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1. Introduction
Ultrafast optics studies the propagation of ultra-
short pulses of laser light into strongly nonlinear
media, e.g. optical fibre. This propagation re-
sults in the generation of broadband light known
as the supercontinuum (SC) spectrum [2]. Gen-
erated spectra depend nonlinearly on parameters
describing the laser light pulses, as well as fibre
characteristics. Scientists necessitate SC gener-
ation in numerous scenarios, e.g. spectroscopy,
optical tomography, meteorology. Depending on
the scenario, the scientist may require a spectrum
with certain characteristics. Therefore, generat-
ing SC spectra as close as possible to the re-
quired spectrum is an important task. However,
knowing the correct parameters to generate the
requested SC spectra is a complicated inverse
problem because it would demand running con-
tinuously numerical simulations of the SC gen-
eration dynamic system, namely the generalized
nonlinear Schrödinger equation (GNLSE).

As in other inverse problems of parameter es-
timation, deep learning techniques represent a
possible solution. Neural networks can indeed
learn from vast dataset generated by simulating
the dynamic system. Such dataset consists of
parameters-object pairs collected from the sim-
ulation forward pass, e.g. parameters-spectra in

our specific case. These pairs can be leveraged to
train deep learning models that learn to estimate
the parameters.

In this thesis, we also propose two neural net-
works (NNs), fully-connected (FC) and convo-
lutional (CNN), to solve the inverse problem of
SC generation, i.e. estimating laser light pulses
parameters generating a target SC spectrum.

Typically, the loss functions used to train neu-
ral networks to solve inverse problems penalize
parameter errors, instead of errors in the forward
domain. In nontrivial inverse problems, the pe-
nalization on the forward domain is impossible
due to computational-demanding or unknown
forward passes. To the best of our knowledge,
we are the first to propose a surrogate weighted
loss function that approximate the loss in the
forward domain, i.e. the spectra.

We train the proposed networks by optimizing
our weighted loss function. The method that
computes the weighted loss is general, and it
can be potentially applied to other parameter
estimation inverse problems, regardless of the
SC generation scenario. Compared to previous
works [1] based on Genetic Algorithms, the neural
networks have fast convergence and can predict
the laser-pulse parameters for new spectra taking
a few seconds on CPU.
We show that the weighted loss function is
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Figure 1: Overview of the problem and solution. In the considered inverse problem, the SC generation
represents the forward pass from parameters to spectra. Fully-connected and convolutional networks
learn the inverse process. From the parameters-spectrum pairs, we compute a weighted loss function
LW as nonparametric local polynomial approximation (LPA) of the spectrum loss LS. We then emply
the weighted loss function LW to train the networks.

more beneficial than the conventional isotropic
loss defined on the parameter space. Moreover,
the NNs outperform naive methods such as the
1-nearest neighbour. Finally, we investigate the
network results on non-generated spectra, namely
Gaussian spectra and absorption spectra. The
networks can predict laser parameters to some
degree, and the weighted loss function helps move
toward more accurate predictions.
Part of this thesis is founded upon our publi-

cation in [6].

2. Problem formulation
We define an arbitrary spectrum s ∈ S ⊂ L1(R)
as a power density function of the wavelengths.
Given the laser pump parameters y ∈ Y ⊂ RP ,
we can obtain supercontinuum spectra with the
supercontinnum generator process G indicated as

G(y) : Y→ SY ⊂ S, (1)

where SY is the set of SC spectra that can be
generated from Y.

Our goal consists of learning the inverse of G
by training a machine learning modelM : S→ Y
such that

M(s) = arg min
y∈Y

{d [G(y), s]}, (2)

where d : S×S→ R+ denotes a distance function
over the spectrum domain. The distance function
should consider main spectral features, while
ignoring noise-like components, like those visible
in the spectrum before binning of Figure 1.
A numerical simulation of the GNLSE imple-

ments the generator process G. Hence, we adopt
a discrete formulation of arbitrary spectra as vec-
tors σ ∈ RN over wavelengths λ ∈ RN . There-
fore, S ⊂ RN ×RN , where N = 4096 and is fixed
by the simulator implementation.
The simulation is too expensive to embed in

every iteration of model training loops. However,
we can still execute it to generate a dataset TR
of K spectrum-parameters pairs since this is a
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one-time task:

TR = {(s(k),y(k)) ∈ SY × Y : s(k) = G(y(k))}Kk=1,

(3)
We exclusively consider P = 3 laser-light pulse
parameters, i.e. pulse wavelength λ0, duration τ ,
and power peak Pp. We kept constant everything
else, such as the fibre characteristics.

3. Proposed solution
We illustrate the proposed solution in Figure 1.
Firstly, we preprocess the spectra to areas, reduc-
ing their dimensionality via Binning. Secondly,
we feed the preprocessed spectra to the modelM.
The model is trained to predict the parameters
that generated the spectra in the forward pass.
In this way,M can learn the inverse process G−1.
Then, from the predictions we can assess the
parameter error via parameters loss LY:

LY(y, ŷ) =
1

P

P∑

j=1

‖yi − ŷi‖. (4)

Finally, the model predictions ŷ can undergo the
forward pass to generate the spectra ŝ. Hence,
the performance can also be assessed by the spec-
trum loss LS:

LS(b, b̂) =
1

R

R∑

j=1

‖bj − b̂j‖, (5)

where b, b̂ ∈ R60 denotes binned areas, i.e. pre-
processed spectra.
Given the problem formulation in Section 2,

we should optimize the model M with the
spectrum loss LS. However, this is impossible,
because it would require to run the generator
at every backpropagation step. Therefore, we
optimize both models with our weighted loss
function LW , i.e. the anisotropic surrogate loss
over the parameter space that approximates the
ideal spectral loss LS.

3.1. Preprocessing
Firstly, we preprocess the dataset TR, by ap-
plying integral binning to every spectrum (λ,σ).
Integral binning B is an operator that transforms
spectra into n aggregated bins, namely binned
areas a, by integrating over a particular interval
I. The binning aims at reducing the dimension-
ality N = 4096 of the spectrum power densities

and wavelengths to Rn. The lower dimensional-
ity is particularly convenient for the FC model,
in which the number of network trainable pa-
rameters would explode otherwise. Moreover,
performing the binning over the same interval for
each spectrum allows us to directly compare the
preprocessed spectra on a reference wavelength
grid.
Secondly, we convert the binned areas to dB

values and, in some cases, we normalize the areas
within the clipped interval of [−40dB, 0]. The
normalization is applied only to the FC inputs
and the arguments of LS, but not to the CNN
inputs.

3.2. Weighted loss function
We define the weighted loss function LW : Y2 →
R+ as a nonparametric local polynomial approx-
imation (LPA) of a given spectral loss LS :
B(S)2 → R+ over the binned areas. In particular,
we compute a weighted loss for any i-th trainset
pair (s(i),y(i)) as

LW (y(i), ŷ) =
1

2

√
w(i)> · (y(i) − ŷ)

2
, (6)

where w(i) ∈ RP are the weights relative to
the neighbour centred on the i-th trainset pair
(s(i),y(i)), ŷ =M(s(i)) denotes the model predic-
tion. Our method computes the weights w(i) as

w(i) = arg min
w

{ K∑

j=1

c
(i)
j ·

·
[
L2S
(
b(i), b(j)

)
− L2W

(
y(i),y(j)

) ]2}
, (7)

where c
(i)
j are the locality coefficients of a

P -dimensional isotropic Gaussian window with
a fixed spread α, i.e. c(i)j = exp{−α‖y(i),y(j)‖2}.
We apply the Dual Frame technique [3] to
minimize Equation (7).
The ideal loss LS can denote any function of

the areas, depending on the problem. In the case
of SC spectra, we mainly consider the mean ab-
solute error (MAE) from Equation 5. With non-
SC-generated spectra, i.e. s ∈ S but /∈ SY, other
spectrum loss functions are more helpful. For
instance, we can approximate the intersection-
over-union spectrum loss:

LIOUW → LIOUS (b, b̂) =

∑R
j min(bj , b̂j)

∑R
j max(b, b̂j)

, (8)
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Figure 2: Neural network architectures. Blocks
named dense and conv1 denotes fully-connected
and 1D convolutional layers, respectively. Every
layer has the ReLU activation, except for the
output ones that have linear activations.

where LIOUW indicates the weighted loss function
computed over LIOUS . This loss function con-
siders the shared energy between the two areas,
rather than the shared peaks in the plain MAE
of Equation 5.

3.3. Models
We propose two models, i.e. a fully-connected
neural network (FC), and a convolutional neural
network (CNN). Figure 2 illustrates their archi-
tecture.
The FC model receives in input binned nor-

malized areas b ∈ R60. The binned areas have
been integrated on a common predefined grid
IC . Moreover, the peak value of each binned
area is stacked to the input feature vector. On
the other hand, the CNN model integrates each
input s = (σ,λ) in 1024 bins over the grid
Iλ = (min{λ},max{λ}), without performing the
normalization. However, the integration grid ex-
tremes are passed to the network to help the
localization of the spectrum in the wavelengths.

Additionally, we train each modelM indepen-
dently for T = 10 times with different trainable
parameter initialisations. Eventually, we create
a model ensembleM, where each prediction is
the average of the predictions coming from the

T models:

ŷ =M(s) =
1

T

T∑

t=1

Mt(s). (9)

This ensembling helps reducing the over-fitting
and makes the evaluation more steady.

4. Findings
In the following experiments, we assess the per-
formance of the neural networks. Firstly, we
evaluates the neural networks on the testing set
constituted by SC-generated spectra. Secondly,
we investigate the generalization of NNs by pre-
dicting the parameters of non-SC-generated spec-
tra, namely Gaussian and absorption spectra.

4.1. Testing set
To asses our methods, we split the dataset
into F disjoint folds, and train an ensemble
modelMi on fold fi for each architecture, where
i = 1, . . . , F . Then, we test each modelMi on
the next fold f(i mod F )+1. We accumulate every
metric over the test folds. Specifically, we com-
pute the parameters error EY and the spectrum
error ES with loss functions LY and LS, respec-
tively. Despite the error ES requires invoking the
generator on model predictions, this generation
is computationally feasible since it is a one-time
task, like the training set generation. To study
the impact of the training set size over model
performances, we repeat the experiment for mul-
tiple numbers of folds F = 5, 10, 20. Table 1
summarises the results.
First, we found that models trained optimiz-

ing the weighted loss function LW achieve lower
spectrum error than models trained to minimize
LY. One exception to this rule is the CNN
trained on 20 folds, where the spectrum error
increases. We hypothesize that this is due to
the scarcity of samples in this category. In-
deed, we can observe that the spectrum error
improvements ∆ES reduces when the samples
per training set diminish, i.e. folds increase. Sec-
ond, both models outperform the 1-nearest neigh-
bour baseline (1N ) defined as the parameters of
the most similar spectrum in the training fold
f , i.e. 1N (b?) = arg min(b,y)∈f LS(b, b?). Third,
despite the CNN having almost half of parame-
ters of the FC, the CNN unsurprisingly achieves
lower errors than the FC model. Among the
reasons, we remark that the CNN applies a less
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F = 5 F = 10 F = 20

EY ES ∆ES EY ES ∆ES EY ES ∆ES

1N 0.123 0.354 - 0.161 0.449 - 0.206 0.569 -

FC LY 0.029 0.168 (-7.1%) 0.045 0.235 (-8.5%) 0.066 0.329 (-5.5%)LW 0.032 0.156 0.047 0.215 0.070 0.311

CNN LY 0.014 0.130 (-11.5%) 0.022 0.186 (-7.5%) 0.034 0.268 (+1.5%)LW 0.017 0.115 0.028 0.172 0.044 0.272

Table 1: Results of model predictions over the testing generated spectra. Each row consider a different
model, namely 1-nearest neighbour 1N , fully-connected FC and convolutional neural network CNN.
We trained the neural networks both with parameter loss LY and weighted loss LW . We repeated each
training-test procedure for the dataset split in F = 15, 10, 20 folds.
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Figure 3: Examples of spectra (above) and rel-
ative areas (below) from testing set predictions.
In each figure, we plot the original target spec-
trum and the spectra generated from the pre-
diction of FC and CNN models. Both samples
are randomly drawn from the testing set, respec-
tively from the FC spectrum error ES intervals
of [40, 60]-percentiles and [90, 100]-percentiles.

coarse preprocessing than the FC since we expect
the CNN to learn the feature extractor.

Finally, the spectra generated from the predic-
tions of the models are very close to the target
spectra. As Figure 3 highlights, this is true even
for the testing samples with higher spectrum
error.

4.2. Non-SC-generated spectra
Additionally, we examine the generalization of
our method by testing on two examples of arbi-

trary spectrum groups, namely Gaussian and ab-
sorption spectra. On the one hand, the Gaussian
spectra mimic user hand-drawn profiles, which
are more imprecise than SC spectra. On the other
hand, absorption spectra describe highly accu-
rate wavelengths absorbed by substances. For
these reasons, these tasks are ambitious since gen-
erating their spectra with G may be physically
impossible.

In the case of Gaussian spectra, we test over a
dataset constituted by fitting of Gaussian Mix-
ture models on the testing set. We report two ex-
amples in Figure 4. We can see that the networks
are able to predict decent laser parameters that
lead to reasonably close spectra. Even in case of
degenerate Gaussian areas (Figure 4 right), the
generated spectra exhibit similar features to the
target ones. Therefore, we stress the challenge
further, by replacing the Gaussian Mixture fit-
ting with sum of random Gaussian functions. In
this case, the prediction quality is promising but
requires improvements.
In the case of absorption spectra, the mod-

els can partially predict decent laser parameters
ŷ that generate close spectra ŝ to some degree.
Nevertheless, predictions are reasonable enough
to concentrate the power densities of ŝ around
the target wavelengths of interest. In particular,
we notice that models trained with LIOUW (8) tend
to lead to more plausible profiles. Figure 5 high-
lights this effect by comparing the result of LIOUW

and LY on the Acetylene absorption spectrum.
We can observe that the FC trained without
weighted loss don’t even generate the parameters
for an envelope of the target spectrum.
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Figure 4: Examples of spectra (above) and re-
lated areas (below) generated from Gaussian
dataset predictions. Similarly to Figure 3, the
samples are drawn from the FC ES percentile
intervals [26, 50] and [76, 100].

5. Conclusions
We propose a novel method to train neural net-
works for parameter estimation inverse problems
leveraging a surrogate loss function for the for-
ward domain. Researchers can potentially ap-
ply this method to other parameter estimation
inverse problems where the forward pass is not
available at training time. In our case, we employ
this method to solve the inverse supercontinuum
generation.

Future work will focus on multiple directions.
We will extend our method by considering spa-
tially adaptive approximations [4]. We believe
that adaptive weighted schemes can improve the
predictions on arbitrary spectra. Then, we will
test the validity of our current method and its
future extensions on other parameter estimation
inverse problems, such as the estimation of airfoil
shape parameters from wind velocity maps [5].
Regarding arbitrary spectra, we will investigate
both changes to current models and brand-new
architectures to improve the results.
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Abstract
Supercontinuum generation creates broadband spectra from the propagation of short
light pulses emitted by a laser pump into optical fibres. The characteristics of the pulses
determine the profile of the generated spectrum. Therefore, scientists can choose the
parameters to control the laser light pulses. However, determining the parameters of
desired spectrum profiles is complicated, due to the nonlinearity of the process. It is also
possible to simulate this process by forwarding the parameters to computationally-intensive
numerical solvers. Therefore, machine learning models can leverage simulated samples
to learn the inverse process. However, the training procedures can not invoke the costly
simulation.

We propose two neural networks, fully-connected and convolutional, to estimate the
parameters that generate spectra as close as possible to desired ones. We train the models
via our proposed weighted loss function. The weighted loss function approximates the
ideal loss over the spectra space. The method is generic and potentially transferable to
other inverse problems that necessitate computational-expensive simulations. We show
that the loss function improves the quality of the predictions, and it can help achieve
spectra closer to the desired ones. We discuss issues in adopting the proposed solution to
arbitrary spectra, i.e. not produced by the supercontinuum process.

Keywords: inverse problem, supercontinuum, loss function, deep learning
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Sommario
La generazione supercontinua crea spettri a banda larga dalla propagazione di brevi impulsi
di luce emessi dai laser in fibre ottiche. Le caratteristiche degli impulsi determinano la
forma dello spettro generato. Di conseguenza, gli scienzati possono scegliere i parametri
per modificare gli impulsi di luce del laser. Tuttavia, trovare i parametri dello spettro
desiderato è complicato, data la nonlinearità del processo. Comunque, è possibile simulare
questo processo fornendo i parametri a risolutori numerici dall’alto costo computazionale.
Quindi, modelli di apprendimento automatico possono imparare il processo inverso dai
dati simulati. Ciononostante, il processo di allenamento non potrebbe mai invocare le
costose simulazioni al suo interno.

Proponiamo due reti neurali, interconnesse e convoluzionali, per stimare i parametri
che generano spettri il più vicini ai desiderati. Alleniamo entrambi i modelli con una nuova
funzione di costo pesata che proponiamo. La funzione di costo approssima quella ideale
definita sullo spazio degli spettri. Il nostro metodo è generale e potenzialmente trasferibile
ad altri problemi inversi, i quali simulatori sono computazionalmente costosi. Nella tesi,
mostriamo che la nostra funzione di costo migliora la qualità delle predizioni. Inoltre, può
aiutare a generare spettri che siano ancora più vicini ai desiderati. Discutiamo anche di
problemi nell’applicare la soluzione a spettri arbitrari, cioè non prodotti dalla generazione
supercontinua.

Parole chiave: problema inverso, supercontinuo, funzione di costo, apprendimento
profondo
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Abbreviations and Acronyms

Au Arbitrary unit

CNN Convolutional Neural Network

DL Deep Learning

FC Fully Connected

GNLSE Generalized Nonlinear Schrödinger Equation

GA Genetic Algorithm

GMM Gaussian Mixture Model

GPU Graphics Processing Units

HPT Hyperparameter Tuning

MAE Mean Absolute Error

ML Machine Learning

NN Neural Network

ReLU Rectified Linear Unit

SC Supercontinuum

SRG Sum of Random Gaussian Curves

SGD Stochastic Gradient Descent

TFWHM Temporal Full Width at Half Maximum
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Notation
Main general symbols:

x A vector.

xi i-th element of vector x.

x(n) n-th vector of a collection, such as a set or dataset.

A A matrix.

Aij Element of matrix A at i-th row and j-th column.

A> The (conjugate) transpose of A.

A† The pseudoinverse of A.

Ã The dual frame of A.

Main specific symbols:

Y Set of laser parameters.

S Set of arbitrary spectra.

SY Set of supercontinuum spectra generated from PARAMS

LW Weighted loss function.

LS Weighted loss function.

LY Weighted loss function.

G Supercontinuum generation, or generator.

B Integral binning operator.

s = (λ,σ) Spectrum with power density σ across the wavelengths λ.
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1| Introduction
Supercontinuum (SC) lasers propagate high-power train pulses in a nonlinear optical fibre,
producing broader spectra than classical monochromatic lasers [11]. Scientists employ
the resulting SC spectra for numerous applications, e.g., high-precision metrology, optical
coherence tomography (OCT), high-resolution imaging and remote sensing. Commonly,
scientists can configure the laser parameters to obtain output SC spectra. Alternatively,
they can predict the output spectrum for a given set of parameters by numerically simu-
lating the generalized nonlinear Schrödinger equation (GNLSE) [2], i.e. the mathematical
description of this system dynamics. Hence, it would be even more beneficial to invert the
SC generation. In this way, scientists could know the necessary parameters to generate the
target spectrum profile. For instance, OCT requires spectra in the near-infrared regions.

However, optimizing the SC generation output spectra is not a straightforward operation.
This is due to the rich landscape of nonlinear dynamics that affects the SC generation.
Determining the train pulses parameters to obtain the desired features is a hard and
ill-posed inverse problem. Machine learning (ML) techniques have shown encouraging
results in solving similar nonlinear inverse problem. In parameter estimation inverse
problems, the differential equation that describes the system, e.g. the GNLSE for the
SC generation, can be simulated for an arbitrary number of different parameter sets.
Therefore, parameters and outputs can respectively become targets and inputs for the
training of ML models. Hence, the ML model estimates the parameters given a generated
output. In the case of gradient-descent-based models, such as neural networks (NNs), it
is reasonable to propagate the error between the input and the object generated by the
estimated parameters. In this way, the models minimize this difference.

However, in our example of inverse problems, the forward model of the SC generation is
computationally-demanding. This also holds for all the other systems based on a nonlinear
Schrödinger equation. Therefore, the training process can not directly embed the forward
model to regenerate the outputs from predicted parameters. Hence, the loss over the
outputs is unavailable, i.e. in our problem, the spectrum loss.

The goal of this thesis is to solve the SC inverse problem. Simultaneously, we want to
minimize the distance between target spectra and generated spectra. Our proposition is
two-fold. First, we propose two neural network architectures that predict the estimated
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Figure 1.1: Supercontinuum generation process.

parameters. Second, we offer a method to approximate the ideal spectrum loss via a
weighted loss in the parameter domain. We employ this weighted loss function to train
the neural networks.

We show that the NNs perform more accurately than 1-nearest-neighbour searches over
the spectrum domain. We also show that the neural networks trained with the weighted
loss achieve better performances in the spectrum error than those trained with isotropic
losses on the parameters.

To further evaluate our solution, we consider two scenarios. First, Gaussian spectra,
which resembles possible hand-drawn spectra that a user could sketch. Second, absorption
spectra, adopted in science and industry to detect materials of interest. The generalization
power of our solution is not perfect yet, but we aim at increasing it in future work.
Nevertheless, the introduction of the weighted loss function visually improves the quality
of the regenerated spectra.

1.1. Contributions

Our contributions include the design and training of two model architectures, fully-
connected and convolutional neural networks, that solve the inverse problem of estimation
of laser pulse parameters. Moreover, we also introduce a novel weighted loss function
that optimizes neural networks for solving the inverse problem via approximation of the
ideal loss function in the forward domain, i.e., the spectra domain. Remarkably, The
adoption of our proposed weighted loss improves the estimation accuracy of both neural
networks, by reducing the spectrum error between targets spectra and the ones generated

1From Neath g., Creative Commons BY-SA 4.0, https://commons.wikimedia.org/wiki/File:Ti_
Sapph_YAG_supercontinnum.jpg.

https://commons.wikimedia.org/wiki/File:Ti_Sapph_YAG_supercontinnum.jpg
https://commons.wikimedia.org/wiki/File:Ti_Sapph_YAG_supercontinnum.jpg
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from predictions. Nevertheless, this technique is not specific to the inverse supercontinuum
generation, hence, it can potentially improve the accuracy in other inverse problems that
require computationally expensive simulations.

From a practical point of view, our contributions also include an entire software
framework for the comparison and fine-tuning of possible models. This framework takes
care of several aspects, e.g. distributed hyperparameter tuning, SC generation, weighted
loss computation, and metrics evaluation. Within this framework, we implement our
proposed solution in Python and Matlab, respectively used for the neural networks and
weighted loss approximation. Finally, we fit the proposed solution over a simulated dataset
of parameters-spectrum pairs. This dataset has been generated by executing a Matlab
solver provided by the Ultrafast Photonics Group of Tampere University.

1.2. Thesis structure

We organize the rest of this thesis as follows. Chapter 2 mathematically formulates the
problem of inverse supercontinuum generation. Chapter 3 provides background knowledge
to better understand the proposed solution, but also it reviews previous work both in the
field of parameter estimation for supercontinuum generation and deep learning in inverse
problems. Then, Chapter 4 illustrates the techniques designed to solve the SC problem.
Chapter 5 briefly describes their implementation. Afterwards, Chapter 6 empirically
evaluates the proposed solution. Evaluation continues in Chapter 7, that also discusses
problems and limitations of our current solution. Finally, the thesis concludes in Chapter 8,
where we introduce future research directions too.





2| Problem formulation
Firstly, this chapter mathematically describes the spectra generation process and involved
objects, i.e. spectra, SC generated spectra, and laser pump parameters. Then, given those
definitions, we continue formalizing the inverse problem solved in this thesis.

2.1. Spectra generation

We define an arbitrary spectrum s ∈ S ⊂ L1(R) as a power density function over the
wavelengths. We also define a supercontinuum spectrum as the result of the supercontinuum
generation process

G : Y→ SY ⊂ S, (2.1)

where Y ⊂ RP denotes the set of parameters of the SC generation process, and SY ⊂ S

represents the set of plausible spectra that the set Y can actually generate.
In this research, we exclusively consider P = 3 parameters that primarily influence

the SC generation. Specifically we focus on the parameters that describes the train of
laser pulses that propagate in the nonlinear fibre. The parameters y include the initial
wavelength λ0, the pulse duration τ , also known as temporal full width at half maximum
(TFWHM), and the pulse power peak Pp. We maintain constant all the other SC generation
parameters, e.g. the length of the nonlinear and its mode.

We consider only simulated SC spectra, i.e. the SC generation process G corresponds to
a numerical integration of the GNLSE. In this way, it is possible to obtain a larger set Y by
varying the SC generation parameters easily. Therefore, we adopt a discrete formulation
of the arbitrary spectra, that can now be seen as discretized power density vectors σ ∈ RN

associated to the wavelengths λ ∈ RN , i.e. as the pair s = (λ,σ) ∈ S = RN × RN , where
N = 4096 is the dimensionality implemented in the adopted generator. Figure 2.1 reports
three examples of spectra simulated by the generator.
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Figure 2.1: Example of output spectra from the generator. On the left, we show three
possible generated SC spectra. On the right, we show the details of the three spectra in
the wavelength interval (1400, 1700) nm.

2.2. Inverse problem

This thesis focuses on solving the inverse problem of inferring the parameters y ∈ Y that
generate the desired spectrum s ∈ S. Since the GNLSE can not be inverted analytically,
the resulting problem reduces to train an ML modelM : S→ Y such that

M(s) = arg min
y∈Y

{d [G(y), s]}, (2.2)

where the d : S× S→ R+ represents a generic distance function. We require the distance
function to detect only the salient features of the spectra, possibly avoiding the impact of
noise-like features and high frequencies illustrated in figure 2.1.

We assume that a training set TR of K spectrum-parameters samples is available to
train the ML model, and is defined as

TR = {(s(k),y(k)) ∈ SY × Y : s(k) = G(y(k))}Kk=1. (2.3)

We remark that it is possible to invoke G during the generation of TR, as well as during the
performance assessment of the model. However, its computationally-intensive requirements
prevent the adoption during the training phase.
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This chapter aims at providing the reader with sufficient information to familiarise with
the methods behind the problem and solution of this thesis work. Section 3.1 presents
the required deep learning fundamentals. In particular, we focus on fully-connected
neural networks, convolutional networks, and training procedures via cost functions.
Then, Section 3.2 reviews previous works in inverse Supercontinuum generation and deep
learning applied to inverse problems. Finally, Section 3.3 explains the algebra behind local
polynomial approximation.

3.1. Deep learning

Machine learning (ML) methods learn to solve several problems with data-oriented tech-
niques. These problems usually comprises supervised, unsupervised and reinforced learning.
Specific examples include regression, classification, clustering, taking actions in an environ-
ment. Typically, classical ML techniques require feature engineering processes, i.e. human
experts define new features to be computed from the dataset and fed to ML algorithm.
For example, a medical doctor provides a diagnosis from the patient symptomatology
based on observed characteristics, like fever presence. Similarly, an ML algorithm, e.g.
logistic regression, learns the correlation between a set of predefined features and the
target decision. However, classical ML algorithms rely heavily on data representation.
They cannot learn to perform a particular task from heterogeneous features like pixels in
images, words in corpora.

Deep learning (DL) is a sophisticated ML technique that solves this problem. DL
learns the representation from input data, as well as the mapping to the outputs. This is
particularly useful when it is hard to understand how to codify features from data. For
instance, in multi-class object classification tasks on images, it is hard to produce reliable
features for each class. In this thesis, we solve regression tasks over signals. Besides some
preprocessing that we could apply, it is not possible to engineer features further.

DL methods mimic the structure and functioning of the human brain. Like in the
human brain, DL methods define structures called artificial neural networks (ANN). ANNs
consist of graphs of neurons. Each neuron holds a value, namely, activation, computed by
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Figure 3.1: Generic fully-connected neural network representation with D hidden layers
and N inputs and M outputs.

its input. The activation is then passed as input to other neurons.
Deep neural networks have proven to outperform traditional solutions in several fields,

from image and computer vision to natural language processing. This thesis adopted
two solutions based on fully-connected (FC) neural networks and convolutional neural
networks (CNN), respectively described in sections 3.1.1 and 3.1.2.

3.1.1. Fully connected neural networks

Although the community often perceives DL as a modern technique, its lineage [33] has
deeper roots than modern personal computers. Fully connected neural networks were
among the firstly-introduced architectures.

Fully connected neural networks, also known as multi-layer perceptrons (MLP) and
feedforward artificial neural networks, dispose neurons into a particular kind of direct
acyclic graphs. These graphs partition the neurons into several groups called layers. The
number of layers D determines the depth of the network, and the number of neurons in
the i-th layer Wi determines the layer width. As Figure 3.1 shows, each neuron in the i-th
layer receives the values held in the previous one, the (i − 1)-th layer, for i = 1, . . . , D,
where the 0-th layer simply holds the input data.

Mathematically, we can represent FC layers as a simple composition of functions, such
as

ŷ = (fD ◦ fD−1 ◦ · · · ◦ f2 ◦ f1)(x),

fi(x; Θi, bi) = ai(Θix+ bi),

(3.1)

(3.2)
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where ai are known as activation functions. Typically, hidden layers use nonlinear functions,
such as Sigmoid, hyperbolic tangent or Rectified Linear Unit (ReLU) [18]. The ReLU
activation a(x) = max(0, x) improves the training speed and solves the vanishing gradient
problem. The output layer often uses linear and Sigmoid (Softmax) activations in regression
and classification tasks, respectively. The matrices Θi represents the weights of the i-th
layer, which has a dimensionality of Wi × Wi−1. The weights are the essence of the
expressive power of neural networks. The training loop optimizes them during the learning
process, as described in Section 3.1.3.

3.1.2. Convolutional neural networks

Convolutional neural networks (CNN) were among the earliest examples of successful
deep NNs ever trained [20]. Few researchers independently introduced CNNs in close
timeframes and with similar characteristics. Earlier, we had the Neocognitron [15], where
multiple layers of local feature detectors share weights. Second, LeCun et al. [34] deployed
a convolutional network to recognise handwritten characters. Additionally, Time-delay
neural networks proposed in [58] presented a similar architecture to convolutional networks
but applied to audio signals in a moving window. Even if CNNs have been present for
nearly three decades, real breakthroughs happened when the community started to employ
GPUs for large image datasets to solve large-scale object classification tasks. For example,
among the early breakthroughs, the 8-layers AlexNet [32] was trained with millions of
weights over 1 million pictures from the ImageNet dataset [52] on graphic cards. Since
then, researcher have proposed many deeper convolutional networks [23, 51, 55].

Nowadays, the deep learning community defines a CNN as a particular neural network
architecture containing at least one convolutional layer [20]. Structurally, we can coincive a
convolutional layer as an FC layer that shares weights across all the neurons, and its local
connections reduce the number of parameters by not connecting all the inputs with the
neuron2. Consequently, the number of parameters drastically decreases in convolutional
layers. The Figure 3.2 illustrates the differences between a 1D convolutional layer and an
FC one.

Mathematically, we can compute the output of a convolutional layer o given an input
2This is true if the convolutional layer has only one kernel. Otherwise, each kernel represents a different

aforementioned FC-like layer.
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(a) FC layer: 25 weights.

(b) Layer with local connections: 13 weights. (c) Convolutional layer, i.e. local shared con-
nections: 3 weights.

Figure 3.2: Weights comparison among classical FC layer, layer with local connections,
and convolutional layer.

x and the parameters θ, named kernel, as

o = a
[(
g1(x; θ) . . . gWi

(x; θ)
)]

+ b,

gj(x; θ) =
∑

m

xj+m · θm,

(3.3)

(3.4)

where Wi is indeed the size of the kernel, a(·) is the activation function, typically ReLU,
and b is the bias term. The function gj recall the discrete convolutional operator o[t] =

(θ ? x)[t] =
∑

m x[t−m]θ[m], but it is actually implemented in most DL framework as a
discrete cross-correlation operator.

We can further generalise the convolutional layer in multiple ways. Firstly, the input
could contain additional dimensions, called input channels Cin. In this case, we sum all
the kernel cross-correlation responses. This is particularly helpful for 2D convolutional
neural networks to process colourful images because we can consider each RGB planes as
an additional channel. Secondly, the layer outputs can contain additional dimensions too,
namely output channels Cout. On the one hand, we need these in hidden layers to propagate
different feature maps concurrently. On the other hand, we necessitate channels to encode
additional information in the overall network outputs, such as in image segmentation tasks
with fully-convolutional neural networks [37]. In this example, the locality information
spans across each separated pixel of the image. Therefore, there will be supplementary
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kernel weights for each input and output channel. For this reason, Formula 3.3 becomes

ok = a
[(
g1,k(X; Θ) . . . gWi,k(X; Θ)

)]
+ bk,

gj,k(X; Θ) =

Cin∑

c

∑

m

Xj+m,c ·Θm,c,k,

(3.5)

(3.6)

where k = 1, . . . , Cout.
Typically, downsampling layers, known as poolings, interleaves convolutional layers in

the overall architecture. These layers present small non-overlapping identity kernels that fit
the selected input cells to aggregators, such as maximum or average for Max and Average
pooling, respectively. Pooling layers serve not only to reduce computations, but also to
shrink the input size that consequently helps to prevent overfitting [9]. Therefore, CNNs
consists of stack of blocks with one or more convolution layers and possible poolings. Their
eventual feature map undergoes flattering and flows to FC layers. These last layers exploit
the representation learnt by the convolutional layers, and perform the actual classification
or regression task.

3.1.3. Training a neural network: cost functions

Previous sections described the mathematical formulae that neural network layers evaluate.
The calculations depend on the value of the weights that layers contain. A NN can learn
the weight values by tweaking them in the training process, during which an algorithm
optimizes them from the training set samples.

Regarding supervised learning tasks, the training process consists in minimizing a cost
function L(θ), also known as loss function, with respect to the network parameters θ given
a training set {

(
x(i),y(i)

)
}. In regression tasks, such as the one addressed in this thesis,

common loss functions includes Mean Absolute Error (MAE) and (Root) Mean Squared
Error (R)MSE. Considering the MAE, the loss function is defined as

L(θ) =
1

N

N∑

i=1

|y(i) − f(x(i); θ)|, (3.7)

where f is the function that the NN computes. Gradient-descent-based techniques can
optimize L. Basically, the gradient ∇θL of the loss function indicates the map of direction
in the parameter space where the loss function is growing. Hence, given an initial point in
the parameter space θ0, the optimal value can be approached by iteratively subtracting
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θ1

θ 2

Figure 3.3: Illustration of the gradient descent iterations. A bivariate cost function defined
by the level curves in the 2D parameter space. The vector field shows the gradient of the
function in several points. The red arrows indicate the sequence of values reached during
the iterations, until a minimum is approached.

positive factors that are opposite to the gradient direction:

θt = θt+1 − ηt∇θL|θt , (3.8)

where the factor η is known as learning rate and represent the step size of each iteration.
Figure 3.3 illustrates the process in a simplified instance.

To train NN via gradient descent, we can adopt the backpropagation algorithm to
compute the gradients of each parameter of the NN layers. Historically, many researchers
proposed and rediscovered the backpropagation [36, 60]. However, the modern version of
this technique spread in the deep learning community only after [46]. As the name suggest,
this technique consists in propagating the errors between the outputs of the network and
the target values throughout all the connections of the hidden layers. If we consider neural
networks defined as function compositions, like in (3.1), the backpropagation resorts to
applying the chain rule of derivatives to each layer function fi, i.e.

y(i) = (f1 ◦ . . . ◦ fi) (x), i = 1, . . . , D, y(0) = x

∂L
∂θ

(i)
j

=

Wi∑

k=1

∂L
∂y

(i)
k

∂y
(i)
k

∂θ
(i)
j

∂L
∂y

(i−1)
j

=

Wi∑

k=1

∂L
∂y

(i)
k

∂y
(i)
k

∂y
(i−1)
j

,

(3.9)

(3.10)

(3.11)
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where θ(i)j is a generic weight or bias parameter of the layer i, y(i)k the outputs of the layer
i, and y(i−1)k the inputs of the layer i. The backpropagation is a powerful technique that
can potentially support any kind of layer. It is enough for a new layer i to define the
computations for forward function fi from inputs and weights, as well as the backward
computations that propagate the derivative with respect to the outputs ∂L/∂y(i+1)

k into the
derivatives of inputs ∂L/∂y(i−1)

k and weights ∂L/∂θ(i)k , i.e. equivalent to define ∂y
(i−1)
k /∂y(i)k and

∂y
(i+1)
k /∂θ(i)k respectively.

Improved gradient descent

The gradient descent optimization as presented in Equation (3.8) is not popular nowadays,
due to its long convergence time. As a matter of fact, various researches have been focusing
on improving the gradient descent following different methods.

Firstly, the loss function is actually calculated on randomized mini-batches Bi, i.e.
disjoint portions of the training set, whose union is equal to the training set. A gradient is
approximated from one batch, then used to update the weights:

∂L
∂θ
≈ 1

|Bi|
∑

n∈Bi

∂

∂θ
gθ
(
y(n), ŷ(n)

)
. (3.12)

This technique, named stochastic gradient descent (SGD), indirectly injects noise in the
gradient calculation. SGD helps mitigate redundancy that the training set might contain, by
avoiding updating the weights with similar values of the gradient. The NN sees every mini-
batch once, in sequence. When the NN saw all the training samples through mini-batches,
an epoch concluded, and the cycle can start again. The batch size needs to be balanced
with the computation efficiency, as smaller batch sizes are less computationally efficient.

As inconvenience of mini-batch training, it might happen that the injected noise could
resort to non-zero gradient estimation even in proximity of the optimum. Two techniques
alleviate this problem. The learning rate could be reduced every τ iterations, namely
learning rate annealing. Moreover, weights could be updated by exponential moving
average θ′t = γθ

′
t−1 + (1− γ)θt.

Moving averages are also employed in improved optimizers, along with the Momentum
technique. Referring to the weight optimization as a ball following the red arrows in
Figure 3.3, the Momentum [42] helps reduce oscillations in directions of high curvature of
Lθ, and prefer directions with a more consistent gradient [57]. The Momentum achieves it
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by combining negative gradients in the speed vt and updating the weights to

vt+1 = αvt − ηt
∂L
∂θt

θt+1 = θt + vt+1,

(3.13)

(3.14)

where α < 1 is the momentum coefficient, a hyperparameter responsible for the velocity
decay. If the Momentum is close to 1, then the descent is faster than the simple one.
Hence, it makes sense to start with values like α ≈ 0.5, and in later epochs adapt it to
higher values, like 0.9 or 0.99, especially the training loss reaches a plateau. One variation
to this technique is the Nesterov Momentum, defined in [54] and inspired by [40]. This
technique updates the gradient first, then refreshes the speed with the new gradient value.
Intuitively, the Nesterov Momentum tries to correct the direction mistakes after they have
happened, while the plain Momentum attempts to do it beforehand [20].

Especially with very deep NN, the magnitude of the gradients often differs across
different layers. Hence, modern optimizers employ independent learning rates for each
weight. They achieve this by multiplying a global learning rate by local coefficients
computed empirically for each weight. This is the case for RMSProp [57], an improved
version of RProp [45] for multi-batch training. RMSProp divides the gradient by a running
average of the latest gradient intensities, i.e.

θt = θt−1 − ηt
gt√
vt + ε

,

vt = βvt−1 + (1− β)g2t .

(3.15)

(3.16)

Similarly, Adam [29] combines RMSProp and AdaGrad [10]. Adam extends them by
substituting the gradient with the exponential moving average of the gradient, as well as
by correcting the estimation of the first and second-order moments with

θt = θt−1 − ηt
m̂t√
v̂t + ε

,

m̂t = mt/1−βt1, mt = β1mt−1 + (1− β1)gt
v̂t = vt/1−βt2, vt = β2vt−1 + (1− β2)g2t .

(3.17)

(3.18)

In practice, Adam often works well [20], because it defines a bound for the step size ∆θt,
thus steps are never too large. Additionally, Adam automatically anneals the learning
rate as approaches convergence, so the optimized parameters fluctuate around the optimal
values.
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3.2. Relevant studies

This section reviews general deep learning techniques employed in the solution of inverse
problems, as well as previous studies in the inversion of the SC generation.

3.2.1. Deep learning in inverse problems

As with many other challenges nowadays, solutions to inverse problems also find benefits
in recent advancements of DL [41]. Generally, solving an inverse problem consists of
determining the problem causes x when we can only measure effects y [31]. The effects y
are typically observed from the output of a forward process F(x). Normally F is nonlinear
and not invertible. This makes inverse problems impossible to solve without resorting to
data-driven methods, such as deep learning. The data-driven methods can address an
inverse problem by learning the backward process B = F−1 or by optimizing the solution
x̂0 of a particular instance y0.

Supervised deep learning methods solve inverse problems by exploiting paired samples
{(x, y)} available from the forward process y = F(x). The causes become neural networks
targets to be predicted, while the effects become inputs. Then the network is trained
by optimizing a chosen loss function over the targets x. On the other hand, if F is
computationally feasible, the training procedure could embed it, and penalise the error in
the forward domain, i.e. the error between the effects y and F(x).

For example, researchers successfully adopt deep learning as explained above to solve
imaging inverse problems, commonly present in various scientific disciplines, such as
Medical Imaging [30] and Geophysical Imaging [3]. In these inverse problems, x and y
often have the same dimensionality, e.g., in tasks like denoising and deblurring, or similar
dimensionality in tasks like superresolution or undersampled reconstructions.

This thesis focus on a particular example of parameter estimation inverse problems [56],
i.e. the SC generation. Generally, in parameter estimation inverse problems, the causes
space has much lower dimensionality than the effects one, i.e. few parameters of the
forward function lead to vectors of higher dimension, such as one-dimensional signals.
In our problem, as discussed in Chapter 2, the F is only available at test time, hence
we cannot embed it at training time. Similarly, other inverse problems have employed
NNs to solve parameter estimations. For instance, researchers trained a fully-connected
neural network to predict the parameters that describe the shape of violins, given their
desired frequencies [48]. In Fluid Dynamics, researchers in [50] show how to predict via
NN the airfoil shape parameters given the velocity maps of air flowing throughout. In
Astronomy, the gravitation waves detected during specific events, such as binary black
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holes merging, have been used to predict characteristics of the involved stars via Variational
Autoencoders [16] and Autoregressive NN flows [21]. Differently from the method proposed
in this thesis, these works enforced no properties on the effect domain at training time.

Similarly to the weighted scheme adopted in our method, other works thought about
enforcing properties over the forward domain. These works include Physics Informed NN
(PINN) [22, 44] and Theory guided NN (TgNN) [59]. Both techniques require that the
differential equation describing the forward model be available. They act as a regularization
method to inverse problem ill-conditions, by embedding the computation of the differential
equations in the NN training loops. Differently, our method requires no known expression
of the differential equation. In principle, the dataset of pairs would be enough.

3.2.2. Data-driven methods for supercontinuum generation

Machine learning and search optimization techniques are accelerating the research and
development of ultrafast photonics [17]. In particular, several works have attempted to
optimize structures and components of the SC spectrum generation, shown in Figure 1.1
in Chapter 2.

Some researchers have extensively adopted Genetic algorithms (GAs) [25] as an opti-
mization technique for ultrafast photonics. Historically, GAs have been employed to design
the structure of the optic fibre [28, 39, 62, 63]. For example, the optic fibres considered
in those works consist of crystal fibres, with concentric rings of air-holes. Therefore, the
method mainly optimizes the rings, air-holes radius, and air-hole distance by minimizing
appropriate fitness functions that model desired properties, such as chromatic dispersion,
power gain, fibre robustness to production fluctuations.

In our work, we consider the design of the optic fibre as fixed, so the dispersion
model is common to every generated spectrum. On the other hand, we focus on the
ultrafast train pulses of light that enter the fibre. Variations of pulse parameters still
lead to nonlinear variations in the eventual spectrum obtained at the fibre end. Similarly
to our work, previous researches focused on optimizing the pulse parameters to enforce
specific properties in the output spectrum. For instance, Raman frequency conversion
maximization was demonstrated in [4]. This research adopted a GA to find the parameters
we also considered in this thesis that maximize the spectrum energy in a given wavelength
range. Previously, other authors proposed a solution with a similar method [38]. These
two works especially focus on optical coherence tomography (OCT), where most of the
near and mid-infrared (IR) regions requires most of the power.

However, GA are computationally expensive in time. The work in [38] showed that
grid computing reduces GA convergence time from 10 hours of a single computer, to 90
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minutes. In [4], they show that GA still reach better accuracies than exhaustive searches.
However, GA-based techniques do not output a model for point estimation. Therefore, if
users provide new spectrum characteristics, a new GA search is required.

Contrarily, DL techniques optimize models that can relatively quickly predict parame-
ters for new target characteristics. In our work, we train deep learning models that given a
spectrum, predict the best parameters that generate a spectrum as close as possible to the
input one. This is an inverse problem, where the forward process is the SC generation. The
forward process is computationally expensive and nonlinear, therefore cannot be inverted
analytically. On one hand, the work in [47] shows how recurrent neural networks (RNN)
with long short-term memory (LSTM) [24] can predict such complex dynamics. On
the other hand, to the best of our knowledge, this research is the first work where DL
techniques are employed to solve the inverse SC generation.

3.3. Function approximation

We define a generic training set as a set of pair of vectors {
(
x(i),y(i)

)
}, where x ∈ RD is

the input value, y ∈ RC is the target value, D and C ∈ N. The target value is associated to
the input by the relation y(i) = f(x(i)) + ε(i), where f : RD → RC and ε(i) is the unknown
noise for the sample i-th.

The goal of function approximation tasks is to compute a suitable approximation of f .
The term suitable depends on the required quality of the approximation. We can assess
the quality on another set, namely the testing set, by measuring the displacements of
approximated values and testing targets, accordingly to a designated distance function.
Normally, solving the task via direct usage of function f is disallowed, since f might be
unknown or extremely expensive to compute in terms of resources. The approximation
can only leverage the training set.

Several techniques solve the function approximation task. For instance, we could see it as
a supervised learning task, that machine learning and deep learning techniques can address.
However, this section introduces two algebraic linear techniques, i.e. polynomial approxima-
tion (PA) and local polynomial approximation (LPA). We apply these techniques extensively
during this thesis work to approximate the spectrum loss function via weighted loss.

In the next sections, without loss of generality, we simplify the notation and consider
1-dimensional inputs and targets.
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3.3.1. Algebraic definitions

This section provides definitions around the concept of the dual frame, i.e. the matrix
required to perform the polynomial approximation in Section 3.3.2 and beyond.

Definition 3.1 (A Dual Frame). Given a set of vectors {v1, . . . ,vn}, namely the frame,
and v,w some vectors in the same space, there exists another set of vectors {ṽ1, . . . , ṽn},
namely a dual frame, such that span {v1, . . . ,vn} = span {ṽ1, . . . , ṽn} and

n∑

i=1

〈v,vi〉ṽi =
n∑

i=1

〈v, ṽi〉vi = arg min
w∈span {v1,...,vn}

‖v −w‖. (3.19)

Formally, there might many dual frame for a specified set of vectors that satisfy the
Definition 3.1. Therefore, we provide a way to select the one required, as well as a
convenient formula to calculate it.

Definition 3.2 (The Dual Frame). When there exists multiple dual frame, i.e. {v1, . . . ,vn}
are not linearly independent, the dual frame is defined as the one that minimizes

∑n
i=1|〈v, ṽi〉|2.

Definition 3.3 (The Dual Frame Matrix). The dual frame matrix Ṽ contains the dual
frame vectors {ṽi} as column. Given the frame matrix V containing the frame vectors as
columns, the dual frame matrix can be computed as:

Ṽ = V (V >V )
†
, (3.20)

where † denotes the pseudo-inversion operator.

3.3.2. Polynomial approximation

Polynomial approximation (PA) tries to approximate functions by computing the best
coefficients θj, j = 0 . . .M , where M is the polynomial degree. We can express the
approximation with

ŷ(x;θ) =
M∑

j=0

θj · bj(x), bj(x) =
xj

j!
. (3.21)

This model is non-linear with respect to the input variable x, however it is linear with
respect to the coefficients θi.

We now analyse the polynomial approximation from an algebraic perspective. Given

the column vectors x =
(
x1 x2 . . . xN

)>
and y =

(
y1 y2 . . . yN

)>
, we consider

the well-known N -dimensional vector space of M -degree polynomials individuated by the
set of vectors {bj(x)}Mj=0 ⊂ (RN , 〈·, ·〉), where (RN , 〈·, ·〉) is an N-dimensional real vector
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space with standard inner product. We can now rewrite the polynomial approximation ŷ
as element of the polynomial vector space, i.e. vector x and rewrite Equation (3.21) as:

A =
[
b0(x) b1(x) . . . bM(x)

]

ŷ = A · θ.

(3.22)

(3.23)

Notice that, the matrix A collect the set of vectors {bj(x)}, where bj(·) is applied element-
wisely. The vector set {bj(x)} is then called frame, and A is called frame matrix [12].
Consequently, we can see A as synthesis operator, because multiplied by the coefficient
vector θ, Aθ produces a linear combination of the vector set {bj(x)}.

The PA problem reduces in finding the best coefficient vector θ such that minimizes
the distance of ŷ from y:

θ = arg min
θ
‖ŷ − y‖. (3.24)

From an algebraic perspective, this is equivalent to employing the dual frame Ã of the
frame A from Equation (3.20) as an analysis operator, i.e.

θ = Ã>y, Ã =
[
b̃0 b̃1 . . . b̃M

]
(3.25)

To perform the approximation on a sample x0, we sufficiently synthesize the coefficients
θ via frame matrix, i.e.

ŷ(x0) =
M∑

j=0

〈y, b̃j〉bj(x0)

= 〈y,
M∑

j=0

b̃jbj(x0)〉

= 〈y, Ãb(x0)〉
= 〈y, g(x0)〉,

(3.26)

(3.27)

(3.28)

(3.29)

where b(x0) =
(
b0(x0) b1(x0) . . . bM(x0)

)>
, g(x0) = Ãb

(x0) is the kernel function.
The choice of the hyperparameter M , i.e. the degree of the polynomial, represents a

trade-off between bias and variance, as it can be seen in Figure 3.4.

3.3.3. Local polynomial approximation

Local polynomial approximation (LPA) creates a function approximation, whose expression
differs in each point to estimate. LPA achieves this by selecting a different subset of the
training set in each point. In this way, we can obtain a more precise function approximation
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(a) Polynomial degree 2, under-
fitting.

(b) Polynomial degree 3. (c) Polynomial degree 16, over-
fitting.

Figure 3.4: Different choices of the polynomial degree

in the neighbourhood of the local point.
Given the point x0 where to estimate the function, one possible method consists of select-

ing the P pairs whose input variable is closer to x0. We can further generalize this approach
by taking a smooth Gaussian window centred in x0, instead of a crisp window. Therefore,
we can consider the contribution of more points, but only the closer ones have higher
impact. We express this by assigning a localization coefficient to each pair (xi, yi), e.g.

ci = e−α‖xi−x0‖
2
2 , (3.30)

where α controls the dispersion of the Gaussian window. Therefore, we can update the
definition of the kernel function g(x0) from Equation (3.29) to include the localization
coefficients as

gC(x0) = CÃWb(x0), C = diag(c1, . . . , cN), (3.31)

and in contrast with the dual frame with Euclidean distance of Formula 3.20, ÃC denotes
the dual frame with the induced weighted l2 norm:

ÃW = A(A>CA)
†
. (3.32)

Further generalization can be achieved with adaptive LPA methods, i.e. windows
can broaden or shrink automatically depending on x0 neighbourhood. For instance, we
could resort to LPA-ICI [13], namely local polynomial approximation and intersection
of confidence intervals. This anisotropic adaptive method automatically fits separated
windows with respect to different direction ranges of the hyper-space. This approximation
algorithm have shown state-of-the-art performances in other works [14, 61].
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This chapter provides details about our proposed solution. The first section gives an
overview about the method, the data preprocessing and overall pipeline. Then the chapter
continues giving details about the weighted loss function in Section 4.2 and the employed
models for parameter estimation in Section 4.3.

4.1. Proposed solution overview

Referring to the problem formulation in Section 2.2, we train two kinds of DL models,
namely FC in Section 4.3.1 and CNN in Section 4.3.2. As shown in Figure 4.1, the models
receive as input the preprocessed generated spectra and as targets the pulse parameters
that generated the input spectra. Hence, NNs could minimize a loss function LY (4.7) over
parameters. However, this is not enough representative of the problem. We would like to
actually predict parameters that generate a spectrum as close as possible to the input one.
In DL, this would translate to optimize a loss function LS (4.6) in the spectrum domain.

On the one hand, we hypothesize that limiting the learning process at the parameter
domain would neglect an important constraint of the problem. On the other hand, as
discussed in Section 5.2, it would be extremely expensive to generate the spectra from
predicted parameters during every epoch of the backpropagation. To overcome this obstacle,
we introduce a surrogate loss function LW (4.8) that approximate the ideal loss LS. This
surrogate loss function can be adopted in the training with no additional computational
costs during the backpropagation epochs. Nevertheless, once the training process completes,
we still evaluate the loss LS as assessment metric. This require generating the spectra ŝ
from the model predictions ŷ by following again the forward process. Figure 4.2 schematises
further the data pipeline of the proposed solution and its evaluation process.

4.1.1. Binning spectra into areas

As shown in Figure 2.1, the generated spectra have a wide range of nonlinear oscillations
that makes comparisons hard. Moreover, the dimensionality of RN , N = 4096, would be
too computational intensive for the NN trainings. Therefore, domain experts suggests the
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∗ Photo by Neath g, CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File:Ti_Sapph_YAG_supercontinnum.jpg

Figure 4.1: Overview of the problem and solution. SC generation represents the inverse
problem forward pass from parameters to spectra. Fully-connected and convolutional
networks learn the inverse process. From the parameters-spectrum pairs, we compute a
weighted loss function LW as nonparametric local polynomial approximation (LPA) of the
spectrum loss LS. We then emply the weighted loss function LW to train the networks.

integral binning as possible method to downsample spectra. Given the number of bins
n and the integration interval I = (λa, λb) =

⋃n
i=1 Ii, the integral binning is an operator

BIn : RN × RN → Rn defined as

a = BIn(λ,σ) =

[∫

Ii

s(ω) dω

]N

i=1

, (4.1)

where s(ω) = (λ,σ) ∈ RN+n+1 × RN+n+1 is the enhanced representation of the spectrum
s = (λ,σ), i.e. the spectrum is combined with the linear interpolation σI ∈ Rn+1 computed
from s on the area grid λI ∈ Rn+1. Then we define the areas grid as

λI =
[
λa + (i− 1) · λb−λa

n

]n+1

i=1
. (4.2)

We practically compute the integral of Equation 4.1 via trapezoidal numerical integration
Next, we consider the cumulative sum, resorting to the cumulative areas vector α ∈ RN+n+1

https://commons.wikimedia.org/wiki/File:Ti_Sapph_YAG_supercontinnum.jpg
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y ∈ Y s ∈ SY b ∈ RnC

Rn

ŷ ∈ Y ŝ ∈ SY b̂ ∈ RnC

G

LY,LW

N◦BICnC

PM
LS

M

G N◦BICnC

Figure 4.2: Data pipeline. In this schema, a model M, e.g. FC or CNN, is trained
optimizing LW or LY given spectra-parameters pairs {(y, s)}. The spectra undergo the
preprocessing PM, that depends on the modelM. Binned areas computed from training
spectra b and regenerated spectra b̂ from model predictions ŷ are finally compared through
LS.

such that

αj =
λj − λj−1

2
(σj + αj−1) , j = 2, . . . , N + n+ 1 and α1 = 0. (4.3)

Finally, given αI the values of α corresponding to λI , the area vector a is defined as the
difference of adjacent cumulative areas αI on the area grid λI . We can easily calculate it
with a convolution such as

a = αI ?
[
1 −1

]
. (4.4)

The Binning operator is quite flexible, since different options for the integration intervals
and number of bins can be provided. For instance, the CNN model can afford a larger
number of bins than the FC, as their tolerance to the input vector dimensionality is
different. Moreover, the operator is helpful because provides a common grid where we can
compare spectra integrated in the same intervals I. As a matter of fact, spectra generated
by the simulator always have different wavelength grid given different parameters. In our
assessment, we adopted a common interval of IC = (1043.7, 2675.4) nm and a common
number of bins nC = 60 to compare ground-truth spectra with the spectra generated by
the estimated parameters.

4.1.2. Normalization and Decibel transformation

Binned areas have much larger magnitude of normal spectra. In addition to that, the
scale of different bins varies considerably both in the same spectrum or among different
ones. From a physical point of view, it is not necessarily important to match the scale
in generate spectra as it is for the energy distribution. Therefore, experts recommend
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converting the areas to dB scale and normalize in the range of −40 dB and 0:

b = N (a) = max {−40, 10 log10(a)− 10 log10(max(a))}. (4.5)

The clipping of −40 dB is chosen to ignore small-scale values, considered as noise.

4.2. Loss functions

As explained in Section 3.1.3, NNs necessitate to optimize loss function. This section
describes the ideal loss LS in the spectra domain, the problem of a loss in the parameters
domain LY, and the rationale behind the surrogate loss LW .

In the following subsections, all the loss function expressions consider single input-target
samples as argument, to simplify the notation. However, the training of the NNs actually
computes the gradients from the sum of the losses applied in any sample of the batch B,
i.e. as explained in Equation (3.12).

4.2.1. Ideal loss

Ideally, we would like to compute the error between spectra, and propagate it back to the net-
works to update their weights. Hence, the ideal loss on the spectra domain is expressed by

LS(b, b̂) =
1

R

R∑

j=1

|bj − b̂j|, (4.6)

where b = BICnC (G(y)), b̂ = BICnC (G(M(s))) involves the invocation of the generator, thus
infeasible at training time. To circumvent the problem, we could propagate the error over
the parameters LY, namely

LY(y, ŷ) =
1

P

P∑

j=1

|yj − ŷj|, (4.7)

where ŷ =M(s) are the parameter predicted by the NN. This loss function has minimum
in ŷ = y, that is the same minimum of LS. However, the neighbourhood of the minimum
of LS diverges from the one in LY, as we can notice from Figure 4.3. Moreover, while
the spectrum errors δS

j = |bj − b̂j| would correct the networks giving feedback when the
target spectrum and the generated from prediction has displacements, the parameter errors
δY
j = |yj − ŷj| offer no information about that. The parameter loss is isotropic with respect
to spectra shape in Formula 4.7.
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4.2.2. Weighted loss as local polynomial approximation

To address the limitation of LY explained in the previous section, we define a weighted
loss function LW . The loss LW consists of a nonparametric multivariate LPA of LS.
Being nonparametric means that for each sample

(
b(i),y(i)

)
we would have a different loss

function expression LW (y(i), ·) such as

LW (y(i), ŷ(i)) =
1

2

√
w(i) · (y(i) − ŷ(i))

2
. (4.8)

Therefore, we compute the weighted loss by calculating multiple function approxima-
tions, one for each sample of the trainset. We calculate the function approximation as
explained in Chapter 3. Specifically, for each reference sample

(
b(r),y(r)

)
, we solve a LPA

of LS(br, ·) with LW (y(r), ·). Being δ(i) = |y(i) − y(r)|, vector function for the polynomial

coefficients p(δ) =
(

1
2
δ21 δ1δ2 δ1δ3

1
2
δ22 δ2δ3

1
2
δ23

)>
, we define the frame matrix as:

A =
[
p1(∆

(1)) . . . p6(∆
(n))
]

=




p1(δ
(1)) . . . p6(δ

(1))
... . . . ...

p1(δ
(n)) . . . p6(δ

(n))


 , (4.9)

then we have l =
(
LS

(
b(r), b(1)

)
· · · LS

(
b(r), b(n)

))>
and l̂ = Aw(r). We want to find

the vector of parameter weights w(r) for the reference sample
(
b(r),y(r)

)
such that the

distance between l and l̂ is minimized. We want to do this with respect to the locality
given by the Gaussian window:

w(r) = arg min
w

{c(r) ·
(
l̂2 − l2

)2
}, (4.10)

where c(r) is a K-dimensional vector containing the localization coefficients, modelled
by a Gaussian window with isotropic spread α. The coefficient ci is expressed by c(r)i =

exp{−α‖y(r) − y(i)‖2}. The spread α has been chosen by cross-validation heuristics, and
in our case it has been set to α = 1/6.

Formula 3.32 can be applied to find the solution for w(r) as

Ã = A
(
A>

(
diag

{
c(r)
}
A
))†

wr =
(
Ã> diag

{
c(r)
})
l.

(4.11)

(4.12)

From the 6-dimensional vector of weights, we save only the w1, w4 and w6 components,
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Figure 4.3: Comparison of parameter, spectrum and weighted losses with respect to a
reference point y(r). We plot the loss functions LY(y(r), ·), LW (y(r), ·) and LS(b(r), ·).
For each plot i, we consider points such that y(?)j = y

(r)
j for j 6= i. Clearly, all the loss

functions have minimum in y(r) = y(?). However, we can observe that the weighted loss
LW approximates better the spectrum loss LS in the neighbourhood of the minimum than
the parameters loss LY.

i.e. coefficients of the second-order pure terms. With the saved coefficients we implement
the weighted loss LW point estimation in the deep learning code. Moreover, we take the
square root of the entire loss. Both adjustments aims at making the loss closer to LS,
as well as at increasing performances during the training. Indeed, the limited amounts
of coefficients accelerates the training convergence. The square root keeps values distant
from the minimum with lower magnitudes. Although the result of approximation is
manually tweaked, the approximation is still qualitatively precise in the neighbourhood of
the minimum, as we can see in Figure 4.3.

4.3. Models

Two DL models are proposed, i.e, a fully connected neural network, and a deeper convolu-
tional neural network, denoted FC and CNN models respectively. The following sections
describe their architectures and their required data processing. More details about training
and hyperparameter tuning can be found in Chapter 5.

4.3.1. Fully-connected neural network

The FC model processes the same binned areas b ∈ R60 adopted in the solution assessment.
These areas are normalized and transformed in decibel through BICnC ◦ N . Additionally,
the peak value of the spectrum before normalization max (a) is appended to the feature



4| Solving the SC inverse problem 27

61x1 b⊕ peak

300 dense

300 dense

300 dense

3x1 ŷ

Figure 4.4: Architecture of the FC model. The block “N dense” denotes a fully-connected
layer with N neurons.

vector. Figure 4.4 illustrates the NN architecture. It consists of three fully connected
layers, also known as dense layer, containing 300 neurons each. The ReLU activation
function follows each dense layer. Finally, a three-neurons dense layer with linear activation
completes the network. Counting weights and biases, the FC model contains 200 103

trainable parameters3.

4.3.2. Convolutional neural network

The CNN model consists of a neural network with several 1D convolutional layers. This
model tries to relax the preprocessing applied to area signals in the FC by several means.
Firstly, given the local shared weights of convolutional layers, CNNs can process larger
feature vectors than dense layers. Hence, we apply a less coarse Binning BIλn to the input
spectrum s, i.e. n = 1024 bins. Secondly, we do not integrate spectra on a common
wavelengths grid, but rather we perform the binning to each spectrum s = (λ,σ) within
its own interval Iλ = (min(λ),max(λ)). Both options lead to larger bin width, that makes
the resulting areas visually closer to the raw spectra. Thirdly, we apply no normalization
operator N to the binned spectra. Finally, since the CNN has no common grid, we stack
the spectrum wavelength interval range Iλ to the output feature vector of the backbone
network. In this way, the CNN should receive hints about the location of the power
densities over the wavelengths.

Figure 4.5 depicts the CNN architecture. The overall architecture is inspired by
AlexNet [32]. This CNN includes mainly two blocks, the backbone network and the final
dense layers. The backbone network consists of a sequence of trainable convolutions and
Average polling. We can notice that the convolutional layer kernels are particularly large,
e.g. 25, 9 and 16, with respect to popular CNN architectures, e.g. 3 or 5. In our case, we
motivates larger kernels by the fact that data are only in 1D, hence, wider kernels seem to

3FC number of trainable parameters: (61+1)×300+(300+1)×300+(300+1)×300+(300+1)×3 = 200 103
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2x1 Iλ 1024x1 a

25 conv1, 8

25 conv1, 8

25 conv1, 8, avg pool/2

25 conv1, 32, /2

25 conv1, 32

25 conv1, 32, avg pool/2

9 conv1, 16, /2

1 conv1, 10
⊕

142 dense

10 dense

3x1 ŷ

Figure 4.5: Architecture of the CNN model. Each block “K conv1, F ” denotes a 1D
convolutional layer with kernel width K and number of output channels F . The /2 denotes
a stride of 2, when present.

perform best. Average pollings and convolutional layers with stride 2 helps to reduce the
dimensionality along the forward passes of the backbone by proving spatial downsampling.
A final 1× 1 convolutional block ends the backbone by reducing the number of activation
maps [35, 55]. Each convolutional block has no bias terms. ReLU activation follows every
layer, except for the last output dense layer, where there is a linear activation. Compared
to the FC model, the CNN has fewer trainable parameters, i.e. 96 057 coefficients4.

4.4. Summary

We propose a novel method to solve the Supercontinuum inverse problem. In this method,
we train two neural networks, namely FC and CNN, to predict laser pump parameters
from preprocessed spectra, i.e. binned areas. In contrast to isotropic parameter loss, both
NNs optimize a weighted loss function that better approximates the intractable spectrum
loss.

4CNN number of trainable parameters: 25× 1× 8 + 2× 25× 8× 8 + 25× 8× 32 + 2× 25× 32× 32 +
9× 32× 16 + 1× 16× 10 + (200 + 2 + 1)× 142 + (142 + 1)× 10 + (10 + 1)× 3 = 96 057
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This chapter discusses practical aspects of this research. Firstly, we describe the hardware
and software infrastructure. Secondly, we provide more information regarding data genera-
tion, e.g. timing and numerical settings. Finally, the chapter describes the hyperparameter
tuning processes (HPT) and the space of hyperparameters explored.

5.1. Software and Infrastructure

We implemented the algorithms for data preprocessing and weighted loss approximation
in Matlab, and they can comfortably run on modest consumer laptops.

We coded the DL models and training procedures in Python by adopting the open-
source API TensorFlow [1] and Keras [8]. Although we could train single models on CPU
in a reasonable time, we accelerated the HPT training procedures on graphics cards.

We conducted the experiments in the Tampere University TCSC high-performance
computing (HPC) cluster. The cluster orchestrates submitted jobs through SlurmWorkload
Manager [49]. The available hardware in the cluster includes 140 CPU-only nodes with a
total of 3000+ CPU cores and 22 nodes with 4 GPUs in each with different memory sizes.
We adopted the same infrastructure to generate the supercontinuum spectra.

5.2. Dataset generation

This work adopted simulated spectra by numerically integrating the GNLSE, i.e. the
forward model. The simulator consists of an existing Matlab script that implements the
SC generation G described in section 2.1. We generated a dataset that includes a total of
51429 spectra. Then, for any experiment, we regenerated the spectra from the predicted
parameters. The simulator outputs the signal power densities sampled over a non-regular
grid of wavelengths which has a constant step in the frequency domain.

We created the set of parameters Y by the Cartesian product of three linear spaces,
one for each pulse parameter to predict. Table 5.1 reports the pulse parameter ranges
adopted. Moreover, other SC generation settings are constant since they represent some
structural parameters that normally are not trivially adjustable in physical SC lasers. For
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Parameter Minimum Maximum Step #

λ0 Pulse wavelength 1400 nm 1700 nm 10 nm 31
τ Pulse duration (TFWHM) 50 fs 250 fs 10 fs 21
Pp Peak power 500 W 20 000 W 250 W 79

Table 5.1: Ranges of the pulse parameter linear spaces.

Structural parameter Value

Time grid points 215

Time window 140 ps

Pulse shape hyperbolic secant
Fiber length 6 m

Table 5.2: Structural constant parameters during the SC generation.

the sake of reproducibility, table 5.2 reports the structural parameters.
The simulation is a costly process. As a matter of fact, the generation of all 51429

takes approximately 10 h when runs distributed on a Slurm cluster of 512 nodes. The
generation of a single spectrum is not constant in time and depends on the parameter
triplet passed. For instance, Figure 5.1 shows that increasing the peak power leads to a
higher processing time for the simulation of the forward model. Some simulations can
even reach 1 h in time.

5.3. Hyperparameter tuning

We adopted the platform Weights & Biases (WandB) [6] to perform Hyperparameter
tuning of both FC and CNN models. We employed mainly random search strategies over
the slice of hyperparameter space of interests. Bayesian search methods based on Gaussian
Processes [5] in practice gave worse results than random searches for our problem.

We parametrized every model configuration, and we associated each hyperparameter of
interest with a statistical distribution. Then we pass a YAML configuration of the selected
parameters to the WandB platform. Listing 5.1 exemplifies a possible file. We start
multiple WandB agents within the HPC cluster. The agents connect to the WanB backend
and listen for a set of hyperparameters. Once they receive the hyperparameters, one of
our scripts instantiates a model out of those hyperparameters and starts the training. The
training continues until the Early Stopping technique activates [43]. During the training
iterations, we measure the score EW , i.e. based on LW , on a validation set. The script
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Figure 5.1: Time required by generating spectra given the Power peak. Each surface
shows the generation time as function of pulse wavelength λ0 and pulse duration τ . Every
different surface contains points with the same value of power peak Pp. Higher surfaces
have higher Pp and on average longer generation time. We can observe that with lower
Pp, the generation time is nearly constant with respect to λ0 and τ . On the other hand,
higher values of Pp cause the shorter durations to increase the generation time.

periodically forwards the score to the WandB backend at end of every training epoch. We
remark that we cannot measure the spectrum score within the training procedures. The
process continues until interruption from the user. WandB UI presents the scores in a
convenient web dashboard. From there, we can conveniently assess the impact of every
hyperparameter. Finally, we can select the best hyperparameters.

Listing 5.1: Example of WandB HPT configuration file

method: random

metric:

goal: minimize

name: validation_error

name: CNN arch 10F

parameters:

batch_size:
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distribution: categorical

values: [64, 128, 256, 512]

learning_rate:

distribution: log_uniform

max: -2.3

min: -11.3

optimizer:

distribution: categorical

values: [adam , sgd]

cnn_use_bias:

distribution: categorical

values: [true , false]

use_batch_norm:

distribution: categorical

values: [true , false]

[...]

program: train.py

The hyperparameter optimized includes the learning rate, different learning rate decay
policies, different optimizers like Adam, SGD and RMSProp, the optimizer hyperparame-
ters, the network architecture like number of neurons, number of layers, number of kernels
and number of channels, regularization techniques like dropout and batch normalization.
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6| Evaluation
This chapter focuses on the evaluation of the DL models over testing datasets and the
impact of the weighted loss function compared to the loss function over the parameters.
Firstly, FC and CNN are trained and compared to a nearest neighbour model. Secondly, we
explore different preprocessing variations for the CNN model, compared to the preprocessing
suggested by experts. Both experiments compare models trained with different training
set sizes.

6.1. Experimentation scheme

As Figure 6.1 shows, we randomly shuffle and divide the training set TR into multiple
F folds. Then, we train F models separately, where the i-th modelMi receives training
on the i-th fold and testing on the ((i+ 1) mod F )-th fold, for i = 1, 2, . . . F . Hence, the
denomination of training set and testing set depends on whether the model has seen the
samples during the training or not. Thus, the training set of modelM(i+1) mod F coincides
with the testing set of modelMi.

The evaluation over fold j gives as output the estimated parameters Ŷ (j) and the error
over parameter predictions EY (i) . We obtain the overall parameter error EY by averaging
each parameter error. We run again the simulator over the estimated parameters Ŷ (j) to
obtain the generated spectra {(λ̂, σ̂)}i. Finally we can compute the error over spectra ES
from the newly generated spectra and their ground truths.

In practice, each modelMi represents the ensembleMi of T = 10 different models
{M(t)

i }
T

1 . We train the models of each ensemble with different weights initializations.
Their estimated parameters of a given spectrum s are eventually averaged, such as

ŷ =Mi(s) =
1

T

T∑

t=1

M(t)
i (s). (6.1)

This procedure helps reduce overfitting and improves the metric scores [7].
To assess the quality of the models predictions with respect to the size of the training

set, we repeat the experiments for different numbers of folds F = 5, 10, 20, i.e. training
sets of 10285, 5142 and 2571 samples.
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fold 1 fold 2 fold 3 · · · fold F

M1 M2 MF
· · ·

EY (2) , Ŷ (2) EY (3) , Ŷ (3) · · · EY (1) , Ŷ (1)

G

f̂old 1 f̂old 2 f̂old 3 · · · f̂old F

÷ES

1
F

∑

EY

Train on Test on Forward to

Figure 6.1: Experimentation scheme: training & testing. The schema illustrates how to
compute the final metrics EY and ES from a dataset uniformly and randomly split in
{f̂old i}

F

i=1. The symbol Mi denotes a model trained on a fold. By testing on another
fold, each model estimates the fold parameters Y . We can calculate the fold parameter
errors from the ground-truth parameters EY . Hence, EY denotes the aggregation of the
fold parameter errors. We forward the fold parameters to the generator G. Finally, we
compare (÷) the new generated spectra {f̂old i}

F

i=1 with the original folds.

6.2. Testset

This experiment aims to test the performances of neural networks over testing SC generated
spectra. In this experiment, we apply the experimentation scheme to all the models over
the dataset of generated spectra as explained in Section 6.1. Both FC and CNN models
separately optimizes the parameter loss function LY and the weighted loss function LW .
Also, we compare the neural networks to the 1-nearest neighbour model, denoted as 1N .
The 1N model associates to a target spectrum s? the parameters ŷ? of the closest spectrum
in its support T, where we define closeness by the loss function LS as in

ŷ? = arg min
(s;y)∈T

LS

[
N (BRr (s)),N (BRr (s?))

]
, (6.2)

where the support T is the fold on which we are training the 1N model.
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F = 5 F = 10 F = 20

EY ES ∆ES EY ES ∆ES EY ES ∆ES

1N 0.123 0.354 - 0.161 0.449 - 0.206 0.569 -

FC
LY 0.029 0.168

(-7.1%)
0.045 0.235

(-8.5%)
0.066 0.329

(-5.5%)LW 0.032 0.156 0.047 0.215 0.070 0.311

CNN
LY 0.014 0.130

(-11.5%)
0.022 0.186

(-7.5%)
0.034 0.268

(+1.5%)LW 0.017 0.115 0.028 0.172 0.044 0.272

Table 6.1: Results of model predictions over the testing generated spectra. Each row
consider a different model, namely 1-nearest neighbour 1N , fully-connected FC and
convolutional neural network CNN. We trained the neural networks both with parameter
loss LY and weighted loss LW . We repeated each training-test procedure for the dataset
split in F = 15, 10, 20 folds.

6.2.1. Results

Table 6.1 reports the resulting metrics computed for this experiment.
Firstly, the reader will notice that the neural networks perform better than the 1N

model. This is certainly beneficial for memory complexity, as it is then possible to achieve
better performances without memorizing all the spectra in the support of the 1N . In
particular, the CNN model outperforms the FC in every instance of this experiment. This
could be due to the fact that convolutional layers learn a better representation than to the
heavier preprocessing applied to the spectra fed to the FC. Secondly, as it was easy to
forecast, the performances of all the models deteriorate when the fold number F increases,
i.e. the number of samples in the training set decreases.

Finally, the optimization over LW helps to achieve better similarities between target
spectra and spectra generated from the estimated parameters, compared to optimizations
over LY. We can notice that for F = 20, the weighted loss function loses its efficacies for
the CNN model. We speculate that the trainset at F = 20 is too sparse for the weight
computation to bring benefits to the CNN model. Additionally, the parameter error EY

increases in trainings with the weighted loss function. This result shows that getting closer
to the minimum of the spectrum error does not imply getting closer to the minimum in
the parameter space.
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6.2.2. Visualization

Figure 6.2 reports some examples of spectra generated from the predicted parameters of
the neural networks. As we can see, both FC and CNN are able to predict the parameters
such that generate spectra close to the target ones. In particular, for predictions with
lower spectra error ES, e.g. within the FC-best 60% predictions, both spectra profile and
relative areas almost overlap totally with the desired targets.

From the third row of Figure 6.2, the target spectra with predictions with higher error
seem to still lead to reasonable generated spectra. From these examples, we can notice
that the CNN performs better, and the FC tends to predict parameters that generate
slightly shifted spectra in the wavelengths.

6.3. Testing different CNN preprocessings

This experiment aims at understanding the best preprocessing pipeline to apply to the
CNN input spectra. The assumption is that the CNN model requires no preprocessing, and
we should forward the raw spectra to the CNN. By adopting the same experimentation
scheme defined in Section 6.1, we test several combinations. We combine plain binning vs.
common-grid binning with FC-like normalization vs. no normalization. Also, we test void
preprocessing operator, i.e. we feed plain filtered spectra given by the generator.

We always test spectra in R1024. In the case of no binning, we apply a decimator to
filter the original output of the generator, i.e. spectra in R4096. In the case of binning, we
train on 1024-bins areas. When we employ no common grid in the binning operator, we
append the wavelength interval to the input vector, i.e. +2 in its dimensionality. When
we apply the FC-like dB-normalization, we clip and stack the maximum peak of the power
density profile, so +1 in the input dimensionality.

Within the CNN setup, We always apply scalers to input vectors after possible nor-
malization, as they improve scores and performances of the training procedure. When we
apply dB-normalization, CNN uses a standard scaler computed feature-wise. Otherwise,
without dB-normalization, the global min-max scaler has better performances.

Table 6.2 reports the results of the experiment. We can notice that the dB-normalization
does not bring better benefits to the CNN model. Additionally, binning the spectra over
the same interval, i.e. common-grid binning, is not better than passing the wavelength
range Iλ over which the input spectrum has been integrated. This means that the CNN
can leverage the information about spectrum wavelengths.

Binning adoption is still convenient. Contrarily to what we expected, the raw spectra
perform similarly to the binning alone, but not better. This could be due to the choice of
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Figure 6.2: Spectra and relative areas generated from testing set predictions of neural
networks. Each row contains a set of 3 spectra, with their relative binned areas showed
underneath. The spectra are randomly sampled from the FC ES error intervals of [0; 10]-
percentiles, [40; 60]-percentiles and [90; 100]-percentiles for the first, second and third row
respectively.
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F = 5 F = 10 F = 20

EY ES EY ES EY ES

Common-grid Binning, dB-norm
LY 0.029 0.245 0.050 0.339 0.065 0.471
LW 0.034 0.231 0.052 0.330 0.085 0.474

Common-grid Binning
LY 0.018 0.140 0.024 0.209 0.038 0.300
LW 0.021 0.123 0.028 0.197 0.044 0.304

Binning, dB-norm
LY 0.022 0.198 0.040 0.305 0.062 0.378
LW 0.025 0.182 0.042 0.273 0.067 0.373

Binning
LY 0.014 0.130 0.022 0.186 0.034 0.268
LW 0.017 0.115 0.028 0.172 0.044 0.272

Raw spectra
LY 0.013 0.125 0.026 0.185 0.042 0.273
LW 0.018 0.119 0.030 0.183 0.045 0.279

Table 6.2: Results of different CNN preprocessings. Each row represents the results over the
testing set of two model trained with parameter loss LY and weighted loss LW , respectively.
Each row follows a different preprocessing combination, as explained in Section 6.3. We
highlight the result ranking of ES for the model trained with LW as best in dark green,
second-best in light green, second-to-worst in purple and worst in red.

the architecture, since we optimize the hyperparameters only with respect to the 1024-
binned spectrum inputs. A separate HPT for each row of this table is too expensive.
Future deeper investigation of better architectures could unlock more benefits for raw
spectra.

6.4. Summary

Both experiments shows that the weighted loss function improves the spectra error in
the testing set, i.e. the generated spectra from network predictions are closer to target
spectra than when the standard MAE over parameters is used. Both neural networks
perform better than 1-nearest-neighbour searches over the training set. In particular, the
CNN outperforms the FC, due to the higher dimensionality retained during the binning
integration. The last experiment aimed at determine the best spectrum preprocessing
for the CNN model. This confirms that the expert-driven preprocessing applied in the
FC discard information and cannot be applied in the CNN without losing margin in the
spectra error.
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non-SC-generated spectra
The ultimate goal of this project is to provide a solution to scientists and practitioners,
i.e. users, that explains the SC laser pump parameters to generate the desired target
spectra. To express the desired target spectra, users must provide a vector representing the
spectrum profiles. The representation given by users may not replicate the nonlinearities
typical of the spectra provided by the generator with which we train the NNs. Therefore,
it is crucial to test the generalization of the FC and CNN over non-generated spectra.

This chapter shows the current limitation of our solution to real-world spectrum
profiles and reports further experiments that test models over spectra not provided by
the generator. In particular, we analyse two examples, Gaussian spectra and absorption
spectra. Finally, this chapter provides hints about adjustments to the solution to improve
the results.

From a user perspective, Gaussian spectra represent the scenario where persons could
hand-sketch a spectrum to centre wavelength ranges of interest. Gaussian spectra are
rougher than SC generated ones, so they are not so precise. On the other hand, absorption
spectra represent the industrial scenario where a target spectrum is well-known. Often,
the absorption spectra are even more detailed than SC generated spectra.

7.1. Gaussian spectra

Section 6.2 describes the evaluation of the proposed solution over spectra from the generator
G. However, it is natural to wonder about the generalization performances of the models
over spectra that resembles the generated ones, but that are not coming from the generator.
In this section we tried the neural networks over two datasets of Gaussian spectra. The
first one contains spectra obtained by fitting Gaussian mixture models (GMM) over the
testing SC generated spectra. The second dataset contains synthetic spectra defined as
sum of random Gaussian curves (SRG). Both tests aim to evaluate the generalization
abilities of the models over spectra that are smooth enough to resemble human-drawn
profiles, i.e. spectrum profiles that would not contain high-frequency nonlinearities typical
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of generated spectra.
First, we compute the GMM dataset by fitting 1 to 5 mixture components to the

testing set spectra. After filtering anomalies and degenerate profiles, this resulted in
approximately 45000 spectra, whose areas flow for evaluation to the FC and CNN model
trained optimizing the weighted loss function LW . We collect and feed the parameters
predicted by each ensemble model Mi to the generator, as it happens similarly in the
testing set experimentation scheme described in Section 6.1.

Second, the SRG dataset challenges the NN models even more, since samples are not
Gaussian fitted over the testset, but sum of randomly constructed Gaussian curves. All
these spectra live in the same wavelength grid λ ∈ R4096, constant in the frequency domain,
within the interval (λmin, λmax), where λmin = 905 nm and λmax = 3976 nm. We sample
the power density σ of each SRG record in the wavelengths λ from a random function
s(λ) defined as

s(λ) =
C∑

c=1

ac · exp

(
−(λ− µc)2

2d2c

)
, (7.1)

where C is the desired number of random Gaussian curves, i.e. components, ac ∼ U(105, 108)

is the component amplitude sampled from a uniform distribution U , dc ∼ U(10, 70) is the
component distortion, µc ∼ U(λmin + 2.8× dc, λmax − 2.8× dc) is the component mean.
For samples with C > 1, we constraint the components to not overlap by resampling until
µi /∈ (µj − 2.5 × dj, µj + 2.5 × dj), ∀i, j = 1 . . . C ∧ i 6= j. The dataset totally contains
900 spectra, i.e. 300 samples for each chosen C = 1, 2, 3. We manually tweaked all the
aforementioned constants to obtain spectra that visually resemble the macroscopic features
of generated SC spectra.

In both experiments, the ground-truth spectra parameters y ∈ Y are not available.
Their parameters are unknown, as these spectra do not come from the generator G.
Therefore, we cannot compute the parameter error. Additionally, the accuracy of the
models is much lower, compared to the testing set spectra, as expected. Hence, we reported
no spectrum error, as the metric is not expressive for spectra generated from predictions
that differ substantially from the corresponding input areas. Nevertheless, we visually
assess the results.

Figure 7.1 illustrates results from predictions over the GSM dataset. We can notice
that the spectra generated from CNN and FC predictions do not overlap like in the testing
set experiment (section 6.2). However, the networks still estimate reasonable parameters.
This is true also for worse predictions, i.e. predictions with high spectrum error.

On the other hand, the SRG dataset is more challenging because these Gaussian
spectra and areas are not close to any input seen by the network. Figure 7.2 reports three
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Figure 7.1: Spectra (above) and relative areas (below) generated from predictions over the
Gaussian mixture model dataset (GMM). Each column shows a spectrum sampled from
the FC ES error intervals of [0; 25]-percentiles, [26; 50]-percentiles, [51; 75]-percentiles and
[76 : 100]-percentiles, respectively.

examples of SRG areas and the corresponding predictions from a FC model. While the
network performs reasonably on some cases (Figure 7.2 left and centre), on average do
not provide yet acceptable results (Figure 7.2). Indeed, if we order the SRG samples by
spectrum error ES, from the 40-percentile to the worst one we obtain results similar to
the right side of Figure 7.2.

7.2. Real-world spectra issues

In this section, we discuss two issues related to the numerical scale of spectra. Firstly,
the actual scale of energy emitted by the spectra might be not available in real-world
applications. Secondly, the dB scale might trick models during the learning phase. These
issues affect the evaluation of the current proposed solution. However, Section 7.3 shows
that our method is still valid when we transform the testing set to overcome these issues.

7.2.1. Spectrum peak not always available

The maximum peak of spectrum profiles, thus of the binned areas, is a crucial piece of
information required by the FC model to predict parameters, especially the power peak.
The preprocessing applied in the FC model normalizes the binned areas, so the energy
intensity information would be lost if we do not append the spectrum peak to the feature
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Figure 7.2: Spectra and relative areas generated from Gaussian dataset predictions (SRG).
Each column shows a binned areas sampled from the FC ES error intervals of [0; 20]-
percentiles, [21; 40]-percentiles, and [41; 60]-percentiles, respectively.

vector. The CNN model still achieves good predictions without stacking of maximum
peak value in the feature vector because its spectra are not normalized. So, the peak
information is still present.

However, many scientific domains, such as spectroscopy and electronics, often employ
normalized or arbitrary units (Au) to express intensities. For instance, this is the case for
absorption spectra shown in Figure 7.5. The arbitrary scale can replace scales that are
dependent on experimental conditions [27], which serve no purpose in comparing quantities
obtained by different experimental equipment. If not all the experimental conditions
are known and reproducible, arbitrary units are required. Nevertheless, Au still permits
comparing samples acquired in similar settings, e.g. the intensity of peaks at different
wavelength points in the spectrum.

Thus, we need to train both models without peak information, in order to adopt them
to predict parameters of real-world spectra. This will impact the score over the parameter
error, but eventually, we are interested in minimizing the spectra error and obtaining a
similar profile to the target one. The spectra magnitude indeed influences the power peak
parameter, so the prediction of the power peak given no peak information to relate to is a
challenging task. However, it is still possible to solve that, as the shape and distribution of
the spectrum profile over the wavelength domain also influence the power peak parameter.

7.2.2. Decibel scale issues

Scientists and engineers widely adopt dB units to process and visualize signals. Similarly,
in our case, domain experts recommend the dB scale to compare spectral areas. Therefore,
the N operator defined in Equation (4.5) performs the conversion to the dB scale. We



7| Adaptation to non-SC-generated spectra 43

1000 1200 1400 1600 1800 2000
−40

−20

0
d
B

(a) dB Normalization

1000 1200 1400 1600 1800 2000
0

0.5

1

A
u

(b) Arbitrary units

Figure 7.3: Comparison of areas in dB units vs Au. Decibel units amplify weak peaks that
Arbitrary linear units would not perceive.

apply this operator both to preprocess the input binned areas of the FC model and the
areas regenerated from FC and CNN predictions. Despite the dB unit seems reasonable
in the assessment, and also necessary for the FC to get good performances, it might
introduce problems when testing the generalization of the FC over spectra non generated
from G. As a matter of fact, predicting parameters for spectra not generated by G is
already problematic. Sometimes, generating spectra similar to the target ones with SC
lasers might be even physically impossible. For this reason, it is essential to match at least
the major energy components in the spectra profile.

Figure 7.3 highlights the problem. The dB units amplify weaker peaks since Decibels
constitute a logarithmic scale. The real issue consists in the fact that we linearly compare
transformed area values. This comparison will see identical errors of, for example, −20

dB regardless that they happen around at −20 dB or 0 dB. Consequentially, the peak
amplifications could trick both the FC model and the evaluation. On the contrary, adopting
linear units, such as in plain binned areas without Normalization operator N or Au, could
push the FC in a better direction.

In the following section, we assess the performance of FC and CNN when trained and
tested on Au spectra.

7.3. Other surrogate losses over linear Au spectra

The goal of this experiment is to verify whether the weighted loss function method increases
the performances over the testset with Au-scaled spectra. Moreover, we experiment with
multiple loss function definitions in addition to the MAE of the binned areas, i.e. LS (4.6)
adopted in Section 4.2.1. We introduce the cosine spectral loss defined as

LCOS (a, â) = 1− 〈a, â>〉
‖a‖ · ‖â‖ . (7.2)



44 7| Adaptation to non-SC-generated spectra

Model Loss EY ECO
S ∆ECO

S EMAE
S ∆EMAE

S EIOU
S ∆EIOU

S

FC

LY 0.068 0.0164 — 0.0088 — 0.1035 —

LCOW 0.101 0.0165 +0.84% 0.0092 +4.98% 0.1094 +5.74%

LMAE
W 0.070 0.0155 −5.33% 0.0087 −1.04% 0.1001 −3.28%

LIOUW 0.072 0.0191 +16.84% 0.0082 −6.17% 0.1022 −1.28%

CNN

LY 0.028 0.0118 — 0.0061 — 0.0789 —

LCOW 0.054 0.0114 −3.14% 0.0064 +5.12% 0.0845 +7.13%

LMAE
W 0.029 0.0105 −11.56% 0.0059 −4.09% 0.0747 −5.29%

LIOUW 0.033 0.0115 −2.94% 0.0057 −6.92% 0.0754 −4.39%

Table 7.1: Performances of different surrogate loss functions over 10 folds. Each row shows
the results of a neural network trained with a different loss function, i.e. the parameter
loss and three weighted loss functions, as explained in Section 7.3. Numbers in bold
highlight the best score for a particular spectrum error E?

S in each model. We compute
the improvements ∆E?

S with respect to the model trained by LY.

We also consider the intersection-over-union spectral loss defined as

LIOUS (a, â) =

∑nC
i min (ai, âi)∑nC
i max (ai, âi)

, (7.3)

where the areas are normalized to have their sum to 1, that is
∑

i ai = 1. Both new loss
functions aim to consider the shared energy between the two area signals, rather than the
point-wise errors penalized by the plain MAE.

We run the experiment with the same operations of Section 6.1 for each architecture,
FC and CNN, with the dataset partitioned into F = 10 folds. Similarly to the experiments
in Section 6.2 and Section 6.3, we measure the performances on the spectra generated
by the neural network predictions. Despite the loss used in the training, we assess each
method by metrics EY, ECo

S , EMAE
S and EIOU

S , defined respectively by the expression of
LY, LCOS , LMAE

S and LIOUS .
Table 7.1 reports the resulting metrics of the experiment and the improvements over

the baseline model trained with LY. Firstly, we can notice that almost every weighted
loss function improves at least the corresponding metric. On the contrary, the FC trained
with cosine loss function provide no gain for the metric ECO

S . The CNN trained with LCOW
only slightly improves ECO

S . However, in both networks, the error over the parameters
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Figure 7.4: Cosine loss evaluated on a sample y? =
(
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)>

. Each
figure i = 1, 2, 3 shows the plot of LCOW (y?,y) projected on the subspace y?i = yi. The
green vertical line indicates the loss minimum, i.e. y?.

EY is higher than the average of other training procedures. As Figure 7.4 might suggest,
the reason could lie in the oscillatory behaviour typical of this loss. Neural network
optimization could probably stop in minima different from the global one. We hypothesize
that this loss might unlock its benefits if used to fine-tune the models. We will verify this
in future work.

All the training procedures with LMAE
W and LIOUW achieve good results. The results

are not directly comparable with metrics of Section 6.2 and Section 6.3 because of the
area normalization in the Au scale. The normalization to Au causes spectral errors to
have different scales compared to ES. Moreover, this task is more challenging since the
NNs have no reference magnitude to distinguish spectra whose parameters would lead to
different energy magnitudes.

7.4. Testing on absorption spectra

The goal of this experiment is to visually assess the performance of our proposed method
over real-world absorption spectra. We can define an absorption spectrum of a given
material as the resulting portion of incident radiation that the material has absorbed [26].
The absorbed frequencies depend on the atomic and molecular configuration of the material.
This property makes absorption spectra widely employed in many branches of Spectroscopy
because it is then possible to recognize substances. For example, in Chemical Spectroscopy,
absorption spectra allow detecting the presence of anomalous substances in power plants
or pollutants in the air. In Astronomy, scientists employ absorption Spectroscopy to study
constellation compositions and planet characteristics.

Given a target material, SC generation can help generate the proper broadband
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Figure 7.5: Absorption spectrum power densities.

spectrum required to cover the bands of the material absorption spectrum. Then, we can
use our method to predict the laser pump parameters that would generate a spectrum
close to the absorption one. Hence, we consider the absorption spectra use case as an arena
for our models. We tested over the absorption spectrum of three gases, i.e. Acetylene,
Ammonia and Methane. Figure 7.5 reports their power densities.

Taking Acetylene as an example, Figure 7.5d shows that the intensity of this kind
of spectra is highly sparse in wavelengths. Given the problem formulation described in
Section 2.2, the prediction of the absorption spectra parameters turns the problem into
ill-posed since SC generation cannot produce the absorption spectra. However, by testing
our method on these samples, we aim to obtain some spectra that are as close as possible
to the envelope of the target absorption.

The experiment considers only the FC model. We want to verify whether there is any
difference in training with weighted loss and without. Absorption spectra suffer the issues
discussed in Section 7.2.1, so we scaled the areas in Au. Given the results in Section 7.3,
the intersection-over-union weighted loss LIOUW offers good performances. Therefore, the
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Figure 7.6: FC predictions over absorption spectra. We trained two FC models on F = 2,
optimizing the parameter loss and the intersection-over-union weighted loss respectively.
The first row reports the Au spectra of Acetylene, Ammonia and Methane. The second
one illustrates the Au binned areas of the absorption spectra.

weighted version of the FC optimizes LIOUW .
Figure 7.6 shows the spectra generated by the FC model predictions for the absorption

spectra. While we can notice that our method is still far from predicting reasonable
values, we can still appreciate the positive impact of the weighted loss function. This is
especially clear in the predictions over the Acetylene. In fact, the weighted loss clearly
helps at predicting parameters that can centre the corresponding spectrum. Moreover,
without weighted loss, the predicted parameters would result in an inappropriate number
of macroscopic peaks. On the other hand, the weighted loss function only helps centre the
generated spectra for the Ammonia and Methane targets. However, these two absorption
spectra present a profile that even in the binned areas is quite different from training set
spectra.

7.5. Summary

The proposed solution has the potential to be applied in general scenarios, where the
spectra are not SC generated, e.g. Gaussian and Absorption spectra. The results are
promising, but the models do not yet fully deliver sufficiently in non-generated spectra.
However, the weighted loss function approach is advantageous and help in improving the
results. In particular, we show that the weighted loss function method also integrates
well to different ideal losses than the MAE over the binned areas (4.6). Moreover, the
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same benefits highlighted in Chapter 6 are still present when we deprive the area scale
information to the networks. Finally, the weighted loss helps to visually improve the
quality of regenerated spectra from the predictions on absorptions.
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This thesis proposes a solution to the inverse problem of parameters estimation for the
generation of Supercontinuum spectra. This inverse problem consists of obtaining the
parameters of initial laser pulses that, when propagated into nonlinear media, e.g., optic
fibres, can generate target broadband spectra. A resource-intensive generator program
simulates the forward pass of the Supercontinuum generation.

The proposed solution consists of two deep learning models, fully connected and
convolutional neural networks, that have learnt the backward pass and can predict the
laser pump parameters. Both models can lead to lower errors over the regenerated spectra
when compared to the nearest neighbour search. The models are efficient both during
training and evaluation since we can employ them without necessary access to GPUs.

In addition, the proposed solution includes a new method for approximating loss
functions over inverse problems forward domain. In our case, we employed this method to
compute a weighted loss function to approximate the spectrum loss. Therefore, we are not
limited to typical isotropic parameter loss functions. We adopted this loss to train the
neural networks and overcome the simulator computational intractability.

We found that this method improves testset results in the spectrum domain when
compared to models trained without it. Finally, we investigated the generalization
performance of our solution over real-world spectra. Although the performance needs to
improve, we still found improvements when adopting the weighted loss function.

The proposed weighted loss definition is independent of the specific domain of the
Ultrafast Optics. Therefore, it has the potential to improve results in other inverse
problems.

8.1. Future work

The goals of future work are two-fold: solve the SC generation inverse problem in the real
world, and test the validity of the weighted loss function in other similar inverse problems
and against alternative solutions.

To achieve good performances when addressing real-world spectra, like absorption
spectra, we will focus on improving the prediction accuracy and robustness, as well as
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increasing the generalization of the models. Hence, future work will experiment with
modified and novel neural network architectures, e.g., deeper CNN, or Autoencoders to
learn the SC generator process. Additionally, we would like to increase the solution space
dimensionality, by predicting additional parameters that we have not considered so far,
such as the right length of the optical fibre. Finally, we would like to move to real data
from physical lasers, in contrast with the current simulated spectra.

We believe that improving the weighted scheme will benefit the SC inverse generation
and other similar inverse problems. As Section 7.3 highlighted, the weighted loss can
approximate several possible loss definitions. Therefore, finding the most suitable one
for our problem is yet an open question. Moreover, we will consider new weighted loss
expressions, in contrast with the current one, i.e. Equation (4.8). For instance, we would like
to extend our method by defining a noise model over the real loss function to approximate,
and employing an anisotropic and spatial adaptive implementation [19], in contrast with
our current neighbour-isotropic and non-adaptive method. Concerning this extension, we
could adopt the algorithm defined by the concept of local polynomial approximation and
intersection of confidence intervals (LPA-ICI) [13].

Regarding the validity of our method, we plan to test the weighted loss function
method on other inverse problems. Therefore we can investigate if the positive impact
of the weighted loss is reproducible. Among other inverse problems, the optimization
of Aereonautics geometries [50] from fluid dynamics features could be a possible arena.
In this research, neural networks predict airfoil shape parameters from the preprocessed
wind velocity maps. This problem resembles the SC generation, since the generation of
wind maps from airfoil shapes is an expensive simulation. Thus, we could easily insert our
method to optimize the airfoil parameters that lead to wind maps as close as possible to
target ones. Finally, the work in [48] adopted the Nelder-Mead optimization to estimate
the violin plate parameters given target vibrational properties. This represents yet another
parameter estimation inverse problem where our method could be applied. Therefore, the
inverse process could be learnt by a neural network optimized via weighted loss function.
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