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1. Introduction
Quantum machine learning is a novel discipline
that combines concepts from quantum comput-
ing and machine learning, providing speed-ups
and improved performances over classical solu-
tions. Although both quantum machine learn-
ing and, more generally, quantum computing are
still studied a lot on a theoretical level, they
are very promising in many fields. Indeed, it
is clear that quantum technology will have a
big impact on computer security tasks by hav-
ing already greatly affected cryptography. As
a matter of fact, nowadays, cybersecurity ex-
perts search for post-quantum cryptography al-
gorithms which are algorithms resistant also to
quantum attacks [4, 10]. It is important that
cryptographers start now to build new quantum-
proof algorithms before the advent of the quan-
tum computers era. This is because it has been
estimated that migrating to post-quantum cryp-
tography will take about fifteen years which is
practically the estimated time for the advent of
large-scale quantum computers [11]. It is impor-
tant not to be caught unprepared by the arrival
of quantum computers since a quantum-enabled
attacker can break a cryptosystem whose se-
curity relies on the difficulty to find solutions
to hard mathematical problems with a classical
computer. For instance, Shor’ s algorithm can

break RSA, ECC, and DH algorithms as well as
Grover ’s algorithm jeopardizes the security of
hash algorithms, such as SHA, and symmetric
key algorithms such as AES.
So, it is evident that quantum computing
changes the dynamics of cryptography. How-
ever, cryptography is not the only field in cyber-
security. Indeed, there are many other cyberse-
curity tasks such as intrusion detection or mal-
ware detection. In these tasks, machine learning
is widely used both to perform attacks and to
automate defense systems. That said, and given
that quantum machine learning is increasingly
popular, we try to figure out if and how quan-
tum machine learning can affect cybersecurity.
In this work, we begin to understand if it is rea-
sonable to think about possible applications of
quantum machine learning in future cybersecu-
rity.

1.1. Main contributions
• We develop an open-source framework to

simplify the process of simulation of quan-
tum algorithms as we were using a fault-
tolerant quantum computer.

• We find some interesting insights of tomog-
raphy routine which we exploit in its appli-
cation in quantum machine learning algo-
rithms that we use to solve intrusion detec-
tion problems.
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• We extend a PCA-based anomaly detection
algorithm, improving its performances over
the CICIDS dataset. We report an F1-score
improvement of ≈ 15% and an accuracy im-
provement of ≈ 10%.

• We report a study of the error of quantum
machine learning algorithms to see how it
affects the performances of quantum intru-
sion detection models.

• We report a critical analysis of the running
times of quantum machine learning models
compared to the classical ones.

2. Approach
We apply quantum machine algorithms to solve
network intrusion detection problems as we were
using a fault-tolerant quantum computer. We
consider quantum machine learning algorithms
as randomized approximation algorithms. In-
deed, they are formalized in theorems and proofs
where the running time, the probability of fail-
ure γ, and the approximation error ϵ are spec-
ified. In these algorithms, we might not know
exactly the real solution s of our problem but
we can approximate it with an absolute error
such that ∥s − s∥2 ≤ ϵ with a probability of
1 − γ. The approximation error is expected by
the quantum computational paradigm and it is
not due to technological limits since we assume
fault-tolerant quantum computers. The proba-
bility of failure γ and the approximation error
ϵ appear as running time parameters. In this
work, when we talk about simulating quantum
algorithms, we do not intend to execute quan-
tum circuits but rather simulate the approxi-
mation error. We insert ϵ error in the correct
steps, as described in the proofs of the corre-
sponding algorithms, to obtain estimates ϵ-close
to the exact solution, as guaranteed by the theo-
retical error bound. In this way, we see how the
error, or more precisely the approximated so-
lution of quantum machine learning algorithms
used to solve intrusion detection problems, af-
fects the accuracy in detecting intrusion with re-
spect to the exact solution of classical machine
learning algorithms. The core part of the work
is based on finding a trade-off between approx-
imation error and running time. We find cases
of errors that we tolerate to match classical per-
formances, we fix the corresponding parameters,
and we evaluate the running time as the num-

ber of samples and features change. We see how
many samples and features we need to observe
an advantage in using quantum instead of clas-
sical machine learning algorithms, trying to un-
derstand in which cybersecurity tasks we deal
with data of that size. To simplify the process
of simulating quantum machine learning algo-
rithms and studying their running time, we de-
velop an open-source framework.

3. Simulation of the framework
We simulate phase estimation, consistent phase
estimation, amplitude estimation, and state to-
mography before applying them in quantum ma-
chine learning algorithms to solve anomaly de-
tection problems. We also make tests to verify
their correctness, discovering interesting insights
into tomography.

3.1. Vector state tomography test
Quantum pure state tomography is the process
by which we can retrieve classical information
about a quantum state through measurements.
Given a quantum state |x⟩ for a unit vector
x ∈ Rd, the tomography algorithm outputs an
estimate x such that ∥x− x∥2 ≤ δ by perform-
ing N = 36d log d

δ2
measurements [8]. We doubted

that N was a large bound and, even with a num-
ber of measurements lower than N , we could ob-
tain an estimate x with error δ. We confirm our
doubt with the experiment reported in Figure 1.
The plot shows how many measures (x-axis) are
necessary to get a vector estimate with a spe-
cific error (y-axis) both following the theoretical
bound (blue curve) and actually performing the
tomography (orange curve). As we can see, the
shape of the two curves is almost equal. How-
ever, there is a big difference in the magnitude of
the values. Indeed, the plot tells us that to get
an estimate with an error of 0.05, we would need
≈ 105 measures instead of ≈ 108 which corre-
sponds to the theoretical bound. By performing
that number of measurements, we see that the
error that we obtain in the orange curve is al-
most zero, meaning that we obtain an estimate
very close to the true vector. The blue curve
shows that in theory, to reach such an estimate,
we would need ≈ 1011 measures.
This insight into tomography allows us to sim-
ulate tomography with δ error (such as 0.05 in
the experiment) and obtain an estimate with an
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Figure 1: Comparison between theoretical and
actual tomography. The dots indicate the num-
ber of measures for which we obtain estimates
with error δ = 0.05. The vertical dashed ma-
genta line represents the number of measures
given by N = 36d log d

0.052
.

error much lower than δ (in this case almost zero
as shown with the orange curve). We exploit this
property in the simulation of tomography inside
quantum machine learning algorithms. In this
way, we can be less stringent on the error to be
tolerated in the estimates by considering larger
errors, thus impacting less on the running time
of the tomography (since it scales as ∼ O

(
d
δ2

)
)

and still obtaining estimates closer to the real
values with respect to the error δ.

4. Applications to cybersecu-
rity

In this thesis, we simulate q-PCA and q-Means
machine learning algorithms to solve network in-
trusion detection problems starting from already
proposed classical anomaly detection models (we
also extend them as described in Section 4.2).
In this section, we report some of the most sig-
nificant experiments by showing the comparison
between classical and quantum in detecting in-
trusions.

Goals It is important to underline that our
work is not meant to be a comparison between
the intrusion detection models that we report
and the state-of-the-art ones. Indeed, the goals
of our experiments are basically two:

• Study how the error of quantum machine

learning algorithms affects the accuracy
of quantum models in detecting intrusions
with respect to their classical counterparts.

• Compare running times of quantum and
classical machine learning models to derive
possible advantages in using one with re-
spect to the other.

Datasets One of the main challenges in works
concerning intrusion detection is the scarcity of
real data to test models. We use three different
publicly available datasets about network intru-
sion detection to fit and test our models: KD-
DCUP 99 [16], CICIDS 2017 [14], and DARK-
NET [6]. These datasets are composed of net-
work packets labeled as "normal" or "attack".
We do not distinguish between different types
of attacks, but our goal is to build models that
are able to differentiate normal from anomalous
network traffic as accurately as possible.

4.1. Principal components classifier
over KDDCUP

Model description The first model used as
intrusion detection system is a PCA-based one
and it is reported for the first time by Shyu et al.
[15]. Given an input data matrix X ∈ Rn×d,
the main concepts for this model are the two
summations

T1 =

k∑
i=1

y2i
λi

, T2 =

d∑
i=d−r+1

y2i
λi

(1)

where k and r are the number of major (or prin-
cipal) and minor components respectively and
yi = vT

i z, with z vector of standardized obser-
vations and vi i-th eigenvector corresponding to
λi eigenvalue. We classify each observation z as
an attack if

T1 > c1 or T2 > c2 (2)

and normal otherwise. We define as c1 and c2
the oulier thresholds which are computed using
T1 and T2 respectively and which are related to
the false alarm rate α [15]. Basically, an in-
crease of α corresponds to a decrease of the out-
lier threshold. For the quantum model, we use
novel quantum machine learning algorithms to
obtain classical estimates of vi and λi such that
∥vi − vi∥2 ≤ δ and ∥λi − λi∥2 ≤ 2ϵ

√
λi in time

Õ
(
∥X∥µ(X)kd

θ
√
pϵδ2

)
and Õ

(
∥X∥µ(X)k

θ
√
pϵ

)
respectively
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[2]. Once obtained these estimates, we are able
to compute the two summations and perform the
detection also for the quantum case.

Results We report the results of PCA70 and
q-PCA70, which are models that retain 70% of
the variance in the major components. In this
experiment, we classify a sample as attack only
if
∑k

i=1
y2i
λi

> c1 and normal otherwise. We con-
sider a training set of 5000 normal samples and a
test set of 92,278 normal and 39,674 attack sam-
ples. In Table 1, we report the comparison be-
tween classical and quantum results. We report
the results at the increase of the false alarm rate
α. For the quantum experiment, we consider the
following error parameters: ϵθ = ϵ = 1, δ = 0.1,
and η = 0.1, where δ and ϵ are the errors in the
estimate of singular vectors and singular values
respectively, ϵθ and η are other two error pa-
rameters used in quantum routines necessary to
perform q-PCA.

α recall precision
c q c q

1% 0.9314 0.9284 0.9863 0.9868
2% 0.9319 0.9299 0.9818 0.9823
4% 0.9604 0.9575 0.9651 0.9657
6% 0.9851 0.9812 0.9420 0.9421
8% 0.9867 0.9836 0.9201 0.9207
10% 0.9944 0.9912 0.9005 0.9010
α f1-score accuracy

c q c q
1% 0.9581 0.9567 0.9755 0.9747
2% 0.9562 0.9548 0.9743 0.9735
4% 0.9628 0.9615 0.9776 0.9769
6% 0.9630 0.9612 0.9772 0.9772
8% 0.9522 0.9511 0.9702 0.9696
10% 0.9451 0.9440 0.9653 0.9646

Table 1: Results comparison for classical (c)
and quantum (q) principal components classi-
fier with major components that retain 70% of
the variance over KDDCUP.

As we can see, with the reported error param-
eters, we are able to best match the classical
results.

4.2. Ensemble principal components
classifiers over CICIDS 2017

Model description We extend the model re-
ported in the previous section. We propose a
new way of computing summations reported in
Equation 1. We compute yi using both co-
sine similarity and correlation measure between

vi and z, in addition to the dot product be-
tween the two vectors as in the basic formula.
Therefore, we have three summations concern-
ing the major components and three summa-
tions regarding the minor ones (one for each
method used to compute yi). So in this model,
to classify a sample, we also add in OR to Equa-
tion 2 conditions relative to the summations
computed using cosine similarity and correla-
tion measure, both for major and minor compo-
nents. For what concerns the quantum version
of the model, it does not change so much from
the quantum simulation of the previous one. In-
deed, we have always to retrieve a classical de-
scription of vi and λi, such that ∥vi − vi∥2 ≤ δ

and ∥λi − λi∥2 ≤ 2ϵ
√
λi in time Õ

(
∥X∥µ(X)kd

θ
√
pϵδ2

)
and Õ

(
∥X∥µ(X)k

θ
√
pϵ

)
respectively, given an input

data matrix X ∈ Rn×d. Then, we are able to
compute the summations using cosine similarity,
correlation measures, and dot product between
the estimated vectors.

Results In this case, we report the results over
the CICIDS 2017 dataset always considering the
PCA70-based model. We fit our model over a
training set of 5000 normal samples and we mea-
sure our performance over a test set of 87,300
normal and 70,000 attack samples. The reader
can check the full thesis for the comparison be-
tween classical and quantum results. Here we
want to show the performance improvement of
our ensemble model with respect to the model
described in Section 4.1. We report only the
quantum cases for easiness of visualization (er-
ror parameters ϵθ = ϵ = 1, δ = 0.1, and η = 0.1).
By using the ensemble model there is a perfor-
mance increase, more precisely in recall and ac-
curacy. This was expected because the main
characteristic of this new model is that, instead
of two conditions in OR (as in Equation 2),
we have six for classifying a sample as an at-
tack. Having more conditions in OR increases
the probability of classifying a sample as an at-
tack, increasing the FP and reducing the FN
cases. Indeed, for each α, we can also notice
lower precision results for the ensemble model
with respect to the precision of q-PCA70 with
major and minor components. However, the in-
crease in recall is much more evident than the
decrease in precision, and therefore also the f1-
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α recall precision
q1 q2 q1 q2

1% 0.3605 0.3980 0.9694 0.9530
2% 0.5897 0.7384 0.9654 0.9407
4% 0.6330 0.8961 0.9436 0.9079
6% 0.6337 0.9696 0.9161 0.8725
8% 0.6443 0.9756 0.8899 0.8345
10% 0.6590 0.9778 0.8692 0.8044
α f1-score accuracy

q1 q2 q1 q2
1% 0.5255 0.5615 0.7036 0.7169
2% 0.7322 0.8274 0.8035 0.8597
4% 0.7577 0.9019 0.8156 0.9113
6% 0.7492 0.9185 0.8068 0.9216
8% 0.7475 0.8995 0.8017 0.9008
10% 0.7497 0.8827 0.7996 0.8816

Table 2: Results comparison for q-PCA70 with
both major and minor components (q1) and q-
PCA70 ensemble (q2) over CICIDS 2017.

score increases.

4.3. PCA with reconstruction loss
over CICIDS 2017

Model description We use this anomaly de-
tection PCA-model following the work by Verk-
erken et al. [18]. In short, it works in the follow-
ing way: given an input data matrix X ∈ Rn×d,
we fit a PCA model specifying the number of
principal components k to retain, with k ≤ d.
Then, we map the original data into the PCA
feature space Rn×k. Finally, we re-project back
the data into the original feature space. This
process of mapping in a lower-dimensional space
and reconstructing data inevitably brings to a
reconstruction error. Therefore, we compute the
loss as the sum of square error (SSE) between
the original and transformed data and we use
it as anomaly score. Then, using a threshold,
we classify each sample based on its anomaly
score. For what concerns the quantum counter-
part, we have to retrieve a classical description
of the top-k principal components with error δ

in Õ
(
∥X∥µ(X)kd

θ
√
pϵδ2

)
steps to be able to perform

the process of mapping and reconstructing data
also for the quantum model.

Results In Table 3, we report the results
obtained by executing this PCA-based model
with 32 principal components over the CICIDS
dataset, where we have a training set of 158,000
normal samples, and a test set of 50,000 nor-

mal plus 12,000 DDoS samples. In Table 4, we

Recall Precision F1-Score Accuracy

0.9912 0.9128 0.9504 0.9808

Table 3: Results of PCA with reconstruction
loss with 32 principal components (that re-
tain 99.75% of the variance) over CICIDS 2017
normalized with QuantileTransformer() with 24
quantiles. The outlier threshold used is t =
0.06632108379654125.

report different quantum results at the increase
of the error δ. The other error parameters are
ϵθ = ϵ = 0.3, and η = 0.00075. With these er-
ror parameters, we are able to extract the same
number of principal components of the classical
model. It is important to get the same classi-
cal number of principal components to be con-
sistent in the comparison between quantum and
classical performances. Therefore, we keep those
parameters fixed by varying δ instead, which we
remember to be the error related to the estima-
tion of singular vectors. We can notice that, by
taking an error δ = 0.01, we obtain the same
classical performances, reported in Table 3. In
general, we can see that by increasing δ, preci-
sion and accuracy decrease while recall increases.

δ Recall Precision F1-Score Accuracy

0.01 0.9912 0.9128 0.9504 0.9808
0.1 0.9917 0.9123 0.9503 0.9808
0.9 0.9979 0.7131 0.8318 0.9252
2 1.0 0.2730 0.4289 0.5066

Table 4: Results of q-PCA with reconstruction
loss over CICIDS 2017 with different values of δ
error.

5. Error analysis
In the experiments in Section 4.1 and 4.2, we
only report cases of errors that we tolerate to ob-
tain performance equal to the classical ones. If
we increase both the error δ and ϵ, which are the
errors that we use to estimate singular vectors
and singular values respectively, we find that
the performances decrease. In general, we have
seen that ϵ error impacts more than δ in perfor-
mances. The main reason is that the ϵ error is
used to estimate singular values which also de-
termine the number of singular vectors extracted
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by quantum procedures [2]. Therefore increasing
ϵ could cause a wrong number of principal com-
ponents retained by quantum models, leading to
completely random predictions. We notice the
same problem if we increase ϵθ and η in the quan-
tum binary search routine. For what concerns
the error δ, we have seen that thanks to the to-
mography property shown in Section 3.1, we can
insert even a bigger δ error and still obtain good
performances since the tomography returns esti-
mates with a lower error than δ. We can notice
this property in the results reported in Section
4.3. Indeed, we have shown that increasing δ
from 0.01 to 0.1 does not change the intrusion
detection capability of the model. Even if with
δ = 0.9 the performance does not decrease as we
could expect with such a big error. By increas-
ing δ up to 2 the performance decrease a lot.
Therefore, this tomography property allows us
to insert a bigger error, as 0.1 instead of 0.01, to
estimate singular vectors, to obtain practically
the same performance, and, at the same time,
to impact less on the running time given that
the time complexity of the tomography scales as
∼ O

(
d
δ2

)
, where d is the vector length.

6. Running time comparison
Let us focus on the experiment reported in Sec-
tion 4.1 about the principal components clas-
sifier model with only major components over
KDDCUP. We report the running time compar-
ison between the quantum and classical model’s
extraction. Once we find the errors that we
can tolerate, we fix them in the running time
formula and, by varying the number of sam-
ples and features, we see how the running time
changes. In our experiments, we fix the prob-
ability of failure γ = 1

d , with d number of fea-
tures of the input data matrix X ∈ Rn×d. In
this case, we compare the quantum running time
with a randomized classical version of PCA, al-
ready implemented in Sklearn, which has a com-
plexity of O(nd log k)[7], with n, d number of
samples and features respectively and k num-
ber of principal components retained. In Figure
2, we report this comparison with the blue and
green planes representing the quantum and clas-
sical running time respectively. As expected, for
small datasets, we do not have an advantage in
using quantum machine learning in terms of run-
ning time. As the dimensionality of the dataset

Figure 2: Running time comparison between
quantum (blue) and classical (green) PCA70
with only major components model over KD-
DCUP.

increases, the advantage of quantum machine
learning becomes increasingly clearer. In the
next section, we discuss the results found report-
ing some real examples.

7. Running time analysis
Figure 2 shows that with ≈ 4 ∗ 106 samples of
≈ 50 features, quantum machine learning starts
to exhibit a speed-up over classical machine
learning. These numbers of samples and fea-
tures are reasonable for intrusion detection since
they are in line with the number of samples and
features of publicly available datasets, such as
KDDCUP or NSL-KDD. However, for a dataset
of 4 ∗ 106 samples and 50 features, the quantum
speed-up is minimal: we need ≈ 3.5 ∗ 108 steps
to fit the quantum model against ≈ 4.6 ∗ 108

for the classical one. By keeping fixed the num-
ber of features to 50 and by increasing the num-
ber of samples to 100, 000, 000, we start to see
a great advantage in using quantum machine
learning. Indeed, fitting the quantum model
with a dataset of that size requires ≈ 2.3 ∗ 107

steps against ≈ 1.1 ∗ 1010 of the approximated
classical model. Even in this case, 100, 000, 000
samples are not a big number for intrusion detec-
tion tasks. Just think of the potential network
connections or packets received by big compa-
nies such as Netflix or Amazon that count more
than 200 million subscribers, considering that
also non-subscribers can connect or send net-
work packets to the servers of these companies.
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Even the magnitude of the latest recent cyber-
attacks, in the order of millions of packets per
second, reported by big companies such as Mi-
crosoft [17] and Amazon [1], or services such as
GitHub [9] and WordPress [12] can make us con-
clude that, nowadays, 100,000,000 samples are
realistic for network systems and so for intru-
sion detection tasks.
If we fix a large number of features such as 500,
we can see that by increasing the number of
samples, quantum is even more advantageous
than classical machine learning. However, in
intrusion detection tasks we do not deal with
such high dimensional data. In this case, proba-
bly, malware detection could benefit from using
quantum machine learning due to the increasing
complexity of malware that may require lots of
features to be described [3, 5, 13]. Future devel-
opment in this direction could be interesting.
In the full thesis, we also reported the compari-
son between quantum and classical running time
of the model whose results are reported in Table
4. In this running time comparison, it is even
more clear the impact of the error on the run-
ning time. Moreover, we report a comparison
between quantum and classical running time of
the PCA-based model in which we need to ex-
tract both major and minor components. In this
case, quantum machine learning is not so advan-
tageous as classical machine learning in solving
intrusion detection problems. The reader can
check the full thesis for these results.

8. Conclusions
In this work, we theoretically analyze possi-
ble applications of quantum machine learning in
network intrusion detection problems. One of
the main contributions is the open-source frame-
work we have developed to simplify the simula-
tion process of quantum algorithms. We ver-
ify the correctness of this framework with tests
over the main quantum routines bringing in-
teresting insights into tomography. Using this
framework, we study how the error of quantum
machine learning algorithms affects the perfor-
mances of quantum anomaly detection models.
We also report a study of the running time by
comparing quantum and classical machine learn-
ing anomaly detection models to derive advan-
tages and disadvantages in their usage.

9. Future Works
This work aims to pave the way for other re-
search on the application of quantum machine
learning in cybersecurity. Therefore, we leave
for future works to extend the framework that
we started to develop by simulating new quan-
tum machine learning algorithms to solve intru-
sion detection problems. We also propose to
focus on other tasks instead of network intru-
sion detection, such as malware detection where,
due to the increasing complexity of malware, we
would need more and more features resulting in
datasets with ever-larger dimensionality. An in-
depth study of the probability of failure of quan-
tum machine learning algorithms, as we did for
the error, could be interesting to evaluate run-
ning times even more in detail.
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