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Abstract

To allow a Geostationary Earth Orbit (GEO) satellite to precisely and safely achieve its
goals preventing collisions with other spacecrafts located on the GEO, a set of periodic
and scheduled manoeuvres, known as Station Keeping (SK) strategy, is required to main-
tain the vehicle inside an assigned slot. Moved by stringent requirements on accuracy and
by the intention to find higher performance algorithms than standard numerical methods,
a novel SK program is here proposed. It foresees the resolution of a feedback optimal
control problem (OCP) for a low-thrust electric propulsion system by exploiting differen-
tial algebraic techniques. Unlike widespread linear solutions, leading to an accuracy drop
when dealing with nonlinear dynamics, differential algebra (DA) enables to tackle nonlin-
earities by an arbitrary order Taylor series expansion of the OCP about a reference. The
obtained polynomials allow to represent the dependency of the spacecraft state on even-
tual displacements of the initial conditions from the considered baseline. The feedback
OCP can be reduced to a two-point boundary value problem (TPBVP) and then fixed by
a high order polynomial approximation, whose manipulation permits to enforce eventual
constraints and subsequently find the optimality commands. When perturbations in the
nominal status occur, new optimal control laws are derived by the mere evaluation of
polynomials in the perturbed state.

The SK strategy adopted in this thesis is based on a cyclic sequence made of a natural
motion stage followed by a controlled section targeting a specific point inside the allowable
region, tailored to maximize the free permanence within the permitted latitude-longitude
bands until the next powered phase starts. A year evolution, affected by the geopotential
perturbation, the Sun and Moon influence and the solar radiation pressure effects, is
considered. DA is applied to compute the optimal, arbitrary order solution for each
thrust arc.
The analysis is divided into two steps. The former consists in solving an Energy Optimal
Problem (EOP) with continuous and non-saturated action. Its output can be directly
achieved by considering the slot as a neighbourhood of the nominal state and by expanding
the TPBVP about its centre, bypassing the need of a reference path. This also makes
it possible to build up a control law evaluating, at every cycle, the same high order
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polynomial approximating the time independent dynamics and then correcting it with
the complete linear output, so that constant perturbations and time-variant ones can
be treated separately. The latter takes the result of the first one as initial guess and
solves a Fuel Optimal Problem (FOP) with a bang-bang control profile, with the help of
a continuation method. This application involves a numerical baseline and consequently
polynomials are exploited for a robust correction to any possible deviation from it.

Although a simplified problem is taken into account, its relevant findings suggest further
investigations. The power of this method is demonstrated since it grants: an increased
precision compared to linearized control; a low computational burden as against numerical
techniques; the opportunity to build up a quick and robust controlling action from onboard
DA maps; a low overall annual consumption.

Keywords: GEO, Station-Keeping, Differential Algebra, Optimal Control, Op-
timization
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Abstract in lingua italiana

Affinché un satellite geostazionario possa conseguire con precisione e in sicurezza i propri
obiettivi prevenendo la collisione con altri corpi localizzati in GEO, è necessario pianifi-
care una sequenza periodica di manovre, nota come strategia di Station Keeping (SK), che
consenta di mantenere il veicolo all’interno di una regione assegnata, delimitata longitu-
dinalmente e latitudinalmente. In questo elaborato viene presentata una nuova program-
mazione dello SK, al fine di soddisfare stringenti requisiti di accuratezza e ottenere un
algoritmo più performante rispetto ai metodi numerici largamente impiegati. Tale approc-
cio prevede la risoluzione di un problema di controllo ottimo (OCP) a retroazione per un
sistema propulsivo elettrico a bassa spinta mediante l’applicazione di tecniche di algebra
differenziale (DA). Contrariamente ai diffusi criteri linearizzati, che risultano imprecisi nei
casi di dinamiche non lineari, la DA permette di far fronte alle non linearità espandendo
in serie di Taylor, ad un certo ordine, la soluzione dell’OCP rispetto a un riferimento.
I polinomi così ottenuti consentono di esprimere la dipendenza dello stato del satellite
dalle possibili variazioni delle condizioni iniziali rispetto ai valori nominali. Riducendo
l’OCP retroattivo a un TPBVP, la soluzione è approssimabile con un polinomio di grado
arbitrario, la cui manipolazione permette di fissare eventuali vincoli ed ottenere succes-
sivamente i comandi ottimali. Grazie alla semplice valutazione della suddetta mappa
polinomiale, eventuali disturbi agenti sullo stato di riferimento sono contrastati e corretti
variando la legge di controllo ottimo.

La strategia di SK adottata nel presente progetto si basa su una sequenza ciclica com-
posta da una fase di moto naturale, affetto dalla perturbazione del campo gravitazionale,
dall’influenza del Sole e della Luna e dagli effetti della pressione di radiazione solare, se-
guita da un periodo di spinta. L’obiettivo di quest’ultimo consiste nell’allineamento del
satellite ad un punto target, scelto in modo da massimizzare lo stazionamento incontrol-
lato nella regione permessa. L’analisi si estende su un arco temporale annuale e la DA
viene applicata per calcolare la soluzione ottima a differenti ordini di espansione per ogni
stadio di controllo. Lo studio si articola in due argomenti principali. Il primo risolve un
EOP, caratterizzato da un’azione continua e non saturata. Il comando di SK, in questo
caso, è ottenibile considerando lo slot ammissibile come un intorno dello stato nominale



ed espandendo il TPBVP rispetto al suo centro, evitando così il calcolo di una traiettoria
di riferimento. Risulta in tal modo possibile generare una legge di controllo valutando,
ad ogni ciclo, il medesimo polinomio che approssima la dinamica indipendente dal tempo,
correggendola con la soluzione lineare del moto completo e separando quindi i contributi
delle perturbazioni costanti da quelle tempo-varianti. Il secondo, ricorrendo all’utilizzo
della soluzione ottenuta precedentemente come condizione iniziale, risolve un FOP con un
profilo di spinta bang-bang tramite un metodo di continuazione. Poiché tale applicazione
richiede un riferimento numerico, i polinomi sono utilizzati per una correzione robusta ad
ogni possibile deviazione rispetto ad esso.

Nonostante si tratti di un problema semplificato, i rilevanti risultati ottenuti sono tali da
giustificarne un’ulteriore e più approfondita analisi. Sono evidenti, infatti, le potenzialità
di questo approccio in quanto esso garantisce: una maggior precisione rispetto al con-
trollo lineare; un costo computazionale inferiore comparato a quello richiesto dai metodi
numerici; la possibilità di ottenere un’azione di controllo rapida e robusta mediante la
valutazione di mappe polinomiali disponibili direttamente a bordo; un modesto consumo
annuale complessivo.

Parole chiave: GEO, Station-Keeping, Algebra Differenziale, Controllo Ot-
timo, Ottimizzazione
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1| Introduction

Placed on a circular orbit at an altitude of more than 35000 km and on the equatorial
plane, a geostationary spacecraft is able to cover a large portion of the Earth’s surface,
remaining fixed above the same region during its whole life.

Weather satellites for real-time monitoring and data collection are usually located on
the Geostationary Earth Orbit (GEO), as well as the majority of communications and
navigation missions. Their motion, together with the Earth’s rotation, allows ground
stations to constantly point the vehicle, granting a permanent link with the spacecraft
and avoiding iterative tracking procedures with movable antennas.

Thanks to these benefits, a lot of bodies crowd the GEO, sharing the same ring above the
equator. According to [9], 425 satellites actually populate the zone within a latitude of
±3◦. Each one is practically visible from a huge area extending 75◦ away from its position
in both N-S and E-W directions.

Figure 1.1: GEO Active Satellites in 2022
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1.1. Geostationary Station Keeping

Active control is mandatory during a GEO mission. In order to maintain its nominal
position and to ensure the cohabitation with other spacecrafts, a set of programmed
manoeuvres shall be applied to a GEO satellite. This sequence of thrust actions is called
Station Keeping (SK) strategy.

With the aim of preventing any possible collision and avoiding the body to freely drift
from the prescribed location, SK provides the vehicle to stay within an assigned slot
made of certain angular edges. Figure 1.2 shows a typical SK window, with its latitude
[−ϕmax, ϕmax] and longitude [−λmax, λmax] bands, around the desired point [ls, 0◦]. In fact,
due to some disturbances, a displacement in both geographical coordinates is expected to
occur. The influence of the non-spherical Earth causes an important westward or eastward
shift of the satellite, as well as the solar radiation pressure contribution which acts on the
eccentricity; the impact of the Sun and Moon’s gravity induces a change in the inclination
instead.

Figure 1.2: Station Keeping Window [14] in ECEF frame. Θ: Greenwich Hour Angle

Space trajectories and manoeuvres are usually designed in order to optimize the perfor-
mances and improve the efficiency of the overall strategy adopted. Many technologies
come to the aid of these objectives and the most important one is electric propulsion,
whose motors have a specific impulse in the order of ten times higher than the one pecu-
liar of chemical engines. This enables to save propellant mass extending the operational
lifetime; however, it involves long working hours and precise and flexible control capacities.
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As a consequence, actual geostationary SK is mostly achieved thanks to ion thrusters and
so low-thrust systems permit an accurate N-S and E-W control with a series of continuous
and optimized actions.

1.1.1. State of the Art

The SK optimal problem is an already existing and developed task, simply consisting of
satisfying the satellite assigned box constraints (with reference to Figure 1.2, typically:
ϕmax = λmax < 0.1◦) while minimizing a cost function.

Nowadays, the SK of GEO satellites is achieved by considering technological and opera-
tional features, such as electric propulsion, and optimal control strategies, taking various
constraints into account (minimum elapsed time between two consecutive firings, on-off
profile of the thrusters, thrust allocation). Optimal SK control problems may be solved
according to several techniques.
When simplifying assumptions are used, analytical, albeit approximated, control laws
may be obtained, as proved by Sukhanov and Prado [21] in 2012. They developed a
mathematical procedure for the optimization of low-thrust SK manoeuvres based on a
linearization of the satellite motion near a reference orbit.
Otherwise, it is in general necessary to resort to heavy numerical methods, such as direct
collocation based methods. For this kind of approaches integrating the satellite dynamics,
the state and the control variables are discretised to produce a non linear programming
problem and get an optimal open loop control. In 2005 Losa [14] explored a direct method
relying on a differential inclusion approach [22] for geostationary SK formulated as a con-
strained linear quadratic optimal control problem and built on a linear time-varying model
for the dynamics of an electric spacecraft affected by perturbations. Gazzino resumes the
real motion of a GEO body in a linearized state space representation in 2017 [4], deep-
ening the formulation of the perturbing potentials in different reference frames. He than
applied it to solve a minimum fuel geostationary SK introducing a switching system the-
ory and imposing operational constraints on the duration of the firings. This issue is
faced through a integer programming formulation in [5], consisting in a single step that
foresees the linearization of the dynamics and the computation of the state transition
matrix by the discretisation of the control variables. Another approach to implement the
same optimal strategy can be found in [6], where the propellant minimization is achieved
after three steps. The first one solves a problem without operational constraints on the
thrusters thanks to an indirect method based on the Pontryagin Maximum Principle and
initialized by a direct collocation procedure; then the propulsion requirements are en-
forced through an equivalent scheme and, at the end, the commutation times sequence
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is optimized via a particular switching theory developed by Xu and Antsaklis [26]. This
solution obtained an annual cost of 79.67m/s for a 4850 kg satellite equipped with 4
engines, located in the North-East, North-West, South-East and South-West directions.
A closed loop control was instead investigated by Guelman in 2013 [7]. He obtained an
annual ∆v of 70m/s for a 2000 kg spacecraft, with a closed loop action that does not
rely on previously computed reference trajectories.

With the aim of optimizing and simplifying the SK problem avoiding the numerical pro-
cedures and, in particular, the effort required by direct methods, this thesis proposes a
further development of the strategy introduced by Di Lizia et al. in 2011 [11]. Here the
SK optimal solution was obtained thanks to differential algebraic techniques, investigat-
ing and proving the strength of high order feedback control applied in this particular
field. As previously done by Pasta [19] in 2010, a simplified problem is considered, ex-
cluding thrusters configurations and requirements. In his thesis work, Pasta applied the
ASRE (Approximating Sequence of Riccati Equations) method to the geostationary SK
optimization problem, developing a feedback EOP controller through the factorization of
pseudo-linear dynamical equations and finding a quite high annual ∆v of 79.69m/s for a
3000 kg satellite characterized by a specific impulse of 3000 s , corresponding to 8.11 kg

of burnt propellant.

1.2. Notes on Differential Algebra

A high order optimal feedback indirect method based on differential algebraic techniques
is proposed in this work.

Thanks to differential algebra (DA) it is possible to compute the derivatives of functions in
a computer environment. The classical implementation of real algebra can be replaced by
the new one of Taylor polynomials. Given any function f ofm variables, it is approximated
by its Taylor series up to an arbitrary order n. If it is possible to turn an Optimal Control
Problem (OCP) into a Two-Point Boundary Value Problem (TPBVP), DA techniques
can be applied to enable the expansion of the OCP solution about a reference state
or trajectory with respect to either initial or terminal conditions. The computation of
feedback control laws in relatively large neighborhoods of the nominal baseline is then
reduced to the mere evaluation of high order polynomials.

DA was developed by Berz in 1999 [15] with the aim to solve analytical problems with
an algebraic approach. Berz concentrates his study on the use of DA techniques for the
solution of differential and partial differential equations, in particular for the efficient
computation of Taylor expansions of the flow of differential equations with respect to the
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initial conditions. While classical numerical algorithms are founded on function evalua-
tions at specific points, causing inaccuracies due to cancellation, DA techniques rely on
the idea that it is possible to have a better knowledge of the considered problem from its
characteristic function rather than its values. This is made by creating a new computer
environment where real numbers are substituted by Taylor expansions of the function.

Figure 1.3: Analogy between floating point representation and differential algebraic frame-
work

With reference to Figure 1.3, the classical transformation from real numbers (a, b) to their
floating point (FP) representation (ā, b̄) is applied to work on them in a numerical space.
Defining a real operation ’×’ between the two real terms, an adjoint one ’⊗’ describes
the same task in FP environment. Transforming the real numbers a and b in their FP
representation and performing ’⊗’ in the FP set is equivalent to carry out ’×’ in the set
of real numbers and then turning the result in its FP representation. Similarly, if two
sufficiently regular functions f and g are of interest, the computer operates on them in
DA framework using their Taylor series expansions, F and G respectively. Therefore, the
analogy with the transformation of real numbers in their FP formulation is represented
by the Taylor series of f and g. Indeed, extracting the Taylor expansions of f and g and
operating on them in the space of Taylor polynomials returns the same result as operating
on f and g in the real environment and then extracting the polynomial of the resulting
function. The straightforward implementation of DA in a computer allows to compute
the Taylor coefficients of a function up to a specified order n, along with the function
evaluation, with a fixed amount of effort.

Berz and Makino implemented their version in the software COSY-Infinity, but in this
thesis a Python interface [20] of the Differential Algebra Computational Toolbox (DACE)
developed in a C++ language by Massari and Wittig [16] is used.
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With this algorithm, classical algebraic operations, methods to compose and invert func-
tions, to solve nonlinear systems, differentiation and integration processes can be written
and performed in a DA environment, dealing with nth order polynomials.

1.2.1. High order Expansion of the Flow and Applications

According to [10], DA allows to compute the derivatives of any function f of m variables
up to an arbitrary order n. Consequently, this has an important role when integrating
an Ordinary Differential Equation (ODE) through a certain method. Explicit integration
schemes rely on algebraic operations, evaluating the ODE right hand side at several
integration points. Thus, working in a DA environment allows differential algebra to
compute the arbitrary order expansion of the flow of a general ODE Initial Value Problem
(IVP).

Given a generic IVP described by the dynamical flow f(x, t):

{
ẋ = f(x, t)

x(t0) = x0
(1.1)

the initial condition x0 can be initialized as a DA variable

[x0] = x̃0 + δx0 (1.2)

where x̃0 is the reference expansion point. The Taylor expansion of the flow is obtained
at each step of the considered integration scheme if all its operations are carried out in
the DA space.

Working with a forward Euler’s scheme:

xi = xi−1 + f(xi−1, ti−1)∆t (1.3)

Considering the first step and the above DA starting condition, the DA representation at
the first iteration is found:

[x1] = [x0] + f([x0], t0)∆t (1.4)

Indeed, if f is evaluated in the DA framework, the output [x1] is the Taylor expansion of
the solution x1 at time t1. The previous procedure can be inferred through the subsequent
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steps until the last integration cycle is reached. The result at the final point is the nth

order polynomial of the flow of the IVP 1.1 at the final time tf . Thus, the expansion of
the flow of a dynamical system can be computed up to order n with a fixed amount of
effort.

These techniques can be applied to more complex and precise schemes such as Runge-
Kutta integration methods.

As detailed in the next chapters, DA is applicable to expand an optimal TPBVP and to
solve control problems. According to this, many contributions investigate the benefits of
DA high order optimization dealing with different cases.
In [10] two applications are proposed. The first one is about the identification of the
family of halo orbits around the Lagrangian point L1 of the Earth–Moon system while
the other concerns the design of an aerocapture maneuver for different values of entry
velocity and drag coefficient.
Di Lizia et al. solved EOPs with DA techniques in 2014 [12] for rendezvous manoeuvres,
lunar landing and low-thrust Eart-Mars transfer, showing the computational advantages
and the accuracy of the high order approach. As a comparison, the same rendezvous
problem was previously taken into account by Park et al. in 2006 [18], where the canonical
optimal feedback control TPBVP is solved with generating functions.
The application of DA to a FOP is designed in [13], where saturating actuators, which
are a critical aspect of nonlinear optimal feedback control, are managed with DA. The
constraints have been included in the optimal control problem formulation and differential
algebra have been used to expand the associated optimal bang-bang solution with respect
to initial and terminal states.
Finally, in 2011, Armellin et al. [1] considered a DA method for the nonlinear propagation
of uncertainties in celestial mechanics and to study the close encounter of asteroid Apophis
with Earth in 2029. The arbitrary order Taylor expansion of the flow with respect to
the initial conditions has been exploited to implement an accurate and computationally
efficient Monte Carlo algorithm, in which thousands of pointwise integrations can be
substituted by polynomial evaluations.

1.3. Thesis Outline

This thesis is divided into 5 chapters.

In chapter 2 the theoretical fundamentals are introduced, describing the GEO environment
and dynamics, together with an insight on optimal control methods, focusing on the
objective function formulation, on the linearized solution and on the high order approach
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with DA.

Chapter 3 presents the adopted SK strategy and the procedure followed to choose the
target states, tailored to reach a quasi global optimization. The energy optimal problem
is then solved computing the controlled trajectory with respect to the nominal SK state;
its outcomes are presented comparing various DA results with numerical techniques.

Chapter 4 applies the DA to a minimum fuel optimization. A precise, numerically calcu-
lated reference path gives the baseline of the commutation times sequence. The control
arc is here about the nominal controlled structure, generating new thrust profiles. Various
initial displacements are considered to validate the DA fuel optimal solution.

A summary of the conclusions and suggestions for further developments are finally pre-
sented in chapter 5.

1.3.1. Objectives and Assumptions

This research proposes a novel approach to optimal SK for low-thrust, electric, geosta-
tionary satellites. The project aims to prove the applicability of differential algebraic
techniques and to highlight their computational benefits and the potential advantages in
terms of accuracy, optimality and on board feasibility for future eventual developments.
As a primary DA analysis, a simplified solution is proposed, based on the following as-
sumptions.

• The DA optimal feedback control problem is solved with indirect methods by ex-
panding a TPBVP.

• Only initial and final conditions are imposed. The thrust phases are not subject to
path constraints. This means that during a controlled path the spacecraft is allowed
to slightly violate the SK box.

• N-S and E-W station keeping are not considered separately. Thrust direction is
unbounded.

• No particular engines configuration is considered.

• No operational restrictions are enforced concerning the duration of the firings, their
sequence and the OFF periods.

• Satellite attitude is not taken into account.

• The GEO dynamics is written in Earth Centered Earth Fixed spherical coordinates.
The SK is achieved by focusing on the two geographical coordinates only.
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2| Fundamentals

2.1. Orbital Dynamics and Environment

2.1.1. Generalities

The GEO is a particular geosynchronous orbit with zero inclination and zero eccentricity.
From the definition of geosynchronous orbits, their period is equal to the one of the Earth’s
rotation. This enables to easily compute the semi-major axis of the GEO by the following
relation:

aGEO =
3

√
µET

2
E

4π2
(2.1)

with µE the geocentric standard gravitational parameter and TE the sidereal Earth rota-
tion period.

The motion of a GEO satellite can be beforehand approximated and described by the
keplerian restricted Two Body Problem (TBP). Considering the Earth as a perfect sphere
and neglecting any other possible perturbing action, according to the Newton gravitational
law, the orbiting body undergoes the force

F = −GmEmbody

r3
r (2.2)

where mE is the Earth’s mass, mbody and r indicate the mass and the position vector of the
satellite respectively, r is the GEO radius given by Equation 2.1 and G is the gravitational
constant. The above main parameters are introduced by Table 2.1.

mE[kg] TE[s] G[km3 · kg−1 · s−2] µE[km
3 · s−2] aGEO[km]

5.972 · 1024 86164 6.674 · 10−20 398600 42164.12

Table 2.1: General parameters and GEO semi-major axis
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Under these assumptions and ignoring the mass of the vehicle with respect to the Earth’s
one, the dynamics is given by a 2nd order Ordinary Differential Equation (ODE). Remem-
bering that the variation of the spacecraft momentum is equal to the sum of the external
forces, according to Newton’s second law, the relation 2.3 gives the equations of motion
for the TBP, where r̈ is the acceleration transmitted to the satellite by the external force.

r̈ = −µE

r3
r (2.3)

2.1.2. Reference Frames

In this section the adopted coordinate systems are presented, in particular:

1. Geocentric Equatorial Coordinate System (GECS);

2. Earth Centered Earth Fixed (ECEF) frame;

Geocentric Equatorial Coordinate System

The GECS system in Figure 2.1 has its origin in the center of the Earth, it is fixed and
it is built as follows:

Figure 2.1: Geocentric Equatorial Reference System [3]
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• X (̂I) axis points to the Vernal equinox γ;

• Z (K̂) axis is directed towards the North Pole;

• Y (Ĵ) axis completes the right orthogonal tern.

According to this reference, two different set of coordinates can be defined. The X, Y and
Z cartesian ones, that are the Î, Ĵ and K̂ components of the position vector r, and the
spherical ρ, α and δ. The latter can be related to the former by the definition of distance,
right ascension and declination, as described by the 2.4.


ρ =

√
X2 + Y 2 + Z2

α = arctan
Y

X

δ = arcsin
Z

ρ

(2.4)

with the ambiguity on α solved by looking at the sign of the x-coordinate:{
−π/2 < α < π/2 if X > 0

π/2 < α < 3π/2 if X < 0
(2.5)

Similarly, the cartesian coordinates can be expressed as functions of the spherical ones
thanks to the 2.6.


X = ρ cos δ cosα

Y = ρ cos δ sinα

Z = ρ sin δ

(2.6)

Earth Centered Earth Fixed frame

The second system introduced is the ECEF. Shown in Figure 2.2, this reference is very
similar to the GECS since it is Earth-centered and lies on the equatorial plane but it is
not fixed. Its main peculiarity is its angular velocity equal to the Earth’s one computed
in Equation 2.7. This characteristic becomes a huge advantage when dealing with GEO
satellites due to their motion integral with the Earth’s rotation and to their zero incli-
nation. An unperturbed GEO spacecraft, in fact, is constantly in its nominal position
(rGEO, λn, ϕn) with respect to this frame.
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It is built starting from the GECS as explained: the Z (K̂) axis remains fixed, pointing
the North Pole; the X (̂I) and Y (Ĵ) axis rotates on the equatorial plane following the
Greenwich Hour Angle (GHA). In this way, the GECS X axis now moves with the Green-
wich Meridian and it is called xG (x̂). From this new non-fixed axis x̂, ŷ, ẑ, a new set of
spherical coordinates is defined:

• r is the distance of the satellite from the Earth center;

• λ [−π, π] is the longitude of the satellite, defined as the angle between the spacecraft
projection on the equatorial plane and xG, positive towards East;

• ϕ [−π/2, π/2] is the latitude of the body, comparable to the GECS δ and positive
in the Northern Hemisphere.

Figure 2.2: Earth Centered Earth Fixed frame [19]

As said, the motion of this frame follows the GHA (Θ), and so it depends on the considered
initial epoch, as shown in Equation 2.7.

Θ(t) = Θ0 + ωE(t− t0), ωe =
2π

TE
(2.7)
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Knowing the right ascension α of the satellite, one can compute its longitude λ as:

λ = α−Θ(t) (2.8)

The relations between ECEF cartesian and spherical coordinates are again the 2.4 and
2.6, while the transformation from GECS to ECEF can be achieved through a rotation
around axis Z of an angle α:

xy
z

 = RZ

XY
Z

 (2.9)

with RZ the rotation matrix.

RZ =

 cosα sinα 0

− sinα cosα 0

0 0 1

 (2.10)

If the passage from the spherical to the cartesian is of interest, the following conversion
shall be applied in the ECEF [25], from the definition of the radial, transversal and out-
of-plane directions:


r̂ = cosϕ cosλ x̂+ cosϕ sinλ ŷ + sinϕ ẑ

λ̂ = sinϕ cosλ x̂+ sinϕ sinλ ŷ − cosϕ ẑ

ϕ̂ = − sinλ x̂+ cosλ ŷ

(2.11)

Knowing the ECEF spherical components, the cartesian ones are obtained:

xy
z

 =

cosϕ cosλ cosϕ sinλ sinϕ

sinϕ cosλ sinϕ sinλ − cosϕ

− sinλ cosλ 0


rλ
ϕ

 (2.12)
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2.1.3. Equations of Motion

Once the ECEF frame is selected as the best option to write the GEO dynamics, in this
section the procedure that leads to the motion of a generic body of mass m is reported
for the approximated keplerian problem and then extended to the real one.

Keplerian Dynamics

The TBP presented in 2.3 can be turned into r, λ and ϕ spherical coordinates.

This is obtained through the Lagrangian formulation. Defining q the vector of the free
coordinates r, λ and ϕ, K the kinetic energy and V the potential energy of the gravity
force only, the Lagrangian L is:

L = K(q, q̇)− V (q) (2.13)

The generalized equations of motion are written in the shape of 2.14.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q (2.14)

Q indicates the contribution of the non conservative forces acting on the body and, in
this case, this term is null.

Figure 2.3: Spherical Coordinates [25]



2| Fundamentals 15

According to [25] and to Figure 2.3, the position of a body in a spherical frame around
Earth can be defined as r = rer.

Considering that the frame is not fixed, the expression for the velocity is then:

v =
dr

dt
= ṙer + rθ̇eθ + rl̇ sin θel (2.15)

Noticing that θ = 90◦ − ϕ and l̇ = λ̇ + ωE, the kinetic energy can be computed, while
the potential V is given by the dr integral of the opposite gravity force introduced in
Equation 2.2.

K =
1

2
mv · v =

1

2
m [ ṙ2 + r2ϕ̇2 + r2(λ̇+ ωE)

2 cosϕ2 ]

V = −µEm

r

(2.16a)

(2.16b)

Defining v = ṙ, ξ = λ̇, η = ϕ̇ and the state x = [r λ ϕ v ξ η] as a six-elements vector with
position and velocity spherical components, the dynamics 2.17 for the keplerian TBP is
obtained in the form ẋ = f(x, t) through the solution of the Lagrangian formulation.



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE)

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ

(2.17)

Complete Dynamics

According to [2], in the presence of perturbing forces, as in the case of GEO real motion,
a new contribution is added to Equation 2.14. The expression of the complete dynamics
is obtained by appending the conservative, disturbing actions potential W p(r, λ, ϕ) to the
Lagrangian L:

L =
1

2
m [ ṙ2 + r2ϕ̇2 + r2(λ̇+ ωE)

2 cosϕ2 ] +
µEm

r
+W p(r, λ, ϕ) (2.18)
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Solving the Equation 2.14, the accelerations are then represented by a new set of spherical
equations:


v̇ +

µE

r2
− rη2 − r(ξ + ωE)

2 cosϕ2 = F (r, λ, ϕ)

ξ̇ − 2η(ξ + ωE) tanϕ+ 2
v

r
(ξ + ωE) = G(r, λ, ϕ)

η̇ + 2
v

r
η + (ξ + ωE)

2 sinϕ cosϕ = H(r, λ, ϕ)

(2.19)

F,G,H are the disturbing actions to the motion of the body. If W p(r, λ, ϕ) is the per-
turbing potential, they are written as follows:

F =
1

m

∂W p

∂r
, G =

1

m

∂W p

∂λ
, H =

1

m

∂W p

∂ϕ
, (2.20)

Since the gradient of a generic quantity can be computed in spherical coordinates as

∇(·) = ∂(·)
∂r

+
1

r cosϕ

∂(·)
∂λ

+
1

r

∂(·)
∂ϕ

(2.21)

and knowing that F,G,H represent the perturbing accelerations apr, a
p
λ, a

p
ϕ, the right-hand

side of 2.19 is finally given and the final dynamics ẋ = f(x, t) is:



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2 + apr(r, λ, ϕ)

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE) +

1

r cosϕ
apλ(r, λ, ϕ)

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ+
1

r
apϕ(r, λ, ϕ)

(2.22)

Since the GEO motion occurs in a real environment, a non spherical attractor must be
taken into account, as well as the typical high altitude perturbations, such as the Sun and
Moon gravity effects and the solar radiation pressure (SRP).
All these disturbances are detailed in the next section.
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2.1.4. Perturbations

As mentioned in 2.1.1, many disturbances must be taken into account when dealing with
a GEO real problem. The three main contributions affecting an high altitude orbit such
as the geostationary one can be seen in Figure 2.4 and are:

• non-uniformity of the gravity field;

• third bodies gravity influence (Sun and Moon specifically);

• solar radiation pressure (SRP).

Figure 2.4: Relevant perturbations and magnitude [23]

These perturbations constitute the accelerations collected in the term ap in Equation 2.22.

Earth’s Oblateness

Due to the fact that the Earth is not a perfect sphere, according to [4] and [24], the gravity
potential can be expressed like a series of harmonics:

Vgrav(r, λ, ϕ) =
µE

r

[
1 +

∞∑
l=2

l∑
m=0

(
RE

r

)l

Pl,m[sinϕ]{Cl,m cosmλ+ Sl,m sinmλ}

]
(2.23)

The first term represents the spherical potential, which has been already considered in
the dynamics 2.22.
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Figure 2.5: zonal, sectorial and tesseral harmonics [23]

As shown in Figure 2.5, the terms with m = 0 indicate the zonal harmonics; the ones
with l = m ̸= 0 are the sectorial harmonics and the cases with l ̸= m ̸= 0 corresponds to
the tesseral harmonics. The perturbing term is then:

V p
grav(r, λ, ϕ) =

µE

r

∞∑
l=2

l∑
m=0

(
RE

r

)l

Pl,m[sinϕ]{Cl,m cosmλ+ Sl,m sinmλ} (2.24)

It is important to notice that, for a GEO body orbiting with a nominal longitude and
latitude λn, ϕn, the perturbation caused by the Earth’s gravity field is almost constant
in time, since the satellite is located above the same bulge. The most important effect
caused by this additional acceleration is a longitude drift, whose intensity and direction
depend on λn (see Appendix A). The geopotential has four equilibrium points: two of
them are stable and are located at λ = 75.1◦ E and λ = 104.7◦ W ; the others are unstable
and correspond to λ = 165.3◦ E and λ = 14.7◦ W , as shown in Figure 2.6.

Figure 2.6: Stable and Unstable points [24]
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The Legendre polynomials Pl,m[sinϕ] assume the form provided by the Rodrigues’ gener-
alized formula 2.25, where the argument [sinϕ] is replaced by x.

Pl,m[x] =
1

2ll!
(1− x2)m/2 d

l+m

dxl+m
(x2 − 1)l (2.25)

The gravity model up to order 3, 3 is finally completed with the geopotential coefficients
of lth degree and mth order Cl,m and Sl,m in Table 2.2. Higher orders are not considered
due to their negligible effects.

l m Cl,m Sl,m

2 0 −1.083 · 10−3 −
3 0 2.532 · 10−6 −
2 2 1.574 · 10−6 −9.038 · 10−7

3 3 1.006 · 10−7 1.972 · 10−7

2 1 −2.414 · 10−10 1.543 · 10−9

3 1 2.191 · 10−6 2.687 · 10−7

3 2 3.089 · 10−7 −2.115 · 10−7

Table 2.2: Harmonics coefficients [24]

Once the potential is introduced, the perturbing accelerations can be found by performing
its spherical gradient:

ap
grav(r, λ, ϕ) =

∂V p
grav(r, λ, ϕ)

∂r
r̂+

1

r cosϕ

∂V p
grav(r, λ, ϕ)

∂λ
λ̂+

1

r

∂V p
grav(r, λ, ϕ)

∂ϕ
ϕ̂ (2.26)

Sun and Moon Disturbances

Another relevant disturbance is the one associated to the influence of both the Sun and
the Moon on a geostationary satellite. The higher the orbit, the stronger the effect of
these third bodies on the stability of the spacecraft. Their impact is very critical in the
latitude drift and it is time dependent, since the position of the attractors changes with
time.

A potential formulation is again the most suitable option to analyse and compute the
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perturbing accelerations:

V p
3B(r, λ, ϕ) = µ3

(
1

rs−3

− r · r3
r33

)
(2.27)

With reference to Figure 2.7 and thanks to the cosine law it is found that

1

r3−sat

=
1

|r3 − rsat|
=

1

r3

(
1 +

r2sat
r23

− 2
rsat
r3

cosψ3

)1/2
(2.28)

Figure 2.7: Third body perturbation. Reference geometry [4]

Noticing that rsat/r3 << 1, the expression above can be approximated as a Legendre
polynomial Pk[x], with x = cosψ3, as in [19]. The expression of the polynomial is given
again by the Rodrigues’ formula 2.25 with l = k and m = 0.

1

|r3 − rsat|
=

1

r3

∞∑
k=0

(
rsat
r3

)k

Pk[cosψ3] (2.29)
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In this way, the potential V3B can be firstly separated into Sun and Moon contributions
and then rewritten considering an expansion up to order k = 2:

V p
3B(r, λ, ϕ) =

µS

rS

[
1 +

(
rsat
rS

)2
3 cosψS − 1

2

]
+
µM

rM

[
1 +

(
rsat
rM

)2
3 cosψM − 1

2

]
(2.30)

The dependence on r, λ, ϕ is achieved through spherical geometry:

cosψ3 = sinϕ sin δ3 − cosϕ cos δ3 cos (Θ(t) + λ− α3) (2.31)

where δ3 and α3 are respectively the declination and the right ascension of the Sun/Moon,
given by the ephemeris at the current epoch. The perturbing accelerations are finally
computed:

ap
3B(r, λ, ϕ) =

∂V p
3B(r, λ, ϕ)

∂r
r̂+

1

r cosϕ

∂V p
3B(r, λ, ϕ)

∂λ
λ̂+

1

r

∂V p
3B(r, λ, ϕ)

∂ϕ
ϕ̂ (2.32)

Solar Radiation Pressure

The last significant, perturbing force coming from the high altitude environment is the
solar pressure disturbance (SRP). It acts on the eccentricity of the orbit and so its main
effect is an E-W drift. According to quantum physics, the radiation emitted by the Sun
contains photons. They are massless elementary particles travelling at the speed of light
c and carrying energy and momentum, which values can be computed through the Planck
constant h. Knowing the frequency f [Hz] of the electromagnetic wave associated to a
photon, its energy can be written as E = hf , while its momentum is given by p = hf/c.
In this analysis the Sun is considered as a black body emitting photons from its visible
surface (the photosphere) on the whole electromagnetic spectrum and at a temperature T.
Thanks to the Stefan-Boltzmann law, the intensity of the emitted radiation is S0 = σT 4,
where σ is the Stefan-Boltzmann constant.

Indicating Rp and RE−S the radius of the photosphere and the mean Earth-to-Sun dis-
tance, referring to Table 2.3, the radiation intensity SE at the Earth’s orbit is rescaled
as:

SE = S0

(
Rp

RE−S

)2

= 1367 W/m2 (2.33)

that is the energy flux transported by the photons across a surface normal to the direction
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of the radiation. Dividing SE by c, the momentum flux at Earth’s distance, which is equal
to a pressure (the SRP), is found:

PSR =
SE

c
= 4.56 µPa (2.34)

The force transmitted to a satellite of mass m, with a reflectivity area As, characterized
by a reflection coefficient Cr lying between 1 (total absorption) and 2 (total reflection) is:

Fp
SRP = νCrPSRAsû (2.35)

where û is the direction from the Sun to the spacecraft and ν assumes the value of 1,
except during eclipse time when it is 0. The SRP main parameters are summarized in
Table 2.3.

h[J · s] c[m/s] T[K] σ[W ·m−2 ·K−4] Rp[km] RE−S[km]

6.626 · 10−34 2.998 · 108 5777 5.670 · 10−8 696000 149.6 · 106

Table 2.3: Solar Radiation Pressure parameters [3]

Consequently, the perturbing acceleration is:

ap
SRP = νCr

PSRAs

m
û (2.36)

Looking again at Figure 2.7 and approximating the Sun-to-satellite direction to the Sun-
to-Earth one, the acceleration ap

SRP can be computed from a pseudo-potential written in
the ECEF spherical coordinates VSRP (r, λ, ϕ):

V p
SRP (r, λ, ϕ) = −νPSR

CrAs

m
r cosψS (2.37)

The angle ψS is function of r, λ and ϕ thanks to Equation 2.31 and so the perturbing
accelerations due to the SRP in the ECEF spherical coordinates are found:

ap
SRP(r, λ, ϕ) =

∂V p
SRP (r, λ, ϕ)

∂r
r̂+

1

r cosϕ

∂V p
SRP (r, λ, ϕ)

∂λ
λ̂+

1

r

∂V p
SRP (r, λ, ϕ)

∂ϕ
ϕ̂ (2.38)
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2.1.5. Free-Drift Dynamics

All in all, the uncontrolled dynamics can be written as a TBP perturbed by various
accelerations coming from the environment, in the form ẋ = f(x, ap(r, λ, ϕ), t) = f(x, t),
as in 2.22, with ap expressing the disturbances as function of the state x (see Appendix A).
Without control, the perturbations in Equation 2.39 will let a test spacecraft characterized
by a generic nominal state xn = [aGEO, 60

◦E, 0◦, 0, 0, 0], of mass m = 3000 kg and
reflectivity area As = 100m2, to drift from the assigned initial conditions, as shown in
Figure 2.8.

ap(r, λ, ϕ) = ap
grav(r, λ, ϕ) + ap

3B(r, λ, ϕ) + ap
SRP(r, λ, ϕ) (2.39)

Figure 2.8: One month free-drift from λ = 60◦ E

Long time oscillations can be noticed for r and λ in a longer period, as can be seen
in Figure 2.9. Secular periodicity for r is mainly due to the motion of the Sun, while
the ones on λ are caused by the fact that, even if λn = 60◦E is not a stable point,
as presented in Figure 2.6, the longitude drift towards East will bring the body above
the stable longitude at 75.1◦E. This will cause an oscillation taking the spacecraft back
to nominal longitude after two years. It is possible to highlight that, for this specific
case, unless a control action, the vehicle will drift about 30◦/year in longitude and about
0.85◦/year in latitude, which is clearly unacceptable for a GEO satellite. The nearer to
an unstable point, the higher the λ displacement is. The latitude drift, mainly due to the
influence of the third bodies, is totally and always divergent in time.
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Figure 2.9: Two years free-drift from λ = 60◦ E

The same spacecraft above a stable gravity condition at λn = 75.1◦ E will remain confined
in a quite small East-West region [−2.5◦, 2.5◦]. However, this still does not satisfy the
longitude band requirements for a typical GEO station keeping problem.

Figure 2.10: One year free-drift around stable point at λ = 75.1◦ E

Further details can be found in Appendix A.
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2.2. Control Fundamentals

An optimal control problem implies the determination of the control law (thrust mag-
nitude and direction) while minimizing a certain performance index, such as the mass
consumption, the transfer time or the energy and satisfying boundary constraints, path
constraints or mid-point conditions. Since an analytic approach can not be selected for
this kind of problems, numerical methods are usually adopted to find the optimal solution.
Two main categories can be introduced: direct methods and indirect methods. The former
rely on direct transcription method, through which the optimization is written as a non-
linear programming problem. They are generally robust and can fulfill path constraints,
but they require high computational burden. The latter have a small convergence radius
and they are very sensitive to initial costates, but their convergence is much quicker with
a good initial guess. Thanks to the calculus of variations the problem can be transformed
and then solved as a Two-Point Boundary Value Problem (TPBVP). Indirect methods
are used in this project.

2.2.1. Optimal Control

According to [17] and [22], defining a set of n first-order differential equations in the form

ẋ = f(x,u, t) (2.40)

where f is the dynamical flow, x(t) is a set of state variables, u(t) is the vector of control
actions and t = [t0, tf ] represents the independent time variable, it is possible to define
the performance index J as:

J = ϕ(x(tf ), tf ) +

∫ tf

t0

L(x,u, t) dt (2.41)

satisfying the final boundary conditions as a q-dimensional vector:

ψ(x(tf ),u(tf ), tf ) = 0 (2.42)

If ν is a q-dimensional vector of constant multipliers of the terminal constraints and l is
a {n× 1} array of the costate variables multiplying the dynamics, the objective function
can be augmented as:
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Ĵ = ϕ(x(tf ), tf ) + νT(ψ(x(tf ),u(tf ), tf )) +

∫ tf

t0

[L(x,u, t) + lT(f(x,u, t)− ẋ)] dt (2.43)

The minimization of Ĵ is reached with the help of the calculus of variations by performing
its gradient with respect to x, l,u and equating it to zero. A simplified notation is achieved
introducing the Hamiltonian

H(x, l,u, t) = L(x,u, t) + lTf(x,u, t) (2.44)

and imposing the first variation of the functional:



∂H

∂l
= ẋ, x(t0) = x0

∂H

∂x
= −l̇T, l(tf ) = [ϕ+ νTψ]t=tf

∂H

∂u
= 0

(2.45)

The solution of the differential-algebraic systems representing the state and costate dy-
namics in the so called Euler-Lagrange equations 2.45 can be found through the solution
of a TPBVP with x(t0) = x0 the assigned initial conditions. The derivative of H with
respect to u is an application of the Pontryagin maximum principle thanks to which the
control u ∈ U is chosen to be an extreme of H at every instant of time. In this way the
feasible control u belonging to a set of feasible actions U optimizes the Hamiltonian along
the whole time span.

Analysing the case where the final state is also imposed, the set of Euler-Lagrange equa-
tions becomes:



∂H

∂l
= ẋ, x(t0) = x0 ∪ x(tf ) = xf

∂H

∂x
= −l̇T

∂H

∂u
= 0

(2.46)

The solution of this set of equations is usually achieved using numerical iterative tech-
niques such as a single shooting method, whose aim is to find the initial values of the
costate in order to both find the optimal control laws and accomodate all the constraints.
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This project requires the solution of two optimal control problems:

• an Energy Optimal Problem (EOP);

• a Fuel Optimal Problem (FOP).

As specifically shown in chapter 3 and chapter 4, the control laws assume different shapes,
due to the distinct nature of constraints, objective functions and, as a consequence, of the
Hamiltonians.

Once the control vector u is found, its contribution arises in the complete dynamics 2.22,
that can be rewritten as:



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2 + apr(r, λ, ϕ) + ur(t)

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE) +

1

r cosϕ
apλ(r, λ, ϕ) +

1

r cosϕ
uλ(t)

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ+
1

r
uϕ(t)

(2.47)

2.2.2. Linear Control and State Transition Matrix

If a dynamical problem in the form 2.40 can be considered or approximated as a linear
system, the control can be easily achieved. A linearized system in the neighborhood of an
equilibrium point is obtained from a series expansion of the dynamics about that point,
neglecting all the nonlinear terms. Through this method, a very immediate solution can
be found with the application of the State Transition Matrix (STM). On the other hand,
a linearized solution is very imprecise and its accuracy drops when dealing with high
nonlinearities.

Defining the augmented state as a {2n×1} vector z = [x; l], the evolution of z is provided
by the dynamical flow as: ż(t) = f(z, t). If a generic perturbation δz occurs, the dynamics
is now indicated by:

ż(t) + δ̇z(t) = f(z+ δz, t) (2.48)

Supposing to have a reference z̃, in the case of a displaced trajectory flying close to the
baseline, a linearization of the perturbed ODEs 2.48 can be performed as a Taylor 1st
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order expansion of the flow about the target:

˙̃z(t) + δ̇z = f(z̃+ δz, t) ≃ f(z̃, t) +
∂f(z, t)

∂z

∣∣∣∣
z=z̃

δz (2.49)

and so it is possible to express the evolution of the deviation, introducing Â(t):

δ̇z(t) = Â(t)δz(t) (2.50)

The derivative of f with respect to z is the Jacobian of the flow itself consisting of a
{2n× 2n} array called augmented state matrix Â(t). The STM is defined by:

STM = Φ(t0, t) (2.51)

such that the generic perturbation of z at time t can be expressed as a function of the
initial one δz0(t0):

δz = Φ(t0, t)δz0 (2.52)

Thanks to the variational approach, the evolution of the STM (see Appendix B) is achieved
by integrating the following initial value problem (IVP), made of 2n(2n+ 1) equations:

{
ż(t) = f(z, t), z(t0) = z0

Φ̇(t0, t) = Â(t)Φ(t0, t), Φ(t0, t0) = I
(2.53)

The application of the STM to the optimal control problem is straightforward. The
solution of a TPBVP like 2.46 can be obtained by considering a linearization about a
reference solution and a perturbation of the state x0. The optimal control problem consists
in finding the variation, caused by the starting disturbance, of the initial costates with
respect to the reference ones, in order to match all the constraints. The linearized control
law is then attained expanding the IVP 2.53 from t0 to tf and then imposing the desired
final displacement δxf compared to the reference. This is achieved writing the final STM
in partitioned form (see Appendix B) and inverting it as:

{
δxf

δlf

}
=

[
Φxx Φxl

Φlx Φll

]
t=tf

{
δx0

δl0

}
(2.54)
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δl0 = Φ−1
xl [δxf −Φxxδx0] (2.55)

2.2.3. High Order Control with DA

With the aim of tackling nonlinearities and increase the accuracy with respect to the
linearized case, high order methods are taken into account in this thesis work. Differential
algebraic techniques introduced in section 1.2 are useful to build up this kind of control
problems. As an extension of the STM solution, suppose to deal with a dynamical TPBVP
of this kind:

{
ẋ = f(x, l, t)

l̇ = g(x, l, t)
(2.56)

subject to initial conditions x(t0) = x̄0 and imposed final state x(tf ) = x̄f . As presented
before, the control problem objective is to find the initial value of the costates l0 solving
the TPBVP and matching all the constraints. If a reference l̄0 is available, the procedure
is similar to the STM. Thanks to DA, an arbitrary order k Taylor series expansion of
the solution of the optimal control problem with respect to initial and final state can be
performed. The first step consists in initializing the state and the costate at time t0 as
DA variables:

x0 = x̄0 + δx0

l0 = l̄0 + δl0

(2.57a)

(2.57b)

Unlike the STM case, where the dependence of the final conditions on the initial state
and costate values is expressed through the matrix Φ, now it is obtained in terms of high
order polynomial maps (M). Using the techniques described in section 1.2, the solution
at tf is expanded as a k order polynomial with respect to the starting conditions, as in
[12].

(
[xf ]

[lf ]

)
=

(
x̄f + δxf

l̄f + δlf

)
=

(
Mxf

Mlf

)(
δx0

δl0

)
(2.58)

Subtracting the constant parts:

(
δxf

δlf

)
=

(
Mxf

Mlf

)(
δx0

δl0

)
(2.59)



30 2| Fundamentals

and extracting the map for the final state, the following new relation can be built con-
catenating Mxf

with the identity map Ix0 related to the initial state variation:

(
δxf

δx0

)
=

(
Mxf

Ix0

)(
δx0

δl0

)
(2.60)

By virtue of the polynomial inversion techniques:

(
δx0

δl0

)
=

(
Mxf

Ix0

)−1(
δxf

δx0

)
(2.61)

the initial costate displacement with respect to the reference, representing the optimal
control law, can be finally found similarly to Equation 2.55, where the STM coincides
with a 1st order polynomial map:

δl0 =Ml0(δxf , δx0)

l0 = l̄0 + δl0
(2.62)
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This chapter goes deeply into the SK formulation and it covers the approach to find the
solution of the energy optimal control problem. It is organized into three main topics:
one concerns the overall strategy adopted and introduces the algorithm needed for the
control targets search; the second one is about the EOP formulation and the implemented
solutions; finally relevant results are shown at the end of the analysis.

3.1. SK Strategy and Target Selection

The station keeping problem formulation presented in this thesis work is made of a se-
quence of uncontrolled-controlled phases with the aim of maintaining a test spacecraft,
whose parameters are collected in Table 3.1, within a certain longitude-latitude assigned
box around its nominal state. The Free-Drift (FD) stage (see 2.1.5) starts from a specific
point called xT = [rT , λT , ϕT , vT , ξT , ηT ] and lasts as much as the vehicle remains inside
the selected slot. Then the satellite is taken by the control action to a new target point
x′
T, from which it will be subject to the natural motion once again as long as it stays in

the allowable λ and ϕ bands.

m [kg] As [m
2] Cr λn [deg] ϕn [deg] rn [km]

3000 100 1.5 60E 0 42165.8

Table 3.1: Test satellite properties

In light of this approach, a procedure to determine the target states shall be individuated.
Two main possibilities are taken into account, one is analytical, while the other is a
numerical procedure.
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3.1.1. Analytical Targets

Following [8], the objective states of the controlled tracks might be selected by exploiting
the longitude drift caused by the geopotential perturbation. This E-W or W-E displace-
ment mainly due to the zonal J2,2 is tabulated (see Appendix A) for the values of possible
nominal longitude. The λ evolution can be approximated as a ballistic motion:λ̈(t) = C = const

λ(t) =
1

2
Ct2 + λ̇(0)t+ λ(0)

(3.1)

Acting on the distance r it is possible to control the longitude drift rate as:

λ̇ = −3

2

ωE

aGEO

∆r (3.2)

Calling δ the amplitude of the E-W band, the target longitude can be easily determined
like: 

λ(0) = λn +
δ

2
C > 0

λ(0) = λn −
δ

2
C < 0

(3.3)

From Equation 3.1, λ̇(0) is given and, consequently, the target ∆r. The complete proce-
dure and analysis can be found in [8].

λ̇(0) = −2sign(C)
√
2Cδ −→ ∆r = −2

3

aGEO

ωE

λ̇(0) (3.4)

Basically this strategy foresees the collocation of the spacecraft on the eastern extreme of
the box if the geopotential main effect is a westward drift or on the western boundary in the
other case. The target state of such a kind is typically: xan

T = [rGEO+∆r, λ(0), 0, 0, 0, 0].

Figure 3.1: 3-days FD λ, ϕ trajectory from analytical target with all perturbations
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It is a very intuitive, quick solution and provides the same time-independent target for
every control cycle but, on the other hand it can not be considered a good approach. In
fact, as previously introduced, many other perturbations affect the motion in addition to
the 2,2 order zonal harmonics. These are time dependent and can possibly cause also an
opposite drift, so they must be taken into account. Another reason which leads to search
for another solution is founded on the fact that, as shown in Figure 3.1, in a E-W band
of 0.1◦ around a nominal longitude of 60◦E it takes the test satellite in Table 3.1 only
about three days to drift freely from the western limit to the eastern one. This implies,
during a longer time span, to have very frequent controlled phases and thus an increasing
consumption.

3.1.2. Numerical Optimized Targets

With the purpose of building up a quasi-global optimization and reduce the control cycles
to a minimum, a numerical procedure is implemented.

Exploiting the MATLAB® local optimizer fmincon and its nonlinear constraints, one can
find a target state such that the uncontrolled phase starting from it will last a certain
selected time and will be bound within the SK slot. Initializing fmincon with the an-
alytical target xan

T , passing an arbitrary FD duration to the optimizer and defining the
objective function as the inverse of it, the output is the state that grants the residence
of the satellite inside the allowed λ and ϕ bands for that period. The input time is the
variable on which convergence depends: if it is too high, finding a target satisfying all the
constraints will be very complicated.

A sort of bisection can be developed as follows:

Figure 3.2: Bisection method on FD duration

1. after a trial and error phase, a long drift tB is selected in order to avoid fmincon’s
convergence to a feasible target. On the other hand, a short time tA grants a quick
solution;

2. tc is defined as (tA + tB)/2;
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3. fmincon is performed in tc;

4. a new interval is defined as in Figure 3.2, updating the extremes by looking at the
fmincon convergence in tc and a new half time is defined as t′c;

5. the procedure is repeated until tB − tA < 10′

Since an fmincon optimization is performed at every time limit until bisection ends, the
computational burden involved in this strategy is very high. However, at the end, the
maximum FD term tmax

FD is found according to this procedure.
For a long time span analysis, the presented bisection shall be initialized at the epoch
when the k−cycle is expected to begin, as shown in Algorithm 3.1. In fact, since the
majority of the disturbances are time-dependent, the target xT will be different at every
loop, generating a {6× k} matrix, as well as the tmax

FD , collected in {1× k} vector.

Algorithm 3.1 Numerical Targets over a long period
1: Compute the fmincon initial guess analytically: x0 = xan

T ;
2: Define tA and tB;
3: Set a fixed control duration tCONTROL;
4: Initialize time at initial epoch: time = t0;
5: Set an ending epoch: tmax = t0 + tspan;
6: Initialize the index k = 1;
7: while time < tmax do
8: [xT( :,k), t

max
FD (k)] = bisection(time, tA, tB,x0);

9: time = time+ tmax
FD (k) + tCONTROL; k = k + 1;

10: end while

Through this approach, fixing one−day long control phases and considering one−year
time span starting on January 1st, 2023 at 00 : 00 : 00, fourteen control cycles only
are needed to maintain the test spacecraft within a 0.1◦ E-W, 0.1◦ N-S bands. On the
contrary, 104 control days shall be planned according to the analytical case and to the
approximated dynamics just affected by the geopotential. The duration of the numerical
FD stages are reported in Table 3.2, while the first two uncontrolled tracks are reported
in Figure 3.3.



3| Energy Optimal Station Keeping Design 35

Cycle 0 1 2 3 4 5 6

FD [days] 20.689 26.296 26.012 25.979 25.942 25.131 25.673

Cycle 7 8 9 10 11 12 13

FD [days] 19.131 24.159 25.034 26.022 26.887 26.012 25.996

Table 3.2: FD phases duration in a year with optimized targets
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Figure 3.3: First two FD phases starting from the optimized targets (xT)

This sequence is run on ground and then its results can be loaded onboard, avoiding the
optimization procedure in real time. After that, a control strategy able to quickly coun-
teract any possible deviation with respect to this reference is needed, as presented later
in this chapter. As an example of the typical numerical target state xT, the first one is
reported:

r0T [km] λ0T [deg] ϕ0
T [deg] v0T [m · s−1] ξ0T [deg · s−1] η0T [deg · s−1]

42168.50279 60.02562 0.03255 −0.13708 −3.80160 · 10−7 −4.17393 · 10−7

Table 3.3: First optimized target
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3.2. Problem Formulation

The energy optimal control problem is defined in this section, according to 2.2.1. Given
the dynamical system described by Equations 2.47, it can be rewritten introducing the
matrix B(x), being x = [r, λ, ϕ, v, ξ, ν] the state and u = [0, 0, 0, ur, uλ, uϕ] the control
accelerations vector:

ẋ = f(x,u, t) = f̃(x, t) +B(x)u (3.5)

where f̃(x, t) expresses the dynamics that does not depend on external commands. If
f(x,u, t) is the complete dynamical flow, it follows that (2.2.2):

A(x,u, t) =
∂f(x,u, t)

∂x
= A (3.6)

is the Jacobian of the state motion (see Appendix B).

The matrix B(x), in this case, is a {6×1} vector built from the Equations 2.47 as follows:

B(x) =



0

0

0

1
1

r cosϕ
1
r


= B (3.7)

Once selected the objective function that minimizes the energy:

J =
1

2

∫ tf

t0

uTu dt (3.8)

the TPBVP that solves the EOP is obtained through the gradient of the Hamiltonian

H =
1

2
uTu+ lT[f̃(x, t) +B(x)u] (3.9)

and the costate definition: l = [lr, lv] = [lr, lλ, lϕ, lv, lξ, lη]. It consists of the augmented
dynamics of both the state x and the adjoint variables l, subject to the initial reference
x0 and the final target xT, as summarized in the Euler-Lagrange Equations 3.10.
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∂H

∂l
= f̃(x, t) +Bu = ẋ

∂H

∂u
= uT + lTB ⇒ u(l) = −BTl

∂H

∂x
= −l̇T ⇒ l̇ = −

(
∂H

∂x

)T

= −
(
∂f(x, l, t)

∂x

)T

l = −AT(x, l, t) l = −ATl

x(t0) = x0

x(tf ) = xT

(3.10)

The dynamical problem can be redefined introducing the augmented variable z = [x, l]

and expressing the control u as function of l:

ż =

{
ẋ

l̇

}
=

{
f̃(x, t)−BBTl

−ATl

}
(3.11)

Finally, the explicit TPBVP associated to an EOP in ECEF spherical coordinates and
with boundary constraints only, is represented by the Equations 3.12.



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2 + apr(r, λ, ϕ) + lv

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE) +

1

r cosϕ
apλ(r, λ, ϕ) +

1

(r cosϕ)2
lξ

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ+
1

r2
apϕ(r, λ, ϕ) +

1

r2
lη

l̇ = −
(
∂f

∂x

)T

l

(3.12)

subject to x(t0) = x0 and x(tf ) = xT.
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3.3. EOP Solution

The solution of the energy optimal feedback control problem is achieved through different
approaches. The first one is a numerical method that, in the case of the EOP, is used only
as the exact controlled trajectory to be referred for comparison and validation. The DA
techniques are then exploited to achieve the control law with a 2nd order expansion. Last
but not least, a splitted autonomous (time-independent) and non-autonomous problem is
faced using both a DA expansion and the linear approximation with the STM.

All the methods rely on the same general idea: the SK assigned slot is viewed as a
neighbourhood of the nominal state xn = [rGEO, λn, ϕn, 0, 0, 0]. Any sufficiently contained
deviation from this reference can be considered as a perturbation δx. Starting from the
ballistic solution characterized by the initial costate l0

bal = [0, 0, 0, 0, 0, 0], the flow can be
expanded from the epoch tCi, when the control begins, to tCf , when it is switched off.

Then the boundary constraints on the final state are applied, together with an initial
perturbation defined as δx0 = xCi − xn, where xCi contains the actual satellite position
and velocity when the engines are turned on. The control law δl0 is given finding the
optimal TPBVP 3.12 solution, with x0 = xCi = xn + δx0.

Figure 3.4: General EOP solution design in the neighbourhood of xn
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In the specific case of the SK strategy adopted and presented in section 3.1, the proce-
dure is the one shown in Figure 3.4. With reference to the k numerical targets previously
determined in 3.1.2, the solution of a generic k cycle is obtained as follows:

1. compute the FD trajectory starting from the target point of the previous loop xk−1
T

and expanding the uncontrolled dynamics for tkFD;

2. integrate the TPBVP 3.10 from tCi to tCf with z0 = [xn; l0
bal];

3. impose the k target as final constraint: x(tCf ) = xk
T;

4. apply the initial perturbation δx0 and find the control law δl0.

3.3.1. Shooting Method

The numerical exact solution is achieved thanks to a single shooting method implemented
in Python. Through the built-in solver of nonlinear equations systems fsolve, the required
control is found by integrating the EOP TPBVP 3.12 as described and minimizing the
displacement between the final expansion point and the current control target. The result
is obtained iteratively by updating δl0 until the EOP is solved and the final constraints
are met with a certain tolerance.

Since some loops are needed, this method is expected to be very precise but also quite
computationally expensive. Moreover, the shooting technique must be performed every
cycle and for every possible uncertainties of the initial or final coordinates. The shooting
trajectory is used only for comparison with the approaches below.

3.3.2. High Order Solution with DA

By virtue of the Differential Algebra Computational Toolbox [16] (DACE) developed in
a C + + language and its Python interface DACEyPy [20], the EOP is turned into the
algebra of Taylor series and its solution is obtained through the mere evaluation of arbi-
trary order polynomials.
To do this, the next procedure has to be followed, referring to 2.2.3:

1. initialize DACE with the selected expansion order and the number of DA variables
involved; in the EOP case they are 12 (6 describing the state and 6 for the costate);

2. erase the starting augmented state as a DA object z0 + δz0, with z0 = [xn, l0
bal],

thus the initial polynomial is defined;
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3. expand the map from tCi to tCf with the DACE RK78 provided Python function
and extract the last component, which expresses the final state dependence on the
initial perturbations δx0 = xCi − xn and δl0 (see Appendix B):

(
[xf ]

[lf ]

)
=

(
x̄f + δxf

l̄f + δlf

)
=

(
Mxf

Mlf

)(
δx0

δl0

)
(3.13)

4. build up the polynomial that imposes the final target constraint as:

C = [xf ]− xT (3.14)

5. take the Equation 2.61:

(
δx0

δl0

)
=

(
Mxf

Ix0

)−1(
δxf

δx0

)
(3.15)

evaluate it in δx0 and impose δxf equal to the opposite of the constant part of C
to enforce the final target and find the control law δl0.

This sequence has to be replicated for every control cycle, due to the time-dependence of
the maps. The epoch shall be updated every loop and new polynomials are computed.
However, in case of initial or final uncertainty, the solution is simply obtained by evaluating
the current map with the new δx0, avoiding the repetition of the aforementioned workflow.

3.3.3. DA and STM Combination

As already introduced in [11], it is possible to separate the time-varying perturbations
from the others and consider their motion effects individually. As presented in 2.1.4, the
dynamics subject to the disturbance accelerations coming from the geopotential is called
autonomous and it does not change with the epoch, while the one affected by the SRP,
the Sun and the Moon influence is called non-autonomous.

The EOP can be solved taking advantage from this fact and combining the DA expansion
with the STM. The first component consists in a 4th order map of the autonomous problem
expanded from tCi to tCf and then manipulated as detailed above; the other one is the
solution of the complete motion thanks to the STM and can be interpreted as a linear
correction to the former result.
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The method is summarized below and developed for a year SK in Algorithm 3.2.

Figure 3.5: Autonomous one-week Free-Drift starting from xn

From the time-invariant polynomial describing the dynamics affected by the geopotential
(GG):

(
δx0

δl0
GG

)
=

(
MGG

xf

Ix0

)−1(
δxf

δx0

)
(3.16)

the autonomous control law δl0
GG is found, applying the initial displacement δx0 =

xCi − xn and the final one as in 3.15.

l0
GG = l0

bal + δl0
GG = 0+ δl0

GG = δl0
GG (3.17)

Then, the STM must be integrated together with the flow from tCi to tCf to obtain the
linear (L) final state xf

L as (see Appendix B):

{
ż(t) = f(z, t), z(t0) = [xn, l0

GG]

Φ̇(t0, t) = Â(t)Φ(t0, t), Φ(t0, t0) = I
(3.18)

Consequently, the 1st order feedback of the overall (autonomous and non-autonomous)
motion is given by:
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{
δxf

L

δlf
L

}
=

[
Φxx Φxl

Φlx Φll

]
t=tCf

{
δx0

L

δl0
L

}
(3.19)

δl0
L = Φ−1

xl [δxf
L −Φxxδx0

L] (3.20)

with δxf
L = xT − xf

L and δx0
L = δx0.

Summing up the two contributions, the final control action is:

l0 = l0
GG + δl0

L (3.21)

The main benefit of this strategy is the low computational burden. In fact, the GG 4th

order map is fixed in time and so the autonomous control law is generated by the simple
and immediate evaluation of it at the current SK cycle. The STM shall be integrated
every loop, but this process is expected to be very quick. The drawback is the lack of
precision with respect to high order complete expansions or numerical methods. The
longer is the [tCi, tCf ] span, the higher is the influence of the linear term and the so the
target matching error.

Algorithm 3.2 DA and STM combination strategy over a year. Part 1
1: Setup
2: Initialize DACE: (4thorder, 12 variables);
3: Initialize time at initial epoch: time = t0;
4: Set a fixed control duration: tC ;
5: Extract the number of numerical targets (3.1.2) in a year: kmax ;
6: Initialize FD augmented state: z0

FD = [xT
0,0];

7: Initialize control augmented state: z0
C = [xn, l0

bal];
8: Expand Autonomous Map
9: Obtain final time-invariant map with DACE RK78 propagator:

[zf
GG] = RK78(z0

C , 0, tC , @AutonomousDynamics)
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Algorithm 3.3 DA and STM combination strategy over a year. Part 2
1: for i = 1 : kmax do
2: Expand FD flow with an ODE propagator:

xCi = FreeDriftPropag(z0
FD, ti−1

FD);
3: Autonomous Control Law
4: Extract the map: [xf

GG] = [zf
GG][: 6];

5: Compute the map for the final constraint: CGG = [xf
GG]− xT

i;
6: Define: δx0

GG = xCi − xn;
7: Extract the constant part of CGG with DACE function cons and

define: δxf
GG = −CGG.cons();

8: Define the 6 variables identity map: [I];
9: Concatenate the final map with DACE function concat:

M = [xf
GG].concat([I]);

10: Invert it with DACE function invert:
Minv =M.invert();

11: Evaluate it with DACE function eval and compute:
l0

GG =Minv.eval(δxf
GG, δx0

GG);
12: STM Linear Correction
13: Initialize STM: z0STM = [xn, l0

GG]; Φ0 = I;
14: Expand STM with an ODE propagator:

[xf
L,Φ(t0, tCf )] = STMpropag(z0

STM , Φ0, tC);
15: Define: δx0

L = xCi − xn;
16: Define: δxf

L = xT
i − xf

L;
17: Invert the final STM and find:

δl0
L = STMinversion(Φ(t0, tCf ), δxf

L, δx0
L)

18: Overall control law: l0 = l0
GG + δl0

L;
19: Update for next Loop
20: Propagate the controlled trajectory with an ODE propagator:

xCf = ControlPropag([xCi, l0], tC);
21: Update inital FD augmented state: z0

FD = [xCf ,0];
22: Update epoch: time = time+ ti−1

FD + tC ;
23: end for
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3.4. EOP Results and Analysis

The findings of the EOP strategies introduced are here reported. The simulations are
about the test spacecraft already described in Table 3.1 and rely on the SK solution
presented in section 3.1. The main analysis uses the numerical optimized targets searched
within a λ and ϕ bands of 0.1◦ as in section 3.1.2, starting on January 1st, 2023 at
00 : 00 : 00, with the associated maximum FD duration and the fixed one-day long
control phases.

In order to highlight the benefits and the drawbacks of DA techniques applied in this
field, the results are presented as a comparison of the three approaches adopted:

• single shooting numerical method;

• 1st (linear) and 2nd order expansion with DA;

• 4th order autonomous solution with complete linear corrections.

Great accuracy in target matching by the control actions means being sure to stay in
the assigned SK slot for the next uncontrolled planned time. The larger the final error,
the lower is the probability to meet the latitude and longitude requirements during the
natural motion.
In the next figure the position and velocity deviations at each objective xT are presented
showing their order of magnitude in a logarithmic scale.

Figure 3.6: State error on target matching during every control cycle
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Shooting Reference Solution

The most precise method is the numerical one. The single shooting grants important
final bonds accomodation and so the SK conditions are well satisfied as represented in
Figure 3.7.

Figure 3.7: SK Box in a Year. Shooting Solution

Figure 3.8: λ evolution over a Year. Shooting Solution
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The box is slightly violated at the eastern border during the thrust arcs and this is due
to the fact that no path constraints are imposed along these phases. However the time
spent by the satellite outside its allowable region is very small and can be easily predicted
by looking at the longitude evolution in Figure 3.8.

Figure 3.9 and Figure 3.10 complete the dynamics of the state for the whole time span.
In particular, the first one shows the oscillations of the distance r around its nominal
value of 42165.8 km and the admissible latitude fluctuations, while the other is about the
barely undetectable velocity variations along the three directions.

Figure 3.9: r and ϕ evolution over a Year. Shooting Solution

Figure 3.10: Velocities evolution over a Year. Shooting Solution



3| Energy Optimal Station Keeping Design 47

1 st Order Solution

The less accurate result is provided by the linear approach. It can be obtained by ex-
panding the initial polynomial using DACE or through the integration of the actual STM.
The second way avoids data allocation in the memory and it is computationally faster,
providing the same result. All in all, what is found is clearly unacceptable for this strat-
egy. As clearly explained by the next two charts, the SK requirements can not be satisfied.

Figure 3.11: SK Box in a Year. Linear Solution

Since the targets are selected in order to maximize the permanence inside certain lon-
gitude and latitude bands, very few FD initial states are acceptable and, consequently,
the final constraints matching tolerance is very low. With reference to Figure 3.6 the
target error generated by a 1st order control is too high, both in position and, mainly,
in velocity. As a consequence, the FD trajectories that begin when the engines are shut
down do not correspond to the ones expected by the optimization procedure in section
3.1.2. Figure 3.11 shows what happens: even if the feedback takes the satellite back inside
the slot, the time spent outside is larger than the resident one. When nonlinearities grow,
there is no possibility to keep the spacecraft inside its box with this solution.

The overall evolution of position coordinates is presented in Figure 3.12. Despite the
acceptable behaviour of the latitude, the semi-major axis oscillations are too big, pushing
the body 50 km far from the geostationary orbit mean distance.
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Figure 3.12: r, λ and ϕ evolution over a Year. Linear Solution

2 nd Order Solution

Thanks to DA it is possible to solve this issue. As presented before, differential algebraic
techniques enables to expand the dynamics at higher orders. Since the GEO problem is
affected by small perturbations that do not vary too much in time, the nonlinearities are
not cumbersome to counteract. According to this, a 2nd order solution is enough to obtain
the same SK provided by the single shooting method. The DA quadratic expansion result
can be seen in the next two plots. One can easily notice that Figure 3.13 and Figure 3.14
represent the same dynamics set by the numerical method.

Figure 3.13: SK Box in a Year. 2nd order Solution
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Figure 3.14: r, λ and ϕ evolution over a Year. 2nd order Solution

DA and STM Combination Solution

The intermediate case corresponds to the splitted strategy in which autonomous and non-
autonomous dynamics are treated separately. As said, a 4th order DA expansion solves
the first part and, then, it is corrected by the linear complete motion. The outcome is
the one provided by Figure 3.15. It is clear how the 1st order component influences the
evolution. In fact, in addition to the lack of path constraints during the control phases on
the eastern side, the slot is infringed by approximately 0.025◦ also on the western edge.

Figure 3.15: SK Box in a Year. 4th order Autonomous expansion and Linear Correction
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Anyway, this can be considered a good solution for five main reasons:

1. the error is contained and, as shown in Figure 3.16, characterizes only few cycles
and for a short, predictable, period of time;

2. the other two position coordinates remain well bounded around their nominal values,
as in Figure 3.17;

3. One can think to rely on the 2nd order expansion when nonlinearities are big and
on this approach when it is acceptable;

4. it involves the advantages of the DA approach, since the autonomous map loaded
onboard and the STM can be evaluated whenever it is needed in order to counteract
possible uncertainties, and the very low computational burden typical of 1st order
techniques.

5. since the failure is small compared to the linear issues, this problem can be faced by
reducing the control duration or giving a different interpretation, as detailed later.

Figure 3.16: λ in a Year. 4th order Autonomous expansion and Linear Correction
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Figure 3.17: r and ϕ in a Year. 4th order Autonomous expansion and Linear Correction

3.4.1. Computational Cost

Figure 3.18 indicates the onboard burden required every cycle by the three different so-
lutions: the single shooting reference, the 2nd order DA expansion and the one obtained
combining DA and STM.

Figure 3.18: Computational Times for the adopted methods

This analysis is performed using Python on an Intel Core i7-1065G7 1.50 GHz, running
Windows 11 Home 64 bit, 16 GB RAM.
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To deal with acceptable run periods, the problem is adimensionalized. Times and dis-
tances are scaled such that the mean motion of the satellite on the orbit becomes unitary.
In order to have:

ωsat =
2π

TE
=

√
µE

a3GEO

= 1 (3.22)

the adimensional units L and T must be, respectively:

L = aGEO, T =

√
L3

µE

(3.23)

This gives the dimensionless dynamics (ad). To return back at the dimensional (d) prob-
lem, the following rescaling has to be taken into account:

z(d) = [x(d), l(d)] = z(ad)
[
L, 1, 1,

L

T
,
1

T
,
1

T
,

L

T 3
,
L2

T 3
,
L2

T 3
,
L

T 2
,
L2

T 2
,
L2

T 2

]T
(3.24)

The most expensive approach is the 2nd order polynomial expansion. Unfortunately, the
map shall be computed every cycle since it is time dependent, but, on the other hand, if
any further disturbance occurs, it is still valid and only an immediate evaluation is needed
to update the control law for that SK loop. The combination between autonomous and
non-autonomous dynamics is the fastest strategy. In fact, the time independent map is
loaded onboard and remains the same, while its application, together with the STM in-
tegration and evaluation, takes less than one second by bit. Despite the lack of precision,
this method shares the benefits of the DA polynomials and it is computationally cheap.

Shooting 2nd Order DA and STM

Cost[s] 24.0939 28.8635 12.2172

Table 3.4: Overall Computational Effort in a Year simulation
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3.4.2. Control Profiles and Consumption

Once the dynamics is integrated on the whole time span, from the evolution of the costate
l, it is possible to obtain the control accelerations along the radial r̂, transversal λ̂ and
out-of-plane ϕ̂ directions, thanks to the relation between u and l in Equation 3.10.

For the first SK cycle with one-day thrust duration, the shape of ur, uλ and uϕ is reported
in Figure 3.19.

Figure 3.19: ur, uλ, uϕ evolution in a Cycle. Solution Comparison

The acceleration profiles characterizing the linear solution (1), the DA and STM com-
bination one (1, 4) and the shooting method (s) are compared. Highlighting very small
differences in the actions, they still cause relevant errors on the SK requirements, as
described above.

The control acts mainly on the out-of-plane component and does not change too much
from cycle to cycle. As shown in Figure 3.20, the intensity of the accelerations repeats
similarly.

If the impulses are known, it is possible to compute the effective thrust as:

T = m|u| (3.25)
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Figure 3.20: ur, uλ, uϕ evolution in a Year. Numerical Solution

The actual mass of the satellite m is obtained by integrating the linear ODE:

ṁ = −Tmax

Ispg0
|u| (3.26)

where Isp is the specific impulse and g0 the surface gravity. Considering an initial space-
craft mass of 3000 kg and a specific impulse of 3800 s, the thrust profile is given by
Figure 3.21, in which the force required during every one-day long powered phase is
reported.

Figure 3.21: Continuous Thrust in a Year SK. One-day control duration. EOP
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According to these parameters, the maximum value is 0.3236N . Every further analysis
shall deal with at least the same propulsion system characteristics.

The consumption is then calculated in terms of mass and velocity variation imposed to
the spacecraft for each significant EOP solution.

The fuel burnt Mb is obtained by integrating Equation 3.26 from tCi to tCf , while the ∆v

is given by the Tsiolkovsky law:

∆v = −Isp g0 ln
M0 −Mb

M0

(3.27)

Table 3.5 clearly shows that the higher the precision of the adopted method, the higher
the optimality is. However, the difference in terms of propellant needed is very contained.
The total amount is here reported, other detailed considerations are made in chapter 4.

Shooting 2nd Order DA and STM

Mb [kg] 5.585843 5.759367 5.85788

∆v [m/s] 69.403582 71.561659 72.786910

Table 3.5: Overall Consumption in a Year simulation. EOP

3.4.3. Dependence on Control Duration

An additional analysis is performed by changing the duration of the controlled trajectories.
The longer these tracks, the higher is the error increment between a precise approach and
a less accurate one. In the case of the splitted autonomous and non-autonomous solution,
the target matching error causes a violation of the slot at the western side (Figure 3.15).
It is immediate to notice in Figure 3.22 that for less prolonged thrusts, with respect to
the one-day reference, the westward offset is very limited.

This leads to a different, reversed interpretation of the problem. The new aim is not about
fulfilling specified SK requirements, rather find the realistic ones that can potentially be
met through a particular strategy:

1. certain E-W and N-S bands are selected for the target optimization procedure;

2. a specific control solution and duration is choosen;
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3. with the selected above parameters, the satisfied SK box is finally determined.

Figure 3.22: Westward Edge Shift depending on Control phases duration

In this specific case, for example, if the targets are searched in a 0.1◦ longitude and latitude
bands, thanks to the autonomous 4th order map linearly corrected approach and a 1.5

days powered phase, the prospective SK slot has a western bond at approximately 0.1◦

from the nominal longitude λn. If this shift wants to be reduced, three ways are available:

• choose a numerical method or at least a 2nd order DA expansion;

• reduce the control length;

• shrink the E-W and N-S limits during the target optimization procedure by adopting
a sort of safety factor and, consequently, reduce the free-drift times. The higher
this margin, the less globally optimized the final solution is.
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The transformation from the energy optimal problem to the fuel optimal (FOP) one is
proposed in this chapter. Due to its high sensitivity to initial conditions, it is solved
sequentially after the EOP, whose results are taken as starting guesses for the FOP. The
discussion of four main topics is included. First of all the problem is introduced and
formulated, then its solution is designed with the aim of computing a numerical reference;
afterward, DA techniques are developed for this particular case and are finally used to
build up a robust control trajectory capable of counteracting potential uncertainties or
additional perturbations. Relevant achievements are presented too.

4.1. Problem Formulation

The minimum fuel control problem is defined in this section, according to section 2.2.1.

Once the propulsion system has been characterized with Isp the specific impulse and
Tmax the overall maximum available thrust as its two main parameters, the propellant
consumption and, thus, the spacecraft mass variation, is expressed by the following 1st

order ODE:

ṁ = −Tmax

Ispg0
u (4.1)

where u is a scalar representing the intensity of the control action and behaves as a throttle
ranging from 0 to 1.

Following the EOP formulation in section 3.2, being the state x̂ = [x,m] = [r, v,m] =

[r, λ, ϕ, v, ξ, η, m], the thrust direction α̂ = [0, 0, 0, αr, αλ, αϕ], the FD perturbed mo-
tion f̃(x, t) and B the matrix 3.7, a typical low-thrust propulsion dynamical system is:


ẋ = f(x, α̂, u, t) = f̃(x, t) +

Tmax

m
uB α̂

ṁ = −Tmax

Ispg0
u

(4.2)
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Integrating the 4.1 between initial and final powered conditions, the consumed fuel is
found:

mprop =Mb =

∫ mf

mi

dm = −Tmax

Ispg0

∫ tCf

tCi

u dt (4.3)

The FOP objective functional is consequently imposed in order to reduce that consump-
tion to a minimum:

J =
Tmax

Ispg0

∫ tCf

tCi

u dt (4.4)

If the costate is l̂ = [l, lm] = [lr, lv, lm] = [lr, lλ, lϕ, lv, lξ, lη, lm], J can be augmented as:

J =

∫ tCf

tCi

[
Tmax

Ispg0
u+ lTr v + lTv

(
f̃(x, t) +

Tmax

m
uB α̂

)
− lm

Tmax

Ispg0
u

]
dt (4.5)

and so the Hamiltonian H to be minimized is:

H =
Tmax

Ispg0
u+ lTr v + lTv

(
f̃(x, t) +

Tmax

m
uB α̂

)
− lm

Tmax

Ispg0
u (4.6)

Performing its gradient and equating it to zero, what is obtained is a TPBVP consisting
of the Euler-Lagrange equations describing a FOP subject to initial and final constraints:



∂H

∂l
= 0

∂H

∂u
= 0

∂H

∂x̂
= 0

(4.7a)

(4.7b)

(4.7c)

subject to x(t0) = x0 and x(tf ) = xT.
In particular:

• Equation 4.7a gives the state dynamics 4.2, which is always satisfied;

• the derivative of H with respect to u(u, α) introduces two optimality conditions on
thrust direction and its magnitude, that assumes the 4.1 rectangular profile. These
are:

α̂ = −BT lv
|lv|

(4.8)
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and {
u = 0 if ρ > 0

u = 1 if ρ < 0
(4.9)

with

ρ = 1− Ispg0
m

|lv| − lm (4.10)

the switching function generating the so called bang-bang control 4.9.

• the last component, Equation 4.7c, leads to the costate dynamics as in 3.10:
l̇ = [l̇r, l̇v] = −

(
∂f(x, l, t)

∂x

)T

l = −AT(x, l, t) l = −ATl

l̇m = −Tmax u

m2
|lv|

(4.11)

Finally, the explicit TPBVP associated to the FOP in ECEF spherical coordinates and
with boundary constraints only, is represented by the Equations 4.12.



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2 + apr −
Tmax

m
u
lv
|lv|

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE) +

1

r cosϕ
apλ −

1

(r cosϕ)2
Tmax

m
u
lξ
|lv|

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ+
1

r2
apϕ −

1

r2
Tmax

m
u
lη
|lv|

ṁ = −Tmax

Ispg0
u

l̇ = −
(
∂f

∂x

)T

l

l̇m = −Tmax u

m2
|lv|

(4.12)

subject to x(t0) = x0 and x(tf ) = xT, together with the transversality condition
lm(tf ) = 0.
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Figure 4.1: Bang-Bang control action

4.2. Numerical Reference

In the case of the fuel optimal control problem, it is very cumbersome to build up a bang-
bang action through DA techniques like in the EOP. The FOP trajectory is characterized
by a sequence of commutations between ’ON’ and ’OFF’ mode at certain switching times
ts. In this thesis, this pattern is computed numerically. Consequently, the FOP control
region is shifted from being a neighbourhood of the nominal state, as in the continuous
and non-saturated action of the EOP, to be about the numerical reference (Figure 4.2).

(a) EOP solution. (b) FOP solution.

Figure 4.2: FOP control Approach

Any displacement from the baseline is corrected and a new optimal bang-bang profile,
marked by new switching times ts + δts, can be found through differential algebra, as
detailed in the next sections.
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Here the computation of the reference control is of interest. With this aim, a single
shooting method with Python fsolve is implemented to solve the TPBVP 4.12. Due to
its high sensitivity to initial conditions, the EOP solutions are taken as first guesses. The
transformation to the bang-bang control is achieved thanks to the continuation method
adopted by [13].

The discontinuous law 4.9 is reached by firstly defining u as a C∞ function:

u =
1

1 + epρ
(4.13)

where ρ is the switching function 4.10 and p is a continuation parameter. Starting from
p = 1, the shooting solution of the TPBVP is iteratively computed by increasing its value
until the bang-bang shape appears.
This result is finally used to initialize the last propagation where u is imposed to be 0 or
1 according to the sign of ρ (4.9.)

Considering the propulsion properties in Table 4.1, and applying the described continua-
tion method developed in Algorithm 4.1, the results are shown hereafter.

Isp [s] Tmax [N ] Mass [kg]

3800 0.33 3000

Table 4.1: Electric Propulsion test data and Satellite initial Mass

Algorithm 4.1 Continuation Method. FOP Reference Solution. One control cycle. Part 1

1: Find: l0
EOP from EOP solution;

2: Initialize: l0
guess = l0

EOP ;
3: Initialize: lm0 = 1 and m0;
4: Define the constraints: x(tf ) = xT; lmf = 0;
5: Set a fixed control duration tC ;
6: Initialize time at initial epoch: time = t0;
7: Initialize the continuation parameter: p = 1;
8: Initialize an arbitrary variable to enter the loop: k = 1;
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Algorithm 4.2 Continuation Method. FOP Reference Solution. One control cycle. Part 2
1: while k = 1 do
2: Solve the TPBVP: l0FOP = fsolve(@shootingFOP, l0

guess, constraints, p);
3: Initialize the augmented state: z0 = [xn,m0, l0

FOP , lm0];
4: Propagate: ControlState = ContinuationPropag([z0, tC , p)

5: Compute: ρ at every instant from 4.10;
6: Compute switching times: ts such that ρ = 0;
7: if bang-bang profile = yes then
8: k = 0;
9: else

10: p = p + 1;
11: end if
12: end while
13: Find real bang-bang solution: l0

BB = fsolve(@shootingBB, l0
FOP , constraints);

14: Initialize the augmented state: z0 = [xn,m0, l0
FOP , lm0];

15: Propagate the bang-bang trajectory: BBState = ContinuationPropag(z0, tC)

4.2.1. Numerical Reference Results

The numerical transformation from the EOP to the FOP is here proposed. Considering
the EOP target points found in 3.1.2 with one-day long powered phases and the DA 2nd

order EOP solution as initial guess, the following control baseline is obtained with the
single shooting technique and the continuation method previously introduced.
Only the first SK cycle is initially treated, then the whole year span SK problem is turned
into a FOP.

Figure 4.3: Switching Function ρ. First Cycle
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Figure 4.4: From C∞ solution to Bang-Bang. First Cycle

Figure 4.4 represents the bang-bang thrust profile arising by incrementing the continua-
tion parameter p and according to the switching function ρ in Figure 4.3.

Switch Switching Time[Days] Sign(ρ) Control Mode

1 20.85203721 > 0 ⇒ < 0 OFF ⇒ ON

2 21.11924697 < 0 ⇒ > 0 ON ⇒ OFF

3 21.34850475 > 0 ⇒ < 0 OFF ⇒ ON

4 21.61997056 < 0 ⇒ > 0 ON ⇒ OFF

Table 4.2: First SK cycle Switching Sequence from Initial Epoch t0

Changing the control law means also obtaining a different trajectory pointing to the final
target. In particular, in Figure 4.5 and 4.6 three thrust arcs are shown: one is given by
the DA 2nd order EOP solution, the second is generated by the continuous law with p = 1

and the last one represents the fuel optimal track.
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Figure 4.5: First SK cycle FD and following Powered Trajectories

The paths are clearly different due to the distinct nature of the optimal control law, but
they precisely point to the final objective, as expected.

Figure 4.6: Control Tracks Comparison
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As a component of the state, the mass consumption follows the switching sequence of the
engines. Sketched out in Figure 4.7, the fuel is burnt during the ’ON’ modes and drops
linearly as described by the Equation 4.1.

Figure 4.7: Fuel Consumption

With the Tsiolkovsky equation 3.27, it is possible to turn the amount of burnt gas Mb

into a velocity variation ∆v transmitted to the test satellite.

The thrust arc of the first SK cycle requires a total ∆v of 5.158481m/s powered by
0.415107 kg of propellant and partitioned among the ’ON’ phases, as described by Ta-
ble 4.3.

Phase Duration[Minutes] Fuel Burnt[kg] ∆v [m/s]

tCi − ts1 234.82420728 0 0

ts1 − ts2 384.78206166 0.205981 2.559610

ts2 − ts3 330.13120183 0 0

ts3 − ts4 390.91075794 0.209126 2.598871

ts4 − tCf 99.35177129 0 0

Table 4.3: FOP Consumption
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Then, the analysis is extended over one year, as done for the EOP. The same numerical
targets are used and each control cycle is turned into a FOP like the first one.

Due to the high precision granted by the shooting technique, the results of the SK fuel
optimal problem can be overlapped to the ones of the numerical EOP, as proven by the
analogy between Figure 4.8 and 3.7.

Figure 4.8: SK Box in a Year. FOP Reference Solution

Despite the complexity required by the FOP numerical solution, the final consumption is
lower than the EOP one obtained with a shooting method. The fuel burnt in a year can
be visualized in Figure 4.10, where it is clear that it drops linearly during each control
phase and according to the actual bang-bang shape.

Every cycle has its own switching sequence with different number of commutations and
thrust duration, as can be seen in Figure 4.9, which can be compared with the EOP profile
in Figure 3.21.
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Figure 4.9: Bang-Bang Thrust in a Year SK. One-day control duration. FOP

The advantage of the FOP is enhanced in Table 4.4, in which a comparison with the
EOP is presented in terms of cyclic spent propellant and ∆v. Since the FOP reference is
computed numerically, it does not make sense to compare its performances with previous
DA solutions. Thus, only the shooting EOP results are taken into account in this analogy.
The overall cost sums up all the contributions.

Figure 4.10: Fuel Consumption in a Year. FOP
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Cycle Mb FOP[kg] Mb EOP[kg] ∆vFOP [m/s] ∆vEOP [m/s]

1 0.415107 0.464950 5.158481 5.772032

2 0.301439 0.354253 3.746392 4.398402

3 0.292156 0.342140 3.631371 4.248502

4 0.301490 0.350255 3.747758 4.349765

5 0.345811 0.398811 4.299167 4.953402

6 0.383252 0.434500 4.765222 5.397423

7 0.430700 0.477724 5.355906 5.935256

8 0.409835 0.459910 5.097150 5.714835

9 0.214277 0.256037 2.665254 3.181894

10 0.317866 0.369165 3.954088 4.588266

11 0.295379 0.341943 3.674735 4.250432

12 0.348031 0.400933 4.330237 4.984308

13 0.426673 0.474308 5.309388 5.897354

14 0.410658 0.460914 5.110826 5.731710

TOTAL 4.892674 5.585843 60.845975 69.403582

Table 4.4: FOP vs EOP Consumption in a Year. Numerical Solutions
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4.3. DA Expansion about Reference Solution

If, due to additional perturbations or uncertainties, a displacement occurs from the ex-
pected reference computed in the previous section, it shall be counteracted in order to
take the satellite to the desired objective position and velocity xCf .

When the natural drift comes to an end, the vehicle is located in a neighbourhood of the
expected xCi. If the numerical control law is loaded onboard, the spacecraft shall be able
to measure its state and determine an enaugh robust, precise and optimal correction with
the purpose of matching the final target starting from a set of points around the nominal
xCi.

With this aim, a DA approach is here developed, recalling the control strategy in Fig-
ure 4.11 and referring to [13].

Figure 4.11: FOP control description

As stated above, the corrective operation for this FOP acts with respect to the numerical
baseline (̃·) and not to the nominal point xn as in the EOP case.

Once the reference solution is found, differential algebraic techniques can be applied in
order to obtain the control path characterized by a costate and a switching sequence
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variation caused by the initial deviation.

For this intent, the next steps have to be followed.

1. Initialize the state composed by DA variables about x̃0 = xCi and [̃l0, l̃m0]:



[r0] = r̃0 + δr0

[v0] = ṽ0 + δv0

[m0] = m̃0 + δm0

[lr0] = l̃r0 + δlr0

[lv0] = l̃v0 + δlv0

[lm0] = l̃m0 + δlm0

(4.14)

2. A further DA variable is the first switching time ts1:

[ts1] = t̃s1 + δts1 (4.15)

3. Propagate the initial polynomial map 4.14 in a DA environment thanks to the DACE
propagator RK78 from tCi to [ts1]. This step is not immediate since the integrator
has to be modified in order to be able to accept both DA differentials and DA time
spans. According to [1], the new RK78 takes a coefficient τ ranging from 0 to 1,
defines a new time variable

t∗ = tCi + τ([ts1]− tCi) (4.16)

where tCi and ts1 can be defined as DA elements, and rescales the dynamics as

dz

dτ
= ([ts1]− tCi)f(x, l, τ([ts1]− tCi)) (4.17)

t∗ is also used to compute the non-autonomous perturbations that consequently
become DA objects. The ephemeris of the Sun and the Moon shall be updated with
the dependence on δts1.

4. At the end of this expansion, the polynomial map regarding the state at the first
switch is available:
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[x1]

[m1]

[l1]

[lm1 ]

 =


x1

m1

l1

lm1

+


Mx1

Mm1

Ml1

Mlm1



δx0

δl0

δlm0

δts1

 (4.18)

It is possible to express δts1 as a function of δx0, δl0 and δlm0 by computing the
switching function map (see Appendix B) at [ts1], considering that its constant
unperturbed part is null at every commutation of the reference:

[ρ1] = 0 + δρ1 = 1− Ispg0
[m1]

∣∣[lv1 ]
∣∣− [lm1 ] (4.19)

Then, the following map is built and inverted imposing the switching condition
δρ1 = 0:


δρ1

δx0

δl0

δlm0

 =


Mρ1

Ix0

Il0

Ilm0



δx0

δl0

δlm0

δts1

 (4.20)


δx0

δl0

δlm0

δts1

 =


Mρ1

Ix0

Il0

Ilm0


−1

δρ1 = 0

δx0

δl0

δlm0

 (4.21)

so

δts1 =Mρ1=0(δx0, δl0, δlm0) (4.22)

and

[ts1] = t̃s1 +Mρ1=0(δx0, δl0, δlm0) (4.23)

5. Initialize the second commutation time as a DA variable

[ts2] = t̃s2 + δts2 (4.24)
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and propagate the state at the previous switch, function of δx0, δl0 and δlm0 from
[ts1] to [ts2].

6. Repeat the process for the whole bang-bang sequence until the conditions at the final
mode change ([tsf ]) are expressed depending on the initial displacement δx0, δl0 and
δlm0.

7. Expand the last segment of the trajectory from [tsf ] to tCf and find the final poly-
nomial map:


[xf ]

[mf ]

[lf ]

[lmf
]

 =


xf

mf

lf

lmf

+


Mxf

Mmf

Mlf

Mlmf


 δx0

δl0

δlm0

 (4.25)

8. Extract Mxf
and Mlmf

, define the final constraint map as in Equation 3.14

C = [xf ]− xT (4.26)

and build up the following polynomial:

 δx0

δxf

δlmf

 =

 Iδx0

Mxf

Mlmf


 δx0

δl0

δlm0

 (4.27)

Invert it, evaluate it in δx0, impose δxf equal to the opposite of the constant part
of C to enforce the final target, set the transversality condition δlmf

= 0 and find
the control law [δl0, δlm0 ]:

 δx0

δl0

δlm0

 =

 Iδx0

Mxf

Mlmf


−1δx0

δxf

0

 (4.28)

9. Find the new optimal switching sequence characterized by i new commutation times
as:

ts,i = t̃s,i +Mρi=0(δx0, δl0, δlm0) (4.29)
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4.4. Perturbed Initial Control State

In order to test this method, an analysis that includes the variation of the reflection
coefficient β is presented in this section. This number indicates the amount of radiation
absorbed or reflected by the considered surface. The factor Cr introduced in section 2.1.4
is built from β as:

Cr = 1 + β (4.30)

Starting from the first numerical target in section 3.1.2, 100 free-drift tracks are expanded,
each one with a different β. A set of 100 values spanning from 0 (total absorption) to 1

(total reflection) are taken into account. Since the reference trajectory is obtained with
β = 0.5, each FD path is expected to end in a neighbourhood of the nominal xCi, as
shown in Figure 4.12.

Figure 4.12: End of FD trajectories. Dispersion due to different β

The bang-bang numerical solution can be applied only if the FD phase ends exactly where
predicted by the baseline. Otherwise the satellite shall be capable of measuring its actual
state and building up a correction to the control law. This is possible by performing
another shooting method from the measured conditions or by computing a polynomial
high order map about the reference path, as developed above.

The second case is here treated as the best solution to this problem.
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By the DA procedure introduced in the previous section, the FOP solution can be ex-
panded up to an arbitrary order. For every possible deviation from the initial nominal
point, a new optimal bang-bang profile arises.

4.4.1. DA Maps and Numerical Solution Comparison

A quick analysis is firstly proposed with the purpose of selecting the best fuel optimal
control strategy that fits this problem. In the first Figure 4.13, the mean value over the
100 feedback trajectories of the final target matching precision is reported for the numer-
ical reference and for DA 1st, 2nd and 3rd order expansions.
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Figure 4.13: Mean State Error on Target matching. Comparison

As already stated in chapter 3, it is not necessary to reach the huge precision granted by
the shooting in order to satisfy the SK requirements. The 2nd order solution is already
enough for this situation.

The advantage of the DA expansion can be seen in terms of computational burden in
Table 4.5. The quickest is the linear control, but, as seen in the EOP, this approach is
not sufficiently precise.
The difference between the 2nd and 3rd order final error is very limited, while the compu-
tational effort increase a lot. This is why the best choice is the quadratic DA polynomial.
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Method Effort[s]

1st order DA 9.734

2nd order DA 15.044

3rd order DA 39.285

Shooting 41.178

Table 4.5: Computational Burden. Comparison

Despite the high accuracy of the shooting method, it takes a lot of time to be solved. More-
over, it must be calculated for every additional perturbation, contrarily to the uniqueness
of the DA map that can be evaluated in every displacement without the need to recompute
it.

4.4.2. Results

A 2nd order map is expanded and then evaluated in each of the 100 final FD deviations
in Figure 4.12.

Figure 4.14: Switching Function ρ. Variation

According to this, 100 new switching functions are generated around the reference one, as
can be seen in Figure 4.14. Consequently, new commutation sequences appear, depending
on the value of the reflection coefficient.
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Figure 4.15: u Profile Variation

Figure 4.15 highlights how the throttle u changes between ’ON’ and ’OFF’ modes com-
pared to the numerical result in Figure 4.4 and with respect to β.

The mass consumption also changes. In particular, the higher the reflection coefficient, the
higher the SRP perturbing acceleration and so the more the burnt fuel is, as demonstrated
by Figure 4.16.

Figure 4.16: Final Mass Variation

The DA 2nd order polynomial is able to reduce the final dispersion a lot and matching
the final target with a great accuracy.
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Figure 4.17: End of Controlled trajectories Dispersion due to different β

This is proven by the initial (i) state covariance matrix, expressed in the ECEF frame:

Ci
r,2 =

 4.267 71.397 1.674

71.397 1493.429 20.885

1.674 20.885 6.573

 10−1 km2

Ci
v,2 =

 7.8389 0.1687 −0.3743

0.1687 0.0036 −0.0081

−0.3743 −0.0081 0.0179

 10−3 m2/s2

(4.31)

which, at the end (f ) of the control path, is lowered to:

Cf
r,2 =

 7.067 −12.375 −2.406

−12.375 2171.933 41.083

−2.406 41.083 10.681

 10−4 km2

Cf
v,2 =

1.0583 0.0199 0.0289

0.0199 0.0005 0.0006

0.0289 0.0006 0.0008

 10−8 m2/s2

(4.32)

A better understanding is reached by computing the square root of the trace of the above
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matrices. The quadratic polynomial grants:

√
Tr(Cr,2)i = 12.2648 km⇒

√
Tr(Cr,2)f = 0.4781 km

√
Tr(Cv,2)i = 0.0887 m/s⇒

√
Tr(Cv,2)f = 1.029 · 10−4 m/s

(4.33)

The correctness of the developed feedback control action is established by looking at the
following free-drift phase starting from the previous target. Figure 4.18 and Figure 4.19
show the inadequacy of the linear solution and the accuracy of the 2nd order one respec-
tively.

Figure 4.18: Free-Drift tracks after Linear Control

The 1st order solution causes an East violation of the nominal SK box, due to the higher
dispersion of the final control states. In fact, the linear case leads to:

√
Tr(Cr,1)i = 12.2648 km⇒

√
Tr(Cr,1)f = 1.3542 km

√
Tr(Cv,1)i = 0.0887 m/s⇒

√
Tr(Cv,1)f = 8.194 · 10−4 m/s

(4.34)
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Figure 4.19: Free-Drift tracks after 2nd Order Control

The higher the order, the more similar the natural tracks are. These FD phases are com-
puted with the same reflection coefficient β = 0.5, but the point from which they begins
depends on the β span considered for the previous cycle, and thus on the initial pertur-
bations in Figure 4.12. If these displacements are precisely counteracted, the following
free-drifts will collapse into a single line.
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5| Conclusions and future

developments

The achieved objectives of this work are summarized in this chapter, together with some
suggestions for future projects.

5.1. Conclusions

The SK strategy adopted was developed as a perturbed keplerian TBP affected by the
geopotential, the Sun and Moon disturbances and the SRP, written in ECEF spherical
coordinates. It tried to optimize the overall consumption by reducing the control cycles
and maximizing the free-drift duration. It also aimed to lower the onboard computational
effort with respect to largely adopted numerical procedures.

The first objective was reached through the computation of optimized targets as shown in
section 3.1.2, while the second one has been gained thanks to differential algebra, which
seems to be advantageous in this field compared to actual diffuse algorithms.

After the numerical target optimization, the solution of the SK problem was obtained
solving an EOP in chapter 3. The application of DA techniques showed that such an
optimized approach can not be achieved with linear solutions, as well as that a quadratic
control is sufficient to equate the shooting results with great accuracy. A relevant achieve-
ment is represented by the 4th order autonomous law linearly corrected by the complete
one. This last case permits to find the necessary commands with a very small computa-
tional effort end an acceptable value of precision. Performances have been analyzed at
the end, highlighting the small amount of ∆v required in a year together with an im-
portant value of the maximum thrust needed. Variations on control duration have been
also introduced, reporting the dependence between this variable and the SK requirements
fulfillment.

In chapter 4 the problem was turned into a FOP, starting from previous findings. Bang-
bang control actions were considered and compared to the continuous profile of the EOP,



82 5| Conclusions and future developments

discovering a gain in terms of consumption, despite the higher complexity of the algorithm
requested to find the solution. A reference trajectory was demanded to know the baseline
of the optimal switching sequence. DA has been applied to build up a robust and quick
correction around this nominal path. If the spacecraft is displaced from the desired
state, computing a 2nd order map has been demonstrated to be the most convenient way
to generate the fixing commands. Linear expansion is very quick but not sufficiently
precise, while the shooting method is slow and shall be re-calculated for every eventual
displacement.

In the EOP case the SK control can be directly found by the evaluation of onboard loaded
polynomials, reducing the effort to a minimum and satisfying the constraints.
In the FOP a robust correction can be obtained around a loaded reference by the onboard
expansion of DA quadratic polynomials about it.

5.2. Future Developments

Proven the benefits of DA in this particular environment, future works might develop
further enhancements. In particular:

• For all the analyzed cases, the satellite violates the station keeping boundaries due
to the lack of path constraints during the controlled stages. One can think to add
these bounds along the powered phases.

• A better investigation could be developed regarding the relation between the am-
plitude of the target searching box and the one of the fulfilled SK region in the case
of the most convenient parted autonomous and non-autonomous EOP strategy.

• A further analysis on the disturbances might provide a more global optimization by
searching for the best combination of FD and control duration at every cycle.

• The maximum value of the thrust required is quite high for actual electric motors
performances. It could be reduced by imposing a bound or by considering longer
thrust arcs.

• For a more real and feasible study, specific thrusters configurations can be taken
into account, as well as constraints on the direction of their action, on the duration
of the firings and on the time needed to recharge the batteries between ON and
OFF phases.

• The spacecraft attitude dynamics might be considered together with the SK strategy,
e.g. adding pointing requirements.
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• The method developed here could be extended to other orbital regimes, such as
the aerostationary orbit of Mars, to maintain a satellite above a certain region or
to study differences in the gravitational field and in the other disturbances with
respect to the Earth case.
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This appendix is about further details on the environment.

A.1. Longitude Drift due to Zonal Harmonics

Figure A.1: Longitude Drift by zonal harmonics. Tabulation depending on λn [8]



90 A| Appendix A

A.2. Perturbing Terms in ECEF Spherical Coordi-

nates

The complete dynamics



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2 + apr(r, λ, ϕ)

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE) +

1

r cosϕ
apλ(r, λ, ϕ)

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ+
1

r
apϕ(r, λ, ϕ)

(A.1)

involves the accelerations obtained by the gradient of the disturbing potentials

ap(r, λ, ϕ) = ap
grav(r, λ, ϕ) + ap

3B(r, λ, ϕ) + ap
SRP(r, λ, ϕ) (A.2)

that shall be written as function of the spherical coordinates r, λ, ϕ. They assume the
following shape. The derivatives are computed with MATLAB® Symbolic Toolbox.

For the geopotential:

ap,rgrav(r, λ, ϕ) = − µE

2r4
3R2

EC20(3 sin
2 ϕ− 1)+

− µE

r4
9R2

E cos2 ϕ(S22 sin 2l + C22 cos 2l)+

− µE

r5
60R3

E cos3 ϕ(S33 sin 3l + C33 cos 3l)+

− µE

r5
2R3

EC30 sinϕ(5 sin
2 ϕ− 3)+

− µE

r4
9R2

E cosϕ sinϕ(C21 cos l + S21 sin l)+

− µE

r5
60R3

E cos2 ϕ sinϕ(S32 sin 2l + C32 cos 2l)+

− µE

r5
2R3

E cosϕ(15 sin2 ϕ− 3)(C31 cos l + S31 sin l)

(A.3)
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ap,λgrav(r, λ, ϕ) = − µE

r4 cosϕ
3R2

E cos2 ϕ(2C22 sin 2l − 2S22 cos 2l)+

− µE

r5 cosϕ
15R3

E cos3 ϕ(3C33 sin 3l − 3S33 cos 3l)+

− µE

r4 cosϕ
3R2

E cosϕ sinϕ(C21 sin l − S21 cos l)+

− µE

r5 cosϕ
15R3

E cos2 ϕ sinϕ(2C32 sin 2l − 2S32 cos 2l)+

− µE

2r5 cosϕ
R3

E cosϕ(15 sin2 ϕ− 3)(C31 sin l − S31 cos l)

ap,ϕgrav(r, λ, ϕ) =
µE

r5
15R3

E cos3 ϕ(S32 sin 2l + C32 cos 2l)+

+
µE

r4
3R2

E cos2 ϕ(C21 cos l + S21 sin l)+

−µE

r4
3R2

E sin2 ϕ(C21 cos l + S21 sin l)+

+
µE

2r5
R3

EC30 cosϕ(5 sin
2 ϕ− 3)+

−µE

r5
30R3

E cosϕ sin2 ϕ(S32 sin 2l + C32 cos 2l)+

−µE

r5
45R3

E cos2 ϕ sinϕ(S33 sin 3l + C33 cos 3l)+

+
µE

r5
5R3

EC30 cosϕ sin
2 ϕ+

− µE

2r5
R3

E sinϕ(15 sin2 ϕ− 3)(C31 cos l + S31 sin l)+

+
µE

r5
15R3

E cos2 ϕ sinϕ(C31 cos l + S31 sin l)+

−µE

r4
6R2

E cosϕ sinϕ(S22 sin 2l + C22 cos 2l)+

+
µE

r4
3R2

EC20 cosϕ sinϕ

(A.4)

For the Sun and Moon gravity influence:

ap,r3B(r, λ, ϕ) =
µS

r3S
r(3 cos2 ψS − 1)+

+
µM

r3M
r(3 cos2 ψM − 1)

ap,λ3B (r, λ, ϕ) = −3
µS

r3S
r cosψS cos δS sin (α− αS)+

− 3
µM

r3M
r cosψM cos δM sin (α− αM)

(A.5)
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ap,ϕ3B (r, λ, ϕ) = 3
µS

r3S
r cosψS(cosϕ sin δS − sinϕ cos δS cos (α− αS))+

+ 3
µM

r3M
r cosψM(cosϕ sin δM − sinϕ cos δM cos (α− αM))

(A.6)

For the SRP:

ap,rSRP (r, λ, ϕ) = −Psr cosψS

ap,λSRP (r, λ, ϕ) = Psr cos δS sin (α− αS)

ap,ϕSRP (r, λ, ϕ) = −Psr sin δS cosϕ− cos δS sinϕ cos (α− αS)

(A.7)

A.3. Single Perturbations Effects

In the next plots, the disturbances are analysed separately.

• The geopotential causes a longitude drift and oscillations on the semi-major axis r
and on the radial velocity v. It does not influence the latitude so much.

Figure A.2: λ and ϕ evolution due to GG disturbance. 1 Year
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Figure A.3: r and v evolution due to GG disturbance. 1 Year

Figure A.4: Position Coordinates evolution due to GG disturbance. 1 Year
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• The Moon influences the latitude a lot, with cyclic perturbations of about 28 days.
The longitude drift is very contained, while the other coordinates show small vari-
ations in the short period.

Figure A.5: λ and ϕ evolution due to Moon disturbance. 1 Year

Figure A.6: r and r evolution due to Moon disturbance. 1 Year



A| Appendix A 95

Figure A.7: Position Coordinates evolution due to Moon disturbance. 1 Year

• The Sun acts mainly on the latitude and on the semi-major axis with both short
periodicity and one-year secular variation.

Figure A.8: λ and ϕ evolution due to Sun disturbance. 1 Year
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Figure A.9: r and v evolution due to Sun disturbance. 1 Year

Figure A.10: Position Coordinates evolution due to Sun disturbance. 1 Year

• Finally, the SRP depends on the satellite properties. Its main effect is on the
distance and, also, on the longitude drift.
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Figure A.11: λ and ϕ evolution due to SRP disturbance. 1 Year

Figure A.12: r and v evolution due to SRP disturbance. 1 Year

Figure A.13: Position Coordinates evolution due to SRP disturbance. 1 Year
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This appendix concerns additional insights regarding the control laws.

B.1. EOP STM

The variational approach leading to the TPBVP

{
ż(t) = f(z, t), z(t0) = z0

Φ̇(t0, t) = Â(t)Φ(t0, t), Φ(t0, t0) = I
(B.1)

is quickly reported here.

From the definition of the STM and considering a displaced trajectory with respect to a
reference, it is known that:

{
δż(t) = Â(t)δz

δz(t) = Φ(t0, t)δz0

(B.2a)

(B.2b)

Deriving the second one and substituting the equation for δż:

δż(t) = Φ̇(t0, t)δz0 = Â(t)δz (B.3)

so

Φ̇(t0, t)δz0 = Â(t)δz (B.4)

Replacing δz(t) = Φ(t0, t)δz0:

Φ̇(t0, t)δz0 = Â(t)Φ(t0, t)δz0 (B.5)
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Since this shall be true for any δz0, it follows that:

Φ̇(t0, t) = Â(t)Φ(t0, t) (B.6)

with the initial condition:

Φ̇(t0, t0) = I (B.7)

In order to integrate it, the matrix Â(t) must be known. So the best thing is to build
and integrate the STM together with the flow f(z, t).

For the controlled dynamical problem



ṙ = v

λ̇ = ξ

ϕ̇ = η

v̇ = −µE

r2
+ rη2 + r(ξ + ωE)

2 cosϕ2 + apr(r, λ, ϕ) + lv

ξ̇ = 2η(ξ + ωE) tanϕ− 2
v

r
(ξ + ωE) +

1

r cosϕ
apλ(r, λ, ϕ) +

1

(r cosϕ)2
lξ

η̇ = −2
v

r
η − (ξ + ωE)

2 sinϕ cosϕ+
1

r2
apϕ(r, λ, ϕ) +

1

r2
lη(t)

l̇ = −AT l

(B.8)

with A the Jacobian of the state dynamics. Â, in this case, represents the Jacobian of
the augmented flow ż = [ẋ, l̇] = [ṙ, v̇, l̇r, l̇v] = f(z, t).

Â(t) assumes the following, partitioned, {12× 12} shape:

Â(t) =



∂fr
∂r

∂fr
∂v

∂fr
∂lr

∂fr
∂lv

∂fv
∂r

∂fv
∂v

∂fv
∂lr

∂fv
∂lv

∂flr
∂r

∂flr
∂v

∂flr
∂lr

∂flr
∂lv

∂flv
∂r

∂flv
∂v

∂flv
∂lr

∂flv
∂lv


=

[
Âxx Âxl

Âlx Âll

]
(B.9)
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For the EOP:

Âxx(t) = A(t) =


03×3 I3×3

∂fv
∂r

∂fv
∂v

 Âxl(t) =


03×3 03×3

03×3 ∂fv
∂lv



Âlx(t) =


∂flr
∂r

∂flr
∂v

∂flv
∂r

∂flv
∂v

 Âll(t) =


03×3 ∂flr

∂lv

−I3×3 ∂flv
∂lv



(B.10)

The derivatives of the flow are very complex expressions due to the shape of the spherical
perturbed equations. They are computed using MATLAB® Symbolic Toolbox.

Consequently, the STM is built according to Â(t). The process foresees the integra-
tion from t0 to tf of the system B.1 composed by 156 differential equations: 12 ODEs
representing the augmented state plus one ODE for each component of the STM (144).

However, despite the complexity, the expansion is very quick and the final STM can be
written similarly to the Jacobian Â:

Φ(t0, tf ) =

[
Φxx Φxl

Φlx Φll

]
(B.11)
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B.2. DA Polynomials

Autonomous Map EOP

Figure B.1: Autonomous Polynomial Map. 2nd-order. EOP

The above figure shows the shape of the autonomous polynomial map related to the final
controlled state [xCf , lCf ]. This is only a section of the first component (rCf ) of the whole
series. The final distance rCf is written as a polynomial where the dependence on the
initial perturbation δz0 = [δx0, δl0] is represented by a set of coefficients multiplying each
displacement elevated to a certain exponent. This particular map regards the dynamics
affected by the geopotential only, thus it is constant in time.
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FOP Time Dependent Map

Figure B.2: Switching Function Polynomial Map. 2nd-order. FOP

In Figure B.2 the map of the switching function ρ1 is presented after the first integration
[tCi, ts1], highlighting the dependence on the first commutation time ts1. 15 DA variables
are needed in the FOP high order expansion about the numerical reference. Here a
portion of the 2nd order map is reported. As expected, the constant part of ρ is negligible,
since this map represents a displacement with respect to the baseline, which, at the
nominal switching time, is 0. By inverting this map and imposing it to be null, the
variation of the first switching time δts1 is found with respect to the initial perturbation
δz = [δx0, δm0, δl0, δlm0 ]
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