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1. Introduction

In recent times, the number and variety of appli-
cations of deep learning algorithms have notice-
ably grown; given the existing proportionality
between the deep learning models’ performance
and the amount of data fed to them, it is nec-
essary to collect more and more data in order
to have more reliable results from these models.
Most of these data are usually crowdsourced, so
the data owners must ensure privacy guarantees
related to their use and sharing.

Indeed, malicious agents can target models in
order to reveal potentially sensitive information
that remains within them when the training is
complete and exploit them for harmful purposes.
Deep learning models that process data retain
meaningful details about them and are usually
accessible to everyone through online APIs.
Malicious agents can thus conceive attacks that
exploit knowledge of the trained models to ob-
tain information about their training. Among
them, two specific types of attacks are the most
dangerous: model inversion attacks and mem-
bership inference attacks. To reduce the efficacy
of these attacks, a widely spread countermeasure
taken by model owners is applying differential
privacy in the training procedure of deep learn-

ing models. The main advantage of this solution
is the guarantee that the privacy leakage at the
end of the model’s training is limited and mea-
surable. The main downside of this approach is
that the introduction of differential privacy in
the training procedure has a significant impact
on the model’s utility and on the time needed
for the training to complete. In this work, we
investigate the topic of privacy preservation in
deep learning, and we test the effectiveness of
the most known implementation of differential
privacy in deep learning models, the Differen-
tially Private Stochastic Gradient Descent (DP-
SGD), as a defense mechanism. Our goal is to
evaluate the validity of this method in terms
of protection against both model inversion and
membership inference attacks and measure the
impact that its application has on the model un-
der attack, analyzing both the level of accuracy
achieved and the training time. We also per-
form the same analysis considering two regular-
ization techniques, dropout and the L2 regular-
izer. Their effect on improving a model’s gener-
alization capability is widely known, and previ-
ous works [4] have confirmed an existing connec-
tion between privacy attacks’ effectiveness and
overfitting in the target model. We conclude our



work drawing from this empirical analysis con-
clusions on the effectiveness of both approaches,
differential privacy and regularizers, as overall
defense mechanisms.

2. Privacy attacks

We differentiate the scenarios in which an attack
occurs depending on the extent of the adversar-
ial knowledge, that is the ensemble of informa-
tion concerning the model and the data under
attack at disposal of the attacker. From this
point of view, we distinguish the threat scenar-
ios into two types: black-box and white-box. In
a black-box scenario, the adversary knows only
elements of the target model that are available
to the public, such as prediction vectors, but nei-
ther has any access to the model structure nor
any information about the training dataset. In a
white-box scenario, the adversary has complete
knowledge of the target model and knows the
data distribution of the training samples.

2.1. Model inversion attacks

Model inversion attacks try to reconstruct train-
ing samples of the attacked model starting from
environmental elements known by the attacker.
The first designs of reconstruction attacks as-
sumed a white-box scenario in which the adver-
sary knows the output label, the prior distri-
bution of features for a given sample, and has
complete access to the model; with these as-
sumptions, the attacker estimates the sensitive
attributes’ values that maximize the probabil-
ity of observing the known model parameters.
These kinds of attacks are referred to as Maxi-
mum a-posteriori (MAP) attacks [3].
Subsequent paradigms of model inversion at-
tacks abandoned the MAP approach in favor of
the optimization of given reconstruction losses
between the output of the inversion model and
real training samples. A novel strategy of at-
tack consists in recovering the training samples
of the target model starting from its activation
maps. This attack can be performed both in
white and black box scenarios, depending on
whether the attacker decides to consider the in-
termediate maps of the target model or its pre-
diction vector. Due to this adaptability to dif-
ferent scenarios and the possibility of conducting
layer per layer analysis, in our work, we focus on
this strategy of attack.

2.2. Membership inference attacks

Membership inference attacks take as input a
sample and try to determine if it belongs to the
training dataset of the model under attack or
not. The most common paradigm for design-
ing such attacks is the use of shadow models
and meta-models or attack models. The ba-
sic idea behind this approach is to train sev-
eral "shadow" models that imitate the behav-
ior of the target on "surrogate" (or shadow)
datasets. Shadow datasets must contain samples
with the same format and similar distribution
to the training data of the target model. After
the training of shadow models is complete, their
outputs and the known labels from the shadow
datasets form the attack dataset; this dataset is
used to train the meta-model, which learns to
infer membership based on the shadow models’
results. The main issues of this approach are
the transferability between the shadow model
and the target model and the strong assump-
tions related to the adversarial knowledge of the
target model structure and training data dis-
tribution. To overcome these issues, Salem et
al. |4] proposed three different attacks consid-
ering scenarios with more relaxed assumptions
on the adversarial knowledge. The first two ap-
proaches maintain the idea of shadow models,
while the third proposal abandons the shadow
model paradigm in favor of a threshold-based
attack. In this approach, the attacking model
is a simple binary classifier that takes from the
prediction vector of the target model the high-
est posterior and compares it against a given
threshold; if its value is greater than the thresh-
old, the input sample, from which that output
is obtained, is considered a member of the train-
ing dataset. The advantages of this approach
are the complete independence from the tar-
get model and its training data and the elimi-
nation of the overhead costs due to the design
of shadow models and the creation of suitable
shadow datasets; besides, it requires no training
of the attack model. In this work, we use two
attacks belonging to the two aforementioned cat-
egories: one attack that involves the training of
a shadow model and a threshold-based attack.

3. Differential privacy

Differential privacy is devised as an effective pri-
vacy guarantee for algorithms that work with



aggregated data. Before enunciating the formal
definition of differential privacy, we have to ex-
plain the concept of adjacent databases. Two
databases are adjacent "if they differ in a single
entry, that is if one image-label pair is present
in one set and absent in the other" [1].
Definition 1. A randomized mechanism M:
D — R with domain D and range R satisfies
e-differential privacy if for any two adjacent in-
puts d, d’ € D and for any subset of outputs
S C R it holds that

PriM(d) e S] < EPr[M(d) e S]. (1)

The parameter € is called privacy budget be-
cause it represents how much information leak-
age we can afford in our system, so a lower value
indicates a stricter privacy guarantee. Differen-
tial privacy represents a significant development
in the field of privacy-preserving deep learning
because it guarantees three properties that re-
sult very useful in our context of research: com-
posability, group privacy, and robustness to aux-
iliary information. Composability means that
if we have a composite mechanism and each of
its components is differentially private, then the
overall composition is differentially private; this
property allows us to design mechanisms in a
modular fashion. Group privacy assures that
if the dataset contains correlated data, like the
ones provided by the same individual, the pri-
vacy guarantee degrades gracefully and not in
an abrupt way. Finally, robustness to auxiliary
information guarantees that the privacy level as-
sured by theory stands regardless of the knowl-
edge available to the adversary.

3.1. (e,9)-Differential Privacy

In practice, differentially private mechanisms
cannot always assure privacy guarantees as
stated in the main definition of e-Differential
Privacy for every possible €. For this reason,
the classical formulation of e-Differential Pri-
vacy needs to be relaxed to allow every differ-
entially private mechanism to be implemented
with less strict privacy guarantees, but at least
valid for every . The main relaxation of differ-
ential privacy usually considered for implement-
ing any mechanism is (e, §)-Differential Privacy.
Definition 2. A randomized mechanism M: D —
R with domain D and range R satisfies (e, J)-
differential privacy if for any two adjacent inputs

d, d’ € D and for any subset of outputs S C R
it holds that

Pri M(d)e S] < Pr| M(d’)e S]+0d, (2)

where the additive factor § represents the prob-
ability that plain e-DP is broken. Once we have
defined a differentially private mechanism, we
can apply an a posteriori analysis giving us sev-
eral (e,0) pairs that satisfy the privacy condi-
tions of our scenario. In the case of a composite
mechanism, this analysis results more complex
because we need to keep track in some way of the
privacy loss accumulated during the execution
of each component. However, the composability
property of differential privacy brought Abadi et
al. |1] to design an element, called privacy ac-
countant, that calculates the privacy cost needed
for each access to the data and uses this infor-
mation to define the overall privacy loss of the
mechanism; the specific accountant conceived by
Abadi et al. is called moments accountant be-
cause it keeps track of a bound on the moments
of a privacy loss random variable. Studies on
how to implement a differential privacy mecha-
nism into a deep learning model lead to the de-
sign of the Differentially Private Stochastic Gra-
dient Descent (or DP-SGD) [1].

3.2. Renyi differential privacy

The Renyi Differential Privacy is a relaxation
of differential privacy based on the concept of
Renyi divergence.
Definition 1. For two probability distributions
P and @ defined over R, the Renyi divergence
of order o > 1 is

B

PP @2 g o (D2) .

a— Q(z)

The relationship between the differential privacy
formulation and the Renyi divergence can be ex-
pressed through the following definition
Definition 2. A randomized mechanism M:
D — R is e-differentially private if and only if
its distribution over any pair of adjacent inputs
d,d" € D satisfies

Doo(M(d) || M(d7)) < e. (4)

This relationship justifies the idea of develop-
ing a relaxation of standard differential privacy



based on Renyi divergence; it can be general-
ized through the definition of the so-called («, £)-
Renyi differential privacy.

Definition 3. A randomized mechanism M:
D — R is said to have e-Renyi differential pri-
vacy of order « if for any adjacent d,d € D it
holds that

Do(M(d) || M(d?)) <. ()

It can be demonstrated that the three aforemen-
tioned properties (composability, robustness to
auxiliary information, and group privacy) are
still valid for Renyi differential privacy, despite
the relaxation of the original definition of differ-
ential privacy.

4. Privacy preserving regular-
izations

We want to test the effectiveness of both DP-
SGD, that is the current standard approach in
terms of privacy preservation, and other regular-
izers in defending deep learning models and pro-
viding privacy guarantees. To do this we subject
both methods to two membership inference at-
tacks and one model inversion attack. Regard-
ing the membership inference attacks, we per-
form two black-box attacks inspired by Salem’s
paper [4]. One is a threshold-based attack, while
the other involves the training of a single shadow
model and assumes no knowledge about the data
distribution; the last one is referred also to as
data transferring attack. To evaluate the effec-
tiveness of the membership inference attacks, we
measure the AUC (Area Under Curve) of the
ROC curves; the higher the AUC, the more suc-
cessful is the inference attack. As for the model
inversion attack, we have devised an approach
that exploits the activation maps of the target
model to reconstruct its training data.

Our model inversion attack consists of two
phases:

1. train the target model on a given dataset,
then freeze all its layers up to the one whose
activation map we want to extract;

2. attach the frozen layers at the top of the
actual adversary model.

Our adversary model is structured to be able
to receive in input any activation map among
the ones produced by the target model’s layers;
to achieve this, we place after the frozen lay-

Figure 1: Plot of the adversary model’s struc-
ture. The Sequential block is the stack of frozen
layers coming from the target model.

ers extracted from the target model a block of
five layers. This block first flattens the activa-
tion map, if necessary, then feeds the resulting
vector to a Dense layer that maps it to a fixed
dimension, and finally, reshapes the output into
a three-dimensional matrix; this last transfor-
mation is needed to feed the block output to the
convolutional part of the adversary model. A
detailed overview of the architecture of the ad-
versary model is shown in Figure 1.

To measure the reconstruction loss between the
original image and the one generated by our
model, we use the mean squared error (MSE).
We already know from previous works that the
integration of differential privacy in deep learn-
ing has proven successful in preserving privacy
against several attacks; however, recent studies
have revealed a major flaw in this method, the
significant impact on the model’s accuracy |[2].
We want to understand if this thesis holds and
analyze the relationship between the model’s
utility, as measured by its accuracy, and its pri-
vacy guarantee.

For this reason, we evaluate in a comparative
way the performance of DP-SGD with different
privacy budgets according to four metrics: re-
silience to both membership inference attacks
and the model inversion one, accuracy achieved
by the target model, and time duration of the
training process. Then, our work proceeds in
looking for an alternative solution capable of re-
solving the tradeoff between privacy guarantee
and performance, both in terms of training time
and utility, of the model under attack. The main
idea behind our proposal is that there can be a
connection between the generalization capabil-
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Figure 2: Plot of the target model’s structure.

ity of a network and its resistance to the model
inversion attack. Indeed, overfitting is a usual
cause of a model’s lack of ability to generalize
well on new samples; so, our approach consists
in reducing the overfitting in the network to in-
crease the resistance to the attack. In our solu-
tion, we choose to use two regularization tech-
niques that prevent overfitting: dropout, and L2
regularization. Our final objective is to prove
the validity of this solution as a defense mech-
anism empirically, evaluating it comparatively
with the same four criteria we used for differen-
tial privacy: resistance to both privacy attacks,
the accuracy achieved by the target model, and
the total time to train it. The target model,
which will remain the same in every analysis per-
formed, is a convolutional neural network with
nine layers, not including the input one; its ar-
chitecture is shown in detail in Figure 2. To
introduce differential privacy in the training of
the target model, it suffices to substitute its op-
timizer with the Differentially Private Stochas-
tic Gradient Descent, so the structure and the
number of parameters of the model remain the
same. Regarding the insertion of regulariza-
tion inside the model, we decide to insert the
Dropout layers in the middle of every convolu-
tional block, that is convolution+pooling, and
after each Dense layer, except for the network
output, and to add L2 regularization only to the
output layer.

5. Experiments

We have performed our experiments on three im-
age datasets: CIFAR-10, MNIST, and Fashion-

MNIST. Regarding the hardware used for our
experiments, it is an Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz with an Nvidia GeForce
GTX TITAN X GPU. We carried on two sep-
arate groups of experiments: one regarding the
study of (g, 0)-differential privacy and a second
one related to the study of different regulariza-
tion scenarios. Each model is trained with the
same hyperparameters and for the same num-
ber of epochs of the target model without dif-
ferential privacy and regularization. For both
studies, we present the results achieved in terms
of accuracy of the target model, training proce-
dure’s execution time, resistance to both mem-
bership inference attacks and our model inver-
sion attack. In our study of differential privacy,
we consider three privacy configurations with de-
creasing levels of privacy guarantee; in the first
configuration, we have ¢ = 2, in the second one
€ = 4 and in the third one ¢ = 8. We recall
that a lower value for the privacy budget € cor-
responds to a stricter privacy guarantee. At the
end of this first study, the results obtained show
that not only differential privacy has a signif-
icant impact on the model’s performance, but
also that it does not significantly improve the
resilience of the model to our model inversion
attack; indeed for some activation maps, it wors-
ens it, especially for the ones corresponding to
the last three layers. In this scenario, differen-
tial privacy with € = 2 remains the best choice
among the differentially private configurations
in terms of overall protection against the inver-
sion attack. In the study of the regularizers, we
considered three scenarios: use of L2 regular-
ization, use of dropout, and use of both tech-
niques together. In terms of performance, these
three solutions do not impact noticeably on the
model’s utility nor on the execution time of the
training process; besides, they also provide rea-
sonable protection against the membership in-
ference attacks. The most interesting results in-
volve the model inversion attack: we found out
that L2 regularization significantly increases the
resistance to the attack for the regularized layer,
while dropout increases the overall resistance to
the attack against intermediate layers, but it
does not improve the protection of the output
layer.

Combining L2 regularization and dropout, we
obtain a compromise that guarantees a slight
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Figure 3: Final comparison considering average results on all datasets. We express the three dimensions
on the axis of the two plots in terms of average percentage variation with respect to the baseline scenario
(whose values are equal to 84.6% for the accuracy, 67% for the membership AUC and 0.047 for the

reconstruction MSE).

improvement in the level of protection of the in-
termediate layers and significant growth in the
resilience to the attack for the output layer. Af-
ter completion of the two studies, we decided to
consider in our final experiments an additional
scenario in which we combine differential privacy
with € = 2 and dropout.

We performed a final comparison of all the afore-
mentioned scenarios, considering together the
four metrics used throughout our experiments
and a black-box scenario for both privacy at-
tacks; the results of this final comparison are
shown in Figure 3. From this collection of re-
sults, we can conclude that the solution with
both dropout and L2 regularization is the best
overall defense mechanism against privacy at-
tacks that also provides good performances in
terms of utility and execution time. However,
applying L2 regularization alone at the output
layer is a valid alternative solution that performs
better in protecting from the black-box inversion
attack but slightly worse against membership in-
ference ones, with similar performance regarding
the accuracy reached during training and the ex-
ecution time of the training process.

6. Conclusions

In this thesis, we demonstrated the draw-
backs of using differential privacy as a privacy-
preservation method for deep learning models;
in particular, we showed its significant impact
on the performance of the model under attack,
both in terms of the level of accuracy achieved
and time duration of the training process, and

its lack of effectiveness in protecting against a
model inversion attack designed by us. We also
found out that applying dropout and L2 reg-
ularization to the output layer of the target
model is the best overall defense mechanism,
while L2 regularization alone is the best solu-
tion in the case of a black-box model inversion
attack. Moreover, we discovered that applying
a high level of L2 regularization on a layer in-
creases significantly its resistance to the model
inversion attack.
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