
Politecnico di Milano
School of Industrial and Information Engineering

Master of Science in Materials Engineering & Nanotechnology and
Mechanical Engineering

A study on crack initiation for rolling
contact fatigue in planet gears

Advisor: Prof. Andrea MANES

M.Sc.Thesis by:
Paolo CATTANEO
ID number 872285

Academic Year 2019–2020





Acknowledgments

Voglio ringraziare il professor Andrea Manes per avermi dato la possibilità di
lavorare a questo progetto di tesi e per essersi dimostrato sempre una guida

professionale. Una speciale menzione va anche a Massimo Fossati e Mohammad
Razasefat Balasbaneh, i quali con pazienza, disponibilità e competenza mi hanno

seguito e consigliato durante tutta la durata di questo lavoro. È d’obbligo ringraziare
i miei genitori e la mia famiglia, che mi hanno sempre supportato e che hanno

creduto in me per tutti questi anni. Ringrazio anche gli amici di sempre, le persone
con cui ho condiviso quest’esperienza e tutti quelli che mi sono rimasti vicini.

I want to thank Professor Andrea Manes allowing me to work on this thesis project
and for demonstrating always to be a professional guide. A special thought goes to

Massimo Fossati and Mohammad Razasefat Balasbaneh, who with patience,
willingness and expertise, followed and advised me during all the duration of this

work. Obviously, I must thank my parents and my family, which had always
supported and believed in me during all these years. I shall thank also my dear

friends, the people with whom I shared this journey and everyone who cared about me.





Contents
1 Introduction 1

2 State of the art 8
2.1 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Rolling Contact Bearings . . . . . . . . . . . . . . . . . . . . . 10
2.2 Materials for bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Hertzian Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Rolling Contact Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Modes of Crack Propagation in RCF . . . . . . . . . . . . . . . 21
2.5 Fatigue Cracks in Rolling bearings . . . . . . . . . . . . . . . . . . . . 22
2.6 Surface cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.3 Effect of lubricant on crack growth mode . . . . . . . . . . . . 27
2.6.4 Quiescent zone . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.5 Surface Cracks: Discussion . . . . . . . . . . . . . . . . . . . . 31

2.7 Subsurface Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.1 Subsurface Initiation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 Subsurface Propagation . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Mode III and RCF for Rail Components . . . . . . . . . . . . . . . . . 38
2.9 Residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10.1 Continuum Damage Mechanics . . . . . . . . . . . . . . . . . . 50

3 Analytical-numerical model in Matlab: multiaxial stress state and
fatigue life simulation 52
3.1 Model Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Non-conforming Contact . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 From 2D to 1D Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Load Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Stress Components and Maximum Shear . . . . . . . . . . . . . . . . . 61
3.7 Integrated Equations for Stress Tensor Evaluation . . . . . . . . . . . 67
3.8 Continuum Damage Mechanics . . . . . . . . . . . . . . . . . . . . . . 75
3.9 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10.1 Initiation life . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.10.2 In depth analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.11 Residual stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 FEM Model 110
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2 Model Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3 Torque and Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 Torque and Rotation Transmission . . . . . . . . . . . . . . . . . . . . 118
4.5 FEM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.1 Sun Gear and Input Shaft . . . . . . . . . . . . . . . . . . . . . 120
4.5.2 Sun and Planet Gears . . . . . . . . . . . . . . . . . . . . . . . 121

i



4.5.3 Rollers and Rolling Contact . . . . . . . . . . . . . . . . . . . . 126
4.5.4 Complete Model . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.7 Complete model results . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.8 Further development: single roller model . . . . . . . . . . . . . . . . . 136

5 Sinergy between analytical and FEM models 137

6 Conclusions 140

ii



List of Figures
1.1 Representation of rolling contact inside a bearing gear [2] . . . . . . . 1
1.2 Schematic representation of spalling and pitting [4] . . . . . . . . . . . 2
1.3 3D representation of (a) an epicyclic gearbox and (b) the bearing gear

under study [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 3D representation of: (a) initial crack propagation and spalling, (b)

crack penetration through all section leading to failure (c) section-view
of crack propagation, (d) resulting failure on gear [2][7] . . . . . . . . 4

1.5 Fatigue life evaluation of bearing gears from the epicyclic stage of the
EC225 Super Puma helicopter, before and after the study by Airbus
after incidents [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Flowchart of the general procedure of the current thesis work . . . . . 7
2.1 Different types of bearings [17] . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Radial bearing and thrust bearing [19] . . . . . . . . . . . . . . . . . . 9
2.3 Sliding contact bearing and Rolling contact bearing [19] . . . . . . . . 9
2.4 Rolling contact bearing section [19] . . . . . . . . . . . . . . . . . . . . 10
2.5 Types of rolling contact bearings [19] . . . . . . . . . . . . . . . . . . . 11
2.6 (a) Microstructure of hot-rolled 52100 steel as supplied by the manufac-

turer. (b) Microstructure after spheroidisation. Courtesy of W. Trojahn
[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Phase fraction transformation in steel 1C-1.5Cr [25] as function of tem-
perature [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Composition ranges (wt%) of common bearing steels [6]. . . . . . . . . 15
2.9 Interference fringes at the contact between two lenses inclined by a 45°

angle. (a) Unloaded, (b) loaded [5] . . . . . . . . . . . . . . . . . . . . 15
2.10 Hertzian load profile [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Non conforming contact [5] . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Non conforming contact and relative deformation [5] . . . . . . . . . . 18
2.13 Hertzian stress distribution at the contact surface and along the axis of

symmetry. Comparison between (left) uniform load pressure and (right)
Hertzian pressure circular profile [5] . . . . . . . . . . . . . . . . . . . 20

2.14 Growth mechanisms for fatigue cracks [37] . . . . . . . . . . . . . . . . 22
2.15 Determination and plot of Paris’ law [44] . . . . . . . . . . . . . . . . 23
2.16 General scheme of pitting and spalling phenomena [4] . . . . . . . . . 24
2.17 Experimental evidence of micro-cracks. Typical formation of shallow

angle cracks in gears [46] . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.18 Stages of oil seepage [54] . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.19 Fluid pressure and contact pressure profiles in different cases of crack

opening [55] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.20 Relation between relation of motion and fluid interaction with crack

growth [54] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.21 Crack branching simulation under (a) unidirectional and (b) reciprocal

loading [58] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.22 Quiescent zone represented on the plot of ∆KII as function of depth [50] 31
2.23 Fatigue crack nucleation at the surface of drilled holes [50] . . . . . . . 33
2.24 Specimens for experimental tests on Mode II and II fatigue crack growth.

Reported dimensions are in mm. (a) Basic principle for Mode II test.
(b) Specimen for Mode II test. (c) Specimen for mode III test. (d)
Notch detail [92] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



2.25 Crack surface morphology [92] . . . . . . . . . . . . . . . . . . . . . . 36
2.26 Crack propagation and branching [92] . . . . . . . . . . . . . . . . . . 36
2.27 Fatigue crack growth direction for (A) shear and (B) tensile Mode. (a)

High traction. (b) Low traction. [98] . . . . . . . . . . . . . . . . . . . 37
2.28 Crack growth behavior under different lubrication conditions [66] . . . 37
2.29 Heat treatment cycles for hardening carburised components: (a) direct

hardening, (b) single hardening [110] . . . . . . . . . . . . . . . . . . . 39
2.30 Rendering of the residual stresses field across the whole component [7] 40
2.31 Generic residual stress depth distribution [6] . . . . . . . . . . . . . . . 41
2.32 Stressed volume configuration in Lundberg-Palmgren model V ∼ az0(2πfr)

[32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.33 Plot comparison between Lundberg-Palmgren and Ioannides-Harris the-

ories [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Flowchart of numerical model passages for damage evolution and fatigue

initiation life evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Section of the CAD model indicating the contact region geometry . . . 53
3.3 Hertzian stress field under elliptical contact [7] . . . . . . . . . . . . . 54
3.4 Damage evolution contour for all x, at different depths for SAE 4340 [16] 55
3.5 Schematic representation of the analysis domain in: (a) the 2D model

used by Behesti et al. [16], (b) rendition of the current model . . . . . 55
3.6 Forces and moments acting on the contact area [5] . . . . . . . . . . . 56
3.7 Generic Hertzian load distribution and stress tensor reference [5] . . . 57
3.8 Load distribution representation, from Matlab code . . . . . . . . . . . 59
3.9 Comparison between representation of critical shear value for varying

friction coefficients, from Beheshti [16] (dashed lines) and the current
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 2D representation of the integration calculation and variables . . . . . 61
3.11 Representation of in depth profile of (a) principal stresses on the sym-

metry line, (b) level curves of maximum shear stress [5] . . . . . . . . 63
3.12 Shear stress envelope at maximum stress position, evaluated by De-

pouhon et al. [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.13 Comparison between the reference [5] and model results for the stress

tensor components σx, σz and τxy evaluated at x = 0 for µ = 0 . . . . 65
3.14 Comparison between the model results for the critical shear stress vec-

tor, evaluated at x = 0 for µ = 0, for the Beheshti [16] and general
formulation [5] mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 Surface graph of Matlab stress tensor evaluation for τxz in: (a) isometrci
view, (b) front view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.16 Surface graphs of Matlab stress tensor evaluation for: (a) σx, (b) σz . 69
3.17 Surface graphs of Matlab stress tensor evaluation for τmax, evaluated

in: (a) general formulation [5], (b) Beheshti formulation [16] . . . . . 70
3.18 Surface graphs of Matlab stress tensor evaluation with McEwen formu-

lation, for: (a) σx, (b) σz . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.19 Surface graphs of Matlab stress tensor evaluation with McEwen formu-

lation, for: (a) τxz, (b) τxy . . . . . . . . . . . . . . . . . . . . . . . . 72
3.20 Surface graphs of Matlab stress tensor evaluation with McEwen formu-

lation, for: (a) σy, (b) τmax . . . . . . . . . . . . . . . . . . . . . . . . 73
3.21 Comparison of resulting critical stress profile, from integral and McEwen’s

calculation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



3.22 Comparison on the critical shear stress profile when increasing the fric-
tion coefficient for the McEwen and general integration evaluation modes 75

3.23 Hysteresis loop of a rolling contact cycle in stress-strain coordinates [158] 78
3.24 Qualitative example of damage (D) evolution over the number of cycles

for: (a) Bhattacharya [141] and (b) Paas et al. [159] . . . . . . . . . 80
3.25 Plot of damage (D) evolution over the number of cycles, obtained from

the model with load P = 2560, on AISI52100. (a) linear plot (b)
logarithmic scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.26 Comparison of number of cycles to initiation for different maximum
Hertzian pressure, on AISI 52100, between Beheshti and Chen refer-
ences [16], [86] and model’s results . . . . . . . . . . . . . . . . . . . . 84

3.27 Comparison of number of cycles to failure for different maximum Hertzian
pressure, on AISI 52100, between Beheshti, Chen and Bhattacharya
references [16] and model’s results . . . . . . . . . . . . . . . . . . . . 85

3.28 Resulting maximum critical stress profile (τmax) and peak value for
AISI 52100 at (a) 2550 MPa, (b) 2560 MPa. . . . . . . . . . . . . . 87

3.29 Resulting maximum critical stress profile (τmax) and peak value for
SAE 4340 at (a) 1800 MPa, (b) 1810 MPa. . . . . . . . . . . . . . . 88

3.30 Representation of data from Tables 3.2 and 3.3. Number of cycles
at failure for different maximum Hertzian pressure and friction coef-
ficients, on (a) AISI 52100 and (b) SAE 4340 . . . . . . . . . . . . . 90

3.31 Number of cycles to initiation at different depths, for Pmax = 1800
MPa. Reference values from Behesti [16] . . . . . . . . . . . . . . . . 91

3.32 Comparison of number of cycles to initiation at different depths between
Beheshti [16] reference curve and the current model . . . . . . . . . . 92

3.33 Number of cycles to initiation at different depths for a pressure of 1810
MPa on SAE 4340. (a) general view, (b) detail on critical region. . . 94

3.34 Number of cycles to initiation at different depths for a pressure of 1850
MPa on SAE 4340. (a) general view, (b) detail on critical region. . . 95

3.35 Number of cycles to initiation at different depths for a pressure of 2560
MPa on AISI 52100. (a) general view, (b) detail on critical region. . 96

3.36 Number of cycles to initiation at different depths for a pressure of 2700
MPa on AISI 52100. (a) general view, (b) detail on critical region. . 97

3.37 Simplified residual stress profile, from experimental X-ray diffraction
data [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.38 Residual stresses in induction-hardened gear teeth mapped by neutron
diffraction [166] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.39 Critical stress depth distribution after applying a constant compressive
stress field of 600 MPa and 768 MPa, from a maximum Hertzian
pressure of 2600 MPa, evaluated with τmax as critical stress . . . . . 99

3.40 Maximum shear stress depth distribution after applying a constant com-
pressive stress field of 600 MPa and 768 MPa, from a maximum
Hertzian pressure of 2600 MPa, evaluated with τxy as critical stress . 101

3.41 Critical stress depth distribution after application of residual stress fields
σres,max = 768 MPa with 1 mm depth and σres,max = 768 MPa with
2.5 mm depth, from an applied pressure of 2600 MPa . . . . . . . . . 101

3.42 Critical stress depth distribution after application of a residual stress
field of σres,max = 542 MPa with 2.5 mm depth, from an applied pres-
sure of 1900 MPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



3.43 Critical stress depth distribution after application of residual stress field
of σres,max = 600 MPa with 1 mm depth and σres,max = 600 MPa
with 2.5 mm depth, from an applied pressure of 2600 MPa . . . . . . 102

3.44 Schematic representation of the parabolic residual stress distribution
in the compressive region for: (a)(c) σres,max = 600 MPa, (b)(d)
σres,max = 768 MPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.45 Maximum critical stress value progression with load, after applying the
residual stresses field with respect to: (a) SAE 4340 threshold (Se = 542
MPa), (b) AISI 52100 threshold (Se = 768 MPa) . . . . . . . . . . . 105

3.46 Number of cycles to initiation at different depths, for Pmax = 2635
MPa on SAE 4340. (a) general view, (b) detail on critical zone . . . 106

3.47 Number of cycles to initiation at different depths, for Pmax = 2735
MPa on SAE 4340. (a) general view, (b) detail on critical zone . . . 107

3.48 Number of cycles to initiation at different depths, for Pmax = 3480
MPa on AISI 52100. (a) general view, (b) detail on critical zone . . 108

3.49 Number of cycles to initiation at different depths, for Pmax = 3580
MPa on AISI 52100. (a) general view, (b) detail on critical zone . . 109

4.1 Schematic representation of an epicyclic gearbox stage [2] . . . . . . . 110
4.2 Catia rendering of the epyciclic gearbox stage with input and output shafts111
4.3 AgustaWestalnd AW169 during operations [167] . . . . . . . . . . . . . 112
4.4 3D model of the epicyclic gearbox system showing: (a) the interaction

between sun and planets, (b) the transmission system to the output shaft 112
4.5 Sun gear 3D representation . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6 Planet gear 3D representation . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Ring gear 3D representation . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Bearing cage 3D representation . . . . . . . . . . . . . . . . . . . . . . 115
4.9 Bearing 3D representation . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.10 Schematic representation of the section of the epicyclic gearbox. . . . . 116
4.11 Abaqus representation of the shaft with constrain sections, delimited by

construction planes, and reference points on the lateral faces . . . . . . 119
4.12 Von Mises stress distribution resulting from a generic torque applied at

the ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.13 Section profile results for: (a) Von Mises stress, (b) rotational velocity 120
4.14 Abaqus representation of the assembly between input shaft and the sun

gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.15 Abaqus representation of the assembly between planet gear and the sun

gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.16 Boundary conditions on gear components: internal coupling for (a)

planet gear and (b) sun gear, (c) contact at teeth . . . . . . . . . . . . 122
4.17 Torque and rotation application on the sun and planet gears model . . 123
4.18 Resulting stresses for sun and planet gears model at different steps of

the rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.19 Resulting stresses for sun and planet gears model at the final step: (a)

detail and (b) general visual . . . . . . . . . . . . . . . . . . . . . . . . 125
4.20 Verification model with highlight on the interactions between beam and

roller components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.21 Resulting stresses for rolling contact of a roller onto a surface: final

step, increment t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.22 Resulting stresses for rolling contact of a roller onto a surface: (a)

increment t = 0.1 (b) increment t = 0.5 . . . . . . . . . . . . . . . . . 128

vi



4.23 Beams and rollers representing bearings and cage from the original model 129
4.24 Assembly of the complete model comprehending beams and rollers and

ring, planet and sun gears . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.25 Meshed assembly of the complete model. . . . . . . . . . . . . . . . . . 131
4.26 General view of the resulting stresses . . . . . . . . . . . . . . . . . . . 131
4.27 Resulting stresses on the planet gear . . . . . . . . . . . . . . . . . . . 132
4.28 Resulting contact stresses on the upper part of the planet gear . . . . . 132
4.29 Detail of the resulting contact stresses at the contact between a roller

and the upper part of the planet gear . . . . . . . . . . . . . . . . . . . 133
4.30 Rim ovalization under global loads from gears’ contact. (a) FEM re-

sults and (b) reference image from Depohuon [7], with equivalent hoop
stresses indicated by the arrows . . . . . . . . . . . . . . . . . . . . . . 134

4.31 Principal stresses of the contact stress tensor generated in the complete
model FEM analysis. (a) σx, (b) σz, (c) τxz . . . . . . . . . . . . . . . 135

4.32 Application of the load (a) and the translation (b) to the roller in the
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.33 Interaction conditions of (a) contact and (b) coupling, in the single
roller model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.34 Flowchart representation of the models interaction and working scheme 138
6.1 Comparison of number of cycles to initiation for different maximum

Hertzian pressure, on AISI 52100, between Beheshti and Chen refer-
ences [16], [86] and model’s results . . . . . . . . . . . . . . . . . . . . 141

6.2 Comparison of number of cycles to initiation at different depths between
Beheshti [16] reference curve and the current model . . . . . . . . . . 142

6.3 Detail of the resulting contact stresses at the contact between a roller
and the upper part of the planet gear . . . . . . . . . . . . . . . . . . . 143

List of Tables
2.1 Chronological list of probabilistic bearing life prediction models [32] . 43
2.2 Chronological list of deterministic bearing life prediction models [32] . 48
3.1 Material’s empirical data from Behesti [16] . . . . . . . . . . . . . . . 83
3.2 Number of cycles to initiation and critical depth for different load and

friction values, on AISI 52100 . . . . . . . . . . . . . . . . . . . . . . 86
3.3 Number of cycles to initiation and critical depth for different load and

friction values, on SAE 4340 . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 Plotting coefficients of the parabolic residual stress distribution . . . . 100

vii





Abstract

Rolling elements such as bearing gears are widely used in mechanical applications in
industrial, automotive, aerospace and many other fields. Research and design devel-
opment are focusing on increasing the components reliability and the materials’ prop-
erties to guarantee a long service life and the performance stability. Despite all the
efforts, bearings are still failing, therefore is interesting to understand the mechanisms
governing this phenomenon, called Rolling Contact Fatigue (RCF). Numerical and
FEM models have been developed. which can simulate the fatigue behavior of those
materials starting from theoretical considerations, validated with experimental evi-
dences. A general overview on the state-of-the-art studies on RCF has been illustrated
in this thesis by showing the factors that take part in this process. Plus,mechanisms
driving crack formation and growth have been analyzed and compared in order to focus
on the subsurface crack initiation and propagation in case of lubricated rolling contact
conditions, which are proper of rolling elements and gears. Moreover, an analytical-
numerical model simulating the damage evolution inside the material is proposed, by
utilizing the Continuum Damage Mechanics (CDM) method to predict the fatigue
initiation life of a rolling element. Some widely used bearing gears steels, such as AISI
52100 and SAE 4340, have been taken as references for this simulation. In the end,
this model is joined by a Finite Elements Model (FEM) which simulates the mechan-
ical behavior of an epicyclic gearbox system, with a specific focus on the section that
includes the planet bearing gear subjected to the RCF phenomenon. The stress state
resulting from torque and motion transmission has then been compared to literature
references and to the analytical-numerical results, to give a first approximation of the
component’s general fatigue initiation behavior.

Keywords : Rolling contact fatigue, continuum damage mechanics, bearing
gears, FEM, analytical-numerical analysis
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Estratto in lingua italiana

I componenti meccanici che sfruttano la presenza di elementi volventi, come gli in-
granaggi a cuscinetti, trovano un’ampio utilizzo nel settore industriale, automobilis-
tico, aerospaziale ed in molti altri campi. La ricerca e lo sviluppo di sono quindi
focalizzati nel migliorare l’affidabilità e le proprietà dei materiali utilizzati, per garan-
tire un lunga durata in servizio ed una stabilità di rendimento di questi componenti.
Nonostante l’ampio sforzo, si verificano tutt’oggi dei casi di fallimento principalmente
causati dalla fatica per contatto da rotolamento (RCF). Modelli analitico-numerici ed
agli elementi finiti (FEM) sono stati sviluppati per simulare il comportamento a fatice
dei materiali utilizzati, partendo da considerazioni teoriche, validate successivamente
da prove sperimentali. In questo lavoro di tesi viene data una panoramica generale
sullo stato dell’arte riguardante lo studio della fatica da rotolamento, illustrando i
fattori che prendono parte in questo complesso processo. I principali meccanismi
responsabili della formazione e propagazione delle cricche sono stati analizzati e com-
parati per fornire una descrizione specifica della formazione di cricche al di sotto della
superficie in condizioni di contatto da rotolamento in presenza di lubrificanti. Un
modello analitico-numerico, in grado di simulare l’evoluzione dello stato di dannno
all’interno del materiale, sarà proposto in questo lavoro servendosi della teoria della
meccanica di danno continuo (CDM), per predirre l’iniziazione del danno da fatica
da rotolamento. I materiali studiati saranno delle leghe largammente utilizzate per la
realizzazione di ingranaggi e cuscinetti (AISI 52100 e SAE 4340), spesso indicati come
riferimento in letteratura. Nella seconda parte di questo lavoro infine, sarà introdotto
un modello agli elementi finiti in cui è stato studiato il comportamento della sezione di
una trasmissione planetaria, con interesse particolare sulla sezione di contatto da ro-
tolamento tra cuscinetti ed ingranaggio planetario. Lo stato di sforzo risultante dalla
applicazione di coppia e rotazione trasmesse attraverso il sistema, sarà paragonato
con la letteratura ed i parametri di sforzo ottenuti dal modello analitico-numerico,
per fornire una prima approssimazione del comportamento a fatica dell’ingranaggio
planetario sotto esame.

Parole chiave : Fatica da rotolamento, meccanica del danno, ingranaggi a cus-
cinetto, analisi agli elementi finiti, analisi analitico-numerica
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1 Introduction

Fatigue takes relevant technological importance as a failure phenomenon of many
engineering applications. It is characterized by the process of damage accumulation
inside the material structure of mechanical components subjected to cyclic loading.

This repeated contact produces the formation of micro-cracks or voids in the area
of maximum stress concentration. The inner crystalline structure or the presence of
micro-defects, as inclusions or imperfections, creating a discontinuity in the lattice,
can act as a stress concentration enhancer. In moving and rotating pieces of machinery
such as cam-followers, transmissions, rail-wheel, gears, and many others; Rolling Ele-
ment Bearings (REBs) have a fundamental role in transmitting rotary motion while
undergoing relevant amounts of load, reducing friction during motion. Loading condi-
tions are generated by the relative motion and contact between rolling parts (rollers)
and the raceway of the gear, thus producing alternating stress inside the material in
the region underlying the contact.

A correct design of REBs (Fig. 1.1) implies proper loading distribution and suitable
lubricating conditions that will lead to the reduction of wear, leaving fatigue as the
main cause of working-life critical limit [1], known as rolling contact fatigue (RCF).

Figure 1.1: Representation of rolling contact inside a bearing gear [2]

RCF may lead to the failure of rolling elements in different modes, differentiating
by initiation or by the dimension of inherent defect generated.

The two most dominant mechanisms are: pitting generated by surface cracks and
spalling initiated by subsurface cracks. These two failure modes differentiate from
one another not only by dimension, which is greater for spalling, as it can be seen in
Fig. 1.2, but mainly by the initiation mechanisms and spot. Pitting usually occurs
at the surface in correspondence of defects as dents or asperities, whereas spalling
is generated by micro-cracks formed beneath the surface at inhomogeneities such as
inclusions or any other stress raiser. In both cases the cracks initially grow inside the
material and then undergo branching, propagating toward the surface and forming
the defect with consequent material loss. Factors both from loading and operational
conditions, favoring a mechanism or another, will be discussed later but it should be
stated that in case of smooth and clean lubricated contact, it is spalling to be the
dominant mechanism [1][3].

In this case, initial damage occurs in the subsurface region where the maximum
shear is located. Hertzian contact loading history [5] demonstrates that in this zone the

1



Figure 1.2: Schematic representation of spalling and pitting [4]

shear stress undergoes a complete reversal during each rolling contact pass, indicating
that spalling should be a shear driven phenomenon.

Investigation of Hertzian load conditions in RCF will require consideration of many
factors regarding material properties and treatments, surface quality, metallurgical
composition, and numerous working conditions such as lubrication. The combination
of all these different variables results in a complex multi-axial stress distribution in the
contact region [5][6][7]. We will see in the state of the art, different studies proposing
theories on the different stresses that can act as a dominant mechanism for fatigue
crack initiation and propagation. Taking reference from this theoretical background,
many models have been proposed to predict and simulate the RCF behavior of material
and components under different conditions. The most famous are the models proposed
by Lundberg and Palmgren [8] and the one by Ioannides and Harris [9], which have
been used as the basis for following developments. Initially, models using Weibull
probability distribution function [10][11], tried to describe fatigue life of rolling contact
components in an empirical way but a precise understanding of the inner physical
mechanisms, driving the process, was still missing. This deficiency was then faced
using numerical models [12], which can describe with a good degree of reliability
initiation and propagation stages of fatigue, but inherently lack the stochastic nature
proper of fatigue.

Recently a new simulation method was introduced to overcome this limitation of
numerical simulation methods by incorporating microstructural features in the model.
For example, implementation of Voronoi Tessellation [13], which divides the simulated
domain into randomly generated grains. Following this approach it is possible to
replicate the metallurgical structure of the material and then induce randomness in
the analysis, resulting in the characteristic scatter of fatigue. This method requires a
higher model’s complexity and more heavy calculations.

Moreover, when investigating the initiation and following stages of fatigue, cumu-
lative analysis of damage evolution can be very interesting in the prediction of fatigue
life but also to describe how the properties of the materials and growth rate evolve
during the phenomenon [14][15]. This can be simulated by considering CDM, which is
capable to evaluate the degree of damage inside the material at each position at any
given time (cycle). Once given the loading conditions, and then considering its effect
on the material throughout the simulation, it is possible to overcome the limitations

2



imposed by linear rules proposed in theory such as Miner’s rule.
This study has taken its cue from two similar incidents that occurred on the same

helicopter model, apparently for the same fatigue causes.

(a)

(b)

Figure 1.3: 3D representation of (a) an epicyclic gearbox and (b) the bearing gear
under study [2]

On 29 April 2016, a Eurocopter (the European Airbus helicopter branch) EC225 Super
Puma helicopter operated by CHC Helikopter Service, carrying oil workers from the
Gullfaks platform in the North Sea, crashed near Turøy, a Norwegian coastal island 36
kilometers from the city of Bergen. Several witnesses reported initially seeing nothing
untoward with the helicopter flying steadily before the sound suddenly changed and
it started to sway. A moment later its main rotor assembly detached from the aircraft
and the fuselage plummeted to the ground and exploded into flames. All 13 crew
and passengers died in the crash. It required over 2000 hours of testing, forensic
investigation, and numerical modeling to simulate and analyze the failure.

Also, the comparison with data collected in 2009 in another similar accident has
lead to the identification of the sequence of events that caused the incident. The
results indicated that the second stage of the gearbox is the critical point of failure
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that led the rotor to separate from the cabin. These events suggested the necessity to
improve the understanding of the RCF behavior in this component.

In the Airbus case, it is shown how the main gearbox transmits energy reducing
rotational speed to the second stage. This is an epicyclic gear train composed of: a
sun gear, eight planet gears, a planet carrier, and a fixed ring. Each Airbus’ planet
gear (Fig. 1.3b) comprises an inner race on which two rows of rollers act.

It is on this race that wear has begun, initially by a subsurface shallow crack.
Then propagation occurred, associated with the classical spalling phenomenon (Fig.
1.4a). Differently to usual wear, it unexpectedly gave way to a core-crack which
then grew and propagated through all the component splitting it in half (Fig. 1.4b-
c). The displacement due to the crack opening caused a collision between the teeth
of the components and the teeth of the sun gear, leading the planet gear to break
instantaneously (Fig. 1.4d). Pulled by its inertia, the main rotor sheared off the top
section of the gearbox, separating from the structure and causing the helicopter to
fall.

(a) (b)

(c) (d)

Figure 1.4: 3D representation of: (a) initial crack propagation and spalling, (b) crack
penetration through all section leading to failure (c) section-view of crack propagation,
(d) resulting failure on gear [2][7]

As a consequence of the studies performed by the manufacturer, improvements on
safety measures to prevent the gearbox from shocks during transport and assembly,
and a more accurate micro-spalling detection system has been implemented. But it is
remarkable to notice that, the maximum operating life of the planet gear component,
previously defined in 2004 following the certification standards, it has been reduced
by a factor of 4 after the inquiry in 2017 (Fig. 1.5). This gives a clear indication of
the fact that failure should have been caused by a fatigue problem [2].
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Figure 1.5: Fatigue life evaluation of bearing gears from the epicyclic stage of the
EC225 Super Puma helicopter, before and after the study by Airbus after incidents [2]

To study the behavior of bearing gears under RCF conditions is therefore of capital
importance. It will be given a general definition of all the factors taking part in the
stress state. The stages and the drivers of the failure process, from crack formation to
propagation, will be identified in order to have a clear idea of the mechanisms taking
part in the phenomenon. Finally, a model able to replicate the RCF behavior will be
developed. Which can be reliable and based on valid theoretical assumptions coming
from the observations on the aforementioned case.

The current work aims to define a methodological design approach, able to consider
all the mechanical and material’s parameters contributing to the fatigue behavior, in
order to avoid fatal incidents in the future.

In this thesis work, two models have been developed to identify the stresses acting
in this specific bearing gears system and study the fatigue initiation life of the planet
gear component.

Starting from the definition of the contact parameters, such as the maximum pres-
sure and friction, the multi-axial stress tensor has been evaluated by following the
generic integral equations given by the Hertzian theory [5].

Once the principal stress components were evaluated, the maximum shear stress
has been derived. As explained in the state of the art, the main mechanism for crack
formation in lubricated bearing gears is the shear driven Mode II. For this reason,
in this model all the considerations on crack generation had assumed the maximum
shear values as critical stress for crack initiation.

Crack initiation, on the other hand, has been predicted by applying the principles
of continuum damage mechanics. Introducing a material parameter to account for the
void density in the material and the correlated damage evolution, leading to crack
formation. Considering the hysteresis loop formed by the stress-strain curve and the
relative plastic deformations in the material, the amount of damage formation at each
cycle will be calculated.

The final aim was to obtain a first approximation of initiation and fatigue life,
relying only on experimental data, from simple tension tests on the material, and the
load conditions [16]. Thus, the final results had given an indication, starting from
a specific set of data on the material and load conditions, on the number of cycles
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needed for crack generation and its depth.
A finite element analysis has been also developed to have a direct reference to

the stresses generated in the specific system. This analysis has been conducted on a
bearing gearbox model based on an actual helicopter’s transmission, which is similar
to the model that had catastrophic incidents caused by fatigue failure of the previously
mentioned bearing gear (Fig. 1.3).

A section of an epicyclic transmission has been modeled in its sun, planet, and
outer ring parts. The torque coming from the engine has been evaluated from the
specifications on the real engines mounted on the actual reference helicopters. The
load has been associated with an output rotational speed, and this combination has
been applied to the system, which transmits the solicitation through the gears and to
the output shaft by rolling contact with the rolling bearings present in the component.

This interaction is the one generating the critical phenomenon introduced previ-
ously, responsible for fatigue. In the FEM model, the rolling contact has been replied
and the analysis is focused on the stresses generated in this specific section of the
planet gear.

The stress values extracted from the FEM analysis has then been compared with
the analytical-numerical model, to check the correct design of the system under specific
load conditions.

In Fig. 1.6 is shown a general flowchart of the thesis work.
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Figure 1.6: Flowchart of the general procedure of the current thesis work
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2 State of the art

2.1 Bearings

The defining aim of mechanics is the development of moving systems. From the be-
ginning, it has been clear that relative motion between machinery elements is not
a smooth operation. Friction plays an important role not only in generating grip
and allowing the transmission of forces but has also the downside of producing wear.
Bearings were invented to permit the relative motion between components and the
transmission of loads, minimizing the loss of power. The same Oxford English Dictio-
nary refers to bearings "as a part of a machine that allows one part to rotate or move
in contact with another part with as little friction as possible" [6].

Figure 2.1: Different types of bearings [17]

Although these concepts may sound modern, the principle of bearing function
has been known for more than four thousand years. In ancient Egypt solutions to
reduce friction and allow easier movement of heavy loads was used in the building
of pyramids. More recently, the Italian genius of Leonardo da Vinci proposed some
models for machinery that comprehended parts remarkably similar to the modern
bearings. Finally, the last push to the development of these fundamental elements
was given by the Industrial Revolution in the 18th century and the refinement that
brought to the actual configurations during the World Wars in the XX century.

Bearings are now used in all kinds of mechanical systems from transportation
machines such as trains, airplanes, and cars and from heavy industrial machinery to
any kind of domestic appliances as washing machines, refrigerators, vacuum cleaners
and computers. It is a simple consequence of this wide field of application, that
bearings are divided into many different types. Lelikov [18] reports that only in cars
there are 30 different types of bearings, in trucks more than 120 and in airplanes more
than 1000. Depending on the nature of the loads involved we can distinguish [19]:

• Radial bearings: for loads acting perpendicular to the shaft’s axis

• Thrust Bearings: for loads acting parallel ot the shaft’s axis
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Figure 2.2: Radial bearing and thrust bearing [19]

Depending instead on the nature of the contact involved [19]:

• Sliding contact bearings: along contact surfaces sliding occurs between a
moving and a fixed element. Usually a lubricating film is used to separate the
surfaces. Included in this category are also plain bearings, journal bearings and
sleeve bearings.

• Rolling contact bearings: rolling elements are introduced between the fixed
and the moving part. This changes the friction from sliding to rolling type.

Figure 2.3: Sliding contact bearing and Rolling contact bearing [19]

Comparing the friction modes which distinguish these two types of bearings we have
different conditions [19]. In sliding, the initial friction is very high due to metal contact
and then decreases only when the movement speed increases and the lubricating oil
film can be established. In rolling conditions instead a state called "pure rolling" can
be achieved, in which friction is zero. From this effect, rolling bearings are also known
as anti-friction bearings [18][19]. In reality, the deformation induced by contact leads
to a small but positive value of friction.

Sliding contact bearings have the capacity of high load absorption and low sensitiv-
ity to impacts, due to simple geometry and large lubrication. But the high amount of
initial torque and lubricant consumption limit their applications. On the other hand,
rolling contact bearings are more complex and subjected to impacts effects, but offer
much less torque resistance and maintenance need, making them perfect for driving
unit applications. In this thesis work, the focus will be on a transmission element, and
therefore on rolling contact bearings.
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Figure 2.4: Rolling contact bearing section [19]

2.1.1 Rolling Contact Bearings

In general, contact bearings have the same basic structure, composed by some specific
elements:

• Outer race

• Inner race

• Balls/Rollers (rolling elements)

• Retainers

Usually, the moving element, at which the bearing is joined, is connected to the
inner race. Instead, the outer race is usually fixed but in some cases, such as in bearing
gears, is joined to a rotating or moving object.

In this case, the outer race moves rigidly as the external component and the inner
race rotates inside. Between these two surfaces, there are the rolling elements, which
can be spherical, cylindrical or of many other shapes. The geometry is chosen depend-
ing on the application and the direction of the loads to be transmitted. Finally, the
so-called retainers are components such as cages, which keep the rollers separated and
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in position. Other kinds of elements that can be listed as retainers are the shields po-
sitioned around the cage, which protect the rollers from external elements and retain
lubricants inside.

The wide range of applications requires a large variety of configurations for rolling
bearings. There are many different possible geometries and configurations in rolling
bearings and any manufacturer has its specifications. But the necessity of interchange-
ability and uniformity lead to standardization of construction parameters. Even if
grouped, also in the ISO standards [20] are reported numerous different categories of
rolling bearings:

• Ball bearings

• Needle roller bearings

• Cylindrical roller bearings

• Spherical roller bearings

• Inert bearings

• Spherical plain bearings

• Tapered roller bearings

Figure 2.5: Types of rolling contact bearings [19]
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The most common type is without any doubt the single row ball bearing (Fig.
2.5(a)), and can transmit both axial and radial loads. In the case of an axial load
anyway, the rings get slightly displaced and the balls may have contact with the
sidewall of the races. This configuration is usually applied as support for shafts.
Needle roller bearings are a particular configuration in which the rollers have a very
high length to radius diameter (from 3 to 8)[19], and can work under intense radial
loads but are highly sensitive to axial loads and mistaken alignment, which limits their
application in vibrating systems.

Taper rollers "have a shape of a frustum of a cone" [19] and are suitable for
higher load both on axial and radial directions. The specific orientation of the rollers,
converging at the axis of the bearing, makes it possible to achieve a condition of almost
pure rolling. The double set of rollers makes it possible to withstand axial load in both
directions.

Cylindrical roller bearings exploit the linear shape of the contact surface to support
larger radial loads with respect to ball bearings. On the other hand axial loads may
be critical and also an accurate alignment is required. This problem may be mitigated
by adopting the curved "barrel" shape typical of spherical sets, which increases axial
resistance and alignment capability, maintaining an elongated print on the surfaces.
In this way, the configuration adopted will be similar to a single-row spherical rolling
bearing. This configuration is used in motors, train axles and gearboxes.

2.2 Materials for bearings

The job of bearings is to endure severe loads, static and cyclic, while operating in
difficult conditions and environments [6]. Machinability and mechanical properties
make steel the most suited material for the manufacturing of these components. As
said before, refinement in actual bearing technology comes from more than a century
of work and it includes the study on specific alloys.

A report on the advances in metallurgy and processing technologies in this field
has been given by Zaretsky [21][22]. Bhadesia [6] has reported an extended review on
the metallurgical side of bearing production and design, from which will be reported
some principal concepts. The initial production process of bearing steels, as for many
other applications, implies an intense plastic deformation of the cast metal, formed
into square billets [6]. Further machining operations such as rolling, drawing and heat-
treatments help to reduce the dimensions of the billets and release the accumulated
detrimental stresses in this stage. After the material has been cut into pieces of
dimensions suitable for the manufacturing of balls, the final stage is performed by
quenching and tempering to induce the hardness required by the specific application.

Rings instead, may be produced from seamless tubes [6] by a process of hot rolling
and hardening. All the parts obviously undergo machining, grinding and polishing to
achieve the tolerances on shape and surface finish. Materials selection for such ap-
plications as bearings should then also take into account the complex manufacturing
processes, required to realize the components. This is why machinability is an impor-
tant quality to be considered, together with the mechanical properties, necessary for
the final application.

From this assumption is easy to understand how the dominating materials have al-

12



ways been the steels originally designated for machining tools. This category is usually
characterized by a carbon content in the range of 0.8-1-1 wt% and a total substitu-
tional content under 3 wt% [23][24]. The relatively high carbon content can speed
up the production of cementite and allow it to perform soft annealing on the com-
ponents. These steels are also prone to hardening, which is of capital importance in
wear applications. Their structure can be transformed into martensite or cementite,
depending on the speed of the process, by quenching from a temperature at which
the material is mostly austenitic. These two crystalline structures are much harder
than austenite and well suited to load-bearing and wear resistance applications. Not
only the chemical composition of carbides and alloying products is favorable but in
particular the grain structure.

Figure 2.6: (a) Microstructure of hot-rolled 52100 steel as supplied by the manufac-
turer. (b) Microstructure after spheroidisation. Courtesy of W. Trojahn [6]

Grains are smaller and homogeneous, then able to behave better under loading
and offering smaller weak planes for crack formation (Fig. 2.6) Subsequent tempering
to relax internal unwanted tensions is usually performed. In the case of large dimen-
sions, however, this process becomes more difficult. Carburizing may, then, become
necessary to produce harder structures inside the material. Also increasing the con-
centration of alloying elements the same effect will be obtained, but with consequences
on the mechanical properties.

This process is aimed at increasing material’s hardness and thus called hardening.
As stated before, it can affect all the components or only the surface region, depending
on the specific dimensions and requirements. It can be the be distinguished:

• Throughout hardened steels: in which all the section is transformed in a
martensitic or bainitic condition

• Case or induction hardened steels: having a softer core and hardened sur-
face layers

Different procedures can be adopted and many variables as time, temperature and
heating ratio can influence the final results. To determine the optimal sequence of
operations, a refined analysis and design of the component should be made. When
case hardening is desired, for example, carburizing and nitriding are the most popular
processes.

In this case, the main advantage throughout hardening is to have a hard surface
maintaining a tougher core. This feature is of particular interest in rolling contact
elements. because the softer core allows the material to absorb better the stresses at
which it is subject, thus maintaining high wear resistance at the surface.
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Also residual stresses are induced with this kind of treatment, which improves
fatigue life. Usual hardening depth is around 1 mm but can higher or lower depending
on the machining needed. One other factor to consider is the cost of the treatment,
which is obviously higher for through-hardened components. For 52100 steel family,
hardness of 1000 HV can be achieved at the surface with laser treatment.

Figure 2.7: Phase fraction transformation in steel 1C-1.5Cr [25] as function of tem-
perature [6].

A table of the most popular alloys in this category has been reported in Fig. 2.8.
The most employed quality is the 52100 series, containing 1.0-1-5 wt% Cr and

covers an important part of the total production in the world, which amounts to
about six million tonnes per annum.

Apparently, the study on these steels can be traced back as far as 1901 [26], when
Stribek performed some tests to assess the suitability of the material for ball bearings
application. Then in 1905 the producer Fichtel and Sachs of Schweinfurt adopted the
material in the manufacture of bearings, continuing to use it up to this day [24][27].

Of course, during the years some improvements have been done, in particular in the
cleanliness of the metal structure and inclusions. It is known that all oxygen present
in the alloy tends to form oxides [28][29]. These inclusions, usually segregate at the
grain boundaries which are already weak spots for crack formation. The initiation of
damage is then highly probable in the vicinity of this kind of defect, leading to a limit
in the oxygen concentration in modern bearing steels. This value is reported to be
less than 10 ppmw [30][31].

2.3 Hertzian Theory

K.L.Johnson is the author of a comprehensive book on contact mechanics [5], from
which reference will be taken for this paragraph. Contact between elastic solids is a
particular kind of interaction, which was first described by Hertz in 1882 [5]. The first
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study was focused on the influence of elastic deformation on materials by investigating
Newton’s optical interference fringes in the gap between two lenses (Fig. 2.9).

The effect of contact pressure between the bodies was so first observed during the
Christmas period of 1880 when Hertz was twenty-three years old. From this experi-
ment, a publication followed and aroused great attention, standing at the tests ever
since. The theory taking his name describes the stresses and deformation generated
by solid bodies, and specifically in the case of non-conforming contacts.

Figure 2.8: Composition ranges (wt%) of common bearing steels [6].

(a) (b)

Figure 2.9: Interference fringes at the contact between two lenses inclined by a 45°
angle. (a) Unloaded, (b) loaded [5]

15



The distinction between conforming and non-conforming type of contact depends
on the geometry of the bodies. In the first case, the surfaces ’fit’ exactly [5] or closely,
without deformation. An example of conforming contacts is journal bearings. In the
case of different surface profiles instead, the definition of non-conforming contact is
used.

Figure 2.10: Hertzian load profile [5]

Roller bearings are the main example. When the roller makes contact with the race
without deformation, the first interaction occurs along a line or a point, depending on
its geometry. The case of line contact is a mix between the former two described. To
generate a line contact, the two surfaces should be conforming in only one of the two
directions in the plane of contact.

The non-conforming contact area is smaller with respect to the bodies involved.
In the region close to the contact surface the stresses should be highly concentrated.
From the initial Hertz’s observations on interference fringes, the contact area was
defined as generally elliptical, as shown in Fig. 2.9 [5]. Considering the symmetry of
the shape and the bodies’ geometries, Hertz introduced a simplification to calculate
local stresses and deformation. Each body is then taken as an elastic half-space over
which an elliptical loading region is applied. The validity of the operation depends on
the satisfaction of two conditions:

• a << R : the contact are should be smaller than the relative radius of curvature

• a << R1,2, a << l : the contact area should be smaller than the significant radii
of the bodies and their lateral and depth dimensions

Identifying the major dimension of the contact area as a, and R,R1, R2 as the
relative and bodies’ radii.

The imposition of a small area with respect to the components’ dimension aims
at eliminating any interaction between boundaries and the region of interest. The
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curvature condition instead is necessary to allow to approximate the material to a flat
half-space and assure that strains can be evaluated within the linear elastic limits.

Figure 2.11: Non conforming contact [5]

This last consideration is of great importance when studying metallic materials.
These assumptions are made to decouple the stresses generated purely by contact
from those due to support configuration and shapes. Moreover, the adopted particular
geometry is well known in the boundary conditions solution.

Considering these assumptions, the integral form equation for contact stresses can be
formulated, for generic load distribution. It should be taken into account that contact
surfaces transmit also tangential traction due to the presence of friction and not only
normal pressure. This generates a multi-axial state of stress.

In Fig. 2.10 it is shown a generic load distribution in the region −b < x < a, over
which are acting the normal pressure p(x) and the tangential traction q(x). The stress
components at any point A in the elastic half-space can be found by this equations:

σx = −2z

π
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−b
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− 2

π
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− 2z

π

∫ a

−b

q(s)(x− s)2ds

[(x− s)2 + z2]2
(2.3)

The distributed forces acting on infinitesimal area elements are considered as con-
centrated infinitesimal forces p(s)ds and q(s)ds. The variable s is the dummy variable
and its interval covers the region of load application. Integration in closed form is
difficult, but it can be evaluated if the force distribution is known.

Non-conforming elastic solids must be considered in this thesis work.
The general expression for elastic displacements is:

~uz1 + ~uz2 < δ −Ax2 −By2 (2.4)
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Figure 2.12: Non conforming contact and relative deformation [5]

From the configuration in Fig. 2.11, a geometry of simple solids of revolution is
imposed.

R
′

1 = R
′′

1 = R1

R
′

2 = R
′′

2 = R2

(2.5)

The generated contact area will have a circular shape with radius a. Imposing the
circular condition on the area it is found that:

1

R
= (

1

R1
+

1

R2
) = A = B (2.6)

Thus, the relative boundary condition on the displacements becomes:

~uz1 + ~uz2 = δ − (1/2R)r2 (2.7)

The distribution of pressure should then satisfy this equation and it has been found
by Hertz:

p = p0[1− (r/a)2]1/2 (2.8)

Considering the pressure acting on the two bodies as equal, the dimension of the
contact is given by Eq. 2.9 or 2.10, if the total load is specified.

a = πp0R/2E
∗ (2.9)

a = (
3PR

4E∗
)1/3 (2.10)
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By dimensional reasoning and substitution in general equations, it can be verified
that this formulation doesn’t give rise to stresses outside the contact area. Moreover,
the uniqueness of the solution is verified by imposing a pressure distribution of a slight
different formulation:

P =

∫ a

0

p(r)2πrdr =
2

3
p0πa

2 (2.11)

This pressure distribution will produce a uniform normal displacement inside the
loading region. When subtracting or adding this pressure to the Hertz pressure ob-
tained before, the condition on displacements in Eq. 2.7 is still satisfied. If added,
a punch-like cylindrical deformation will occur, generating an infinite gradient of the
surface.

This will not be possible for elastic smooth solids without considering the forma-
tion of interference. If instead subtracted from the Hertzian pressure, tensile normal
traction of infinite magnitude will be generated. But this condition is also impossible
due to the lack of adhesion between the surfaces. It is then concluded that the Hertz
pressure formulation is the unique solution to the problem.

In Fig. 2.13 are shown the stresses distribution at the surface and along the axis
of symmetry. A comparison between a uniform pressure and the Hertzian distribution
is shown. It can be seen how all the stresses on the surface are compressive except the
radial stress at the edge of the contact. This is responsible for "ring cracks" formed
at contact in brittle materials such as glass.

From integration along z axis of the expressions, can be found that the principal
shear stress has the formulation:

τ1 =
1

2
|σz − σr| (2.12)

The maximum value is reached at the depth of 0.48a (with v = 0.3, Poisson ratio),
with a maximum value of 0.31p0 [5]. At the origin the shear stress is lower, around
0.10p0, and also at the edge it reaches the value of 0.13p0. It can be concluded then
that the elastic maximum yielding will initiate beneath the surface. However, not only
shear is present but also normal stresses in radial and tangential direction (considering
the circular symmetry). As shown in Fig. 2.13. This makes the state of stress multi-
axial. Even if it is shear that is said to generate the most yield, the other stress
contributions may be triggered by operational conditions and interactions between
the surfaces and external factors. This will influence the mechanisms dominating
fatigue crack growth.

2.4 Rolling Contact Fatigue

If properly designed, rolling elements are loaded, lubricated and positioned to with-
stand the work conditions without any critical failure. In this case, fatigue becomes
the dominant failure mechanism. Moreover, the stresses at the contact between rollers
and gears are significantly higher compared with structural rotating components, as
described by Hertzian theory. Rolling contact fatigue is the result of these loading
cycles.
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Figure 2.13: Hertzian stress distribution at the contact surface and along the axis
of symmetry. Comparison between (left) uniform load pressure and (right) Hertzian
pressure circular profile [5]
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The usual outcome of RCF is the flaking of metallic particles or in extreme cases,
the complete failure of the component [7]. The differences between classical fatigue
and RCF are many other, enough to require separate theories for the study of rolling
elements. The main differences, which make it impossible to use classical approaches
onto RCF are [32]:

• State of stress is multiaxial [5].

• Loading history is non-proportional; i.e. each stress component has a differ-
ent phase (peaks do not coincide in time) and different ratio (τxz undergoes a
complete reversal while σx, σz are only compressive).

• Critical planes and principal axes constantly change in direction [32]. It is diffi-
cult to identify the plane of maximum damage.

• The contacts are highly localized, involving small volumes. Usual contact di-
mensions are about 200µm.

• RCF life can be divided in initiation and propagation phases (plus failure, which
is unstable and is usually not studied). These two steps are different by driving
mechanisms and phenomenology.

In previous sections (Chap. 2.3), the nature of the stress tensor and its characteris-
tic configuration have been analyzed. Now the focus will be on fatigue life phases and
their description, based on dominant stresses and consequences on the components.

Fatigue life (N) is commonly divided in two phases: initiation (ni) and propagation
(np) (Eq. 2.13).

N = ni + np (2.13)

Before 1980 the majority of the studies have been based on crack initiation. Lund-
berg and Palmgren [8] estimated that for bearings fatigue life, the propagation phase
might be very short. This theory was verified by experimental tests by Yoshioka and
Fujiwara [33]. Many modifications were made to this model during the years, in or-
der to adapt it to particular operational configurations. Some notable examples are
Tallian [11], Ioannides-Harris [9] and Zaretsky [34].

These studies assumed that crack initiation should be the dominant process for
rolling contact conditions in bearing steels.

Otherwise, many studies as the Keer-Bryant model [35] or more recently by Benedetti
et al. [36], show that the presence of micro-cracks arises in the very early stages of
fatigue life, giving more relevance to propagation. Both theories have validity be-
cause are based on different assumptions and observations on the configuration of the
component, loading conditions and operational parameters.

2.4.1 Modes of Crack Propagation in RCF

Every stress applied in a different direction causes the crack to open in a different
mode. Each categorized by fracture mechanics:

• Mode I: application of a tensile stress normal to the plane of the crack, which
causes its opening
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• Mode II: application of shear stress parallel to the crack’s plane and perpen-
dicular to crack front, resulting in a sliding mode

• Mode III: also application of shear stress parallel to the plane of the crack, but
also parallel to the crack front. The result is a tearing mode

Figure 2.14: Growth mechanisms for fatigue cracks [37]

To understand the specific propagation behavior of fatigue cracks, Fleming and
Suh [38] introduced the use of fracture mechanism in order to evaluate the stress
intensity factors. Deriving from Griffith’s crack theory [39] for the failure of brittle
materials, Irwin’s [40] assumptions on energy contribution in cracks were developed
by the theory introduced by Paris [41]. The rate of crack growth was then related to
the stress intensity factor, coming from the Paris-Erdogan law [42]:

da

dN
= C(∆K)m (2.14)

Where da/dN is the crack growth on the single cycle and C andm are experimental
material parameters. The stress intensity factor range ∆K is the difference between
the maximum and minimum values in a fatigue cycle:

∆K = Kmax −Kmin (2.15)

The Paris-Erdogan power law can be plotted on a double logarithmic scale to
obtain a linear relationship between the range of the SIF, on the x axis, and the
effective crack growth rate on the y axis. When referring to complex loading states
with different stresses acting on a crack, each component of the stress tensor will have
its relative stress intensity factor range. Usually, the higher range value identifies the
dominant stress component for crack growth in that condition.

On this theoretical basis, it will be shown how different conditions in rolling con-
tact fatigue can favor crack initiation and propagation in the different modes. The
competitive mechanism between the stresses of the multi-axial tensor of the Hertzian
load will be broken up and analyzed in its different components.

2.5 Fatigue Cracks in Rolling bearings

The possible applications and working conditions available for REBs are widely dif-
ferent. Numerous are also damage mechanisms that can be activated, as stated by
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Roylance [43]. A first distinction between the main causes leading to failure in rolling
contact conditions can be made in wear, as adhesion, corrosion and abrasion, or con-
tact fatigue.

Figure 2.15: Determination and plot of Paris’ law [44]

As explained before, wear phenomenons are highly targeted during the steps of
material selection, surface finishing and hardening processes, in order to be prevented.
This makes them almost ineffective and leaves fatigue as the most important source
of failure. Fatigue can manifest itself in different ways, depending on its source.

It should be clear that all mechanisms can be activated at any time and also
simultaneously, but they will have different rates. In many cases, the activation of one
mechanism can also hinder the activation of another one. This competitive situation
depends on the loading intensity, materials characteristics and working conditions,
which may favor one mechanism in particular combinations. As stated by Hyde [45],
there are three principal effects of contact fatigue, being:

• Case crushing: sub-case phenomenon, typical of hardened materials
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• Spalling: subsurface initiated

• Pitting: micro or macro phenomenon, surface originated

Pitting and spalling have a similar nature and shape but differ from one another
by depth. Pitting has usually a depth around 10µm and it is strongly dependent on
surface interaction parameters such as friction, roughness and lubrication [46]. Spalling
instead is characterized to be deeper, from around 20 to 100µm. Identified usually
with a ratio to the contact width of 0.25−0.35 [4]. Tallian [47] addresses spalling as a
macro-scale phenomenon, caused by fatigue crack propagation where instead pitting
is limited to surface damage with different causes.

This introduces the difference between surface and subsurface fatigue. As reported
by Santus et al. [46], surface pitting is supported by the interaction of lubricant fluid
with the crack, which can act as an enhancer or limiter to propagation mechanisms.
Micro-pitting has, by definition, typical low depth but the effect of fluid pressuriza-
tion can elongate the cracks, depending on several factors. This phenomenon will be
analyzed in detail in a later section.

Experimental evidence [46] shows how the first RCF surface micro-cracks are gen-
erated at shallow angles (20− 30◦).

These cracks will usually generate micro-pitting but can continue to propagate in
the same orientation evolving in deeper damage. According to Glodez et al. [48] and
Fajdiga and Sraml [49] the following growth will maintain the same morphology of
the initial micro-crack and a similar orientation.

Subsurface spalling is instead expected in high precision components such as bear-
ings. In the case of good lubrication and high material quality, surface effects will be
reduced and subsurface stresses will become dominant. However, it should be reported
that a clear distinction between pitting and spalling and their interaction, has not been
generally established due to the complexity and the number of factors involved.

Figure 2.16: General scheme of pitting and spalling phenomena [4]

As reported by Bormetti et al. [50], in the specific case of bearings subjected to
pure rolling, it is usually observed an initial micro-pitting generated at the surface.
Thee mechanisms then often stops and gives way to more critical subsurface initiated
spalling, which may cause branching and failure.

Anyway, the failure of the component is always determined by the mechanism with
the fastest growth rate in that specific set of conditions, which may vary during the
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service life or along a single loading cycle. When analyzing the behavior of a compo-
nent during its design it is then important to consider all the damage mechanisms that
can be potentially activated and evaluate the relative rates and interaction. This task
is however almost impossible quantitatively, due to the influence of several parame-
ters such as load, rolling speed, lubrication conditions, surface roughness and material
properties.

Figure 2.17: Experimental evidence of micro-cracks. Typical formation of shallow
angle cracks in gears [46]
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2.6 Surface cracks

2.6.1 Initiation

Generated at the contact interface, surface cracks are largely influenced by working
conditions and material properties. Important characteristics of the material influ-
encing formation of surface cracks are: hardness, roughness, and presence of residual
stresses. It is widely known that the same rolling contact condition can generate a
progressive micro-hardening in the surface region. The most relevant operating con-
ditions instead are lubrication, contact load and presence of traction. Some authors
as Moyer [51] consider lubrication and surface roughness in a unique factor as a ratio
between the lubricant film thickness to composite roughness. If the lubrication pa-
rameter is high enough, it reduces the stress intensification brought by asperities. For
this to happen, the lubricant film should remain continuous or the surface should be
very smooth. When these conditions are respected a resulting delay in surface crack
formation is obtained.

It has been demonstrated by Nelias et al. [52] that, on the contrary case of dry
contact conditions, micro-cracks appear in very early stages on the surface. Tests
showed how the preferred spot for crack formation is in correspondence with defects
acting as stress raisers, such as inclusions, grinding marks, asperities or any source of
roughness. Several authors relate surface micro-pitting to the micro-Hertzian stress
field which is generated in proximity of the aforementioned asperities. The localized
defects that arise have the dimensions of a few microns. Sliding and friction lead to
a cumulative plastic strain in the outer layer of the material where the presence of
asperities and inhomogeneity enhances the grip between the objects in contact. This
mechanism is driven by traction force [52], producing plastic strain on the surface and
also promoting further growth at steeper angles.

Anyway, surface crack nucleation is favored if the Hertzian stresses exceed a thresh-
old value given by the specific material. This value is addressed as shakedown value
[50] and in this case, the stress will generate shear bands in the surface layer, also in
pure rolling condition.

In case of severe wear, as for railway wheels, the surface material consumption can
eliminate the cracks and pits generated on the surface, re-establishing the integrity.
Also, plastic strain induced by Hertzian contact can reduce stress intensification, gen-
erating a progressive hardening in the near-surface region, thus reducing the risk of
crack formation and growth.

2.6.2 Propagation

Cracks nucleated at the surface have small dimensions, in the order of a few mi-
crons, and usually give way to the phenomenon of pitting. But this is not the only
consequence possible for surface cracks growth. They can continue to grow, generat-
ing deeper damage such as spalling or even stop after short distances (few tenths of
microns).

Way’s theory [53] has been the dominating opinion in the literature regarding
pitting formation [4]. It asserted that surface-initiated, crack growth was driven by
the hydraulic pressure exerted by the lubricant onto the crack surfaces. The fluid
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would fill the open crack and remain sealed into it when the contact rolled over the
crack mouth. The pressure exerted will result in a tensile Mode I propagation.

Figure 2.18: Stages of oil seepage [54]

Half a century later, Keer and Bryant [35], challenged this theory and proved
through experimental evidence that surface cracks are dominated by shear propagation
mode. Many studies have focused on this complex interaction between Mode I (tensile)
and Mode II (shear) propagation in rolling contact fatigue cracks.

Bormetti et al.[50], state that in the first growth period, only the Mode II propa-
gation mechanism is activated due to the small dimensions of the crack. At this stage
lubricant interaction is hindered by the compressive field produced by the multi-axial
state of stress and by the hardening treatments.

I =

√
(

∆KI

∆KIth
)2 + (

∆KII

∆KIIth
)2 (2.16)

I = (
∆KII

∆KIIth
)2 (2.17)

In Eq. 2.16 and 2.17, I is a failure index used for fatigue life estimation. In the
general form (Eq. 2.16) both contributions from Mode I and Mode II are considered.
After considerations made above, only the shear mode is considered, reducing the
formulation to the form in Eq. 2.17

2.6.3 Effect of lubricant on crack growth mode

Mode II propagation role becomes less dominant once the crack reaches longer dimen-
sions. When a crack reaches a critical length, lubricant can penetrate into the cavity
and generate pressurization into the crack volume. This pressure induces tensile stress
associated with Mode I crack growth, which couples with the Hertzian shear stress and
pushes the crack tip to further propagation. Dallago et al. [55] assert that the action
of lubricant increases sensibly the Mode I SIF, inducing the crack to curve towards
the material surface.

Evidence shows that fluid seepage effects become evident when the crack reaches a
dimension of 1/15 of the contact width (a). Many authors, among whose there is also
Bower [56], stated that during fluid pressurization, the crack tip undergoes a complex
non-proportional cycle of Mode I and II. It is evident that a general interpretation and
a precise model is thus difficult to achieve. However, some studies will be proposed in
order to show some of the approaches adopted to evaluate the phenomenon.

Numerical calculations [50] shows that the crack can open and allows the fluid
to penetrate between the faces. Kaneta et al. [57] developed a three-dimensional

27



numerical model to inspect the behavior of semicircular cracks under the effect of
fluid pressure. This approach confirmed the theory by which tensile growth in Mode
I gains a dominant role in these conditions. Moreover, the presence of lubricant is
stated as "necessary for the development of surface pitting" [57]. The the same idea is
shared also by Jin [58], which confirms that internal fluid pressure increases when the
load approaches the crack mouth. The cyclic iteration of this phenomenon contributes
to tensile fracture mechanisms between the faces of the crack. Where x

′

c is the crack’s
tip position.

Figure 2.19: Fluid pressure and contact pressure profiles in different cases of crack
opening [55]

Keer et al. [35] used the distributed dislocation method to calculate the stress
intensity factors at the tip of a pre-modeled two-dimensional crack subject to contact
loading cycles. The analysis gave the result of crack propagation occurring in Mode
II. Also, Bower [56] studied the phenomenon of surface rolling contact fatigue cracks
by implementing a 2D model, taking into account the interaction between crack faces
and lubricant. It also concluded that the mechanisms leading to possible crack prop-
agation were different: Mode II usual growth, fluid enhanced growth by lubrication
of crack faces and lubricant seepage. Based on this study, Kaneta et al. [59] used the
body force method proposed by Murakami and Nemat-Nasser [60] to confirm the an-
alytical predictions. It was concluded that a surface-initiated crack in rolling contact
conditions is prone to extend along its original plane, driven by shear Mode II growth.

However, after some degree of propagation, it switches toward tensile Mode I, being
likely to branch and generate pitting. The presence of lubricant oil is the source of
this transition. The fluid may exert two different types of hydraulic pressure, being
a contact pressure onto the crack faces while the crack mouth is open or, when the
crack closes, a pressure given by entrapment phenomenon. When this closure occurs
together with the application of compressive stresses onto the crack region, the relative
motion of the crack faces results resisted by a frictional force between them, in some
cases producing interlocking. This can be smoothed by the presence of lubricant
penetration inside the crack. Kaneta et al. [54] stated that in the condition of fluid
penetration inside the crack, the lubricant holds the crack faces apart by the pressure
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exerted.
Also in this case the possible propagation modes are still the tensile growth pro-

duced by the fluid pressure or the shear mode favored by the effective lubrication
operated on the crack faces.

Figure 2.20: Relation between relation of motion and fluid interaction with crack
growth [54]

In Fig. 2.20 it is shown the relationship between the relative crack position, incli-
nation and load movement [54]. The major possibility of oil seepage occurs in case
A(a), when crack axis and load motion are in the same direction, followed by the
case depicted in A(b) of pure rolling in the same configuration. When surface traction
becomes low and crack opening increases (A(c)) the possibility of penetration is still
present but depends on the contact distribution shape and crack geometry.

In these conditions, the Mode II stress intensity factor was evaluated by Kaneta
et al. [54]. If no action of the fluid is assumed on the faces, the SIF associated
with shear growth takes the maximum value at the apex point of the crack tip, at
maximum depth. So, it can be concluded that shear growth occurs at the deepest
point of the crack, generating an almost coplanar propagation along the original crack
plane or even directed toward the core of the material. When the crack size becomes
important instead, the possibility of tensile growth gains importance, always at the
deepest crack tip. In this case, the propagation angle is much greater than 0 obtained
for shear coplanar mode. The result, generated by seepage and the effect of hydraulic
pressure, is the transition from inward Mode II growth to Mode I induced pitting.

Must be noted anyway, that Keer and Bryant [35] and Bower [56] stated that
considering a model in which growth is due directly to the hydraulic pressure, while
the crack mouth is open, is somehow unrealistic. The cause of such an assertion has to
be found in the high intensity of the stresses in play. However, the analysis for all the
models described was conducted on two-dimensional domains and it seems difficult to
predict correctly the three-dimensional interactions at the surface and the crack tip,
considering the presence of a fluid.

While the principles of lubricant interaction in crack growth may seem clear, the
solution and simulation of this problem are very complex and articulated. To run
a faithful simulation of the fluid pressurization effect, the real load profile generated
by lubricant should be calculated. Actually, this depends on many factors as the
rheological properties of the fluid itself and the modality of entrapment [61]. The
viscosity of the fluid can therefore influence its penetration into the crack. The more a
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fluid is viscous, the more difficult it will be penetrating, meaning that shorter distances
in the crack length will be pressurized. In the case of incomplete pressurization, the
"dry" component of Mode II will remain dominant [50].

(a) (b)

Figure 2.21: Crack branching simulation under (a) unidirectional and (b) reciprocal
loading [58]

Based on these assumptions, Datsyshyn and coworkers [62][63] studied the pos-
sible trajectories of propagation of the edges of a crack, subjected to what is called
’boundary lubrication’ conditions. A step-wise reconstruction was performed on the
crack path by a curvilinear analysis. The same kind of analysis was conducted by Jin
[58], whose numerical results show that the Mode II stress intensity factor diminishes
and crack is driven in different directions. By Jin’s analysis [58], the crack first propa-
gates at the edge facing toward the rolling direction of the load, branching toward the
surface. In that specific case of a one-direction passing load, 5 out of 6 newly formed
branches were facing toward the surface, thus likely to produce pitting. But there was
also the last generated branch which faced toward the core. Then a different loading
path was implemented to verify its influence on the crack growth direction. This time
the load went from the center of the crack toward the left tip and then back to the
right. The results obtained were completely opposite, with the most branches facing
toward the core.

This showed that the propagation pattern at each tip is different and controlled
by the loading path. This is evidence of the competitive mechanism between external
shear stress and an "internal" tensile stress generated by the presence of lubricating
fluid.

Anyway, Murakami [64] first suggested that the presence of positive friction be-
tween the surfaces will lead to a closure of the crack mouth. This condition will stop
lubricant penetration. Because of this, in many lubricant interaction models [50], the
friction is defined as negative. Some attempts for the solution using FEM analysis
have been carried out for example by Benuzzi [65], but a more complex and precise
model is necessary to have a complete and simple understanding of the phenomenon.

Also, other authors such as Dubourg [66] take as acceptable the hypothesis of
neglecting any trapped fluid effect when modeling a crack at certain lengths or depths.
Which will mean the loss of the "surface effect".

2.6.4 Quiescent zone

The hypothesis of arrested surface cracks has been proposed by Tallian [67] and verified
by Miller et al. [68], which introduces the presence of a "quiescent zone" between the
surface layer and the subsurface region.
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In the most external part of the material acts a local stress concentration field, near
asperities, as it has been presented for the crack initiation phase. This field is dominant
only for a few microns around the stress concentrating agent and loses effect when the
crack branches toward the center of the material. For some load conditions, the
surface-initiated cracks could not be able to propagate enough to reach the Hertzian
dominated zone. We know that in the subsurface region the Hertzian contribution
becomes dominant and acts as a driving force for crack initiation and propagation.
The quiescent zone, in which micro-cracks are stopped, lies between these two stress
dominated ones. Its extension depends on the amount and properties of asperities, on
the contact condition, on the Hertzian stress profile and the shear fatigue threshold
of the material (δKIIth).

Figure 2.22: Quiescent zone represented on the plot of ∆KII as function of depth [50]

If surface cracks are initially driven by surface friction and local stresses, they may
reach the stable zone where they remain quiescent, without further propagation.

Experimental evidence showed that typically micro-cracks stop after 10− 20µm in
many different cases. This distance may vary depending on the conditions of contact,
as displayed in numerous references [69][70][71]. Should be noted how this quantity is
comparable to the usual characteristic microstructural dimension of hardened steels
employed in REBs.

Further propagation it is possible when the Hertzian stress field is high enough to
cover the quiescent zone and reach the maximum propagation depth of surface micro-
cracks. In this case, a macro-surface fatigue phenomenon will occur. Usually, surface
macro-cracks propagate in a coplanar way, under a mixed-mode state of stress.

2.6.5 Surface Cracks: Discussion

From experimental evidence [50] it can be stated that surface cracks can grow for tens
of microns, in an almost coplanar way. This can be attributed to the presence of the
lubricant effect enhancing the macro Hertzian stress action. This combination gener-
ates a mixed-mode propagation, in which Mode I and II will take relative importance
depending on the dimension of the crack and the amount of fluid pressurization. For
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shorter cracks, Mode II will remain prevalent due to a small amount of seepage. While
for longer propagation both mechanisms are active.

Evidence from studies by Cheng [72] showed how surface fatigue phenomena are
limited in pure rolling conditions, due to the lubricant effect. This has been confirmed
also by studies conducted at the University of Brescia by Adamini et al. [73]. Tests on
carburized and nitrided steels under Hertzian pressure were performed in lubricated
and pure rolling conditions. Results showed that micro-pitting was formed in the first
contact stages, but then was stopped or disappeared without macro-damage formation.
Subsurface damage was instead formed later in the test.

It can be concluded, as stated by Ding [4], that despite the concurrent presence
of Mode I and II mechanisms, the direction of propagation of the crack will follow
the orientation of the maximum shear stress at the tip o curve toward the surface.
Evaluating the initial inclination of a surface crack, the propagation angle could then
be estimated. Always in the review by Ding [4] it is indicated that in the case of an
initial angle smaller than 45° if Mode I is the dominant mechanism, the crack will tend
to have a coplanar propagation or branch toward the surface. In any case, the result is
likely to be the formation of a shallow pit. In the case of Mode II dominance instead,
the growth direction will be parallel to the crack plane. Analytical and experimental
works are reported to confirm that a surface crack alone will not be able to grow
toward the core of the material [57][74][75]. In order to achieve deeper propagation,
subsurface cracks’ behavior has to be taken into account.

2.7 Subsurface Cracks

2.7.1 Subsurface Initiation

Subsurface effects of rolling contact fatigue can be different, depending on the prop-
erties of the material studied. In particular, hardness is a relevant parameter for the
crack initiation mechanism selection. In softer materials, the plastic strain becomes
the dominating mechanism, by accumulation in the zone of maximum stress. This
leads to the progressive loss of resistance in the material and consequent crack initi-
ation. In case of the presence of inherent stress raisers, as defects or inclusions, the
over-stress is re-distributed by the plastic flow. In this way, the ductile materials can
"absorb" more energy, but has much less resistance to constant high loads.

Hard materials, as used in rolling bearing elements instead, show better resistance
to high loads and no plasticity. But hardness leads to an increased sensitivity to
over-stresses and effects of inhomogeneities in the structure. The localized stress
raising, coupled with the incapability of ductile behavior enhances crack initiation
near inclusions. This is why in literature, subsurface cracks are usually initiated in
stress concentration zones such as hard and brittle oxides or voids.

To describe this phenomenon, a diffused experimental procedure relies on drilling
some micro-holes in the material, before undergoing a fatigue simulation. Bormetti
et al. [50] used holes of a size around one hundred microns just beneath the surface
of contact. To evaluate the proper position at which the holes have to be drilled, the
driving loading condition, being the maximum Hertzian shear contribution, has been
calibrated in depth. The holes then acted as the interface between the inclusion and the
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matrix of the material, which acts as a weak spot and local stress intensifier. Results
showed that hard materials are more sensitive to the presence of inherent defects, and
sudden formation of cracks around the hole was verified at sufficiently high contact
pressures (around 2000 MPa). In Fig. 2.23 a carburized steel with a surface hardness
of 700 HV shown several cracks, initiated under pure rolling conditions.

Figure 2.23: Fatigue crack nucleation at the surface of drilled holes [50]

In cases of multiple cracks in a limited region, the relative influence on neighboring
ones can be taken into account. It was pointed out by Dubourg [66] that, in the case of
a network of cracks, a mutual protection effect [76][77] takes place. The phenomenon
is characterized by load sharing between the defects. So it can be argued that multiple
cracks will undergo a reduction of growth rates due to a decrease in the effective stress
intensity factor ranges that may lead to a general self-arrest. Thus single cracks and
multiple systems behave differently in propagation. Usually, the failure phenomenons
are caused by only one rare crack which can meet all the required critical conditions.
The majority of the studies thus, focus on the behavior of only one crack.

2.7.2 Subsurface Propagation

It is well known that subsurface cracks propagation mainly occurs by shear. Maximum
Hertzian shear stress is then in competition with hardness profile and compressive
residual stresses to decide crack propagation.

As reported by Santus et al. [46], subsurface cracks are prevented to experience
tensile Mode I SIF during contact. Due to the position and the nature of the interac-
tion, the stress field will be purely compressive. So, the only propagation mechanisms
remaining effective will be the shear Mode II (sometimes combined with Mode III
[46]).

Evidence shows that cracks have a stable coplanar growth at shallow angles to the
surface [78], same as if surface-initiated. Also, subsurface propagation usually tends to
branch, after the crack has reached a critical length. The question of the predominant
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growth mechanism has lifted some contrast in the literature. Studies by Fleming and
Suh [38], Keer and Bryant [35], O’regan et al. [79], Kaneta [54], Blake and Cheng
[80] and recently by Choi and Liu [81][82] supported the Mode II propagation theory
through all the process. Ding et al. [4][83]–[85], instead proposed a distinction between
two phases in the subsurface crack life.

Nucleation should occur at the presence of a point defect inside the material by
shear stress. Further propagation instead is stated as no more strictly dominated
by Mode II. It has been proposed a theory in which the growth is supported by a
mechanism of linking between multiple cracks, followed by the collapse of ligaments.

This approach seems to be in contrast with the study conducted by Chen et al.
[86] which confirms propagation and branching in Mode II. Different perspectives are
present on the matter of RCF subsurface crack behavior. The multi-axial nature
of the state of stress and the wide range of variables in play are an indicator of
the complexity of the phenomenon. Santus et al. [46] state that, also in this case,
a competitive situation has to be taken into account. All the mechanisms will be
present at the same time, with different rates and relevance, depending on the specific
set of conditions. The three main resulting effects on subsurface cracks will be [46]:
multiple-cracks linking, Mode II propagation and branching. Anyway, to adopt a fail-
safe approach, the most relevant stage will be the initial one, usually dominated by
shear on the majority of the models. In the following sections, examples of different
approaches and models to evaluate the SIF and interpret the growth behavior will be
proposed.

Since the fatigue problem considered is a crack growth problem that can be associated
with tribology theory, the use of fracture mechanics can be a valid method to analyze
and evaluate the driving forces for failure. Many studies have assessed the possibility
of crack propagation comparing the threshold stress intensity factors with the applied
stresses. In the case of first propagation, the dimension of inclusions, from which
cracks take part, are small. Then, the short-crack theory can be used to assess the
phenomenon. According to this approach, defects can be treated as equivalent cracks.
Murakami [87] developed a law to evaluate the Mode I fatigue threshold as a function
of the crack dimension.

KIth = 3.3 ∗ 10−3(HV + 120)(sqrtA)1/3 (2.18)

where the Vickers hardness is indicated by HV and A [µm2] is the projection of the
defect area onto the plane orthogonal to the dominant stress for crack opening.

This dependence takes into account the difference between the opening and closure
effect.

Since, for components subjected to rolling contact fatigue such as rails and bear-
ings, Mode II crack growth is the most observed mechanism, the validity of the law
has been checked.

In shear propagation the presence of friction can be hypothesized, thus making
possible the "short crack" effect. Following this hypothesis, Donzella [88] proposed a
model to estimate the Mode II stress intensity factor in the short-crack range, using the
Murakami law. This consisted of imposing two bounding values to the estimation, the
upper based on the assumption of equivalence between long and short crack behavior;
the lower based on the dependence with crack size, as for Mode I.

The fitting obtained in this study is in agreement with measurements performed by
many other studies, on hardened materials by Lunden [89], Hellier [90] and Sakae [91].
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Influence of different parameters on the stress intensity factors has been analyzed using
this model, such as fluid properties and rolling conditions. The study concluded that
the Mode II fatigue threshold value, for crack propagation, is not significantly affected
by the presence of friction on the contact surface, and though by the lubrication
regime. This result has been confirmed by experimental evidence by Lunden [89].

(a) (b)

(c)

Figure 2.24: Specimens for experimental tests on Mode II and II fatigue crack growth.
Reported dimensions are in mm. (a) Basic principle for Mode II test. (b) Specimen
for Mode II test. (c) Specimen for mode III test. (d) Notch detail [92]

Once theoretical formulation was validated, the relative dominance of different growth
mechanisms has been investigated to determine the main drivers. Even if laboratory
studies on Mode II crack growth are more difficult than for usual Mode I fatigue ex-
periments because in shear experiments the cracks tend to switch to Mode I during
the test, Murakami et al. [93] conducted a test to determine threshold stress intensity
factors. They concluded that for steels the stress intensity factor threshold of Mode
II is higher than for Mode I. Murakami and Hamada [94] realized a specific specimen
design to perform these fatigue tests. They designed a double cantilever (DC) speci-
men in which the shear stress will reach the maximum value in the neutral axis, where
instead the direct stress will be zero. Fatigue crack growth was measured by the AC
potential drop method.

Tested specimens were fractured using liquid hydrogen to perform the investigation
on the crack surface. In Fig. 2.25 can be seen the Mode II fatigue crack growth
morphology, with clear shear abrasion signs.

It is evident how the crack starts growing in Mode II but, as long as propagation
continues, the stress intensification range decreases [94]. This is the cause of branching
in Mode I that follows the first growth stage. Usually, branching occurs at steep angles,
due to the different critical planes for shear and tensile stresses in rolling contact loads.
Fig. 2.26 shows this clearly.

Branching angles are on average around ± 70.5°, the direction of maximum tan-
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gential stress at the crack tip. It can also be seen how Mode I growth occurs when
previous Mode II has arrested, and when the values of stress intensity factor ranges
of the two mechanisms are similar and slightly inverted toward mode I dominance.
(dKI = 1.15dKII). Also, Keer and Bryant [35] indicated that the presence of tensile
stress may lead to branching and relative curvature of cracks, to form a cavity.

Figure 2.25: Crack surface morphology [92]

Figure 2.26: Crack propagation and branching [92]

Using fracture mechanics, Rosenfield [95] and Sin and Suh [96] among others,
showed how subsurface propagation will occur parallel to the contact surface, mainly
in Mode II. The rate will also increase with the size of the crack. Kaneta [54], modeled
a pre-existing subsurface crack and confirmed that fatigue growth is driven by shear
and can occur at both tips with different directions, as shown in Fig. 2.27.

This study proposed that in the case of pure rolling the crack tends to grow along
its original plane at both tips. Instead, in the case of an inclined crack (about 5° [54])
the general tendency to parallel growth is conserved. The results mentioned above find
validation in the experimental work of Yoshimura [97]. Dubourg et al. [66] conducted
a study on steels under RCF conditions. Although it being more focused on railway
steels, it also concludes that the major crack growth mode is shear dominated Mode
II.

Moreover, also for Dubourg, this results in a coplanar extension along the initial
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crack direction. In this specific case, branching is probable in Mode I conditions, at
an inclination of 75°. Considerations upon lubrication conditions relatively to growth
direction were made [66]. It is found that propagation toward the bulk of the material
and across long distances is more likely to occur in mixed conditions. Not referred to
the stress field this time but to lubrication. In particular, Dubuorg [66] states that
a "compromise" between oil lubrication and dry conditions, which can be as water
lubrication, may give way to long inward cracks.

Figure 2.27: Fatigue crack growth direction for (A) shear and (B) tensile Mode. (a)
High traction. (b) Low traction. [98]

Figure 2.28: Crack growth behavior under different lubrication conditions [66]

This spurious condition may be caused also by an initial phenomenon of pitting
or spalling. Although not being critical for the component’s failure, it can increase
friction between rolling surfaces and promote subsurface crack growth.

Recently Doquet and Bertolino [99] presented a study of crack growth orientation,
based on the critical plane analysis. They presented the presence of a threshold value
for Mode II SIF, proper of the material, over which bifurcation of cracks is prevented
in favor of coplanar growth.

In this case, the propagation will occur at a length proportional to the stress
intensity factor range of Mode II. Making use of kinetics theory is otherwise possible
to have good evaluations even at high values of SIF. They concluded that when a
mixed-mode loading condition is present, and Mode I and II are applied sequentially,
coplanar crack growth results to be dominant. This occurs if the ratio dKI/dKII
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is greater than a threshold value, identified at 0.5 by Wong et al. [100] or at 0.25
by Doquet and Pommier [101]. In the case of overlap of the mode cycles instead,
bifurcation of the crack will be favored, as showed before, enhancing the dominance
of Mode I growth.

2.8 Mode III and RCF for Rail Components

Also, studies on multi-axial stresses considering mode III contribution has been carried
on by some studies. Since mode III cracks can be generated in components that
transmit torque such as shafts. This mechanism is therefore investigated by torsion
fatigue tests on notched components with circumferential geometry [102]–[104]. It
has been found that under high enough torsion, the fatigue surface results being flat
and consequence of a shear mechanism. Otherwise, if stress is low, Mode I results
favored and produces a ’factory-roof’ morphology. As stated by Murakami et al. [92],
the transition process between a shear crack propagation and a factory-roof is not
clear, but it has been reported that for both modes II and III, the growth induces a
micro-structural modification on the crack surface.

Ritchie et al. [105] proposed a micro-mechanical model for fatigue crack growth
driven by Mode III. The crack propagation was considered to occur by coalescence of
micro-cracks in Mode II, ahead of the main crack front at the presence of inclusions.
The same team [106], found that there was no direct correlation between the crack
growth rate and the stress intensity factor of Mode III, except in the case of superim-
position of a static Mode I loading. Also Houlier and Pineau [107], showed that this
superposition can cause a modification in growth rate and also in the crack path dur-
ing propagation. Akama et al. [78] concluded that Mode II and Mode III shear growth
mechanisms are "essentially the same". From experimental analysis on mixed-mode
crack propagation, fracture surfaces obtained under I/III loading and I/II modes are
very similar [108]. In both cases, the shear stress intensity range resulted as the main
driving force, without a great difference between the in-plane or out-of-plane shear
mechanism. This view is confirmed also by Murakami et al. [92], who states that if
the applied stress intensity factor range is high enough, then the crack growth should
occur in shear mode both for torsion fatigue tests and in Mode II growth tests.

All these models referred to the rail-wheel contact in case of train application,
involving high friction and traction. Anyway is interesting to notice the contribution
and effect of mode III superimposition in the case of rolling contacts, which can occur
in a relative measure also in bearings.

2.9 Residual stresses

As we have seen in the previous chapters, to improve the fatigue life of metals, hard-
ening is performed. This process involved the production of residual stresses inside
the material, which interact with the state of stress, limiting the damaging effect. Dif-
ferent sources of residual stress induction are available: heat treatment, machining (in
different manners as rolling, shot peening, grinding, etc.) and carburizing or nitriding.

38



From a rough and general point of view, the presence of a residual stress field is stated
to increase or decrease the maximum shearing stress, according to a simple law [109]:

(τmax)r = τmax −
1

2
(±Sr) (2.19)

Where Sr is the residual stress.
Should be noted the presence of the ± sign. In case of compressive residual stress

(negative) the resulting shearing stress will be reduced (sing of τmax is negative). Also,
Dubourg [66] indicates that positive values of residual stress, meaning a tensile field,
increase the crack growth rate. The cracks will grow faster and are more prone to
branching due to the opening of the crack. This opening is maximized at a perpen-
dicular inclination to the surface, thus the driving direction for Mode I branching.
Otherwise, a compressive field, identified with a negative sign, reduces the opening
of the crack and the sliding between the faces, reducing the growth rates [66]. The
fatigue life is proportional to the critical shearing stress:

Life ∝ [
1

(τmax)r
]9 (2.20)

Anyway, more recently a different general idea of elastic superimposition between
the stress tensor and the residual stresses has gained validity [16]. It derives also
from the assumption that the most critical shear contribution to fatigue is the maxi-
mum shearing stress, which results from the evaluation of the principal stresses. This
approach will be taken into account in the numerical model section.

Figure 2.29: Heat treatment cycles for hardening carburised components: (a) direct
hardening, (b) single hardening [110]
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However, the specific profile of the residual stress induced by general processes,
are difficult to predict correctly. This is caused by the self-equilibrating property of
residual stresses, which can modify the distance and intensity reached. Multiple factors
have an influential role in this phenomenon. In this work, only a generic distribution
attributed to carburizing and nitriding processes will be described.

Usually, mechanical processes such as machining, coating, shot peening, etc. [6] induce
short-range residual stresses. Otherwise, thermo-chemical processes such as carburiz-
ing and nitriding can produce long-range effects. Carburizing, for example, generates
a compressive state of stress in the treated material. This effect is due to the car-
bon atoms which, taking place inside the metal lattice, generate and expansion of the
neighboring cells, inducing compression.

During carburizing the alloy is exposed to high temperatures, in the presence of
carbon-bearing material or a carbon-rich atmosphere (Fig. 2.29). The material will
then absorb part of the carbon while heated, which will induce the formation of an
austenitic hard structure in the carburized layer during the quenching phase. The
following process of austenitization and tempering can be performed, depending on
the desired results [110]. Tempering may be required for mechanical requirements,
but has a negative effect on the level of residual stresses, which are lowered [111].

To counteract crack formation and the subsequent propagation, a compressive
stress field is desirable in the most critical region. Unlike the stresses generated by
rolling contact, the residual stress field is a static state of stress, function of the depth.
The presence of a compressive stress field is not directly responsible for crack initiation,
which instead is used to hinder, but can influence growth orientation and behavior.

The near-surface region, called the carburized layer, shows a higher amount of
compressive stress to counteract the critical stresses occurring there. The profile pre-
sented (Fig. 3.37) is obtained by in-depth X-ray diffraction experimental analysis on
the outer race of the bearing gear [7]. Also in the model from Depouhon, an approx-
imation of the material to a semi-infinite plate. The profile is then matched with
an eigenstrain, purely hydrostatic and localized state, shown with a red line in Fig.
3.37. It is also shown that the core of the gear is subjected to a tensile stress state,
responsible for a mode I crack propagation in the critical failure stage (Fig. 2.30).
This double nature is due to the failed penetration of carbon in the inner regions of
the component. The shrinkage and phase transformations occurring during quenching
are then responsible for the double nature of the stress field across the section.

Figure 2.30: Rendering of the residual stresses field across the whole component [7]

A similar distribution was already shown from Bhadeshia [6], in the state of the
art, where the depth of the treatment was indicated to be around 1 mm [6][109]. This
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will be the total affected zone or carburized layer, that exceeds by almost an order of
magnitude the dimensions found for the critical stresses. Moreover, the exact profile
and entity of the residual stress field are difficult to identify, because are a specific
characteristic of the component, the material and the application.

Should be reminded that the formation of carbides may act as a stress raiser during
the cyclic loading. Thus being the generating point for crack initiation. It is clear
then that this process should be precisely designed to achieve the desired mechanical
properties, without compromising the metallurgical quality of the material. It has to
be mentioned that, in a new bearing, a compressive stress field is present close to the
surface [6]. This is due to the finishing of the component. A generic residual stress
distribution has been reported by Bhadeshia. (Fig. 2.31)

In the previous paragraph about the Hertzian stresses (Chap. 2.3), it is shown that
the critical shear stress is not located near the surface. In Fig. 2.31 is also evident how
the peak of the residual stresses is located beneath the surface and not immediately
close to it. From the fatigue studies reported before, we’ve seen that the shear stress is
the most critical factor for crack propagation. It should not be strange that a similar
depth profile results to be the most suited for fatigue prevention. The sum of the
contributions from finishing and thermo-chemical treatment will give a distribution
with an initial high value at the surface, a leveled out zone beneath it and then a
gradual decrease toward the core [109]. The compressive surface layer can exert the
effect of crack closer [50], preventing lubricant penetration. This phenomenon limits
Mode I importance onto the crack growth, favoring shear dominance. The consequence
is a more stable coplanar growth possibility, driven by shear Mode II.

Figure 2.31: Generic residual stress depth distribution [6]

2.10 Simulation Models

Rolling contact fatigue has been studied scientifically since the 1940s and over the
years many approaches were adopted [32]. Different models have been proposed to
give a realistic prediction of the fatigue life of bearing components and Sadeghi et al.
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[32] have proposed a review of the most influential ones.
A general distinction is made between probabilistic engineering models and de-

terministic research models. The first group identifies the empirical ones, concerning
extensive testing to derive the needed variables. By this approach, the detailed consti-
tutive behavior of the materials or the influence of specific parameters is not analyzed
deeply. But the experimental result is s direct consequence of the chosen set. On the
other hand, the deterministic models are based on theoretical assumptions and rely
directly on the constitutive relations of the materials. This basis is used together with
failure models, to model the fatigue behavior.

Before highlighting the most influential models and being more specific, some con-
siderations must be made. The majority of the theoretical research models proposed
in literature give a homogeneous representation of the materials considered.

In this way, the contributions of defects such as inclusions or the structural behav-
ior, are neglected. This can lead to mistakes in life evaluation because of the important
role assumed by these factors as stress raisers and crack initiation spots. On the other
hand, a micro-mechanical approach is rarely considered due to the complexity of the
task and the intrinsic variability of metallurgical composition and modification dur-
ing production processes, as previously reported. Although the cracks seems to start
often at weak spots, deterministic models can’t by their nature consider each specific
case. Experimental evidence shows clearly that material properties under RCF follow
a Weibull distribution. This means a non-uniform behavior, intrinsic also in classical
fatigue, that should always be considered.

Otherwise, experimental models can reproduce the scattered results of fatigue. But
here a great conflict is based on the critical stress that has to be considered as domi-
nant. Different depths have been found as initiation spots from evidence [86]. Different
studies proposed the orthogonal shear stress as fatigue criteria, as Lundberg and Palm-
gren [8], but then also the maximum shear stress [112], the von Mises equivalent stress
[9], and the octahedral shear stress [113] has been considered. Each of them reaches
its peak at different depths, as observed. Thus it depends on the case under study and
set of parameters which one will be dominant in the specific experiment. An exact
dominant stress definition for crack initiation has not been stated yet [32]. It must
also be mentioned that the empirical approach for calibration of engineering fatigue
life is becoming more and more relevant by means of time needed and costs.

Although having a more analytical nature, this kind of model is usually limited
to a specific aspect of the general phenomenon. This is way in the review on crack
behavior, a wide range of studies authors will be referenced for different particular
cases of the general topic. Sometimes also in contradiction with one another due to
the influence of the many operational factors involved in RCF.
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Table 2.1: Chronological list of probabilistic bearing life prediction models [32]

Year Researchers Model Description
1945 Palmgren Empirical [114].

1947 Lundberg and Palmgren

First probabilistic bearing life model,
termed the LP model, based on prob-
ability of crack initiation at a subsur-
face depth (z0) where orthogonal shear
stress (τ0) is maximum in stressed vol-
ume (V ) in the contact, expresses the
probability of survival (S) after N
RCF cycles as in Eq. 2.21 [8].

1952 Lundberg and Palmgren The L10 life is expressed as in Eq. 2.22
[115].

1971 Chiu et al.

Probabilistic model that attributes
spalling to intrinsic material defects
and includes influence of material elas-
tic and plastic properties, defect type,
concentration, and geometry on the
contact stress field (Eq. 2.23) [10].

1985 Ioannides and Harris

Improves on the LP model by: (i)
assuming discrete material volumes,
each with its own probability of sur-
vival, and overall risk obtained by in-
tegration; and (ii) introducing a stress
threshold (σu) below which no failure
is possible (Eq.2.24 ) [9].

1986 Schlicht et al.

Model assumes that fatigue failures
originate at the surface due to von
Mises stress, and plastic flow and resid-
ual stress development due to RCF in-
fluence bearing life. The life model is
given by L = a1a23ft(C/P )p where a1

and a23 are life modifying factors based
on reliability, material, and operating
conditions [116].

1987 Shao et al.

The development of cracks due to
RCF in case-hardened bearing steels
was described by a three-stage pro-
cess: incubation, stable propagation,
and branching/propagation [117].

1988 Leng at al.
The three stages described by Shao et
al. [46 sad] were allocated 13%, 56%
and 31% contributions to life [118].

1989 Current ISO Standard
The life relation is given by L =
a1a2a3(C/P )p, where ai are life modi-
fying factors [119].

43



Table 2.1 – continued from previous page

1992 Tallian

Probabilistic life model uses orthogo-
nal shear stress field solution in con-
junction with a Paris-law exponent (ψ)
and growth parameters (n0), material
fatigue susceptibility (φ0), and defect
(φ2) parameters [11].

1994 Zaretsky

Life equation is ln(1/S) = Neτ ceV
and is similar to LP model, with two
modifications: (i) dependence of the
stress-life relation on the Weibull slope
e was eliminated, and (ii) dependence
on the depth term was eliminated. τ ce
is the maximum shear stress and not
orthogonal shear stress [120].

1996 Harris and McCool

Statistical comparison of actual and
computed bearing lives from LP and
Ioannides and Harris’s [9] models
showed wide dispersion [121].

1996 Otsuka et al.

RCF testing showed that subsurface
crack growth behavior was controlled
by mode II stress intensity range,
∆KII [122].

1999 Ioannides et al.

Modification of load-life relation from
the 1985 model [9] to give L10 =
(A/[1 − (Pu

P )w]c/e)(CP )P , P > Pu,
where Pu is the load corresponding to
σu [123].

2000 Kudish and Burris

Model improved by Tallian [11] by in-
cluding the effects of contact pressure
and size, friction coefficient, residual
stresses, initial defect, size, location
and orientation distributions, material
fracture toughness, material hardness
variation with depth, and material fa-
tigue parameters as function of hard-
ness [124].

2002 Shimizu

A three-parameter Weibull life distri-
bution function was proposed, after
showing that bearing steels subject
to RCF do not exhibit a fatigue en-
durance limit, given by: L − γ =
(C/F )p(lnR/ln0.9)1/m, where γ is the
minimum life prior to failure [125].

2003 Miyashita et al.

The location of ∆τxy estimated by
FEA was shown to coincide with the
depth of crack initiation observed in
RCF experiments using sintered alloys
[126].

44



Table 2.1 – continued from previous page

2005 Kotzalas

A three-parameter Weibull distribu-
tion was shown to be able to predict
finite life in the high reliability regime,
based on statistical distribution of ta-
pered roller bearings [127].

The initial studies had to deal with the inability to describe RCF with the classical
fatigue theories. Accordingly, early works are based on empirical observations and
the resulting mathematical interpretation [114]. The first probabilistic model was
proposed by Lundberg and Palmgren in 1947 [8][115]. They assumed that cracks were
initiated at a subsurface weak spot and driven by orthogonal shear stress. The weak
spots, usually inclusions, were modeled by implementing a stochastic distribution with
the Weibull statistical strength theory. By this model, under a pure Hertzian stress
field, a probabilistic evaluation of fatigue life was calculated. The initiation step was
taken as dominant.

ln(1/S) = A(Neτ c0V/z
h
0 ) (2.21)

where A, c, and h are experimentally determined material parameters and e is the
Weibull slope for the experimental life data S is the probability of survival of the
component, after N cycles. z0 is the depth at which τ0 , orthogonal shear stress,
occurs. V is the stressed volume and the other variables are empirically derived
parameters.

Figure 2.32: Stressed volume configuration in Lundberg-Palmgren model V ∼
az0(2πfr) [32]
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From this equation, a load-life proportionality was derived:

L10 = (
C

P
)P (2.22)

where C is the bearing basic dynamic load rating, P is the equivalent load acting on
the bearing, and exponent p depends on contact shape. The factor L10 identifies a 10%
probability of failure in the given conditions. The exponent varies depending on the
geometry of the contact and components, and it is derived empirically. This equation
is also the basis for the standards used today in the industrial production of bearings
(ISO 281 [119]). It is clear how the initial approach by Lundberg and Palmgren has
been used and survived for many years, but it suffers from many limitations if analyzed
in detail.

For example, lubrication interaction is completely neglected and also traction on
the surface is not considered in the pure Hertzian load. Some amount of sliding and
friction is always present in rolling contacts, and it affects the resulting stresses, moving
the peak toward the surface. Also, the presence of any sort of roughness deviates from
the ideal smooth assumption. Cheng et al. [10] proposed a statistical model based on
crack propagation, taking into account the elastoplastic properties of the material’s
matrix and the physical nature of the defects. The resulting law was an evolution of
the previous survival equation:

ln
1

S
= (

4∑
i=0

φi)N
β (2.23)

In this formulation, the empirical parameter is φi, which depends on the configura-
tion (material, geometry, load, defects). Subsequently, in 1985, Ioannides and Harris
[9] proposed the presence of a threshold in the stress, similar to the classical fatigue
limit, below which the material was to consider safe from any failure. They imple-
mented a discrete model, in which the component was divided in small volumes, each
with a different survival probability. An integration over all the discrete elements was
then performed to evaluate the overall behavior.

ln
1

S
= ANe

∫
V

(σ − σu)C

zh
dV, σ > σu (2.24)

where σu is the stress threshold and A is an empirical constant. Another novelty
introduced by Ioannides and Harris regarded the critical stress component consid-
ered. They didn’t limit the analysis to the orthogonal shear stress but considered also
the equivalent von Mises and maximum shear stresses as potential candidates. The
resulting life-prediction equation from this approach will be:

L10 =
A

[1− (Pu

P )w]
(
C

P
)P , P > Pu (2.25)

where Pu is corresponding to the previous threshold stress. This equation was pro-
posed by the same Ioannides in 1999 [123]. A comparison between this and the
Lundberg-Palmgren law is shown in Fig. 2.33. The former prediction is clearly more
conservative and behaves linearly, because of the less volume considered. Instead, the
Ioannides-Harris curve has an asymptotic, similar to classical fatigue theory.

Many developments have been made on the basic laws that have just been in-
troduced. But the original idea was conserved. The proof is that the ISO standard
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[119] to evaluate the life of rolling bearings is a modification of the original Lundberg-
Palmgren equation:

L = a1a2a3(
C

P
)P (2.26)

where the ai constants are modifying factors depending on the set considered of ma-
terial, component and operating conditions.

Figure 2.33: Plot comparison between Lundberg-Palmgren and Ioannides-Harris theo-
ries [32]

As it can be seen in Tab. 2.1, many different models were proposed, integrating the
previous models with new details, or relying on particular assumptions on initiation
site, the influence of parameters and relation with statistical distributions.

Some studies, such as the one from Kudish and Burris [124] proposed an improve-
ment to previous models (Tallian [11]) considering the contribution of operational
parameters. But also in this case some assumptions were made to give validity to
the model. The Kudish-Burris model, for example, considers the propagation stage
as dominant in fatigue life, neglecting the nucleation phase. But, as stated initially,
these models are all derived from empirical evidence and thus relative to the specific
assumptions made on top of the tests. So a clear physical explanation of RCF behavior
cannot be taken from this model. For this purpose, the research models are a more
suited way.

The deterministic models are a more theoretical approach, based on the constitu-
tive principles of the materials studied and failure mechanics. They also have to make
assumptions on the importance of initiation or propagation phases during fatigue life,
due to the different processes involved. Few models take into account both. In Tab.
2.2 is reported a historical overview of this research models, by year. Keer and Bryant
[35] were the first to propose a model based on 2D fracture mechanics. They took
crack propagation as the dominant phase in bearing fatigue life. The resulting equa-
tion relates the number of cycles for fatigue to the maximum Hertzian pressure by
this formula:
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N =
b1−m/2

β0pmmax
(2.27)

where pmax is maximum Hertz pressure, b is contact half-width, and β0 and m are
crack growth parameters. Anyway, this initial model was found to be largely under-
estimating fatigue life by orders of magnitude with respect to the engineering models.

It goes with the theoretical nature of these approaches, that many studies differ from
one another by their basic assumptions or crack modeling techniques. Bhargava et
al. [128] considered plastic strain accumulation as the critical parameter for spalling.
Cheng et al. [72][129] instead took micro-mechanical theory to develop a dislocation
pileup model for crack initiation. The same basic idea was taken by Vincent et al.
[130] whose then added the contribution of residuals stresses to the model. Many
developments were made depending on the particular side of the phenomenon to be
analyzed and a summary can be found in Tab. 2.2.

Zhou et al. [113][131] otherwise considered both initiation and propagation phases
in their formulation, expressing the total life as:

N =
AWc

(∆σ − 2σk)2D
+

∫ af

ai

da

c∆Kn
(2.28)

where among the usual material parameters (A,c,n), the damage accumulation variable
D is introduced. This comes from continuum damage mechanics integration in the
RCF life study. This is the approach that will be considered for the numerical part of
this work.

Table 2.2: Chronological list of deterministic bearing life prediction models [32]

Year Researchers Model Description

1983 Keer and Bryant

First deterministic analysis of RCF life. A 2D
fracture mechanics approach is used for life es-
timation in rolling/sliding Hertzian cylindrical
contacts assuming initiation life is small com-
pared with propagation life. Eq. 2.27. Life
computed greatly under predicted compared
with LP-based models [35].

1989 Zhou et al.

Model included both crack initiation and prop-
agation lives. The total life is related to the
specific fracture energy per unit area, material
friction stress, the damage accumulation factor,
and the stress intensity factor range at the crack
tip [131].

1990 Bhargava et al.
Model based on plastic strain accumulation in
strain hardening materials under cyclic RCF
[128].

1992 Sehitoglu and Jiang Multiaxial fatigue crack initiation model for
RCF [132].
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Table 2.2 – continued from previous page

1994 Cheng et al.

Micro-mechanical model based on dislocation
dynamics (pileup). Crack nucleation was as-
sumed to take place in slip bands at the grain
level. Initiation life is related to the critical
shear stress amplitude and its threshold [129].

1997 Melander A FEA study of cracks subjected to RCF in-
cluding crack face friction due to closure [133].

1998 Vincent et al.

Crack initiation model based on dislocation
pileup and accounted for full stress tensor and
residual stress field. Dislocation emissions were
assumed to occur due to the presence of subsur-
face inclusions that lead to stress concentration
and localized slip/plasticity [130].

1998 Lormand et al.

Extension of model by Vincent et al. [130] to
include crack propagation via Paris law, driven
by Mode II loading. A Coulomb stress was in-
cluded to account for crack face friction due to
closure [134].

1999 Harris and Yu

The inclusion of surface traction along with
Hertzian normal pressure was shown to sig-
nificantly increase subsurface octahedral shear
stress (von Mises stress), but not the maximum
stress range [135].

1999 Jiang and Sehitoglu

Elastic-plastic FEA that included effects of
ratcheting under RCF in conjunction with a
multiaxial fatigue damage criterion was used to
compute initiation life for line contacts. Maxi-
mum damage corresponded to depth where or-
thogonal shear stress range was maximum, in
accordance with LP theory [136].

2001 Ringsberg

Elastic-plastic FEA, multiaxial fatigue crack
initiation model based on a critical plane ap-
proach, and fatigue damage accumulation con-
cepts were used to develop a procedure for life
prediction under RCF loading [137].

2006 Liu et al.
Multiaxial fatigue damage due to RCF using
the critical plane approach, with applications
to railway wheel contact fatigue [138].

2007 Liu and Mahadevan
A unified multiaxial fatigue damage model
for RCF using the critical plane approach for
isotropic and anisotropic materials [139].
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2.10.1 Continuum Damage Mechanics

This approach was proposed by Kachanov in 1958 [140]. As reported by Bhattacharya
[141], "continuum damage mechanics [...] deals with the distribution, characterization
and growth of microstructural defects in terms of macroscopic state variables" [142],
[143]. The basic concept of this theory is the evolution of damage inside the material,
with relative loss of integrity. A damage variable is then evaluated as the density of
defects: cracks in the specific case or voids more generally. This variable is evaluated
over a small volume and usually a tensor.

Anyway, "if the weighted fractional loss in cross-sectional area is the same in
every orientation within the material" [141], then the value of the damage variable is
independent of the orientation and can be considered isotropic. In this case, it becomes
a scalar variable, identifying the degree of degradation of a single volume element. Its
value can range from zero, undamaged element, to one or a maximum critical value
(Dc) proper of each material. At the critical value, the section is considered to lose
continuity. What is considered as a failure by this approach doesn’t necessarily mean
the complete fracture of the component, but has only local validity.

Lemaitre [144] introduced thermodynamic potential functions in the theory, later
developed by Bhattacharya and Ellingwood [141][145]. The consideration of dissipative
and irreversible accumulation of damage was united to the laws of thermodynamics
in order to evaluate the time evolution of variable D as a non-decreasing function of
time. The Helmholtz free energy is considered to evaluate the maximum work in an
iso-thermal process on a deformable body. For a reversible process, this energy is
stationary and its variation is expressed by:

δΨ(t2) = δΨ(t1) + δ

∫ t2

t1

(Ẇ − K̇E)dt− δ
∫ t2

t1

Γdt (2.29)

If an initial thermodynamic equilibrium is assumed at time t1, the variation of Eq.
2.29 can be expressed by:

δΨ(t2) =

∫ t2

t1

δI1(t)dt−
∫ t2

t1

δI2(t)dt (2.30)

Applying the commutative property of integration and considering the term δΨ(t1)
to vanish. This is possible if damage occurs through a series of equilibrium states, a
condition that has been validated for ductile damage under load [146]. In this way, it
can be demonstrated [141] that the second term in Eq. 2.30 vanishes. A set of coupled
partial differential equations results from the former formulation:

Ti + ψD
∂D

∂εij
nj = 0 (2.31)

In the conditions of multiaxial stress and strain, characteristic of rolling contacts,
the solution of this equation results difficult. But after a precise study of the critical
mechanisms governing the case under study, the uniaxial solution can be used:

dD

dε
= −σ∞

ψD
(2.32)

This solution is important not only because easy to use, but also because it is
comparable with experimental fatigue data.
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In this way, the dependency on the specific dimensions and parameters of the con-
sidered crack was avoided. The only material parameter to be derived experimentally
is the critical damage value. This can be obtained by a simple static tension test [141].
A wide range of values has been found, from 0.15 to 0.85, depending on the material
[147]. The concept of effective stress and the principle of strain equivalence are used
for this purpose.

σ̃ =
σ

1−D
(2.33)

Ẽ = E(1−D) (2.34)

Where the stress distribution and the constitutive law are affected by the presence
of damage. σ is the nominal stress and E is the undamaged Young’s modulus. In this
way, applying gauges around the damaged zone to measure the change in stiffness of
the material, the variable D can be derived empirically.
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3 Analytical-numerical model in Matlab: multiaxial
stress state and fatigue life simulation

3.1 Model Introduction

In this section, a numerical model for the prediction of fatigue initiation life in rolling
contacts is presented. A theoretical approach starting from Hertzian theory and con-
tinuum damage mechanics [16][5] has been taken.

Figure 3.1: Flowchart of numerical model passages for damage evolution and fatigue
initiation life evaluation

The evaluation of the stress tensor has been performed following the general
Hertzian theory of contacts. The tensor evaluated is then independent of the prop-
erties of the material. The only parameters to give contribution are the maximum
pressure, the contact dimension (half-width) and the friction coefficient. The values
obtained have been compared with literature references on similar models [16].

Material’s property take a role in the damage evolution evaluation. Each material
has a different threshold for plastic deformation and can withstand different values
of stress. The different thresholds act as a filter for damage generation, resulting in
fatigue initiation to happen at different stresses for different materials. Other param-
eters, as the cyclic hardening modulus and exponent or the true failure stress, which
act on damage evolution per each cycle, are also material dependent and influence the
amplitude of each damage increment.

From this process, the final result is the number of cycles needed to reach a critical
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value for damage. The critical damage is a threshold for material loss of continuity.
It can be argued then, that once this value is reached, a crack starts to form.

Once the number of cycles needed for crack initiation has been evaluated, fatigue
life can be then consequently derived by knowing the relationship between initiation
and total life in the specific material and application.

A flowchart of the process passages followed in the model is shown in Fig. 3.1.

3.2 Non-conforming Contact

The contact between two bodies can be identified as conforming or non-conforming.
In the case of an exact fitting between the two surfaces, the contact is defined as con-
forming. Examples are flat sliders and journal bearings. On the other hand, when the
surfaces in contact have dissimilar profiles, the contact is defined as non-conforming.
This alternative is verified in many cases, where either line or point contacts are con-
cerned. The main examples of point contacts are ball bearings, whereas line contacts
are usually generated by roller bearings.

Another case giving rise to line contact is when the surfaces are conforming in only
one direction. This has been the case under exam in the present work. The roller
bearings’ profile is slightly curved (Fig. 3.2) and the contact result to be elliptical.

Figure 3.2: Section of the CAD model indicating the contact region geometry

A precise definition of a flat contact area may be difficult in non-conforming con-
tacts. But, as in the case examined, this region lies approximately in a plane and the
presence of slight curvature and warping are neglected. Only in highly warped sur-
faces, such as deep groove ball bearings, the contact area deviates consistently out of
the plane defined by the gear’s race surface [5]. Hence shear traction gives a significant
contribution to the normal equilibrium.

In the case object of this model, the relative curvature of bearings and gear race
is such to admit a flat surface approximation. Moreover, the contact happens over
an area which is sensibly smaller than the radii of curvature of the bodies. This is
verified when deformation is small and stresses are concentrated in the area of the
contact region. In these conditions, the stresses have a rapid decay far from the point
of interaction and thus, the only region to be analyzed is close to the contact.
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From these assumptions on dimensions of the bodies and of the contact region,
it’s acceptable to approximate them to semi-infinite elastic solids. The contact then
occurs on a plane surface, represented by an elastic two-dimensional half-space.

Figure 3.3: Hertzian stress field under elliptical contact [7]

It can be seen that the elliptical region has an elongate configuration that makes
it comparable with a line contact symmetry.

Thus, only the central, most critical section is going to be considered in this nu-
merical model. An approximation to a non-conforming line contact and reference to
circular symmetry has been used, depending on the specific case.

3.3 From 2D to 1D Domain

Usually rolling contact analysis is modeled as a 2D problem [16][35][56][137][141][148],
because of its intrinsic nature, consisting of a linear motion of a body over a surface.
This is well reported in FEM and numerical problems as the one by Beheshti et al.
[16].

In this article, taken by reference for the present model, the race on which rollers
are moving is modeled as a 2D space. The load is therefore moving on the top of the
domain and the stresses are evaluated inside as a function of two variables x, z. This
setup is reported in Fig. 3.4, where the stress tensor motion along a cycle is shown on
a 2D domain.

It can be seen clearly that, due to the nature of the load and stresses generated,
the stress tensor generated inside the material is not directly affected by motion, but
is simply dragged along the domain with the movement of the load. Therefore, it’s
evident how symmetry is resulting along the axis of motion, where the stress tensor
remains the same along all the cycle.

The lack of variation in the in-depth behavior suggested a reduction from a two-
dimensional to a one-dimensional domain (Fig. 3.5).

In the present model, the domain (Fig. 3.5(b)) it’s a line of nodes, in the depth
direction z. The symmetry along the moving direction has been eliminated and the
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significant dimension of depth it’s conserved in order to perform the fatigue analysis.
The domain is then divided into evenly spaced nodes, acting as finite elements with
independent properties.

Figure 3.4: Damage evolution contour for all x, at different depths for SAE 4340 [16]

(a) (b)

Figure 3.5: Schematic representation of the analysis domain in: (a) the 2D model used
by Behesti et al. [16], (b) rendition of the current model

The stress calculation and the subsequent evaluation of damage evolution has been
performed at any node singularly. By this approximation not only the calculation time
is reduced, but also redundant operations are omitted.

Once the type of domain to be used has been introduced, the motion of the load
has to be formulated in a different way from the reference 2D model. In this work,
two variables have been created, one for the z coordinate, which resembles the depth
position of the nodes to be analyzed, and one for the x coordinate, identifying the
width dimension of the load.

In order to simulate its motion, the stress generated it’s evaluated step-wise, in the
domain, for each relative position of the load distribution and the line domain. In this
way, every single calculation on the x direction corresponds to a step-wise movement
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of the load over the domain.
Once the cycle is concluded we obtain a complete passage of the rolling contact

over a vertical section of the race underneath. Evaluating the stresses generated, the
entire stress history felt at each cycle is known. The analysis is performed in the
subsurface region, where depth is the only variable.

The stress tensor will be then evaluated for each position of the load (x), with
respect to the line domain, and at each node (z) of the same domain. The result will
be a 2D tensor representing the amount of stress felt at each depth per each step of
the load motion. Validation of the stress evaluation will be taken from the shape and
value of these tensors, representing the principal stresses acting on the material.

It can be concluded that exploiting the symmetry of the system and of the stress
state, the reduction from a two-dimensional to a one-dimensional model is possible.
The stress evaluation has always been performed in two dimensions, due to the load
distribution, but the analysis is performed node by node in a one-dimensional domain.

This reduction reduces the weight and time of numerical calculations and makes
the model more suitable for fatigue life predictions and comparisons.

3.4 Load Distribution

In a general case, the interaction transmitted through the contact can be resolved into
a localized force P , normal to the contact surface S. This force is usually directed
toward the contact and thus compressive over the entire domain.

Figure 3.6: Forces and moments acting on the contact area [5]

An equivalent normal force P can be evaluated by the equilibrium formulation:
integrating the normal traction p, which identifies a pressure, over the entire area of
contact S (Fig. 3.6).

P =

∫
S

pdS (3.1)

Depending on the geometry of the contact, as seen before, various integration
approaches are available in theory as there are many approximations to simplify the
mathematical procedure [5]. Here, the specific case taken into consideration is one
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of a non-conforming contact with a slight curvature and one-dimensional conformity
on the axis perpendicular to the direction of motion. Later, this configuration led
to specific considerations on the symmetry of the interaction, allowing to lighten the
general case and obtain simple solutions.

The case of the generic contact load distribution is reported in Fig. 3.7. Usually,
the load is zero at the extremities and reaches its maximum in the proximity of its
center, depending on the symmetry of the surfaces. The letter a and b identify the
half-width of the distribution. In particular, b can be used as the second parameter
in an asymmetric distribution or to indicate the width in the y direction, in case of
specific configurations (eg. elliptical contact). Both parameters are directly dependent
on the contact geometry.

In the case of symmetric distributions, as in the present study, only the letter a
is used as a fundamental parameter. Therefore a circular symmetry is assumed, or a
line contact with an axis much bigger than the other.

In the results section, Chap. 3.10, it’s shown how the dimension of the contact
surface (a) has a direct influence on many important factors, such as the position of
the maxima reached by the stresses.

Figure 3.7: Generic Hertzian load distribution and stress tensor reference [5]

The roller bearings considered in this study have symmetry that admits the spec-
ularity of the load distribution along the rolling direction. It can be seen how the
dimensions of the contact along the x, y axes are different. Therefore the case can
be identified as an elliptical rolling contact. The parameter ’b’ will then identify the
dimension along the y direction, perpendicular to the direction of motion of the roller.

According to theory, [5], the elliptical case has a load distribution which is qualita-
tively similar to a circular one, considered as the most simple. The resulting equation
for the pressure distribution is:

p(x, y) = p0[1− (x/a)2 − (y/b)2]n (3.2)

Which is a two-dimensional formulation taking into account the asymmetric con-
figuration in the contact surface (Fig. 3.3). The parameter a will identify the smaller
axis of the ellipse, parallel to the rolling direction (along x), and b the larger axis,
along y.
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The exponent n can take different values according to the approach considered
when establishing the total equilibrium. In Hertzian theory n = 1/2 [5].

The resulting total load, over the whole contact surface, can be expressed as:

P = 2πabp0/3 (3.3)

It’s obvious that these equations (Eq. 3.2 and 3.3) don’t suit our model, because
both are bi-dimensional. This load distribution results in a two-dimensional model
with the introduction of y domain, that has been previously neglected due to geometry.

Analyzing closely the symmetry, it’s resulting that this latter dimension is not the
principal direction of motion and of stress distribution. Being b > a and resulting in
less pronounced stress gradients, a further approximation can be introduced.

By neglecting the influence of b dimension, in order to have a one-dimensional
simulation, the final model is reduced to the line contact case, usually generated by
cylindrical surfaces. Clearly, the bodies shown in Fig. 3.2 are not cylinders, having a
curvature along the main axis. Anyway, this curvature is not very pronounced and is
present in both the rollers and the gear race over which rolling occurs.

Therefore, we have conformity along y direction, where lies the major axis of the
ellipse. In the central section, where the most critical stresses are concentrated, the
elongated dimension along y allows the assumption of a linear symmetry, with constant
behavior in this direction. This assumption allows to focus only on x axis, where the
non-conforming contact is more pronounced, stresses gradients are higher and also
tangent traction is generated by friction.

In this case, the contact domain is reduced by one dimension and happens over
a symmetrical domain of dimension 2a. This assumption is considered acceptable in
Hertzian theory when b becomes large compared with a, in elliptical contacts as the
one under exam [5].

The general pressure distribution has been studied on x axis only, along the direc-
tion of motion.

The resulting equation for the pressure at a generic point x of the distribution is
then:

p(x) =
2P

πa2
(a2 − x2)1/2 (3.4)

where a is the aforementioned half-width of the load distribution, x is the position
coordinate and P is the maximum normal force applied on the contact surface. It
should be noted that P is a scalar value, indicating the maximum force applied in the
contact. The shape instead is given by the second part of the equation, concerning
the position of the point in which the load is evaluated.

This formulation agrees with the shape indications given before, dropping to zero
at the edges and having a maximum at x = 0.

The maximum pressure can be defined as:

p0 =
2P

πa2
(3.5)

Therefore:

p(x) = p0(a2 − x2)1/2 (3.6)

Now the scalar parameter is no more a concentrated force, which is purely theo-
retical and unrealistic, but a pressure indicating the maximum value reached by the
load.
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Figure 3.8: Load distribution representation, from Matlab code

This expression results to be useful if the data for the analysis come from ex-
perimental runs and FEM analysis. In most references also, the main reported load
parameter is not a force [N ] but directly a pressure [MPa] coming from real cases.
This variable is called ’maximum Hertzian pressure’ [16] and will vary depending on
the application and on the loads transmitted through the system.

It can be concluded that the pressure generated by a line or elliptical rolling contact
has a parabolic shape, as depicted in Fig. 3.5 and 3.8. This profile satisfies the
symmetry imposed by the chosen configuration and is well defined by theory.

3.5 Friction

The presence of friction between the bodies gives rise also to forces lying in the plane
tangent to the contact surface.

These tangential forces are directly dependent on the magnitude of the normal
load, indicated generally as P although should be distributed, through the friction
coefficient, mu:

Q ≤ µP (3.7)

In the system considered, the only load present is the pressure distribution analyzed
previously. Therefore, the only tangential force present will be parallel to the direction
of motion, lying on the x axis, as indicated in Fig. 3.5(b). This frictional traction
will give a contribution to the stresses, by shifting the position of the critical depth
toward the surface [16].

The value of the friction coefficient is specific for each system and lubrication
regime. Usually in bearing gears the values are very small (≤ 0.1), as confirmed
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by Beheshti [16] in the initiation life evaluation. In models studying the influence
of lubricants on crack propagation, such as from Ancellotti et al.[148], the friction
coefficient between the specimens is assumed to be 0.1 or lower.

Figure 3.9: Comparison between representation of critical shear value for varying fric-
tion coefficients, from Beheshti [16] (dashed lines) and the current model

Anyway, from the urgency of validation with reference [16] and to demonstrate the
approximations made on the friction, a study on the effect of µ on the maximum shear
stress has been made.

In Fig. 3.9, different values of contact friction have been analyzed to evaluate
the effect on the position and the magnitude of stresses and fatigue life. It can be
seen good accordance with the trend of the graphs, especially at low friction values.
The difference at shallower depths can be due to different usage of variables such or,
mainly, the way to evaluate the maximum shear stress. Anyway, the following fatigue
analysis will be performed in the low-friction regime.

At values approaching of µ = 0.3 and higher, the maximum stress occurs is subject
to a shift toward the surface (Fig. 3.9), as also anticipated in the State of the Art.
This effect is due to the growing relevance assumed by the traction force (q(x)) when
friction increases. The consequence on the critical shear stress is an increment of the
maximum value in the near-surface region, when µ approaches 0.3, which results in a
stress peak and damage formation at shallow depths.

This explains the necessity of a good lubrication regime, to avoid aggressive spalling
on the surface and high wear. On the other hand, the results in Fig. 3.9 show how the
maximum shear peak located in the subsurface region is not affected by friction. This
is in accordance with the model developed by Beheshti [16], although being different
from the classic integrated formulas introduced in the past [5][149].
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3.6 Stress Components and Maximum Shear

As explained in the previous sections, during contact between surfaces surface tan-
gential traction q(x) and a normal pressure p(x) are generated. These components
are distributed arbitrarily, depending on the kind of contact, along the domain. In
order to evaluate the stresses generated from these actions, an integral formulation is
generally chosen.

Figure 3.10: 2D representation of the integration calculation and variables

Considering an infinitesimal element of the analysis domain with width ds, the
actions acting on it can be expressed as concentrated infinitesimal forces. The con-
tribution of the normal pressure is expressed by pds, where the contribution of the
tangential traction is expressed by qds. The position of the infinitesimal element is ex-
pressed with (x− s), where x is the position of the element, with respect to the center
of the load distribution or the origin, coincident in our case (Fig. 3.10). Instead, s is
the integration variable spanning over the whole load to take into account the entire
contribution. For this reason, it spans from −a to a over each calculation.

Integrating over the analysis domain, or loaded region to account for the contri-
bution of all the load, the principal stresses components can be evaluated [5].

In the specific case of an elliptical contact the equations are the following:

σx = −2z

π

∫ a

−b

p(s)(x− s)2ds

[(x− s2) + z2]2
− 2

π

∫ a

−b

q(s)(x− s)3ds

[(x− s)2 + z2]2
+ σΘ (3.8)

σz = −2z3

π

∫ a

−b

p(s)ds

[(x− s2) + z2]2
− 2z2

π

∫ a

−b

q(s)(x− s)ds
[(x− s)2 + z2]2

(3.9)

τxz = −2z2

π

∫ a

−b

p(s)(x− s)ds
[(x− s2) + z2]2

− 2z

π

∫ a

−b

q(s)(x− s)2ds

[(x− s)2 + z2]2
(3.10)

61



In which the x and z coordinates identify the position of the point in which the
stress should be analyzed and s is the integration variable that spans through the
pressure distribution. The last term in Eq. 3.8, accounts for the residual stresses,
usually compressive, induced by thermal treatments.

This formulation gives some singularity problems at the origin if integrated, but
a direct evaluation in integral form has been performed successfully in this model.
It should also be noted that these equations are purely theoretical and assume the
material to be defect-less.

As previously introduced, it can be seen that the stress tensor is multiaxial and
composed of both normal stresses and shear, evaluated in the xz plane.

This configuration is confirmed by Depouhon et al. [7], which analyses a similar
bearing gear system for the same application as the one under investigation. The total
stress tensor is found to be multiaxial and also the shear contribution is found to have
two critical directions.

The multiaxial nature of rolling contact stress tensor is introduced also in the
Hertzian theory [5]. In the case of small deformations produced by the surfaces, the
contact can be considered elastic, allowing some general considerations and specific
stress tensor shapes. As reported by Johnson [5], the contact between two cylindrical
bodies was considered also by Hertz as the limit of the elliptical case, when b >> a.

The problem then becomes two-dimensional, over a domain of width 2a. Devel-
oping the results found for the general line loading, and introducing the elastic ap-
proximation for small deformations, the equations for the load distribution evaluation
result to be equal to Eq. 3.4 and 3.6, presented previously.

Therefore, considering the stresses to be zero outside the contact region [5], inte-
gration along the z axis is possible, giving:

σx = −p0

a
[(a2 + 2z2)(a2 + z2)−1/2 − 2z] (3.11)

σz = −p0a(a2 + z2)−1/2 (3.12)

Which are considered to be the principal stresses acting along the axis beneath the
center of the load distribution. This equations are consistent only for position x = 0,
when the load is exactly over the line domain considered.

Should be noted that, in the case of plane strain, a third stress factor can be
considered, dependent on the Poisson’s ratio.

σy = ν(σx + σz) (3.13)

This formulation can be applied at any kind of equation, integral or approximated.
In any case, is not usually indicated because it doesn’t give any significant contribution
to rolling contact fatigue or crack formation.

The shear factor τxz, acting perpendicular or parallel to the rolling direction, is
not considered in this approximation. Another shear component is considered instead:

τl = p0a[z − z2(a2 − z2)−1/2] (3.14)

Called ’principal shear stress’ by Johnson, is reported to have a defined maximum
depth assessed at z = 0.78a, where a is the load dimension parameter. At this depth,
the maximum shear value is reached, and it is (τl)max = 0.30p0, linearly dependent
on the maximum pressure applied at the contact.
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This second shear factor has been highlighted also by Depouhon et al. [7] in the
Airbus study on the bearing gear failure which is considered as the starting point for
this thesis work.

The higher depth and more pronounced peak of the so-called ’maximum shear’
makes it the most critical factor to be monitored when performing a fatigue analysis.

Figure 3.11: Representation of in depth profile of (a) principal stresses on the symme-
try line, (b) level curves of maximum shear stress [5]

As indicated in Fig. 3.12, the critical value of shear stress lies in a plane which
is perpendicular to the one of motion, coincident with the analysis domain along z
direction. This component lies in the xy plane and can be evaluated in different ways.

Most of the studies on rolling contact fatigue are based on the choice of specific
critical stress, acting as the driving factor for crack formation. Different reference
values have been proposed as the Von Mises equivalent stress and the alternate shear
among the others. More recently, in studies such as the one by Beheshti [16], the
maximum shear stress has been more frequently addressed as the chosen critical value.

Cheng [72] demonstrated that the selection of the critical stress parameter can
be considered arbitrary. This happens when considering conditions of non-frictional
Hertzian line contact. In this casem the position and value of the critical shear can
be evaluated only as a function of the maximum contact pressure and of the contact
width.

It has been reported that from the beginning of fatigue life evaluation different
critical shear values have been chosen. Starting from Lundberg and Palmgren [8]
whose proposed the maximum orthogonal shear stress to be the critical value and
passing through Zaretsky [112] which proposed the maximum shear stress and then the
Von Mises equivalent stress proposed by Ioannides and Harris [9] and the octahedral
shear stress by Zhou [113]. Some experimental tests were run to validate one proposal
or another, but the results showed significant inconsistencies which created further
confusion.

The choice is then left at the specific situation, depending on the contact mechanics
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and the operational conditions in which each study is performed. In the particular
case of non-frictional Hertzian line contact instead, it has been demonstrated [72] that
the four previous criteria can be considered equivalent if considered in relation to the
proper fatigue limiting stress.

Figure 3.12: Shear stress envelope at maximum stress position, evaluated by Depouhon
et al. [7]

All critical shear stresses can be defined as a function of the Hertzian pressure p0:

τorth = 0.25p0 (3.15)

τmax = 0.3p0 (3.16)

σMises = 0.322p0 (3.17)

σoct = 0.263p0 (3.18)

And due to this direct relation, a critical factor can be defined as:

(τcrit − τf ) = m(p0 − pu) (3.19)

where m and pu, limiting pressure, are constants. Thus, per each case and critical
shear values chosen, the corresponding fatigue limiting stress τf is evaluated, only
depending on the Hertzian pressure applied.

In the same way, also the critical depth can be defined independently from the
chosen critical stress:

z = ka (3.20)

where k is also a constant, considered 0.78 by Cheng et al. [72], and a is the half
contact width.

In the current work, the chosen critical shear stress is the maximum shear. Beheshti
[16] introduced a complex way to evaluate this factor, passing through the computation
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of equivalent stress and then through conversion using the Mohr’s circle. Instead,
taking reference from Johson [5] and other studies, a similar and simpler way to define
τmax is available.

Because the stresses evaluated with Eq. 3.8 and 3.9 are already the principal
stresses [5], the maximum shear stress can be calculated simply as the half-module of
their difference:

τmax =
1

2
|σx − σz| (3.21)

According to Eq. 3.16, the peak will reach a value of 0.3p0 at a depth equal to
0.78a.

To perform the stress equation integration in Matlab, the trapezoidal (trapz) in-
tegration function has been preferred to the direct integration procedure to avoid the
singularity which is present in point of coordinates x, z = 0. An integration variable s
is defined in the x domain, spanning in the interval (−a, a) (which is often represented
weighted in graphs over the half-width dimension a, resulting to span over a −1, 1
interval). This means that all the load distribution is considered when calculating the
stress at each depth z per each position x of the load, with respect to the analysis
domain.

Figure 3.13: Comparison between the reference [5] and model results for the stress
tensor components σx, σz and τxy evaluated at x = 0 for µ = 0

The results obtained are two-dimensional, representing the stress felt by the line
analysis domain over an entire cycle, due to the presence of the whole load distribution.

Each node of the x dimension represents the position of the load with respect to
the analysis domain, where at x = 0 the load is approaching the line and at x = 2a
the load has completed an entire cycle.

The surface graphs of the four evaluated stresses can be seen in Fig. 3.16 and 3.15
and 3.17, for a representative friction coefficient of 0.1. The different perspectives are
chosen to show in the best way the properties of each component.
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In Fig. 3.13, it is evident the good resemblance of the tensor, evaluated at x = 0,
with the theoretical predictions, showing correct peaks for the principal stresses and
the critical shear. It should be noted in particular the almost exact correspondence for
the maximum shear distribution, which is taken as the critical factor for the fatigue
analysis. This result is obtained by deriving the τxy straight from the absolute value
of the half difference between the two principal stresses, as in Eq. 3.21.

Both the principal stresses respect the value of the peak at position z = 0 and
the gradient seems to be perfectly comparable. Moreover, the critical shear factor,
chosen as the maximum shear stress, has been flipped to the negative side to allow
a direct comparison of the two graphs. The peak is correctly assessed at a value of
τmax = 0.3p0, reached at a depth of z = 0.78a.

Another way to obtain the maximum shear stress is proposed by Beheshti [16],
where all the three principal stresses components along x, y, z directions are considered.
The critical stress is then selected as:

τmax = max[|σ1 − σ2

2
|, |σ1 − σ3

2
|, |σ2 − σ3

2
|] (3.22)

where the stresses considered are the principal ones, directly evaluated with Eqs.
3.8 and 3.9 and 3.13. This formulation has already been used for the stress distribution
in Fig. 3.9. The comparison of the results from the two formulations is shown in
Fig. 3.14, where the difference is minimal and limited to the near-surface part of the
domain.

Figure 3.14: Comparison between the model results for the critical shear stress vector,
evaluated at x = 0 for µ = 0, for the Beheshti [16] and general formulation [5] mode

Looking at the two-dimensional stress distribution is also important to notice the
shape of τxz, which undergoes a complete sign inversion. The two shear factors were
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the ones indicated by Depuohon [7], giving rise to the double critical direction of the
shear tensor envelope in Fig. 3.12.

The results shown in this section for stress evaluation and friction influence on the
critical shear shape are considered to be satisfying. Thus, this model of the code is to
be considered validated by theory [5][16].

3.7 Integrated Equations for Stress Tensor Evaluation

Many studies attempted to give a simple solution for the integral Eqs. 3.8 and 3.9
and 3.10, representing the principal stress components generated by a rolling contact.
The most relevant results were achieved by McEwen [149], Poritsky [150], Smith and
Liu [151] and Sackfield and Hills [152][153].

Because of the direct inclusion of friction effect in the model, the McEwen [5][149]
formulation was taken in this work. Proceeding from the elastic approximation that
led to the Eqs. 3.11 and 3.12 and 3.14, a way to express the stress components in
a generic point of a 2D domain was developed. Here the second dimension (x) was
considered to be the relative position of the load and the analyzed line domain.

The complex integration of the general equations has been solved by introducing
two-dimensional parameters m,n which have the same sign of z, x respectively:

m2 =
1

2
[((a2 − x2 + z2)2 + 4x2z2)1/2 + (a2 − x2 + z2)] (3.23)

n2 =
1

2
[((a2 − x2 + z2)2 + 4x2z2)1/2 − (a2 − x2 + z2)] (3.24)

These parameters are a function of the position (x, z) of the point, in which the
stresses is evaluated, and of the contact dimension a. It can be noted how the contact
half-width still fills an important role, being the only ’external’ variable appearing in
the equation.

The principal stresses are then obtained by [149]:

σx = − 2P

πa2
[m− 2z + 2µ(x− n) +m(

z2 + n2

m2 + n2
) + µn(

z2 −m2

m2 + n2
)] (3.25)

σz = − 2P

πa2
[m(1− z2 + n2

m2 + n2
)− µn(

z2 −m2

m2 + n2
)] (3.26)

τxz = − 2P

πa2
[µ(m− 2z)− n(

z2 −m2

m2 + n2
)] (3.27)

It should be noted that in this notation, the parameter a appears only in the load
because is already present in the m,n parameters. The load is indicated in the initial
general way already treated in the previous chapter. All the generalizations and the
expression as a function of the maximum Hertzian pressure are still valid.

It can be noted a close resemblance in values and shape with the tensor evaluated
with the general integral functions (Fig. 3.16 and 3.17). An appreciable difference is
in the module of τxz, (Fig. 3.19(a)), which has two peaks with the same sign, whereas
the same factor evaluated with the integral equations underwent a sign inversion (Fig.
3.15). This effect can be attributed to the McEwen formulation, which considers

67



(a)

(b)

Figure 3.15: Surface graph of Matlab stress tensor evaluation for τxz in: (a) isometrci
view, (b) front view
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(a)

(b)

Figure 3.16: Surface graphs of Matlab stress tensor evaluation for: (a) σx, (b) σz
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(a)

(b)

Figure 3.17: Surface graphs of Matlab stress tensor evaluation for τmax, evaluated in:
(a) general formulation [5], (b) Beheshti formulation [16]
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(a)

(b)

Figure 3.18: Surface graphs of Matlab stress tensor evaluation with McEwen formula-
tion, for: (a) σx, (b) σz
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(a)

(b)

Figure 3.19: Surface graphs of Matlab stress tensor evaluation with McEwen formula-
tion, for: (a) τxz, (b) τxy
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(a)

(b)

Figure 3.20: Surface graphs of Matlab stress tensor evaluation with McEwen formula-
tion, for: (a) σy, (b) τmax
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position values x, z always elevated at the second power. This results in the loss of
information on the sing of the shear stress factor. Anyway, pure shear is not considered
as critical in our analysis.

The most relevant difference instead, is in the τmax distribution, which reaches the
peak at minor depth with respect to the equivalent values obtained with the integral
result. The τxy value instead (Fig. 3.19(b)), remains essentially unvaried and similar
to the one evaluated in the previous section (Fig. 3.17(a)).

A direct comparison between the critical shear profiles from the different evalua-
tions is shown in Fig. 3.21. A good superposition of the maximum shear stress peak
is conserved when considering the τxy value from McEwen calculations.

Figure 3.21: Comparison of resulting critical stress profile, from integral and McEwen’s
calculation methods

Should be noted that the McEwen equations require a much more limited time
than the general integration, for obvious reasons. But the discrepancy shown in the
critical shear stress component τmax, makes it less reliable for the current analysis.

The greatest limit of McEwen’s model is instead the friction behavior (Fig. 3.22).
As shown in Fig. 3.21, the comparison at null friction is good, if considering the tauxy
factor as critical stress. When increasing the friction coefficient instead, McEwen’s
model fails, returning a sensible overestimation of the resulting stress on the whole
domain. This results to be a crucial factor against the choice of using this stress
calculation model.

In conclusion, it has been stated that the McEwen method is lighter in a matter
of calculation time and reliable if using τxy as critical stress. But the steep variations
at friction increment are not reliable for a more comprehensive analysis.

So, the chosen method for the evaluation of the fatigue initiation life will be the

74



general integration formulation, which is more complete and gives better results in
accordance with theory [5][16][154]. From this point on, all the calculations of the
stress tensor, for further computations, will be performed with this method.

Figure 3.22: Comparison on the critical shear stress profile when increasing the friction
coefficient for the McEwen and general integration evaluation modes

3.8 Continuum Damage Mechanics

As presented in the state of the art, continuum damage mechanics is a theory derived
from thermodynamics potentials to evaluate the evolution of damage. An important
advantage of this approach is the complete independence from empirical growth and
crack parameters. Therefore, as stated by Beheshti [16], the "macroscopically obtained
material parameters [141]" are the basis for the damage analysis.

The parameter identifying the amount of damage in the material is expressed by
the variable D, which is a macroscopic state variable. The damage expressed in this
way derives from the definition given by Lemaitre [155]. Variable D sums up the
quantitative concentration of micro-cracks and voids present in a given section of a
plane inside the material. Taking infinitesimal elements of these planes, the damage
can be intended as a value associated with a specific node.

Moreover, the damage is assumed to be isotropic due to the nature of the materials
considered. Hence, the variable D can be considered as a scalar quantity associated
with a specific region or element of the domain. This brings to a variation in the ma-
terial’s properties such as Young’s modulus. The Poisson’s ratio is instead considered
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independent from the damage evolution process [156] and will be taken as constant in
this model.

The value of the damage variable D will increase at each rolling contact cycle if
the stress on each element reaches a threshold specific to the material. The aim of the
computation is then to define the number of cycles (N) required to start the crack
formation and give rise to fatigue initiation. This happens when D reaches a critical
value called Dc, while Dc ≤ 1 always.

The critical damage value Dc is considered to be an intrinsic property of the mate-
rial [157] and should be determined by experimental test. As introduced by Beheshti
[16] and Bhattacharya [141], a simple tension test can be performed to determine the
material’s properties used in this analytical-numerical model. Among these properties,
also the Dc value is defined from the elastic and mechanic properties of the material
in such tests.

This value acts as the upper limit for damage evolution. Once variable D reaches
this threshold, the fatigue initiation phase is considered to be completed for the specific
node. It should be clear that the achievement of the critical value for damage is not
equivalent to fracture. At this value, the element is considered to be degraded and the
continuity of the material is lost in that section. It can be stated then, that a defect
is formed, meaning the initiation of a crack in a previously intact material.

Following from the thermodynamic approach proposed by Bhattacharya and Elling-
wood [145], which has been verified experimentally [141], is possible to integrate the
Eq. 3.8 and 3.9 and 3.10 and the damage value can be evaluated at each cycle. The
system is considered to evolve through a sequence of equilibrium states, according to
thermodynamics principles.

From the solution of the Helmholtz energy function for a uniaxial load, an equation
for fatigue damage growth can be derived:

dD

dε
=
−σ∞
ψD

(3.28)

verified if

σ∞ > Se > 0, ε̇ > 0 (3.29)

otherwise, the equation results equal to zero because no damage is generated. The
initial damage for dD calculation is considered to be the one from the previous cycle
(Di−1).

The term ψD indicates the free energy per unit volume and can be expressed per
each cycle i as:

ψ =

∫ ε

ε0i

σdε′ − (γ − γi−1) (3.30)

where γ is the surface energy needed for the formation of defects. This parameter
can be obtained theoretically by considering defects to be spherical voids, uniformly
distributed inside the material, a linear micro-scale force-displacement relation and
the condition of void formation is when the stress on its boundary is equal to the true
failure stress σf .

Then a simple way to evaluate the surface energy can be expressed as a function
of known parameters, as:

γ =
3

4
σfD (3.31)
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The strain factor ε0i, in Eq. 3.30, is the threshold strain needed for the onset of
damage, as reported in Fig. 3.23, associated with the endurance limit Se.

The integral formulation in Eq. 3.30 can be solved by applying a Ramberg-Osgood
type equation [141] at the hysteresis loop for each cycle i, obtaining:

∆εi =
∆σ̃i
Ei

+ 2(
∆σ̃i
2Hi

)M
′
i (3.32)

where the effective stress range is ∆σ̃i, Ei is Young’s elastic modulus, and the factors
Hi,M

′
i are the cyclic hardening modulus and exponent, already introduced before.

The total strain ∆εi, is given by the sum of the elastic deformation ∆εei , the first
term of the equation, and the plastic strain range ∆εpi represented by the second
term. Their sum ∆εi is also called the cyclic strain range.

It should be noted that all the quantities in Eq. 3.32 carry the subscript i, meaning
that they may vary from one cycle to another. However, in the considered case, the
stress-strain curve can be considered as stable [141] and the factors E,H,M ′ can then
be considered as constants through the whole fatigue analysis.

Within a single cycle also the lower extremes of the loop (εmin, σ[min]) are obvi-
ously constant, so it can be written that dε = d∆ε and dD/dε = dD/d∆ε inside the
same cycle.

Assuming that d∆ε ' d∆εp the damage incremental equation can be expressed as:

dD

1−D
=

[K ′(∆εp)
1/M ′ −K ′(∆εp1i)

1/M ′
]d∆εp

[K
′2

E (∆ε
2/M ′
p −∆ε

2/M ′

0i
) + K′

1+1/M ′ (∆ε
1+1/M ′
p −∆ε

1+1/M ′

p0i
)

−K
′2

2E
∆ε

1/M ′

p1i
(∆ε1/M

′

p −∆ε
1/M ′

0i
)−K ′∆ε1/M

′

p1i
(∆εp −∆ε0i

) +
3

4
σf ]

(3.33)

Where parameters K ′,M ′ are the cyclic hardening modulus and exponent, respec-
tively. The solution of this equation (Eq. 3.33) gives the amount of damage Di at
the end of the i-th cycle, where the initial condition is considered to be D = Di−1. In
each cycle, the maximum strain range is considered to be given by the plastic strain,
therefore ∆εp = ∆εpmi as it can be deducted from Fig. 3.23.

To generate damage inside the material a specific threshold should be exceeded by
the selected critical stress.

σmax > Se (3.34)

This value, indicated by Se, is called ’endurance limit’ [16] and it is also an internal
property of the material, addressing the minimum stress value for the generation of
plastic deformation leading to internal degradation. If this condition is satisfied, then
the damage variable Di, is expressed by:

Di = 1− (1−Di−1)Fi (3.35)

Otherwise, if critical stress is lower than the stress threshold, no new damage is
generated. The index i referring to the generic i-th cycle and variable Fi is defined as:

Fi =
(1 + 1/M)−1∆ε

1+1/M
0i −∆ε

1/M
p1i ∆ε0i + Ci

(1 + 1/M)−1∆ε
1+1/M
pmi −∆ε

1/M
p1i ∆εpmi + Ci

(3.36)

where

77



Ci =
3σf
4K
− ∆ε

1+1/M
0i

1 + 1/M
+ ∆ε

1/M
p1i ∆ε0i (3.37)

Factors σf indicates the true failure stress of the material, M is an exponent for
the cyclic hardening and K is evaluated by:

K = 21−1/MH (3.38)

where H is the cyclic hardening modulus. All these factors are intrinsic material
properties that are also obtained with the simple test already mentioned.

These equations are the solution to Eq. 3.33 and are the final formulation used in
the code to evaluate the fatigue damage evolution.

The various ∆ε variables instead indicate the strain values obtained from a hys-
teresis loop in the stress-strain curve under a loading cycle (Fig. 3.23), as described
by Beheshti and Khonsari [158]. The compressive stresses and the unloading part of
the loading history are neglected because are not considered to give a contribution to
the damage evolution. Only the loading part of each cycle in which the endurance
limit is exceeded is responsible for material degradation. The same assumptions were
adopted also by Kachanov [140] and Lemaitre [14].

Figure 3.23: Hysteresis loop of a rolling contact cycle in stress-strain coordinates [158]

In order to explain the meaning and origin of these deformation factors, Bhat-
tacharya et al [141] proposed a comparison with the empirical Coffin-Manson law.
Prediction of fatigue life in a constant-amplitude load regime, controlled by strain, is
expressed as:

∆ε

2
=
σ′f
E

(2N)b + ε′f (2N)c (3.39)

where parameters σ′f , ε
′
f , b, c are all obtained empirically as material’s properties. Also

in this approach, the strain amplitude is divided in elastic (∆εe/2) and plastic (∆εp/2),
which correspond respectively to the first and second term of Eq. 3.39. By Coffin-
Manson’s theory, the elastic strain range addresses the fatigue initiation stage, and
the plastic strain the propagation one. The prediction is not completely satisfactory
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[141], in particular in the low-cycle region associated with fatigue initiation, where
instead CDM theory is more accurate.

Anyway, the case considered by the present model is of stress-controlled cycling.
Considering the stress range being, ∆σm = σmax − σmin, to remain constant over all
the fatigue lifespan, a numerical solution of Eq. 3.32 will give the values of the strain
ranges, appearing in Eq. 3.36 and 3.37, as function of ∆σm:

∆εpmi
= (

∆σm
K(1−Di−1)

)M (3.40)

∆ε0i = (
∆σ1i

K(1−Di−1 + Se

K )
)M (3.41)

∆εp1i
= (

∆σ1i

K(1−Di−1)
)M (3.42)

where all the factors are known.
The maximum plastic strain range ∆εpmi

is associated with the maximum stress
range. The intermediate limit strain range ∆εp1i is associated with the onset of damage
generation and the endurance limit Se. The smaller strain range parameter ∆ε0i is
the origin of the reference system for a tension-compression hysteresis cycle. In our
case the critical stress τmax has only positive values (Fig. 3.20(b)), not undergoing a
complete inversion. ∆ε0i

is then considered as zero because the compression part of
the cycle is not present.

As it can be seen in Eq. 3.40 and 3.42 and 3.41, all the strain parameters are
function of the damage Di at each cycle. Therefore, they change constantly with
the material’s degradation evolution. This property is fundamental to reproduce the
non-linear behavior of damage evolution.

As a matter of fact, it has been proved [159]–[161] that, in industrial machinery
components, the major part of the service life may be spent without any relevant
effects on the mechanical properties, from damage. This happens because the damage
grows with a pronounced accelerating rate in the proximity of the end of life. This is
reproduced in the above equations, where the strain ranges undergo an accelerating
increment with damage growth.

The model’s results shown in Fig. 3.25 are qualitatively comparable with the
references in Fig. 3.24. The shape is similar and shows a pronounced acceleration in
damage evolution rate in the proximity of the crack formation.

In the calculation, an upper limit for damage evolution is set at the critical value
Dc for the given material. In this way, the damage increment will continue until
the maximum value of the damage vector D, defined as an independent value per
each node of the domain, reaches its critical threshold. At that point, the analysis is
stopped.

This process is performed on all the one-dimensional domain, in this way, each
time the calculation runs, the calculation corresponds to a complete cycle (passage of
the load) over the entire domain, because the stress was evaluated step-wise for an
entire cycle.

The number of cycles is updated after each complete calculation. Due to the lack
of a compressive part in the stress cycle, the parts of Eq. 3.37 and Eq. 3.36 where is
present the factor ∆ε0i are omitted for sake of simplicity.

The maximum value at each depth of the maximum shear stress distribution (τmax)
is collected in a vector, which then identifies the critical stress felt at each position
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(a)

(b)

Figure 3.24: Qualitative example of damage (D) evolution over the number of cycles
for: (a) Bhattacharya [141] and (b) Paas et al. [159]
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(a)

(b)

Figure 3.25: Plot of damage (D) evolution over the number of cycles, obtained from
the model with load P = 2560, on AISI52100. (a) linear plot (b) logarithmic scale
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during an entire cycle. The value obtained is assumed as critical stress, at any node,
for the damage evaluation, and is then compared with the endurance limit stress (Se)
as a condition to update the damage (Eq. 3.34).

Once the stress endurance limit is exceeded, the damage evaluation for the given
node is performed, recalling the formulation expressed in Eqs. 3.40, 3.42, 3.41, 3.37,
3.36, 3.35.

The final result of the evaluation is a number given from the iteration counter,
indicating the cycles necessary to reach the critical damage vale in a specific node,
which indicates the probable critical position of crack initiation for the given system.

3.9 Input Parameters

The data required for this model are the material properties:

• load half-width, a

• Poisson’s ratio, ν

• endurance limit, Se

• cyclic hardening modulus, H

• cyclic hardening exponent, M

• true fatigue limit, σf

• critical damage threshold, Dc

• elastic limit, ∆σl

The contact half-width, being one of the most important parameters of the whole
model, is taken from the main reference [16], with the dimension of a = 250 µm. This
reference unit measure and dimension is confirmed in all the references treating rolling
contact fatigue of bearing gears, and reported in this work, as the general dimension
of a bearing contact.

The Poisson’s ratio ν, instead is to referred in some passages of the reference paper
by Beheshti [16] but is also confirmed in the materials’ tables that can be easily found
on different sites [162][163], and its value for this alloys is always assessed around 0.3.

The other parameters, derived with a simple tension test, are taken from the reference
study made by Beheshti [16], who performed a numerical analysis from which this
study has taken its cue and reported data for bearing steels (SAE 4340 and AISI
52100), which are two of the most commonly used steels for bearing gears. In Tab.
3.1 are reported the main properties for both the alloys, used in the model.

It can be noted how the SAE 4340 alloy is the slightly softer material and has a
sensibly lower stress endurance limit. This factor results in fatigue at lower stresses.
This is the principal discriminating factor to obtain a fatigue behavior which is specific
to the material under exam. The stress tensor evaluation is unique, with the friction
coefficient µ as the only external variable. The materials’ properties has been the basis
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Material E [GPa] H [MPa] M σf [MPa] Se [MPa] Dc

SAE 4340 192.9 1812 7.1 1911 542 0.46
AISI 52100 206.9 3443 6.22 2586 768 -

Table 3.1: Material’s empirical data from Behesti [16]

of the continuum damage mechanics approach and act as a filter for the analysis, with
the endurance limit Se, and also as internal parameter with all the hardening factors.

A brief disquisition should be made on the critical damage threshold value. It can
be noted in Tab. 3.1 that there is no critical damage value available for the AISI 52100
alloy. For the analysis of this material, two theoretical values have been employed (0.1
and 0.4). These are the averages of the extreme values for most materials [155][164],
obtained according to the "elastic energy equivalence" and "elastic strain equivalence"
methods [164]. This uncertainty on the critical damage threshold can be seen as a
limit of the sensibility of the model but, as it will be shown in the results section,
Chap. 3.10, the span in final fatigue life results is acceptable.

The last evaluated parameter is the elastic stress range ∆σl used in the damage
evolution section. This parameter has been deducted from the interpretation of the
hysteresis loop, in order to satisfy a coherent description of the graph. The value
is then assessed as the stress needed to have a deformation of 0.2% in the material,
coming from the elastic region described by Young’s modulus. The resulting values
will be of 385.8 MPa for the SAE 4340 alloy and of 413.8 MPa for the harder
AISI 52100 alloy. These values satisfies the conditions depicted in Fig. 3.23 and give
coherent results in the damage evaluation.

3.10 Results

3.10.1 Initiation life

The evolution of damage (D) in each element of the material is evaluated from the
critical stress profile (τmax) depicted in Fig. 3.21. At each cycle, the damage value
Di is updated in any position where the stress exceeds the material’s endurance limit.
After updating the strain range values (∆εki), which are dependent on the damage
value at the previous cycle (Di−1), the factors Fi and Ci are calculated. The damage
is then updated at the current cycle, and the number of cycles is increased by one
after all the domain’s depth is spanned.

With this procedure, the first point to reach the critical damage threshold is iden-
tified. This position is considered as critical for crack formation in the specific set
of conditions (load, friction). It can be deducted easily that the critical point is the
one subjected to the highest stress, which according to theory is placed at z = 0.78a,
around 195 µm. This position remains similar in low-friction conditions and then will
change at high frictions, where the surface becomes the most stressed region.

Beheshti [16] evaluated the initiation life at different loads for the AISI 52100
alloy. That analysis (Fig. 3.26) is used to validate the model on the initiation and the
numerical results are compared also with the experimental results obtained by Chen
et al. [86].
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Figure 3.26: Comparison of number of cycles to initiation for different maximum
Hertzian pressure, on AISI 52100, between Beheshti and Chen references [16], [86]
and model’s results

This study reported results for fatigue initiation life for a GCr15 bearing steel,
very similar to the analyzed AISI 52100. It can be seen a horizontal asymptotic
slightly above the value of 2500 MPa, which is close to the limit of the experimental
range measured also by Harris and Barnsby (2450 MPa) [165]. It should be also noted
that the identification of the precise location of crack initiation is a complicated task
and most of the experimental evidence is obtained after the complete failure of the
component, causing a slight imprecision in the measurements.

Anyway, in Fig. 3.26 there’s a good agreement between the numerical results and
the experimental data. The number of cycles to failure increases when the maximum
Hertzian pressure approaches the lower limit (∼ 2560 MPa for AISI 52100) where the
maximum value of the critical stress (τmax) approaches the endurance limit. Under this
value, the analysis doesn’t give any result and the life of the component is considered
theoretically infinite.

It should be noted that the limit value is slightly higher than the experimental
results obtained by Harris and Barnsby, but with an acceptable tolerance.

The graphs report two lines, corresponding to two different values of the critical
damage variable Dc, which is not available in the open literature for the specific
material. Therefore, as indicated in the previous section Chap. 3.8, the two limit
values of 0.1 and 0.4 are analyzed and compared to identify a generic range in which
the real initiation will result.

It can be seen good resemblance with the reference both in shape and values. The
number of cycles to crack initiation span from above 104, for the higher stress values
to a plateau which stabilizes around 106 cycles and then extends at higher values
approaching the limit pressure. The lack of indications on the friction coefficient in
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the reference [16] pushed to perform the analysis at a null friction value, because a
better resemblance on stress values was verified in the low friction regime.

The good accordance in these results can be taken as validation of the current
numerical model when evaluating the fatigue life of bearing gears.

As indicated by Beheshti [16], this analysis validates the model only in the specific
case of roller bearings made of the specific AISI 52100 alloy.

Figure 3.27: Comparison of number of cycles to failure for different maximum Hertzian
pressure, on AISI 52100, between Beheshti, Chen and Bhattacharya references [16]
and model’s results

Moreover, a prediction of the total fatigue life, for the same specific system, is proposed
in the reference study based on Chen [86] assumptions. Here, the crack nucleation
stage is considered to cover around the 10% of the total fatigue life. The total life is
then evaluated only shifting the curves of the initiation period, previously evaluated,
to fit the proportion.

In fact, it can be seen that the shape of the curves is preserved and the only
variation is a shift toward a higher number of cycles. This shift is exactly one order
of magnitude, corresponding to the assumption of the initiation stage being about the
10% of the total fatigue life. This fitting results to return acceptable results if applied
to the previously obtained data for fatigue initiation (Fig. 3.26), now shifted to the
higher cycles region (Fig. 3.27).

This assumption made by Chen et al. [86] cannot be taken as a general statement.
Numerous factors [54][57] affect the fatigue behavior of roller bearings, including the
material properties, the loading conditions and all the operational parameters. The
amount of time spent in the nucleation phase could then raise also to the 90% of the
entire fatigue life [16], becoming the dominant stage to failure.

Anyways, the focus of this model is on the evaluation of the fatigue initiation step
and not to estimate the total life to failure of the material.

Tab. 3.2 and 3.3 report the resulting data of the failure depths, critical position for
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Table 3.2: Number of cycles to initiation and critical depth for different load and
friction values, on AISI 52100

Load [MPa] Friction coefficient, µ Number of cycles, N Critical depth [µm]
0 845’123 197.32
0.1 844’857 197.32

2560 0.2 844’591 197.32
0.3 333’313 1.67
0.4 24’997 1.67
0 150’747 197.32
0.1 150’744 197.32

2750 0.2 150’742 197.32
0.3 120’881 1.67
0.4 14’443 1.67
0 63’544 197.32
0.1 63’543 197.32

3000 0.2 63’542 197.32
0.3 53’526 1.67
0.4 7’548 1.67
0 32’591 197.32
0.1 32’591 197.32

3250 0.2 32’591 197.32
0.3 27’859 1.67
0.4 4’193 1.67
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crack nucleation, and the number of cycles to initiation for different loading and friction
conditions. The critical damage value used for the AISI 52100 alloy is Dc = 0.4 in
this case. Because more similar to the value of 0.46 reported for SAE 4340.

It is evident how the shift in the critical position happens at µ = 0.3 and also
a sensible decrement in the initiation life is registered for µ = 0.4. This case is
coherent with the stress profile shown in Fig. 3.9, where the stress at the surface for
the maximum friction exceeds the peak at depth z = 0.78a and results in a sensibly
shorter life.

(a)

(b)

Figure 3.28: Resulting maximum critical stress profile (τmax) and peak value for AISI
52100 at (a) 2550 MPa, (b) 2560 MPa.

This trend can also be seen in Fig. 3.30, where is shown the progressive initiation
life decrement with friction and load. Obviously, the SAE alloy is subject to lower
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(a)

(b)

Figure 3.29: Resulting maximum critical stress profile (τmax) and peak value for SAE
4340 at (a) 1800 MPa, (b) 1810 MPa.

stresses, because of the smaller endurance limit of the material. The progression is
then similar, although the weaker material is more sensitive to the load increment and
has a fast life decrement from 5 ∗ 105 to 104 with only 400 MPa added. The stronger
AISI 52100 alloy instead decays to an initiation life of 104 in almost 800 MPa, so
double with respect to the SAE 4340 alloy.

88



Table 3.3: Number of cycles to initiation and critical depth for different load and
friction values, on SAE 4340

Load [MPa] Friction coefficient, µ Number of cycles, N Critical depth [µm]
0 509’695 197.32
0.1 509’623 197.32

1810 0.2 509’552 197.32
0.3 239’843 1.67
0.4 15’241 1.67
0 102’427 197.32
0.1 102’425 197.32

1950 0.2 102’423 197.32
0.3 81’360 1.67
0.4 8’120 1.67
0 30’050 197.32
0.1 30’050 197.32

2200 0.2 30’049 197.32
0.3 25’149 1.67
0.4 3’000 1.67
0 14’006 197.32
0.1 14’006 197.32

2400 0.2 14’006 197.32
0.3 11’837 1.67
0.4 1’476 1.67

The initiation life approaches values of 106, when the resulting stress approaches the
endurance limit. The load range for both the alloys has been chosen by selecting the
minimum load at which the critical resulting stress will exceed the endurance limit
(Se = 542 MPa for SAE 4340 and Se = 768 MPa for AISI 52100). In Fig. 3.28 and
Fig. 3.29 are shown the maximum loads at which the resulting τmax doesn’t generate
any damage, because lower of Se. Are also shown the chosen values, slightly exceeding
the threshold.

The load progression on the two materials has then been chosen to obtain a similar
decrease in the order of magnitudes, showing the different sensibility and strength of
the alloys.

3.10.2 In depth analysis

In order to evaluate the behavior in a complex case, as the one presented by the
Airbus case [7], an in-depth analysis can be relevant. The evolution of damage at
different depths can be the prologue to secondary crack formation. By the analysis of
the damage evolution time in different zones of the material, it can be stated which
of them are more or less prone to failure. Even if the crack propagation phase is
controlled from different mechanisms with respect to the initiation, the presence of
damage can act as an enhancer of the fatigue failure process.
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(a)

(b)

Figure 3.30: Representation of data from Tables 3.2 and 3.3. Number of cycles at
failure for different maximum Hertzian pressure and friction coefficients, on (a) AISI
52100 and (b) SAE 4340
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The analysis is aimed at evaluating the initiation life for the entire z domain and the
process follows the same structure used before for the critical node and initiation life
evaluation. The stress tensor is evaluated through all the domain and the critical
stress tensor is assumed to be the maximum shear stress (τmax). Once this tensor is
obtained, the maximum value at each depth is collected in a tensor (maxt) indicating
the maximum stress acting on any node of the 1D domain, during each cycle.

For each node where maxt > Se, the initiation life is evaluated and stored. So, the
number of cycles to initiation is now a vector with the same dimension of the domain,
collecting the cycles to failure of all the nodes, when in the standard analysis it was a
simple number.

Figure 3.31: Number of cycles to initiation at different depths, for Pmax = 1800 MPa.
Reference values from Behesti [16]

The results have been compared with the reference analysis from Beheshti [16],
which considered the SAE 4340 alloy under a pressure of 1800 MPa (Fig. 3.31).
Recalling the considerations on the minimum load able to generate damage in the
current model, some consideration must be done. It is impossible, in this analysis,
to use 1800 MPa because it has been shown that no damage will be generated. The
minimum value of comparison used has been of 1810 MPa, which is the minimum
pressure able to start the damage evolution process in the current model.

The results obtained using the lowest load are not completely satisfactory in the
extension of the damaged zone (Fig. 3.33).

To obtain a more fitting comparison, the Hertzian applied pressure has been in-
creased to 1850 MPa and the result is shown in Fig. 3.32. Here, the correspondence
between the curves is clear when friction is low and good results are obtained. The
divergence at higher friction values, shown previously, makes the correspondence fade.
This effect can be attributed to a slight difference in the resulting critical shear stress,
due to a difference in the effect of friction from the current model and the reference
[16]. So, due to slight differences in the stress distribution, the correspondence is
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Figure 3.32: Comparison of number of cycles to initiation at different depths between
Beheshti [16] reference curve and the current model

shown at not identical, but close, Hertzian pressure values (1800-1850 MPa).
As seen in Fig. 3.9, the peak values in the critical zone are coincident, but a slight

difference in the distribution in non-critical zones is present. Anyway, the difference is
acceptable and reduce in particular for low friction regimes, which are more relevant
for the studied case.

Anyway, the friction affects only slightly the behavior around the critical position
of 195 µm, as stated in the reference. A small reduction in the initiation life is present
when increasing the friction coefficient, not varying sensibly the value of the number
of cycles.

Despite the lack of a complete correspondence in the friction behavior, the evalua-
tion of the fatigue initiation life results to be coherent in the critical and in the general
value of the number of cycles. A more close correspondence is present at low friction
coefficients, which are more interesting for the chosen application.

Due to the problem of crack propagation toward the bulk of the material, the
evolution of damage in deep regions represents a critical situation. it can be seen how
crack can be initiated at a depth of almost 300 µm. So, the propagation can start at
an already deep point, becoming dangerous if penetrating further in the material.

A further fatigue propagation study may assume this depth value as a depth limit
initiation spot. Usually, the thermally treated region has a depth of a few millimeters,
whereas grinding process generates a treated layer of few tenths of microns (∼ 20µm
[7]). Once the crack propagates toward the limits of this region, a catastrophic failure
can occur due to the change of crack propagation method and speed.

Useful information on the initiation life behavior at different depth has been ob-
tained on a defect-free and untreated material on the SAE 4340 alloy (Fig. 3.33 and
3.34). A similar analysis has been performed on the more resistant AISI 52100 bear-
ing steel (Fig. 3.35 and 3.36). Also here can be seen a small damage formation for
the lower stress, which can be attributed to a sharper stress distribution. Although,
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the behavior for a maximum Hertzian pressure of 2700 MPa resembles the behavior
shown in the reference, even if for a different alloy.

The considerations made on the slight difference due to the effect of friction can
be still considered valid also for this second alloy, being the stress evaluation process
not changed. The shape of the curves, indicating the different number of cycles to
initiation through all the domain’s depth, appears to occur at higher stresses for the
more resistant alloy. The shape and values seem similar and comparable.
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(a)

(b)

Figure 3.33: Number of cycles to initiation at different depths for a pressure of 1810
MPa on SAE 4340. (a) general view, (b) detail on critical region.
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(a)

(b)

Figure 3.34: Number of cycles to initiation at different depths for a pressure of 1850
MPa on SAE 4340. (a) general view, (b) detail on critical region.
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(a)

(b)

Figure 3.35: Number of cycles to initiation at different depths for a pressure of 2560
MPa on AISI 52100. (a) general view, (b) detail on critical region.
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(a)

(b)

Figure 3.36: Number of cycles to initiation at different depths for a pressure of 2700
MPa on AISI 52100. (a) general view, (b) detail on critical region.
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3.11 Residual stresses

Hardening mechanical processes such as grinding or thermal treatments like carburiz-
ing are widely used in the production of bearing steels. Due to severe wear phenomena
and high mechanical stresses produced in the near-surface region, hardening is aimed
at protecting and increasing the performances of this part of the component. Both
mechanical and thermal treatments can be performed on a usual bearing steel, but
mechanical grinding has a much shallower penetration, as indicated before, and is then
neglected.

The most important treatment considered in this specific application is the carbur-
izing process. The resulting stress field profile has been evaluated in many different
ways [109]–[111], and has been schematically represented for the specific bearing gear
component in the study from Depouhon [7](Fig. 3.37).

Figure 3.37: Simplified residual stress profile, from experimental X-ray diffraction data
[7]

As an approximation, the compressive field may be assumed as constant in the
analysis domain, which has an extension of 300 µm. The critical depth has been
found to be <200 µm and then even smaller. The grinding process, indicated by
Depouhon [7], gives a peak of residual stresses of around 1000-1100 MPa. This peak
is located at a depth of around 20-50 µm, also far from the critical depths for low
friction rolling contact.

According to Korsunsky et al. [166], the average value of the compressive field for
bearing gears is found to assess around 600 MPa, extending even to a depth of 2-3
mm (Fig. 3.38), confirming the previous dimensional assumptions. Also in this study,
some peaks at around 1000 MPa were found at shallow depths, endorsing the choice
to neglect them. In other references by Hizli [111] and Reti [110], the levels of residual
stresses in steels after carburizing are assessed around values of 400-600 MPa, in the
order of magnitude of the stress to be counteracted [16].

The value for the critical stress field in this model referred to the analysis of the
AISI 52100 alloy, has been of 600MPa and of 768MPa, taken equal to the endurance
limit of the material.

This constant field value has been added as a stress component in the evaluation
of the tensile stress (σx), as indicated in the Eq. 3.8, recalled here.

σx = −2z

π

∫ a

−b

p(s)(x− s)2ds

[(x− s2) + z2]2
− 2

π

∫ a

−b

q(s)(x− s)3ds

[(x− s)2 + z2]2
+ σΘ (3.43)
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Figure 3.38: Residual stresses in induction-hardened gear teeth mapped by neutron
diffraction [166]

The last term (σΘ) indicates the local value of the residual stress field, which as a
first approximation has been assumed to be constant.

Figure 3.39: Critical stress depth distribution after applying a constant compressive
stress field of 600 MPa and 768 MPa, from a maximum Hertzian pressure of 2600
MPa, evaluated with τmax as critical stress

It can be seen in Fig. 3.39 that the whole distribution is lowered, with peaks at
<0.2 p0 , whereas the natural peak for the critical stress distribution is assessed at
0.3 p0. Also, the position of the peak is shifted toward the surface, at an approximate
value of 0.5a, instead of the canonical 0.78a depth [5].

Moreover, an important peak in the proximity of the surface is generated, which
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becomes dominant when increasing the value of the residual stress field (Fig. 3.39(b)).
This stress distribution can be acceptable if looking at the reduction of the general
stress intensity, but the presence of such a peak in the near-surface region can generate
critical phenomena in that zone.

If considering the τxy factor as critical shear stress, the behavior changes sensibly.
This maximum shear value showed good accordance (Fig. 3.14) on the principal peak
with the τmax evaluation method. The behavior of the critical stress distribution varies
instead in a sensible way when applying residual stresses to the tensor evaluation (Fig.
3.40).

Differently from the previous results (Fig. 3.39), the principal peak is still placed
at a depth of around 0.78a and the peak appearing in the near-surface region is
less pronounced and the total value of the stress undergoes a more relevant overall
decrement.

This second analysis seems much smoother and acceptable, due to the general trend
of the stress distribution which decreases according to the purpose of the treatment.
Moreover, the result shown in Fig. 3.39 suggests an increased value of the critical
stress at the surface, exceeding the value of 0.3 p0 obtained without the treatment.
This obviously is unacceptable, because the residual stresses are generated to protect
the component and decrease the stress felt by the material.

In conclusion, due to the better resemblance with the theoretical prediction of a
reduction of the stress in the material, the maximum shear stress has been evaluated
directly with τxy, with the formulation introduced previously (Eq. 3.21).

Still, the constant distribution of the residual stresses generates a critical peak in
the proximity of the surface, which results in undesired criticality.

Maximum field value [MPa] Layer depth [mm] a b c
542 2.5 0.22067 -0.411675 -0.35
600 1 1.49 -1.09 -0.4
600 2.5 0.23885 -0.437125 -0.4
768 1 1.9434 -1.4434 -0.5
768 2.5 0.3109 -0.57735 -0.5

Table 3.4: Plotting coefficients of the parabolic residual stress distribution

To overcome this problem, a parabolic shape recalling the evaluations shown in
Fig. 3.37 has been modeled. Keeping the peak values of 600 and 768 Mpa and of
400-500 MPa at the surface, chosen arbitrarily from the qualitative indications given
in the graphs [7][16]. The resulting residual stress distributions are reported in Fig.
3.44, where the coefficients of the parabola have been derived imposing the curve to
pass through the imposed points at the surface (400-500 MPa), at the peak (600-768
MPa) and at the limit of the carburized layer (1-2.5 mm).

The first line of Tab. 3.4, with a load equal to the endurance limit (Se) of the
SAE 4340 alloy, is obviously referred to that material, whereas the other lines refer
to the more resistant AISI 52100 alloy.

In Fig. 3.44 the y-axis indicates the intensity of the stress field and is indicated
in GPa for the sake of simplicity, whereas the x-axis indicated the depth in mm.
Obviously, the larger distributions (Fig. 3.44(b),(d)) show a smoother progression
which results in less pronounced peaks in the critical stress distribution. The resulting
effect on the taumax critical distribution for both is shown in Fig. 3.43 and 3.41.
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Figure 3.40: Maximum shear stress depth distribution after applying a constant com-
pressive stress field of 600 MPa and 768 MPa, from a maximum Hertzian pressure
of 2600 MPa, evaluated with τxy as critical stress

Figure 3.41: Critical stress depth distribution after application of residual stress fields
σres,max = 768 MPa with 1 mm depth and σres,max = 768 MPa with 2.5 mm depth,
from an applied pressure of 2600 MPa

As already anticipated, the intensity of critical stress is decreased due to the presence
of the residual stress field. This acts as protection from fatigue. Also, a second peak
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appears in the near-surface region, becoming more pronounced when increasing the
maximum value of the residual stresses. When the carburized layer is distributed over
a depth of 2.5 mm [166], this peak remains under the principal peak, given from the
critical shear stress.

Figure 3.42: Critical stress depth distribution after application of a residual stress field
of σres,max = 542 MPa with 2.5 mm depth, from an applied pressure of 1900 MPa

Figure 3.43: Critical stress depth distribution after application of residual stress field
of σres,max = 600 MPa with 1 mm depth and σres,max = 600 MPa with 2.5 mm
depth, from an applied pressure of 2600 MPa

The maximum stress value is reached at a critical depth which is slightly lower
than the 0.78a standard depth obtained in the previous chapters, but still similar
(∼ 0.75a). It can be stated that a deeper penetration of the carburized layer is then
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(a) (b)

(c) (d)

Figure 3.44: Schematic representation of the parabolic residual stress distribution in
the compressive region for: (a)(c) σres,max = 600 MPa, (b)(d) σres,max = 768 MPa

preferable and safer for fatigue, because of the general reduction of the critical stress
and absence of a dominant near-surface peak. For this reason, the following analysis
on initiation life has been carried on taking into account the wider distribution for
both the maximum given stresses.

The values chosen for the compressive residual stresses field are:

• 542 MPa for the SAE 4340 alloy (= Se)

• 600 MPa for the AISI 52100 alloy

due to the consideration of the emerging peak in the near-surface region that is pro-
duced at higher values of residual stress. For the same reasons, the carburized layer
depth is assumed to be of 1 mm, to guarantee a smoother distribution and avoid
peaks. Although it may seem safer to have a higher penetration of the treatment,
with this distribution shape, the critical stress region is better covered with a shal-
lower distribution, giving a higher decrease in the stress felt by the material (Fig.
3.43)

Considering the presence of the residual stress field, the loads able to generate
damage should be higher than on the untreated material. The chosen values of residual
stress for this analysis are the one reported in Tab. 3.4, lines 1 and 3.

The effect on the maximum value of the critical shear stress for both the materials
is reported in Fig. 3.45. The stress endurance limit is reached at quite higher values
in both cases. For SAE 4340, stress of 544 MPa is reached for a Hertzian pressure of
2637 MPa. So, a minimum Hertzian pressure threshold capable to generate damage
is assessed at 2635 MPa for the sake of simplicity.
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In the case of the AISI 52100 alloy instead, a value of 768.4 MPa is generated
by a pressure of 3480 MPa. For the same previous reasons, the minimum pressure
threshold is fixed at 3480 MPa.

The analysis of fatigue initiation as a function of friction and depth can then be
repeated, taking into account the effect of residual stresses, which operates a shift
toward higher Hertzian pressures, but not changing the results in the value of the
initiation life given by this model. The evaluation of the in-depth damage evolution has
been performed for both the alloys for representational purposes. It should be noticed
that this approximation doesn’t take into account the specific material behavior and
phase changes happening during carburizing and thermal treatments.

The resulting plot resembles obviously the one shown in Fig. 3.33 and 3.35. Also
in this case (Fig. 3.47 and 3.48) a second plot with increased Hertzian pressure is
presented, in order to show more comparable curves with the Beheshti [16] reference
(Fig. 3.31). The details show also in the case of applied residual stresses, a similar
behavior. The increase expected from the friction effect is still limited, but the low
friction regime, considered for fatigue applications, remains acceptable.

The main effect of the residual stresses clearly to increase sensibly the required
pressure in order to start the damage generation, but there is also the formation
of more superficial damage at lower friction values. This effect can be negative if
seen from a neutral point of view, but it can also be useful. If superficial spalling is
generated, in-depth crack propagation can be prevented because of the usual particle
detection methods that are placed around the bearing gears.

In conclusion, the carburizing process is beneficial for fatigue because of the ability
to reduce the critical stress felt by the material and by the compressive field applied
in the crack formation zone, slowing further propagation.

In order to have a precise evaluation of the effects on the specific material, a direct
experimental analysis on the component’s internal stress profile should be performed.
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(a)

(b)

Figure 3.45: Maximum critical stress value progression with load, after applying the
residual stresses field with respect to: (a) SAE 4340 threshold (Se = 542 MPa), (b)
AISI 52100 threshold (Se = 768 MPa)
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(a)

(b)

Figure 3.46: Number of cycles to initiation at different depths, for Pmax = 2635 MPa
on SAE 4340. (a) general view, (b) detail on critical zone
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(a)

(b)

Figure 3.47: Number of cycles to initiation at different depths, for Pmax = 2735 MPa
on SAE 4340. (a) general view, (b) detail on critical zone
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(a)

(b)

Figure 3.48: Number of cycles to initiation at different depths, for Pmax = 3480 MPa
on AISI 52100. (a) general view, (b) detail on critical zone
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(a)

(b)

Figure 3.49: Number of cycles to initiation at different depths, for Pmax = 3580 MPa
on AISI 52100. (a) general view, (b) detail on critical zone
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4 FEM Model

4.1 Introduction

A gearbox system is designed to transfer torque and rotational energy from the engines
to rotating parts. In the case of helicopters’ gearbox, the power produced by one or
multiple engines is transmitted to the rotors through a shaft. The system is divided in
multiple stages, in order to control the balance between rotational speed and torque,
required from the rotors. The mechanism modeled in this work will be an epicyclic
stage, which exploits multiple gears, called planets, which rotate around the central
shaft. This shaft ends with a gear, called sun gear, that transmits the power coming
from the engine to the planet gears, which are then kept in place by an outer fixed
gear, called outer ring (Fig. 4.1).

Figure 4.1: Schematic representation of an epicyclic gearbox stage [2]

The plane gears are put into motion by the sun and are linked to the output shaft
through a system of bearings, rolling on their inner race. The bearings are placed
inside a cage, which rotates with them and transmits torque and rotation to a shaft,
through a plate fixed to the cages of all the planet gears. This final shaft is the output
shaft which is then linked to the main rotor (Fig. 4.2).

As seen in the introduction chapter, the fatigue problem investigated in this work,
is referred to the contact section between the planet gear and the rolling bearings at
his inner surface. The transmission of torque and rotation, coupled with the rolling
contact condition, generates the stress state to be investigated.

The current model will be developed in Abaqus/CAE, starting from original 3D parts.
From the whole model, only the sun gear, one planet gear with its bearings and the
correspondent section of the the outer ring will be modeled. This reduction has been
chosen for the sake of simplicity and to reduce the amount of calculation on the model,
which will become impossible to analyze in its totality. Moreover, the symmetry of
the epicyclic stage suggests this kind of simplification.

Both rotation and torque will be applied to the model and a preliminary analysis
on the transmission feasibility will be shown. Initially the model will be a sample
cylindrical shaft, to check the stress generation due to the application of torque and
rotation. After this initial stage, the progressive assembly of the parts will be per-
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formed. Starting from the two gears (sun and planet), the contact between the teeth
will be implemented and checked. Then, the bearings and the fixed outer ring will be
added to complete the section.

Figure 4.2: Catia rendering of the epyciclic gearbox stage with input and output shafts

Boundary conditions and contacts will be added coherently with the physical sys-
tem functioning. After all the conditions will be checked and a satisfying mesh is
obtained, the evaluation of the stresses in the critical regions, identified as the contact
points between the bearings and the planet’s inner race.

The torque and rotations applied will be derived from references on the engine
power and rotational speed reduction by the gearbox. The computation of the reduc-
tion ratio will be performed following theoretical indications using the gears’ teeth
ration between the sun, planet and outer ring.

4.2 Model Parts

The gearbox model is realized starting from the drawings of the actual component of
the AgustaWestalnd’s helicopter AW169. This model is used mainly for civil applica-
tions and transportation of crews up to 13 elements (Fig. 4.3). The versatility of this
helicopter makes it widely used and needing of monitoring.

From drawings given by the manufacturer, the single parts were extracted using
a series of CAD software. Catia was the initial one, on which the drawings were
produced, then Autodesk Inventor was used to separate the general assembly and
obtain the single parts. In the end, these parts were imported into Abaqus for the
analysis.

The whole gearbox stage is shown in Fig. 4.4, with and without the output shaft
and relative plate linking to the planet gears. The structure is clear and the equal
interaction of the planets with the sun and the output shaft can be deducted from the
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geometry of the configuration.

(a) (b)

Figure 4.3: AgustaWestalnd AW169 during operations [167]

The symmetry of the components and of the transmission system suggests that
torque and rotation will be equally distributed among the planet planet gears. From
this assumption, only one planet gear, with the relative bearings and outer ring section,
will be analyzed in the FEM model.

Starting with the sun gear (Fig. 4.5), which is fixed on the terminal part of a shaft
coming from earlier stages of transmission and from the engine. This is the component
at the centre of the planetary system, causing its name, transmitting rotation to all
the planet gears at the same time.

(a) (b)

Figure 4.4: 3D model of the epicyclic gearbox system showing: (a) the interaction
between sun and planets, (b) the transmission system to the output shaft

Because of the analysis on torque and rotation propagation, shown in the previous
section, the input shaft in this element can be neglected. This operation has been
proven to not alter the forces and motions in play. The upside of removing the shaft
is to reduce the elements to be analyzed in the final stage and avoid possible meshing
problems at the interface between the shaft and the gear.

Torque coming from the engine will be applied to the sun gear and will be trans-
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mitted to the planet gears through teeth contact.
The planet gear (Fig. 4.6) will be added in contact with the sun and the outer ring.

This component has a curvature on the inner race which permits the rolling contact
of the bearings. The contact generated will have an elliptic section, with an elongated
major axis, which allows the simplification to a line contact. From this consideration
and utilizing Hertzian contact theory, the stress tensor evaluation for the numerical
model will be derived.

Figure 4.5: Sun gear 3D representation

Figure 4.6: Planet gear 3D representation

The outer ring instead is the only fixed gear in this model. Acting as housing and
track for the planet gears, the outer ring is fixed to the shell of the gearbox. Due to
the approximation chosen for the current FEM analysis, only a section of this gear
will be represented in the final model. Anyway in Fig. 4.7 it shown in its integrity.
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The flange meant to be fixed to the outer shell will obviously be eliminated in the
following model.

Inside the planet gear are contained the bearings, in their turn housed in a cage to
guarantee the spacing between them and the transmission of rotation and loads. The
cage-bearings system is represented in Fig. 4.8. This housing cage is disc in which the
bearings are singularly situated and kept in place. Due to its functional, passive, role
in the contact phenomenon and its relevant dimensions, the cage will be neglected in
the FEM model. In place of the solid structure, a dimensionless beam structure will
be modelled, guaranteeing the same functions.

Figure 4.7: Ring gear 3D representation

The roller bearings are instead reproduced in the final model, acting as major
contact agents with the inner race of the planet gear. Kept in place by the cage-like
structure, they act as intermediary for the load and rotation transmission from the
planet gear to the output shaft. The structure will be copied from the original drawing
in Fig. 4.9.

The components here represented will taken as parts to begin the FEM model. After
modifying the geometries to satisfy the conditions for a smooth mesh in Abaqus, the
assembly of the parts will give as a result the reproduction of a section of the epicyclic
transmission. In the following sections the procedure to obtain the final model will be
explained, showing the constraints and parameters used. A progressive construction
of the model will allow to check step-by-step the validity of the system and of the
conditions that will be assumed.
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Figure 4.8: Bearing cage 3D representation

Figure 4.9: Bearing 3D representation
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4.3 Torque and Rotation

In order to define the torque to be applied in the finite elements model, performance
data of the real engines used on the Agusta Westland AW169 will be taken as reference.
Before calculating the resulting torque, anyway, the transmission ratio of the planetary
configuration should be defined.

The torque ratio from input to output, in an epicyclic gear system, can be evaluated
with a straight forward calculation. The formulation takes into account the ratio
between the rotational velocities of the different components (ωi), relative to the
number of teeth (Ni) of the gears.

The general formulation will be:

τ =
ωA − ωP
ωB − ωP

(4.1)

where A,B identify the sun and outer ring, P the planet carrier, linked to the
output shaft, and S is referred to the planet gear, which doesn’t take directly part in
the calculation (Fig. 4.10).

The number of teeth and dimensions of the planet gears are determined with a
direct relationship with the dimensions of the sun and outer ring gears. Indeed planet
elements are not directly mentioned in calculations, preferring to refer to the carrier.

Figure 4.10: Schematic representation of the section of the epicyclic gearbox.

In the considered system, the supporting element is the external ring, which is
fixed to the gearbox walls. The specific ratio τ is defined as:

τ = −NB
NA

= −R (4.2)
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The number of planets and teeth on the planet elements is a directly related to
the number tau and though, this ratio becomes the defining parameter of the system.

In the case of a fixed outer ring:

ωB = 0 (4.3)

Then, considering Eqs. 4.1 and 4.2 together, an equation can be derived, able to
define the torque and rotational speed conversion, from sun to planet gears. The teeth
ratio R will act as fundamental parameter.

τ =
ωA − ωP
−ωP

= −ωA
ωP

+ 1

ωA
ωP

= 1− τ = 1 +R
(4.4)

By knowing the geometric configuration of the system is then possible to know the
reduction ratio to evaluate the rotational velocity transmission and reduction.

In the epicyclic gearbox under analysis, the number of teeth are:

NA = 41

NS = 49

NB = 141

(4.5)

with the notation previously adopted.
The fundamental ratio τ and R can be then evaluated as:

−τ = R =
NB
NA

= 3.439 (4.6)

The engine power, for this specific model, will be applied at gear A and the output
shaft rotates with the same speed of P .

Once characterized the mechanical system, the operational parameters of the en-
gine should be defined. The AgustaWestland AW169 is equipped with two Pratt &
Whitney Canada PW210A engines with turboshafts with FADEC system [168]. This
engine model is attested in the 1,000 HP Thermo Power Class [169], approximate
values at take-off, measured at sea level in standard day, static conditions and unin-
stalled.

The available maximum energy for the helicopter is then double by the presence of
two twin engines. The rotational output speed made available from the engine ranges
from 6,000 to 14,000 rpm.

It has been chosen arbitrarily to consider a low output rotational speed at the
rotors, in order to simulate the maximum torque and stressing condition on the gear-
box. In particular, the output speed ωp has been imposed arbitrarily, following this
principle. The selected data will then be:

ωp = 500[rpm]

ωs = 2′219.5[rpm]

Pengine = 1′000[HP ]

(4.7)

where ωs has been obtained through Eq. 4.4.
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The conversion between power and torque, for a rotating shaft is instead straight
forward:

P [W ] =
T [Nm] · ω[rpm] · 2π[rad]

60[s/min]
(4.8)

where the power to be considered is the sum of the two engines.
The conversion from horsepower [HP ] to Watt [W ] gives the following result:

Ptot = 2P = 2′000[HP ] = 1′491.4 · 103[W ] (4.9)

The output torque can now be obtained by solving Eq. 4.9, imposing the rotor’s
rotational speed as ω = ωP and assuming a unitary efficiency of the transmission.

From the output torque, by dividing in five equal contributions and applying Eq.
4.4, the torque applied by the sun at the single planet gear can be derived.

Tp−total = 28′483.64[Nm]

τp =
1

5
Tp−total = 5′696.73[Nm]

τs =
τp

4.439
= 1′283.34[Nm]

(4.10)

Considering a complete conversion and an output rotational speed at the shaft of
500 rpm. It is obvious that halving the rotational output speed, the torque applied
will be doubled.

The value τs obtained in Eq. 4.10 will be the torque applied at the sun in the final
model, generating force transmission and stresses inside the system. This value can
be reduced by 10-25% to account for the efficiency losses along the transmission and a
usage lower than 100% of the power, which is not constantly yielded during the work
life of the helicopter.

On the other end of the system a rotation will be applied. This rotation will be
enough to generate the contact between a few teeth of the gears, in order to have a
complete interaction between all the parts, in particular between the rollers and the
planet’s inner race.

4.4 Torque and Rotation Transmission

The initial step of the analysis will be to check the behavior of Abaqus/CAE when
evaluating the transmission of torque and rotation. This control will be performed on
a simple solid shaft modelled as a cylinder.

The dimensions of the object and of the applied loads are chosen arbitrary and non
relevant in this stage. The aim of this analysis is to check that torque will be trans-
mitted through the object without any loss or decay in the generated stress field and
rotation. This result will allow to apply a torque transmission in the complex assem-
bly in the following steps, relying on a constant propagation of forces and generated
stresses.

The simple geometry described previously will be constrained in two circular hinge
sections, on which the displacements will be fixed and the only remaining degree of
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freedom will be the rotation along the central axis (Fig. 4.11). The loads will then be
applied at reference points located on the lateral faces and coupled to the entire face.
Both faces have an applied torque, although not clear in Fig. 4.11 because of Abaqus’
colors and transparency choices.

Figure 4.11: Abaqus representation of the shaft with constrain sections, delimited by
construction planes, and reference points on the lateral faces

Figure 4.12: Von Mises stress distribution resulting from a generic torque applied at
the ends

The torque and motion will then result to be acting on all the section. As it can
be seen in Fig. 4.11, the rotation is applied to the whole face on one end of the shaft,
whereas the load is applied to the reference point, coupled with the same region. The
direction of the applied rotation and the one generated by torque are concordant, in
order to give a coherent dynamics of the body.

The mesh used in this step is not particularly refined, with a generic Hex element
type and a Sweep meshing technique. The resulting state of stress and rotational
velocity profile are constant and radially distributed, as expected (Fig. 4.12). It can
be seen that qualitatively the profile are similar, whereas the values are obviously
different.

From this verification it can be stated that concordant torque and rotation generate
radial a stress and velocity distribution that can be assumed as constant for parallel
sections along the rotation axis. This assumption allows to neglect the input and
output shafts in the complex final system, reducing the elements to be analyzed to
the gears and bearings only.
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(a)

(b)

Figure 4.13: Section profile results for: (a) Von Mises stress, (b) rotational velocity

4.5 FEM Model

4.5.1 Sun Gear and Input Shaft

The first step toward the construction of the complete model, was realized with the sun
gear and the input shaft, coming from the engine. This assembly will be responsible
of a simple torque and rotation transmission along a cylindrical section, terminating
in the sun gear (Fig. 4.5).

The initial gear-like section of the shaft, present in Fig. 4.5 is eliminated in the
FEM model because not relevant in the analysis. Moreover, it can be seen in Fig.
4.14 that to promote a better meshing and avoid geometrical problems, some sections
with draft angles and complex geometries have been simplified. This process has been
applied especially on the face of the gear.

Anyway, due to the urgency of reduction of mesh nodes in the final, complete,
analysis, the input shaft will be removed from further models. This decision is justified
from the assumptions of constant torque and rotation transmission along a cylinder,
verified in section 4.4.

This operation also allows to avoid the presence of interfaces between different
geometries, such as the one between the shaft and the gear.

The section will then be reduced to the single sun gear, which will carry the torque
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from the previous stages of the transmission.

Figure 4.14: Abaqus representation of the assembly between input shaft and the sun
gear

4.5.2 Sun and Planet Gears

After having removed the input shaft, the sun is added to the assembly, in contact
with the planet gear (Fig. 4.15). This interaction, obviously, occurs at the teeth,
where torque and rotation are transmitted from the sun to the planet gear.

Figure 4.15: Abaqus representation of the assembly between planet gear and the sun
gear
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In this step of the construction of the model, only the contact effectiveness is
verified. So, during the analysis of this specific system, the stresses will be purely
arbitrary and the focus will be on the good functioning of contact instance.

In order to guarantee the alignment and correct placement of the components, the
relative positioning of the gears has been extracted from the original scheme using
Solid Works. Then a rotation is applied to one of the gears to remove any eventual
overlap of the parts.

Both the gears are pinned to their central axis, where torque and rotation are
applied through a coupling interaction to the inner races. This interaction is shown
in (Fig. 4.16 (a,b)), where the involved inner surfaces, in purple, are coupled with the
points at the center of the gears. The coupling is indicated by the yellow lines which
link the involved parts and converge in the reference points.

(a) (b)

(c)

Figure 4.16: Boundary conditions on gear components: internal coupling for (a) planet
gear and (b) sun gear, (c) contact at teeth

This setting will be carried onward for the whole analysis, going through more
complex stages. The reference points at the centre of the gear will then assume a
fundamental role in the whole model.

The surface-to-surface contact is applied on the outer surfaces of the teeth of both
gears, limited to the region where contact is likely to occur, to reduce the calculation
weight (Fig. 4.16). The extension of this contact zone has been increased in following
steps, where the rotation angle became higher in order to allow a wider interaction,
for stress evaluation. To guarantee the correct interaction between the two surfaces,
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friction is introduced in the contact. The coefficient chosen for the contact between
the gears’ teeth is of µ = 0.3, as indicated by most references [12][141][148]. The same
value has been kept constant for the teeth contact of all following steps of the model.

Figure 4.17: Torque and rotation application on the sun and planet gears model

The load is applied as a torque in the reference point coupled with the internal
race of the sun gear, indicated with letter ’A’ om Fig. 4.17. In the first step instead,
the planet gear is kept fixed to allow the transmission of the load through the whole
system.

The rotation is then applied with the same mechanism to the planet gear, trans-
forming its boundary condition from an encastre to a pin with active rotation on the
free direction (Fig. 4.17(B)). Also the sun has been pinned in this step and will rotate,
dragged by the planet and its torque.

The resulting stresses are consequence of the contact interaction at the teeth (Fig.
4.18), whereas the ovalization deformation produces a relatively small contribution in
a distant section of the gear (Fig. 4.19(b)). At this stage the values of the resulting
stresses are purely arbitrary and not relevant, because of the lack of part of the
complete system, which will take an important contribution in load sharing.

The material properties assigned for the analysis, from this point on, will be only
the Young’s modulus (E = 2.06 GPa) and the density (ρ = 9.8 kg/dm3), corre-
sponding to an AISI 52100 alloy [163]. The stresses have then been weighted on
this specific material, which corresponds with the most resistant alloy analyzed in the
analytical-numerical model (Chap. 3).

It can be noticed in Fig. 4.18 and 4.19 that the mesh is finer in the region of teeth
contact, to allow a good analysis in the critical zone for the model and reduce the
overall time of analysis with a coarser mesh in the peripheral regions.

Peaks reached at the socket angle between the loaded teeth, expressed in GPa,
will exceed the material’s elastic limit in this step. This should be due to the lack of
components (as the outer ring and the bearings) from the model, which causes the
load to be discharged entirely onto the teeth where contact occurs.

Anyway, rotation and load transmission are verified and the contact configuration
results to be acceptable, which was the aim of the current analysis.
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(a)

(b)

Figure 4.18: Resulting stresses for sun and planet gears model at different steps of the
rotation
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(a)

(b)

Figure 4.19: Resulting stresses for sun and planet gears model at the final step: (a)
detail and (b) general visual
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4.5.3 Rollers and Rolling Contact

The next component to be added at the model has been the rollers, inside the planet
gear and in contact with its internal race. Through this rolling contact, torque and
rotation will be transmitted, defining the state of stress on the planet gear, which is
object of the analysis.

Before introducing the components in the general model, it has been realized a sim-
ulation model to verify the rolling contact feasibility and the interactions needed to
realize it.

This simple model has been assembled with the original roller’s geometry shown
in Fig. 4.9, put into contact with a flat surface. Whereas here the component is
taken singularly, in the complete system the rollers are multiple and inserted in a cage
that holds them in position (Fig. 4.8). The beam has been modeled as the section
of the bearing cage holding the specific roller in the complete model. The average
section of the cage has been evaluated from the original model (Fig. 4.8) and a square
section, corresponding to the average of the cage, has been assigned to the beam. The
dimension of this section is of 27.5 mm. This approximation is assumed to guarantee
a stiffness similar to the one of the cage.

Figure 4.20: Verification model with highlight on the interactions between beam and
roller components

For the sake of simplicity in the FEM analysis, due to the minor relevance of the
cage component, this setup has been represented by a system of beam elements. These
beams deputise for the more complex cage, keeping the rollers in position and allowing
only the rotation on their central axis.

This setup will allow to verify the proper functioning of the constrains between
the beam and roller elements, allowing a correct rolling contact.

In the verification model, a single beam will be introduced, pushing the element in
its rolling motion over the race surface. The end of the beam has been coupled to the
roller through a reference point, which is itself coupled to the faces of the roller, leaving
free only the rotation, as shown in Fig. 4.20 and left visible in Fig. 4.23. This setting
of fixed coupling between beam’s end and reference point and instead free motion left
on the coupling between point and roller’s faces is the only one allowing the rolling
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movement. If the coupling interactions are inverted, only sliding will occur.
In order to generate a rolling contact, a displacement has been applied at the free

end of the beam, parallel to the race’s surface. No vertical loads were added at the
roller, leaving weight and friction as the only forces at the contact.

Different friction coefficients were analyzed to check the sensibility of the system.
The friction regime chosen in this specific analysis was the low friction one. In fact,
the rolling contact between rollers and gear’s race in bearing gears occurs in lubricated
regime, reducing the friction to very low values. Either in initial considerations on the
complete model no pre-load has been introduced on rollers and beams, so the simple
rolling assumption is legitimized.

It has been found that the Abaqus analysis for this setup cannot be completed
for a friction coefficient lower than µ = 0.05. Different analysis at lower values (µ =
0.01, 0.02, 0.03) were not converging and automatically aborted by the system after
several attempts. The results shown in Fig. 4.22 and 4.21 has been obtained with the
minimum possible friction coefficient, of 0.05.

Figure 4.21: Resulting stresses for rolling contact of a roller onto a surface: final step,
increment t = 1

It is evident how the stress state is formed gradually, when the roller is beginning to
roll over the surface, due to the weight as unique source of load present (Fig. 4.22(a)).
When the roller is instead completely over the races section the stress state generated
is constant and moves with the roller (Fig. 4.22(b) and 4.21). In this way the contact
and the constrains necessary between the parts are considered verified and ready to
be implemented in the general model.

The absolute values of this results are purely demonstrative and exploited only to
demonstrate the validity of the contact and its effects. The presence of an interference
between the roller and the surface has been introduced to guarantee the rolling contact,
but it affects the correct evaluation of the stresses. Moreover, the non conformity of
the two parts acts as stress raising factor.
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(a)

(b)

Figure 4.22: Resulting stresses for rolling contact of a roller onto a surface: (a) in-
crement t = 0.1 (b) increment t = 0.5

4.5.4 Complete Model

To complete the model introduce in section 4.5.2, the internal system of the bearings
and a section of the outer ring, should be added.

The bearings section had been modeled in the beam-roller system introduced in
section 4.5.3. These parts will be replied 14 times in a circular, evenly spaced, distribu-
tion replying the original bearings configuration (Fig. 4.8). The resulting components
to be added in the cavity of the planer gear are shown in Fig. 4.23, where the reference
points, where couplings are applied, are left visible on one roller as demonstration.

The reference point at the center of the beams is assumed to be the center of the
bearing cage, connecting all the beams as a unique structure. This central point is
the coupled with another reference point, placed on the rotation axis of the sun gear,
slightly offset from the sun’s center. This second point represents the output shaft,
from which rotation is given, transmitting it to the bearing cage with the setup shown
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in Fig. 4.4(b).
Hence, the rotation will no more be directly applied to the planet gear, but at the

output shaft. Rotation is then transmitted to the gears through the bearing cage and
the contact between rollers and planet gear.

The final component added to the assembly is a section of the outer ring (Fig. 4.7).
This gear acts as case and guide for planet gears’ rotation and is assumed to be fixed
in this model. Due to the symmetry considered since the beginning of the model, only
a small sector of the ring is modeled in the assembly. This allowed to show a rotation
which is still meaningful for the stress analysis, without modeling all the structure.

The same kind of surface-to-surface contact at teeth used for the interaction be-
tween sun and planet is used for the contact between planet and ring gears. This last
component is then fixed at its external surface with an encastre boundary condition.
Clearly on forces are applied to this component, which acts as bounding element to
stabilize the system and allow a realistic share of the loads.

Figure 4.23: Beams and rollers representing bearings and cage from the original model

The complete structure assembly is shown in Fig. 4.24. Once the model has been
completed in all its components and the interactions has been defined as long as the
loads and boundary conditions, the analysis can be performed, after having meshed
all the parts properly.

4.6 Mesh

The assembly has been meshed using standard elements, to avoid an excessive weight
in the analysis, due to the already complex geometries and interactions (Fig. 4.25).

The beams has been meshed with B31 seeds, corresponding to 2-node linear beam
elements with standard settings.
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Figure 4.24: Assembly of the complete model comprehending beams and rollers and
ring, planet and sun gears

The gears and the rollers has instead been meshed with C3D8R elements, gener-
ating 8-node linear bricks with enhanced hourglass control. The reduced integration
setting has been chosen in the cells where the analysis was not required to be ex-
tremely refined. So, the planet gear’s internal section on the half in contact with the
sun gear has been chosen as the defined analysis region. Here, the reduced integration
is removed to allow a more precise evaluation of the stresses. A further refinement
of the mesh would be recommended to obtain even more precise results, but due to
the complexity of the model and of the geometries involved, this approach is initially
discarded.

The dimension of the elements has been tuned to achieve a refined analysis, avoid-
ing the formation of distorted elements in regions with complex geometry.

Choosing a seed dimension of 2 mm in the planet gear’s mesh, the formation of
distorted elements is avoided, which instead arises with both coarser and finer seeding,
due to geometries and compatibility issues with neighbouring regions.

4.7 Complete model results

The most critical values in the results of the analysis are shown at the interface between
the teeth between of the gears, as correctly expected being this the region most subject
to wear and fatigue phenomena. These values oscillates during the rotation due to
the different angles and regions of contact. Anyway is shown (Fig. 4.26) that the
stresses generated never exceed the elastic limit of the material, of around 2 GPa, as
mentioned in Tab. 3.1. It has been assumed then, that this region will not fail due to
plastic deformation and considered as not relevant. Fig. 4.26 is indicated as reference
for the scale of the stresses, more detailed results in critical regions are reported in
the next paragraphs.
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Figure 4.25: Meshed assembly of the complete model.

Figure 4.26: General view of the resulting stresses

The region under analysis in this model is instead the inner race of the planet
gear, where rolling contact between the rollers and the race is the main source of
stress. Here, contact stresses are correctly generated where rolling contact is verified
(Fig.4.27).

As introduced by Depouhon et al. [7], ovalization of the planet gear is caused by
the contact between the gears. This slight deformation on the sides of the component
defines an upper zone, where contact stresses are generated in a more marked way,
and a lower zone where the deformation of the gear reduces the contact interaction
between the rollers and the gear’s race. The stresses generated from this phenomenon
are shown in Fig. and compared with reference predictions from Depohuon [7]. The
absolute value of the stresses caused by ovalization of the gear is around 120-170MPa
as shown in Fig. 4.30, three times lower than the contact stresses generated between
rollers and race.
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Figure 4.27: Resulting stresses on the planet gear

Figure 4.28: Resulting contact stresses on the upper part of the planet gear

In the first step of the analysis, torque is applied at the sun, introducing load
through the structure. During this step all the components are fixed through their ref-
erence points or surfaces and only the torque is introduced into the system (Sec.4.5.2).

In the second step instead, the planet and sun gears are free to rotate along their
central axis, in the relative reference systems, and rotation is applied at the opposite
end of the system. The reference point identifying the output shaft, which is coupled to
the beams’ center (Fig. 4.24), then simulates the transmission of the rotation through
the bearings cage and the rollers themselves. The rotation applied is of 0.18 rad.

In this way, recalling the tryouts performed on the cylinders shown in Sec. 4.4,
torque and rotation are applied at the opposite ends of the system, allowing the
analysis of the stresses inside the model.

The rotation of all the components is correctly verified, from the rotation of the
sun and planet gears to the rolling motion of the rollers over the planet gear’s race.
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Figure 4.29: Detail of the resulting contact stresses at the contact between a roller and
the upper part of the planet gear

In the second step, rolling contact stresses are correctly generated on the inner race
of the planet gear, moving along this surface according to the movement of the rollers
over it, in particular in the upper part of the planet gear (Fig. 4.27).

The scale of the stresses is correctly around values in the hundreds of MPa, where
are predicted to be in literature and also in the analytical-numerical model presented
in this thesis work (Sec. 2 and 3).

In detail, in the region considered as object of the current analysis, the maximum
stresses reached during the rotation process are in the range of 300-400MPa, as shown
in Fig. 4.29. The region highlighted in res, indicating higher stresses, is located at a
depth around 1/10 of the element. The dimension of these elements is fixed to be of
2 mm, so the most stresses zone is correctly in the range of around 200 µm, where
rolling contact fatigue is predicted also from theoretical models (Sec. 2 and 3).

As already introduced in the previous section (Sec. 4.5.3), the results shown in
standard mode by Abaqus represent the Von Mises equivalent stress. This gives an
approximation to the order of magnitude of the equivalent maximum shear stress,
chosen as critical in the fatigue analysis (Chap. 3) [16].

It can be seen in Fig. 4.29 that the maximum value of the stress generated in the
gear’s race is around 300-400 MPa, comparable with the stresses generated in the
analytical-numerical model (Chap. 3) and able to generate damage in the material.

Anyways, if investigating the stress tensor generated in the complete model anal-
ysis the resulting principal stresses (Fig. 4.31) lack the precision required to have a
validation with literature [5].

This lack of correspondence can be attributed to the complexity of the model and
the consequent difficulty in refining extremely the mesh in the rolling contact region.
From this considerations, the idea of exploiting the single roller model in conjunction
with the complete model has raised, to evaluate more precisely the contact stress
tensor.
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(a)

(b)

Figure 4.30: Rim ovalization under global loads from gears’ contact. (a) FEM results
and (b) reference image from Depohuon [7], with equivalent hoop stresses indicated by
the arrows

The stresses along the beams, simulating the bearing cage, has been evaluated and
used to define the force acting on the rollers, pushing them onto the gear’s race. The
idea is to multiply the stress, felt by the beam, by its section to obtain the pushing
force. Once obtained this normal force, it has been introduced in the single contact
model to push the roller onto the surface with the value given from the transmission
of loads in the complete gears model.
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(a)

(b)

(c)

Figure 4.31: Principal stresses of the contact stress tensor generated in the complete
model FEM analysis. (a) σx, (b) σz, (c) τxz
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4.8 Further development: single roller model

Recalling the model used to validate the contact interaction, the only parts present in
the analysis to simulate the contact interaction were a roller and a flat surface.

The beam element present in the previous single roller model has been eliminated
in this last analysis, because the force acting normal to the surface has been evaluated
in the previous section (Sec. 4.7), already considering the section of the beam.

σbeam = 18.014 [MPa]

Sbeam = 756.25 [mm2]

~Fn = σbeam ∗ Sbeam = 13.62 ∗ 103 [N ]

(4.11)

In Eq. 4.11 are represented the stress felt from the beam (σbeam), its section
(Sbeam) and the resulting normal force which is applied to the roller through a reference
point placed at its center (Fig. 4.32(a)).

(a) (b)

Figure 4.32: Application of the load (a) and the translation (b) to the roller in the
model

The force has been applied vertically to the roller, transmitting then the pushing
action to the whole component onto the race’s surface. Once the load has been intro-
duced and the contact established, a translation of the bearing over the race is applied
to generate the rolling contact, with the same working procedure explained for the
application of the force (Fig. 4.32(b)).

The one-dimensional conformity of the roller and the gears’ race has been achieved
to replicate the geometry in the complete model. In this way, the contact is distributed
over a line, as assumed also in the previous sections (Sec. 3.2) for the analytical model
and satisfies the line contact approximations assumed through the analytical model.

The boundary condition for contact is the surface-to-surface contact assumed also
in the complete model (Fig. 4.33(a)), and the reference point is coupled to the roller’s
side surfaces, also like in the previous model (Fig. 4.33(b)).

The mesh of the race is refined at a dimension of 0.5 mm per cell, with complete
integration, to allow more reliable analysis of the stresses generated from the rolling
contact. This refinement increases the time needed for a complete analysis.
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(a) (b)

Figure 4.33: Interaction conditions of (a) contact and (b) coupling, in the single roller
model

The final result obtained from this model is going to be a tensor of stresses, showing
the principal normal stresses and the shear generated inside the material. This kind of
output is similar with the one obtained from the first part of the analytical-numerical
model, for stress evaluation.

This operation has not been completed due to time issues, but is under study and
is due to be ready by the day of the presentation.

5 Sinergy between analytical and FEM models

In Fig. 4.34 is shown the combined work scheme of the complementary functioning of
the two models.

The FEM model starts from the CAD drawings of real components from a complex
gearbox, analyzing the transmission of torque and rotation through a planetary stage.

Generated from the application of torque and rotation on the complete system, the
transmission of loads through the contacts between the gears and the bearings results
in a stress value in the beams, which simulates the bearing cage and its stiffness.
This value is then transformed in a normal load by integration over the section of the
beams, obtained as the average section of the bearing cage corresponding to a single
roller.

The force is then going to be applied in the single roller model, which with its
reduced complexity is able to simulate the rolling contact condition and is predicted
to give a satisfying output. The stress tensor generated inside the gear race is going to
be evaluated, which is the same kind of input used to perform the damage evolution
analysis with the analytical-numerical model.

A fatigue initiation analysis has previously been performed with the analytical-
numerical method presented in Chapter 3, able to evaluate the damage damage evo-
lution inside a material subject to rolling contact exploiting continuum damage me-
chanics approach. The model has been validated with reference to literature [16] and
has demonstrated the ability to correctly give a first approximation prediction of the
fatigue initiation life as a function of the load applied and of the material properties.
This model can be used as a tool to evaluate the rolling fatigue initiation behavior.

137



Figure 4.34: Flowchart representation of the models interaction and working scheme
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The output of the FEM model, being a stress tensor, resembles the one obtained
from the first part of the numerical model, where stresses were calculated following
Hertzian theory. Here, the stress tensor from the single roller model is taken as input
for the damage evolution analysis, and the fatigue initiation life is evaluated.

An analysis of the tensor generated in the single roller FEM model can be per-
formed to obtain the values of the principal stresses necessary to evaluate the maximum
shear stress. Once this passage is completed, the fatigue initiation prediction, based
on continuum damage mechanics is going to be performed.

The final result is going to be the number of cycles at fatigue initiation, related
to the specific planet gear considered in the FEM model. This first approximation is
considered in the regime of near maximum torque described in the previous section
(Sec. 4.3).
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6 Conclusions

Starting from a real event where rolling contact fatigue led to catastrophic conse-
quences, this thesis work took its cue toward the purpose of studying the fatigue
behavior of bearing gears alloys and components. The final aim has been to develop
support for the design of long-lasting components, predicting fatigue behavior.

Bearing gears are widely used in mechanical applications and, despite the more and
more strict requirements and high-quality production standards, are subject to rolling
contact fatigue. This mechanism results to be the main failure cause for bearings. The
repeated interaction between a rolling element and a surface leads to the formation of
micro-cracks, which can propagate to form spalling or even penetrate toward the bulk
in critical cases.

Even if these components are designed to withstand the stresses to which they
are subjected, and work in a safe range, the presence of inner defects or peaks in the
stress history can initiate the formation of damage inside the material. Many resulting
mechanisms such as pitting and spalling or case crushing are possible, even the total
failure of the component if the cracks can penetrate the bulk.

The complex nature of rolling contact, involving pressure and traction combined
in a moving load give rise to a multi-axial state of stress inside the material [5][6][7].
This behavior is described by the Hertzian theory of contact [5], allowing a theoretical
evaluation of the principal stresses generated, in order to have a general overview of
all the factors contributing to the tensor.

This is the basis for the formulation of analytical models, which can simulate some
specific physical phenomenon based on theoretical or experimental assumptions. In
this specific thesis work, Matlab has been chosen as software to develop an analytical
model starting from the Hertzian theory of rolling contact.

After the evaluation of the multi-axial stress tensor, the approach proposed by
Beheshti et al. [16] has been followed, in order to develop a model able to predict the
fatigue initiation life of rolling elements. The definition of a critical stress factor has
been assessed, designating the maximum shear as the main driving factor for rolling
contact fatigue crack formation [7]. Shear stress has been found to give the main
contribution to Mode II crack formation and propagation in rolling contact fatigue
and then chosen as the critical factor for numerical analyses.

To describe the evolution of damage inside the material, fundamental for fatigue
initiation, the continuum damage mechanics theory has been proposed [147][14][140].
This method allows to describe the effect of stress and strain on the component’s
integrity, evaluating the damage formation in the structure as a function of the load
applied and of the properties of the material.

The material parameters needed for this kind of analysis are easily obtainable with
simple mechanical tests such as tension tests [141][158]. Once the data are collected,
the analytical model can be developed and used to predict the fatigue initiation life
and the critical region at which damage occurs.

This kind of model can also be coupled with finite element modeling, in order to
obtain the stress data necessary as inputs. More precisely, by calculating the stress
tensor generated from rolling contact between specific geometries in a FEM model,
it can be possible then to apply the damage evolution analysis on stresses directly
associated with real geometry.

A combination of an analytical-numerical model, based on theoretical considera-
tions, and a FEM model based on the geometry of real components is then proposed
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in this thesis work. The aim of the synergistic functioning of these two models is to
obtain a first approximation of rolling fatigue initiation behavior in bearing gears.

The objectives reached consisted then in the realization of:

• An analytical-numerical model realized in Matlab. Starting from Hertzian the-
ory of rolling contact, the ideal stress tensor can be evaluated, and applying
Continuum Damage Mechanics is possible to perform a damage evolution anal-
ysis, able to predict fatigue initiation life

• A FEM model of the section of a real planetary gearbox, able to simulate the
transmission of torque and rotation along the system and analyze the stresses
generated inside the complex structure. The output of this complete model can
be used to refine the analysis and obtain the stress tensor resulting from the
rolling contact of the real geometries

Figure 6.1: Comparison of number of cycles to initiation for different maximum
Hertzian pressure, on AISI 52100, between Beheshti and Chen references [16], [86]
and model’s results

The analytical-numerical model has been validated with reference to literature, and
has proven to be able to predict with good approximation the fatigue initiation life of
bearing alloys in low friction regime (Fig. 6.1). A lower limit in the maximum pressure
is shown, at which the generated maximum shear stress does not exceed the fatigue
threshold specific of the material, preventing the formation of damage according to
CDM theory.

The stress tensor generated is in good accordance with theory in all its components
and gives a solid basis for the evaluation of the critical shear stress, indicated as the
main driving factor for rolling contact fatigue. From the critical stress tensor, both
the first initiation in a critical region (Fig. 6.1), and an in-depth fatigue initiation
analysis (Fig. 6.2) has been run, with good results at low friction coefficients also for
the latter.

These results shown in Fig. 6.2 are interesting as a basis for the study of crack
initiation and propagation in deeper regions, which can result in catastrophic events.
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Figure 6.2: Comparison of number of cycles to initiation at different depths between
Beheshti [16] reference curve and the current model

Moreover, the possibility to add a residual stress field in the stress tensor evaluation
is proposed. It has been shown that the presence of a compressive stress field, achieved
with a carburizing treatment in the case of the considered alloys, has a beneficial effect.
The residual stresses are able to mitigate the amplitude of the resulting critical shear
stress, improving the fatigue resistance of the material. This effect can be explained
by the reduction of the principal stresses, which takes part in the formulation of the
maximum shear stress, taken as the critical stress factor. As a consequence, higher
external pressure is required to generate a shear able to exceed the endurance limit
over which damage is predicted to form.

The FEM model instead has been developed using Abaqus, based on its CAD
engine to create the parts. The components studied were imported from the model of
a real helicopter’s planetary gearbox. From the general model, the single components
were extracted and refined to eliminate the parts which would have generated poor
meshing.

The analysis has been assessed on to a section of the general system, which con-
sisted of five planetary bearing gears acting around a sun gear. One of the planet
gears has been isolated with its bearings as the subject of the FEM model.

Starting from considerations on torque and rotation transmission through shafts
and gears, a model has been gradually built, component by component, to check the
correct interaction feasibility. Once the sun and the planet gears have been placed in
contact, the rotation and torque transmission through the teeth have been checked.
The stresses generated were not able to cause the failure of the material, allowing a
first safety check.

Subsequently, the implementation of the rolling contact between the rollers and the
planet gear has been the subject of the model. A demonstrative local model has been
analyzed to verify the effective rolling of the elements and the formation of contact
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stresses during the process. This validation allowed to build the final model, with the
addition of the bearings and of the section of the outer ring which acted as guide and
boundary to the planet’s rotation.

The cage which contained the bearings in the original drawings has been approxi-
mated with a beam structure, in order to reduce the complexity of the model, which
already was elevated. These beams were given an ideal section equal to the average
section of the original bearing cage.

Once all the components were placed into position, the analysis was performed
applying torque and rotation at the opposite ends of the system. The values of the
torque were derived from the specifications of the actual engines mounted on the
helicopter from which the gearbox has been taken.

The resulting Von Mises equivalent stress resulting from the analysis on the planet
gear’s inner race is shown in Fig. 6.3.

Figure 6.3: Detail of the resulting contact stresses at the contact between a roller and
the upper part of the planet gear

The distribution of the stresses has been discussed and its values, if compared with
the endurance limits introduced in the analytical model (Sec. 3.9), falls inside a safe
range for the bearing alloys proposed in the literature. This comparison can be taken
as good for a first approximation but, if looking at the principal stresses generated at
the same contact, the behavior is not satisfactory.

This can be a consequence of the complexity of the model analyzed, which prevents
refining the structure at desired levels (µm), and loses the accuracy in the rolling
contact due to the elaborate transmission of the loads across the system.

A further model to be implemented to achieve a more complete analysis has been
proposed and is under realization. A local single roller structure has been isolated
from the complete model in order to have a simple system allowing to refine the mesh
at an order of magnitude comparable with the critical depths indicated from theory
and the analytical model.

The input for this supplementary analysis will be a force derived from the stresses
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generate inside the beams simulating the bearing gear in the complete model. Due
to the virtual one-dimensional nature of these elements, the stresses obtained will
be axial. By multiplying this stress value for the section of the beam, assigned to
simulate a stiffness comparable with the one of the bearing cage, a normal force can
be obtained. This force is then applied vertically to a single roller, placed in conforming
contact with a surface reproducing the geometry of the planet gear’s inner race. The
rolling movement of this element generates the contact that is expected to give a
more refined stress tensor which can be introduced in the analytical model in order
to perform an approximated fatigue life prediction, relative to the specific component
and load conditions which has been chosen.

The general structure of this model has been presented and the results have not
been presented because of time problems, but are expected in the next days before
the presentation.

It can be finally concluded that the simultaneous utilization of analytical and numerical
models can be a good way to overcome the respective limitations of the two approaches.
Despite the complexity of the phenomenon, rolling contact fatigue can be faced from
different perspectives, allowing to tackle the problem in more simple parts. In this
way, starting from a theoretical basis integrated with drawings and properties derived
experimentally, a more complete prediction of fatigue initiation life for rolling contacts,
and in particular bearing gears, can be achieved.

144





References
[1] H. T.A., Rolling bearing analysis. New York (US): Wiley, 2001.

[2] J. Super. (). “Super puma crash investigation norway,” [Online]. Available:
https : / / www . youtube . com / watch ? v = 0ZbTN6pM2SE & list = PLgBqwf2A _
K0qW5qXGSBVJwfZHflJpbNbT&index=1.

[3] W. Littmann, “The mechanism of contact fatigue,” NASA special report, vol. SP-
237, 1969.

[4] R. N. Ding Y., “Spalling formation mechanism for gears,” Wear, vol. 254, no. 12,
pp. 1307–1317, 2003.

[5] K.L. Johnson, Contact mechanics. Cambridge (UK): Cambridge University
Press, 1985, isbn: 0521255767.

[6] B. H.K., “Steels for bearings,” Progress in Materials Science, no. 57, pp. 268–
435, 2012.

[7] D. B. Depouhon P. Sola C., “A stress based critical-plane approach for study of
rolling contact fatigue crack propagation in planet gears,” Airbus - Department
of Research, Airport International Marseille Provence - France.

[8] P. A. Lundberg G., “Dynamic capacity of rolling bearings,” Acta Polytechnica
7, Mechanical Engineering Series, vol. 1, no. 3, pp. 1–52, 1947.

[9] H. T. Ioannides E., “A new fatigue life model for roller bearings,” Journal of
Tribology, vol. 107, pp. 367–378, 1985.

[10] M. J. Chiu Y.P. Tallian T.E., “An engineering model of spalling fatigue failure
in rolling contact—the subsurface model,” Wear, vol. 17, pp. 433–446, 1971.

[11] T. T.E., “Simplified contact fatigue life prediction model. Part I; review of
published models. Part II: new model,” Journal of Tribology, vol. 114, pp. 207–
220, 1992.

[12] P. I. Sraml M. Flasker J., “Numerical procedure for predicting the rolling con-
tact fatigue crack initiation,” International Journal of Fatigue, vol. 25, pp. 585–
595, 2003.

[13] S. F. Slack T., “Explicit finite element modeling of subsurface initiated spalling
in rolling contacts,” Tribology International, vol. 43, pp. 1693–1702, 2010.

[14] L. J., “How to use damage mechanics,” Nuclear Engineering and Design, vol. 80,
pp. 233–245, 1984.

[15] M. S., Continuum damage mechanics. A continuum mechanics approach to the
analysis of damage and fracture. Ontario (CAN): Springer, Solids Mechanics
and its applications, vol. 185, 2012, isbn: 978-94-007-2665-9.

[16] K. M. Beheshti A., “On the prediction of fatigue crack initiation in rolling/sliding
contacts with provision for loading sequence effect,” Tribology International,
vol. 44, pp. 1620–1628, 2011.

[17] T. modal shop an MTS company. (). “Bearings ntd quality inspection,” [Online].
Available: https://www.modalshop.com/ndt-ram-bearing-testing?ID=
1338.

[18] L. O.P., “Design of machine elements,” in Springer Handbook of Mechanical
Engineering, A. E. Grote K.H., Ed. Springer, 2009, ch. 6.

145



[19] e-Krishi Shiksha. (). “Lesson 27 introduction to bearings,” [Online]. Available:
http://ecoursesonline.iasri.res.in/mod/page/view.php?id=125536.

[20] ISO. (). “Standards by iso/tc4, rolling bearings,” [Online]. Available: https:
//www.iso.org/committee/45544/x/catalogue/.

[21] Z. E.V., “Selection of rolling-element bearing steels for long-life applications,”
in Effect of steel manifacturing processes on the quality of bearing steels, H.
J.J.C., Ed. Philadeplhia (US): ASTM, 1988, pp. 5–43.

[22] ——, “Rolling bearing steels - a technical and historical perspective,” Materials
Science Technology, no. 27, 2011.

[23] B. E.N., “Materials for rolling element bearings,” in Bearing design – historical
aspects, present technology and future problems. A.W.J., Ed. San Antonio (US):
ASME, 1980, pp. 1–46.

[24] F. R. Cappel J. Weinberger M., “The metallurgy of roller-bearing steels,” Steel
Grips, no. 2, pp. 261–268, 2004.

[25] H. J. Hollox G.E. Hobbs R.A., “Lower bainite bearings for adverse environ-
ments,” Wear, no. 68, pp. 229–240, 1981.

[26] H. F., “The hisotry of SKF3,” Ball Bearings Journal, no. 231, pp. 231–232,
1987.

[27] K. Y. Tsubota K. Sato T., “Bearing steels in the 21st century,” in Bearing
steels: into the 21st century, G. W. Hoo J.J.C., Ed. Philadelphia (US): ASTM,
1998, pp. 202–215.

[28] L. S. Lund T., “Determination of oxygen and oxidic non-metallic inclusion
contents in rolling bearing steels,” Ball Bearings Journal, no. 231, pp. 36–47,
1987.

[29] O. L. Lund T., “Improving production, control and properties of bearing steels
intended for demanding applications,” in Advances in the production and use
of steel with improved internal cleanliness, M. J. J.K., Ed. Philadelphia (US):
ASTM, 1999, pp. 32–48.

[30] A. T. Furumura K. Murakami Y., “Development of long life bearing steel for full
film lubrication and for poor and contaminated lubrication,” Motion Control,
no. 1, pp. 30–36, 1996.

[31] T. B. Zhang L., “Inclusions in continuous casting of steel,” presented at the
XXIV national steelmaking symposium, Morelia, Mexico, 2003, pp. 138–183.

[32] S. T. Sadeghi F. Jalalahamdi B., “A review of rolling contact fatigue,” Journal
of Tribology, no. 131, 2009.

[33] F. T. Yoshioka T., “Measurement of initiation and propagation time of rolling
contact fatigue cracks by observation of acoustic emission and vibration,” in
Interface Dynamics, G. M. Dowson C. Taler C.M., Ed. Amsterdam: Elsevier,
1988, pp. 29–33.

[34] Z. E.V., “STLE life factors for rolling bearings,” STLE Publication, vol. SP-34,
1992.

[35] B. M. Keer L.M., “A pitting model for rolling contact fatigue,” Journal of
Lubrication Technology, vol. 105, pp. 198–205, 1983.

146



[36] O. P. Benedetti M. Fontanari V., “Influence of residual stresses on fatigue
behaviour of surface treated gears,” Proceedings of the XXX AIAS Conference,
pp. 263–272, 2001.

[37] V. M., “Failure of metals,” 2017.

[38] S. N. Fleming J.F., “Mechanics of crack propagation in delamination wear,”
Wear, no. 44, pp. 39–56, 1977.

[39] G. A.A., “The phenomena of rupture and flow in solids,” Philosophical Trans-
actions of the Royal Society of London, vol. A, no. 221, pp. 582–593, 1921.

[40] I. G., “Analysis of stresses and strains near the end of a crack traversing a
plate,” Journal of Applied Mechanics, no. 24, pp. 361–364, 1957.

[41] A. W. Paris P.C. Gomez M.P., “A rational analytic theory of fatigue,” The
Trend in Engineering, no. 13, pp. 9–14, 1961.

[42] E. F. Paris P.C., “A critical analysis of crack propagation laws,” Journal of
Basic Engineering, pp. 528–534, 1963.

[43] D.-J. R. Roylance B.J. Williams J.A., “Wear debris and associated wear phe-
nomena,” Proceedings of the Institution of Mechanical Engineers, vol. Part J,
no. 214, 2000.

[44] V. M., “Failure of metals,” 2017.

[45] Hyde R.S., “Contact fatigue of hardened steel,” ASM Handbook, p. 19, 1996.

[46] Santus C., Beghini M., Bartilotta I., “Surface and subsurface rolling contact fa-
tigue characteristic depths and proposal of stress indexes,” International Jour-
nal of Fatigue, no. 45, pp. 71–81, 2012.

[47] Tallian T.E., Failure Atlas for Hertz Contact Machine Elements. New York
(US): ASME Press, 1992, isbn: 978-0791800089.

[48] Glodez S., Ren Z., Fajdiga G., “Computational modelling of the surface fatigue
crack growth on gear teeth flanks,” Communications in Numerical Methods in
Engineering, vol. 8, no. 17, pp. 529–541, 2001.

[49] Sraml G., Fajdiga M., “Fatigue crack initiation and propagation under cyclic
contact loading,” Engineering Fracture Mechanics, vol. 9, no. 76, pp. 1320–
1335, 2009.

[50] Bormetti E., Donzella G., Mazzù A., “Surface and subsurface cracks in rolling
contact fatigue of hardened components,” Tribology Transactions, vol. 3, no. 45,
pp. 274–283, 2002.

[51] Moyer C.A., “Fatigue and Life Prediction of Bearings,” in ASM Handbook.
ASM, 1996.

[52] Nélias D., Dumont M.L., Champiot F., “Role of inclusions, surface roughness
and operating conditions on rolling contact fatigue,” Transactions of the ASME,
no. 121, pp. 240–251, 1999.

[53] Way S., “Pitting due to rolling contact,” Journal of Applied Mechanics, vol. A49,
no. 3, 1935.

[54] O. T. Kaneta K. Murakami Y., “Growth mechanism of subsurface crack due to
Hertzian contact,” Journal of Tribology, vol. 108, pp. 134–139, 1986.

147



[55] Dallago M., Benedetti M., Ancellotti S., “The role of lubricating fluid pressur-
ization and entrapment on the path of inclined edge cracks originated under
rolling–sliding contact fatigue: Numerical analyses vs. experimental evidences,”
International Journal of Fatigue, no. 92, pp. 517–530, 2016.

[56] Bower A.F., “The influence of crack face friction and trapped fluid on surface
initiated rolling contact fatigue cracks.,” Journal of Tribology, vol. 4, no. 110,
pp. 704–711, 1988.

[57] Kaneta K., Murakami Y., Yatsuzuka H., “Mechanism of crack-growth in lubri-
cated rolling sliding contact,” ASLE Transactions, no. 28, pp. 407–414, 1985.

[58] Jin X., Keer L.M., Wang Q., “Behavior of a fluid filled subsurface crack un-
der moving Hertzian loading,” Proceedings of ASME/STLE International Joint
Tribology Conference,

[59] Kaneta K., Murakami Y., “Effects of oil hydraulic pressure on surface crack
growth in rolling/sliding contact,” Tribology International, vol. 20, pp. 210–
217, 1987.

[60] Murakami Y., Nemat-Nasser S., “Growth and stability of interacting surface
flaws of arbitrary shapes,” Engineering Fracture Mechanics, vol. 12, pp. 193–
210, 1983.

[61] Johnson K.L., “The strength of surfaces in rolling contact,” Proceedings of the
Institution of Mechanical Engineers, vol. 203, pp. 151–163, 1989.

[62] Datsyshyn O.P., Panasyuk V.V., Pryshlyak R.E., “Paths of edge cracks in
rolling bodies under the conditions of boundary lubrication,” Materials Sci-
ence, vol. 37, pp. 363–373, 2001.

[63] Datsyshyn O.P., Levus A.B., “Propagation of an edge crack under the pressure
of liquid in the vicinity of the crack tip,” Materials Science, vol. 39, pp. 754–
757, 2003.

[64] Murakami Y., Kaneta K., Yatsuzuka H., “Analysis of surface crack propagation
in lubricated rolling contact",” ASLE Transactions, no. 28, pp. 60–68, 1985.

[65] Benuzzi D., Bormetti E., Donzella G., “Modelli numerici per lo studio della
propagazione di cricche superficiali da rolling contact fatigue in presenza di
fluido,” Proceedings of the XXX AIAS Conference, pp. 293–303, 2001.

[66] Dubourg M.C., Lamacq V., “A predictive rolling contact fatigue crack growth
model: onset of branching, direction, and growth – Role of dry and lubricated
conditions on crack patterns,” Transactions of the ASME, vol. 124, pp. 680–
688, 2002.

[67] Tal1ian T.E., Chiu Y.P., Van Amerongen E., “Prediction of traction and mi-
crogeometry effects on rolling contact fatigue life,” Transactions of the ASME,
vol. 100, pp. 156–166, 1978.

[68] Miller G.R., Keer L.M., Cheng H.S., “On the mechanics of fatigue crack growth
due to contact loading,” Proceedings of the Royal Society of London, vol. A,
no. 387, pp. 197–289, 1985.

[69] Bucher E., Knothe K., Thelier A., “Normal and tangential contact problem of
surfaces with measured roughness,” Proceedings of the 5th International Con-
ference in Contact Mechanics and Wear of Rail/Wheel Systems, pp. 96–103,
2000.

148



[70] El Refaie M., Halling J., “An experimental study of the apparent area of contact
under nominally Hertzian contact of rough surfaces,” Proceedings of Tribology
Convention 1969, Institution of Mechanical Engineers, vol. 183, pp. 116–124,
1969.

[71] Sebara J., Benhe D., “Influence of surface waviness and roughness on the normal
pressure distribution in the Hertzian contact,” ASME Transactions, vol. 109,
pp. 462–480, 1987.

[72] Cheng W.W., Cheng H.S., “Semi-analytical modeling of crack initiation dom-
inant contact fatigue life for roller bearings,” Journal of Tribology, vol. 119,
pp. 233–240, 1997.

[73] Adamini R., Donzella G., La Vecchia M.G., “Fatica da contatto di camme
cementate e nitrurate,” Proceedings of 18th Convegno sui Trattamenti Termici,
2001.

[74] Cheng H.S., Keer L.M., Mura T., “Analytical modelling of surface pitting in
simulated gear-teeth contacts,” SAE Technical Paper, no. 841086, pp. 4987–
4995, 1984.

[75] Clarke T.M., Miller G.R., Keer L.M., “The role of near-surface inclusions in
the pitting of gears,” ASLE Transactions, vol. 28, no. 1, pp. 111–116, 1985.

[76] Dubourg M.C., Villechaise B., “Analysis of multiple fatigue cracks, Part I:
Theory,” Journal of Tribology, vol. 114, pp. 455–461, 1992.

[77] Dubourg M.C., Villechaise B., Godet M., “Analysis of multiple fatigue cracks,
Part II: Results,” Journal of Tribology, vol. 114, pp. 462–468, 1992.

[78] Akama M., Kiuchi A., “Fatigue crack growth under non-proportional mixed
loading in rail and wheel steel part 2: sequential mode I and mode II loading,”
Applied Sciences, vol. 9, no. 2866, 2019.

[79] O’regan S.D., Hahn G.T., Rubin C.A., “The driving force for mode II crack
growth under rolling contact,” Wear, vol. 101, no. 4, pp. 333–346, 1985.

[80] Blake J.W., Cheng H.S., “A surface pitting life model for spur gears: part I –
life prediction,” Journal of Tribology, vol. 113, no. 4, pp. 712–718, 1991.

[81] Choi Y., Liu C.R., “Rolling contact fatigue life of finish hard machined surfaces:
part 1, model development,” Wear, vol. 261, no. 5-6, pp. 485–491, 2006.

[82] Choi Y., “Spall progression life model for rolling contact verified by finish hard
machined surfaces,” International Journal of Fatigue, vol. 262, no. 1-2, pp. 24–
35, 2010.

[83] Ding Y., Gear J.A., “Spalling depth prediction model,” Wear, vol. 267, no. 5-8,
pp. 1181–1190, 2009.

[84] Ding Y., Jones R., Kuhnell B., “Numerical analysis of subsurface crack failure
beneath the pitch line of a gear tooth during engagement,” Wear, vol. 185,
no. 1-2, pp. 141–149, 1995.

[85] ——, “Elastic–plastic finite element analysis of spall formation in gears,” Wear,
vol. 197, no. 1-2, pp. 197–205, 1996.

[86] Chen L., Chen Q., Shao E., “Study on initiation and propagation angles of
subsurface cracks in GCr15 bearing steel under rolling contact,” Wear, vol. 133,
no. 2, pp. 205–218, 1989.

149



[87] Murakami Y., Endo M., “Effects of defects, inclusions and inhomogeneities on
fatigue strength,” Fatigue, vol. 16, pp. 163–182, 1994.

[88] Donzella G., Mazzù A., Pola A., “Una procedura per il calcolo della pressione
limite di componenti induriti superficialmente soggetti a fatica per contatto,”
Proceedings of the XXIX AIAS Conference, pp. 407–416, 2000.

[89] Lunden R., “Cracks in railway wheels under rolling contact load,” International
Wheelset Congress, pp. 163–167, 1992.

[90] Hellier A.K., McGirr M.B., Corderoy D.J.H., “A finite element and fatigue
threshold study of shelling in heavy haul rails,” Wear, vol. 144, pp. 289–306,
1991.

[91] Sakae C., Ohkoniori Y., Murakami Y., “Mode II Stress Intensity Factors for
spalling cracks in backup roll,” Internal Report, 1999.

[92] Murakami Y., Takahashi K., Kusumoto R., “Threshold and growth mechanism
of fatigue cracks under mode II and III loadings,” Fatigue Fracture of Engi-
neering Materials Structures, vol. 26, pp. 523–531, 2003.

[93] Murakami Y., Sakae C., Hamada S., “Mechanism of rolling contact fatigue and
measurement of ∆KIIth for steel,” in Engineering Against Fatigue, Baynon
J.H., Brown M.W., Lindley T.C. et al., Ed. Rotterdam (NL): A.A. Balkema,
1999, pp. 473–485.

[94] Murakami Y., Hamada S., “A new method for the measurement of mode II
fatigue threshold stress intensity factor range ∆Kτth,” Fatigue Fracture of
Engineering Materials Structures, vol. 20, pp. 863–870, 1999.

[95] Rosenfield A.R., “A dislocation theory approach to wear,” Wear, vol. 72, pp. 97–
103, 1981.

[96] Sin H.C., Suh N.P., “Subsurface crack propagation due to surface traction in
sliding wear,” Journal of Applied Mechanics, vol. 51, pp. 317–323, 1984.

[97] Yoshimura H., Rubin C.A., Hahn G.T., “A technique for studying crack growth
under repeated rolling contact,” Wear, vol. 95, pp. 29–34, 1984.

[98] Kaneta M., Murakami Y., “Propagation of semi-elliptical surface cracks in lubri-
cated rolling/sliding elliptical contacts,” Journal of Tribology, vol. 113, pp. 270–
275, 1991.

[99] Doquet V., Bertolino G., “Local approach to fatigue cracks bifurcation,” Jour-
nal of Fatigue, vol. 30, pp. 942–950, 2008.

[100] Wong S.L., Bold P.E., Brown M.W., “Fatigue crack growth rates under se-
quential mixed-mode I and II loading cycles,” Fatigue Fracture of Engineering
Materials Structures, vol. 23, pp. 667–674, 2000.

[101] Doquet V., Pommier S., “Fatigue crack growth under non-proportional mixed-
mode loading in ferritic–pearlitic steel,” Fatigue Fracture of Engineering Ma-
terials Structures, vol. 27, no. 11, pp. 1051–1060, 2004.

[102] Pook L.P., Sharples J.K., “The mode III fatigue crack growth threshold for
mild steel,” International Journal of Fracture, vol. 15, R223–R226, 1979.

[103] Harada S., Kobayashi Y., Kuroshima Y., “A mechanics condition governing
incipient fatigue crack gorwth under cyclic torsion,” in Proceedings of the Sixth
International Conference on Biaxial/Multiaxial Fatigue and Fracture, Freitas
M.M., Ed. ESIS, 2001, pp. 639–646.

150



[104] Tanaka K., Akiniwa Y., Yu H., “The propagation of a circumferential crack
in medium-carbon steel bars under combined torsional and axial loadings,”
in Mixed-Mode Crack Behavior, Miller K.J., McDowell D.L., Ed. West Con-
shohocken, PA (US): ASTM, 1979, pp. 295–311.

[105] Ritchie R.O., McClintock F.A., Nayeb-Hashemi H., “Mode III fatigue crack
propagation in low alloy steel,” Metallurgical and Materials Transactions A:
Physical Metallurgy and Materials Science, vol. 13, pp. 101–110, 1982.

[106] Nayeb-Hashemi H., McClintock F.A., Ritchie R.O., “Effects of friction and high
torque on fatigue crack propagation in mode III.,” Metallurgical and Materials
Transactions A: Physical Metallurgy and Materials Science, vol. 13, pp. 2197–
2204, 1982.

[107] Houlier F., Pineau A., “Propagation of fatigue cracks under polymodal load-
ing.,” Fatigue Fracture of Engineering Materials Structures, vol. 5, pp. 287–
302, 1982.

[108] Akama M., “Fatigue crack growth under non-proportional mixed loading in
rail and wheel steel part 1: sequential mode I and mode III loading,” Applied
Sciences, vol. 9, no. 2006, 2019.

[109] Reichard D.W., Parker R.J., Zaretsky E.V., “Residual stress and subsurface
hardness changes induced during rolling contact,” NASA technical note TN
D-4456, 1968.

[110] Reti T., “Residual stresses in carburised, carbonitrided and case-hardened com-
ponents (Part 1),” Heat Treatment of Metals, vol. 4, pp. 83–96, 2003.

[111] Hizli H., Kaleli T., Gur H., “Measurement of residual stresses in the carbur-
ized steels by non-destructive techniques,” Proceedings of 18th International
Metallurgy Materials Congress, UCTEA Chamber of Metallurgical Materials
Engineers, pp. 439–442, 2016.

[112] Zaretsky E.V., Parker R.J., Anderson W.J., “A study of residual stress induced
during rolling,” Journal of Lubrication Technology, vol. 91, pp. 314–319, 1969.

[113] Zhou R.S., “Surface topography and fatigue life of rolling contact bearings,”
Tribology Transactions, vol. 36, pp. 329–340, 1993.

[114] Palmgren A., Ball and Roller Bearing Engineering. Philadelphia,PA (US): SKF
Industries, 1945.

[115] P. A. Lundberg G., “Dynamic capacity of rolling bearings,” Acta Polytechnica
7, Mechanical Engineering Series, vol. 2, no. 4, pp. 96–127, 1952.

[116] Schlicht H., Schreiber E., Zwirlein O., “Fatigue and failure mechanism of bear-
ings,” I Mechanical Engineering Conference Publications, vol. 1, pp. 85–90,
1986.

[117] Shao E., Huang X., Wang C., “A method of detecting rolling contact crack
initiation and the establishment of crack propagation curves,” Tribology Trans-
actions, vol. 31, no. 1, pp. 6–11, 1987.

[118] Leng X., Chen Q., Shao E., “Initiation and propagation of case crushing cracks
in rolling contact fatigue,” Wear, vol. 122, pp. 33–43, 1988.

[119] ISO, “Rolling bearings - Dynamic load ratings and rating life,” Draft Interna-
tional Standard ISO/DIS 281, 1989.

151



[120] Zaretsky E.V., “Design for life, plan for death,” Machine Design, vol. 66, no. 15,
pp. 55–59, 1994.

[121] Harris T.A., McCool J., “On the accuracy of rolling bearing fatigue life predic-
tion,” Journal of Tribology, vol. 118, pp. 297–310, 1996.

[122] Otsuka A., Sugawara H., and Shomura M., “A test method for mode II fatigue
crack growth relating to a model for rolling contact fatigue,” Fatigue Fracture
of Engineering Materials Structures, vol. 19, no. 10, pp. 1265–1275, 1996.

[123] Ioannides E., Bergling G., Gabelli A., “An analytical formulation for the life of
rolling bearings,” Acta Polytechnica 7, Mechanical Engineering Series, vol. 137,
pp. 58–60, 1999.

[124] Kudish I.I., Burris K.W., “Modern state of experimentation and modeling in
contact fatigue phenomenon: Part II—Analysis of the existing statistical math-
ematical models of bearing and gear fatigue life. New statistical model of con-
tact fatigue.,” Tribology Transactions, vol. 43, no. 2, pp. 293–301, 2000.

[125] Simizu S., “Fatigue limit concept and life prediction model for rolling contact
machine wlements,” Tribology Transactions, vol. 45, no. 1, pp. 39–46, 2002.

[126] Miyashita Y., Yoshimura Y., Xu J.Q., “Subsurface crack propagation in rolling
contact fatigue of sintered alloy,” JSME International Journal, Series A, vol. 46,
no. 3, pp. 341–347, 2003.

[127] Kotzalas M.N., “Statistical distribution of tapered roller bearing fatigue lives at
high levels of reliability,” Tribology Transactions, vol. 127, no. 4, pp. 865–870,
2005.

[128] Bhargava V., Hahn G.T., Rubin C.A., “Rolling contact deformation, etching
effects and failure of high strength steels,” Metallurgical and Materials Trans-
actions A, vol. 21, pp. 1921–1931, 1990.

[129] Cheng W., Cheng H.S., Mura T. Keer L.M., “Micromechanics modeling of
crack initiation under contact fatigue,” Journal of Tribology, vol. 116, pp. 2–8,
1994.

[130] Vincent A., Lormand G., Lamagnere P., “From white etching area formed
around inclusions to crack nucleation in bearing steels under rolling contact,”
in Bearing Steels: Into the 2st Century, Hoo J., Green W., Ed. West Con-
shohocken, PA (US): ASTM Special Technical Publication, 1998, pp. 109–123.

[131] Zhou R.S., Cheng H.S., Mura T., “Micropitting in rolling and sliding contact
under mixed lubrication,” Journal of Tribology, vol. 111, pp. 605–613, 1989.

[132] Sehitoglu H., Jiang Y, “Fatigue and stress analyses of rolling contact,” College
of Engineering, University of Illinois at Urbana-Champaign, Technical Report,
no. 161, 1992.

[133] Melander A., “A finite element study of short cracks with different inclusion
types under rolling contact fatigue load,” International Journal of Fatigue,
vol. 19, no. 1, pp. 13–24, 1997.

[134] Lormand G., Piot D., Vincent A. et al., “Application of a new physically bsed
model to determine the influence of inclusion population and loading conditions
on the distribution of bearing lives,” in Proceedings of the ASTM Symposium
Bearing Steel Technology, STP1419. ASTM Publication, 2002, pp. 493–508.

152



[135] Harris T.A., Yu W.K., “Lundberg-Palmgren fatigue theory: considerations of
failure stress and stresses volume,” Journal of Tribology, vol. 121, pp. 85–89,
1999.

[136] Jiang Y., Sehitoglu H., “A model for rolling contact failure,” Wear, vol. 224,
pp. 38–49, 1999.

[137] Ringsberg J.W., “Life prediction of rolling contact fatigue crack initiation,”
International Journal of Fatigue, vol. 23, no. 7, pp. 575–586, 2001.

[138] Liu Y., Stratman B., Mahadevan S., “Fatigue crack initiation life prediction of
railroad wheels,” International Journal of Fatigue, vol. 23, pp. 747–756, 2006.

[139] Liu Y., Mahadevan S., “A unified multiaxial fatigue damage model for isotropic
and anisotropic materials,” International Journal of Fatigue, vol. 29, pp. 347–
359, 2007.

[140] Kachanov L.M., “On the creep fracture time,” Izvestiya Akademii Nauk USSR
Otd Tekh, vol. 8, pp. 26–31, 1958.

[141] Bhattacharya B., Ellingwood B., “Continuum damage mechanics analysis of fa-
tigue crack initiation,” International Journal of Fatigue, vol. 20, no. 9, pp. 631–
639, 1998.

[142] Krajcinovic D., “Continuum damage mechanics,” Applied Mechanics Reviews,
vol. 37, no. 1, pp. 1–6, 1984.

[143] Hult J., “Introduction and general overview,” in Continuum Damage Mechanics
Theory and Applications, D. Krajcinovic and J. Lemaitre, Ed. New York (US):
Springer-Verlag, 1987.

[144] Lemaitre J., “Continuous damage mechanics model for ductile fracture,” Jour-
nal of Engineering Materials - ASME Transactions, vol. 107, pp. 83–89, 1985.

[145] Bhattacharya B., Ellingwood B., “A new CDM-based approach to structural
deterioration,” International Journal of Solids and Structures, vol. 36, pp. 1757–
1759, 1999.

[146] Bhattacharya B., “A damage mechanics-based approach to structural deterio-
ration and reliability. PhD Thesis,” Baltimore,MD (US), 1997.

[147] Lemaitre J.,A Course on Damage Mechanics. Dordrecht (NL): Springer-Verlag,
1992.

[148] Ancellotti S., Benedetti M., Dallago M. Fontanari V., “Fluid pressurization
and entrapment effects on the SIFs of cracks produced under lubricated rolling-
sliding contact fatigue,” 21st European Conference on Fracture, Procedia Struc-
tural Integrity, vol. 2, pp. 3098–3108, 2016.

[149] M’Ewen E., “Stresses in elastic cylinders in contact along a generatrix (in-
cluding the effect of tangential friction),” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 40:303, pp. 454–459, 1949.

[150] Poritsky H., “Stresses and deflections of cylindrical bodies in contact,” Journal
of Applied Mechanics, vol. 17, pp. 191–201, 1950.

[151] Smith J.O., Liu C.K., “Stresses due to tangential and normal loads on an elastic
solid,” Journal of Applied Mechanics, vol. 20, pp. 157–166, 1953.

[152] Sackfield A., Hills D.A., “Some useful results in the classical Hertz contact
problem,” Journal of Strain Analysis, vol. 18, pp. 101–108, 1983.

153



[153] ——, “A note on the Hertz contact problem: correlation of standard formulae,”
Journal of Strain Analysis, vol. 18, pp. 195–201, 1983.

[154] Williams J.A., Dwyer-Joyce R.S., “Contact between solid surfaces,” in Engi-
neering Tribology, Williams J.A., Ed. University of Cambridge (UK): Cam-
bridge University Press, 2005, ch. 3.

[155] Lemaitre J., Desmorat R., Engineering damage mechanics: ductile, creep, fa-
tigue and brittle failures. Berlin (GER), New York (US): Springer, 2005.

[156] Devree J.H.P., Brekelmans W.A.M., Vangils M.A.J., “Comparison of non local
approaches in continuum damage mechanics,” Computers Structures, vol. 55,
pp. 581–588, 1995.

[157] Chow C.L., Wei Y.A., “Damage mechanics model of fatigue crack initiation in
notched plates,” Theoretical and Applied Fracture Mechanics, vol. 16, pp. 123–
133, 1991.

[158] Beheshti A., Khonsari M.M., “A thermodynamic approach for prediction of
wear coefficient under unlubricated sliding condition,” Tribology Letters, vol. 38,
pp. 347–354, 2010.

[159] Paas M.H.., Schreurs P.J., Brekelmans W.A., “A continuum approach to brittle
and fatigue damage: theory and numerical procedures,” International Journal
of Solids and Structures, vol. 30, no. 4, pp. 579–599, 1993.

[160] Pasic H., “A unified approach of fracture and damage mechanics to fatigue
damage problems,” International Journal of Solids and Structures, vol. 29,
no. 14/15, pp. 1957–1968, 1992.

[161] Tiejun W., Zhiwen L., “A continuum damage model for weld heat affected zone
under low cycle fatigue loading,” Engineering Fracture Mechanics, vol. 37, no. 4,
pp. 825–829, 1990.

[162] All Metals Forge Group. (). “AISI/SAE 4340 Alloy Steel,” [Online]. Available:
%7Bhttps://www.steelforge.com/alloy-steel-4340/%7D.

[163] Matweb - Material property data. (). “AISI E 52100 Steel (100Cr6, SUJ2,
UNS G52986),” [Online]. Available: %7Bhttp://www.matweb.com/search/
DataSheet.aspx?MatGUID=d0b0a51bff894778a97f5b72e7317d85&ckck=1%
7D.

[164] Voyiadjis G.Z., Kattan P.I., “A comparative study of damage variables in
continuum damage mechanics,” International Journal of Damage Mechanics,
vol. 18, pp. 315–340, 2009.

[165] Harris T.A., Barnsby R.M., “Life ratings for ball and roller bearings,” Pro-
ceedings of the Institution of Mechanical Engineering, vol. 215, pp. 577–595,
2001.

[166] Korsunsky A.M., James K.E., Aylott C. Shaw B.A., “Residual stresses in
induction-hardened gear teeth mapped by neutron diffraction,” Journal of Strain
Analysis, vol. 37, no. 4, pp. 337–344, 2002.

[167] Leonardo Helicopters Division,AW169 Emergecy Medical Services (EMS). Leonardo
S.p.a., 2020.

[168] LEONARDO. (). “AW169 Next Generation Versatility,” [Online]. Available:
%7Bhttps://www.leonardocompany.com/en/products/aw-169%7D.

154



[169] Pratt Whitney Canada. (). “PW210 - Shaping a new generation of helicopters,”
[Online]. Available: %7Bhttps://www.pwc.ca/en/products-and-services/
products/helicopter-engines/pw210%7D.

155




