S-Box
with max of MI and noiseless
measurements

(d) SR on evolved_to S-Box
with min of MI and noiseless
measurements

In particular, evolved_cc was the only 4x4-bits substitution box that did not offer any
exploitable leakage model with the minimum of mutual information with success rate
higher than ∼ 0.3, and that only one leakage model was exploitable with the maximum
of mutual information for a success rate of at most ∼ 0.4. Also the second-order success
rate wouldn’t be of help on finding acceptable leakage models for evolved_cc substitution
box.

68 4| Experimental Evaluation

evolved_to/evolved_cc S-Box

Table 4.5: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✗/✗ ✗/✗

10dB ✓/✗ ✗/✗

1dB ✓/✗ ✗/✗

-10dB ✓/✗ ✗/✗

Table 4.6: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✓/✗ ✓/✗

10dB ✓/✗ ✗/✗

1dB ✓/✗ ✗/✗

-10dB ✓/✗ ✗/✗

4.3.1. CPA Resilient Substitution Boxes

For what concerns the substitution boxes designed to be resilient to CPAs, it was observed
that the substitution box evolved_sr2 that was designed to be the substitution box that
was the most resilient to CPAs, was also particularly resilient to MIA attacks when first-
order success rate was taken into consideration:

(a) SR on evolved_sr2 S-Box
with max of MI and noiseless
measurements

(b) SR on evolved_sr2 S-Box
with min of MI and noiseless
measurements

Evolved_sr1 and evolved_k substitution boxes, on the other hand, were both resilient to
MIA attacks when it was observed the maximum of mutual information as distinguishing
tool; nevertheless, it could still be found a satisfying leakage model for the minimum of
mutual information.

However, second-order success rate would point out some furthest and closest leakage
models for both evolved_sr1 and evolved_sr2 for 10dB SNR measurements. It was also
observed that it was evolved_k substitution box that was in principle designed to favour

4| Experimental Evaluation 69

side-channel attacks that was actually the most resilient one, as it couldn’t be found a
furthest leakage model when measurements had 10dB of SNR.

(a) SR on evolved_k S-Box
with max of MI and noiseless
measurements

(b) SR on evolved_k S-Box
with min of MI and noiseless
measurements

(c) SR on evolved_sr1 S-Box
with max of MI and noiseless
measurements

(d) SR on evolved_sr1 S-Box
with min of MI and noiseless
measurements

evolved_sr1/evolved_sr2/evolved_k S-Box

Table 4.7: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✗/✗/✗ ✓/✗/✓

10dB ✗/✗/✗ ✗/✗/✗

1dB ✓/✓/✓ ✗/✗/✗

-10dB ✓/✓/✓ ✗/✗/✗

Table 4.8: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✓/✓/✓ ✓/✓/✓

10dB ✓/✓/✓ ✓/✓/✗

1dB ✓/✓/✓ ✗/✗/✗

-10dB ✓/✓/✓ ✗/✗/✗

70 4| Experimental Evaluation

4.3.2. TA Resilient Substitution Boxes

There was only one substitution box that was generated for template attacks that was
susceptible to MIA attacks that exploited the maximum of mutual information as a key
distinguishing tool. On the other hand, the same substitution box offered a particular
resistance when it was attacked with the minimum of mutual information:

(a) SR on evolved_ta_sr2
S-Bo with max of MI and
noiseless measurements

(b) SR on evolved_ta_sr2
S-Box with min of MI and
noiseless measurements

The substitution box evolved_ta_sr4 had a behaviour similar to evolved_to, which
means that it could not be found satisfying models for neither the minimum of mutual
information nor the maximum of mutual information.

The substitution boxes evolved_ta_sr1 and evolved_ta_sr3 offered performance similar
to evolved_k and evolved_sr1; however, for the substitution box evolved_ta_sr3 it was
possible to identify two distinct leakage models that led to successful attack with the
minimum of mutual information:

(a) SR on evolved_ta_sr1
S-Box with max of MI and
noiseless measurements

(b) SR on evolved_ta_sr1
S-Box with min of MI and
noiseless measurements

4| Experimental Evaluation 71

The second-order success rate would only point out some additional closest leakage models
for 10dB SNR (and ∞SNR).

evolved_ta_sr1/evolved_ta_sr2/evolved_ta_sr3/evolved_ta_sr4 S-Box

Table 4.9: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✗/✓/✗/✗ ✓/✗/✓/✗

10dB ✗/✗/✗/✓ ✓/✗/✗/✗

1dB ✓/✓/✓/✓ ✗/✗/✗/✗

-10dB ✓/✓/✓/✓ ✗/✗/✗/✗

Table 4.10: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✓/✓/✓/✓ ✓/✗/✓/✗

10dB ✓/✓/✓/✓ ✓/✗/✗/✗

1dB ✓/✓/✓/✓ ✗/✗/✗/✗

-10dB ✓/✓/✓/✓ ✗/✗/✗/✗

4.3.3. General Evaluation

In line with the goals defined for this work, it could be identified as substitution boxes
resilient to MIA attacks when it is used as distinguishing tool the maximum of mutual in-
formation the boxes: PRESENT, PRINCE, Klein, evolved_cc, evolved_to, evolved_sr2,
evolved_k, evolved_sr1, evolved_ta_sr1, evolved_ta_sr3, and evolved_ta_sr4.

On such list, it could be identified a subset of substitution boxes that for a certain com-
bination of variables maskin and maskout it is possible to retrieve a (sub-)key when it is
used the minimum of mutual information as a distinguishing tool. The subset of such list
is: PRINCE, Klein, evolved_k, evolved_sr1, evolved_tasr1, evolved_ta_sr3.

A subsequent investigation on a SNR profile of 10dB has shown that only for some of
them (evolved_ta_sr1 and Klein), it was still be possible to find a leakage model for the
retrieval of (sub-)keys with the minimum of mutual information:

72 4| Experimental Evaluation

(a) SR on evolved_ta_sr1
S-Box with max of MI and
SNR = 10dB

(b) SR on evolved_ta_sr1 S-
Box with min of MI and SNR
= 10dB

(c) SR on Klein’s S-Box with
max of MI and SNR = 10dB

(d) SR on Klein’s S-Box with
min of MI and SNR = 10dB

For other SNR profiles (1dB and -10dB) it could not be possible to perform a successful
side-channel attack to any substitution box with the minimum of mutual information as
distinguishing tool. However, with the maximum of mutual information it was possible
to identify leakage models that led to attacks with success rate equal to 1.

However, if it is taken into account also the second-order success rate, the substitution
boxes that satisfy the first goal of this project are: evolved_cc and Klein. And for what
concerns the second goal of the work, it was possible to find furthest leakage models only
for Klein S-Box for SNR equal to ∞. It could be also found both furthest and closest
leakage models for Klein for SNR equal to 10dB.

4.4. 5x5 Substitution Box

A first analysis of the substitution boxes ASCON and PRIMATE used as reference for
the substitution boxes of Lerman et al.[16].

4| Experimental Evaluation 73

(a) SR of ASCON’s S-Box with
max of MI and noiseless measure-
ments

(b) SR of ASCON’s S-Box with
min of MI and noiseless measure-
ments

(c) SR on PRIMATE’s S-Box
with max of MI and noiseless
measurements

(d) SR on PRIMATE’s S-Box
with min of MI and noiseless mea-
surements

Where only for PRIMATE’s S-Box was possible to find a leakage model that led to a suc-
cessful attack with the maximum of mutual information. However, for neither ASCON’s
S-Box nor PRIMATE’s S-Box was possible to find a leakage model that was exploitable
when the minimum of mutual information was used as key distinguisher.

74 4| Experimental Evaluation

ASCON/PRIMATE S-Box

Table 4.11: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✗/✓ ✗/✗

10dB ✗/✓ ✗/✗

1dB ✓/✓ ✗/✗

-10dB ✓/✓ ✗/✗

Table 4.12: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✗/✓ ✓/✓

10dB ✓/✓ ✗/✗

1dB ✓/✓ ✗/✗

-10dB ✓/✓ ✗/✗

Second order success-rate would just point out furthest leakage models for SNR equal to
∞ and some closest leakage model for SNR equal to 10dB.

4.4.1. CPA Resilient Substitution Boxes

However, in the exploration of leakage models built from substitution boxes designed to
be resilient to CPAs it was found out that for all the substitution boxes generated from
genetic algorithm it was possible to find a particular leakage model where a (sub-)key was
extracted with the minimum of mutual information with success rate equal to 1. In this
case, all the substitution boxes that were generated offered better performances against
CPA with respect to the ones used in real applications (like ASCON and PRIMATE):

4| Experimental Evaluation 75

(a) SR on evolved_sr1 S-Box (b) SR on evolved_sr2 S-Box

(c) SR on evolved_sr5 S-Box (d) SR on evolved_sr6 S-Box

Figure 4.17: SR with noiseless measurements and min MI

Where it can be observed that it could be found a lot more furthest leakage models with
respect to the substitution boxes analyzed previously.

For the following substitution boxes it is still possible to exploit the minimum of mutual
information, but with fewer leakage models.

76 4| Experimental Evaluation

(a) SR on evolved_sr3 S-Box (b) SR on evolved_sr4 S-Box

(c) SR on evolved_sr8 S-Box (d) SR on evolved_sr9 S-Box

Figure 4.18: SR with noiseless measurements and min MI

And only for evolved_sr7 it was also possible to find a closest leakage model where MIA
was successful with success rate equal to 1.

4| Experimental Evaluation 77

(a) SR on evolved_sr7 S-Box
with max of MI and noiseless
measurements

(b) SR on evolved_sr7 S-Box
with min of MI and noiseless mea-
surements

evolved_sr1/evolved_sr2/evolved_sr3/evolved_sr4/evolved_sr5/
evolved_sr6/evolved_sr7/evolved_sr8/evolved_sr9 S-Box

Table 4.13: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✗/✗/✗/✗/✗/✗/✓/✗/✗ ✓/✓/✓/✓/✓/✓/✓/✓/✓

10dB ✓/✗/✓/✓/✗/✗/✓/✗/✗ ✓/✓/✓/✗/✓/✓/✗/✗/✗

1dB ✓/✓/✓/✓/✓/✓/✓/✗/✗ ✗/✗/✗/✗/✗/✗/✗/✗/✗

-10dB ✓/✓/✗/✓/✗/✗/✓/✗/✗ ✗/✗/✗/✗/✗/✗/✗/✗/✗

evolved_sr1/evolved_sr2/evolved_sr3/evolved_sr4/evolved_sr5/
evolved_sr6/evolved_sr7/evolved_sr8/evolved_sr9 S-Box

Table 4.14: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✓/✗/✓/✓/✗/✗/✓/✗/✓ ✓/✓/✓/✓/✓/✓/✓/✓/✓

10dB ✓/✗/✓/✓/✗/✗/✓/✓/✓ ✓/✓/✓/✗/✓/✓/✗/✗/✗

1dB ✓/✓/✓/✓/✓/✓/✓/✓/✓ ✗/✗/✗/✗/✗/✗/✗/✗/✗

-10dB ✓/✓/✓/✓/✗/✗/✓/✓/✓ ✗/✗/✗/✗/✗/✗/✗/✗/✗

78 4| Experimental Evaluation

The second-order success rate would point out more exploitable closest leakage models for
more substitution boxes. Unfortunately it would not help in finding additional furthest
leakage models for those substitution boxes that did not have one (when SNR is 10dB).

4.4.2. TA Resilient Substitution Boxes

However, analysis of substitution boxes generated with genetic algorithm designed to be
resilient to TAs was observed that only substitution box evolved_ta_sr4 is resilient to
both MIA attacks with maximum and minimum of mutual information:

(a) SR on evolved_ta_sr4 S-Box
with max of MI and noiseless
measurements

(b) SR on evolved_ta_sr4 S-Box
with min of MI and noiseless mea-
surements

And the only substitution box for which it was possible to find leakage models that
led to a successful attack with both maximum and minimum of mutual information is
evolved_ta_sr1:

4| Experimental Evaluation 79

(a) SR on evolved_ta_sr1 S-Box
with max of MI and noiseless
measurements

(b) SR on evolved_ta_sr1 S-Box
with min of MI and noiseless mea-
surements

While for evolved_ta_sr6, evolved_ta_sr5, evolved_ta_sr3 and evolved_ta_sr2 S-
Boxes it was possible to identify leakage models exploitable only with the minimum of
mutual information:

80 4| Experimental Evaluation

(a) SR on evolved_ta_sr6 S-Box (b) SR on evolved_ta_sr5 S-Box

(c) SR on evolved_ta_sr3 S-Box (d) SR on evolved_ta_sr2 S-Box

Figure 4.22: SR with noiseless measurements and min MI

However, for any of the substitution boxes resilient to TAs it was possible to find leakage
models where the minimum of mutual information would lead to a successful attack with
a satisfying success rate when side-channel measurements had a SNR of 10dB (or smaller).

4| Experimental Evaluation 81

evolved_ta_sr1/evolved_ta_sr2/evolved_ta_sr3/evolved_ta_sr4/
evolved_ta_sr5/evolved_ta_sr6 S-Box

Table 4.15: Success Rate with the
first most probable key guess

SNR max MI min MI

∞ ✓/✗/✗/✗/✗/✗ ✓/✓/✓/✗/✓/✓

10dB ✓/✓/✗/✗/✓/✓ ✗/✗/✗/✗/✗/✗

1dB ✓/✓/✓/✓/✓/✓ ✗/✗/✗/✗/✗/✗

-10dB ✓/✓/✓/✓/✓/✓ ✗/✗/✗/✗/✗/✗

evolved_ta_sr1/evolved_ta_sr2/evolved_ta_sr3/evolved_ta_sr4/
evolved_ta_sr5/evolved_ta_sr6 S-Box

Table 4.16: Success Rate with the
first two most probable key guesses

SNR max MI min MI

∞ ✓/✓/✗/✗/✗/✓ ✓/✓/✓/✓/✓/✓

10dB ✓/✓/✓/✓/✓/✓ ✗/✗/✗/✗/✗/✗

1dB ✓/✓/✓/✓/✓/✓ ✗/✗/✗/✗/✗/✗

-10dB ✓/✓/✓/✓/✓/✓ ✗/✗/✗/✗/✗/✗

Second-order success rate would only help into finding some furthest leakage models for
evolved_ta_sr4 substitution box; it would also help finding some closest leakage model
for SNR equal to 10dB.

4.4.3. General Evaluation

The set of substitution boxes that satisfied the first goal of this project is made of:
ASCON’s S-Box, evolved_sr1, evolved_sr2, evolved_sr3, evolved_sr4, evolved_sr5,
evolved_sr6, evolved_sr8, evolved_sr9, evolved_ta_sr2, evolved_ta_sr3,
evolved_ta_sr4, evolved_ta_sr5, and evolved_ta_sr6.

From the list of S-Boxes cited above, the substitution boxes where it was possible to
build leakage models that lead to successful MIA attacks with the minimum of mutual

82 4| Experimental Evaluation

information are: evolved_sr1, evolved_sr2, evolved_sr3, evolved_sr4, evolved_sr5,
evolved_sr6, evolved_sr8, evolved_sr9, evolved_ta_sr2, evolved_ta_sr3,
evolved_ta_sr5, and evolved_ta_sr6.

An analysis on those models with measurements having a SNR of 10dB has shown that
only for CPA resilient substitution boxes was still possible to build leakage models that
lead to successful attacks with the minimum of mutual information and success rate equal
to 1:

(a) SR on evolved_sr1 S-
Box

(b) SR on evolved_sr2 S-
Box

(c) SR on evolved_sr3 S-
Box

(d) SR on evolved_sr5 S-
Box

(e) SR on evolved_sr6 S-
Box

Figure 4.23: SR with measurements with SNR = 10dB and min MI

If it is taken into account the second-order success rate, the substitution boxes satisfy-
ing the first goal of the work are: ASCON’s substitution box, evolved_sr2, evolved_sr5,
evolved_sr6, evolved_sr8, evolved_ta_sr2, evolved_ta_sr3, evolved_ta_sr5. Of which,
the substitution boxes that also satisfies the second goal are the same: ASCON’s S-Box,
evolved_sr2, evolved_sr5, evolved_sr6, evolved_sr8, evolved_ta_sr2, evolved_ta_sr3,
evolved_ta_sr5. However, only for evolved_sr2, evolved_sr5, evolved_sr6 it was also
possible to find furthest leakage models for SNR equal to 10dB.

83

5| Conclusions and Future

Developments

In this work it has been analyzed several intermediate functions that are mainly used to
build hypothetical leakage models for generic side-channel attacks.

These leakage models were obtained by exhaustive search of variables maskin and maskout

of hypothetical leakage models L̂khyp := maskout & S-Box((m & maskin)⊕ khyp).

It was first analyzed the success rate with respect to the maximum of mutual information
so as to identify such intermediate functions that offered the highest resilience possible
against side-channel attacks performed with mutual information analysis.

Then, on such intermediate functions, it was analyzed if it could be found leakage models
that would systematically perform the worst possible only when interrogated with the
correct secret key. Then, these models, if they do exist, they would reveal the secret key
in correspondence with the minimum of mutual information.

In this project it was possible to identify such intermediate function, for both 4-to-4 bits
functions and 5-to-5 bits functions introduced by Lerman et al.[16]. These substitution
boxes highlight a parallel attack surface that can be used in conjunction with closest
leakage models that exploits the minimum of mutual information as a key distinguishing
tool. These furthest leakage models can be used in conjunction to the closest leakage
models in order to mount successful side-channel attacks.

It is also worth noticing that it was possible to identify the majority of furthest leakage
models on those substitution boxes that were designed to withstand CPA attacks.

However, such models were only observed when side-channel measurements were simulated
with high SNR, that can be justified only from a very motivated actor, capable to capture
high quality side-channel measurements with a SNR of at least 10dB.

In spite of having requirements that are tough to be met by an average adversary, these
furthest models do still exist, thus they can be used to perform successful generic SCAs.

84 5| Conclusions and Future Developments

A future work might involve a further analysis of metrics used for the categorization of
side-channel attacks, e.g. by means of the Guessing Entropy. In fact, guessing entropy
might help giving more information on the average position of guessed keys for interesting
leakage models identified with the success rate metric used in this project.

Other works may also investigate if it could be still possible to extract the secret key by
searching the minimum of mutual information when countermeasures of different nature
are implemented on a target device. This would also verify whether the minimum of
mutual information would still work for the multivariate mutual information analysis.

In addition to it, it could be also explored if it may be required on average more or less
side-channel measurements when MIA attacks are performed with furthest leakage models
with respect to closest leakage models.

85

Bibliography

[1] Abramowitz and Stegun. Handbook of Mathematical Functions With Formulas, Graphs,
and Mathematical Tables. United States Department of Commerce, National Bu-
reau of Standards (NBS), 1964.

[2] Lejla Batina et al. “Mutual Information Analysis: A Comprehensive Study”. J. Cryp-
tol. 24.2 (Apr. 2011), pp. 269–291. issn: 0933-2790. doi: 10.1007/s00145-010-
9084-8. url: https://doi.org/10.1007/s00145-010-9084-8.

[3] Paul Bottinelli and Joppe W. Bos. “Computational aspects of correlation power
analysis”. Journal Of Cryptographic Engineering 7.3 (2017), pp. 15. 167–181. doi:
10.1007/s13389-016-0122-9. url: http://infoscience.epfl.ch/record/
232881.

[4] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analysis
with a Leakage Model”. Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Pro-
ceedings. Vol. 3156. Lecture Notes in Computer Science. Springer, 2004, pp. 16–29.
doi: 10.1007/978- 3- 540- 28632- 5_2. url: https://iacr.org/archive/

ches2004/31560016/31560016.pdf.
[5] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. Crypto-

graphic Hardware and Embedded Systems - CHES 2002, 4th International Work-
shop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. Vol. 2523.
Lecture Notes in Computer Science. Springer, 2002, pp. 13–28. doi: 10.1007/3-
540-36400-5_3.

[6] Suresh Chari et al. “Towards Sound Approaches to Counteract Power-Analysis At-
tacks”. Advances in Cryptology — CRYPTO 99. Ed. by Michael Wiener. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 398–412.

[7] Éloi Chérisey et al. “On the Optimality and Practicability of Mutual Information
Analysis in Some Scenarios”. Cryptography Commun. 10.1 (Jan. 2018), pp. 101–121.
issn: 1936-2447. doi: 10.1007/s12095-017-0241-x. url: https://doi.org/10.
1007/s12095-017-0241-x.

https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s00145-010-9084-8
https://doi.org/10.1007/s13389-016-0122-9
http://infoscience.epfl.ch/record/232881
http://infoscience.epfl.ch/record/232881
https://doi.org/10.1007/978-3-540-28632-5_2
https://iacr.org/archive/ches2004/31560016/31560016.pdf
https://iacr.org/archive/ches2004/31560016/31560016.pdf
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/s12095-017-0241-x
https://doi.org/10.1007/s12095-017-0241-x
https://doi.org/10.1007/s12095-017-0241-x

86 | Bibliography

[8] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. “Differential Power
Analysis in the Presence of Hardware Countermeasures”. Cryptographic Hardware
and Embedded Systems - CHES 2000, Second International Workshop, Worcester,
MA, USA, August 17-18, 2000, Proceedings. Vol. 1965. Lecture Notes in Computer
Science. Springer, 2000, pp. 252–263. doi: 10.1007/3-540-44499-8_20.

[9] D. Freedman and P. Diaconis. Vol. 57(4). Springer, 1981, pp. 453–476.
[10] Benedikt Gierlichs et al. “Mutual Information Analysis”. Cryptographic Hardware

and Embedded Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings. Vol. 5154. Lecture Notes in Computer
Science. Springer, 2008, pp. 426–442. doi: 10.1007/978-3-540-85053-3_27. url:
https://www.iacr.org/archive/ches2008/51540423/51540423.pdf.

[11] Ilham Hassoune et al. “Dynamic Differential Self-Timed Logic Families for Robust
and Low-Power Security ICs”. Integr. VLSI J. 40.3 (2007), pp. 355–364. issn: 0167-
0260.

[12] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is Not Good Enough:
Deriving Optimal Distinguishers from Communication Theory. Cryptology ePrint
Archive, Report 2014/527. https://ia.cr/2014/527. 2014.

[13] Marc Joye, Pascal Paillier, and Berry Schoenmakers. “On Second-Order Differential
Power Analysis”. Aug. 2005, pp. 293–308.

[14] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. Ad-
vances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. Vol. 1666.
Lecture Notes in Computer Science. Springer, 1999, pp. 388–397. doi: 10.1007/3-
540-48405-1_25.

[15] Liran Lerman et al. “Higher order side-channel attack resilient S-boxes”. English.
2018 ACM International Conference on Computing Frontiers, CF 2018 - Proceed-
ings. Ed. by D.R. Kaeli and M. Pericàs. 15th ACM International Conference on
Computing Frontiers, CF 2018 ; Conference date: 08-05-2018 Through 10-05-2018.
United States: Association for Computing Machinery (ACM), 2018, pp. 336–341.
isbn: 978-1-4503-5761-6. doi: 10.1145/3203217.3206428.

[16] Liran Lerman et al. “On the Construction of Side-Channel Attack Resilient S-boxes”.
Constructive Side-Channel Analysis and Secure Design - 8th International Work-
shop, COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers.
Ed. by Sylvain Guilley. Vol. 10348. Lecture Notes in Computer Science. Springer,
2017, pp. 102–119. doi: 10.1007/978-3-319-64647-3_7. url: https://doi.
org/10.1007/978-3-319-64647-3%5C_7.

https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/978-3-540-85053-3_27
https://www.iacr.org/archive/ches2008/51540423/51540423.pdf
https://ia.cr/2014/527
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1145/3203217.3206428
https://doi.org/10.1007/978-3-319-64647-3_7
https://doi.org/10.1007/978-3-319-64647-3%5C_7
https://doi.org/10.1007/978-3-319-64647-3%5C_7

| Bibliography 87

[17] Vcitor Lomné et al. “How to Estimate the Success Rate of Higher-Order Side-
Channel Attacks”. Proceedings of the 16th International Workshop on Cryptographic
Hardware and Embedded Systems — CHES 2014 - Volume 8731. Berlin, Heidelberg:
Springer-Verlag, 2014, pp. 35–54. isbn: 9783662447086.

[18] Stefan Mangard. “Hardware Countermeasures against DPA – A Statistical Analysis
of Their Effectiveness”. Topics in Cryptology – CT-RSA 2004. Ed. by Tatsuaki
Okamoto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 222–235.

[19] J.L. Massey. “Guessing and entropy”. Proceedings of 1994 IEEE International Sym-
posium on Information Theory. 1994, pp. 204–. doi: 10.1109/ISIT.1994.394764.

[20] Thomas S. Messerges. “Using Second-Order Power Analysis to Attack DPA Re-
sistant Software”. Cryptographic Hardware and Embedded Systems - CHES 2000,
Second International Workshop, Worcester, MA, USA, August 17-18, 2000, Pro-
ceedings. Vol. 1965. Lecture Notes in Computer Science. Springer, 2000, pp. 238–
251.

[21] Amir Moradi et al. “A Comparative Study of Mutual Information Analysis under
a Gaussian Assumption”. Jan. 2009, pp. 193–205. isbn: 978-3-642-10837-2. doi:
10.1007/978-3-642-10838-9_15.

[22] Amir Moradi et al. “A Comparative Study of Mutual Information Analysis un-
der a Gaussian Assumption”. Information Security Applications: 10th International
Workshop, WISA 2009, Busan, Korea, August 25-27, 2009, Revised Selected Papers.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 193–205.

[23] E. Oswald et al. “Practical Second-Order DPA Attacks for Masked Smart Card
Implementations of Block Ciphers.” Topics in Cryptology - CT-RSA 2006, The
Cryptographers Track at the RSA Conference 2006, San Jose, CA, USA, Febru-
ary 13-17, 2006, Proceedings. Ed. by D. Pointcheval. Vol. 3860. Lecture Notes in
Computer Science. Springer, 2006, pp. 192–207.

[24] Mark Randolph and William Diehl. “Power Side-Channel Attack Analysis: A Review
of 20 Years of Study for the Layman”. Cryptography 4.2 (2020). issn: 2410-387X.
doi: 10.3390/cryptography4020015. url: https://www.mdpi.com/2410-387X/
4/2/15.

[25] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. “Generic DPA Attacks:
Curse or Blessing?” Apr. 2014, pp. 98–111. isbn: 978-3-319-10174-3. doi: 10.1007/
978-3-319-10175-0_8.

[26] Abul Sarwar. “CMOS Power Consumption and Cpd Calculation” (1997).
[27] D.W. Scott. Vol. 66(3). Biometrika Trust, 1979, pp. 605–610.
[28] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. “A Unified Framework

for the Analysis of Side-Channel Key Recovery Attacks”. Advances in Cryptology

https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1007/978-3-642-10838-9_15
https://doi.org/10.3390/cryptography4020015
https://www.mdpi.com/2410-387X/4/2/15
https://www.mdpi.com/2410-387X/4/2/15
https://doi.org/10.1007/978-3-319-10175-0_8
https://doi.org/10.1007/978-3-319-10175-0_8

88 5| BIBLIOGRAPHY

- EUROCRYPT 2009. Ed. by Antoine Joux. Berlin, Heidelberg: Springer Berlin
Hfoneidelberg, 2009, pp. 443–461. isbn: 978-3-642-01001-9.

[29] Steve Summit. comp.lang.c FAQ list - Question 13.20. visited on 25-02-2022. url:
http://c-faq.com/lib/gaussian.html.

[30] Stefan Tillich, Christoph Herbst, and Stefan Mangard. “Protecting AES Software
Implementations on 32-Bit Processors Against Power Analysis”. Vol. 4521. Jan.
2007, pp. 141–157. isbn: 978-3-540-72737-8. doi: 10.1007/978-3-540-72738-
5_10.

[31] N. Veyrat-Charvillon and sF.-X. Standaert. “Generic side-channel distinguishers:
Improvements and limitations - CRYPTO 2011”. Ed. by P. Rogaway. Vol. 6841.
Lecture Notes in Computer Science. Springer, 2011, pp. 354–372.

[32] Jason Waddle and David A. Wagner. “Towards Efficient Second-Order Power Anal-
ysis”. CHES. 2004.

[33] Carolyn Whitnall. “An information theoretic assessment of first-order mia”. 2010.

http://c-faq.com/lib/gaussian.html
https://doi.org/10.1007/978-3-540-72738-5_10
https://doi.org/10.1007/978-3-540-72738-5_10

89

List of Figures

1.1 AES encryption structure . 5
1.2 AES decryption structure . 6
1.3 DES encryption and decryption structures 8

2.1 SPA on a DES encryption . 17
2.2 SPA on a AES encryption . 18
2.3 SPA on a round computation of AES’ cipher 18
2.4 Portion of a power trace of a computation of a RSA private key 20
2.5 DPA attack, with one successful attack and two unsuccessful attack 24
2.6 Correlation values for CPA . 29
2.7 Mutual information values of MIA . 34
2.8 Histogram and Kernel method respectively 37

4.1 SR on AES’s S-Box with noiseless measurements 60
4.2 SR on AES’s S-Box with min MI and 10dB SNR measurements 61
4.7 SR on DES, ideal measurements, CPA . 64
4.8 SR with noiseless measurements and max MI 65
4.9 SR with noiseless measurements and min MI 66
4.17 SR with noiseless measurements and min MI 75
4.18 SR with noiseless measurements and min MI 76
4.22 SR with noiseless measurements and min MI 80
4.23 SR with measurements with SNR = 10dB and min MI 82

91

List of Tables

4.1 Success Rate with the first most probable key guess 63
4.2 Success Rate with the first most probable key guess 65
4.3 Success Rate with the first most probable key guess 66
4.4 Success Rate with the first two most probable key guesses 66
4.5 Success Rate with the first most probable key guess 68
4.6 Success Rate with the first two most probable key guesses 68
4.7 Success Rate with the first most probable key guess 69
4.8 Success Rate with the first two most probable key guesses 69
4.9 Success Rate with the first most probable key guess 71
4.10 Success Rate with the first two most probable key guesses 71
4.11 Success Rate with the first most probable key guess 74
4.12 Success Rate with the first two most probable key guesses 74
4.13 Success Rate with the first most probable key guess 77
4.14 Success Rate with the first two most probable key guesses 77
4.15 Success Rate with the first most probable key guess 81
4.16 Success Rate with the first two most probable key guesses 81

93

Ringraziamenti

Vorrei innanzitutto ringraziare di cuore i miei relatori il Prof. Alessandro Barenghi ed
il Prof. Gerardo Pelosi per avermi guidato con pazienza e disponibilità lungo questo
percorso impegnativo. La vostra esperienza è stata per me essenziale ed intestimabile, e
per questo ve ne sono immensamente grato.

Mi sento anche di ringraziare tutte le persone in cui mi sono imbattuto durante l’intera
carriera universitaria. Sia direttamente che indirettamente, che si sia sviluppata o meno
una relazione, la vostra influenza ha fatto sì che intraprendessi questo percorso, e per
questo vi sono riconoscente.

Infine, ma non per importanza, ringrazio i miei genitori per avermi sempre sostenuto,
anche nei momenti più difficili. Vi ringrazio dal profondo del cuore per avermi dato la
possibilità di intrapendere e concludere questo fantastico viaggio.

	Abstract
	Sommario
	Contents
	Introduction
	Basic Terminology and Concepts
	Cryptographic Paradigms
	Block Ciphers

	Background on Side-Channel Attacks
	Power-Based Information Leakage
	Side-Channel Attacks

	Open Challenges and Goals

	Side-Channel Techniques
	Simple Power Analysis
	Differential Power Analysis
	Correlation Power Analysis
	Mutual Information Analysis
	Properties of the Leakage Model
	Probability Distribution Estimation
	Optimizations

	Comparison between CPA and MIA

	Leakage Model Exploration
	Leakage Model Definition
	Side-Channel Attacks Implementations
	Mutual Information Analysis Implementation
	Correlation Power Analysis Implementation

	Side-Channel Measurements Simulation
	Data Visualization

	Experimental Evaluation
	AES Substitution Box
	DES Substitution Box
	4x4 Substitution Box
	CPA Resilient Substitution Boxes
	TA Resilient Substitution Boxes
	General Evaluation

	5x5 Substitution Box
	CPA Resilient Substitution Boxes
	TA Resilient Substitution Boxes
	General Evaluation

	Conclusions and Future Developments
	Bibliography
	List of Figures
	List of Tables
	Ringraziamenti

