
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Department of Electronics, Information and Bioengineering
Master of Science in Computer Science and Engineering

Graph Neural Networks and Learned

Approximate Message Passing Algorithms

for Massive MIMO Detection

Supervisor: Prof. Umberto Spagnolini

Master Thesis by:
Andrea Scotti, 913122

Academic Year 2019-2020

Tengo vicini amici e persone care perché senza radici l’albero cade.
-Marracash

Abstract

Massive multiple-input and multiple-output (MIMO) is a method to im-
prove the performance of wireless communication systems by having a large
number of antennas at both the transmitter and the receiver. In the fifth-
generation (5G) mobile communication system, Massive MIMO is a key
technology to face the increasing number of mobile users and satisfy user
demands. At the same time, recovering the transmitted information in
a massive MIMO uplink receiver requires more computational complexity
when the number of transmitters increases. Indeed, the optimal maximum
likelihood (ML) detector has a complexity exponentially increasing with the
number of transmitters. Therefore, one of the main challenges in the field
is to find the best sub-optimal MIMO detection algorithm according to the
performance/complexity trade-off. In this work, all the algorithms are em-
pirically evaluated for large MIMO systems and higher-order modulations.

Firstly, we show how MIMO detection can be represented by a Markov
Random Field (MRF) and addressed by the loopy belief propagation (LBP)
algorithm to approximately solve the equivalent MAP (maximum a poste-
riori) inference problem. Then, we propose a novel algorithm (BP-MMSE)
that starts from the minimum mean square error (MMSE) solution and up-
dates the prior in each iteration with the LBP belief. To avoid the complex-
ity of computing MMSE, we use Graph Neural Networks (GNNs) to learn a
message-passing algorithm that solves the inference task on the same graph.

To further reduce the complexity of message-passing algorithms, we re-
call how in the large system limit, approximate message passing (AMP), a
low complexity iterative algorithm, can be derived from LBP to solve MIMO
detection for i.i.d. Gaussian channels. Then, we show numerically how AMP
with damping (DAMP) can be robust to low/medium correlation among the
channels. To conclude, we propose a low complexity deep neural iterative
scheme (Pseudo-MMNet) for solving MIMO detection in the presence of
highly correlated channels at the expense of online training for each chan-
nel realization. Pseudo-MMNet is based on MMNet algorithm presented in
[24] (in turn based on AMP) and it significantly reduces the online training
complexity that makes MMNet far from realistic implementations.

I

Sommario

Massive multiple-input and multiple-output (MIMO) é una tecnica per in-
crementare l’efficienza della comunicazione wireless con l’ausilio di molteplici
antenne a lato trasmettitore e ricevitore. Nella quinta generazione di sistemi
di comunicazione mobile (5G), massive MIMO ricopre un ruolo fondamen-
tale per affrontare la continua crescita del numero di dispositivi mobili e
per soddisfare le necessitá degli utenti. Allo stesso tempo, recuperare in
modo ottimale a lato ricevitore l’informazione trasmessa in un sistema mas-
sive MIMO richiede una complessitá computazionale che cresce esponenzial-
mente con il numero di trasmettitori. Di conseguenza, una delle sfide piú
grandi nel campo delle telecomunicazioni é trovare l’algoritmo sub-optimale
piú promettente in termini di performance e complessitá computazionale. In
questo lavoro, tutti gli algoritmi sono valutati sperimentalmente e in modo
empirico in sistemi massive MIMO con alto ordine di modulazione.

In primo luogo, mostriamo come il problema puó essere rappresentato
in un campo aleatorio di Markov (MRF) e risolto approssivamente con
l’algoritmo loopy belief propagation (LBP) come un problema della stima del
massimo a posteriori. Successivamente, proponiamo l’algoritmo BP-MMSE
che viene inizializzato con la soluzione del minimo errore medio quadro
(MMSE) e iterativamente aggiorna l’informazione a priori con l’algoritmo
LBP. Per evitare la complessitá di computare MMSE, usiamo le reti neurali
su grafi (GNN) per imparare un algoritmo di scambio di messaggi su grafi
per risolvere lo stesso problemo di inferenza.

Per ridurre ulteriormente la complessitá computazionale, da LBP si
deriva l’algoritmo approximate message passing (AMP) per canali di trasmis-
sione i.i.d. e Gaussiani. Dimostriamo numericamente che AMP con damp-
ing (DAMP) é in grado di performare meglio di MMSE anche per canali di
trasmissioni che presentano un livello medio e basso di correlazione. Per con-
cludere, proponiamo un algoritmo iterativo di apprendimento automatico a
bassa complessitá (Pseudo-MMNet) per canali di trasmissione che possono
essere altamente correlati tra loro, con lo svantaggio di svolgere un nuovo
apprendimento per ogni nuova realizzazione del canale. Pseudo-MMNet is
fonda su l’algoritmo MMNet proposto in [24] (a sua volta basato su AMP)
e riduce significativamente la complessitá computazionale di apprendimento
che rende MMNet difficile da considerare per applicazioni reali.

III

Acknowledgements

The host company of this work is Huawei Technologies Sweden AB. I would
like to thank the company for the opportunity to contribute in building
a better connected world. During my permanence in Huawei, I benefited
significantly from the interaction with my colleagues, especially Nima, Karl
and Jinliang. I would like to thank them for their essential support, special
advises and precious contribution. Nima also acted as my supervisor inside
the company and our discussions helped a lot to shape this thesis and to see
hope in the darkness of bad results. Then, I wish to express my appreciation
and gratitude to my supervisor Dong from KTH for his endless patience,
generous support, and constant guidance. To conclude, I thank my parents,
Elisabetta and Roberto, who have supported and encouraged me during my
studies.

V

Contents

Abstract I

Sommario III

Acknowledgements V

Notations XI

Acronyms XIV

List of Figures XVII

List of Tables XIX

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 2

1.3 Contribution . 4

1.4 Benefits, ethics and sustainability 5

1.5 Outline . 6

2 Background 7

2.1 MIMO in wireless communication 7

2.1.1 Channel models . 8

2.1.2 Real-valued system model 9

2.1.3 MIMO detection . 9

2.1.4 QAM modulation . 11

2.2 Inference in probabilistic graphical models 12

2.2.1 Loopy belief propagation 13

2.2.2 MIMO as a factor graph 14

2.2.3 Markov random field 16

2.2.4 MIMO as a Markov random field 17

2.3 Sparse linear inverse problem 18

2.3.1 ISTA . 19

VII

2.3.2 Approximate message passing 19

2.4 AMP for MIMO detection . 21

2.5 Supervised deep learning . 24

2.5.1 Preventing overfitting 25

2.5.2 Vanishing gradient problem 26

2.5.3 Graph neural networks 27

2.5.4 Learned ISTA . 29

2.5.5 Adaptive LISTA . 29

2.5.6 Learned AMP . 30

2.6 Deep learning for MIMO detection 32

2.6.1 MMNet . 32

3 Algorithms design 35

3.1 BP-MMSE . 35

3.2 MIMO-GNN . 37

3.3 MIMO-GNN-MMSE . 38

3.3.1 Edge pruning . 39

3.4 GNNs hyperparameters design 39

3.5 DAMP . 40

3.6 Pseudo-MMNet . 41

3.6.1 Why Pseudo-MMNet works? 43

3.6.2 Why is online training required? 43

3.7 Comparison among schemes 43

4 Methodology 47

4.1 Compared algorithms . 47

4.2 Dataset . 48

4.2.1 Offline training . 48

4.2.2 Online training . 49

4.2.3 GNN-based models . 49

4.2.4 Low-complexity iterative based models 50

4.3 Training . 50

4.3.1 MMNet-iid training procedure 50

4.3.2 MMNet training procedure 51

4.3.3 Pseudo-MMNet . 51

4.3.4 GNNs . 51

5 Experiments 53

5.1 DAMP . 53

5.1.1 Experiment 1 . 53

5.2 Offline training . 57

5.2.1 Experiment 2 . 57

5.2.2 Experiment 3 . 57

5.2.3 Experiment 4 . 60

5.3 Online training . 65
5.3.1 Experiment 5 . 65

6 Discussion 69
6.1 Performance analysis . 69
6.2 MMNet-iid training strategy 70
6.3 Computational complexity . 70

6.3.1 Low-complexity iterative algorithms 70
6.3.2 GNN-based algorithms 71

7 Conclusions and future work 73

Bibliography 75

A Proof 1 79

B Proof 2 81

Notations

In order to achieve uniformity throughout this thesis and to avoid any pos-
sible confusion, the mathematical notations are now presented. Scalars are
represented by plain characters, e.g. a. Vectors are represented by a lower-
case bold character, e.g. a, and a matrices by an upper-case character in
bold, e.g. A. Calligraphic uppercase letters denote sets, e.g. A.

Notation Definition

aT ,AT Transpose of vector a and matrix A

A† Moore-Penrose Inverse of matrix A.

|| · ||2 2-norm for vectors and Frobenius norm for matrices

IN Identity matrix of size N

EA{·} Expectation operator with respect to the pdf of random variable A

VARA{·} Variance operator with respect to the pdf of random variable A∑
A Summation over all the realizations of discrete random variable A

arg maxA arg max over all the realizations of discrete random variable A

arg minA arg min over all the realizations of discrete random variable A

Re(a) Real part of a number a

Im(a) Imaginary part of a number a

|A| Cardinality of set A
|A| Determinant of matrix A

XI

Notation Definition

R Set of real numbers

C Set of complex numbers

A ∪ B Union between sets A and B
A/B Set difference of A and B
A× B Cartesian product between sets A and B
AN N -ary Cartesian power of set A
at Value of a at iteration t

al l-th entry of vector a

al l-th column of matrix A

arl l-th row of matrix A

aij element in row i and column j of matrix A

a(d) Value of d-th data sample

{ak}Kk=1 Set of values a1, ..., aK

mi→j Message from i to j

≈ Approximately equal

∝ Equal up to normalization constant

∼ Drawn from probability distribution

N (µ, σ2) Normal distribution where µ is the mean and σ2 the variance

ne(a) Set of nodes a neighbors

XIII

Acronyms

4G Fourth-generation

5G Fifth-generation

AMP Approximate Message Passing

ANN Artificial Neural Network

AWGN Additive White Gaussian Noise

BP Belief Propagation

BS Base Station

DAMP Damping Approximate Message Passing

DL Deep Learning

GNN Graph Neural Network

GRU Gated Recurrent Unit

GTA Gaussian Tree Approximation

i.i.d. Independent and identically distributed

ISTA Iterative Soft Thresholding Algorithm

KLD Kullback-Leibler Divergence

LAMP Learned Approximate Message Passing

LBP Loopy Belief Propagation

LISTA Learned Iterative Soft Thresholding Algorithm

LSTM Long Short-term Memory

LTE Long-term evolution

MAP Maximum A Posteriori

MIMO MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MLP Multilayer Perceptron

MMSE Minimum Mean Square Error

MRF Markov Random Field

NN Neural Network

PGM Probabilistic Graphical Model

QAM Quadrature Amplitude Modulation

RNN Recurrent Neural Network

SER Symbol Error Rate

SNR Signal to Noise Ratio

UE User equipment

ZF Zero Forcing

List of Figures

1.1 Massive MIMO architecture [3]. 2

2.1 Graphical representation of MIMO detection. 8

2.2 Squared QAM constellations [11] 11

2.3 Graphical representation of a factor graph. 13

2.4 LBP message updates. 14

2.5 Factor graph for MIMO system 2× 2. 15

2.6 Fully-connected pair-wise Markov Random Fields with 4 vari-
ables . 16

2.7 Iteration t of AMP-Gaussian. This graphical representation
does not include the computation of τ t+1. 24

2.8 GNNs’ message and state updates. 28

2.9 Layer t of MMNet. This graphical representation does not
include the computation of (σt)

2. 33

3.1 Iteration t of DAMP. This graphical representation does not
include the computation of τ t+1. 41

3.2 Layer t of Pseudo-MMNet. This graphical representation
does not include the computation of (σt)2. 42

3.3 Layer t of the general scheme of low-complexity iterative al-
gorithm. 44

5.1 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system with 32 transmitters, 64 receivers with ran-
domly sampled i.i.d. Gaussian channels. DAMP runs for
three different number of iterations: 10, 12, 14 (from top to
bottom). 55

5.2 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system with 32 transmitters, 64 receivers with Kro-
necker channel model with correlation ρr = 0.3 at receiver
side. DAMP runs for three different number of iterations:
10, 12, 14 (from top to bottom). 56

XV

5.3 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system with 32 transmitters, 64 receivers with ran-
domly sampled i.i.d. Gaussian channels. 57

5.4 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system of 32 transmitters, 64 receivers with randomly
sampled i.i.d. Gaussian channels (top) and Kronecker chan-
nels with correlation ρr = 0.15 (middle) and ρr = 0.3 (bot-
tom) at receiver side. 59

5.5 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system of 32 transmitters, 64 receivers with Kronecker
channels with correlation ρr = 0.3 at receiver side and ρt =
0.3 transmitter side. 60

5.6 SER vs. SNR of different schemes for QAM-16 (top) and
QAM-64 (bottom) modulations, MIMO system with 16 trans-
mitters and 32 receivers with randomly sampled i.i.d. Gaus-
sian channels. 62

5.7 SER vs. SNR of different schemes for QAM-16 (top) and
QAM-64 (bottom) modulations, MIMO system with 16 trans-
mitters and 64 receivers with randomly sampled i.i.d. Gaus-
sian channels. 63

5.8 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system with 16 transmitters and 32 receivers with
channels drawn from the Kronecker model with correlation
ρr = ρt = 0.3. 64

5.9 Convergence of GNN-based algorithms for QAM-64 modu-
lation, MIMO system with 16 transmitters and 32 receivers
with randomly sampled i.i.d. Gaussian channels. 64

5.10 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system of 32 transmitters, 64 receivers on a randomly
sampled Kronecker MIMO channel with correlation ρr = 0.3
at receiver side and ρt = 0.5 at transmitter side. 66

5.11 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system of 32 transmitters, 64 receivers on a randomly
sampled Kronecker MIMO channel with correlation ρr = 0.3
at receiver side and ρt = 0.5 at transmitter side. Pseudo-
MMNet is compared for different number of layers (3, 5, 7,
9). 66

5.12 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system of 32 transmitters and 64 receivers on a ran-
domly sampled Kronecker MIMO channel with correlation
ρr = 0.3 at receiver side and ρt = 0.5 at transmitter side.
Pseudo-MMNet is compared for different number of training
epochs (15, 20, 25). 67

5.13 SER vs. SNR of different schemes for QAM-64 modulation,
MIMO system of 32 transmitters and 64 receivers on a ran-
domly sampled Kronecker MIMO channel with correlation
ρr = 0.3 at receiver side and ρt = 0.5 at transmitter side.
Pseudo-MMNet is compared for different batch size of train-
ing (100, 300, 500). 67

List of Tables

3.1 Values of Sm and Su for each modulation order. 40
3.2 Scheme comparison between classical iterative algorithms. . . 44
3.3 Scheme comparison between NN-based iterative algorithms. . 45

Chapter 1

Introduction

1.1 Motivation

Multiple-antenna technology, also known as multiple-input multiple-output
(MIMO), is one of the most important techniques for advanced wireless
communications systems. MIMO technology utilizes multiple antennas at
the transmitter and receiver and, therefore, is able to achieve a higher data
rate through spatial multiplexing. Long-term evolution (LTE) based fourth
generation (4G) mobile communication system allows for up to eight antenna
elements at the base station (BS), while the fifth-generation (5G) of cellular
communication systems is equipped with a massive number of antennas that
simultaneously serves multiple single-antenna user equipments (UEs) on the
same time-frequency resource [39]. 5G with Massive MIMO can achieve an
order of magnitude higher spectral efficiency (measured in bits/s/Hz) than
the LTE legacy standards [35].

Because the transmitted signals come from different antennas, they in-
terfere with each other. This is the main reason why the signal detection
problem in MIMO systems is one of the major challenges at the receiver side.
The optimal detection method consists of an exhaustive search over all the
possible symbols (from the operating constellation) for each transmitter an-
tenna. The computational complexity grows exponentially in the number
of transmitting antennas. Unfortunately, such a brute force approach is
not realizable for a large number of transmitting antennas. Therefore, re-
searchers proposed several alternative suboptimal solutions that achieve low
complexity at the expense of accuracy.

Recently, deep learning (DL) has demonstrated that it can help to offload
the prediction complexity on the training phase. The promising results
presented in the recently published papers are a perfectly valid motivation
to keep investigating in this direction.

1

Figure 1.1: Massive MIMO architecture [3].

1.2 Related work

This work mainly focuses on MIMO detection with the aid of graphical
models. Detectors are based on the belief propagation (BP) algorithm [40]
where the MIMO system is modeled as a fully connected bipartite factor
graph [27] and the problem becomes solving an inference task on a graphical
model. When graphs contains cycles, the algorithm is also called loopy belief
propagation (LBP) and its convergence is not always guaranteed.

In order to solve this issue, the input data and messages can be assumed
to be Gaussian distributed, (see, e.g., [6]). In this case, the message update
rule is much simpler to compute because each message and posterior prob-
ability can be represented by a pair of mean and variance. However, the
authors of [42] show that in the case of MIMO detection, where the input
data is drawn from a discrete constellation, the algorithm can converge only
to the linear minimum mean squared error (MMSE) solution [38] whose per-
formance is known to be inferior to the maximum likelihood (ML) optimal
detector when the input is not Gaussian distributed.

Better approaches to reduce the complexity are presented in [17, 16, 42,
29] where the LBP algorithm is run on a equivalent graphical model with a
different structure: the pair-wise Markov random field (MRF).

In [17], the fully connected MRF is approximated with a tree on the ba-
sis of the Kullback-Leibler divergence (KLD) optimality criterion and then
BP is run on the approximated graph. In [26] the message update scheme
is modified by adding noise to oscillating messages or by damping the mes-
sages as it also done in [33]. Instead, in [14] they construct a dynamic

2

asynchronous message schedule that differs from the classical single round-
robin ordering. Another contribution to the same problem is disclosed by
[37], where the authors provide a different approach to compute the message
updates by assigning to each edge a probability to appear in the distribution
over the spanning trees of the graph that optimizes the underlying varia-
tional problem.

Recently, neural networks have been used to solve inference tasks in loopy
graphs. The authors of [41] propose a Graph Neural Networks (GNNs)
framework to learn a message-passing algorithm that finds inspiration in
LBP. GNNs can be seen as an extension of recurrent neural networks that
operate on graph-structured inputs [36, 28]. Our work is based on the GNNs
variant presented in [41] that, according to [15], is referred to as message-
passing neural networks. Each node in GNNs encodes in a hidden state
vector the probabilistic information about the corresponding variable in the
graphical model. The states are iteratively updated by aggregating the mes-
sages coming from the neighbor nodes. Both the messages and the hidden
states are outputs of expressive neural networks. To our best knowledge,
GNNs have not been applied to MIMO detection problem yet.

In every iteration, the number of exchanged messages in message-passing
algorithms is equal to the number of edges in the graphical model. The
MIMO MRF is a fully connected graph. Therefore, the complexity of
message-passing algorithms becomes prohibitive for large systems if they
are not properly parallelized. In order to work with low-complexity iter-
ative algorithms, [23] proposes a new class of algorithms that replace the
exchange of messages with matrix multiplications. The authors consider
the MIMO factor graph and they simplify the LBP algorithm by assuming
a Gaussian distribution for the marginal density functions of the messages.
The resulting algorithm is LAMA (short for LArge MIMO Approximate
message passing) that is able to achieve the individually-optimal data de-
tector [19] under certain assumptions on the constellation and the structure
of the channel matrix: for instance, the channels need to be i.i.d. (inde-
pendent and identically distributed). LAMA relies on approximate message
passing (AMP) which is a class of algorithms that finds an impressive success
in the field of compressed sensing [32]. As explained in [32], AMP is used to
solve the sparse linear inverse problem that is strictly related to the MIMO
detection problem. In the same work, the author shows how to derive AMP
from LBP under certain assumptions that are partially used to derive the
LAMA algorithm too.

Except for the Onsager correction [32], AMP algorithm has the same
iterative scheme of another class of algorithms, well known as iterative soft
thresholding algorithm (ISTA). ISTA have been proposed in the literature
to solve the sparse linear inverse problem [7]. Unfortunately, it suffers from
a slow convergence rate compared to AMP (due to the lack of the Onsager
correction), so the authors of [18] proposed a neural network architecture

3

(LISTA), closely related to ISTA, to speed up the recovery of the signal. In
this case, a training dataset is used to train the parameters of the network.

A similar idea is applied in [24] to solve the MIMO detection problem.
In this work, the authors propose distinct neural network architectures for
different channel models. They show that for i.i.d. Gaussian channels the
network (MMNet-iid) is trained offline for multiple channel matrix realiza-
tions and the number of parameters to learn is much lower than in the case
of spatially correlated channels. Moreover, in the latter case, the network
(MMNet) needs to be trained online for every realization of the channel.
The online training that they propose introduces a latency that cannot be
afforded in realistic implementations.

OAMPNet [20] is another model-driven deep learning network for MIMO
detection based on the classical orthogonal AMP (OAMP) algorithm [31].
OAMPNet is supposed to work for a larger class of channel (unitarily-
invariant) matrices than AMP. However, we don’t consider OAMPNet as
a baseline for this work because the authors of [24] show that MMNet out-
performs OAMPNet both in performance and complexity.

The achievements of this thesis are mainly based on the work in [24], the
experiments in [8], and the analytic tools in [2]. Based on AMP, [8] proposes
a novel neural-network architecture, learned AMP (LAMP), that maintains
the presence the Onsager correction. The numerical experiments in [8] sug-
gest that LAMP significantly improves upon LISTA in both accuracy and
complexity.

To conclude, we consider a new extension of LISTA, termed Ada-LISTA
[2], that has been introduced to deal with varying model scenarios. Espe-
cially, the authors give an analytic proof of the linear rate convergence of
the algorithm.

1.3 Contribution

This thesis addresses the MIMO detection problem by applying the latest
advances in supervised deep learning and approximate inference on prob-
abilistic graphical models (PGMs). First of all, we demonstrate how the
problem can be represented by a PGM and how to solve it with an iterative
approximate inference method such as LBP. We propose a novel algorithm
(BP-MMSE) that combines LBP and the MMSE solution to solve the prob-
lem for higher-order modulations, e.g. Quadrature Amplitude Modulation-
16 (QAM-16) and QAM-64.

Then, we show that a GNN-based approach inspired by BP can solve
the same inference task by outperforming the classical LBP, even without
the help of the MMSE prior information. We compare the results with
the MMSE baseline algorithm under different number of receiver antennas,
(signal-to-noise ratio) SNR values, and modulation orders. Furthermore, we

4

empirically analyze the convergence of the algorithm and propose a strat-
egy to prune the edges in the graph in order to reduce the complexity of
exchanging messages between the nodes of the graphical model during each
iteration.

Furthermore, we present the AMP algorithm for real-valued MIMO sys-
tems and how it is analytically derived from BP under the assumption that
the channels are i.i.d. distributed. Then, we show how to slightly mod-
ify the AMP algorithm by adding damping after each layer. The resulting
scheme, Damping AMP (DAMP), is tested on i.i.d. Gaussian channels and
compared with the MMSE and MMNet-iid baselines for different SNR val-
ues. Subsequently, we test the robustness of DAMP when it operates with
spatially correlated channels.

In the end, we propose a new algorithm, Pseudo-MMNet, that is inspired
by MMNet and optimized to work even for strongly spatially correlated
channels at the expense of online training for every realization of the channel.
We report the similarities between Pseudo-MMNet and Ada-LISTA, whose
convergence is proved analytically. To conclude we show that it is possible
to control the trade-off between performance and complexity by adjusting
the number of network layers or the number of epochs and batch size during
training.

1.4 Benefits, ethics and sustainability

This thesis is aligned with the vision for sustainable development outlined in
the Sustainable Development Goals [34]. Indeed, we conduct this research
with the scope of building a better ”connected” world. We believe that
bringing connectivity in a efficient way both in crowded cities and remote
areas will help:

• to improve the well-being of people and the quality of education;

• to increase the access to job opportunities and unlock smart working
where nowadays is still unthinkable;

• to bring innovation in the industry and to improve infrastructures for
”smarter” cities.

On one hand, solving MIMO detection for large systems can be an inten-
sive task in terms of computational complexity. Therefore, it might raise
concern regarding the sustainability of its direct and indirect effects, e.g.
the energy consumption. On the other hand, this work aims to improve the
current methods for MIMO detection with a highlighted focus on reducing
the computational complexity of the solution by preserving the desired per-
formance. For this reason, we dedicate Section 6.3 to provide an complexity
analysis of the algorithms proposed in the rest of the work.

5

1.5 Outline

The remaining part of this document is organized as follows:

• Chapter 2 describes the state of the art theory and techniques needed
to introduce our contribution. We focus on classical and machine
learning MIMO detectors, probabilistic graphical models, approximate
message passing and iterative soft thresholding algorithms, supervised
deep learning and graph neural networks.

• Chapter 3 provides a description of the proposed algorithms: GNNs
for MIMO detection, DAMP and Pseudo-MMNet.

• Chapter 4 describes the methodology followed by our approach and
the experimental setup.

• Chapter 5 provides an empirical analysis of the algorithms performance
compared with the baseline solution.

• Chapter 6 goes over the experiments results and the computational
complexity of the proposed algorithms.

• Chapter 7 summarizes our work and proposes possible future improve-
ments.

6

Chapter 2

Background

2.1 MIMO in wireless communication

One of the main challenges of wireless communication is interference: mul-
tiple users have access to the same channel simultaneously. Moreover, user
devices move frequently and the surrounding environment can change. So,
the channel is shared and time-varying. The work of this thesis focuses on
signal detection in the multiuser communication scenario.

Wireless communication requires a system able to coordinate multiple
antennas at the receiver unit to detect the signals sent from wireless devices.
These devices operate as mobile transmitters within a limited coverage area
commonly known as cell. Here, we consider the uplink communication in a
cellular system where the base station has the role of central coordinator.
The system described above can be modeled by the MIMO system:

ỹ = H̃x̃ + ñ, (2.1)

where, in the case of narrowband channels, each channel becomes a complex
scalar: the channel gain from antenna T x̃j and antenna T x̃i is defined as
h̃ij ∈ C. We denote with Ñt the number of transmitter antennas and Ñr the
number of receiver antennas. The measurements across receiver antennas
can be stack into vector ỹ of length Ñr. Similarly for transmitted signals into
vector x̃ of length Ñt, and antennas noises into vector ñ of length Ñr. The
vectors ỹ, x̃ and ñ are related through the channel matrix H̃ of dimension
Ñr × Ñt.

Definition 1 (Narrowband MIMO) The MIMO system is modeled by
the linear system

ỹ = H̃x̃ + ñ, (2.2)

where H̃ ∈ CÑr×CÑt , ỹ ∈ CÑr , ñ ∈ CÑr , x̃ ∈ ÃÑt where Ã ⊂ C is a discrete
finite alphabet.

7

Figure 2.1: Graphical representation of MIMO detection.

In the model defined in 1 we make the following assumptions:

• the input power satisfies E{x̃H x̃} = Ñt;

• noise is complex zero-mean Gaussian: ni ∼ CN (0, σ2) and the covari-
ance matrix is E{ññH} = σ2IÑr

• the column of H̃ are normalized, ||h̃i||2 = 1;

• SNR = 10 log10
E{||H̃x̃||22}
E{||ñ||22}

then SNR = 10 log10
E{||H̃x̃||22}
Ñrσ2

• the channel H̃ is known at the receiver side.

2.1.1 Channel models

In this work we are going to work with two distinct channel models: i.i.d.
Gaussian and Kronecker channel model.

i.i.d. Gaussian channel model

The i.i.d. Gaussian channel model is the most used in literature to test and
compare MIMO detection algorithms. It has a strong underlying assumption
for which every channel gain h̃ij is independent from all the others such
that h̃ij ∼ CN (0, 1

Ñr
). This assumption makes the model pretty far from a

realistic scenario where channels are spatially correlated, and they depend
on each other. In this work, we normalize the columns of H̃ such that each
column h̃i satisfies ||h̃i||2 = 1.

Kronecker channel model

In order to simulate the spatial correlation among channels, we consider the
Kronecker channel model:

H̃ = R
1/2
R K̃R

1/2
T , (2.3)

where k̃ij ∼ CN (0, 1
Ñr

) and RR,RT are the spatial correlation matrices at

the receiver and the transmitter side respectively, that are generated accord-
ing to the exponential correlation model [30]. The correlations at receiver
and transmitter side are addressed with coefficients ρr, ρt respectively.

In this work, we normalize the columns of H̃ such that each column h̃i
satisfies ||h̃i||2 = 1.

8

2.1.2 Real-valued system model

In order to remove the difficulties related to work with complex-valued sys-
tems, we simplify the model in Definition 1 by converting it into a real-valued
system. The converted model treats the real and imaginary parts of complex
values separately by defining a new transmitted symbol vector as

x = [Re(x̃T) Im(x̃T)]T , (2.4)

where Re(x̃) and Im(x̃) are the real and imaginary parts of x̃ respectively.
Following the same structure, the received measurement vector and noise
vector become

y = [Re(ỹT) Im(ỹT)]T , (2.5)

n = [Re(ñT) Im(ñT)]T . (2.6)

Then the new channel matrix is

H =

[
Re(H̃) −Im(H̃)

Im(H̃) Re(H̃)

]
. (2.7)

Following the previous definitions of y,H,x,n, the new model is defined as
follows.

Definition 2 (Real-valued MIMO)

y = Hx + n, (2.8)

Nr = 2Ñr, Nt = 2Ñt. (2.9)

We call the new real-valued alphabet A. In the QAM-M case, A = Re(Ã) =
Im(Ã).

2.1.3 MIMO detection

The goal of this thesis is to analyze and discuss alternative solutions for the
problem of MIMO detection which we define in this way.

Definition 3 (MIMO Detection) Given the model described in Defini-
tion 2, a MIMO detection method aims to recover the transmitted signals x
given the receiver measurements y, the estimated channel H and the covari-
ance matrix of n.

The optimal detector for solving the problem in Definition 3 is the ML
detector:

9

Definition 4 (ML Detector)

x̂ = arg max
x∈ANt

p(y|x,H) = arg min
x∈ANt

||y −Hx||2. (2.10)

The best estimation x̂ for x is the one the maximize the likelihood p(y|x,H).
The problem of this method is the high computational complexity which is
due to the exhaustive search over all possible values of x ∈ ANt.

Hard Detectors

Hard detectors are a class of detectors that predict values z ∈ RNt not
necessarily from the alphabet ANt . Here the predicted symbol x̂i is the one
that satisfies

x̂i = arg min
x∈A

|x− zi|. (2.11)

A detector more famous in literature than in practice is zero-forcing (ZF).

Definition 5 (ZF detector) When Nr ≥ Nt and there are at least Nt

linearly independent columns in H, by applying the pseudo inverse H†of the
channel to y

x̂ = H†y = (HTH)−1HTy ≈ z + w (2.12)

we recover z plus a new noise w that can grow very large when (HTH) is
almost singular and its inversion leads to very high values.

In order to avoid the noise enhancement which arises in Definition 5, what
we do in practice is to use a minimum mean squared error detector:

Definition 6 (MMSE detector)

x̂ = (HTH + σ2INt)
−1HTy ≈ z + w (2.13)

We can notice that when SNR→∞, σ → 0 and MMSE is equivalent to ZF.
MMSE gives good results in practice but its performance is still far from
the optimal one in different scenarios and it doesn’t scale very well with
the number of antennas because of the inverse of a matrix with dimensions
Nt ×Nt. MMSE will be the benchmark method for this thesis.

Performance metrics

In this work we use the Symbol Error Rate (SER) as performance metric
to compare detection algorithms at different SNR measures. The SER is
defined in this way:

SER =
no. of symbols in error

total no. of transmitted symbols
. (2.14)

10

2.1.4 QAM modulation

Modulation is the process of varying the phase and/or the amplitude and/or
the frequency of a periodic waveform, called the carrier signal, to transmit
information. Quadrature Amplitude Modulation produces a signal in which
two carriers shifted in phase by 90 degrees (they are in quadrature) are mod-
ulated and combined. Basic signals exhibit only two positions which allow
the transfer of either a 0 or 1. Using QAM there are many different points
that can be used, each having defined values of phase and amplitude. The
constellation points are usually arranged in a square grid, the constellation
diagram (Figure 2.2), with equal vertical and horizontal spacing. In digital
telecommunications the data is usually binary so the number of points in the
grid is usually a power of 2. QAM is usually square, so the most common
forms are QAM-4, QAM-16, QAM-64, and QAM-256. Different values are
assigned to different points such that each single signal is able to transfer
data at a much higher rate. However, if the mean energy of the constellation
has to remain the same, the points must be closer to each other and thus
they are more susceptible to noise.

Figure 2.2: Squared QAM constellations [11]

For QAM-M , where M is a square number and a power of two, the

11

points assume the values

±d
2
,±3d

2
, ...,±(

√
M − 1)d

2

along each axis, where d is the minimum distance between points in the
constellation. Let’s now consider the case where d = 2. The average power
of QAM-M constellation is the double of the power along each axis:

EQAM−M = 2

∑√M/2

i=0 2(2i+ 1)2√
M

= 2
M − 1

3
, (2.15)

where i is an integer number. So, in order to work with normalized (on
average) constellation symbols s, a QAM-M symbol s̃ becomes

s =
s̃√

2(M−1)
3

. (2.16)

2.2 Inference in probabilistic graphical models

PGMs are graphical representations of probability distributions. They com-
bine probability theory and graph theory in a unique framework. Graphical
models allow to write efficient inference algorithms for several classes of
probability distributions. Given a distribution p(x0, ..., xN−1), inference is
the process of estimating unknown quantities, such as the marginal distri-
bution of xl (for all l = 0, 1, ..., N − 1), from known quantities, such as the
parameters of the distribution.

Given N discrete random variables X = {x0, .., xN−1}, xl ∈ A, we con-
sider probability distributions which can be factorized as follows

p(x0, ..., xN−1) =
1

Z

M−1∏
k=0

ψk(Xk). (2.17)

where ψk(Xk) is well known as potential. It is a non-negative function of
the subset of variables Xk ⊆ X . Z, instead, is a constant that ensures
normalization and it takes the name of partition function.

A graphical model that corresponds to the probability distribution in
(2.17) is the factor graph. The factor graph has a factor node for each factor
ψk, and a variable node for each variable xi. For each xl ∈ Xk, an undirected
link is made between factor ψk and variable xl. We are interested in factor
graphs for marginal inference that is concerned with the computation of the
distribution of a subset of variables. In our case, we want to compute the
marginal distribution for each variable xl which is equivalent to solve the
following problem for every symbol s ∈ A:

p(xl = s) =
1

Z

∑
X−xl

p(x0, ..., xl−1, s, xl+1, .., xN−1). (2.18)

12

Figure 2.3: Graphical representation of a factor graph.

Solving the problem in (2.18) requires to iterate over all the possible
realizations of X/{xl}. Therefore, the computational complexity of the task
is in the order of O(|A|N−1). If |A| > 1, then the complexity increases
exponentially with N and the problem becomes intractable.

2.2.1 Loopy belief propagation

Loopy Belief Propagation, which we will henceforth abbreviate as LBP,
is an algorithm that calculates the approximate marginal distributions in
graphical models that corresponds to the class of probability distributions
in (2.17). The calculation is done by message-passing on the corresponding
factor graph. There are two types of messages exchanged along the edges of
the graph:

• the message mk→l(xl) sent from factor node k to variable node l;

• the message ml→k(xl) sent from variable node l to factor node k.

We denote with ne(a) the neighbors of a node a. The update rules for the
messages at iteration t are:

mt
l→k(xl) ∝

∏
a∈ne(l),a 6=k

mt−1
a→l(xl), (2.19)

mt
k→l(xl) ∝

∑
Xk−xl

ψk(Xk)
∏

b∈Xk,b 6=l
mt
b→k(xb). (2.20)

After T iterations, the final step is to compute the marginal probabilities, or
belief b(xl) for each variable node l by multiplying all the incoming messages:

bl(xl) ∝
∏

k∈ne(l)

mT
k→l(xl). (2.21)

13

Figure 2.4: LBP message updates.

In each iteration, the number of exchanged messages is equal to the
number of edges in the graph. Therefore, the overall complexity of a single
iteration is proportional to the number of edges in the graph.

For graphs with loops, the number of iterations cannot be known a priori
and convergence is not guaranteed in general. Instead, belief propagation is
guaranteed to converge and to be exact on tree-structured graphs.

2.2.2 MIMO as a factor graph

Given the constrained linear system in Definition 2, the posterior probability
p(x|y) is factorized with the Bayes’s rule in the following way:

p(x|y) ∝ p(y|x)p(x) ∝
Nr−1∏
k=0

p(yk|x)

Nt−1∏
l=0

p(xl), (2.22)

where

p(y|x) ∝ exp(− 1

2σ2
||y −Hx||2), (2.23)

that can be rewritten in the factorized form

p(y|x) ∝
Nr−1∏
k=0

p(yk|x) =

Nr−1∏
k=0

exp(− 1

2σ2
(yk − hrkx)), (2.24)

where hrk is the k-th row of the matrix H. We assume priors p(x) =∏Nt−1
l=0 p(xl), with the following distribution for each transmit symbol xl:

p(xl) =
∑
s∈A

1

|A|
δ(xl − s), (2.25)

14

where δ is the Dirac delta distribution.
The goal of MIMO detection is to solve the following maximum a pos-

teriori (MAP) problem:

x̂MAP = arg max
x∈ANt

p(x|y). (2.26)

In order to solve the given inference problem we rely on a factor graph where
probability densities p(yk|x) and p(xl) are designed as factor nodes and the
variable xl is the variable node. On the given factor graph we run the BP

Figure 2.5: Factor graph for MIMO system 2× 2.

algorithm where the update rules for belief propagation are

mt
l→k(xl) ∝ p(xl)

∏
a6=k

mt−1
a→l(xl), (2.27)

for the message from variable node l to factor node k and

mt
k→l(xl) ∝

∫
R
p(yk|x)

∏
b6=l

mt
b→k(xb)dyk, (2.28)

for the message from factor node k to variable node l. There is no closed
form solution for the integral in the previous equation, so the computation
of the integral is quite expensive. In order to overcome this issue, in the next
section we reformulate the problem in another graphical model, the MRF.

After T iterations of LBP, the approximate solution to the MAP problem
in (2.26) is given by computing for each entry of x:

x̂l = argmax
xl∈A

p(xl|y) = argmax
xl∈A

p(xl)
∏
a

mT−1
a→l (xl). (2.29)

15

2.2.3 Markov random field

A MRF is a set of random variables described by an undirected graph G =
{V,E} where for every node i ∈ V it is true that

p(xi|x ∈ X/{xi}) = p(xi|ne(i)). (2.30)

A factor graphs whose potentials are functions of one or two variables can
be represented as a pair-wise MRF where each variable is associated to a
node. Each self potential φi(xi) is assigned to node i ∈ V and each pair
potential φij(xi, xj) is assigned to an edge e ∈ E that connects node i ∈ V
to node j ∈ V as shown in Figure 2.6. In pair-wise MRF the probability

Figure 2.6: Fully-connected pair-wise Markov Random Fields with 4 variables

distribution has the following form:

p(x0, ..., xN−1) =
1

Z

∏
i∈V

φi(xi)
∏

(i,j)∈E

φij(xi, xj), (2.31)

where V,E are the set of nodes and edges in the corresponding pair-wise
MRF and |V | = N . Deriving from Equations 2.21 and 2.20, the update rule
for LBP messages in a pair-wise MRF is

mt
i→j(xj) ∝

∑
xi

φi(xi)φij(xi, xj)
∏

b∈ne(i)/j

mt−1
b→i(xi), (2.32)

where ne(i) is the set of neighbors of i in the pair-wise MRF. The belief, or
marginal distribution, of each variable can be computed by multiplying the

16

incoming messages with the self potential φl(xl):

bl(xl) ∝ φl(xl)
∏

b∈ne(l)

mb→l(xl). (2.33)

2.2.4 MIMO as a Markov random field

By recalling (2.22), given the constrained linear system in Definition 2, the
posterior probability p(x|y) is factorized with the Bayes’s rule in the follow-
ing way:

p(x|y) ∝ p(y|x)p(x) = exp(− 1

2σ2
||Hx− y||2)p(x). (2.34)

The goal is to solve the MAP problem presented in (2.26). The posterior
probability in (2.34) can be factorized into a pairwise MRF:

p(x0, .., xNt−1|y) ∝
∏
i∈V

φi(xi)pi(xi)
∏

i 6=j,i,j∈V
φij(xi, xj), (2.35)

where

φi(xi) = e
1
σ2

(yThixi− 1
2
hTi hix

2
i), (2.36)

φij(xi, xj) = e−
1
σ2

hTi hjxixj (2.37)

and σ2 is the noise variance as in Definition 1 and hi is the i-column of
H. By applying the LBP algorithm described in Equations 2.32, where the
initial messages are the uniform prior probabilities over symbols, we can
approximate the solution of the MAP problem in (2.26) by solving a simpler
MAP problem for each variable. Indeed, after convergence, for each variable
xi we compute (2.33) and hard detect the transmitted symbol x̂i with

x̂l = arg max
xl∈A

bl(xl). (2.38)

From the experiments in [16] we know that applying the standard LBP with
uniform prior doesn’t lead to good results when solving MIMO detection.
Moreover, when the size of the graph increases, the product of the incoming
messages in (2.32) may easily result in an arithmetic underflow/overflow
condition. Therefore, the first modification that they propose in [16] is to
work with log messages:

logmt
i→j(xj) ∝ log

∑
xi

exp(log φi(xi)+log φij(xi, xj)+
∑

b∈ne(i)/j

logmt−1
b→i(xi)).

(2.39)
Then we apply the following approximation∑

i

expai ≈ expmaxi ai , a ∈ RN , N ∈ N, (2.40)

17

to obtain:

logmt
i→j(xj) ∝ max

xi
(log φi(xi) + log φij(xi, xj) +

∑
b∈ne(i)/j

logmt−1
b→i(xi)).

(2.41)
In the experiments in [16], the authors show that this variant is still not
good enough to do better than the MMSE detector (Definition 6). In order
to assist the LBP algorithm to concentrate on the right target, the authors
suggest to combine the result in the MMSE detector in the LBP iterations as
a pseudo prior. By following the same reasoning in Section 3.1, the pseudo
log prior log pl(xl) is set to

log pl(xl) = −
(zMMSE
l − xl)2

2cMMSE
ll

(2.42)

where

zMMSE = (HTH + σ2INt)
−1HTy (2.43)

and

CMMSE = σ2(HTH + σ2INt)
−1. (2.44)

From now on we discard the log notation, and we initialize the messages as

m0
i→j(xj) ∝ λpj(xj), (2.45)

we rewrite the message update equation for t > 0 as follows

mt
i→j(xj) ∝ max

xi
(λpi(xi) + φi(xi) + φij(xi, xj) +

∑
b∈ne(i)/j

mt−1
b→i(xi)). (2.46)

and the log belief bl(xl) becomes

bl(xl) ∝ λpl(xl) + φl(xl) +
∑

b∈ne(l)

mT
b→l(xl), (2.47)

where λ is a parameter to tune and the transmitted symbols x̂l are hard
detected in the following way

x̂l = arg max
xl∈A

b(xl). (2.48)

2.3 Sparse linear inverse problem

In this section we examine a class of low-complexity iterative thresholding
algorithms to recover unknown sparse signals from a set of linear measure-
ments. We recall the same problem in Definition 3 by relaxing the assump-
tion on x. Here x ∈ RNt and it is sparse. We address it as the the sparse

18

linear inverse problem that is usually solved by turning it into the following
convex optimization problem

x̂ = arg min
x

1

2
||y −Hx||22 + λ||x||1, (2.49)

where λ > 0 is a tunable parameter that controls the tradeoff between
sparsity and the quality of recovery of x̂.

2.3.1 ISTA

An appealing solution to problem in (2.49) is A class of techniques denoted
as iterative soft thresholding algorithms. The scheme of an iteration of ISTA
is presented in the following formulation.

Scheme 1 (ISTA)

zt = x̂t + αHT rt (2.50)

x̂t+1 = ηST (zt, λ) (2.51)

rt+1 = y −Hx̂t+1 (2.52)

In Scheme 1, x̂0 = 0, r0 = y, α > 0 is a stepsize, rt the residual error
at iteration t and ηST RNt → RNt is a component-wise soft-thresholding
shrinkage function:

ηST (zj , λ)j = sign(zj) max(|rj | − λ, 0). (2.53)

The solution to the problem in (2.49), is given after T iterations by x̂T .

2.3.2 Approximate message passing

In [12], the authors introduce a simple modification to ISTA algorithm by
taking inspiration from belief propagation in graphical models. They pro-
pose an algorithm well known as AMP that exhibits the same low computa-
tional complexity of ISTA with faster converge and stronger reconstruction
power.

Scheme 2 (AMP for Sparse Linear Inverse Problem)

zt = x̂t + HT rt (2.54)

x̂t+1 = ηST (zt, λt) (2.55)

rt+1 = y −Hx̂t+1 + btrt (2.56)

19

The algorithm start by initializing x̂0 = 0 and r0 = y. Then bt and λt are
computed as follows

bt =
1

Nr
||x̂t||0, (2.57)

λt =
θ√
Nr
||rt||2, (2.58)

where θ is a parameter to tune. By comparing ISTA and AMP we can notice
two main differences:

• in AMP the residual rt contains the so called Onsager correction term
btrt−1;

• AMP shrinkage threshold λt depends on the iteration t.

As shown in [13], the AMP model is provably accurate in the large-system
limit, when Nt, Nr → ∞. The Onsager correction assures a better perfor-
mance than ISTA when H is i.i.d. Gaussian with hij ∼ N (0, 1

Nr
) because

we can model the input zt+1 of the shrinkage function as follows [5]

zt = x∗ +N (0, (σt)2INt). (2.59)

In (2.59) we are saying that the shrinkage input is an additive white Gaussian
noise-corrupted (AWGN-corrupted) version of the true signal x∗ with known
variance (σt)2. In other words, the purpose of the Onsager correction is to
decouple and make Gaussian the errors across iterations. Therefore, AMP
soft threshold shrinkage function can be substitute by a denoiser function
η(zt, (σt)2) which takes the variance of the noise (σt)2 as input. In this way
we have a new definition for bt:

bt =
1

Nr

Nt−1∑
j=0

∂ηj(z
t, (σt)2)

∂zj
, (2.60)

while (σt)2 has not a general formulation because it strongly depends on the
problem we are tempting to solve. We rewrite AMP in the denoiser version
because it will be useful for later comparisons:

Scheme 3 (AMP)

zt = x̂t + HT rt (2.61)

x̂t+1 = η(zt, (σt)2) (2.62)

rt+1 = y −Hx̂t+1 + btrt (2.63)

AMP in the latter Scheme 3 is equivalent to AMP in Scheme 2 where
η(z, (σt)2) = ηST (z, λt). In the next section we provide the denoiser η and
the formulas for (σt)2 and bt to solve MIMO detection with AMP.

20

2.4 AMP for MIMO detection

The first attempt to solve MIMO detection with an approach that relies on
AMP was done in [22]. The authors call the algorithm LAMA and they
provide a derivation of the detector for the complex-valued system in [23]
by starting from the LBP message update equations in the MIMO factor
graph presented in Section 2.2.2. In the derivation, the authors rely on
the theorems provided and proved in the derivation of the original AMP
algorithm in [32]. Here we provide a derivation of the algorithm for the
real-valued MIMO system.

The first step is to recall the a posteriori probability and the LBP update
message equations in Section 2.2.2. Now we consider the case where the
entries hij of H are i.i.d. and we have a large sized system Nt →∞, Nr →
∞. Moreover, let x̂tl→k and σ2τ tl→k be the mean and the variance of the
distribution of the message mt

l→k. Under the previous assumptions, we can
use Lemma 5.4.1 in [32] to approximate the messages mt

k→l(xl) from factor
node k to variable node l with the Gaussian density:

φ̂tk→l(xl) =

√
h2kl

πσ2(1 + τ tk→l)
exp(−

(hklsl − rtk→l)2

σ2(1 + τ tk→l)
), (2.64)

where τ tk→l ≈ τ t and the residual and variance terms are given by:

rtk→l = yk −
∑
b6=l

hk,bx̂
t
b→k, τ

t
k→l =

∑
b 6=l

h2k,bτ
t
b→k. (2.65)

By following the derivation in B, at the next iteration the messages from
variable node to factor node are

mt+1
l→k(xl) ∝

∏
a6=k

mt
a→l(xl)p(xl) = φt+1

l→k(xl)(1 +O(
x2l
Nr

)), (2.66)

where we use the O notation to describe the error term in the approximation
to our mathematical function. In the case of large system size (Nr → ∞),
we can approximate φt+1

l→k(xl) to the density function

φt+1
l→k(xl) = f(xl|

∑
a6=k

ha,lr
t
a→l, σ

2(1 + τ t)), (2.67)

where

f(s|z, τ) =
1

Z
exp(−(z − s)2

τ
)
∑
s∈A

1

|A|
δ(xl − s). (2.68)

The next step is to set the mean and the variance of the message mt+1
l→k at

the next iterations to:

x̂t+1
l→k = F (

∑
a6=k

ha,lr
t
a→l, σ

2(1 + τ t)), (2.69)

21

τ t+1
l→k =

1

σ2
G(
∑
a6=k

ha,lr
t
a→l, σ

2(1 + τ t)), (2.70)

where

F (z, τ) =

∑
s∈A s exp(− (z−s)2

2τ)∑
s∈A exp(− (z−s)2

2τ)
, (2.71)

and

G(z, τ) = F (2) − F 2, (2.72)

such that

F (2) =

∑
s∈A s

2 exp(− (z−s)2
2τ)∑

s∈A exp(− (z−s)2
2τ)

. (2.73)

In (2.74) and (2.75) we expand the messages x̂t+1
l→k and rt+1

k→l by parting
the edge independent contribution (x̂t+1

l , rt+1
k) of the messages from the

dependent one (δx̂t+1
l→k, δr

t+1
k→l = O(1√

Nt
)):

x̂t+1
l→k = x̂t+1

l + δx̂t+1
l→k +O(

1√
Nt

), (2.74)

rt+1
k→l = rt+1

k + δrt+1
k→l +O(

1√
Nt

). (2.75)

After substituting Equations 2.74, 2.75 in the general Equations 2.69, 2.65,
then writing the Taylor expansion of the latter and finally following the rest
of the derivation in Lemma 5.3.4 in [32] (here η stands for our F) we can
write:

x̂l
t+1 = F (x̂l +

∑
a

ha,lr
t
a, σ

2(1 + τ t)), (2.76)

rt+1
k = yk −

∑
b

hk,bx̂
t+1
b +

1

δNr

Nt−1∑
b

∂F (x̂b +
∑

a ha,br
t
a, σ

2(1 + τ t))

∂(x̂b +
∑

a ha,br
t
a)

.

(2.77)

We recall

τ t+1
k→l =

∑
b 6=l

H2
k,bτ

t
b→k, (2.78)

22

and we approximate τ t+1
k→l with an edge independent quantity τ t+1

τ t+1
k→l ≈ τ

t+1 =
1

Nr

Nr−1∑
k

Nt−1∑
b

h2k,bτ
t
b→k ≈

≈ 1

Nr

Nr−1∑
k

Nt−1∑
b

h2k,b
1

σ2
G(x̂b

t +

Nr−1∑
a

ha,br
t
a, σ

2(1 + τ t)) =

=
1

σ2Nr

Nt−1∑
b

G(x̂b
t +

Nr−1∑
a

ha,br
t
a, σ

2(1 + τ t))

Nr−1∑
k

h2k,b =

=
1

σ2Nr

Nt−1∑
b

G(x̂b
t +

Nr−1∑
a

ha,br
t
a, σ

2(1 + τ t)),

since we assume in Definition 1 to work with column normalized H.
Until here, we can summarize the iterative scheme as it follows:

x̂l
t+1 = F (x̂l + hTl rt, σ2(1 + τ t)) (2.79)

rt+1
k = yk − hrkx̂

t+1 +
1

δNr

Nt−1∑
b

∂F (x̂b + hTb rt, σ2(1 + τ t))

∂(x̂b + hTb rt)
(2.80)

τ t+1 =
1

σ2Nr

Nt−1∑
b

G(x̂b
t + hTb rt, σ2(1 + τ t)). (2.81)

Now we define ztl = x̂l + hTl rt and rewrite the scheme in the matrix form
by letting the functions F and G to work element wise and by using the
notation 〈〉 to define 〈v〉 =

∑N−1
k=0 vk:

zt = x̂ + HT rt (2.82)

x̂t+1 = F (zt, σ2(1 + τ t)) (2.83)

rt+1 = y −Hx̂t+1 +
1

δNr
〈∂F (zt, σ2(1 + τ t))

∂zt
〉rt (2.84)

τ t+1 =
1

σ2Nr
〈G(zt, σ2(1 + τ t))〉. (2.85)

At the end we define σ2t = σ2(1+τ t) and by exploiting the fact thatG(z, τ) =

τ ∂F (z,τ)
∂z (Proof A) we can rewrite the Onsager term in the following way:

1

δNr
〈∂F (zt, σ2(1 + τ t))

∂zt
〉rt =

1

δNr

1

σ2(1 + τ t)
G(zt, σ2(1 + τ t))rt = (2.86)

=
1

δNr

1

σ2(1 + τ t)
(τ t+1σ2Nr)r

t =
τ t+1

δ(1 + τ t)
rt. (2.87)

Following the previous derivation we define the AMP iterative algorithm for
real-valued MIMO systems:

23

Definition 7 (AMP-Gaussian) Initialize x̂0 = EX [X] = 0, r0 = y, τ0 =
VARX [X]=1

σ2Nr
. Then for every iteration t = 0, 1, 2..., T − 1 we compute the fol-

lowing steps:

zt = x̂t + HT rt (2.88)

x̂t+1 = F (zt,max(σ2, λ)(1 + τ t)) (2.89)

τ t+1 =
1

max(σ2, λ)Nr
〈G(zt,max(σ2, λ)(1 + τ t))〉 (2.90)

rt+1 = y −Hx̂t+1 +
τ t+1

δ(1 + τ t)
rt, (2.91)

where δ and λ are parameters to tune and F (z, τ) is the Gaussian de-
noiser defined in (2.71) and G(z, τ) the function defined in Equation (2.73).
Both F (z, τ) and G(z, τ) operate element-wise on vectors. The operator
max(σ2, λ) serves to avoid numerical issues in the computation of F (z, τ)
and G(z, τ) when σ2 → 0.

Figure 2.7: Iteration t of AMP-Gaussian. This graphical representation does not include
the computation of τ t+1.

2.5 Supervised deep learning

Supervised DL is a subset of machine learning that uses a training dataset
{(y(d),x(d))}Dd=1, y(d) ∈ RM0

,x(d) ∈ RMT
, where D and T are positive

integers, to learn the parameters of an Artificial Neural Networks (ANNs),
with the goal to predict the unknown label x̂ associated with new data y.

Multilayer Perceptron (MLP) is a class of ANNs that simply concate-
nates T basic blocks, commonly known as layers:

Vt ∈ RM
t × RM

t−1
, yt = Ω(Vtyt−1) : RM

t−1 → RM
t
, (2.92)

where Vt is a linear operator and Ω is a non linear function. The whole net
is the result of the concatenation of T layers:

x̂ = g(y) = g(y0) = Ω(VTΩ(VT−1...Ω(V1y0))). (2.93)

24

During training, we learn the values of V1, ...,VT in order to reduce the
prediction error on the labels in the training data. It is common practice to
define a loss function L that quantifies the prediction error according to the
given problem. Therefore, DL becomes the following minimization problem:

arg min
V1,...,VT

L([x(1), ...,x(D)], [x̂(1), ..., x̂(D)]) (2.94)

In order to find the optimal parameters V1, ...,VT that minimize the loss
function on the training dataset, we firstly compute the gradients of L with
respect to the parameters. Then, we update the parameters according to the
respective gradients by applying gradient descent. In this work, we consider
the Adam optimizer [25] as the update rule for the parameters.

Before the start of the learning procedure, the training dataset is split
in batches of the same size. When the training algorithm starts, it iterates
over epochs and in each epoch we repeat a training step for every batch of
the dataset. A training step consists in two passes:

• forward pass: it computes the outputs x̂(1), ..., x̂(D) given the inputs
and labels {(y(d),x(d))}Dd=1, where D now indicates the size of the
batch;

• backward pass: update the values of parameters V1, ...,VT by calcu-
lating their gradients with respect all the batch and applying gradient
descent.

2.5.1 Preventing overfitting

Solving the minimization problem in (2.94) for the training dataset does
not ensure to reduce the prediction error on the unknown labels in the test
dataset. Therefore, it becomes crucial to choose a training dataset and a loss
function that help to minimize the gap between the training loss and the test
loss. This gap is well known as the generalization error. The generalization
error tends to increase when the training dataset is too small with respect
to the degree of freedom of the model (the number of parameters to learn
can be used as a measure of the degree of freedom). This flexibility also
means that the model is prone to overfit on the training dataset.

The best way to prevent overfitting is to increase the training dataset.
However, this is not always possible. Therefore, in the DL community several
techniques have been proposed to avoid the problem. Here, we present only
a subset of them that have been used for the scope of this thesis.

Early stopping

Early stopping is a technique that provides a criteria to decide when to stop
the training according to the prediction error on a validation dataset that

25

is separated from the training and testing dataset before the start of the
training. On one hand, as the training steps go by, the prediction error
on the training dataset naturally goes down. On the other hand, after a
while, the validation error stops decreasing and starts to go back up. When
it does, it means that the model has started to overfit the training data.
Therefore, we stop the training when we observe that the validation error
stops to decrease.

Dropout

Dropout is a technique that can be applied to any layer t of the network
(except the output layer). At every training step, each entry of yt drops
out temporarily with a probability p (also known as dropout rate). When
an entry drops out, it’s value is set to zero. Therefore, its contribution will
be ignored during the current training step. Dropout is only applied during
training and it is not used during testing.

Cross validation

In the model, the parameters V1, ...,VT are not the only one that need to
be optimized. There is another class of parameters, called hyperparameters,
that cannot be learned with the backpropagation procedure describe above,
but that still need to be tuned to achieve the desired performance from
the model. Examples of hyperparameters are the number of layers and the
hidden dimension M t of every layer t, the learning rate for gradient descend
and the dropout rate.

To find the best values of the hyperparameters we need a validation
dataset of samples not observed during the training. For every predefined
combinations of hyperparameters, at the end of the training, we validate the
performance of the model on the validation dataset. The model with the
combination of hyperparameters that leads to the best performance is the
best candidate for testing.

2.5.2 Vanishing gradient problem

When the number of layers in ANN increases, we need to face with the
vanishing gradient problem. It arises when the gradients of the weights
shrink as they backpropagate to lower layers (towards the input layer). If
gradient values become extremely small, they don’t contribute in learning
the new values of the weights. This can happen when the network works with
activation functions which allow values of the gradient in the interval [0, 1],
like sigmoid or hyperbolic function. Since the gradients are multiplied among
each other a number of times equal to the number of layers T (through which
they are backpropagated), the total gradient is the product of T terms whose
values are between [0, 1].This means that the total gradient goes toward the

26

value zero exponentially with T . To solve this problem there are several
solutions described in literature. Here, we present only the three of them
that are of interest for this work. The first one is to use activation functions
whose gradient is one for the input values which lead to non-zero active
values. One example, is the ReLU function:

ReLU(x) = max(0, x). (2.95)

The second solution is to introduce in the loss function a penalty term Lt+1

for the output of each layer t = 0, 1, ..., T − 1:

L = λTLT + λT−1LT−1 + ...+ λ1L1, (2.96)

where each λt is an hyperparameter to tune such that

T∑
t=1

λt = 1. (2.97)

The third solution is to rely on ad-hoc networks that prevent the vanish-
ing gradient problem trough a gate mechanism. LSTM [21] and GRU [10]
are examples of such networks. They are meant to process variable-length
sequences of inputs, by keeping an internal state that serves as a memory.

2.5.3 Graph neural networks

Performing inference tasks in PGMs is intractable in general. There are
various techniques for approximate inference in PGM and one of the most
promising one is Graph Neural Networks (GNNs). GNNs combine the ad-
vantages of DL and PGMs in a unique framework to capture the structure
of the data into feature vectors that are updated through message passing
between nodes. Indeed, GNNs have vector-valued nodes ui ∈ RSu , where
Su is a positive integer, that encode the probabilistic information about the
variables in the respective graphical model originated from a probability
distribution with the same structure in (2.17).

The values of {ui} are iteratively updated by a RNN whose input in-
cludes the value of ui at the previous iteration together with the information
coming from the neighbor nodes states uj : j ∈ ne(i) on the specified graph
G = {V,E}, where V,E are the set of nodes and edges respectively in G.

The are several architectures for GNNs in literature. In this work we
follow the guidelines in [41] that is built upon the Gated Graph Neural
Networks (GG-NNs) [28], which adds a Gated Recurrent Unit (GRU) [10]
at each node to integrate incoming information with past states. In this
case, GNNs are inspired by the scheme of LBP and they are composed by
three main modules: a propagation, an aggregation and a readout module.
The first two modules operate at every iteration t while the readout module
is involved only in the last iteration T .

27

The propagation module outputs the updated message mt
i→j for each

direct edge eij ∈ E by

mt
i→j = M(ut−1i ,ut−1j , εij), (2.98)

where εij is the information associated to the edge eij and M is a MLP
with ReLU as activation functions. Therefore, the information exchanged
between two nodes at iteration t is an encoding of the concatenation of the
feature vectors of the two nodes and the information along the direct edge
between them.

The aggregation module operates at a node level by aggregating the
incoming messages mt

j→i at node i ∈ V , with j ∈ ne(i), by following

uti = U(ut−1i ,
∑

j∈ne(i)

mt
j→i), (2.99)

where U is a GRU [10].

Figure 2.8: GNNs’ message and state updates.

After a fixed number of iterations T , which is an hyperparameter to
choose carefully, the feature vectors ui are used to make inference with the
readout module. If the problem that we want to solve is to compute the
marginal probabilities of discrete random variables as described in (2.18),
the readout module is a MLP R of the feature vector ui followed by the
softmax function σ : R|A| → R|A|. The softmax function maps the non-
normalized output z of the network R to a probability distribution over
predicted output symbols:

p̂(xi = sk) = σ(z)k =
ezk∑|A|
j=1 e

zj
. (2.100)

The parameters of M,U and R are shared across all the graph and we learn
them with supervised learning by minimizing the loss function between the
true probabilities p(xi) and the predicted ones p̂(xi).

28

A good candidate loss function L is the cross-entropy:

L = −
∑
xi

p(xi) log p̂(xi), (2.101)

where p̂(xi) is the output of the T -layers GNN.

2.5.4 Learned ISTA

Learned ISTA (LISTA) has been introduced in [18] by rewriting ISTA in the
following scheme:

x̂t+1 = ηST (Sx̂t + By, λt), (2.102)

with

B = βHT , S = INt −BH, λt = λ. (2.103)

LISTA is the result of unfolding T iterations of (2.102) and freeing the
parameters Θ = {λt,S,B} to be learned in a supervised learning fashion.
Given a dataset {(y(d),x(d))}Dd=1, y(d) ∈ RNr ,x(d) ∈ RNt the learnable pa-
rameters are optimized through backpropagation by minimizing the loss
function:

LT (Θ) =
1

D

D∑
d=1

||x̂T − x(d)||22, (2.104)

where x̂T is the output of the T -layers network with input y(d) and param-
eters Θ. Simulations in [18] shows that LISTA converges faster than ISTA
in general.

2.5.5 Adaptive LISTA

The main drawback of LISTA compared to ISTA is that, once it is trained
over a given H, its performance degrades when it is required to make predic-
tions on different matrices. So, a new full training is necessary if H evolves
with time.

Adaptive LISTA (Ada-LISTA) is proposed in [2] to combine the effi-
ciency and the fast convergence rate of LISTA with the high adaptivity and
applicability of ISTA.

Scheme 4 (Ada-LISTA - single weight matrix)

zt = x̂t + αtHTWT rt (2.105)

x̂t+1 = ηST (zt, λt) (2.106)

rt+1 = y −Hx̂t+1 (2.107)

where Θ = {λt, αt,W} are free parameters to be learned in a supervised
learning fashion. Given a dataset {(y(d),x(d),H(d))}Dd=1, y(d) ∈ RNr ,x(d) ∈

29

RNt ,H(d) ∈ RNr → RNt the learnable parameters are optimized through
backpropagation similarly to LISTA, as described in Section 2.5.4.

The experiments in [2] show that a slightly modified version of Ada-
LISTA, defined in 4, with only one training matrix, performs similarly or
even better than LISTA when the latter is trained for each new realization
of H, both in the case of noisy H and random i.i.d. Gaussian H.

In the same work, the authors provide a theorem that provides the suffi-
cient conditions for the convergence of the algorithm (specially on the struc-
ture of the matrix W).

2.5.6 Learned AMP

Motivated by the AMP algorithm, the authors of [8] propose the use of
Onsager correction in deep neural networks to decouples prediction errors
across layers. They propose to unfold AMP and construct a neural network
with tunable parameters Θ that are learned in a supervised fashion similarly
to LISTA in Section 2.5.4. They call this network Learned AMP (LAMP).
By starting from AMP in Definition 2, let’s generalize H,HT with two
learnabel matrices Ht,At:

rt = y −Htx̂t + btrt−1, (2.108)

x̂t+1 = ηST (x̂t + Atrt, λt), (2.109)

and by substituting λt for the soft shrinkage thresholding function (2.58)
and assuming Ht = βtH:

rt = y − βtHx̂t + btrt−1, (2.110)

x̂t+1 = ηST (x̂t + Atrt,
θ√
Nr
||rt||2). (2.111)

Let’s now define xt = βtx̂t and A
t

= βAt and we can write

rt = y −Hxt + btrt−1, (2.112)

xt+1 = βt+1ηST (
xt + A

t
rt

βt
,

θ√
Nr
||rt||2). (2.113)

By observing that ηST (z, λ) = ηST (βz,βλ)
β for any β > 0, and by defining

β , βt+1

βt , θ
t
, βtθ:

xt+1 =
βt+1

β
ηST (xt + A

t
rt,

βtθ√
Nr
||rt||2) = β

t
ηST (xt + A

t
rt,

θ
t

√
Nr
||rt||2).

(2.114)

30

Recalling the definition of bt in (2.57):

rt = y −Hxt +
β
t−1

Nr
||xt||0rt−1. (2.115)

Now we drop the (·) and provide the definition of LAMP:

Scheme 5 (LAMP)

zt = x̂t + Atrt (2.116)

x̂t+1 = βtηST (zt,
θt√
M
||rt||2) (2.117)

rt+1 = y −Hx̂t+1 +
βt

Nr
||x̂t+1||0rt (2.118)

In the Scheme 5, the parameters to learn are Θ = {At, θt, βt}T−1t=0 . The train-
ing strategy for LAMP is different from LISTA. In [9] the authors explained
that they tried the standard back-propagation approach (as in LISTA),
where Θ were jointly optimized from the initialization At = HT , θt = 1, βt =
1, where t = 0, ..., T − 1. However, they found out that the parameters con-
verged to a bad local minimum. This unwanted behavior is due to the
vanishing gradient problem, explained in Section 2.5.2. Thus, they propose
a hybrid approach that combine a ”layer-wise” and ”global” optimization
that helps to avoid this problem. They learn Θ by learning each layer one
by one, starting from a 1-layer network t = 0 where

A0 = γ−1HT (HHT + INr)
−1, (2.119)

and γ ensures that the trace of HA0 is equal to Nt and θ0, β0 are optimized
trough backpropagation by minimizing the loss function L1({θ0, β0}) as de-
fined in (2.104). For the next layers, t = 1, ..., T − 1 the training procedure
is the following:

1. initialize At as in 2.119 and θt, βt with the same values as θt−1, βt−1;

2. optimize θt, βt alone using backpropagation;

3. re-optimize all parameters {Ai, θi, βi}ti=0 using backpropagation to
minimize the loss Lt+1({Ai, θi, βi}ti=0) as defined in (2.104).

Numerical experiments in [8] show that LAMP network significantly im-
proves LISTA network in both accuracy and complexity. In the same work,
the authors compare LAMP with Bt shared among the layers and Bt that
can vary layer by layer.

31

2.6 Deep learning for MIMO detection

2.6.1 MMNet

MMNet [24] is a DL MIMO detection scheme that aims to achieve a practi-
cal trade-off between computational complexity and SER performance both
on i.i.d. Gaussian channels and spatially-correlated channels. MMNet is
inspired by ISTA and AMP frameworks presented in the previous sections.
It preserves the overall structure of AMP scheme in Definition 3, except for
the Onsager term that here is missing. At the same time, it introduces in
the model a degree of flexibility, that combined with an online training al-
gorithm, allows to outperforms the state-of-the-art detection algorithms on
realistic spatially correlated channels. The degree of flexibility is determined
by the learnable parameters in the model that differ according to the type of
channel we are working with, by leading to a common scheme with different
learnable parameters for i.i.d. Gaussian channels and spatially-correlated
channels.

Given the MIMO detection problem defined in Definition 3, MMNet
estimates x̂T , after T iterations with the following scheme:

Scheme 6 (MMNet)

zt = x̂t + Atrt (2.120)

(σt)
2 =

θt

Nt
(
||I−AtH||2F
||H||2F

[||rt||22 −Nrσ
2]+ + ||At||2Fσ2) (2.121)

x̂t+1 = F (zt, (σt)
2) (2.122)

rt+1 = y −Hx̂t+1 (2.123)

In the previous Scheme 6, the starting values are x̂0 = 0, r0 = y and F (z, σ)
is the element-wise Gaussian denoiser defined in (2.71). In MMNet the
learnable parameters Θ are At ∈ RNt × RNr and θt ∈ RNt that assume
different values in each iteration. MMNet concatenates T layers of the above
form by leading to a deep network that is trained in a supervised fashion
like LISTA (Section 2.5.4). In this case, the loss function to minimize is the
following

L(Θ) =
1

T

T∑
t=1

||x̂t − x||22, (2.124)

where x is the true solution for the given problem.

MMNet for i.i.d. Gaussian channels

For i.i.d. Gaussian channels we have

At = αtHT , αt ∈ R, (2.125)

32

and the denoiser variance σt has the same value in all the entries of the
vector

σt0 = σt1 = ... = σtNt , (2.126)

with
θt0 = θt1 = ... = θtNt . (2.127)

Here the supervised learning is done over a training dataset

{(y(d),x(d), σ(d),H(d))}Dd=1,

where H(d) is randomly sampled from the i.i.d. Gaussian channel model.
The training procedure optimizes the learnable parameters for different re-
alizations of H and then it is tested over unseen realizations of H drawn
from the same distribution.

MMNet for spatially correlated channels

For spatially correlated channels, MMNet doesn’t impose any structure on
the matrix At which is fully learnable and different in each layer. Here the
supervised learning is done over a training dataset {(y(d),x(d), σ(d))}Dd=1∪H,
where H is fixed. This solution is designed for realistic scenarios, however the
complexity of the online training introduce a latency which makes MMNet
far from practical implementation.

Figure 2.9: Layer t of MMNet. This graphical representation does not include the
computation of (σt)

2.

33

34

Chapter 3

Algorithms design

3.1 BP-MMSE

The BP algorithm provided in [16] for solving MIMO detection in a MRF
does not significantly improve over MMSE performance when working with
higher modulation order such as QAM-16 or QAM-64. In this section we
introduce BP-MMSE, a novel algorithm based on [16]. BP-MMSE applies
a modification of BP on the MRF that yields the MMSE prior information
on each variable.

In order to derive the MMSE formula for the initial prior, let’s consider
the posterior probability p(x|y) in (2.22). Here we approximate the exact
probability function with

p(x|y) ∝ exp(− 1

2σ2
||y −Hx||2), (3.1)

that can be rewritten as a multivariate Gaussian distribution f(x; z,C):

p(x|y) = f(x; z,C) =
1√

(2π)Nt |C|
exp (−1

2
(z− x)TC−1(z− x)), (3.2)

where the mean z is the least square error estimator

z = (HTH)−1HTy, (3.3)

and C the relative covariance matrix

C = σ2(HTH)−1. (3.4)

The next step is to follow the suggestion in [17] to further approximate
f(x; z,C) with the product of marginals of Gaussian densities f(xl; zl, cll):

f(x; z,C) ≈
Nt−1∏
l=0

f(xl; zl, cll) =

Nt−1∏
l=0

1√
2πcll

exp (−(zl − xl)2

2cll
). (3.5)

35

The MMSE approach (Definition 6) is known to work better than the ZF
(Definition 5), therefore we modify z and C such that

zMMSE = (HTH + σ2INt)
−1HTy, (3.6)

and

CMMSE = σ2(HTH + σ2INt)
−1. (3.7)

The initial prior p0l (xl) for the variable node l is

p0l (xl) = f(xl; z
MMSE
l , cMMSE

ll). (3.8)

Similarly to Section 2.2.4, the messages logm0
i→j(xj) are initialized with the

logarithm of the initial prior p0j (xj)

logm0
i→j(xj) ∝ log p0j (xj) ∝ −

(zMMSE
j − xj)2

2cMMSE
ll

. (3.9)

For next iterations t > 0, the log messages logmt
i→j(xj) are given by

logmt
i→j(xj) ∝ log

∑
xi

exp(ati→j(xj , xi)), (3.10)

where

ati→j(xj , xi) = log pti(xi) + log φi(xi) + log φij(xi, xj) +
∑

b∈ne(i)/j

logmt−1
b→i(xi),

(3.11)
and pti(xi) is the prior at node i at iteration t.

We use some approximations to circumvent the numerical issues in prac-
tical implementation: the potential factors φi(xi), φij(xi, xj) are slightly
modified with respect to Section 2.2.4:

φi(xi) = e
1

max(σ2,λ)
(yThixi− 1

2
hTi hix

2
i), (3.12)

φij(xi, xj) = e
− 1

max(σ2,λ)
hTi hjxixj , (3.13)

where λ is a parameter to tune.
To avoid further numerical issues at the exponential operator we subtract

ati→j(xj)
∗ = max

xi
ati→j(xj , xi) (3.14)

from the argument of the exponential and add it back outside the summa-
tion:

logmt
i→j(xj) ∝ ati→j(xj)∗ + log

∑
xi

exp(ati→j(xj , xi)− ati→j(xj)∗). (3.15)

36

In this way the biggest argument in the exponential will be equal to 0. This
ensures that the dominant numerical contributions in the exponential are
computed accurately.

The prior pt+1
l (xl) at next iteration t+ 1 is equal to the updated proba-

bility at iteration t

pt+1
l (xl) = p

t+1|t
l (xl)p

t
l(xl) = p0l (xl)

t∏
q=0

p
q+1|q
l , (3.16)

and equivalently

log pt+1
l (xl) = log p

t+1|t
l (xl) + log ptl(xl), (3.17)

where
log p

t+1|t
l (xl) ∝ log φl(xl) +

∑
b∈ne(l)

logmt−1
b→l(xl). (3.18)

The predicted value x̂t+1
l is the expected value of xl with respect to p

t+1|t
l (xl):

x̂t+1
l = Exl{xl} =

1

Z

∑
xl

xl exp(log p
t+1|t
l (xl)− atl), (3.19)

where Z is the normalization constant

Z =
∑
xl

exp(log p
t+1|t
l (xl)− atl), (3.20)

and
atl = max

xl
log p

t+1|t
l (xl). (3.21)

3.2 MIMO-GNN

The GNN framework presented in Section 2.5.3 can be used to infer the a
posteriori probability p(x|y) to recover the transmitted symbols x in the
MIMO detection problem in Definition 1. In this case, GNNs are built upon
the MIMO MRF presented in Section 2.2.4. The information εij along each
edge eij is the following feature vector

εij = [−hTi hj , σ
2]. (3.22)

The initial hidden vector u0
i of each node i is initialized as follows:

u0
i = W[yThi, hTi hi, σ

2] + b. (3.23)

Since we want to work with an hidden state of a given size Su, to simplify
the implementation we encode the initial vector [yThi, hTi hi, σ

2] with a

37

linear transformation given by a learnable matrix W ∈ RSu × R3 and a
learnable vector b ∈ RSu . The functions M and R are chosen to be two
neural networks with two hidden layers and ReLU as activation functions.
Both M and R implement dropout between hidden layers (rate of 0.1 in M
and rate of 0.2 in R). The first and the second hidden layer output sizes
are l and l

2 parameters respectively. The read out network R is followed by
a softmax function to output the predicted normalized density probability
p̂(xl) for each transmitted symbol xl. Instead, the function U is defined by
a GRU network followed by a linear layer that ensures that the output size
is equal to Su. In the experiments the dimension of the GRU hidden state
is l.

The predicted value for a transmitted symbols x̂l is the expected value
of xl with probability distribution p̂(xl):

x̂l = Exl{xl} =
∑
s∈A

sp̂(s). (3.24)

The network is trained as explained in Section 4.3.4 and the hyperparameters
design is provided in Section 3.4.

3.3 MIMO-GNN-MMSE

In the previous section we solve the MIMO detection problem under the
uniform prior assumption over the unknown symbols x. In this section we
select the prior p(x) as in Section 3.1 to enrich our dataset.

We choose f(xl; z
MMSE
l , cMMSE

ll), defined in(3.5), to be the prior pl(xl)
for xl, where zMMSE

l and cMMSE
ll are defined in (3.6) and (3.7) respec-

tively. Moreover, we enrich the feature vector εij by including the correlation
ρMMSE
ij between the variables xi and xj where ρMMSE

ij is

ρMMSE
ij =

(cMMSE
ij)2

cMMSE
ii cMMSE

jj

. (3.25)

In the implementation we reuse the same model in Section 3.2 (with the
same hyperparameters) and we only modify the information along the edges
εij and the initial value of the hidden states u0

i .
The information along each edge eij is the following feature vector

εij = [ρMMSE
ij , −hTi hj , σ

2]. (3.26)

The initial hidden vector u0
i of each node i is initialized as follows:

u0
i = W[zMMSE

i , cMMSE
ii , yThi, hTi hi, σ

2] + b, (3.27)

where W ∈ RSu×R5 is a learnable matrix and b ∈ RSu is a learnable vector.

38

3.3.1 Edge pruning

In GNNs the most computationally expensive operation is the execution of
the function M for all the graph edges in each iteration. In MIMO detection
the graph is fully connected, therefore, M is executed TNt(Nt − 1) times.

We propose a strategy to prune some of the edges in the graph in or-
der to reduce the overall complexity by still keeping a good performance.
Our approach is inspired by the pruning strategy presented in the work of
Gaussian Tree Approximation for MIMO detection [17]. Here, the authors
approximate the MRF graph with the maximum spanning tree over the same
graph where each edge is weighted with the correlation coefficient ρMMSE

ij .
In this work, for each node j we keep only the incoming edges eij that

satisfy the following condition:

ρMMSE
ij ≥ 1

Nt − 1

Nt−1∑
b=0,b6=j

ρMMSE
bj . (3.28)

On one hand, the edge pruned variant of GNNs with MMSE prior, that
we call MIMO-GNN-SPARSE, keeps the same initial value of the hidden
states u0

i defined for the fully connected graph in MIMO-GNN-MMSE. On
the other hand, the information along each edge eij is modified in order to
keep into account the number of incoming edges in j that can vary from
node to node:

εij = [ρMMSE
ij , −1

2
hTi hj , σ

2, |ne(j)|], (3.29)

where |ne(j)| is the number of incoming edges in j in the pruned graph.

3.4 GNNs hyperparameters design

An hyperparameter is a parameter whose value is used to control the learning
process and have to be tuned such that the model can achieve its best
performance. How to properly tune the hyperparameters is discussed in
Section 2.5.1.

In GNNs, the hyperparameters are:

• the number of hidden layers in M and R;

• the number of parameters in each layer of M and R and in U ;

• the size of the messages Sm;

• the size of the hidden states Su;

• the number of iterations T ;

• the learning rate;

39

• the batch size;

• the dropout rate;

• the number of training epochs.

In solving MIMO detection, Sm and Su need to be readapted for each mod-
ulation order. Moreover, the number of parameters in M and U may change
according to the presence or absence of an informative prior. Indeed, the
process of learning can be more complex without the informative prior.

In this work, we choose to set the dimension Sm of the messages mt
i→j

as the double of the constellation modulation size (or similarly as the double
of the messages dimension in BP). We set the hidden state size Su equal to
Sm.

In the next table you can find the values of Sm and Su for each constel-
lation size:

Table 3.1: Values of Sm and Su for each modulation order.

QAM Sm Su

16 8 8

64 16 16

In Section 3.2 we indicate how to control the number of parameters in
M,R,U (and therefore the complexity of the model) with an hyperparameter
l. In the experiments l = 128 results to be a good pick in general. However,
in MIMO-GNN working at modulation QAM-64, l must be increased to
enable the learning. In our experiments l is set to 256.

3.5 DAMP

DAMP stands for Damping Approximate Message Passing. It’s a low com-
plexity MIMO detection scheme designed for i.i.d. Gaussian channels but
intended to be robust to low/medium level of correlation among channels.
It can been seen as a generalization of the AMP-Gaussian (Definition 7) al-
gorithm where the damping operator is introduced at the end of each layer.

In iterative algorithms damping consists in attenuating the predictions at
iteration t with the values at the previous iteration t−1 through a weighted
average parametrized by the damping factor ρ. In AMP damping is applied
to predictions x̃t+1 in the following way:

x̂t+1 = ρx̃t+1 + (1− ρ)x̂t. (3.30)

In Definition 8 we present the DAMP algorithm and how we output predic-
tions x̃t+1 at each iteration t.

40

Definition 8 (DAMP) DAMP is an iterative algorithm. At the end of
each algorithm iteration t, the layer t exchanges the predicted output x̂t
with next iteration. Firslty, we initialize x̂0 = EX [X] = 0, r0 = y, τ0 =
VARX [X]=1

σ2Nr
. Then for every iteration t = 0, 1, 2..., T − 1 we compute the

following steps:

zt = x̂t + HT rt (3.31)

x̃t+1 = F (zt,max(σ2, λ)(1 + τ t)) (3.32)

x̂t+1 = ρx̃t+1 + (1− ρ)x̂t (3.33)

τ t+1 =
1

max(σ2, λ)Nr
〈G(zt,max(σ2, λ)(1 + τ t))〉 (3.34)

rt+1 = y −Hx̂t+1 +
τ t+1

δ(1 + τ t)
rt, (3.35)

where δ, λ and the damping factor ρ are parameters to tune and F (z, τ)) is
the Gaussian denoiser defined in (2.71) and G(z, τ) the function defined in
(2.73). Both F (z, τ) and G(z, τ) operate element-wise on vectors.

In [8], it has been shown that AMP converges much faster than ISTA because
of the presence of the Onsager correction term. However, in MMNet work
[24] they manage to achieve faster convergence by removing the Onsager
term and letting the stepsize αt to vary from layer to layer.

DAMP, instead, reintroduces the Onsager term. With a larger number
of iterations, DAMP ensures robustness in presence of low/medium level of
correlation in the channel.

Figure 3.1: Iteration t of DAMP. This graphical representation does not include the
computation of τ t+1.

3.6 Pseudo-MMNet

Pseudo-MMNet is a deep learning MIMO detection scheme based on MMNet
that solves the difficulties of DAMP when it works with strongly correlated

41

channels at the expense of performing an online training. Online training
consists in training the network every time we observe a new channel real-
ization. The sequential online training complexity of MMNet introduces a
latency that cannot be afforded in realistic implementations. In MMNet,
the authors don’t provide any informative initialization to the parameters
to learn. Therefore, the training requires several epochs. Psuedo-MMNet
solves this problem and moreover it reduces the number of parameters to
learn.

Definition 9 (Pseudo-MMNet) Pseudo-MMNet is the concatenation of
T layers. At the end of each algorithm iteration t, the layer t exchanges the
predicted output x̂t with next layer. Given x̂0 = 0 and At = αtA, each layer
is composed of a linear operator

zt = x̂t + At(y −Hx̂t) (3.36)

and a denoiser operator

x̂t+1 = F (zt, σt) (3.37)

where F is the Gaussian denoiser defined in (2.71) and σ2t is the denoiser
variance

(σt)2 =
θt

Nt
(
||I−AtH||2F
||H||2F

[||y −Hx̂t||22 −Nrσ
2]+ + ||At||2Fσ2) (3.38)

In Pseudo-MMNet the learnable parameters are the matrix A ∈ RNt × RNr
that is tied for each layer, αt ∈ R and θt ∈ RNt that can assume different
values in each iteration t. The matrix A is initialized with H†, the pseudo
inverse of H.

The resulting deep network is trained in a supervised fashion like LISTA
(Section 2.5.4). The training dataset is of the form {(y(d),x(d), σ(d))}Dd=1∪H,
where H is fixed. The collection of parameters to learn is Θ = {αt, θt}T−1t=0 ∪A
and the loss function to minimize is LT (Θ) as defined in (2.104).

Figure 3.2: Layer t of Pseudo-MMNet. This graphical representation does not include
the computation of (σt)2.

42

3.6.1 Why Pseudo-MMNet works?

In order to understand why Pseudo-MMNet works, let’s consider the errors
etlin = zt − x and etden = x̂t+1 − x at the outputs of the linear and denoiser
stages respectively, at iteration t. Then, we substitute (2.1) in (3.36) and
we obtain:

zt = x + etlin = x + (I−AtH)et−1den + Atn. (3.39)

If At = H† and H has linearly independent columns it happens that

zt = x + H†n. (3.40)

However, there is no guarantee that H has linearly independent columns. If
H is ill-conditioned, we incur in the problem of noise enhancement. In order
to avoid this problem, Pseudo-MMNet initializes At = H† but it relies on
an online training of At to:

• reduce the error etlin by learning the right balance between the two
error terms in (3.39);

• shape the distribution of etlin to make it suitable for the subsequent
denoiser F .

In MMNet [24] and LISTA [18] simulations, it is empirically shown that
by learning a linear operator for each layer it is possible to achieve great
results. Learning those operators requires a lot of training that actually can
be avoided. Instead, in Ada-LISTA [2] the authors analytically show that
it is sufficient to learn a single matrix shared across the layers to solve the
sparse linear inverse problem. Moreover, this matrix has similar properties
of the pseudo-inverse H† of H. More details can be found in [2].

3.6.2 Why is online training required?

In order to avoid the complexity of an online training we removed A from
the parameters to learn and set A = H†. We trained the algorithm of-
fline similarly to MMNet-iid (Section 2.6.1) over i.i.d. randomly sampled
Gaussian channel realizations. However, it turned out that the resulting al-
gorithm got stuck at the local minima solution of ZF. Indeed, the first layer
of this alternative solution is equivalent to the zero-forcing solution (when
αt = 1).

3.7 Comparison among schemes

In order to have a better understanding of the relation among AMP, ISTA,
LAMA, AMP-Gaussian, DAMP, LAMP, Ada-LISTA, MMNet-iid, MMNet
and Pseudo-MMNet, we provide a common general scheme for the algo-
rithms and a table to show analogies and differences among them. Here,

43

LISTA is not included in the comparison because its scheme cannot be seen
as a specialization of the following general form. Here, we don’t provide a
comparison for the term σt. However, the reader can find the formula of σt

along with the definition of each algorithm.

Scheme 7 (General Scheme)

zt = x̂t + αtAtrt (3.41)

x̃t+1 = βtη(zt, (σt)2) (3.42)

x̂t+1 = ρtx̃t+1 + (1− ρt)x̂t (3.43)

rt+1 = y −Hx̂t+1 +
1

δtNr

Nt−1∑
j=0

∂[η(zt,σt)]j
∂ztj

rt (3.44)

Figure 3.3: Layer t of the general scheme of low-complexity iterative algorithm.

Table 3.2: Scheme comparison between classical iterative algorithms.

AMP ISTA LAMA AMP-Gaussian DAMP

αt 1 α 1 1 1

At HT HT HT HT HT

βt βt 1 1 1 1

η ηST ηST F ∗ F F

ρt 1 1 1 1 ρ
1
δt 1 0 1 1 1

δ

The first thing to notice is that AMP is equivalent to ISTA when we
remove the Onsager correction (1δ) and α = 1. As we explained in 2.3.2 the
Onsager correction speeds up the convergence of the algorithm. Therefore,
the main idea behind MMNet-iid is to modify ISTA by learning a different
αt for each layer. In this way, it is possible to achieve faster convergence

44

Table 3.3: Scheme comparison between NN-based iterative algorithms.

LAMP Ada-LISTA MMNet-iid MMNet Pseudo-MMNet

αt 1 αt αt 1 αt

At At HTWT HT At A

βt βt 1 1 1 1

η ηST ηST F F F

ρt 1 1 1 1 1
1
δt βt 0 0 0 0

even without the presence of Onsager correction. Moreover, MMNet-iid is
optimized for MIMO detection because the non linear function η is the Gaus-
sian denoiser F designed to include the prior knowledge over the transmitted
symbols.

Another approach is LAMA [22], that re-adapts AMP for complex-valued
MIMO systems by substituting in AMP the soft thresholding function ηST
with the Gaussian denoiser F ∗ for complex values (the definition of F ∗ is
provided in [22] as F). In this work we provide an equivalent alternative to
LAMA for real-valued systems. We name the algorithm AMP-Gaussian and
the main differences with LAMA are the Gaussian denoiser F for real values
and the presence of a correction factor 1

δ in front of the Onsager term. Then
we have DAMP, a generalization of AMP-Gaussian that applies damping at
the end of each iteration.

To conclude the analysis we observe that Ada-LISTA, MMNet and Pseudo-
MMNet generalize ISTA by substituting the matrix HT in front of the resid-
ual rt with a learnable matrix. In MMNet the matrix At is allowed to change
layer by layer while in Ada-LISTA and Pseudo-MMNet the learnable matrix
is tied for each layer. Ada-LISTA works with the soft thresholding function
ηST because is designed to solve the Sparse Linear Inverse Problem. In-
stead, Pseudo-MMNet applies the Gaussian denoiser F for solving MIMO
detection.

In this work we tried to learn αt, ρt, δt, θt similarly to MMNet-iid (Section
6), where σt is computed as in 2.4 given βt = 1,At = Ht. In the experiments
we don’t provide the testing results of this attempt because by comparing
the performance with DAMP, where the parameters ρ, δ are tuned manually,
we can see that:

• on i.i.d. Gaussian channels the performance slightly improves at low
SNR values but it does not for high SNR values;

• on correlated channels the performance degrades significantly because
the parameters overfit to the training dataset which is generated with
i.i.d. Gaussian channels.

45

46

Chapter 4

Methodology

Our work is based on a deductive approach: it evaluates the hypothesis and
the solution’s performance by using experimental measurements and com-
parisons. The scientific method involves an empirical investigation It com-
pares the proposed approaches to other baseline solutions using synthetic
data and metrics that allow to quantify the performances. The outcomes of
the experiments are based on the data generated by our simulators.

4.1 Compared algorithms

In the next experiments, we consider the the following algorithms:

• MMSE: linear minimum mean square error baseline detector in Def-
inition 6.

• MMNet-iid: MMNet network for i.i.d. Gaussian channels described
in Section 2.6.1. The network is implemented with 10 layers as pro-
posed in [24] and trained as outlined in Section 4.3.1.

• AMP-Gaussian: AMP algorithm for real-valued system MIMO de-
tection (Section 2.4). The parameter δ and λ are set manually as
1
δ = 1.4 and λ = 0.005.

• DAMP-ρ: if damping factor ρ = 1, it is equivalent to AMP-Gaussian.
It is the algorithm described in Section 3.5.

• Pseudo-MMNet: Pseudo-MMNet algorithm defined in Definition 9.
The network is trained as outlined in Section 4.3.3.

• MMNet: MMNet network for spatially correlated channels described
in Section 2.6.1. The network is implemented with 10 layers and
trained with the procedure presented in Section 4.3.2.

47

• BP-MMSE: LBP algorithm with MMSE prior presented in Section
3.1. The algorithm runs for 5 iterations. Increasing the number of
iterations does not help to improve the performance.

• MIMO-GNN: GNNs presented in Section 3.2 without any prior on
the transmitted symbols. The network implements 10 layers.

• MIMO-GNN-MMSE: GNNs presented in Section 3.3 with MMSE
prior on the transmitted symbols. The network implements 10 layers.

• MIMO-GNN-SPARSE: edge pruned variant of GNN-MMSE, pre-
sented in Section 3.3.1. The network implements 10 layers.

4.2 Dataset

In all comparisons, the data is generated through the MIMO model in Def-
inition 1 by following the same approach as in [24] and according to the
assumptions listed in Definition 1. We consider the channel models pre-
sented in Section 2.1.1: i.i.d. Gaussian channel model and Kronecker chan-
nel model. The algorithms are tested on randomly sampled i.i.d. Gaussian
channels and randomly sampled Kronecker channels with different correla-
tion levels at receiver side. We start our analysis by considering correlation
only at receiver side because we assume that the scheduler at base station
selects the users that reduce the correlations. Furthermore, we also carry
out investigation of taking into account correlation at transmitter side.

The data is converted in the equivalent real-valued representation as ex-
plained in Section 2.1.2. On one hand, we analyze the MIMO configuration
with 32 transmitters (Nt = 64) and 64 receivers (Nr = 128) for the low
complexity iterative algorithms. On the other hand, GNN-based algorithms
are analyzed on two MIMO configurations with Nt = 32 and system size
ratios Nt

Nr
of 0.25 and 0.5. The choice of these configurations allows the com-

parison with previous works like [24] and, at the same time, they are meant
for realistic massive MIMO scenarios. The modulation schemes considered
in this work are QAM-16 and QAM-64 and it is fixed for all the transmitters
in each experiment.

The operating SNR interval depends on the MIMO configuration and
modulation scheme. Here, it is selected such that the best scheme perfor-
mance can achieve a SER between 10−2 − 10−3 in the experiment.

4.2.1 Offline training

During offline training, there are three sources of randomness for a sample:
signal x, channel noise n and channel matrix H. In each sample the channel
matrix H is sampled from the respective channel model. The channel noise

48

standard deviation σ is derived from the SNR value as explained in Defi-
nition 1 and the transmitted signal x is generated randomly and uniformly
over the corresponding constellation set.

According to the MIMO model in Defintion 1, each batch assumes the
following form {(y(d),H(d), σ(d),x(d))}Dd=1 where x(d) are the values to pre-
dict.

In this work, the algorithms are trained offline over channel matrices
randomly sampled from the i.i.d. Gaussian channel model. The algorithms
are then tested on the same channel model and the Kronecker channel model
with same sources of randomness and different random seed.

4.2.2 Online training

Instead, in online training the channel matrix H is fixed and randomly sam-
pled from the Kronecker channel model. By removing H from the sources of
randomness, each batch size assumes the following form {(y(d), σ(d),x(d))}Dd=1

∪H. The algorithms are then tested on the same channel matrix with same
sources of randomness and different random seed.

4.2.3 GNN-based models

After generating a sample, for GNN-based algorithms we need to build a
fully connected graph (Section 3.2). This operation is quite expensive in
computational terms. Indeed, generating a different batch for each training
step reduces substantially the speed of the training. Because of that, GNN-
based models are trained on a prebuild dataset of size 65536 and batch size
D = 64.

Training on a fixed dataset introduces the risk of overfitting. For this
reason, we generate an additional validation dataset to find the best hyper-
parameters of the model and to apply the early stopping (Section 2.5.1).
The size of the (additional) validation dataset is 25% of the training dataset
size.

For GNNs, we decide to keep the noise standard deviation σ(d) fixed
within each batch. In such a way, we notice an overall better performance
during testing. If σ is allowed to assume different values within the same
batch, the dominant contribution in the loss function comes from data gen-
erated with more noise (σ with high values). Therefore, the model is trained
to work better for lower SNR than higher SNR.

Our GNNs implementation requires the output labels to be a discrete
probability p(x) over x while the labels x(d) in our dataset are the true
transmitted symbols. The best approach to obtain the labels would be to
compute the true posterior probability in (2.22) p(x(d)|y(d)). However, the
task is exponentially expensive and the time available for this work is limited.

49

Therefore, we opt fot one-hot encoded labels where:

p(xl)
(d) =

{
1, if xl = x

(d)
l .

0, otherwise.
(4.1)

4.2.4 Low-complexity iterative based models

Instead, for low-complexity iterative models, the batch is randomly gener-
ated before each training step. The complexity of generating a batch is
negligible compared to the forward and backward training steps combined.
Therefore, we can avoid to train the network on a fixed prebuild dataset
and we nullify the risk of overfitting (that usually arises when the model is
trained on a fixed dataset).

4.3 Training

All the trainable algorithms have been implemented and trained in Tensor-
flow 2.0.0 [1]. GNN-based algorithms are implemented with the Graph Nets
open-source software library for building graph networks [4].

For each model, we run a separate training for every MIMO configura-
tion and modulation order. We train GNN and AMP based algorithms in
different ways. On one hand, MMNet-iid, MMNet, Pseudo-MMNet
are trained with a random batch at each epoch. On the other hand, gen-
erating graph based batches is highly computationally expensive, therefore
MIMO-GNN, MIMO-GNN-MMSE and MIMO-GNN-SPARSE are
trained over a pre-build dataset at each epoch. This implementation choice
introduces the risk of overfitting during training. Therefore, we manage the
problem with the dropout technique and early stopping (Section 2.5.1).

In this section we describe the details of the training procedure for each
algorithm.

4.3.1 MMNet-iid training procedure

MMNet-iid described in Section 2.6.1 has been trained in three different
ways due to the fact that the original training strategy in [24] didn’t work
as expected. We list the three variants of the algorithm implemented in this
work:

• MMNet-iid-original: the network is trained as explained in [24]
for 10k epochs with Adam optimizer [25] and learning rate 0.001 to
minimize the loss function presented in Section 2.6.1. Each training
batch has 500 samples.

• MMNet-iid: the network is trained for a total of 1100 epochs with
Adam optimizer [25] and learning rate of 0.005. Each training batch

50

has size 500. We optimize ΘT = {αt, θt}T−1t=0 by learning layers one
by one, starting from a 1-layer network when t = 0. The parameters
are optimized trough backpropagation by minimizing the loss function
L1(Θ1) as defined in (2.104). For the next layers, t = 1, ..., T − 1 the
training procedure is the following:

1. initialize αt, θt with the values αt−1, θt−1 at the previous layer;

2. optimize all parameters Θt+1 using backpropagation for e(t) epochs
to minimize the loss Lt+1(Θt+1) as defined in (2.104).

In our case e(t) = 20t. There, for 10 layers the total number of epochs
is 1100.

• MMNet-iid-extra: firstly the network is trained in the same way
as MMNet-iid. Then the network is additionally trained for 1000
additional epochs with Adam optimizer [25] and learning rate 0.001
to minimize the loss Lt−1(Θt−1) as defined in (2.104). Each training
batch has 500 samples.

4.3.2 MMNet training procedure

MMNet described in Section 2.6.1 has not been trained according to the
original training strategy in [24]. By following the original procedure, the
network was not able to outperform MMSE during testing. Therefore, the
network is trained for 2000 epochs (instead of 1000) with the Adam optimizer
[25] and learning rate of 0.001 to minimize the loss LT (ΘT) as defined in
(2.104). Each training batch has a size 500. The main difference with the
original approach lies in the choice of the loss function. Here, we consider
only the error between the true signals x and the output of the last layer
xT . Instead, in [24], the loss function takes into account the error at the
output of each layer t.

4.3.3 Pseudo-MMNet

Pseudo-MMNet is trained for 25 epochs with Adam optimizer [25] and learn-
ing rate 0.005 to minimize the loss LT (ΘT) in (2.104). Each training batch
500 samples.

4.3.4 GNNs

Each GNN-based model is trained for 1000 epochs with Adam optimizer [25]
and learning rate 0.0001 to minimize the loss L in (2.101). Each training
batch has 64 samples.

After each epoch, we compute the average loss over the validation dataset:
if the validation loss is less than the best one computed until the current

51

epoch, then the current model temporarily becomes the best one. The last
saved temporary model is the one used for testing purposes.

52

Chapter 5

Experiments

In this chapter we analyze and compare the performance of the algorithm
according to the SER metric (2.1.3). The results are always averaged over
10000 simulations for Nt = 64 and 20000 simulations for Nt = 32.

5.1 DAMP

5.1.1 Experiment 1

The experiment compares the MMSE, AMP-Gaussian, DAMP-0.55,
DAMP-0.75, DAMP-0.95 algorithms for the MIMO configuration of 32
transmitters (Nt = 64) and 64 (Nr = 128) receivers with modulation scheme
QAM-64. We test the algorithms on i.i.d. Gaussian channels and Kronecker
channel model with correlation coefficient ρr = 0.3 at receiver side. The
algorithms are compared for different number of running iterations (10, 12,
14). In each simulation we sample a random channel matrix according to
the chosen channel model. The goal of the experiment is to understand
the effect of channel correlation on AMP-Gaussian and on the alternative
with damping.

Figure 5.1 shows that when the channels are i.i.d. and Gaussian dis-
tributed, AMP-Gaussian with 14 iterations outperforms the MMSE base-
line algorithm significantly (around 2.5dB gain over MMSE at SER of 10−2).
On the other hand, comparing Figure 5.1 and Figure 5.2, we observe that
when the channel correlation at the receiver side increases to ρR = 0.3
the AMP-Gaussian performance degrades. Particularly, AMP-Gaussian
SER performance degrades at high SNR values. However, comparing the
DAMP curves, it can be observed that choosing the right damping factor
can improve the performance at a high SNR regime.

In DAMP-0.75 we register a degradation around 1dB at SER of 10−2

by lowering the number of iterations from 14 to 10 when channels are i.i.d.
and Gaussian distributed. On Kronecker channel model with correlation
ρr = 0.3 at receiver side, DAMP-0.75 with 10 layers achieves only 0.5dB

53

gain over MMSE. Here we compare four different values of damping ρr and
we empirically observe that the optimal one for our system is between 0.55
and 1. After several evaluations we decide to use DAMP ρ = 0.75 that
runs for 14 iterations as a benchmark for the next experiments. Both on
i.i.d. Gaussian channels and on Kronecker channel model with correlation
ρr = 0.3 at receiver side, DAMP-0.75 outperforms MMSE with a gap
around 2.5dB at SER of 10−2.

54

Figure 5.1: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
with 32 transmitters, 64 receivers with randomly sampled i.i.d. Gaussian channels.
DAMP runs for three different number of iterations: 10, 12, 14 (from top to bottom).

55

Figure 5.2: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
with 32 transmitters, 64 receivers with Kronecker channel model with correlation ρr =
0.3 at receiver side. DAMP runs for three different number of iterations: 10, 12, 14
(from top to bottom).

56

5.2 Offline training

In this section, the algorithms are trained offline over randomly sampled
i.i.d. Gaussian channel matrices. Then, the trained algorithms are tested
on randomly sampled i.i.d. Gaussian and Kronecker channel matrices. In
each simulation we sample a random channel matrix according to the chosen
channel model.

5.2.1 Experiment 2

The experiment compares the MMSE, MMNet-iid, MMNet-iid-original,
MMNet-iid-extra algorithms for the MIMO configuration of 32 transmit-
ters and 64 receivers with modulation scheme QAM-64. We test the algo-
rithms for i.i.d. Gaussian channels.

The goal of the experiment is to understand how the training strategy
impacts on the testing performance of MMNet-iid. A discussion of this
experiment can be found in Section 6.2.

Figure 5.3: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
with 32 transmitters, 64 receivers with randomly sampled i.i.d. Gaussian channels.

5.2.2 Experiment 3

The experiment compares MMSE, DAMP-0.75 with 14 layers, AMP-
Gaussian with 10 layers and MMNet-iid with 10 layers, for the MIMO
configuration of 32 transmitters and 64 receivers with modulation scheme
QAM-64. We test the algorithms on i.i.d. Gaussian channels and Kronecker
channel model with correlation coefficients ρr = 0.15 and ρr = 0.3 at receiver
side. Then we test the algorithms on the Kronecker channel model with cor-
relation coefficients ρr = 0.3, ρt = 0.3 both at receiver and transmitter side.
The goal of the experiment is to analyze the performance of MMNet-iid for

57

different channel correlations. Here, both AMP-Gaussian and MMNet-
iid runs for 10 iterations to understand the improvement brought by the
offline training on the performance.

On i.i.d. Gaussian channels, MMNet-iid outperforms significantly the
MMSE baseline. With only ten layers, it has around 2dB gain over MMSE
at SER of 10−2 and it has maximum 0.5 dB degradation compared to
DAMP-0.75 in the SNR region of Figure 5.4. In Figure 5.4, MMNet-
iid achieves around 2 dB gain relative to MMSE at correlation ρr = 0.15
at receiver side. However, at higher correlation values the performance
drops dramatically. Thanks to the offline learning, MMNet-iid outper-
forms AMP-Gaussian when they run for the same number of iterations
and channels are i.i.d. and Gaussian distributed or lowly correlated.

58

Figure 5.4: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
of 32 transmitters, 64 receivers with randomly sampled i.i.d. Gaussian channels (top)
and Kronecker channels with correlation ρr = 0.15 (middle) and ρr = 0.3 (bottom) at
receiver side.

59

At the end, we want to understand how DAMP-0.75 behaves when it
is tested on channels correlated both at receiver and transmitter side.

Both on i.i.d. Gaussian channels and on Kronecker channels with cor-
relation ρr = 0.3 at receiver side, DAMP-0.75 outperforms MMSE of
around 2.5dB at SER of 10−2 (Figure 5.4). The same performance gain is
preserved even by introducing an additional correlation ρt = 0.3 at trans-
mitter side (Figure 5.5).

Figure 5.5: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
of 32 transmitters, 64 receivers with Kronecker channels with correlation ρr = 0.3 at
receiver side and ρt = 0.3 transmitter side.

5.2.3 Experiment 4

The experiment compares the MMSE, BP-MMSE, AMP-Gaussian,
DAMP-0.75, MIMO-GNN, MIMO-GNN-MMSE and MIMO-GNN-
SPARSE algorithms for the MIMO configurations with Nt = 32, Nr = 64
and Nt = 32, Nr = 128 and modulation schemes QAM-16 and QAM-64. We
test the algorithms on i.i.d. Gaussian channels and on Kronecker channel
model with correlation coefficients ρr = ρt = 0.3.

The goal of the experiment is to analyze the performance, and the
robustness to correlation in the channels, of GNN-based algorithms and
BP-MMSE compared to AMP-based algorithms. For sake of comparison,
AMP-Gaussian and DAMP-0.75 run for 75 iterations. Increasing the
number of iterations does not further improve the performance.

Firstly, the experiments show that BP-MMSE, DAMP-0.75, AMP-
Gaussian, MIMO-GNN, MIMO-GNN-MMSE have approximately the
same performance on i.i.d. Gaussian channels and modulation QAM-16
(Figure 5.6, 5.7). By increasing the modulation order to QAM-64 or by

60

introducing correlation in the channel (Figure 5.8), GNN-based algorithms
become sensitive to the prior. In these scenarios, MIMO-GNN suffers of
a performance degradation at high SNR regime. Then, we observe that the
best scheme has always a larger performance gain over MMSE when the
system ratio is Nt

Nr
= 0.5, between 2dB and 2.5dB when SER is 10−2. This re-

sult can be explained by looking at simulations in [24] where the performance
gap between MMSE and the optimal ML detector is more prominent when
the system ratio increases. In the experiments, MIMO-GNN-SPARSE
curve is always between MMSE and MIMO-GNN-MMSE curves: even if
removing edges from the graph reduces the performance, it still outperforms
MMSE. For correlated channels, MIMO-GNN-SPARSE is comparable
to MIMO-GNN in terms of SER.

In Figure 5.9, we show the convergence of the GNN-based algorithms ac-

cording to the
2||uti−u

t−1
i ||

||uti||+||u
t−1
i || metric. We observe how the node hidden state ui

changes from iteration t− 1 to iteration t by computing the euclidean norm
of the difference uti − ut−1i . Since the norm of this difference could be af-
fected by the norm of the hidden state itself, we divide it by the mean of the
hidden state norms in the two iterations. In this way, the comparison among
different algorithms it is more reliable. The results are average over 32000
different nodes. We can notice that all the algorithms steps toward conver-
gence after each iteration. Especially, MIMO-GNN-SPARSE seems to
have a better convergence due to the sparsity in the graph.

61

Figure 5.6: SER vs. SNR of different schemes for QAM-16 (top) and QAM-64 (bot-
tom) modulations, MIMO system with 16 transmitters and 32 receivers with randomly
sampled i.i.d. Gaussian channels.

62

Figure 5.7: SER vs. SNR of different schemes for QAM-16 (top) and QAM-64 (bot-
tom) modulations, MIMO system with 16 transmitters and 64 receivers with randomly
sampled i.i.d. Gaussian channels.

63

Figure 5.8: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
with 16 transmitters and 32 receivers with channels drawn from the Kronecker model
with correlation ρr = ρt = 0.3.

Figure 5.9: Convergence of GNN-based algorithms for QAM-64 modulation, MIMO
system with 16 transmitters and 32 receivers with randomly sampled i.i.d. Gaussian
channels.

64

5.3 Online training

In this section, the algorithms Pseudo-MMNet and MMNet are trained
online over a single randomly sampled Kronecker channel matrix with cor-
relation coefficient ρr = 0.3 at receiver side and ρt = 0.5 at transmitter
side. In each simulation the data is generated with the same channel matrix
which Pseudo-MMNet and MMNet have been trained on.

5.3.1 Experiment 5

The experiment compares the MMSE, DAMP-0.75, Pseudo-MMNet
algorithms for the MIMO configuration of 32 transmitters and 64 receivers
with modulation scheme QAM-64. Then we provide the results of Pseudo-
MMNet by considering when:

• the network runs on different numbers of layers (3, 5, 7, 9);

• the network is trained on different numbers of iterations (15, 20, 25);

• the network is trained on different batch sizes (100, 300, 500).

The goal of the experiment is to understand the improvements brought by
Pseudo-MMNet for medium/high correlation in the channels at receiver
and transmitter side. Moreover, we are interested in determining how it is
possible to deal with the trade-off between performance and computational
complexity of the online training in Pseudo-MMNet.

When channels are strongly correlated (Figure 5.10), Pseudo-MMNet
and MMNet achieve around 1-1.5 dB gain over MMSE when SER is
between 10−2−10−3 at the expense of an online training that is not required
by the alternative algorithms. Then, we notice that DAMP needs more
running iterations to outperforms MMSE.

In Figure 5.10, we observe that Pseudo-MMNet outperforms MMNet
in performance even by reducing the number of training epochs by a factor
80. In the same experiment we show how it is possible to control the trade-
off between performance and complexity by changing the number of epochs
e, the number of layers T and the batch size b.

We observe that for low and medium SNR values (≤ 24), there is no
perceptible difference in performance among the network with 5, 7 and 9
layers. Instead, the network with 3 layers maintains around 0.5dB degrada-
tion with respect to the network with 9 layers for a significant part of the
considered SNR range. Then, we notice a small degradation for the network
with 5 layers at higher SNR (≥ 25) while the gap between the network of
7 and 9 layers is hardly noticeable for the same SNR values. Therefore, it
is possible to adjust the number of layers to achieve the desired complexity
both during training and prediction time by having at least 1dB gain over
MMSE at SER of 10−2 − 10−3. For instance, by reducing the number of

65

layers from 9 to 3 would decrease the complexity by a factor of 3. Moreover,
to further reduce the complexity at training time we show that is possible
to reduce the number of training epochs e or the batch size b while keeping
an improvement over MMSE.

Figure 5.10: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
of 32 transmitters, 64 receivers on a randomly sampled Kronecker MIMO channel with
correlation ρr = 0.3 at receiver side and ρt = 0.5 at transmitter side.

Figure 5.11: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
of 32 transmitters, 64 receivers on a randomly sampled Kronecker MIMO channel with
correlation ρr = 0.3 at receiver side and ρt = 0.5 at transmitter side. Pseudo-MMNet
is compared for different number of layers (3, 5, 7, 9).

66

Figure 5.12: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
of 32 transmitters and 64 receivers on a randomly sampled Kronecker MIMO channel
with correlation ρr = 0.3 at receiver side and ρt = 0.5 at transmitter side. Pseudo-
MMNet is compared for different number of training epochs (15, 20, 25).

Figure 5.13: SER vs. SNR of different schemes for QAM-64 modulation, MIMO system
of 32 transmitters and 64 receivers on a randomly sampled Kronecker MIMO channel
with correlation ρr = 0.3 at receiver side and ρt = 0.5 at transmitter side. Pseudo-
MMNet is compared for different batch size of training (100, 300, 500).

67

68

Chapter 6

Discussion

6.1 Performance analysis

Recall the derivation of the AMP-Gaussian algorithm in Section 2.4. It is
evident the importance of the i.i.d. assumption on the channels for the cor-
rect functioning of the algorithm. The experiments confirm the outstanding
performance of AMP-Gaussian on i.i.d. Gaussian channels and the expected
lack of robustness for medium correlation in the channels at receiver side. On
the other hand, the results show the robustness of DAMP even for medium
correlation in the channels both at receiver and transmitter side. In this
work we don’t provide an analytic justification of the improvements led by
damping. We notice that the presence of damping slows down the conver-
gence of the algorithm. Meanwhile, offline training in MMNet-iid allows to
speed up the convergence with respect to AMP-Gaussian. When we deal
with high correlated channels, DAMP performance degrades at high SNR
values while MMNet and Pseudo-MMNet prove to be a good alternative
solutions.

With the aid of the prior information, BP-MMSE outperforms MMSE
and it is robust to correlation. The same conclusions are valid for MIMO-
GNN-MMSE when the system ratio satisfies Nt

Nr
= 0.5. Instead, MIMO-

GNN manages to outperform MMSE under the uniform prior assumption
over the transmitted symbols. However, it exhibits slight degradation when
there is correlation in the channel or when the modulation is QAM-64.
Therefore, MIMO-GNN is sensitive to the prior information when tested
on a channel model different from the training. For better results at higher-
modulation, probably the model needs to be more complex to learn the
underlying distribution of the dataset.

To conclude the performance analysis, we consider as the best schemes
the ones that achieve the lowest SER when the channels exhibit low correla-
tion, as it happens in practice. Our experiments demonstrate that DAMP,
BP-MMSE and MIMO-GNN-MMSE are the most promising solutions for re-

69

alistic scenarios. In this work, we do not have simulation results to conclude
the same for MMNet and Pseudo-MMNet. Since the scope of this thesis
does not limit itself to a performance analysis of the proposed algorithms,
in the Section 6.3 we analyze their complexity too.

6.2 MMNet-iid training strategy

In our experiment the original training strategy for MMNet-iid (MMNet-
iid-original) in [24] doesn’t lead to the same results obtained in the original
work. The main issue regarding this approach is the chosen loss function
described in Section 2.6.1. The loss function averages the loss error after each
layer without applying any kind of discount from layer to layer. Therefore,
the predominant contribution in the loss value comes from the first layers
where the error is higher. In this way, the weights update in the last layer will
be less significant compared to the previous ones, leading to bad predictions.

One possible solution to this issue is to modify the loss function by
including only the error from the last layer. We observed that this approach
leads to the desired result only after a long training, probably due to the
vanishing gradient problem explained in Section 2.5.2. Therefore, we come
up with the training strategy for MMNet-iid described in Section 4.3.1
that speeds up significantly the training. Then, we observe that by adding
more training epochs to minimize the loss from the last layer (MMNet-
iid-extra) doesn’t really help.

6.3 Computational complexity

6.3.1 Low-complexity iterative algorithms

In order to recover the transmitted symbols, the iterative algorithms that
follows the Scheme 7 have an overall complexity in the order of O(TN2

r).
For each layer, the dominant operation is the matrix multiplication between
the matrix At and the residual rt. The online training complexity of MM-
Net and Pseudo-MMNet is O(ebTN2

r) where e is the number of training
epochs and b is the batch size. Moreover Pseudo-MMNet has an additional
complexity of O(N3

r) due to the computation of the pseudo inverse of the
channel matrix H. In MMNet, the number of parameters to learn is in the
order of O(TNrNt) because there is a matrix At to learn for each layer. In-
stead, Pseudo-MMNet reduces the number of learnable variables by a factor
T because the matrix A to learn is tied among the layer.

On one hand, the experiments show that DAMP outperforms Pseudo-
MMNet when we substantially increase the number of layers in DAMP. On
the other hand, after introducing a latency for each channel realization, the

70

complexity of Pseudo-MMNet to recover the transmitted symbols is signifi-
cantly lower than DAMP because Pseudo-MMNet works with less layers.

6.3.2 GNN-based algorithms

In GNNs the computational complexity is dominated by the computation of
function M for all the edges in the graph during each iteration of the algo-
rithm. By recalling that M is a two layers MLP where the first and second
layers have outputs of sizes l and l

2 respectively, the overall complexity of
dense GNNs is O(TN2

t l
2).

By applying the pruning strategy discussed in Section 3.3.1, we can keep
only 33% of the edges for i.i.d. Gaussian channels and reduce of 67% the
overall complexity of GNNs. However, to compute the MMSE prior and co-
variance matrix we need to invert a square matrix of dimension Nt. There-
fore, the preprocessing complexity of GNNs with MMSE prior is O(N3

t).
Apparently the complexity of GNNs seems to be prohibitive for large

systems. However, the advancement in distributed processing can be lever-
aged to use GNNs in realistic scenarios. Indeed, we can notice that, in each
iteration, the function M can be computed independently for each edge.
Therefore, the algorithm can be easily parallelized.

71

72

Chapter 7

Conclusions and future work

In this thesis, we started by formulating MIMO detection as a MAP infer-
ence problem that can be approximately solved by running LBP on the cor-
responding graphical model. Since, under the assumption of uniform prior
over transmitted symbols, standard LBP yields poor results, we combine
LBP and MMSE in a unique solution that we call BP-MMSE. The perfor-
mance gain over MMSE is significant but the complexity of the algorithm is
dominated by the inversion of a matrix in the computation of MMSE statis-
tics, which makes the complexity prohibitive for large systems. Therefore,
we use GNNs to learn an iterative message-passing algorithm, MIMO-GNN,
that solves the same task even under the uniform prior assumption. The
efficiency of the algorithm and its predisposition to be parallelized make
MIMO-GNN a promising solution. Then we propose another class of al-
gorithms, inspired by AMP and derived from LBP. Instead of exchanging
messages on a dense graphical model, these algorithms reduce the complex-
ity by working with matrix multiplications. We recall how to derive AMP
for MIMO from LBP and we slightly modify the algorithm to achieve better
results at high SNR values. The same algorithm is then improved by adding
damping. The novel scheme is called DAMP and it outperforms AMP on
correlated channels. When the correlation is too high, even DAMP perfor-
mance degrades at high SNR values. Therefore we propose a deep neural
scheme called Pseudo-MMNet that solves the issue with an online training
for each channel realization.

We leave to future work an analytical justification for DAMP and an
evaluation of the impact of the channel matrix condition number on all the
proposed algorithms. Regarding DAMP, we suggest to check through the
Anderson-Darling test if damping really helps to have decoupled Gaussian
noisy predictions after the linear operator. Moreover, we suggest to test
Pseudo-MMNet on multiple channel realization in order to provide a more
reliable analysis of its performance. To conclude, we remember to the reader
that all the simulations are conducted on column-normalized channel ma-

73

trices with a perfect knowledge of the channel at receiver side. Therefore,
we encourage future research on the proposed algorithms where channel
matrices are not column-normalized and with AWGN in the channel.

74

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems, 2016.

[2] Aviad Aberdam, Alona Golts, and Michael Elad. Ada-LISTA: Learned
solvers adaptive to varying models, 2020.

[3] M. A. Albreem, M. Juntti, and S. Shahabuddin. Massive MIMO detec-
tion techniques: A survey. IEEE Communications Surveys Tutorials,
21(4):3109–3132, 2019.

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Fran-
cis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas
Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals,
Yujia Li, and Razvan Pascanu. Relational inductive biases, deep learn-
ing, and graph networks, 2018.

[5] Mohsen Bayati and Andrea Montanari. The dynamics of message pass-
ing on dense graphs, with applications to compressed sensing. IEEE
Transactions on Information Theory, 57(2):764–785, Feb 2011.

[6] Danny Bickson. Gaussian belief propagation: Theory and aplication,
2008.

75

[7] Thomas Blumensath and Mike Davies. Iterative thresholding for sparse
approximations. Journal of Fourier Analysis and Applications, 14:629–
654, 12 2008.

[8] Mark Borgerding and Philip Schniter. Onsager-corrected deep networks
for sparse linear inverse problems. ArXiv, abs/1612.01183, 2016.

[9] Mark Borgerding, Philip Schniter, and Sundeep Rangan. AMP-inspired
deep networks for sparse linear inverse problems. IEEE Transactions
on Signal Processing, 65(16):4293–4308, Aug 2017.

[10] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using RNN encoderdecoder for sta-
tistical machine translation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014.

[11] J. M. Cioffi. Part I: signal processing and detection.

[12] David L. Donoho, Arian Maleki, and Andrea Montanari. Message-
passing algorithms for compressed sensing. Proceedings of the National
Academy of Sciences, 106(45):18914–18919, Oct 2009.

[13] David L. Donoho, Arian Maleki, and Andrea Montanari. How to design
message passing algorithms for compressed sensing. 2011.

[14] Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propaga-
tion: Informed scheduling for asynchronous message passing, 2012.

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry,
2017.

[16] J. Goldberger and A. Leshem. Pseudo prior belief propagation for
densely connected discrete graphs. In 2010 IEEE Information Theory
Workshop on Information Theory (ITW 2010, Cairo), pages 1–5, Jan
2010.

[17] Jacob Goldberger and Amir Leshem. A gaussian tree approximation
for integer least-squares. In Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, editors, Advances in Neural Infor-
mation Processing Systems 22, pages 638–645. Curran Associates, Inc.,
2009.

[18] Karol Gregor and Yann LeCun. Learning fast approximations of sparse
coding. In Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning, ICML’10, page 399–406,
Madison, WI, USA, 2010. Omnipress.

76

[19] Dongning Guo and Sergio Verdú. Multiuser detection and statistical
mechanics. 2003.

[20] Hengtao He, Chao-Kai Wen, Shi Jin, and Geoffrey Ye Li. A model-
driven deep learning network for MIMO detection. 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Nov
2018.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[22] C. Jeon, R. Ghods, A. Maleki, and C. Studer. Optimality of large mimo
detection via approximate message passing. In 2015 IEEE International
Symposium on Information Theory (ISIT), pages 1227–1231, 2015.

[23] Charles Jeon, Ramina Ghods, Arian Maleki, and Christoph Studer.
Optimal data detection in large MIMO, 2018.

[24] Mehrdad Khani, Mohammad Alizadeh, Jakob Hoydis, and Phil Flem-
ing. Adaptive neural signal detection for massive MIMO, 2019.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014.

[26] Christian Knoll, Michael Rath, Sebastian Tschiatschek, and Franz
Pernkopf. Message scheduling methods for belief propagation. In
ECML/PKDD, 2015.

[27] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger.
Factor graphs and the sum-product algorithm. IEEE Trans. Inf. The-
ory, 47:498–519, 2001.

[28] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel.
Gated graph sequence neural networks, 2015.

[29] Dong Liu, Nima N. Moghadam, Lars K. Rasmussen, Jinliang Huang,
and Saikat Chatterjee. α belief propagation as fully factorized approx-
imation, 2019.

[30] S. L. Loyka. Channel capacity of mimo architecture using the exponen-
tial correlation matrix. IEEE Communications Letters, 5(9):369–371,
2001.

[31] Junjie Ma and Li Ping. Orthogonal amp, 2016.

[32] Arian Maleki. Approximate message passing algorithms for compressed
sensing. 2011.

77

[33] Kevin Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study, 2013.

[34] United Nations. The Sustainable Development Goals Report 2019. 2019.

[35] Afif Osseiran, J.F. Monserrat, Patrick Marsch, Olav Queseth, Hugo
Tullberg, Mikael Fallgren, Katsutoshi Kusume, Andreas Höglund,
Heinz Droste, Icaro Silva, Peter Rost, Mauro Boldi, Joachim Sachs,
Petar Popovski, David Gozalvez-Serrano, Peter Fertl, Zexian Li, Fer-
nando Moya, Gabor Fodor, and Ji Lianghai. 5G Mobile and Wireless
Communications Technology. 06 2016.

[36] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[37] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. A new class of
upper bounds on the log partition function. IEEE Transactions on
Information Theory, 51(7):2313–2335, Jul 2005.

[38] Z. Xie, R. T. Short, and C. K. Rushforth. A family of suboptimum
detectors for coherent multiuser communications. IEEE Journal on
Selected Areas in Communications, 8(4):683–690, 1990.

[39] S. Yang and L. Hanzo. Fifty years of mimo detection: The road to large-
scale mimos. IEEE Communications Surveys Tutorials, 17(4):1941–
1988, 2015.

[40] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understand-
ing Belief Propagation and Its Generalizations, page 239–269. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[41] KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya,
Raquel Urtasun, Richard Zemel, and Xaq Pitkow. Inference in proba-
bilistic graphical models by graph neural networks, 2018.

[42] Seokhyun Yoon and Chan-Byoung Chae. Low-complexity MIMO de-
tection based on belief propagation over pairwise graphs. IEEE Trans-
actions on Vehicular Technology, 63(5):2363–2377, Jun 2014.

78

Appendix A

Proof 1

Given G(z, τ) = F (2) − F 2 such that

F =
1

Z

∑
s∈A

s exp(−(z − s)2

2τ
)

and

F (2) =
1

Z

∑
s∈A

s2 exp(−(z − s)2

2τ
),

we want to prove G(z, τ) = τ ∂F (z,τ)
∂z .

Recalling Z =
∑

s∈A exp(− (z−s)2
2τ) and defining F̃ = ZF, ˜F (2) = ZF (2):

∂F̃

∂z
=

1

τ
(˜F (2) − zF̃), (A.1)

∂ 1
Z

∂z
= −1

τ

1

Z2
(F̃ − zZ), (A.2)

∂F (z, τ)

∂z
=
∂ 1
Z F̃

∂z
=

1
Z ∂F̃

∂z
+
F̃ ∂ 1

Z

∂z
=

1

τ

1

Z
(˜F (2)−zF̃− F̃

2

Z
+zF̃) =

1

τ
(F (2)−F 2).

(A.3)

80

Appendix B

Proof 2

Here we prove that the messages mt
l→k(xl) from variable node to factor node

can be approximated by the Gaussian density φt+1
l→k(xl) (2.67).

mt
l→k(xl) ∝

∏
a6=k

mt−1
a→l(xl)p(xl) ∝ exp(−

∑
a6=k(ha,lxl − rta→l)2

σ2(1 + τ tk→l)
)p(xl) =

= exp(−
∑

a6=k(ha,lxl − rta→l)2

σ2(1 + τ tk→l)
)p(xl) =

= exp(−
∑

a6=k(h
2
a,lx

2
l − 2ha,lxlr

t
a→l + (rta→l)

2)

σ2(1 + τ tk→l)
)p(xl) ∝

∝ exp(−
∑

a6=k(h
2
a,lx

2
l − 2ha,lxlr

t
a→l)

σ2(1 + τ tk→l)
)p(xl).

We follow the derivation by reminding that the columns of H are normalized

such that ||ha|| = 1 and by approximating h2k,lx
2
l = O(

x2l
Nr

):

mt
l→k(xl) ∝ exp(−

x2l − h2k,lx2l − 2xl
∑

a6=k ha,lr
t
a→l

σ2(1 + τ tk→l)
)p(xl) ∝

∝ φt+1
l→k(xl)(1 +O(

x2l
Nr

)),

where φt+1
l→k(xl) is defined in (2.67). The last step of the derivation required

to complete the square at the numerator of the exponent in order to have a
Gaussian density up to a normalization constant.

	Abstract
	Sommario
	Acknowledgements
	Notations
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Motivation
	Related work
	Contribution
	Benefits, ethics and sustainability
	Outline

	Background
	MIMO in wireless communication
	Channel models
	Real-valued system model
	MIMO detection
	QAM modulation

	Inference in probabilistic graphical models
	Loopy belief propagation
	MIMO as a factor graph
	Markov random field
	MIMO as a Markov random field

	Sparse linear inverse problem
	ISTA
	Approximate message passing

	AMP for MIMO detection
	Supervised deep learning
	Preventing overfitting
	Vanishing gradient problem
	Graph neural networks
	Learned ISTA
	Adaptive LISTA
	Learned AMP

	Deep learning for MIMO detection
	MMNet

	Algorithms design
	BP-MMSE
	MIMO-GNN
	MIMO-GNN-MMSE
	Edge pruning

	GNNs hyperparameters design
	DAMP
	Pseudo-MMNet
	Why Pseudo-MMNet works?
	Why is online training required?

	Comparison among schemes

	Methodology
	Compared algorithms
	Dataset
	Offline training
	Online training
	GNN-based models
	Low-complexity iterative based models

	Training
	MMNet-iid training procedure
	MMNet training procedure
	Pseudo-MMNet
	GNNs

	Experiments
	DAMP
	Experiment 1

	Offline training
	Experiment 2
	Experiment 3
	Experiment 4

	Online training
	Experiment 5

	Discussion
	Performance analysis
	MMNet-iid training strategy
	Computational complexity
	Low-complexity iterative algorithms
	GNN-based algorithms

	Conclusions and future work
	Bibliography
	Proof 1
	Proof 2

