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1. Introduction 

The thesis addresses an RGB-D digital image 

correlation [1] approach for crack measurements 

with sensors mounted on a moving reference (ex. 

drone). The aim of the thesis is to develop an 

algorithm capable of compensating the movements 

of the drone through homographies [2], thus 

providing accurate displacement results. The RGB-

D sensor is composed by an RGB or greyscale 

camera (Flir camera) and by a depth sensor (Time 

of Flight – Blaze 101). 

The capabilities of the approach are firstly tested 

with a simulator and then in a real laboratory 

application, showing promising results. 

2. Algorithm description 

On the acquired in motion images, 2D DIC is 

performed. With the depth information coming 

from the Time of Flight (ToF) sensor, it is possible 

to build the centre subset point clouds 

(𝑥3𝐷 , 𝑦3𝐷 , 𝑧3𝐷) for each frame, thanks to the pin-

hole model (Eq.2.1): 

{

𝑥3𝐷 = (𝑥𝑝𝑖𝑥 − 𝑐𝑥) ∗
𝑧3𝐷

𝑓𝑥

𝑦3𝐷 = (𝑦𝑝𝑖𝑥 − 𝑐𝑦) ∗
𝑧3𝐷

𝑓𝑦

 2.1 

Where: 

- 𝑥𝑝𝑖𝑥 and 𝑦𝑝𝑖𝑥 are the coordinates of each 

centre subset coming from DIC software 

(respectively for x-coordinates and y-

coordinates); 

- 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 , 𝑐𝑦 are the intrinsics parameters of 

the camera (f: focal length (in pixels), c: 

optical centre (in pixels)); 

- 𝑧3𝐷 is the z coordinate of each centre subset 

coming from the depth sensor. 

 

The movement compensation is performed on an 

approximately fixed part of the measurand, if 

present, or on the entire set of points to remove the 
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average displacement and leave the deformations. 

It is always done between a defined frame 

(reference frame) and all the others, to report all the 

data to the same reference. 

Three different solutions for the camera movement 

compensation are evaluated: 

- homography estimation with calculation 

based on the realignement of 3D point clouds of the 

centre subsets (approach recalled ‘H 3D’); 

The use of homographies limits the application to 

approximately plane surfaces of the object of 

interest. This choice is made to average the effects 

of noisy depth to the best fitting plane, since ToF 

sensors have a poor accuracy, of the order of 

magnitude of millimeters [3]. 

The calculation of the homography is done 

according to Eq.2.2: 

𝐻 = 𝐾 ∗ (𝑅 − 𝑡 ∗
𝑛

𝑑
) ∗ 𝑖𝑛𝑣(𝐾) 2.2 

where the parameters are: 

-K is the intrinsic parameters matrix in the form 

presented here below: 

𝐾 =  [

𝑓𝑥 0 0
0 𝑓𝑦 0

𝑐𝑥 𝑐𝑦 1
] 

-R and t are the rotation matrix and the translation 

vector which bring the reference frame XYZ 

coincident with the successive frame X’Y’Z;  

-n is the normal of the plane evaluated from the 

reference frame XYZ; 

-d is the known term of the plane ax + by + cz + d = 

0 evaluated from the reference frame XYZ; 

The inverse of this homography is applied to 2D 

homogenous coordinates of the centre subsets of 

the successive frames to report data to the 

reference frame. 

 

- homography estimation based on the 

realignment of 2D set of points of the centre subsets 

(approach recalled ‘H 2D’); 

The estimation is based on the MSAC algorithm, 

that, with a minimization procedure, calculates the 

induced best-fitting homography between 

reference and moved views. This allows to 

minimize eventual issues related to an 

imperfection in the depth estimation, because it is 

performed on 2D homogenous coordinates of the 

centre subset points. At the same time, since the 

algorithm is based on a projective trasformation, 

some deformations effects can be confounded as 

projective effects by the minimization algorithm, 

thus causing their undesired compensation. 

 

- rototranslation estimation from point 

clouds of the centre subsets (approach recalled ‘PC 

3D’); 

The direct application of the rototranslation to the 

point clouds allows to work with objects that aren’t 

strictly planar and provide information also on the 

third coordinate (z), but the noise effects of the ToF 

can induce inaccurate results. 

 

Knowing the centre subset point clouds in the 

space also allows to apply a final transformation to 

report these points perpendicular to the optical 

axis of the camera. In this way, the misalignment 

of the object with respect to the axis of the camera 

is corrected.  

After the above mentioned compensations, actual 

displacements and deformations are retrieved.  

The outputs of the algorithm in case of the presence 

of a fixed part and a moving one for the x 

displacement is represented in Figure 2.1. The 

same output is obtainable for y (and z in case of ‘PC 

3D’). 

 

 

Figure 2.1: final output of the algorithm for reference 

and moving part 
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3. Algorithm testing 

methodology 

In this paragraph the validation of the algorithm 

with the simulator and the experimental test are 

presented. 

3.1. Numerical simulator validation 

The algorithm is tested in a developed simulation 

environment to assess the ideal capabilities of the 

approach. The simulator generates greyscale 

images, acquired with a virtual moving camera, 

and corresponding depth maps. The speckle image 

(an example is shown in Figure 3.1) is divided in a 

fixed part, used for the movement compensation, 

and a moving part on which the displacement is 

tested. The moving part position is imposed in the 

simulator. The displacement between fixed and 

moving part simulate the crack opening. 

 

The algorithm is tested with 7 different reference 

images (where the moving part displacement is set 

to 0) with diverse rototranslation values to validate 

the realignment perpendicular to the optical axis of 

the camera. Moreover, a set of 40 images with 

controlled crack size (moving part displacement) 

and defined rototranslation are considered to 

study the camera movement compensation.  

 

 

Figure 3.1: greyscale image obtained through the 

simulator 

 

The results of the simulation tests are satisfying. 

The obtained uncertainty with all the 3 approaches 

for the camera movement compensation is, in 

average, below 2-3 hundredths of pixels, 

comparable with the intrinsic uncertainty of the 

standard DIC procedure [4]. This validates the 

proposed algorithm.   

Moreover, the effects of the increase of the angles 

of rotations of the camera and of the increase of the 

crack size are assessed. An approximately linear 

trend for the average displacement value is present 

when the pitch and yaw angles increase but 

contained in a range comparable with the 

uncertainty of the measurement. Also, the 

standard deviation increases when the rotation is 

higher but not of a significant amount. 

3.2. Experimental validation of the 

technique 

After the simulator validation, an experiment is 

conducted to evaluate the approach in a real 

scenario as well as to understand the accuracy 

reachable with the sensors considered.  

The laboratory experiment consists in the 

dynamical analysis of the crack displacement of a 

xps panel (shown in Figure 3.2). The pre-cracked 

panel, on which a speckle is painted, is cyclically 

loaded with a three point bending system. The 

RGB-D system is handheld to simulate the 

movements of the drone. Its results are compared 

to the data coming from a 3D DIC system that is 

considered as the ground truth. 

 

 

Figure 3.2: xps pre-cracked panel with painted 

speckle 

 

The ‘PC 3D’ approach is discarded due to the fact 

that the accuracy of the Blaze is ±5 mm and because 

the panel is approximately flat.  

The ‘H 2D’ and ‘H 3D’ approaches are tested 

against the DIC 3D. In correspondence of the crack 

two zones, one on the left and one on the right side 

of the crack are considered. The relative 

displacement between right and left is calculated 



Executive summary  

 

4 

in the time. The derived time histories describing 

the crack opening are compared here below in 

Figure 3.3  

 

Figure 3.3: time histories retrieved with DIC 3D, H 

2D and H 3D methods. 

The perfect synchronization between the 3D DIC 

system and the RGB-D one was not possible. To 

compare more precisely the results, the normalized 

cross correlation between the two approaches with 

the 3D DIC time histories is performed. The cross 

correlation peak retrieval allows to realign the time 

histories. 

Visually, the superimposition of the time histories 

is satisfying. The RMS error is calculated (Eq. 3.1) 

on the realigned graphs (Figure 3.4) to compare the 

two approaches (results shown in Table 3.1). 

 

𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 =  √
∑ (𝑥(𝐻)𝑖 − 𝑥(3𝐷 𝐷𝐼𝐶)𝑖)2

𝑖

𝑛 − 1
 3.1 

 H 3D H 2D 

RMS error  0.038 mm 0.032 mm 

Table 3.1: RMS error for H 3D and H 2D 

‘H 2D’ seems to perform slightly better than ‘H 3D’ 

in terms of Root Mean Square value. This is not so 

significant to define the best technique since the 

calculation is valid only locally, in correspondence 

of the crack. Moreover, the values are very small 

and similar, comparable with the uncertainty of the 

measurement approach. 

Considering all the displacement field of the panel, 

it is possible to see that qualitatively (according to 

Figure 3.5) the ‘H 3D’ approach behaves far better 

than the ‘H 2D’ one. The homography calculation 

on 2D points loses information in different parts of 

the panel. The deformations effects are 

confounded as projective movements of the 

camera by the minimization algorithm. The 

application of the derived homography causes 

their undesired compensation. 

Concluding that, in the experimental scenario, 

with the addition of non perfectly planar object and 

of the deformations of the panel, the ‘H 3D’ 

approach results more robust compared to the ‘H 

2D’ one. The calculation of the homography 

passing through 3D point clouds data allows to 

Figure 3.4: graph with the realignement of the time histories for the three different methods (DIC 3D, 

H 2D and H 3D) 
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avoid the 2D problem of confounding 

deformations and shape effects as projective effects 

by the 2D minimization algorithm. At the same  

time, the actual degree of uncertainty associated to 

ToF sensors does not permit to work directly with 

rototranslation applied to point clouds of centre 

subset points (‘PC 3D’). The use of homography 

with the plane assumption minimizes the effects of 

ToF noise, providing accurate results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Final output with data from DIC 3D on the left part and from H 2D and H 3D respectively on the 

upper right (2 plots, one for x and one for y) and bottom right part (2 plots, one for x and one for y) 
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Conclusions 

RGB-D digital image correlation with sensors 

mounted on a drone is an innovative technique 

that allows crack assessments on critical places (for 

example bridge decks), not easily reachable by 

men. The RGB-D sensor is suitable for drone 

transportation compared to a 3D DIC system, as 

well as much less expensive.  

The implemented algorithm demonstrated to 

effectively compensate the drone movements, 

providing accurate information in the simulation 

environment. 

In the laboratory experiment both the 

compensation with homographies from 3D 

rototranslation and from 2D centre subset points 

reconstructed accurately the local time history of 

the crack. The RMS error was contained below 0.04 

mm against the ground truth 3D DIC in the two 

cases.  

Instead, considering the entire deformation field of 

the panel, the approach based on the realignment 

with homographies calculated starting from the 

rototranslation of 3D centre subset point clouds 

was better. The calculation of the homographies on 

the 2D data brought a problem to the surface. In a 

real application the effects of deformations and not 

perfectly planar objects can be confounded as 

projective effects by the minimization algorithm, 

thus causing their undesired compensation. 

Working with a depth sensor and with point 

clouds allow to avoid this mistake. 
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Abstract 

 

The thesis presents an RGB-D-DIC measurement approach with sensors mounted 

on a moving reference (ex. UAVs) to perform crack assessments in critical areas. The 

developed algorithm compensates the effects of the reference movement by 

realigning centre subset coordinates on a defined approximately fixed part of the 

measurand. This allows to retrieve the real displacement field not corrupted by the 

drone movement. The movement compensation is done on centre subset point 

clouds through rototranslations or on centre subset homogenous coordinates via 

homographies. The coupling of a greyscale camera (Flir) with the Time of Flight 

(ToF) depth sensor (Blaze) also gives information about the relative position of the 

centre subset point clouds and of the RGB-D sensor, thus allowing a final correction 

to report data perpendicular to the optical axis of the camera to provide accurate 

results. The measurement approach is firstly validated through a simulator that 

works with ideal greyscale and depth images, giving satisfying results both with 

point clouds and homographies realignments. It is then tested on real laboratory 

application where a three point bending system cyclically loads a pre-cracked panel. 

The RGB-D sensor is handheld to simulate drone movements. In this case the 

movement compensation is performed only via homographies due to the poor 

accuracy of the ToF sensor, mediating its noisy effects on a fitted plane 

(homographies can only work with plane objects). The time history of the crack 

displacement is retrieved based on digital image correlation corrected data. A 

qualitative and quantitative comparison of the results is performed against a DIC 

3D system considered as the ground truth model. 

 

Key-words: DIC, RGB-D, drone, homography, point cloud, crack, bridge. 
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Abstract in italiano 

 

Questa tesi propone un approccio di misura RGB-D-DIC con sensori montati su un 

riferimento in movimento (es. UAV) per eseguire valutazioni di cricche in aree 

critiche non facilmente raggiungibili dall’uomo. L'algoritmo sviluppato compensa 

gli effetti del movimento del riferimento riallineando le coordinate dei centri subset 

su una parte approssimativamente fissa del misurando. Ciò consente di recuperare 

il campo di spostamento reale non corrotto dal movimento del drone. La 

compensazione del movimento viene effettuata sulle nuvole di punti dei centri 

subset mediante rototraslazioni o sulle coordinate omogenee dei centri subset 

mediante omografie. L'accoppiamento di una telecamera in scala di grigi (Flir) con 

il sensore di profondità a tempo di volo (ToF - Blaze) fornisce anche informazioni 

sulla posizione relativa delle nuvole di punti dei centri subset e del sensore RGB-D, 

consentendo così una correzione finale per riportare i dati perpendicolari all'asse 

ottico della camera e fornire risultati accurati. L'approccio di misura viene prima 

validato attraverso un simulatore che lavora con immagini ideali in scala di grigi e 

di profondità, fornendo risultati soddisfacenti sia con riallineamenti basati su 

nuvole di punti 3D che con compensazioni omografiche. L’algoritmo viene poi 

testato su un'applicazione reale di laboratorio con un sistema di flessione a tre punti 

che carica ciclicamente un pannello pre-criccato. Il sensore RGB-D è sorretto a mano 

per simulare i movimenti del drone. In questo caso la compensazione del 

movimento viene eseguita solo tramite omografie, a causa della scarsa accuratezza 

del sensore ToF, in modo da mediare il rumore su un piano interpolato (le 

omografie possono lavorare solo con oggetti piani). La storia temporale 

dell’apertura di cricca viene calcolata tramite i dati compensati provenienti dalla 

digital image correlation. Viene eseguito un confronto qualitativo e quantitativo dei 

risultati con un sistema DIC 3D preso come riferimento di misura. 

 

Key-words: DIC, RGB-D, drone, omografia, nuvola di punti, cricca, ponte. 
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Introduction 

 

In this thesis an approach to perform crack measurements with the coupling of a 

greyscale camera and a depth sensor mounted on a moving reference (for example 

a drone) is proposed. The combination of the two sensors with the digital image 

correlation allows to compensate the movement of the reference, thus obtaining 

accurate measurement results. The proposed algorithm is validated through a 

simulator, working with ideal greyscale and depth images. A laboratory experiment 

is conducted to evaluate the capabilities on a real application. The realignment to 

the reference position is, in a real scenario, done with homographies to reduce the 

effect of the depth sensor variability. The use of homographies limits the crack 

measurement procedure to planar surfaces.  

2D digital image correlation allows to get displacement and strain information on a 

plane surface orthogonal to the optical axis of the camera. It is based on the 

comparison between a reference digital image with other images representing the 

deformed state in time. The analysis is carried out defining subsets of the reference 

image and calculating the position of each subset in the following ones, calculation 

done with a numerical iterative method based on correlation algorithm. The 

displacement of the subsets is represented as a displacement field of the object of 

interest, from which strains can be calculated. To retrieve each subset in the images 

a proper speckle random pattern on the measurand is needed. Nowadays the 

accuracy of the technique reaches the sub-pixel level thanks to interpolation 

algorithms.  The 2D DIC measurement presents a lot of positive aspects: it is 

contactless, retrieves non uniform full field deformations with great resolution and 

it is relatively easy and cheap compared to other methods. In fact, strain gauges 

focus only on pointwise measurements while other contactless optical techniques 

as the interferometric ones result more complicated and expensive. 2D DIC also 

suffers some disadvantages, mainly regarding the fact that the measurement 

depends heavily on the quality of the imaging system and that the object must be 

planar and kept perpendicular to the optical axis of the camera during the entire 

procedure. Also, the camera must remain still because its movement corrupts the 

results.  
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To solve the out of plane movement problem, to work with non planar target and 

to correctly estimate the displacement and deformation fields in 3D (thus including 

the out of plane direction), 3D DIC was invented. 3D DIC is performed with 2 

cameras pointing the measurand object from different positions. From each camera 

perspective the displacement map is calculated, then results are matched thanks to 

stereo calibration data and triangulation procedure. In this way it is possible to 

know the entire shape of the object (undeformed shape) and all the 3D 

displacements and strains. 3D DIC is more complicated in the setup. It needs more 

space for the placement of the cameras and a trigger system for simultaneous 

acquisition. Even in this case cameras must not be moved (with respect to each 

other, rigid movement is instead allow) not only during acquisition but even after 

the stereo calibration.  

To perform digital image correlation in the 3D space other solutions are emerging. 

The coupling of a RGB or greyscale camera with a depth sensor allows to calculate 

displacement with 2D DIC and add the information about the depth with, for 

example, a Time of Flight (ToF) sensor, thus taking out 3D data with a much 

portable and small system. The 2 sensors can be placed as near as possible contrary 

to the cameras in 3D DIC. The ToF sensor calculates depth images based on the 

round-trip time of an artificial emitted light coming from the sensor itself. This 

technique is not free from problems. First of all, the simultaneous acquisition 

between the 2 sensors is not always guaranteed or, to the knowledge of the authors, 

not developed in a standardized way up to now. RGB and ToF cameras usually 

work with different framerate. Interpolation between depth images can reduce the 

uncertainty related to this aspect, that still remains not negligible. Moreover, ToF 

sensors provide nowadays an accuracy on the order of magnitude of millimeters. 

Depending on the application, results could be much worse compared with 3D DIC, 

for example in cases in which the analysis is performed on very small objects or the 

desired uncertainty is less than 1 millimeter. At the other extreme, ToF sensors have 

a working field limited, usually around 10 meters, so far away measurements are 

not possible. 

DIC measurements in critical areas such as bridges, skyscrapers, high temperature 

or corrosive environments can’t be directly supervised by men. The placing of the 

cameras and of the various instrumentation needed cannot be done directly by a 

person. An emerging idea nowadays involves the use of UAV systems with the 

instrumentation mounted on it. The reference is not fixed so the movements of the 

drone must be either neglected or compensated. The payload of drones do not allow 

heavy cameras mounting. In some studies ([1], [2]) 3D stereo cameras placed on the 
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drones are proposed, but the entire system results cumbersome due to the needed 

angle between cameras. 

In this thesis an approach with RGB-D-DIC mounted on UAVs is proposed. The 

RGB-D system is much more suitable for drone transportation due to reduced 

dimensions and weight. Moreover, the cost of the RGB-D sensor is much less than 

the stereo system. The movements of the drone are corrected by considering an 

approximately fixed part of the framed object. Point clouds coming from depth 

images of successive frames are realigned to the reference one either with a 

rototranslation or with a homography calculated on the fixed part. The RGB-D 

sensor also allows to report the coordinates perpendicular to the optical axis of the 

camera. What remains is the actual displacement map. The proposed algorithm is 

firstly validated with a simulator in which ideal acquisition of greyscale and depth 

images are made and later also with an experimental test in a real world application.  

The focus of the algorithm for the experimental part is the crack detection on bridge 

decks reachable only by a drone. Due to the poor accuracy of the ToF sensor the 

analysis is concentrated on approximately plane surfaces. In this way it is possible 

to conduct the realignment with homographies that mediate the effects of 

uncertainties related to the depth detection.  

In the final part of the thesis an experiment is conducted on a panel of plane shape 

to the naked eye. On the panel a proper speckle is applied considering the distance 

at which the RGB-D sensor will work. A pre-crack is performed and then the panel 

is loaded with a hydraulic piston with an imposed cycle. The RGB-D sensor is 

handheld during acquisition to simulate the drone movement and the results are 

compared to a fixed stereo DIC system that acts as a reference ground truth. Results 

are presented in the last chapter of the thesis. 
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1 State of the art 

 

The accuracy of DIC both for 2D and 3D reaches nowadays 1/100 of the dimension 

of the pixel [1]. The retrieval of each subset is performed with cross-correlation (CC) 

or sum of squared differences (SSD) algorithms, where the normalized and 

mediated ones are more robust in terms of noise rejection and change in lighting 

conditions [3], [4]. The search for the subset is performed with at least first order 

shape functions so that even deformation can be evaluated. The subpixel accuracy 

above mentioned is guaranteed thanks to registration algorithms such as the coarse 

fine search, the peak finding, the spatial gradient and genetic or FEM algorithms 

but the more robust approach is the Newton-Raphson (NR) one [3]– [5]. Errors can 

be introduced due to incorrect speckle, image distorsion, noise and correlation 

algorithm problems. The subset size must be large enough to encapsulate at least 3 

speckle dots. The speckle pattern must respect these characteristics [3], [6]: 

• High contrast; 

• Randomness; 

• Isotropy; 

• Stability. 

For 2D DIC uncertainties related to out of plane deformations or not perfectly planar 

object can be problematic while in 3D DIC stereo calibration issues can arise. As 

described in [3] other main problems that are still present for DIC are:  

• Speckle pattern fabrication in harsh and difficult environments or for very 

small/large objects; 

• adaptive selection of optimal subset size and shape function for subset 

matching; 

• fully automatic, robust and fast estimation of initial guess; 

• adaptive selection of optimal strain window size and shape function for 

strain estimation. 

DIC can be a tool in diverse fields. Generally, it allows to measure the displacement 

or deformation of a structural element subjected to loading. [7] proposed a DIC 
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approach to study the fatigue behaviour of aluminum specimen to get out the 

sinusoidal imposed cycle, the crack growth and the stress intensity factor with 

satisfying results. DIC is also used at a microscopic level. [8]–[11] analyzed the 

capability of an image acquiring system coupled with a metallurgical microscope 

concluding that results are comparable with macroscopic DIC till magnification 

levels of 1000-2000 pixels/mm when out of plane displacements are kept within 3 

micrometers and lens aberattions are limited to the minimum.  

In the biomechanical field DIC applications can be found at different dimensional 

scales, on a wide range of biological specimens (soft and hard tissue) and for a 

variety of tests [12]. All this is possible with no loading effect of the measuring 

system due to the use of optical cameras. DIC is also applicable with regular metals, 

polymeric and composite materials [12]–[15] 

To perform crack assessment on bridges different solutions are present. On site 

visual inspection is now giving place to unmanned evaluation due to an easier 

access to the desired place and the elimination of risks for the operators. UAVs with 

cameras allows the detection of cracks with different image processing 

techniques[16]–[21]. Other solutions are emerging like trained neural networks [22], 

[23] and deep learning algorithms [24] as well as methods based on principal 

component analysis (PCA) [25]. 

The use of UAV systems to perform civil structures assessment started years ago 

and it is now becoming more popular. In 2008 an autonomous UAV for visual 

inspection on bridges and pipelines was proposed as a starting point without 

providing numerical information [26]. A 3D UAV DIC system is proposed by [1] 

with 2 ccd cameras mounted with a 25° separation angle and a working distance of 

approximately 1.75m to reach a field of view of 1.4m x 1m. The movement of the 

drone does not induce a significant error to the measurement according to this 

study, except for the pitch rotational angle. When the pitch angle reaches +/-5° the 

error doubles. The experimental results indicate that the error when the 

measurement is done with the UAV compared to the fixed DIC system is increased, 

but remains of the same order of magnitude. The UAV DIC system is capable of 

detecting cracks not visible to the naked eye, till the dimension of 1x10-5. 

In [27] a UAV DIC system to detect cracks on a beam is analyzed showing promising 

results as a preliminary assessment tool at inaccessible locations. [2] shows a UAV 

stereo-DIC system to study a pre-stressed concrete beam subjected to four point 

bending in laboratory conditions pointing out that for stereo dic on drone the 

payload of the UAV is a big disadvantage. [28] proposed an approach with DIC 

system mounted on drone to study the health of wind turbine blades showing high 
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correlation with strain data coming from strain-gauges. It is remarked that full-field 

deformation or strain with no interference between the blade and the measuring 

system is only possible in this way. 

The approach proposed in this thesis consists in the use of an RGB-D system for 

DIC mounted on drone.  

[29] studied the 3D reconstruction made with ToF sensor, coming to the conclusion 

that the systematic error is about 0.5-2 mm with a dispersion of raw data of 2-4.5mm 

when the target is at 2 meters of distance. The study points out that ToF sensors are 

compact and light, suitable for drone transportation. Moreover, compared to stereo 

system, ToF sensors are more robust under critical light conditions since they work 

with infrared frequencies. Between the sensors analyzed it is important to remark 

that the Basler Blaze 101 present a larger dispersion of data due to its longer 

wavelength (940nm). At the same time, it is more robust in case of sunlight 

disturbances. Basler Blaze is the ToF sensor chosen for the experimental part. 

RGB-D DIC needs synchronous acquisition between the two cameras. Then, with 

data coming from stereo calibration depth and color or greyscale images must be 

realigned. After the realignment, 2D DIC is performed and thanks to the pin-hole 

model it is possible to get out the 3D displacement field [30] 

In case of planar surface, the best fit of the plane performed on the area of interest 

reduces the variability and allows to work with homographies on the homogenous 

coordinates. 

The UAV 2D DIC with the realignment of different frames with homographies is 

presented in [31]. It shows satisfying results comparing it with a fixed camera. The 

realignment of successive frames is made with homographies estimated on an 

approximately fixed part of the structure. The comparison is also done on FRFs from 

the UAV data and the fixed camera. The relative error of natural frequency is only 

0.65%. 
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2 Proposed approach 

 

In this chapter a complete overview of the proposed approach for RGB-D-DIC 

performed on UAVs is given. 

The idea behind the algorithm starts from [30] and [31] works. In [30] the procedure 

to realign data coming from a RGB sensor and a depth sensor is described for RGB-

D-DIC with fixed camera position. In [31] 2D DIC is performed on images coming 

from a drone with the compensation of movements calculated on a limited number 

of fixed points through homography.  

The here proposed technique works with RGB-D sensor and it exploits the use of 

2D-DIC method that coupled together with the depth information allows the 

compensation of the movement of the camera either by homography (both from 

images (2D) and depth maps (3D)) or by point cloud (approach used in a completely 

ideal situation, see Chapter 3, but not in the real application because of the poor 

accuracy of the depth sensor, see Chapter 4). This compensation, contrary to what 

is presented in [31], is calculated with the least square method on 3D centre subset 

points, coming from DIC and the depth sensor, of an approximately fixed part of 

the structure, thus providing a more robust estimation of the homography (or of the 

rototranslation in case of point cloud compensation). Moreover, working with point 

clouds 3D data coming from the RGB-D sensor allows to apply a final 

transformation to report centre subset points coordinates perpendicular to the 

optical axis of the camera (while in [31] it is assumed that the first frame is 

approximately perpendicular to the optical axis). 

A detailed explanation of the calculation method and of the code implementation is 

presented in this chapter, starting from the acquired images and depth maps and 

finishing with the data representation. 

More in details the RGB-D sensor for the acquisitions is composed by a Flir 

monochrome camera coupled with a Time of Flight (ToF) sensor (Blaze) for the 

depth maps (more information at Paragraph 4.2.1). This compact solution could be 

easily mounted on a drone thus allowing the acquisition of images even in difficult 
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and not accessible places to humans (the overall mass is approximately below 800 

grams). 

To perform the crack measurements with the moving sensor, it is firstly necessary 

to estimate correctly the rototranslation and the camera movement; in order to do 

that a reference part of the measurand object should be defined. This part should 

theoretically remain approximately fixed in the space and it shouldn’t be subjected 

to any change in shape, dimensions, position (actually, as it’ll possible to notice in 

Paragraph 4.3.2 this assumption could be relaxed in a real application, obtaining 

anyway good results). This is necessary to correctly compensate the effect of the 

movement of the drone and to solve the multiple-views scene problem (using only 

2D-DIC and the ToF sensor). Moreover, it’s important to define one reference frame 

among the multiple acquisition, typically the first one. In fact, multiple frames of 

the same object will be acquired to evaluate how the crack behaves in time.  

The first step of the procedure is the 2D DIC. For the fixed part, knowing the 

position of the centre subsets for each frame, coupled with the depth information, 

allows to compensate the camera movements. For the moving part, i.e. the part on 

which the crack assessment is performed, the same correction related to the camera 

movements is applied and what remains is the actual displacement describing the 

crack opening. 

 

2.1. Digital Image Correlation 

 

The very first step after the acquisition carried out with RGB-D sensor, consists in 

performing the DIC on the set of greyscale images acquired without compensating 

for radial and tangential distorsion (the compensation is carried out afterwards in 

MATLAB to avoid uncertainties related to resampling of the image).  

With the assumption that the left half of the plane is fixed and free from 

deformations, two ROIs are selected as shown in Figure 2.1 which is an example of 

a reference image used in the analysis. 
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Figure 2.1: example of reference image with two ROIs put in evidence (left one for the 

fixed part and right one for the moving) 

 

The choice of the subset and the step size is done according to [32] so that each 

subset contains at least three speckles.  

DIC is performed on a set of cracked images, as in Figure 2.2, with the assumption 

that the movement is associated only to the right half ROI. Working with sensors 

mounted on a drone, even the left part will show displacements in the DIC analysis. 

These data must be used to compensate the undesired effects of the drone 

movements. 
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Figure 2.2: example of cracked image with the two ROIs put in evidence 

 

2.2. Acquired data manipulation 

 

Once the DIC is completed (as briefly explained in the previous paragraph), all the 

data are arranged in different folders for pure convenience, in particular one with 

the photos obtained from the FLIR sensor (without radial and tangential distorsion 

compensation), one with alla the data coming from the DIC and a last one regarding 

the depth maps files (actually a conversion from depth map files to plane models is 

carried out to improve the quality of the final results, but this will be explained 

better later in Paragraphs 3.1.4 and 4.3.1, which show some differences between 

them). 

It’s important also to load the stereo calibration file with the data coming from 

Caltech stereo camera calibration called “Calib_Results_stereo.mat” (the calibration 

procedures will be explained better later in Paragraphs 3.1.3 and 4.2.2).  

Depth and DIC data are loaded on MATLAB and stored. The indexes of the 

coordinates are increased by 1 pixel since the first pixel in the VIC software is (0,0) 

while in MATLAB convention indexes start from 1. Then, the compensation of only 

radial distorsion is carried out. 
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2D DIC data with the corresponding centre subset coordinates (𝑥𝑝𝑖𝑥 and 𝑦𝑝𝑖𝑥) 

coupled with the depth plane model (imposed in the simulator and retrieved by 

point cloud data coming from ToF sensor in real application, see Paragraph 4.3 for 

more information on real application) allow to obtain the depth information 

associated to each centre subset. For the sake of clarity, here below the line of code 

used to get the depth information are reported (better explanation at Eq.2.1): 

 

𝑔𝑥 = (𝑥𝑝𝑖𝑥 − 𝑐𝑥)/𝑓𝑥 

𝑔𝑦 = (𝑦𝑝𝑖𝑥 − 𝑐𝑦)/𝑓𝑦 

𝑧3𝐷 = −
𝑑𝑟𝑒𝑓

[𝑔
𝑥
 𝑔
𝑦
 1] ∗ 𝑛𝑟𝑒𝑓

 
2.1 

 

Where: 

- 𝑥𝑝𝑖𝑥 and 𝑦𝑝𝑖𝑥 are the coordinates of each centre subset coming from DIC 

software (respectively for x-coordinates and y-coordinates); 

- 𝑓𝑥, 𝑓𝑦 , 𝑐𝑥, 𝑐𝑦 are the intrinsics parameters of the camera (as shown also in Eq. 

2.4); 

- 𝑑𝑟𝑒𝑓 is the coefficient of the estimated plane d; 

- 𝑛𝑟𝑒𝑓 is the vector normal to the plane in the form [𝑎 𝑏 𝑐]′; 

- 𝑧3𝐷 is the z coordinate of each centre subset. 

 

Then with the pin-hole camera model (see Eq.2.2) x and y coordinates in the real 

world (𝑥3𝐷 , 𝑦3𝐷) are retrieved. Finally the point cloud associated to the centre subset 

is built (𝑥3𝐷 , 𝑦3𝐷 , 𝑧3𝐷). 

{

𝑥3𝐷 = (𝑥𝑝𝑖𝑥 − 𝑐𝑥) ∗
𝑧3𝐷
𝑓𝑥

𝑦3𝐷 = (𝑦𝑝𝑖𝑥 − 𝑐𝑦) ∗
𝑧3𝐷
𝑓𝑦

 2.2 
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2.3. Compensation of camera movement 

 

The purpose of this paragraph is to give a detailed explanation of how the 

rototranslation of the camera is compensated. 

Different solutions are analysed: 

- Homography from 3D point clouds: homography estimation with 

calculation based on the realignement of 3D point clouds of the centre 

subsets (this approach is recalled later in the paper as ‘H 3D’); 

- Homography from 2D greyscale images: homography estimation based on 

the realignment of 2D set of points of the centre subsets (this approach is 

recalled later in the paper as ‘H 2D’); 

- Rototranslation from point cloud: rototranslation estimation from point 

clouds of the centre subsets (this approach is recalled later in the paper as 

‘PC 3D’); 

 

2.3.1. ‘H 3D’: homography from 3D point clouds 

 

The situation taken into account is summarised in Figure 2.3, where π is the framed 

plane, m and m’ respectively as the reference sensor plane and moving sensor plane. 
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Figure 2.3: Summary of the considered situation: multiple views scene problem 

Since the centre subset point cloud of the reference fixed part is known for each 

frame, the rototranslation between the first one and the others is calculated with the 

MATLAB function ‘estimateGeometricTransform3D’ with ‘rigid’ option as input, 

since we are dealing with a rigid body. 

This function is based on the M-estimator sample consensus (MSAC) algorithm, 

which is an improved variant of the RANdom SAmple Consensus (RANSAC) 

algorithm. RANSAC is an iterative method to estimate parameters that deals with 

data containing outliers in a proper way. It is not deterministic cause it is based on 

the repeated random sub-sampling.[33]–[36] 

Moreover, making the assumption that the acquired object is approximately plane, 

it is possible to demonstrate that the induced homography between m and m’ is 

calculated as shown in Eq.2.3: 

𝐻 = 𝐾 ∗ (𝑅 − 𝑡 ∗
𝑛

𝑑
) ∗ 𝑖𝑛𝑣(𝐾) 2.3 

 where the parameters are: 

- K is the intrinsic parameters matrix K in the form presented in Eq. 2.4: 

𝐾 = [

𝑓
𝑥

0 0

0 𝑓
𝑦

0

𝑐𝑥 𝑐𝑦 1

] 2.4 

- R and t are the rotation matrix and the translation vector which bring the 

reference frame XYZ coincident with the successive frame X’Y’Z’  
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- n is the normal of the plane evaluated from the reference frame XYZ 

- d is the known term of the plane ax + by + cz + d = 0 evaluated from the 

reference frame XYZ, that’s why the minus sign is used (while plus sign 

should be used if the actual distance between camera and origin would have 

been considered).  

 

The way in which the homography is evaluated allows to estimate 

parameters n and d once and for all, however in the application of H the 

inverse matrix should be used according to Eq.2.5. 

𝑚 = 𝑖𝑛𝑣(𝐻) ∗ 𝑚′ 

 

2.5 

The reason of the inverse is related to the fact that the successive frame should be 

brought on the reference one. This equation is applied obviously on both the fixed 

part centre subsets data and the moving ones.  

The main problem of this approach is the correct estimation of the parameters used 

to define H, problem that could be avoided introducing the homography based on 

greyscale images 

 

2.3.2. ‘H 2D’: homography from 2D greyscale images 

 

As already mentioned, alternatively, the homography H can be estimated with a 

function based on MSAC and RANSAC algorithm [35], [36].  

In MATLAB there’s the already built in function ‘estimateGeometricTransform2D’ 

with ‘projective’ as option.  

In this case it works directly with the homogenous coordinates of the centre subsets 

and with a minimization procedure calculates the induced best-fitting homography 

for the realignment of the centre subsets of the fixed part.  This allows to minimize 

eventual issues related to an imperfection in the depth estimation. 

This doesn’t mean that this approach is free from other issues and problems. In 

particular since the algorithm used to estimate H is based on a projective 

trasformation, some deformations effects can be confounded as projective effects by 

the minimization algorithm, thus causing their undesired compensation. 
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It is important to underline that even though the technique proposed in this 

paragraph and the one already seen in Paragraph 2.3.1 are based on the same 

algorithm (MCAS), the results in terms of homography will be different since in the 

former case the estimation is projective in the 2D world without the depth 

information, while, for the latter, the homography is calculated on the rigid 

rototranslation of the 3D point cloud of the centre subsets based on the depth image.  

 

2.3.3. ‘PC 3D’: Rototranslation from point cloud 

 

The last approach doesn’t require the use of a homography, but it’s based entirely 

on the point clouds of the centre subsets. 

Once calculated the rototranslation on the basis of the fixed part of the object (as 

seen also in Paragraph 2.3.1), the realignement is done directly on the 3D point 

cloud by applying the calculated rototranslation to the point cloud. Since there’s no 

passage to homogenous coordinates, 3D coordinates are used taking into account 

also the depth.  

The goodness of the algorithm can be evaluated not only on the alignment of x and 

y, but also on z. This approach should give the same results as the ‘H 3D’ one in a 

completely ideal case, while could present poor results with respect to the ‘H 3D’ 

and ‘H 2D’ when dealing with a sensor with poor resolution in terms of depth (in 

this thesis, as already mentioned, it’ll be exploited only for the ideal case and not 

for the real one); anyway it could be used also with surfaces and objects that aren’t 

planar and it provides displcament information also on the third dimension. 

 

2.4. Realignement perpendicular to the optical axis of 

the camera 

 

Here the explanation about the last step before the data representation discussion is 

presented. This step consists in the calculation of matrix R0, the rotation matrix 

responsible for bringing the current frame perpendicular to the sensor’s one. 
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To respect this constraint the z-axis of the panel must be parallel with the z-axis of 

the sensor, while x and y-axes could be chosen arbitrarly. 

To obtain this final result the use of the principal component analysis is 

recommended. This analysis allows to define the principal direction of the 

considered point cloud (in this case a plane), thus making it possible to define the 

three principal axis. 

The calculation is made automatically using eigenvalues and eigenvectors of the 

following matrix (the same analysis could be performed with the already 

implemented MATLAB function “pca”): 

 

[

𝑥1 − 𝜇𝑥 … 𝑥𝑛 − 𝜇𝑥
𝑦1 − 𝜇𝑦 … 𝑦𝑛 − 𝜇𝑦
𝑧1 − 𝜇𝑧 … 𝑧𝑛 − 𝜇𝑧

] ∗  [

𝑥1 − 𝜇𝑥 𝑦1 − 𝜇𝑦 𝑧1 − 𝜇𝑧
… … …

𝑥𝑛 − 𝜇𝑥 𝑦𝑛 − 𝜇𝑦 𝑧𝑛 − 𝜇𝑧
] 

 

The critical aspect regards the coupling between axes (x,y,z) and their 

corresponding eigenvector. 

Knowing that to each eigenvalue an eigenvector is associated, the shape of the 

selected region of interest (ROI) helps making the coupling possible. 

In particular, the code automatically detects if the ROI is a vertical or a horizontal 

rectangle (by quickly analysing the size of the DIC output matrix). In the first case 

the eigenvectors are rearranged in order to obtain: 

 z: smallest eigenvalue (so the corresponding eigenvector will be placed in the 

last column of R0) 

 y: highest eigenvalue (so the corresponding eigenvector will be placed in the 

middle column of R0) 

 x: remaining eigenvalue (so the corresponding eigenvector will be placed in 

the first column of R0) 

In the second case: 

 z: smallest eigenvalue (so the corresponding eigenvector will be placed in the 

last column of R0) 

 x: highest eigenvalue (so the corresponding eigenvector will be placed in the 

first column of R0) 
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 y: remaining eigenvalue (so the corresponding eigenvector will be placed in 

the second column of R0) 

Moreover, to respect the convenction (right-hand rule), all the terms in the diagonal 

must be positive and the determinant of R0 must be equal to one.  

Then matrix R0 is used according to Eq.2.6: 

 

𝐻0 = 𝐾 ∗ 𝑅0 ∗ 𝑖𝑛𝑣(𝐾)

𝑚𝑐𝑎𝑚𝑒𝑟𝑎 = 𝐻0 ∗ 𝑚
 2.6 

 

Anyway, to improve the quality of the results in terms of readability, x and y-axes 

shouldn’t be defined with pca, but it’s better to define them manually depending 

on the crack present. 

In fact, in real situation the crack isn’t necessarily generated along one of the axis (x 

or y) and it isn’t typically a straight line. 

It is decided to leave the choice of the other two axes (x and y) to the user.  

As it can be seen from Figure 2.4 the reference image (not correctly aligned with the 

camera axis) appears to the user in MATLAB and he’s asked to select two points 

which belong to the desired x-axis of the framed plane (as an example the two red 

ones). 

Knowing the position of these two points the code can retrieve the x-axis and with 

a rotation of 90° also the y-axis. 
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Figure 2.4: pictures of the cracked specimen that appears in MATLAB so that the user can 

choose x and y axis as he prefers 

This is of paramount importance for the data analysis part, since a clear knowledge 

of which are the axes allows to read the final graphs without difficulties and 

misunderstandings. 

To conclude, after the application of camera movements correction either by 

homography or point cloud rototranslation and the realignment perpendicular to 

the optical axis of the camera, the actual displacement of the moving part is correctly 

retrieved, while ideally the reference part should show null displacement. 

 

2.5. Data representation 

 

In this paragraph a brief discussion about the way in which outputs are generated 

is presented. 
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After the realignement between the reference frame and the successive one and the 

global realignement perpendicular to the camera are performed, the data are stored 

in a matrix 𝑛𝑠𝑥3 where 𝑛𝑠 represents the number of subsets in which the acquired 

image is divided.  

Being these coordinates homogeneous (for the ‘H 3D’ and ‘H 2D’ cases), all the three 

columns are normalized with respect to the third one in order to obtain it full of 

ones.  

Then the difference between the corresponding points is performed. 

Once the difference is computed the coordinates are converted from pixel to 

millimeters multiplying x and y coordinates respectively for 𝑐𝑜𝑛𝑣𝑥 and 𝑐𝑜𝑛𝑣𝑦 

(according to the conversion parameters shown in Eq.2.7). 

𝑐𝑜𝑛𝑣𝑥 =  −
𝑑
𝑓𝑥

𝑐𝑜𝑛𝑣𝑦 =  −
𝑑
𝑓𝑦

 2.7 

This procedure is carried out both for the fixed part of the object (reference) and for 

the moving one. 

The results are then plotted as images where to each centre subset a color with 

different intensity is associated (ranging from the minimum value obtained to the 

maximum one).  

An example of the results is shown in Figure 2.5. 
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Figure 2.5: final output of the algorithm. Starting from the upper left corner the 

displacement of the fixed part along the x axis is shown, while on the right one there’s the 

displacement on the moving one. The same is presented also for the bottom part, but all is 

referred to y. 

 

Moreover, it has to be noted that with the approach previously discussed in 

Paragraph 2.3.3 (‘PC 3D’) it’s possible to retrieve information related to the z 

displacement too. This is limited to the simulator (ideal case) since the quality of the 

sensor doesn’t allow the proper use of this technique in a real world application. 

The results are shown in Figure 2.6. 
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Figure 2.6: the plots are equivalent to the ones previously shown in Figure 2.5 with the 

addition of the last two plots that are related to the z displacement for the reference part 

(left) and for the moving part (right) 

 

It’s possible to see that the plots related to x and y displacements are identical to the 

one previously shown in Figure 2.5 (since they’re coming from an ideal case). This 

wouldn’t be true in the case of a real world application. 
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Due to the fact that the crack won’t probably be perfectly aligned to the x-axis or to 

the y one, the square root of the sum of the two components squared is carried out. 

This allows the proper estimation of the maximum crack displacement.  

Afterwards the mean and the standard deviation of these data are evaluated by 

means of the already implemented MATLAB functions “mean” and “std”.  

The so evaluated standard deviation is related to the mean value of the data, but it’s 

not useful to correctly estimate the dispersion of the data around the crack value 

imposed in the simulator. In order to do that, the Root Mean Square error is 

introduced as shown in Eq.2.8, where crack is the crack value imposed and 𝑥𝑖 are 

the displacement of the centre subsets after the quadrature.  

𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 = √
∑ (𝑥𝑖 − 𝑐𝑟𝑎𝑐𝑘)

2
𝑖

𝑛 − 1
 2.8 
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3 Numerical simulator development 

and validation 

 

In this chapter the analysis of virtual images in a simulation environment with ideal 

and known crack size and direction is presented. The position and orientation of the 

cracked plane in the space is controlled and defined with reference to the virtual 

camera. Controlling most of all the variables that will be faced in a real experiment 

allows to verify the algorithm and to define the ideal capabilities of the approach 

described in this thesis. 

In an on-field experiment scenario many issues may arise such as possible random 

noise associated with the camera, problems related to the compensation of the 

images, unsatisfying resolution of the depth sensor, incorrect color/greyscale image-

depth alignment, wrong detection of the plane in the space or of the 3D model. 

These eventualities could hide issues strictly related to the algorithm and not to 

instrumentation or external factors ones. 

Therefore, to validate the algorithm and to eliminate all the possible factors and 

causes of errors or imperfections, an analytical simulator is considered. The 

simulator is capable of generating ideal greyscale images with defined speckle 

patterns and crack (similar to those that will be later acquired directly on field) and 

corresponding depth images obtained by meaning of the analytical plane equation. 

 

3.1. Simulator structure and implementation 

 

The following paragraphs show the overall structure of the simulator, analysing 

step by step the defined parameters, the generation of the greyscale images and of 

the depth maps and the related procedures. 
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3.1.1. Parameters definition  

 

The definition of the relative camera-plane position, orientation and the dimension 

of the plane and of the crack inside the simulator are here reported. 

It is important to highlight the fact that in the various acquisitions it is the camera 

that changes position and, thus rototranslates, while the plane remains perfectly 

still, except for the imposed crack opening. 

The camera starts to acquire in the origin of the reference frame, with its own axis 

Xg Yg and Zg coincident with the axis of the reference frame X Y Z and facing YZ-

plane as evidenced in Figure 3.1. 

 

 

Figure 3.1: starting position of the camera in the reference frame (the red lines were placed 

only to highlight the portion of the space which will be acquired). 
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The plane is splitted in two smaller rectangles (1000x500mm) as shown in Figure 3.2 

to allow the simulation of the crack opening. The center of gravity of each rectangle 

is placed in the following points: 

 

𝐶1 = [1000, 250, 0]

𝐶2 = [1000, −250 − 𝑐𝑟𝑎𝑐𝑘, 0]
 

 

Where the coordinates are expressed in millimeters in the usual order [x, y, z] and 

with crack equal to the crack opening desired in millimeters. 

 

 

Figure 3.2: in this figure the whole scene composed by camera and plane with crack is 

shown. Here the plane already presents speckle patterns, but a better description will be 

given in the next section (Paragraph 3.1.2) 
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To describe the rototranslation of the camera the following six parameters are used: 

 

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = [𝑦𝑎𝑤 𝑝𝑖𝑡𝑐ℎ 𝑟𝑜𝑙𝑙] ∗
𝜋

180°
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = [𝑡𝑋 𝑡𝑦 𝑡𝑧]

 

 

Where the angles yaw, pitch, roll follow the left-hand rule, are expressed in degrees 

and converted in radians by means of the multiplication with the factor 𝜋/180°. The 

position vector is expressed in millimeters.  

While the final camera position in the space will be [𝑡𝑋 𝑡𝑦 𝑡𝑧], the exact orientation is 

stricly influenced by the order of rotation (in this case yaw, pitch, roll) due to the 

fact that the set of angles is converted in a rotation matrix. 

 

3.1.2. Speckle and greyscale images generation 

 

To obtain the ideal greyscale images it is necessary to generate the proper speckle 

and superimpose it to the cracked plane of the simulator. 

To obtain a proper speckle pattern reccommendation from [3], [6] are taken into 

account:  

- randomness: non-periodic and non-repetitive pattern to facilitate full field 

displacement mapping; 

- isotropy: no directionality in the pattern; 

- high contrast: varying greyscale intensities and relatively large intensity 

gradients; 

- dimension: speckle granules with a size of 3–5 pixels or slightly greater. 

The generation is done with the software proposed by [37] with the final output 

reported in Figure 3.3, thus allowing to satisfy randomness and isotropy constraints. 

Among them, the pattern variability is set to 49% and the in-centre spacing is set to 

65 pixel (with a speckle diameter equal to 50 pixel). 
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Figure 3.3: speckle pattern 

 

The camera’s parameters are the following ones: 

 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑠𝑖𝑧𝑒 = [1.6  0.9] 𝑚𝑚 

𝑃𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 =  
1.25 𝑚𝑚

10 𝑝𝑥
  

𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ = 0.8 𝑚𝑚 

 

The pixel size is divided by 10 because of a binning procedure that will be carried 

out afterward. This procedure is fundamental in order to guarantee the high 

contrast.  

It is appropriate to perform DIC on images that are greyscale and not on binary 

images. 
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The final speckle is presented in Figure 3.4. The size of the speckle could be reduced 

but the choice is conservative to guarantee no problems with the DIC search 

algorithm (wrong or imperfect centre subset detection). 

 

Figure 3.4: The final speckle respects all the constraints. 

 

The final output in terms of image is instead shown in Figure 3.5. 

 

 

Figure 3.5: greyscale image with proper speckle applied 

 

3.1.3. Simulator camera calibration procedure 
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The calibration procedure is necessary to know precisely the intrinsic parameters of 

the virtual camera, specifically the focal length and the optical centre position. 

The calibration procedure is carried out using an algorithm that can automatically 

generate a series of images portraying a checkerboard taken from different angles 

in order to cover the entire field of view. The checkerboard presents 15 x 20 squares 

(rows times columns) with edges of 50mm for each square. A binning procedure is 

carried out too as in the greyscale image generation. 28 images for calibration are 

considered. 

Below in Figure 3.6 it is represented a calibration image as example. 

 

 

Figure 3.6: example of the acquired chessboard 

 

The calibration procedure is performed with the ‘Matlab Single Camera Calibrator’ 

app where the detected points are accurately identified (see Figure 3.7). 
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Figure 3.7: example of the acquired chessboard with the detected points in green. 

 

The final output of the calibration procedure is the intrinsic parameters matrix K 

reported in Eq.3.1 using the same form previously seen in Eq. 2.4 

 

𝑓𝑥 = 637.24 0 0
0 𝑓𝑦 = 640.08 0

𝑐𝑥 =  640.50 𝑐𝑦 = 360.48 1
 3.1 

 

Note that all the values are written with pixels as measurement units and, for 

compactness, they’re reported here with only two decimal digits, while they are 

used with all the decimal numbers in the code. 

 

3.1.4. Depth maps generation 

 

In this paragraph the discussion on how to retrieve depth information is presented; 

particular attention is given on the relationship between the analytical plane (used 

in the end with the real world application and the RGB-D sensor) and the depth 

image (used only in the simulator and useful in the case of sensors that give as 

output only the depth image and not the point cloud). 
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Before taking into account the depth image generation, it is appropriate to briefly 

introduce the analytical theory behind the code. 

The idea behind the following steps is to create an image (depth image) starting 

from the knowledge of the 3D plane analytical equation. In each pixel there will be 

the x coordinate (which in our reference system for the depth maps generation is 

the depth coordinate) of the point portrayed.  

Since the depth images generation is strictly coupled with the color images 

generation, the same consideration presented up to now are valid; in particular, it 

is appropriate to consider as starting point the camera in the origin of the reference 

frame and the plane perpendicular to the x-axis at a distance of 1000mm from the 

center.  

By considering the straight line which passes through the reference frame origin 

and through a point P =  (px, py, pz)  where P is the pixels’ center, it is possible to 

write in parametric form (Eq.3.2): 

{

𝑥 = 𝑝𝑥 ∗ 𝑡
𝑦 = 𝑝𝑦 ∗ 𝑡

𝑧 = 𝑝𝑧 ∗ 𝑡
 3.2 

That become in cartesian form (Eq. 3.3): 

{

𝑦 −
𝑝𝑦
𝑝𝑥
∗ 𝑥 = 0

𝑧 −
𝑝𝑧
𝑝𝑥
∗ 𝑥 = 0

 3.3 

The intersection with the analytic plane model is reported in Eq.3.4: 

{
 
 

 
 𝑦 −

𝑝𝑦
𝑝𝑥
∗ 𝑥 = 0

𝑧 −
𝑝𝑧
𝑝𝑥
∗ 𝑥 = 0

𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 + 𝑐 ∗ 𝑧 =  −𝑑

 3.4 

Multiplying for -b the first one and for -c the second one Eq. 3.5 is obtained: 

{
 
 

 
 −𝑏 ∗ 𝑦 + 𝑏 ∗

𝑝𝑦
𝑝𝑥
∗ 𝑥 = 0

−𝑐 ∗ 𝑧 + 𝑐 ∗
𝑝𝑧
𝑝𝑥
∗ 𝑥 = 0

𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑦 + 𝑐 ∗ 𝑧 =  −𝑑

 3.5 
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By summing up all the equations we take out x, which is the coordinate of interest 

(Eq.3.6): 

𝑥 =  
−𝑑

𝑎 +  𝑏 ∗
𝑝𝑦
𝑝𝑥
+  𝑐 ∗

𝑝𝑧
𝑝𝑥
 
 3.6 

It has to be noted that in the end Eq.3.6 is the same of Eq.2.1, which is enough for 

the correct implementation of the algorithm for the real world application. 

While in the simulator the depth image is also retrieved by imposing as 𝑥𝑝𝑖𝑥, 𝑦𝑝𝑖𝑥, 

𝑐𝑥 and  𝑐𝑦 the correct data of a pixel grid 1280x720 with the intrinsics matrix shown 

in Paragraph 3.1.3 

The final results in terms of output is reported below in Figure 3.8 where the 

greyscale image has been already presented (Figure 3.5) and it can be viewed that 

the depth map is correspondent to the greyscale one. 
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Figure 3.8: on the upper side the color image, on the bottom one the depth image  
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3.2. Design of numerical tests 

 

In this paragraph a complete overview of the design of the numerical tests is 

presented.  

In particular two tests are performed where the images are taken respectively: 

- with different camera angles 

- with different crack dimension 

Moreover, a set of different reference images is used to be more confident with the 

final results. 

 

3.2.1. Reference images 

 

To be more confident with the final results 7 reference images (no crack opening) 

are considered as shown in Figure 3.9 with parameters reported in the Table 3.1. It 

is possible to notice that each image is acquired from a different position in order to 

be sure that the procedure regarding the realignement perpendicular to the optical 

axis is free from errors. 
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Figure 3.9: reference images used during the tests. Going from the upper left corner to the 

bottom right one the image numbers are 0000, 0001, 0002, 0003, 0004, 0005 with the last 

one at the bottom which is 0006. 

 

Image number Rotation angles (degrees) Vector of position (mm) 

0000 [1 -0.5 -1] [3 1 -2]; 

0001 [5 1 2] [-5 10 2] 

0002 [-5 1 -2] [-5 -12 -4] 
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0003 [1 5 -2] [-35 -5 -55] 

0004 [-1 -5 1] [-22 +5 +78] 

0005 [+1 2 5] [-20 4 -15] 

0006 [+1 -2 -5] [-20 4 +12] 

Table 3.1: reference images (without crack) data 

 

3.2.2. Fixed crack dimension and moving camera images 

 

A set of 30 images is generated with the following characteristics: crack of 10mm 

with rotation angles that vary one at a time from -15° to +15° with a fixed step of 3° 

(avoiding the 0°), keeping the other two random in a range between -2° and +2° 

(visual explanation in Figure 3.10). The vector of position [𝑡𝑥 𝑡𝑦 𝑡𝑧] is changed to fit 

all the plane in the field of view of the camera. To better understand the strategy 

used, the first 10 images (varying the yaw angle) are reported in Table 3.2.; the 

overall set of images is created in order to be confident that the approach doesn’t 

show any problems for all the possible camera angles taken into account (in 

particular higher camera angles could be critical for the proper use of the 

algorighm). 
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Figure 3.10: images with gradually increasing yaw angle. Going from the upper left corner 

to the bottom right one the image numbers are 0007 (with 3° yaw angle), 0008, 0009, 00010 

with the last one at the bottom which is 0011 (with 15° yaw angle). 

 

Image number Rotation angles (degrees) Vector of position (mm) 

0007   [3 1 1]  [-4 10 6] 

0008  [6 1 2] [-8 20 6] 

0009 [9 -1 -2] [-15 65 -2] 

0010  [12 -1 +3] [-25 105 42] 

0011  [15 0 +1] [-32 202 22] 

0012 [-3 1 -1] [-4 -15 6] 

0013 [-6 2 -1] [-10 -29 -9] 

0014  [-9 0 -2] [-13 -85 -1] 
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0015 [-12 +1 -2] [-25 -139 -2] 

0016 [-15 1 -2] [-32 -222 +2] 

Table 3.2: data of the images with camera movement 

 

 

3.2.3. Fixed camera and increasingly crack dimension images 

 

For the second test, 10 images splitted in two sets of five are generated where each 

set presents fixed imposed camera angles and vector t, but increasingly crack 

dimension, respectively of 2, 5, 10, 20, 50mm (the first set is shown in Figure 3.11). 

This particular choice is performed in order to see if the errors in the final results 

are somehow influenced by the crack dimension. 
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Figure 3.11: first set of five images with increasingly crack dimension (the camera 

orientation is fixed in the space during all the acquisition). 

 

3.3. Numerical tests results 

 

In this paragraph the 3 variants of the algorithm (‘H 3D’, ‘H 2dD’, ‘PC 3D’ as 

discussed in Paragraph 0) are analysed for all the images. As described before, two 

tests are carried out, one with fixed crack dimension and moving camera and one 

with increasingly carck dimension and fixed camera. Results are reported in the 

following paragraphs here below. 

 

3.3.1. Fixed crack dimension and moving camera results 

 

The analysis starts with the 30 images where the crack size is fixed to 10 mm while 

the camera is changing its position in the space in order to test the goodness of the 

approach for several camera angles. Moreover, different reference images are 

considered to validate the goodness of the realignment to the optical axis. The 

considered case is a static analysis, since each frame has always the same crack 

dimension. 

Firstly the reference image 0 is considered. The final measurement result, shown in 

Table 3.3, consisting in the average of the average values coming from each image 

processed, is: 
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H 3D H 2D PC 3D 

9.9996mm +/- 0.0025 mm 9.9978 +/- 0.0013 mm 9.9996mm +/- 0.0025 mm 

Table 3.3: final measurements results for the three proposed approach 

 

With the uncertainty expressed as the standard deviation of the averages of each 

image. It’s possible to see that ‘H 3D’ and ‘PC 3D’ in a perfectly ideal case produce 

the exact same output, while ‘H 2D’ seems to perform slightly better in terms of data 

dispersion. 

The accuracy is around 1-2 thousandths of millimeters for this static analysis. 

Considering all the 30 images, in Table 3.4 maximum and minimum values are 

reported for average, standard deviation and RMS error: 

 

 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9944 10.0052 9.9952 10.0003 9.9944 10.0052 

Std dev 

[mm] 

0.0024 0.0058 0.0024 0.0044 0.0024 0.0058 

RMS error 

[mm] 

0.0026 0.0079 0.0026 0.0058 0.0026 0.0079 

Table 3.4: minimum and maximum values of the 30 images 

 

The RMS error is defined as in Paragraph 2.5. 

For the first reference image the range of the average is of 1 hundredth of 

millimeters for ‘H 3D’ and ‘PC 3D’, while it is halved with ‘H 2D’. The standard 

deviation and RMS error for each cracked image processed are always below 1 
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hundredth of mm. The RMS error is bigger than the standard deviation since it is 

calculated on the actual known crack size (10 mm). 

The same results (presented from Table 3.5 to Table 3.16) are calculated for each 

reference image to be sure that the procedure regarding the realignement 

perpendicular to the optical axis is free from errors: 

 

- Ref 1: 

H 3D H 2D PC 3D 

9.9996mm +/- 0.0027 mm 9.9969 +/- 0.0013 mm 9.9996mm +/- 0.0027 mm 

Table 3.5: final measurements results 

Even with this reference image the retrieval of the average crack value is more 

accurate in terms of central value with ‘H 3D’ and ‘PC 3D’, while ‘H 2D’ shows less 

variability. 

 

 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9938 10.0067 9.9939 10.0004 9.9938 10.0067 

Std dev 

[mm] 

0.0031 0.0068 0.0031 0.0049 0.0031 0.0068 

RMS error 

[mm] 

0.0033 0.0092 0.0036 0.0076 0.0033 0.0092 

Table 3.6: minimum and maximum values of the 30 images 

The maximum range for the average is below 1.5 thousandths of millimeters for ‘H 

3D’ and ‘PC 3D’ and even lower with ‘H 2D’. Standard deviation and RMS error are 

contained below 1 hundredth of mm. 
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- Ref 2: 

H 3D H 2D PC 3D 

10.0008 mm +/- 0.0036 

mm 

10.0018 +/- 0.0151 mm 10.0008 mm +/- 0.0036 

mm 

Table 3.7: final measurements results 

With this reference image ‘H 3D’ and ‘PC 3D’ work well while the ‘H 2D’ approach 

shows some criticality with the uncertainty that reaches 1.5 hundredths of 

millimeters.  

 

 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9961 10.0119 9.9960 10.0814 9.9961 10.0119 

Std dev 

[mm] 

0.0028 0.0059 0.0029 0.0378 0.0028 0.0059 

RMS error 

[mm] 

0.0027 0.0122 0.0029 0.0845 0.0027 0.0122 

Table 3.8: minimum and maximum values of the 30 images 

The maximum range for the average is around 1.5 hundredths of mm with ‘H 3D’ 

and ‘PC 3D’ while is higher, slightly below 1 tenth of mm for ‘H 2D’. Standard 

deviation and RMS error are higher than the last two reference images, in particular 

for ‘H 2D’.  

The loss of accuracy with ‘H 2D’ approach could be symptomatic of an estimation 

for the movement correction not as robust as the one performed with 3D data. ‘H 

3D’ based on the homography calculated with the rigid rototranslation values on 

centre subset point clouds is more repeatable than the projective estimation on 2D 

centre subset points calculated with the MSAC non deterministic algorithm. 
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- Ref 3:  

H 3D H 2D PC 3D 

10.0010 +/- 0.0029 mm 9.9979 +/- 0.0012 mm 10.0010 +/- 0.0029 mm 

Table 3.9: final measurements results 

 

 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9949 10.0072 9.9955 10.0003 9.9949 10.0072 

Std dev 

[mm] 

0.0029 0.0071 0.0030 0.0049 0.0029 0.0071 

RMS error 

[mm] 

0.0028 0.0079 0.0032 0.0031 0.0028 0.0079 

Table 3.10: minimum and maximum values of the 30 images 

The results for average, standard deviation and RMS error are good and comparable 

with the first two reference images cases. 

- Ref 4: 

H 3D H 2D PC 3D 

9.9989 +/- 0.0026 mm 9.9999 +/- 0.0013 mm 9.9989 +/- 0.0026 mm 

Table 3.11: final measurements results 

This case presents very accurate results for ‘H 2D’ both in terms of central value and 

dispersion. ‘H 3D’ and ‘PC 3D’ provide satisfying results. 
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 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9948 10.0069 9.9972 10.003 9.9948 10.0069 

Std dev 

[mm] 

0.0027 0.0073 0.0026 0.0047 0.0027 0.0073 

RMS error 

[mm] 

0.0031 0.0085 0.0025 0.0046 0.0031 0.0085 

Table 3.12: minimum and maximum values of the 30 images 

It is remarkable here the contained range for the average for ‘H 2D’ approach as 

well as the standard deviation and RMS error. 

Comparing this case (Ref 4) with Ref 2 it is possible to notice the variability in the 

behaviour of ‘H 2D’ approach. While in Ref 2 it reaches unsatisfying results, here it 

provides the best ones. This aspect comes from the different approach in the 

estimation of the homography. Even if data dispersion is tendentially lower with ‘H 

2D’, it doesn’t mean that this behaviour is repeatable every time, as anticipated in 

Ref 2 case. The results of this static simulation analysis show that ‘H 3D’ is more 

repeatable in all the different considered cases. 

- Ref 5: 

H 3D H 2D PC 3D 

10.0002 +/- 0.0027 mm 9.9979 +/- 0.0013 mm 10.0002 +/- 0.0027 mm 

Table 3.13: final measurements results 
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 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9945 10.0062 9.9955 10.0009 9.9945 10.0062 

Std dev 

[mm] 

0.0027 0.0064 0.0026 0.0045 0.0027 0.0064 

RMS error 

[mm] 

0.0026 0.0070 0.0027 0.0057 0.0026 0.0070 

Table 3.14: minimum and maximum values of the 30 images 

- Ref 6:  

H 3D H 2D PC 3D 

9.9991 +/- 0.0025 mm 9.9967 +/- 0.0013 mm 9.9991 +/- 0.0025 mm 

Table 3.15: final measurements results 

 

 H 3D H 2D PC 3D 

 min max min max min max 

Average 

[mm] 

9.9940 10.0046 9.9944 9.9993 9.9940 10.0046 

Std dev 

[mm] 

0.0026 0.0063 0.0027 0.0045 0.0026 0.0063 

RMS error 

[mm] 

0.0026 0.0078 0.0030 0.0064 0.0026 0.0078 

Table 3.16: minimum and maximum values of the 30 images 
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Results from Ref 5 and Ref 6 images follow the average behaviour of the other 

reference images cases. The central value is retrieved better with ‘H 3D’ and ‘PC 3D’ 

while ‘H 2D’ shows less data dispersion within the considered case. 

 

To resume, the results from the simulated environment are satisfying in average 

terms, since the maximum range (difference between minimum and maximum 

average values) is always either below or around 1.5/100 of mm (with exception of 

Ref 2 evaluated with ‘H 2D’ method, suggesting that the calculation passing 

through 3D data is more robust compared to the one on 2D). 

About the dispersion evaluated with the three different approaches ‘H 3D, ‘H 2D’ 

and ‘PC 3D’, it’s possible to notice that the final results are very similar and limited 

below the 1/100 of mm.  

With the DIC it is expected to reach an accuracy of the order of 1/100 of pixel [1]. In 

all the images processed the peak to peak difference remains limited to 2 or 3 

hundredth of mm (as it is possible to notice also in the colorbars of Figure 3.12). 

Considering the scale factor (Eq.3.7): 

convx = −
d

fx
= 1.57

𝑚𝑚

𝑝𝑖𝑥
 3.7 

 

It is possible to conclude that the remaining minimal uncertainty is caused by the 

DIC procedure and not by algorithm mistakes. 

It is remarkable to underline that usually small trends appear at higher rotation 

angles sometimes for the reference and sometimes for the moving part, not around 

the roll axis, where there is only rotation around the axis coming out from the 

camera. This is shown in the following set of figures which are called Figure 3.12. 
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Figure 3.12: trends appear at high rotation angles both for pitch and yaw angles and both 

for moving and reference part (with the exception of the x-axis rotation) 
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A more detailed analysis on the results regarding the influence of the angle values 

of rotation is here presented, as it can be seen in Figure 3.13. 

 

  

 

Figure 3.13: the average value of displacement of the ficticious crack shows a trend when 

the angle increases for pitch and also yaw, while for roll the behaviour is random. 

 

With pitch and yaw, when the angle increases, also the average value of 

displacement increases with a relationship that seems more or less linear. With roll 

no trend is visible, data are distributed randomly around the mean. This behaviour 

is probably caused by the perspective distorsion that comes with pitch and yaw 

rotations and not with the roll one. Nevertheless, the trend is contained below 1 

hundredth of millimeters, so it is comparable with the uncertainty of the digital 

image correlation. 
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For the values of standard deviation and RMS error the trend is always increasing 

(as it can be seen from Figure 3.14) in all the cases considered with the increase of 

the angles. Usually the RMS error is above the standard deviation since it is 

calculated on the actual value of the crack and not around the average. 

 

 

Figure 3.14: plot of RMS error against standard deviation for different values of pitch 

angle 

 

These graphs suggest that, if possible, the angle of rotation of the drone must remain 

as low as possible, even though the increase of percentage error (compared to the 

actual value) is very small. It could be due to the imperfections in the image 

generation and not to the algorithm itself, so it’s not as significant as it visually 

appears in the graphs. 

 

3.3.2. Fixed camera and increasingly crack dimension results 

 

The analysis here proposed is focused on two set of five images with fixed imposed 

camera angles and vector t, but increasingly crack dimension, respectively of 2, 5, 
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10, 20, 50mm (as already pointed out in Paragraph 3.2). This particular choice is 

performed in order to see if the errors in the final results are somehow influenced 

by the crack dimension. 

In Figure 3.15 the results of the analysis for both the sets are presented, with 

particular attention on the absolute difference between the measured value and the 

actual one (2, 5, 10, 20, 50 mm respectively). 

 

Figure 3.15: difference between measured value and actual value of the crack for 

increasing value of the crack size 

 

In the case in which only the crack size is increasing, (while the orientation is fixed) 

the difference between the measured value and the actual value has a strong linear 

trend. This is probably related to a non perfect calculation of the scale factor, that 

causes the linear magnification of the error when considering higher crack values. 

To conclude, the results from the simulated environment are satisfying in average 

terms. As already said, the remaining uncertainty is comparable with the DIC 

uncertainty. This validates the proposed algorithm. 

 



Experimental validation of the technique 

 

 

 

53 

4 Experimental validation of the 

technique 

 

After eliminating all possible external causes of error not closely related to the 

algorithm and establishing that it works in ideal situations (Chapter 3) it is decided 

to test it in the experimental field, specifically in a laboratory environment to further 

minimize any criticality. 

Before moving on to tests involving the use of the sensor installed on the drone 

(with all the various problems that can arise in such conditions), it is appropriate to 

test (through basic experimental tests) the chosen sensor that might not even have 

turned out to be the most suitable for this type of work. 

The experiment consists in the analysis with the chosen sensor of the crack 

generated on a panel with the algorithm presented in (Chapter 2). The RGB-D 

sensor is held with hands to simulate the movements of the drone. The panel is 

loaded with a hydraulic press controlled with a PID (Figure 4.1). 

In order to have an assurance of the quality of the results obtained, the 

measurements are compared with those obtained from a stereo system (Paragraph 

4.1.2). The analysis is performed using the DIC 3D software.  

A more detailed explanation of the sensor used for the various acquisitions is also 

given. Moreover, the entire experimental setup used to conduct the test in the 

laboratory environment is highlighted. 
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Figure 4.1: picture of the overall setup with piston and panel highlighted 

 

4.1. Experimental setup description 

 

In this paragraph the overall experimental setup used is presented.  

In particular, the description of the specimen and of the loading machine is 

proposed, as well as an overview of the stereo system used as ground truth. 

 

4.1.1. Three point bending system 

 

The specimen is a xps panel has dimensions of 120cm x 60 cm. The first step is the 

staining of the specimen of white with spray paint. With the software proposed by 

[37] a proper speckle is then generated considering the working distance of the 

RGB-D sensor (approximately 2 meters). 

A stencil, that works as a mask, is built, with holes where the black dots of the 

speckle are present. The stencil is superimposed to the panel, fixed at it, and sprayed 

with dark matt black, thus obtaining the black dots, as shown in Figure 4.2. 
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Figure 4.2: picture of the panel with the speckle applied 

To avoid a shock fracture of the panel when loaded with the hydraulic press, that 

would not allow a proper analysis, a crack starter point is made below the piece as 

shown in Figure 4.3. 

 

 

Figure 4.3: crack starter point below the piece put in evidence 

 

Then, the pre-cracked panel is loaded with the hydraulic piston to analyze the 

behaviour of the crack.  
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The movement of the piston can be either controlled with fixed steps displacement 

or with cycles. 

It is decided to work with cycles. In this way the focus is on the dynamic response 

of the panel. A sinusoidal cycle is imposed as input to the hydraulic piston. With 

the fixed parameters of the PID, the hydraulic piston couldn’t follow precisely the 

imposed cycle, nevertheless the shape of the signal is accepted for cyclic dynamical 

loading. 

The frequency of this “sinusoidal” wave is 0.5 Hz with a peak to peak distance of 

approximately 3mm.  

 

4.1.2. Ground truth 3D DIC reference system 

 

To compare the results of the RGB-D sensor with a precise reference, a stereo system 

with 2 cameras to perform the DIC 3D is set up as shown in Figure 4.4. 

 

 

Figure 4.4: picture of the stereo system used 
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More information about the cameras used are shown here: 

Prosilica GX 3300 

Sensor Kodak KAI-08050 

Type CCD Progressive 

Resolution (pixel) 3296x2472 

Max frame rate (fps) 17 

Focal length (mm) 50 

Camera lens Zeiss Makro-Planar T* f2/50 ZF.2 

Table 4.1: Stereo system camera main information 

 

The stereo system with the use of DIC 3D easily allows the reconstruction of the 3D 

deformation fields based on the triangulation of deformation fields of the two 2D 

images taken from the cameras. 

The stereo system is calibrated with a set of images once the desired position, focus 

and diaphragm aperture is fixed. For the calibration procedure a different software 

(DIC 3D from Correlated Solutions) is used and, accordingly, also the calibration 

panel should be different (see Figure 4.5). 
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Figure 4.5: calibration panel used for stereo system 

 

The 2 cameras are working with a simultaneous acquisition thanks to a triggering 

system. The acquisition rate is 5 fps. 

The stereoscopyc system allows to get information about x-y-z diplacements, strains 

and also about the shape of the panel. This is also important to understand if the 

plane hypothesis of the panel is acceptable or not. 

 

4.2. Measurement system of the technique 

 

In this paragraph a detailed explanation regarding the sensor fusion and the 

calibration procedure related to the chosen RGB-D system used is proposed. 

 

4.2.1. RGB-D sensor assembly 

 

The overall sensor is composed by a Flir monochrome camera coulped with a ToF 

sensor (Blaze) (Figure 4.6). 
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Figure 4.6: RGB-D sensor handheld to simulate the movement of the drone 

 

More information about the overall sensor are reported respectively in Table 4.2 and 

Table 4.3: 

FLIR Monochrome Camera 

Model number BFS-U3-16S2M-CS 

Type of sensor Progressive Scan CMOS 

Resolution (pixel) 1440x1080 

Pixel size (μm) 3.45 x 3.45 

Type of shutter Global 

Exposure time 4μs- 30s 

Table 4.2: Flir monochrome camera main parameters 
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Blaze – 101 ToF 

Sensor Type 

Sony IMX556 

Area Scan CMOS 

(Time-of-Flight) 

Measuring Method Time-of-Flight 

Resolution (pixel) 640x480 

Range (m) 
Short: 0.3–1.5  

Long: 0.3–10  

Accuracy (typical) ±5 mm (0.5–5.5 m) 

Frame Rate 
20 fps (Default) 

30 fps (FastMode) 

Table 4.3: Blaze – 101 ToF main parameters 

 

Moreover, for both sensors, it is important to note that the acquisition is done in 

motion to simulate the real experimental case on drone.  

To do this, the sensor isn’t fixed to the ground, (as is the case with the stereo system) 

but is held in hand.  

This can lead to significant blurring problems.  

To try to avoid this risk, it is necessary to change the exposure time and to consider 

all the possible parameters carefully. In particular: 

- exposure time: it is set equal to 2ms for the FLIR (with a gain of 10) and 0.7 

ms for the BLAZE. This could lead to the problem of dark acquisitions in an 

indoor environment, that’s why LED lamps are added in the experimental 

environment pointing the panel; 

- acquisition frame rate: it is set equal to 60 Hz for the FLIR and 20 Hz for the 

blaze. This will lead for sure to the problem of not correct synchronization 

between the depth acquisitions and the color ones. Having such a high frame 
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rate for the Flir allows to choose the closest depth acquisition (in terms of 

time) related to the greyscale one, without introducing interpolation between 

the images (better explanation at Paragraph 4.3.1); 

- depth range: for the Blaze a depth range between 1 and 3 meter is defined. 

Other issues that must be taken into account regard respectively the scene 

complexity and the presence of material with different refractive index. 

For the first issue, when light gets reflected multiple times before being received by 

the camera’s ToF sensor, the delay and displaced location of the reflected light 

negatively impacts depth calculations [38]. For instance, if the surface of the target 

is very complex, with multiple concave and convex corners in a variety of angles, 

or if the target is placed in an environment with various angled surfaces, the optical 

paths of the ToF emitted light combine and interfere with one another. 

While for the second issue it has to be noted that transparent materials, such as 

plastic or glass bottles, let too much light pass through their bodies and so they 

make poor targets for ToF cameras because they lack sufficient reflectivity [38]. 

All these aspects are minimised in the experimental application because the panel 

is approximately planar; the only remaining criticality is the presence of the black 

speckle on a white background, since black colour is perceived as farther away 

respect to its real position. The estimation of the plane must be done with a larger 

set of points from the point cloud to have a more robust result. 

 

4.2.2. RGB-D sensor calibration procedure 

 

As already discussed for the virtual camera (Chapter 3) to be sure that the 

parameters used in the algorithm are correct a calibration procedure is required. 

The calibration is carried out by means of the Camera Calibration Toolbox for 

MATLAB. 

For this procedure a checkerboard (Figure 4.7) is generated which presents 9 times 

12 squares (rows times columns) with edges of 30 mm each. 

The distance at which the acquisitions are taken is approximately the same of the 

one used during the experimental acquisition to avoid problems of blurring. 



 

 

 

 

62 

It’s important to point out that since there are two sensors (one for color acquisition 

and one for depth) the calibration must be performed twice and then a stereo 

calibration should be carried out too, in order to retrieve the rototranslation between 

them. 

 

Figure 4.7: checkerboard used during the calibration procedure for the RGB-D sensor 

 

In addition, it is decided to perform the calibration considering:  

- a possible radial distortion in the color camera (only for the first two orders 

and putting the tangential one to zero); 

- no distorsion for the ToF sensor (as indicated in the datasheet); 

- fixed center for both the sensor placed in the exact center considering half of 

the resolution. 

The final results are shown in the following Table 4.4: 
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Color camera intrinsic parameters 

matrix (pixels) 

2458.5 0 0
0 2465.9 0

719.5 539.5 1
 

Depth camera intrinsic parameters 

matrix (pixels) 

521.3 0 0
0 522.2 0

319.5 239.5 1
 

Radial distorsion coefficient color 

camera 
2𝑛𝑑𝑜𝑟𝑑𝑒𝑟: 0.0084
4𝑡ℎ𝑜𝑟𝑑𝑒𝑟: 0.0843

 

Table 4.4: sensors’ intrinsic parameters matrix with the addittion of radial distorsion 

coefficient for the color camera 

 

Anyway, the most critical aspect regards the realignement of the two sensors. 

In fact, a shift between the color and the depth images is for sure present and it 

should be compensated by applying the approriate rototranslation.  

The overall explanation of this procedure is shown in Paragraph 4.3.1 

However, here below in Table 4.5 are already shown both the rotation matrix and 

the translation vector that allow the correct realignement of the two sensor.  

Rotation matrix 
0.9996 −0.0036 0.0271
0.0044 0.9995 −0.0309
−0.0270 0.0310 0.9992

 

Translation vector 
−25.86
−66.70
   61.09

 

Table 4.5: rototranslation parameters that allow the correct coupling between ToF and 

Color sensor 

 

4.3. Practical implementation of the algorithm 
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In this paragraph the implementation of the algorithm is explained, taking into 

account all the further improvements done, which are essential for dealing with a 

real world situation and with the sensor chosen for the test. 

 

4.3.1.  Further developments for real world application 

 

As already explained in Paragraph 4.2.2, the calibration procedure is carried out for 

both the monochrome camera and the ToF sensor. Moreover, a shift between the 

greyscale and the depth images is for sure present and it should be compensated by 

applying the approriate rototranslation. This chapter shows in detail this procedure 

and how to manipulate the acquired data coming from the sensor. 

The first step consists in the coupling of the greyscale image to the depth image. 

Since the acquisition rate for the two cameras is not the same, the images are not 

taken simultaneously. Knowing the timestamps of each acquisition both for the 

greyscale and the depth cameras, it is possible, with a MATLAB script, to associate 

to each greyscale image, on which the DIC will be performed, the nearest depth 

image in terms of timing. Due to the high frame rate of the Flir sensor (60 Hz) no 

interpolation between depth images is done. 

Once the depth image is chosen (.bin format), it is converted in .ply format. Then, 

the obtained point cloud is rototranslated with the values presented in Table 4.5 to 

adopt the same reference system for the Flir and the Blaze.  

To perform the fit of the plane, the region of the point cloud representing the panel 

must be detected. To do this, the idea is to bring the point cloud to the Flir sensor 

plane with the pin-hole model, following (Eq. 4.1): 

φm = K[R | t]M 4.1 

 Where: 

• 𝑀 = [𝑋, 𝑌, 𝑍, 1]𝑇 is the 3D point in homogenous coordinates; 

• 𝑚 = [𝑥, 𝑦, 1]𝑇 is the homogenous representation of the point reported to the 

sensor plane; 

• 𝜑: scaling factor; 

• 𝐾: intrinsic matrix; 

• [𝑅 | 𝑡]: rototranslation values (Table 4.5) 
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The points reported to the sensor can be saved or discarded based on the selection 

of the panel region on the greyscale image (Figure 4.8). 

 

Figure 4.8: manual selection of the ROI for the plane fit 

 

The biunivocal correspondence between the points on the sensor and the actual 3D 

points allows to retrieve the 3D model of the panel only (Figure 4.9). On these 3D 

points the fit of the plane is done and the analytical equation is taken out. 
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Figure 4.9: point cloud of the region selected 

 

Figure 4.10: point cloud selected part on the entire point cloud in red 
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Figure 4.11: comparison between the plane model (green) and the selected point cloud 

(red) 

 

As it is visible in Figure 4.11, the depth sensor presents a significant amount of noise 

that can add uncertainty to the measurement. 

To give an idea the value of average RMS error on a set of 10 images on the z 

differences between the point cloud and the plane retrieved is 4.97 mm.  

 

4.3.2. ROI definition for movement compensation in real application 

 

In this paragraph considerations about the choice of the region of interest (ROI) are 

present. The ROIs considered are the ones for compensation of the movement of the 

drone and not the ones used for the final output (final crack opening). 

This is important with experimental acquisitions because several issues to be taken 

into account arise. 

Among them, it is worth highlighting: 

- there is not necessarily a fixed reference zone that is not subjected to 

deformation; 



 

 

 

 

68 

- there is the possibility that out of plane displacement is present, thus 

affecting the quality of the results; 

- the transformation could be not rigid; 

To overcome these problems the following ROIs with their own pros and cons are 

chosen. 

 

4.3.2.1. Small ROI close to the crack 

 

As shown in Figure 4.12 a ROI in a small region close to the crack is selected. 

This seems the most intuitive solution since that region should remain 

approximately undeformed however this isn’t true for this particular case, since a 

gradient in the deformation is present, (for better understanding see Paragraph 

4.4.2). 
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Figure 4.12: ROI put in evidence in red 

At the end, this solution is rejected due to the fact that the ROI contains too few 

points (even with a smaller step choice in the DIC analysis). This brings to a non 

optimal estimation of the plane model and of the rototranslation or homography.  

 

4.3.2.2. ROI as half of the panel 

 

Similar to what is done with the simulator, a ROI on half of the specimen is selected 

(in this case the left one as shown in Figure 4.13). Anyway, different problems arise, 

in particular this region is for sure not subjected to a rigid deformation and referring 

all the information of the moving part to this reference makes the graphs difficult to 

be interpreted. 
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Figure 4.13: ROI put in evidence in red 

 

4.3.2.3. ROI on all the panel 

 

As already shown in Figure 4.8 the selection of the total specimen as ROI seems to 

be the best solution.  

As a matter of fact, it seems reasonable that if the ROI is taken as a symmetric region, 

the effects of the left and right part of the panel are averaged out (different 

orientation of the panel between left and right, asymmetric deformation if only the 

left part is considered), leaving only the result of the deformation around the 

average. 

This choice also makes the graphs easy to be read.  
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4.4. Experimental results 

 

The analysis of dynamic loading process and the related results with an imposed 

cycle with the hydraulic piston are here discussed.  

As already mentioned in Paragraph 4.1.1 a sinusoidal cycle is imposed as input to 

the hydraulic piston, however with the fixed parameters of the PID, the hydraulic 

piston couldn’t follow precisely the imposed cycle. The frequency of this 

“sinusoidal” wave is 0.5Hz with a peak to peak distance of approximately 3 mm. 

The approach considered in the experiment for the realignment of data from 

different frames is the homography one, due to the fact that the panel has an 

approximate plane shape. In this way the effects of imperfect or noisy depth are 

minimised.  

The calculation of the homographies, as presented in Paragraph 0, can be done with 

an estimation from 2D data or by retrieving the rototranslation values from 3D data 

(Eq. 2.3). Typically the estimation coming from 2D data, since it’s based on a 

minimization procedure, gives accurate results, especially in case of rigid 

movements. In this experiment a remarkable deformation of the panel complicates 

the analysis. Moreover, the plane assumption necessary to use homographies is not 

precisely respected considering the information coming from DIC 3D, as visible 

from a qualitative point of view in  
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Figure 4.14: 3D deformation plot obtained through DIC 3D 

 

4.4.1. Qualitative analysis 

 

Initially, to validate the proposed technique, a qualitative analysis of the obtained 

graphs for ‘H 2D’ and ‘H 3D’ is carried out, comparing them with the ones obtained 

from DIC 3D (respectively in Figure 4.15 and Figure 4.16). In particular, in order to 

obtain a more precise comparison, a reference picture with close crack is chosen, but 

the sensor and the stereo camera aren’t synchronized and they acquire with 

different frame rate, thus making it impossible to obtain ideal conditions. 

As it is clearly visible the results obtained from ‘H 2D’ analysis (Figure 4.15) seems 

good in terms of crack reconstruction, in fact the peak to peak values in both x and 

y directions are similar; however, the ‘H 2D’ case loses some information especially 

for the x component in the upper part. 
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From a qualitative point of view, comparing the results with the 3D DIC taken as 

the reference, the ‘H 3D’ approach seems better than the ‘H 2D’ one. The explanation 

could be that some deformations effects, combined with a non perfectly plane panel, 

can be confounded as projective effects by the minimization algorithm of the ‘H 2D’, 

thus causing their undesired compensation, while the ‘H 3D’ approach is able to 

reconstruct with a better accuracy the deformation field. 

Anyway the poor quality in terms of accuracy of the sensor (±5 mm for the Blaze) 

could strongly affect the quality of the final output in terms of crack reconstruction. 

It must be noted that the convention of the software VIC 2D and VIC 3D are opposite 

for the y coordinate.  

 

  

Figure 4.15: Data from DIC 3D on the left and from ‘H 2D’ on the right 
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Figure 4.16: Data from DIC 3D on the left and from ‘H 3D’ on the right 

 

4.4.2. Quantitative analysis 

 

After the first qualitative analysis made by graphs comparison, two zones (one on 

the left and one on the right of the crack as shown in Figure 4.17) are chosen and the 

time history of the difference between their displacement is computed. 
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Figure 4.17: rectangles putting in evidence the chosen zone for the time history 

 

The idea is to allow the user to select two regions (symmetric w.r.t. the crack itself) 

and to analyze the overall displacement in x-y direction between them. The 

difference between right and left rectangle average displacement is carried out and 

then plotted in time. 

First of all, the user has the possibility to select two different rectangles in whichever 

position of the panel and with arbitrary size chosen by him (to make the analysis 

more accurate averaging in the choice of the rectangles is performed). 

As it can be seen in Figure 4.18, even if the user chooses two rectangles that seem 

more or less identical and symmetric, the difference in terms of spatial derivative 

inside them (Figure 4.19) could strongly affect the results. 
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Figure 4.18: picture of x displacement with the two rectangles chosen by the user 

highlighted 

  

Figure 4.19: zoom on previously highlighted rectangles of Figure 4.18Figure 4.18 

 

The problem of leaving total autonomy to the user in the decision is that, since the 

displacement in the panel is not negligible, even small misalignements in the 

regions selection could dramatically affect the results. 
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That’s why another possibility is implemented to evaluate better the time history. 

The idea is to make the user select one point on the crack and the dimensions (in 

pixels) of the rectangles that he wants to analyze. 

The code automatically define two rectangles symmetric w.r.t. the crack and of the 

same dimensions thus improving the quality of the results.  

The obtained results (after performing the average for all the centers subset of the 

two rectangles) are presented in Figure 4.20 (remembering that absolute 

displacement is referred to the difference between right and left rectangle). 

 

 

Figure 4.20: time histories comparison between the results obtained from stereo-

system, homography from images and homography with depth information. 

 

As it is clearly visible the three time histories are very similar, even if they start from 

slightly different points (that’s due to a non optimal synchronization) and the 
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results obtained with the stereo-system seem less noisy (because of the lower 

sampling frequency and at the same time because of the higher accuracy). 

Further analyses are then carried out in order to guarantee a more robust validation 

of the results. 

From a simple Fourier analysis, the following results are obtained (Figure 4.21 and 

Figure 4.22). 

 

 

Figure 4.21: Spectrum obtained from DIC 3D (stereo-system) 

  

Figure 4.22: Spectrum obtained with homography from images (‘H 2D’) on the left and 

from depth (‘H 3D’) on the right 
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It’s possible to notice that the frequency retrieved is exactly the same for all the three 

cases, while some minor differences in the amplitude are present (probably because 

of the non equal starting point as already pointed out due to synchronization and 

because of the presence of noise).  

To evaluate more precisely the differences between results of the DIC 3D and of the 

two proposed approaches, cross correlation is performed. To correctly calculate it, 

the ‘H 3D’ and ‘H 2D’ time histories must be downsampled to the acquisition rate 

of the DIC 3D cameras. To reach a desired resolution for the time shifts of the cross 

correlation, interpolating functions for the 60 Hz time histories are used. To resume 

the procedure, time history from DIC 3D is kept fixed while the time history of 

either ‘H 3D’ or ‘H 2D’ (cross correlation is performed with DIC 3D vs ‘H 3D’ time 

histories and then DIC 3D vs ‘H 2D’ ones) is shifted of an imposed time shift, 

interpolated to obtain a fitting function and sampled at 5 Hz (the sampling 

frequency of stereo cameras). Cross correlation is calculated at every loop for the 

increasingly time shift. The graphs of the cross correlation are presented in Figure 

4.23. After a second order fitting (Figure 4.24) the peak is retrieved, thus allowing 

the realignment of the time histories of the proposed approaches with the time 

history of DIC 3D, as visible in Figure 4.25 and Figure 4.26. 

 

  

Figure 4.23: cross-correlation between DIC 3D and ‘H 2D’ on the left and cross correlation 

between DIC 3D and ‘H 3D’ on the right. In red the second order fitting function to 

retrieve the peak 



 

 

 

 

80 

 

Figure 4.24: second order interpolation of cross-correlation function 

 

The cross correlation peak is in correspondence of the same value of time shift 

(around 0.3 seconds) both for ‘H 2D’ and ‘H 3D’. The time resolution chosen for the 

cross correlation is 0.01 s. 

It is now possible to realign the time histories imposing the time shift calculated in 

correspondence of the cross correlation peak.  

 

 

Figure 4.25: time histories comparison (H 2D vs DIC 3D) after cross correlation time shift  
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Figure 4.26: time histories comparison (H 3D vs DIC 3D) after cross correlation time shift 

 

Here below in Figure 4.27 the overall comparison is shown. 

 

Figure 4.27: time histories comparison after the realignment of the 2 approaches 

 

Visually the superimposition of the three time histories is great. Only some limited 

zones, where more noise is present for ‘H 2D’ and ‘H 3D’, seem far from the ground 

truth 3D DIC data. From this qualitative point of view, the risk of using ‘H 3D’ with 

the poor accuracy of the ToF sensor does not stand. This is for sure the result of 
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using rototranslation matrices not directly on the point clouds (‘PC 3D’ approach), 

but to calculate the homographies, that mediates the noisy effects of depth. 

With the resampled shifted signal it is possible to calculate the Root Mean Square 

error between the points of the DIC 3D time history and the points of the two 

approaches proposed. 

Two different interpolation functions are considered, in particular ‘csaps’ and 

‘interpft’, but the results in terms of RMS error (Root Mean Square error) are the 

same. Results are presented in Table 4.6. 

 H 3D H 2D 

RMS error [mm] 0.038  0.032  

Table 4.6: RMS error comparison between the two approach 

‘H 2D’ seems to perform slightly better than ‘H 3D’ in terms of Root Mean Square 

value. This is not so significant to define the best technique since the calculation is 

valid only locally, in correspondence of the crack. The loss of information in the 

upper part on the right and on the left due to deformation effects confounded as 

projective transformation is not considered within this index. Moreover, the values 

are very small and similar, comparable with the uncertainty of the measurement 

approach. 

Concluding that, in the experimental scenario, with the addition of non perfectly 

planar object and of the deformations of the panel, the ‘H 3D’ approach results more 

robust compared to the ‘H 2D’ one. The calculation of the homography passing 

through 3D point clouds data allows to avoid the 2D problem of confounding 

deformations and shape effects as projective effects by the 2D minimization 

algorithm. At the same time, the actual degree of uncertainty associated to ToF 

sensors does not permit to work directly with rototranslation applied to point 

clouds of centre subset points (‘PC 3D’). The use of homography with the plane 

assumption minimizes the effects of ToF noise, providing accurate results. 
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5 Conclusion and future developments 

 

RGB-D digital image correlation with sensors mounted on a drone is an innovative 

technique that allows crack assessments on critical places (for example bridge 

decks), not easily reachable by men. The combination of a color or greyscale camera 

with a depth sensor is suitable for drone transportation compared to a 3D DIC 

system, as well as much less expensive. The implemented algorithm effectively 

compensates the drone movements, providing accurate information.  

The entire technique has been tested and validated with a simulator on ideal 

reference and cracked images with both different orientations and crack sizes, 

coupled with ideal depth maps. In this simulated environment the accuracy reaches 

2–3 hundredths of pixels, comparable with the intrinsic DIC uncertainty. 

Moving on to a laboratory experiment, the real capabilities of the technique have 

been tested. A pre cracked panel with a painted speckle has been loaded by a three 

point bending system with an imposed cycle. The considered sensor, composed by 

a Flir camera and a Blaze sensor, was tested against the 3D stereo DIC system 

considered as the ground truth. The crack behaviour in time was evaluated. 

The movement compensation was tested both with homographies calculated with 

a minimization procedure on the 2D centre subset points and with homographies 

derived from 3D point clouds. In terms of local crack reconstruction both the 

approaches gave satisfying results with a Root Mean Square error contained under 

0.04 millimeters, comparing the time histories with the one of the DIC 3D on 5 entire 

loading cycles. Instead, considering the entire deformation field of the panel the 

approach based on the realignment with homographies, calculated starting from 

the rototranslation of 3D centre subset point clouds was better. The calculation of 

the homographies on the 2D data brought a problem to the surface. In a real 

application the effects of deformations and not perfectly planar objects can be 

confounded as projective effects by the minimization algorithm, thus causing their 

undesired compensation. Working with a depth sensor and with point clouds allow 

to avoid this mistake. 
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As for future developments, the algorithm must be tested in a laboratory 

experiment with a larger data set to increase the confidence of the technique. Then, 

it must be evaluated on field with the RGB-D sensor mounted on the drone to 

perform crack assessments.  With developments on the accuracy of depth sensors, 

the technique could be used directly with point clouds, without passing through the 

homography to mediate the effects of noise, for the camera movement 

compensation. This would also allow to work on objects with not strictly planar 

shape, as well as to provide displacement results for all the 3 dimensions (x-y-z), as 

seen with the simulator. 
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