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1. Introduction
A Smart Grid is an electric grid integrated with
Information Technologies that allows to moni-
tor, manage and repair the electric network, re-
sulting in more efficient energy distribution and
overall greater reliability and availability of the
electric systems.
Historically, the electric grid has had a simple
structure, and it can be divided into four parts:

• Energy Producers: generate electric power
in chemical or nuclear plants of monumental
dimensions.

• Trasmission Grid : transfers efficiently en-
ergy over long distances.

• Distribution Grid : distributes and delivers
electricity to the final users.

• End Users: consume passively electric en-
ergy.

A Smart Grid enhances the functionalities of a
traditional grid by leveraging information tech-
nologies. The main change of paradigm is given
by the support of a two-way flow of electricity
and information. This allows the Smart Grid to
be composed of loosely coupled control subsys-
tems that exchange information and can detect
and react to events happening in the grid. Two
way flow electricity allows end users to produce
and sell energy for monetary compensation.

In this context, solar energy production be-
comes a valid and cheap alternative to tradi-
tional sources such as fossil fuels, and it can
be produced at different scales, from domestic
to industrial use cases. It has the advantage
of being a source of inexhaustible free energy,
and its availability is not controlled by market
conditions or third party actors. However, so-
lar energy production is characterized by a high
variation in availability, and it is very challeng-
ing to predict. Solar energy is gathered through
photovoltaic panels, and they can be used to re-
duce energy consumption from the grid or gen-
erate revenue by exploiting fluctuations in en-
ergy prices. Energy production and peak user
demand are not aligned, and therefore, accumu-
lation systems are used to store energy surpluses.
In a domestic environment, a controller decides
how to operate the accumulations system, and
generate profit by meeting the domestic system
energy demand and selling energy in excess to
the Smart Grid.
These decisions need to take into account three
main challenges. The first one is Energy Ar-
bitration. An arbitration is the purchase and
sale on a particular asset aimed at generating a
profit from variations in the listed price of the
asset. In order to perform arbitration, the con-
troller needs to be able to make predictions on
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future market prices, and understand which are
the most profitable moments for selling energy.
Weather Forecasting is fundamental when deal-
ing with solar energy production. In fact, a con-
troller should be able to predict energy availabil-
ity. The last challenge is the Degradation that
accumulation systems are subject to. They are
mainly composed of Lithium-Ions battery packs,
a very efficient and high-energy-density battery
technology. This type of accumulation systems
are affected by a degradation process that lowers
their capacity and efficiency over time, caused by
the natural aging that each battery incurs in,
environmental impacts (such as storing condi-
tions), and the dynamic loading. Battery degra-
dation is a highly non-linear process, which pro-
gresses at different rates in different moments of
the life of the battery.
The profit achieved by the controller depends on
conflicting factors: it should be able to store en-
ergy for future uses, while avoiding too intensive
battery cycling. A battery purchase is very bur-
densome, and it is crucial to find the best way to
control the battery and generate as much profit
as possible.

Original Contribution The novelty of this
work is the design of a controller that is able to
solve simultaneously the three challenges above
mentioned, with a focus on battery degradation
management. Long-term profit maximization is
achieved by taking into account the revenue gen-
erated with energy arbitrage and the cost caused
by battery degradation.
The proposed method is able to amortize the
battery cost on an unknown time horizon, since
battery life is heavily influenced by cycling con-
ditions. The controller also performs weather
forecasting by taking into account the daily and
annual periodicity.
An interpretation of the behaviour of the con-
troller is also discussed, allowing to understand
better which are the relevant physical quanti-
ties that contribute in the generation of a higher
profit.
These considerations allow the controller to gen-
erate up to 15% more in profit with respect to
state of the art techniques.

2. Background
2.1. Lithium-Ion Batteries
Chemistry Lithium-Ion batteries are used to
convert electricity into chemical energy and vice-
versa. A battery cell is a stacking of three main
components: the anode, the electrolyte, and the
cathode. The anode is usually composed of a
metallic element that releases ions and electrons
when oxidized. These electric particle are con-
sumed in the cathode with a reduction reac-
tion that produces energy and consequently volt-
age. The electrolyte is used to separate anode
from cathode so that reactions can be controlled.
During a battery discharge, electrons leave the
battery from the anode, and Lithium ions mi-
grate from the cathode to the anode through
the electrolyte.

Characterization The main physical quan-
tities that characterize a battery are State of
Charge (SoC), Voltage (V), Current (I) and
State of Health (SoH). SoC σt ∈ [0, 1] is the
amount of battery capacity currently available
with respect to the maximum capacity. It ex-
presses the capabilities of the battery of inter-
acting with external components. The distance
between the maximum and the minimum val-
ues of SoC during a charge or discharge is called
Depth of Discharge (DoD). The Voltage (V) of a
battery is determined by its chemical character-
istics and it is influenced by environmental con-
ditions. It can be modeled as a polynomial and
exponential function of SoC. Current (I) is de-
fined as the number of charges passing through
a point in a unit of time. When a current is ap-
plied to a battery, its SoC varies, since charges
are being introduced or taken out from the bat-
tery. Batteries are subject to a degradation pro-
cess that lowers their overall capacity overtime,
and the real capacity quickly moves away from
the nominal value. State of Health (SoH) indi-
cates the remaining capacity of a battery and is
defined as:

SoHt =
Ct,max

C0,max
(1)

where Ct,max is the capacity at time t and C0,max

is the nominal capacity of the battery. SoH
evolution is a highly non-linear process that is
caused by a variety of factors. Most of the degra-
dation is concentrated at the beginning and end
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of the battery life, with a heavy slow down in
the battery degradation rate during its mid-life.
Degradation is caused by irreversible reactions
between the anode and the electrolyte. Ca-
pacity fade is a consequence of the irreversible
consumption of lithium ions that cause the cre-
ation of the Solid Electrolyte Interphase (SEI),
a layer of non-reactive compounds that limits
the amount of Lithium ions that can be ex-
changed between anode and cathode. Degrada-
tion Dt = 1−SoHt can also be used to describe
the battery health.

Degradation Model A degradation model
allows to simulate the dynamics that causes a
battery to loose its capacity over time. This
work uses the model proposed by Xu et al. [1].
Battery degradation is a non-linear process that
depends on factors such as charging and dis-
charging current, time and temperature, but
also its current state of life. These factors can be
grouped into two stress functions: calendar and
cycling ageing. The calendar ageing fcal is the
degradation stress that a battery suffers inde-
pendently from its use. The cycling ageing fcyc
is caused by the direct use of the battery. Every
cycle is modeled as a single stress event, inde-
pendent from the others. The overall battery
degradation D can be expressed as:

D = 1− αseie
−βseifd − (1− αsei)e

fd

fd = fcal(t, σ̄, T̄ ) + fcyc(σ0:t, T0:t)

(2a)
(2b)

where t is the operational life of the battery, σ̄ is
the mean SoC, T̄ is the mean temperature, and
σ0:t and T0:t are respectively the SoC profile and
temperature profile that the battery was sub-
ject to. Eq. (2b) is a stress function that com-
bines calendar and cycling ageing. Eq. (2a) can
be divided into two components: one that takes
into account the capacity loss cause by the SEI
formation, and another that considers capacity
fading at a rate proportional to the battery life.

2.2. Reinforcement Learning
Markov Decision Process The problem can
be formalized as a Markov Decision Process
(MDP). An MDP is a mathematical framework
used to model control problems. Such a frame-
work is composed of several components. For-

mally, an MDP M is defined as a tuple:

M := (S,A, P (s′|s, a), R(s, a), γ, µ0),

where S is the set of states, which contain all the
possible states characterizing the system under
analysis, A is the set of actions the controller is
allowed to perform in each state s ∈ S, P (s′|s, a)
is the state transition probability matrix, spec-
ifying the probability to go to state s′ for each
generic state/action (s, a) pair (P : S×A×S −→
R+), R(s, a) is the reward function, defining for
each state/action pair (s, a) the expected im-
mediate reward obtained (R : S × A −→ R+),
γ ∈ [0, 1] is the discount factor, which define
how much the controller is evaluating future re-
wards (γ ≈ 0 for greedy controller and γ ≈ 1 for
foresighted ones), and µ0 ∈ [0, 1]|S| is the initial
distribution of the states. The state in MDPs
should be defined s.t. it contains all the infor-
mation that allows predicting the future, inde-
pendently from the past (a.k.a. Markovian Prop-
erty).
The goal of a controller is, given the elements
described above, to define a policy π(a|s) to se-
lect, for each state s ∈ S, the action a ∈ A which
maximizes the discounted sum of rewards V :

V =

T∑
t=1

γt−1rt, (3)

where rt is the reward collected by the policy
π(a|s), and T ∈ N is the time horizon.
Learning in such environments requires either
the availability of a dataset composed by inter-
actions of the form {(st, at, rt)}t = 1N , where st
is the state, at the action performed, and rt the
instantaneous reward at time t, or the capability
to interact with the environment, which gener-
ates sequence of interactions to be used for learn-
ing. Basing our learning on such information,
one might approach the policy learning task in
several ways.
One of the most popular and effective learning
methodology is the model-free one, in which the
estimate of the policy is provided without es-
timating explicitly the environment, i.e., with-
out estimating the transition probability dis-
tribution P (s′|s, a). Instead, the estimation
of the value function Q(s, a), which character-
ize the cumulative discounted reward for each
state/action pair, and choosing as a policy in
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each state s the action a∗ maximizing it, for-
mally π̂(a|s) := argmaxaQ(s, a). This esti-
mation was performed by using the Fitted Q-
Iteration algorithm.

Fitted Q-Iteration Fitted Q-Iteration (FQI)
[2] is used to estimate the action-value func-
tion and derive a control policy from a batch of
transitions sampled from the environment. The
transitions are sampled with a policy that tries
to visit most of the state space.
A transition is a four-tuples ⟨st, at, rt, st+1⟩,
where st is the starting state of the transition, at
is the action drawn from the exploratory policy,
rt is the reward obtained by the agent after per-
forming the action at in the state st and, finally,
st+1 is the ending state reached after perform-
ing the action at in the state st. Also, let Qi be
the action-value function computed on a time of
horizon of i steps.
The idea behind FQI is to build at every training
step i an approximation of Qi from the transi-
tion dataset with a supervised learning method.
Once the approximator has been trained, the
control policy can be retrieved by maximizing
the approximated Q-function with respect to a.
The approximator used in this work is a tree-
boosting algorithm called XGBoost.

3. Related Works
PV power generation, battery degradation, and
energy arbitrage are complex problems often
studied individually.
Sui et al. [3] study the problem of scheduling
charge, discharge, and resting periods while us-
ing multiple batteries. The proposed scheduler
has to keep the SoC of every battery over a given
level while minimizing the degradation caused
by high temperatures. It models two different
characteristics of a Lithium-Ion battery: rate
capacity effect and recovery effect. Due to the
former, a battery shows a smaller overall ca-
pacity when discharged at high currents, while
the latter influences the battery voltage recov-
ery after a continuous discharge process. The
scheduler takes advantage of these two effects
and extends the battery life. This work consid-
ers fixed charge/discharge currents. While this
approach simplifies the control problem, it does
not allow the scheduler to choose between dif-
ferent charging or discharging profiles that could

achieve the same performances with lower effects
on the degradation. Another shortcoming of this
work is that SoH modeling is influenced only by
temperature, and other important factors such
as DoD, SoC, and current rate are not consid-
ered. Moreover, no economic considerations are
done w.r.t. SoH, and the objective of the sched-
uler is just to use for as long as possible a battery
while avoiding cycles that generate short-term
high degradation.

4. Algorithm
This work considers a domestic environment in
which an energy producer (e.g., a photovoltaic
plant) and an energy consumer (i.e., the house)
are interacting. This plant produces energy in a
periodic way, alternating periods in which the
domestic environment has energy surplus and
others with energy shortage. In the case of an
energy shortage (surplus) in the domestic envi-
ronment, a controller must define the amount
of energy to take (store) from the battery and,
consequently, the energy to get (introduce) in
the public network. The solution presented be-
low provides a high-level controller which man-
ages the energy flow. Such a controller defines
the amount of energy taken/given to the bat-
tery, given a set of battery capacity constraints,
and the amount taken/given to the public en-
ergy network. The key idea is to provide a bal-
ance between the economic loss given by the dif-
ference between the buy/sell process provided by
the public network and the economic loss given
by the battery degradation.
As shown in Fig. 1, the controller is able to mea-
sure the net power Ph,t coming from the domes-
tic system. Part of this power is assigned to the
battery (Pb,t), while the remaining power Pg,t is
sold (bought) from the grid at the market place
price cg (pg). This work considers stationary en-
ergy prices.

4.1. Reinforcement Learning Model
The above-mentioned process is formalized as a
Markov Decision Process M. In what follows,
the elements defining the MDP for the analysed
problem are described.
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Figure 1: The domestic environment is composed by the residence of an user and a photo-voltaic panel.
The controller can read the net power consumption Ph,t and decide how much power will be routed to
the battery and to the electric grid.

State The state vector s ∈ S is defined as fol-
lows:

s = (σt, Tb,t, δt, I
req
t , PPV,t, cos(φd,t),

sin(φd,t), cos(φy,t), sin(φy,t)) (4)

where t is the current time step. σt, Tb,t and δt
are respectively the SoC, the battery tempera-
ture and the DoD, and are used to keep track
of the state of the battery. Ireqt is the maximum
C-rate that the battery would be subjected to if
all the net power Ph,t would be directed to the
battery. The last four components are a trigono-
metric encoding used to represent the daily and
annual periodicity.

Action The agent can select eleven discrete
actions αt ∈ {0.0, 0.1, . . . , 1.0} at every control
step t. At every time step, the controller has to
decide the percentage αt of the net power Ph,t

that will be directed to the battery. The remain-
ing power is sent to the electric grid. The low
level controller checks that the action respect the
physical constraints of the battery.

Reward The rationale behind the definition of
the MDP reward R(s, a) consists in the reduc-
tion the amount of money paid to maintain the
system over time:

rt =
fd,t − fd,t−1

fmax
d

cb + pgEg,t1R−(Pg,t)

− cgEg,t1R+(Pg,t)

(5)

where fd,t and fmax
d are respectively the linear

degradation at time step t and the maximum lin-

ear degradation corresponding to maximum ad-
missible real degradation Dt,max and Eg,t is the
energy exchanged with the electric grid. Eq. (5)
takes into account the profit made by the agent
by exchanging energy with the electric grid and
the amortization of the battery value during the
operational period. The battery value is amor-
tized by considering the variation in linear degra-
dation fd. The γ factor used in this problem has
been set to 1.

5. Experimental Results
In order to test the solution proposed in Sec-
tion 4, an online simulator which implements
the OpenAI Gym standard framework is imple-
mented. A core part of the simulation is the
power signal generated by the PV PPV,0:T and
the auto-consumption profile Pl,0:T , both gen-
erated from real data. The agent was trained
with the FQI algorithm for 200 iterations using
an XGBoost regressor of 1100 trees of maximum
depth of 8. A total of 7 millions state transi-
tions were sampled over a span of 100 episodes.
An episode is run for 8 years or when the bat-
tery degradation exceeds the maximum allowed
Dmax. The agent was tested against 4 different
Key Performance Indicators (KPI):
• Profit : the value of the objective function.
• Battery Cost : the first component of the ob-

jective function, expresses how much value
of the battery was lost while cycling.

• Energy Profit : the second component of the
objective function, it is the profit made by
exchanging energy with the electric grid.

• Degradation: degradation Dt that the bat-
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Profit Battery Cost Energy Profit Degradation
Agent -2295.32 -1680.54 -614.78 0.1245

SoC20-80 -2454.99 -2144.69 -310.30 0.1589
OnlyBattery -2365.93 -2141.18 -224.74 0.1586

OnlyGrid -2354.15 -1531.66 -822.49 0.1135

Table 1: Average KPI values after 8 years

tery was subject to.
The performance of the agent is compared with
3 different baselines:

• OnlyGrid : The actions of this baseline are
always set to 0. No power falls on the bat-
tery, and therefore only the calendar ageing
impacts on the degradation.

• OnlyBattery : This baseline always uses the
battery. Energy exchanges with the grid
happen only when the battery is completely
empty or full.

• Soc20-80 : This baseline keeps the SoC be-
tween 0.2 and 0.8. This is the state-of-the-
art control policy.

Table 1 report the performance of the agent and
the three different baselines with respect to each
KPI. All policies generated a negative profit, due
to the stationary prices hypothesis that leaves
little to no room for optimization. The agent
is able to beat the state of the art techniques,
achieving almost 150e more in profit. It is im-
portant to note that the agent was able to reach
this result without excelling in both battery cost
or energy profit. The agent is able to save the
most on battery cost, while being able to ex-
change energy with the electric grid. The agent
is able to achieve these results by avoiding high
stress cycling conditions, such as high SoC and
DoD values. It tries to cycle at low SoC and
charge the battery with low powered charges.
Once the domestic environment enters in an en-
ergy deficit period, the battery is discharged as
fast as possible, while meeting the house energy
demand.

6. Conclusions
Photovoltaic panels are used in residential en-
vironments to produce cheap and clean energy,
lowering electricity costs and increasing energy
independence. The main difficulties in manag-
ing such systems are caused by the unpredictable
nature of solar energy production and by the
asynchronicity between energy production and

consumption. To alleviate these limitations, an
accumulation system is used, where energy in
excess can be stored for later use. However,
these accumulations systems are characterised
by a process degradation influenced both by en-
vironmental factors and dynamic loading.
This work design a RL controller trained with
Fitted Q-Iteration (FQI) and the ensemble tree
regressor XGBoost, by considering a degrada-
tion model that allows to compute instantaneous
SoH loss. The objective is to maximize the
long term profit while exchanging energy with
the electric grid and by amortizing the battery
cost on the whole period accordingly to its use.
The algorithm proposed outperforms the state-
of-the-art techniques by up to 15%, with a con-
trol policy that keeps SoC values as low as pos-
sibles with slow low-powered charges and fast
discharges. The controller achieves great gen-
eralization, since it is able to operate different
battery capacities without a dedicated training
and it has been designed on multiple energy con-
sumption routines.
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