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1. Introduction
Rhythm refers to the arrangement of sounds in
time and is among the most influential musi-
cal attributes for what concerns the aesthetic,
emotional, and behavioral response of the lis-
tener. Rhythm not only dictates when notes are
played but also determines their duration and
intensity. Furthermore, in a music performance,
other more subtle factors can affect the percep-
tion of rhythm, such as timbre, envelopes, and
the register of an instrument.
Rhythm complexity is considered a significant
semantic descriptor of music content, influenc-
ing neural activities related to attention, reac-
tivity, and excitement. Thus, it is a topic of
interest for Music Information Retrieval (MIR),
as it may be instrumental for recommender sys-
tems, music genre classification, and database
navigation, to name a few.
In the past few decades, several studies aimed
at finding a quantitative model of this markedly
subjective attribute of music. However, the ex-
isting corpus of literature only consider onsets
in a binary fashion, i.e., either present or ab-
sent, and disregard their intensity altogether. As
such, existing works do not take into account the
role of dynamics.

To the best of our knowledge, the present work
is the first to investigate this aspect. In particu-
lar, we explore the effect of dynamic accents on
the perception of rhythm complexity, consider-
ing both the monophonic and polyphonic case.
Such an analysis is conducted by means of two
subjective listening tests, where rhythms with
different dynamics are compared. Additionally,
we discuss the robustness of existing quantita-
tive methods of measuring rhythm complexity
when dynamics is present. Namely, we evalu-
ate the performance of six well-established com-
plexity measures originally proposed for binary
rhythmic patterns.
Our analysis show that varying the onset inten-
sity affects the subjective perception of complex-
ity, and that existing measures prove reliable in
capturing the complexity of rhythms with dy-
namic accents, especially in the case of poly-
phonic patterns.
The remainder of the manuscript is organized
as follows. In Section 2, we present six rhythm
complexity measures from the literature. Sec-
tion 3 is dedicated to the illustration of the de-
sign principles for the subjective listening tests.
In Section 4, we analyze the experimental re-
sults. Finally, Section 5 concludes this work.
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2. Rhythm Complexity
In this section, we present the complexity mea-
sures considered in our study. In the literature,
different families of rhythm complexity measures
exist. In practice, however, all measures process
rhythms expressed as binary sequences, where a
1 indicates an onset and a 0 a rest, and yield a
scalar representing the level of complexity that a
human listener would perceive. In the following,
we introduce six well-established measures [5].
Belonging to the rhythmic syncopation fam-
ily, Toussaint’s Metrical Complexity and
Longuet-Higgins & Lee (LHL) Complex-
ity rely on a metrical hierarchy where each pulse
is associated with a predetermined weight in
order to find syncopation pulses. Pressing’s
Cognitive Complexity belongs to the pat-
tern matching family, which is based on assign-
ing sub-pattern archetypes a certain degree of
complexity. Weighted Note to Beat Dis-
tance (WNBD) relies on measuring the dis-
tance between a pattern and a reference rhythm.
Off-Beatness belongs to the mathematical ir-
regularity family, which is characterized by a ge-
ometric interpretation of rhythm to find their
irregularities. Inter-Onset Intervals Infor-
mation Entropy belongs to the family of the
inter-onset intervals (IOI) measures and com-
putes the uncertainty of the period of time be-
tween the onsets. Finally, the Grouped-Voice
Polyphonic Measure by Mezza et al. [4] is the
only example of complexity measure that can
deal with polyphonic patterns.

3. Subjective Listening Test
This section illustrates the design of two listen-
ing tests aimed at assessing the effect of dy-
namic accents on the perception of rhythm com-
plexity, as well as the modeling capabilities of
the metrics discussed above when dealing with
non-constant intensity patterns. Specifically,
the first test pertains to monophonic patterns,
whereas the second concerns polyphonic ones.
Participants were asked to rate on a scale of
1 to 5 the rhythm complexity they perceived
while listening to a number of audio stimuli.
Previous studies [2] adopted an alternative ap-
proach by instructing participants to reproduce
a given rhythm, or to tap its pulse. However,
this methodology aligns with a more specific in-
terpretation of rhythm complexity, as the chal-

lenges associated with a rhythm’s reproduction
may not necessarily mirror those related to its
conceptualization. Moreover, tackling the repro-
duction of a polyphonic pattern assumes a pre-
requisite familiarity with drumming techniques,
thereby introducing a difference in the psycho-
logical problem addressed by the test, with re-
spect to the one of monophonic rhythms. Con-
versely, asking participants to quantify the per-
ceived complexity ensures the results from both
the tests to be comparable.

3.1. Monophonic Patterns
The first experiment concerns monophonic pat-
terns. While the conclusions drawn by analysing
monophonic patterns might not generalize well
for what concerns complex musical composition,
this approach aligns with much of the existing
literature [5].
We use the Fitch & Rosenfeld’s dataset [2], a
collection of 30 hand-crafted monophonic binary
patterns in 4/4 time signature, each lasting one
bar with a 16-pulse resolution and containing
four to five onsets.
To investigate the impact of dynamic accents on
complexity perception, we synthesize four dif-
ferent versions of each pattern, resulting in a
total of 120 stimuli. Each version is obtained
by assigning different velocity1 values to the on-
sets in each MIDI pattern: Constant (no inten-
sity variation), Hierarchy (velocity is assigned
according to the Lerdahl & Jackendoff’s pulse
hierarchy [3]), Random (random velocity val-
ues), and Performed (velocity from a human
performance). The stimuli were synthesized as
8-second audio files, including two pre-count
metronome bars to provide a reference meter to
the listener, followed by two measures of the tar-
get pattern. Unlike previous studies that used
the click sound of a metronome [1] for the target
pattern, we favor a realistic drum snare sound to
capture the diverse range of effects that inten-
sity has on musical performance, encompassing
loudness, timbre, and pitch variations.
In order to limit the duration of the listening
test, the 120 stimuli were not all included in the
same test session; instead, we split them in three
groups. In order to do so, we randomly parti-

1Velocity is a MIDI parameter directly associated
with the intensity of a note, and often mapped onto other
attributes such as timbre.
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Figure 1: Scores distribution of the first listening test.

Figure 2: Scores distribution of the second listening test.

tioned the original dataset in three sets of ten
patterns each, and included all four versions of
the patterns. Thus, each test session presented
the user with a likert-scale questionnaire on 40
rhythms. For the design of the test, we relied on
the webMUSHRA software developed by Audi-
oLabs.

3.2. Polyphonic Patterns
The second experiment extends the analysis to
polyphonic patterns. In doing so, we focus
on drums, to exclude the interplay with the
harmonic component that other musical instru-
ments would entail. Given the nature of drums
and their interplay, it becomes crucial to extend
research from monophonic to polyphonic pat-
terns, to mark a progression in the application
of rhythm complexity measures to real music.
The structure of the test is the same of the first
one, with the only variation of a different set
of stimuli. Groove MIDI Dataset (GMD) was
adopted for this purpose. We selected ten single-
measure rhythmic patterns from GMD by com-
puting the following steps. We split all the MIDI
files in measures and kept only the 4/4 time sig-
nature patterns; we discarded measures with less
than three voices or less than eight onsets; we
computed the expected complexity of each of the

resulting patterns according to Grouped-Voice
Polyphonic Toussaint’s measure; we partitioned
the rhythms in ten groups of increasing complex-
ity; from each group, we select a random pattern
among the ones whose velocity distribution had
the highest variance. We also applied the same
reduction mapping applied by the authors of [4],
reducing the maximum number of voices in each
MIDI file to nine.
For each pattern, two audio clips were syn-
thesized: Performed (original velocity, recorded
from human performance) and Constant (veloc-
ity set to 100). In this way, the test compares
rhythmic patterns with and without expressive-
ness. We repeated each rhythm four times, and
then synthesized audio files using Groove Agent
by Steinberg.

4. Results
4.1. Monophonic Patterns
The first listening test was completed by 72 par-
ticipants, which are all either experienced musi-
cians, students from the Music & Acoustic En-
gineering MSc at Politecnico di Milano, or re-
searchers in the field of MIR.
The analysis of the subjective scores reveals
that the proposed rhythms were generally per-
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Toussaint LHL Pressing WNBD IOI Information Entropy Off-Beatness
Constant 0.569570 0.584780 0.703710 0.664680 0.551650 0.552740
Hierarchy 0.442090 0.485310 0.615350 0.560720 0.543100 0.445330
Random 0.668360 0.707180 0.747770 0.771720 0.480080 0.611540
Performed 0.679810 0.700700 0.759780 0.732970 0.478920 0.664490

Table 1: Pearson correlation coefficients between mean test scores and metrics’ scores in each velocity
mode.

ceived as not highly complex (Fig. 1). Dynam-
ics showed to affect listeners’ perception, but
in a different way for each compared intensity
mode. Excluding “Very high” ratings, a compar-
ison of velocity modes indicates that the Ran-
dom (R) mode is generally perceived as more
complex, with more votes in the “High” and
“Medium” categories. Conversely, Constant (C )
mode tends to have fewer scores in the high rat-
ings. Performed (P) and Hierarchy (H ) are
placed midway, with a higher complexity per-
ceived for P mode. Thus, when a single instru-
ment is involved in the pattern, results showed
that a variation in the intensity generally imply
an increment in the perceived complexity.
Table 1 shows the Pearson correlation coeffi-
cients between the six measures described in Sec-
tion 2 and the average subjective scores for each
velocity mode.
Overall, WNBD and Pressing generally exhibit
high correlation scores. Table 1, however, re-
veals not all the coefficients are equally high. In
this regard, it is worth remembering that the ex-
periment focuses on monophonic snare patterns,
which may be unfamiliar to listeners. This could
impact their perception and judgment.
A common trend for all the rhythm complex-
ity measures - except IOI Information Entropy
- is that they achieve the highest correlation in
R mode, the second highest in P, the second
lowest in C, and the lowest in H.
Further examination considers shifts in per-
ceived complexity among velocity modes.
H mode stands out with a divisive behavior,
as the users equally split among the ones who
found it more complex than C mode and the
ones that perceived the opposite. Potentially,
this diversity in the listener perceptions made it
challenging for the metrics to capture its charac-
teristics accurately. R and P modes showed to
be perceived with less ambiguity, possibly due
to their resemblance to the real-life dynamics of

a human performance.
The results highlight the importance of con-
sidering listener perspectives and the inherent
challenges of assessing metrics in the context of
monophonic patterns. Actually, the absence of
intensity in C mode does not necessarily dimin-
ish metric performance; instead, the listener ex-
pectations based on a majority of stimuli con-
taining intensity variations determined a shift
in their perception.
Notably, the IOI Information Entropy measure
differs from others. Indeed, it achieves the high-
est correlation with C mode, and the lowest
with P mode. A possible explanation is that
this measure has a unique approach with respect
to the other metrics, focusing on onset distance
rather than absolute position, and thus challeng-
ing the common association of syncopation with
dynamics.

4.2. Polyphonic patterns
In this section, we discuss the results of the sec-
ond subjective listening test. A total of 82 par-
ticipants completed the test.
Fig. 2 depicts the distribution of 1640 collected
ratings. It can be observed that the test partic-
ipants perceived P mode as generally less com-
plex than C mode. Indeed, P collected a higher
number of votes in the “Medium” and “Low”
classes, while C mode showed a tendency to re-
ceive higher scores.
The perceived complexity difference between P
and C modes can be attributed to the synthesis
process. Indeed, the original patterns included
ghost notes, also known as muted notes, that are
distinguished for being played with a very soft
dynamic between the main notes, but are fun-
damental to add depth to the groove of a drum
performance. The C mode velocity profile trans-
formed completely the role of ghost notes, mak-
ing them main events and resulting in denser
patterns, which have been reportedly perceived
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Toussaint LHL Pressing WNBD IOI Information Entropy Off-Beatness
Constant 0.836070 0.600332 0.812444 0.722569 0.679872 0.592801
Performed 0.967446 0.828665 0.923137 0.811797 0.916034 0.547831

Table 2: Pearson correlation coefficients between mean test scores and polyphonic metrics in each
velocity mode.

as more complex.
Similarly as it was done for the first test, we used
the collected responses from the listening test as
a reference to evaluate the presented measures.
Since these measures only refer to monophonic
patterns, we adopted the Grouped-Voice algo-
rithm from [4] to derive the polyphonic versions
of each of them. For each of the so obtained
polyphonic measures, we computed the Pearson
correlation coefficients with the average subjec-
tive scores assigned by the users, which are pre-
sented in Table 2.
Generally, these coefficients are higher than
those in Table 1, referring to the monophonic
case. This suggests that the measures are reli-
able in the analysis of realistic drum patterns,
especially in the context of polyphonic rhythms.
The increase in correlations may be attributed
to the familiarity of the analyzed objects to lis-
teners, resulting in more consistent judgments
with respect to the first test.
Toussaint’s metrical complexity measure consis-
tently exhibited the highest correlation coeffi-
cient, reaching an absolute highest score of just
above 0.96. This strong linear relationship be-
tween Toussaint’s and the test scores suggests its
effectiveness in capturing perceived complexity,
as also showed by the high coefficient of deter-
mination (R2 = 0.93) of the linear regression
model shown in Fig. 3.
Pressing also achieved high correlation scores,
consistently ranking as the second-best option.
WNBD and LHL obtained quite high correlation
coefficients, although not as high as the ones of
Toussaint and Pressing.
Also, IOI Information Entropy showed higher
coefficients than the ones obtained in the first
test, exhibiting on of the highest correlations in
the P mode; still, the correlation with the aver-
age users’ scores in the C mode was pretty low
in comparison.
However, the lowest correlation score was ob-
tained by Off-Beatness in relation to the P mode
(reaching just above 0.54), indicating its lesser

Figure 3: Linear regression model between
Grouped-Voice Toussaint’s Metrical Complexity
and average test scores.

effectiveness in dealing with polyphonic patterns
with dynamic accents.
Analyzing the C and P intensity modes in Ta-
ble 2, it becomes apparent that the correlation
scores of the P mode are higher than those of
the C mode. Indeed, except Off-Beatness -
which also obtained the lowest correlations in
both modes and thus is excluded from the fol-
lowing considerations - all the metrics showed to
respect this trend. Unexpectedly, this suggested
that the quality of rhythm complexity measure-
ment was higher on rhythms with realistic inten-
sity profiles, as the ones played by actual musi-
cians. Existing metrics are thus seemingly more
reliable when applied to rhythmic patterns with
intensity variations, even though they process
the patterns as binary sequences.
Low correlations in Table 2 may be justified by
high variance in users’ responses. At this re-
gard, we conducted a further analysis to ver-
ify the presence of distinct listeners populations,
considering their ratings in relation to specific
patterns and examining how the intensity mode
influenced them.
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The users revealed to quite consistently perceive
the P version of each rhythm as less complex
than its counterpart fromC class.
However, the analysis of pattern-wise scores
variance in the C mode revealed mixed opin-
ions among users, especially for rhythms at the
extremes of the proposed complexity scale. In
particular, in the ratings distribution of these
patterns, two distinct populations are observ-
able. This contrasts the single-valued nature of
scalar metrics, which cannot capture the divi-
sive nature of these rhythms, thus negatively
affecting the correlations. Instead, the ratings
assigned to the rhythms of P mode showed less
sparse distributions and lower standard devia-
tions, indicating less indecision and more con-
sistent judgements.
Thus, considering users’ perspective proves fun-
damental when interpreting correlation coef-
ficients. The unfamiliarity associated with
constant-intensity rhythms led to varied opin-
ions and compromised internal judgment scales,
resulting in inconsistent evaluations. The com-
parison allowed by Table 2 aligns with the notion
that users’ internal representation of rhythm in-
herently includes intensity information, making
metrics more effective for rhythms with intensity
variations.

5. Conclusions
In this study, we investigated the novel topic
of the influence of dynamic accents on the per-
ceived complexity of rhythms through two ex-
periments involving subjective listening tests,
with a significant participant involvement. The
first experiment focused on monophonic rhyth-
mic patterns, while the second examined poly-
phonic rhythms. Both experiments compared
variations of rhythmic patterns with different
dynamics. We used the collected data from these
tests to gain insights into human rhythmic per-
ception and its relationship with rhythmic ac-
cents. Additionally, we evaluated six existing
rhythm complexity measures using the test re-
sponses as a reference.
The results showed generally high correlations
between the complexity measures and the test
results, especially in the polyphonic case, indi-
cating the reliability of these measures for real
music performances and applications in Music
Information Retrieval.

The comparison of the two experiments high-
light that a too general interpretation on the
cognitive phenomena of rhythm complexity is
hard to find. Indeed, in the monophonic test
rhythms with constant intensity were perceived
as less complex, while the opposite happened
for the polyphonic rhythms. These differences
stress the importance of context, as well as in-
fluential factors of memory and familiarity, in
the context of perception.
The study also extends prior work by applying
the Grouped-Voice algorithm to develop poly-
phonic versions of six rhythm complexity mea-
sures originally designed for monophonic pat-
terns, and confirming its validity.
While the analysis focused on dynamic accents,
there is room for more in-depth exploration in
future research. Comparisons of cases with dif-
ferent intensity levels for the same accents or
exploring variations in introducing intensity at
different metrical positions could provide further
insights. Additionally, exploring aspects like
polyrhythms, polymeters, and triplet rhythms
could complement the study of rhythm complex-
ity, which, thus far, has only been studied in the
context of binary rhythms.
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