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1. Introduction

The thesis introduces the problem of mini-
mal hypersurfaces and the mathematical tools
needed to approach it, then it is presented and
proved a �atness condition for minimal stable
hypersurfaces and from the results in [1] an ex-
tension of [5, Theorem 2] in the �at ambient
case is proven. In order to prepare the reader
for the calculations a rapid introduction to vec-
tor bundles and sections is presented. The focus
is on the de�nition of connection in the partic-
ular vector bundle L(⊗mTM, V ), which arises
from a repetitive application of the connection,
but also choosing V = R corresponds to the ten-
sor bundle. With this connection, di�erentiation
is introduced in general vector bundles and it is
possible to introduce the Hessian and the Lapla-
cian of sections.

2. Hypersurfaces

The most intuitive way to represent hypersur-
faces is through immersed smooth submani-
folds, alas this description does not include non-
regular hypersurfaces. The most general treat-
ment of hypersurfaces of any co-dimension that
includes irregularities and folding is given by
the integer multiplicity currents. With this de-
scription, any hypersurface given by a countable

union of C1 hypersurfaces is represented. The
general n-currents in U ⊂ Rn+k denoted Dn(U)
are the dual space of smooth compact di�eren-
tial n-forms denoted Dn(U). The space of cur-
rents is incredibly huge, being an extension of
classical distributions, and for it to be useful
some restrictions must be introduced. Notice
that D0(U) identi�es the classical distributions,
furthermore, the structure theorem of distribu-
tions is valid also for currents and the concept
of order can be thence extended. For the rep-
resentation of hypersurfaces, the �rst restriction
is to consider only zeroth order currents, that is
the dual of continuous di�erential n-forms, the
operator norm as dual is called mass and geo-
metrically is the area of the hypersurface it is
supported on. The mass MW (T ) of the current
T with respect to the compact set W ⋐ U is

MW (T ) = sup
|ω|≤1

ω∈Dn(U)
supp(ω)∈W

T (ω) (1)

with |ω| = supx ⟨ω, ω⟩
1/2. The general Riesz

Theorem regarding dual of continuous maps is
applicable holding a representation of zeroth or-
der currents through a Radon measure µT and
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an n-vector T⃗ as

T (ω) =

∫
Rn+k

⟨ω(x), T⃗ (x)⟩ dµT (x). (2)

The last step to arrive at the integer multiplic-
ity currents is to consider only zeroth order cur-
rents for which there exist an n-recti�able subset
M ⊂ U , a positive integer-valued Hn-integrable
function θ(x), and an Hn-measurable function
ξ :M →

∧
n(Rn+k) such that for Hn almost ev-

erywhere ξ(x) = τ1 ∧ ...∧ τn with {τi} orthonor-
mal basis for TxM , and

T (ω) =

∫
M

⟨ω(x), ξ(x)⟩ θ(x) dHn(x) (3)

These currents are fully determined by the as-
sociated set M , the function θ, and the ori-
entation ξ, hence it is convenient the notation
T = τ(M, θ, ξ), from which is evident that these
types of currents have an associated integer n-
varifold V = v(M, θ) on which they introduce
an orientation. The de�nition of the boundary
of a current is necessary to introduce the com-
pactness result, extending the Stokes Theorem
the boundary ∂T ∈ Dn−1(U) of T ∈ Dn(U) is
de�ned as

∂T (ω) = T (dω) ∀ω ∈ Dn−1(U). (4)

The compactness result for integer multiplic-
ity mentioned requires the sequence to have a
bounded mass of both the currents and their
boundary, under this bound it is possible to
extract a subsequence converging to an inte-
ger multiplicity current. From this compactness
result the existence of currents minimizing the
mass among the competitors with �xed integer
multiplicity boundary, is given by the applica-
tion of the direct method. A compactness result
holds also for these minimizing currents.
When considering only co-dimension one cur-
rents which are the boundary of a set, another
analogous description may be used through the
Caccioppoli sets or sets of �nite perimeter,
whose boundary de�nes a hypersurface. The
de�nition of such sets corresponds to the require-
ment of having the characteristic function in the
set of Bounded Variation functions. Hence all
the nice properties of BV functions can be lever-
aged.

3. Variations

Computing the �rst variation of the area func-
tional when the hypersurface S is variated
through the vector space X is obtained

δA =

∫
S
divX = −

∫
S
⟨X,H⟩ (5)

where the divergence is in S and not in the entire
ambient space, andH represents the generalized
mean curvature vector. The integration is ab-
stract so to include also the n-varifolds (hence
currents) in which case the integration repre-
sents the duality with the associated measure
and the second equality de�nes H. From (5)
holds the statement that minimal hypersurfaces
(i.e. critical points of area functional) have van-
ishing mean curvature.
Computing the second variation in the setting of
a submanifold S of co-dimension one embedded
in a general manifold M , where the variation is
given by the vector �eld X = uν with ν normal
vector, it holds

δ2A =

∫
S
|∇u|2 − (|A|2 +Ric(ν, ν))u2 dVg (6)

where Ric is the Ricci tensor of the ambient
space, and A represents the second fundamen-
tal form.

4. Bernstein Theorem

The most important result in the topic of mini-
mal hypersurfaces is the Bernstein Theorem

Theorem 4.1 (Bernstein Theorem). Minimiz-

ing hypersurfaces in the whole Rn+1 are hyper-

plane for n < 7. A counter-example for ambient

dimensions 2m with m ≥ 4 is given by the mini-

mizing Simons Cone S2m which gives counterex-

amples also in dimensions 2m+ 1 as S2m × R.
To prove the theorem the minimizing hypersur-
face S is blown-up and blown-down resulting in
again two minimizing hypersurfaces, the mono-
tonicity equation and the continuity of the area
functional for minimizing sequences imply that
the two blown hypersurfaces are cones. The reg-
ularity result regarding the measure of the sin-
gular set of minimizing hypersurfaces concludes
the proof, in fact

Hn−7+α(sing(S)) = 0 ∀α > 0 (7)
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proved in [4, Theorem 28.1] using a speci�c
variation in the second variation formula and a
dimension-reducing argument. The blown hy-
persurfaces for n < 7 are non-singular cones,
hence hyperplanes, implying that the hypersur-
face itself is also �at.
The discussion on stable minimal hypersurfaces
will be limited to smooth co-dimension one em-
bedded submanifolds, hence it is important that
the counter-example of the Bernstein Theorem
can be extended also in the smooth case. The
smoothing of minimizing cones with singular-
ity in the origin can be found in [3], the proof,
which uses the framework of currents, is dis-
cussed. This result implies that also when only
smooth competitors are considered, for n ≥ 7
there are non-stable minimal hypersurfaces.

5. Stability

Stability is discussed for smooth, complete, con-
nected, and orientable embedded minimal sub-
manifolds denoted with S. The stability con-
dition (6) corresponds to the requirement of
positivity of the di�erential, symmetric, and
strongly elliptic operator

LS = −∆− V (8)

with V = |A|2 +Ric(ν, ν). The spectrum of LS

is discrete and diverging to in�nity, being the
inverse of a symmetric compact operator, hence
stability coincides with the requirements of hav-
ing a positive �rst eigenvalue. The behavior of
the eigenvalues under contraction is given by the
Morse Index Theorem [6].

Theorem 5.1. The eigenvalues of LS in gt(Ω)
where gt is a contraction are strictly increasing

functions of t. Furthermore, there exists an ε for
which if the area of the contraction is less than

ε then all the eigenvalues are positive.

Hence as the area of the domain tends to zero the
negative eigenvalues one by one passes through
zero and become positive, implying that small
enough patches are stable. Also given that the
eigenvalues are strictly increasing in t implies
that non-compact stable minimal hypersurfaces
are strictly stable. Thanks to strict stability the
following theorem is proved.

Theorem 5.2. If the stable minimal hypersur-

face S considered is non-compact then there ex-

ists a function u > 0 on S such that Lu = 0.

To prove it non-compactness gives strict stabil-
ity, hence zero is never an eigenvalue, and thanks
to Fredholm's alternative the boundary value
problem {

LSv = 0

v = 1
(9)

has a unique strictly positive solution. By solv-
ing this problem on domains that exhaust S and
renormalizing the solutions, it is shown the exis-
tence of a function u > 0 in S such that LS = 0
as the limit of these renormalizations. This func-
tion is fundamental for one of the rigidity results
presented later.

6. Rigidity of Bernstein Theo-

rem

The following results are for smooth, complete,
connected, and orientable manifolds embedded
in Rn+1 and n ≥ 2. The �rst result shows that a
bound with the �rst eigenvalue of the Laplacian
on the second form is su�cient for stability and
�atness.

Theorem 6.1. Let M be a minimal smooth,

complete, connected, and orientable submanifold

embedded in Rn+1 with n < 6. Suppose that

for any ball B(p, r) p ∈ M it holds the bound

|A|2(x) ≤ λ1(−∆) ∀x ∈ B(p, r), where λ1(−∆)
is the �rst eigenvalue of −∆ in B(p, r). Then

the hypersurface is stable and �at.

To prove this result it is �rst needed a bound
from below for the Ricci curvature by the second
form. Gauss Equation for submanifolds of �at
space with vanishing mean curvature becomes

Ric = −A2

and thanks again to zero mean curvature it holds
the improved bound

Ric = −A2 ≥ −n− 1

n
|A|2 (10)

it is now su�cient to apply the bound on
λ1(−∆) valid on balls found in [2, Theorem 5.2].
In fact for any ε it is possible to choose a radius
r of the ball for which the bound becomes

λ1(−∆) ≤ (n− 1)2maxBr |A|2

4n
+ ε (11)

this is incompatible with the supposed bound for
non-zero second form as

max
Br

|A|2 ≤ (n− 1)2maxBr |A|2

4n
+ ε (12)

3



Executive summary Davide Grisi

is absurd if (n−1)2

4n < 1, that is for n < 6. Con-
cluding the proof.
The results in [1] are repurposed as an extension
to stable hypersurfaces of Theorem 2 in [5] in the
case of �at ambient space. This extension will
hold as a corollary the �atness of stable minimal
hypersurfaces in R4 and R3.

Theorem 6.2. Denoting with u the function of

Theorem (5.2), let f = [2β − k(q − n)]log(u)
with k > 0, q + δ ∈ [4, 4 +

√
8/n] for δ >

0 small enough and β > 0 satisfying |β −
1| <

√
2− q−2

4(q−4+2/n) . Introducing the confor-

mal metric g̃ = u2kg. Suppose that the confor-

mal metric is complete and

lim
R→∞

1

Rq+δ

∫
Bg̃

2R

e−f dVg̃ = 0 (13)

thenM is totally geodesic (being restricted to �at

ambient space it is �at).

The proof is given by showing that ∀ψ ∈
C∞
0 (M) it holds the integral estimate∫
M |A|q+δu−2β−kδψq+δ dVg ≤ C

∫
M u−2β−kδ|∇ψ|q+δ dVg

that is [1, Lemma 2.5] with the added param-
eter β, and corresponds with [5, Theorem 1]
weighted. To conclude choosing for ψ the cuto�
function for the conformal metric ball Bg̃

2R(x0),
which is compact thanks to the completeness of
g̃, results in∫

M |A|q+δu−2β−kδηq+δ dVg ≤ C
Rq+δ

∫
Bg̃

2R(x0)
e−f dVg̃

concluding the proof.

Corollary 6.1. For n = 2 and n = 3, smooth

stable minimal hypersurfaces in Rn+1 are �at,

hence minimizing.

The proof is given by satisfying the requirements
of Theorem (6.2). In fact, the completeness of
the conformal metric is proved in [1], together
with a lower bound for the 2-Bakry-Emery-Ricci
tensor for the case n = 3. Hence using the
weighted Bishop-Gromov volume comparison for
n = 3 and the classical volume comparison for
n = 2 the limit in Theorem (6.2) is satis�ed
proving �atness.

7. Conclusions

Considering the problem of whether smooth sta-
ble minimal hypersurfaces are �at, hence coin-
cident with the minimizing ones, it has been

shown that for n ≥ 7 the answer is no from the
smoothing of singular cones. The corollary of
Theorem (6.2) gives a positive answer for n = 2
and n = 3, while for n = 4 and n = 5, it is
still yet to prove the completeness of the con-
formal metric and an adequate volume compari-
son. Regarding n = 6 the theorem cannot prove
�atness due to the bound on q. Also, Theorem
(6.1) gives �atness for n < 6 under the condition
|A|2(x) ≤ λ1(−∆) which, if shown to be true a
priori for stable hypersurfaces, would close the
problem apart from n = 6. Both theorems share
the limit at n = 6, this could certainly be a coin-
cidence, but may also be a hint that the rigidity
result does not hold for n = 6.
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