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Abstract 

Cardiovascular diseases (CVD) are the world’s leading death cause; their risk is often 

underestimated in female patients, indicating lack of sex-specific factors in current risk 

stratification. Breast arterial calcifications (BACs) are common findings in mammograms 

acquired for breast cancer screening and have recently been considered as a CVD risk factor 

specific to women. Although they might improve upon risk stratification, only 61.9% of 

radiologists report their presence during breast cancer screening, and annotations about 

their severity are reported just by 20% of radiologists. An automatic support to BACs 

analysis might encourage the use of BACs as CVD risk marker, by reducing the radiologists’ 

workload for their assessment.   

This thesis studies the technical steps needed to develop an automated workflow for BACs 

assessment, by training a deep convolutional neural network (CNN) for the detection of 

BACs presence, testing a visualization method, and proposing an automatic BACs severity 

scoring procedure. The CNN architecture considered was developed in previous works for 

BACs binary classification (present vs absent). It consists of 16 layers, of which the first 8 

trained with transfer learning from VGG-16. The remaining layers were trained in this work 

with a set of 1640 images; validation was performed with 888 images. Hyperparameters 

analysis was conducted and the best performing model (BAC-Net) was tested with 916 

images, resulting in precision=0.831, recall=0.68, F1=0.748, ROC AUC=0.95. BAC-Net 

outputs were analysed through GradCAM++, producing heatmaps of the last convolutional 

layer. BACs position and extent were highlighted in the heatmaps with good precision, 

allowing to increase clinicians’ confidence in BAC-Net predictions. A smaller dataset of 112 

images, annotated also with BAC quantification, was used for the preliminary test of a 

scoring procedure based on heatmaps thresholding. This method allowed to extract three 

different continuous scores related to area (ABAC), pixel intensities (IBAC) and predicted 

length (LBAC) of over-threshold regions. Linear regression between BACs length (𝑙𝐵𝐴𝐶) 

assessed by human readers and these scores was performed. ABAC resulted in the highest 

correlation with 𝑙𝐵𝐴𝐶 (RS=0.90, p-value=6.33e-41). Lastly, ordinal scores (AQ, IQ, LQ) ranging 

from 1 to 4 were extracted from ABAC, IBAC, and LBAC based on their distribution quartiles, 

and correlated with ground-truth length ordinal score 𝑙𝑄 (based on 𝑙𝐵𝐴𝐶). AQ showed the 

highest prediction accuracy for 𝑙𝑄 (accuracy= 0.53). 

Key-words: breast arterial calcifications, cardiovascular diseases stratification, 

convolutional neural network, explainable artificial intelligence 
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Abstract in italiano 

Le malattie cardiovascolari (CVD) sono la principale causa di morte al mondo; il loro rischio 

è spesso sottostimato nelle donne, indicando una mancanza di fattori specifici per il genere 

femminile nell’attuale stratificazione del rischio di CVD. Le calcificazioni arteriose 

mammarie (BAC) sono ritrovamenti frequenti nelle mammografie acquisite a scopo di 

screening per i tumori al seno, e sono state recentemente considerate un fattore di rischio 

specifico per le donne. Nonostante le BAC abbiano la potenzialità di migliorare la 

prevenzione del rischio cardiovascolare, appena il 61.9% dei radiologi riporta la loro 

presenza, e la gravità delle calcificazioni viene indicata solo dal 20% dei radiologi. Un 

supporto automatico all’analisi delle BAC potrebbe incoraggiare il loro uso come marker 

per le CVD, riducendo il lavoro a carico dei radiologi per il loro studio.  

Questa tesi si occupa dello studio dei passaggi tecnici necessari allo sviluppo di una 

procedura automatizzata per l’analisi delle BAC, tramite il training di un neural network 

convoluzionale (CNN) dedicato alla detezione della presenza di queste calcificazioni. È 

stato inoltre testato un metodo di visualizzazione dei risultati del CNN, ed infine è stata 

proposta una procedura di valutazione della gravità delle calcificazioni tramite 

assegnazione di un punteggio automatico. L’architettura del CNN considerata è stata 

sviluppata precedentemente per la classificazione binaria delle BAC (presenti/assenti). È 

costituita da 16 layer, di cui i primi 8 allenati tramite transfer learning basato su VGG-16. I 

restanti layers sono stati allenati in questa tesi tramite un dataset di 1640 immagini; la 

validazione è stata effettuata con 888 immagini. È stato eseguito il tuning degli iper-

parametri al fine di produrre il modello con le performances migliori (BAC-Net), che è stato 

infine testato con 916 immagini (precisione=0.831, recall=0.68, F1=0.748, ROC AUC=0.95). I 

risultati di BAC-Net sono stati analizzati tramite visualizzazioni di tipo GradCAM++, 

producendo delle heatmaps dell’ultimo layer convoluzionale. La posizione e le dimensioni 

delle BAC sono state correttamente individuate da questo metodo, permettendo di 

aumentare la fiducia dei radiologi nelle predizioni fornite da BAC-Net. Un dataset ridotto 

di 112 immagini è stato usato per testare in modo preliminare la procedura di assegnazione 

di un punteggio basandosi sul tresholding delle heatmaps prodotte in precedenza. Questo 

metodo ha permesso di estrarre tre punteggi continui correlati all’area (ABAC), all’intensità 

dei pixels (IBAC) ed alla previsione della lunghezza (LBAC) delle regioni sopra-soglia. La 

regressione lineare tra la lunghezza delle BAC misurata dai radiologi (𝑙𝐵𝐴𝐶) ed i tre punteggi 

sopracitati è stata calcolata. ABAC ha mostrato la correlazione più alta con 𝑙𝐵𝐴𝐶 (RS=0.90, p-

value=6.33e-41). In ultimo, tre punteggi ordinali (AQ, IQ, LQ) con valori da 1 a 4 sono stati 

estratti da ABAC, IBAC, e LBAC basandosi sulla rispettiva distribuzione in quartili. È stata quindi 

studiata la correlazione tra AQ, IQ e LQ ed un punteggio ordinale di riferimento 𝑙𝑄 (derivante 

da 𝑙𝐵𝐴𝐶); AQ ha mostrato l’accuratezza maggiore per la predizione di 𝑙𝑄 (accuratezza=0.53) 

Parole chiave: calcificazioni arteriose al seno, stratificazione del rischio cardiovascolare, 

neural network convoluzionale, intelligenza artificiale spiegabile
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Extended summary 

1. Introduction 

Breast arterial calcifications (BACs) are common 

findings in mammograms acquired for breast 

cancer screening. Unlike coronary arterial 

calcifications, they do not cause clinical signs of 

vessel restriction or occlusion, therefore are not 

traditionally mentioned on medical reports. 

Recently BACs presence and intensity have been 

considered as a risk factor of cardiovascular 

disease (CVD) [1]. CVD risk in women is often 

underestimated, and the rate of decline of deaths 

by CVD is lower in woman than in men. This 

could be caused by lack of sex-specific risk 

factors, thus the inclusion of BACs severity in 

preventive risk assessment might improve upon 

the reduction of CVD burden in female 

population.  

Despite 80.7% of radiologists declare to be aware 

of the correlation between BACs and CVD, only 

61.9% report BACs findings and 20% quantify 

the calcifications severity [1]. This low rate of 

reports is caused by both the lack of a robust 

method for BACs quantification and by the 

absence of an adequate automatic support.  

This work aims at addressing the latter issue by 

developing and validating the technical steps 

needed for BACs automatic detection and 

quantification: a deep convolutional neural 

network (CNN) is trained for the detection of 

BACs presence. Next, in the framework of AI 

explainability, a visualization method is applied 

to map the CNN response. Finally, an automatic 

procedure for quantifying BACs severity is 

proposed based on such maps. Similar 

workflows are reported in literature [2,3]; 

nonetheless, the training of all state-of-the-art 

quantification tools rely on pixel-wise images 

annotations to produce an accurate BACs 

segmentation. This requires time-consuming 

manual segmentation of the calcifications 

performed by clinicians, which causes 

difficulties in training and testing the algorithm 

with a sufficient number of images. Moreover, 

this increases the rate of human errors in the 

annotation used as ground-truth. On the other 

hand, the proposed CNN performs a binary 

classification, so it is trained on image-wise 

annotations that report only BACs presence 

(BAC+ image) or absence (BAC- image), which 

are easier to produce. The dimensions of the 

dataset used are therefore higher, increasing 

reliability of results. Moreover, BACs severity 

assessment doesn’t require a training dataset 

with manual BACs segmentation since it is 

based on the extraction of geometrical features 

from the heatmaps produced to visualize 

network’s results. Only a small subset with 

manual annotations of BACs lengths is needed 

to assess the correlation between the automatic 

severity prediction and the manual reference.   

2. Methods 

2.1. Mammographic dataset  

Four views mammograms of retrospectively 

enrolled patients were collected. Images were 

acquired by full-field digital mammography 

devices at IRCCS Policlinico San Donato and 

labelled by three human readers as positive 

(BAC+) or negative (BAC-) to BACs both at 

patient level and at image level. For privacy 

protection, all patients were anonymized, and 

data associated with each image were discarded 

except for age, mammographic view and 

acquisition device.  

Patients’ ages were analyzed and an a-posteriori 

exclusion criteria was fixed: patients with 

age<45 were left out from the study, since no 

BAC+ case younger than 45 years was found. 

Images were preprocessed by extracting the 

breast region of interest (ROI): Otsu 

thresholding was applied to each image, 

separating breast tissue over threshold from the 

dark background. Pixels corresponding to 

background were fixed to a value of -20, while 

breast pixels were normalized to obtain zero-



vi | Extended summary 

 

 

mean distribution and variance equal to 1. Breast 

ROI was cropped and resized by rigid rescaling, 

until reaching dimensions of 1536x768 pixels, 

that coincide with the input shape of the CNN.  

The dataset was split into three subsets: training, 

validation, and test subsets, containing 

respectively 70%, 15% and 15% of data. 

Considering the correlation of BACs incidence 

with age, the splitting strategy was focused on 

maintaining age distribution of the original 

dataset across the three subsets. The age 

quartiles of BAC+ population were used to 

define four age classes (Class1=minimum-Q1, 

Class2=Q1-Q2, Class3=Q2-Q3, Class4=Q3-Q4), that 

were used to divide the dataset based on 

patients’ age. For each age class, the splitting in 

training, validation and test subsets was 

performed, and the resulting four classes for 

each subset were further merged.  

Taking into account the low prevalence of BAC+ 

patients (14.93%), reducing data unbalance in 

the training set was needed to improve CNN 

training. BAC+ prevalence in each age class of 

the training dataset was therefore evaluated, 

performing undersampling of BAC- images to 

reach 30% BAC+ prevalence in each class. 

Validation and test sets were not undersampled, 

to reflect the real BAC+ prevalence. 

2.2. Convolutional neural network 

The neural network architecture used to classify 

BACs is the one developed by Ienco et al. for this 

task, based on VGG16 architecture [4]. The first 

13 convolutional layers and are organized into 

five blocks: the first two are composed of two 

layers, the remaining ones of three layers; after 

each block a max pooling over a 2x2 window is 

performed. Convolutional layers are followed 

by fully connected layers of 256 neurons and an 

output fully connected layer of 1 neuron. All 

layers present leaky ReLU activation function, 

except for the output layer that uses a sigmoidal 

activation. The training strategy developed by 

Ienco et al. relies on transfer learning from 

VGG16 for the first 8 convolutional layers, which 

parameters were frozen, and initializes the 

remaining trainable layers with Glorot uniform 

function. The fully connected layers were 

trained with 0.3 dropout rate. A cosine 

annealing strategy was applied, setting the 

learning rate as: 

 𝑙𝑟𝑒𝑝ℎ = 𝑙𝑟𝑠𝑡𝑎𝑟𝑡  ∗
𝑐𝑜𝑠(𝜋 ∗ 𝑒𝑝ℎ 𝑒𝑝ℎ𝑚𝑎𝑥) + 1⁄

2
 (1) 

   

where, at each epoch 𝑒𝑝ℎ, learning rate is 𝑙𝑟𝑒𝑝ℎ; 

learning rate’s starting value before the decay is 

𝑙𝑟𝑠𝑡𝑎𝑟𝑡 , and 𝑒𝑝ℎ𝑚𝑎𝑥 is the number of epochs after 

which the learning rate goes to zero. 

Briefly, the network considered by Ienco et al. 

presented these parameters: 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-5, 

𝑒𝑝ℎ𝑚𝑎𝑥=100, number of training epochs neph=50, 

dropout rate=0.3. This network was trained by 7-

fold cross validation on a small dataset, 

producing 7 different models. In the current 

work, the best performing model was referred to 

as MG-Net and was used as starting point to 

improve hyperparameters tuning, further 

training and independent testing, to finalize the 

actual clinical validation of the CNN, thanks to 

the larger data-base available.  

Considering the unbalanced dataset, metrics 

used to evaluate results were precision, recall 

and F1, along with area under ROC curve (ROC 

AUC) and area under precision-recall curve (PR 

AUC). 

The initialization of trainable layers both with 

Glorot uniform function and with MG-Net 

weights was explored. Tuning of the most 

relevant network’s hyperparameters was then 

performed by gradually modifying them with 

respect to MG-Net. Learning rate decay was 

evaluated firstly by varying  𝑙𝑟𝑠𝑡𝑎𝑟𝑡 , assigning it 

values of 10-n, with n= [4,5,6]. Subsequently the 

decay rate was explored by changing 𝑒𝑝ℎ𝑚𝑎𝑥, 

assigning it values of 200, 400, 600 and 800. The 

number of epochs neph was analysed within a 

range from 25 to 300 epochs, and the dropout 

rate for the fully connected layers was studied 

for values between 0.2 and 0.5. 

The classification threshold used to produce a 

binary result from the sigmoidal output was 

fixed at 0.5 for all models tested. Results were 

compared over the validation subset allowing to 

extract the best performing network, BAC-Net.  
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BAC-Net performances were further tested on 

the independent test subset, using different 

classification thresholds between 0 and 1.  

Classification thresholds resulting in the best 

precision were referred to as P-th, the one 

maximising recall as R-th and the one 

maximising F1 as F1-th. Obviously, such 

thresholds are related to the actual dataset, still 

provide useful general indications. 

An ultimate classification threshold  was 

computed by averaging F1-th assessed over the 

test and the validation sets. Classification with  

was performed to evaluate results both image-

wise and patient-wise, considering a patient as 

BAC+ if at least one of the four mammographic 

views was classified as BAC+ image.  

2.3. Results visualization 

To explore BAC-Net behavior, state-of-the-art 

visual explanation methods developed for 

neural networks (Saliency maps, SmoothGrad, 

GradCAM, GradCAM++) were compared. Their 

ability to provide an explanation of network’s 

results was evaluated along with radiologists. 

The best performing method was found to be 

GradCAM++, that presented lower noise and 

higher accuracy in BACs location and 

delineation. GradCAM++ produces a heatmap of 

the activation of each pixel by assigning it a 

weight proportional to the derivative of the 

output score with respect to the feature maps 

activation of the selected convolutional layer. 

The behavior of all convolutional layers was 

explored, and the last convolutional layer was 

the one considered for final heatmaps 

generation, as it contained high-level 

information and showed higher accuracy.  

2.4. Severity scoring 

A small dataset of BAC+ patients previously 

included in a manual BACs semiquantitative 

score (BAC-SS) study [5] was used to perform an 

assessment of the possible correlation between 

manual evaluation of BACs length (𝑙𝐵𝐴𝐶) and 

automatically extracted scores based on 

GradCAM++ heatmaps thresholding.  

Two mammographic views per patient, one for 

each breast, were selected, to reflect the 

procedure applied for manual scoring, and 

preprocessed as described in section 2.1. The 

dataset was then fed to BAC-Net, and sigmoidal 

outputs were evaluated by generating R-th, P-th 

and F1-th specific to this set of predictions. Since 

precision maximization provides a classification 

with the minimum number of false positives,  

P-th was considered to proceed in automatic 

scores evaluation.  

GradCAM++ heatmaps were generated and, for 

each heatmap, binary thresholding was 

performed with threshold Theatmap varying from 0 

to 1 with step 0.1. Three continuous severity 

scores (Figure 1) were considered for automatic 

extraction: the heatmap’s area with intensity 

above Theatmap (ABAC), the sum of pixels’ intensities 

inside this area (IBAC), and an estimation of BACs 

length obtained by skeletonization of the over-

threshold objects (LBAC). In case of BAC+ images, 

these three scores were computed for each 

Theatmap; for BAC- images, all scores were set to 0.  

 

Figure 1. a) Example of GradCAM++; b) thresholding 

with Theatmap=0.5 and ABAC extraction; c) pixels 

summed to compute IBAC; d) skeletonization to 

extract LBAC 

For each Theatmap, 𝑙𝐵𝐴𝐶  was compared with ABAC, 

IBAC and LBAC through linear regression and by 

computing Spearman correlation coefficient. For 

each score, the optimal Theatmap value was 

considered as the one maximising correlation. 

Optimal thresholds for area, intensity and length 

are indicated as Topt-A, Topt-I and Topt-L. Since BAC-

SS evaluated BACs length also with a quartile-

based length score (𝑙𝑄) ranging from 0 to 4, three 

ordinal scores were generated for area (AQ), 

pixels intensity (IQ), and predicted length (LQ). 
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They were computed by assessing the quartiles 

of ABAC, IBAC and LBAC, using them as thresholds 

to generate values ranging from 1 to 4; as for 

continuous scores, value 0 was assigned to BAC- 

image. The quartiles-based length 𝑙𝑄 was 

compared with AQ, IQ and LQ obtained by 

thresholding the heatmap with Topt-A, Topt-I and 

Topt-L. The scores correlation was assessed by 

producing a confusion matrix comparing AQ, IQ 

and LQ predictions with 𝑙𝑄 ground truth. 

Accuracy of predictions was computed as the 

sum of true positive predictions over the total 

number of predictions. Classification performed 

with R-th and F1-th was finally evaluated and 

compared with previous results.  

3. Results 

3.1. Dataset 

Application of inclusion criteria removed 64 

BAC- patients; the resulting dataset composed of 

1493 female subjects (5972 images), of which 194 

BAC+ (14.93%). Patients’ ages followed a non-

normal distribution (Shapiro-Wilk test resulted 

in W= 0.96, p-value< 0.01). Quartiles of the BAC+ 

age distribution were computed 

(minimum=45years, Q1=60y, Q2=70y, Q3=73y, 

Q4=87y), and used as age classes during data 

splitting. The training subset resulted of 1042 

patients, of which 908 negatives and 134 

positives to BACs (12.85% BAC+ prevalence); 

the validation subset contained 222 patients, of 

which 194 BAC- and 28 BAC+ (12.61%); lastly the 

test set was composed of 229 patients, 197 BAC- 

and 32 BAC+ (13.9%). Regarding the training set, 

since Class3 and Class4 were already 

characterized by 30% BAC+ prevalence, 

undersampling was performed only for Class1 

and Class2. This resulted in randomly removing 

474 BAC- patients from Class1 and 158 BAC- 

patients from Class2. The final training dataset 

was therefore composed of 410 patients, of 

which 276 BAC- and 134 BAC+ (32.68% BAC+ 

prevalence). 

3.2. Network tuning and evaluation 

Evaluation over the validation set of the best 

initialization for the trainable layer resulted in 

F1=0.178 for initialization with Glorot uniform 

function, and F1=0.406 for initialization with 

MG-Net, therefore the latter strategy was 

chosen. The network behaved randomly for 

𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-4, and overfitted the training set for 

𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-5. For these reasons, 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 10-6 was 

fixed. Value of 𝑒𝑝ℎ𝑚𝑎𝑥= 800 resulted in the best 

F1 performances over the validation set, and 

reduced overfitting. The best number of training 

epochs was found to be neph= 25: despite the 

absence of overfitting, when increasing training 

epochs, the results over validation set did not 

improve due to output neuron’s saturation, that 

caused it to behave like a binary classifier 

reducing its discrimination potential. Dropout 

rate was maintained at 0.3; lower or higher 

values produced worse results both over 

validation and training set.  

The best performing network, BAC-Net, was 

used to classify the test set images, allowing the 

evaluation of the classification thresholds 

maximizing precision, recall and F1, that 

resulted respectively in: P-th=0.99, R-th=0.13 and 

F1-th=0.88. Applying P-th to classification of test 

set resulted in F1=0.565, precision=1.0, 

recall=0.394. Conversely, predictions with R-th 

resulted in F1=0.232, precision=0.131, recall=1.0.; 

classification with F1-th resulted in F1=0.767, 

precision=0.802, recall=0.734. The ultimate 

optimal threshold  was computed averaging F-

th for test set and F-th for validation set (0.83), 

resulting in =0.85. Results of images 

classification by applying  over training, 

validation and test sets are reported in Table 1; 

patient-wise results are reported in Table 2. 

 

Dataset Precision Recall F1 

Training 0.963 0.723 0.723 

Validation 0.9 0.707 0.792 

Test 0.831 0.680 0.748 

Table 1. Image-wise BAC-Net results 
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Dataset Precision Recall F1 

Train 0.914 0.873 0.893 

Validation 0.813 0.928 0.866 

Test 0.831 0.680 0.748 

Table 2. Patient-wise BAC-Net results 

BAC-Net classification of mammographic 

images reported good results over the test set, 

and the possibility to vary the classification 

threshold allows for future adaptability of the 

CNN to the scope of the prediction: for BACs 

screening amongst women, a low threshold 

favoring recall will guarantee a low number of 

false negatives, including all subjects with a 

possible CVD risk in the BAC+ category; on the 

other hand, for research purposes (such as 

testing of the scoring procedure proposed in this 

thesis), a high threshold favoring precision can 

be used to avoid false positive predictions, 

allowing to extract BAC+ images with high 

confidence. BAC-Net future improvements 

should be focused on reducing the output 

neuron saturation, allowing for a higher number 

of training epochs. Moreover, a larger 

mammograms database might increase the 

variability of training data, ultimately 

producing better predictions.  

3.3. GradCAM++ visualizations 

GradCAM++ heatmaps were able to highlight 

presence and position of one or multiple BACs 

when computed for true positive predictions 

(TP) (Figure 2a). Severe calcifications were easily 

detected, while in case of small multiple BACs 

the heatmap wasn’t always able to highlight all 

of them. False positive (FP) cases were generated 

mainly by presence of fibrous tissue (Figure 2b) 

or benign calcifications with linear shape. The 

presence of round microcalcifications was not 

misleading when their shape was well defined 

and they were not superimposed to dense tissue, 

but in some less defined cases represented a 

confounding factor as well.  

GradCAM++ of negative predictions (TN) 

highlighted the whole breast (Figure 2c) and 

allowed to understand how medical devices (as 

pacemakers, cardiac loop recorders or breast 

implants) do not bias the network outcomes, 

therefore they don’t represent a confounding 

factor. False negative predictions (FN) were 

usually related to small BACs over dense breast 

tissue (Figure 2c).  

Overall, GradCAM++ heatmaps of BAC-Net 

predictions allowed to start to open the black 

box of the network and explore its behavior; 

moreover, the possibility of visualizing BAC 

position predicted by the CNN encouraged a 

discussion among engineers, physicists, and 

radiologists about possible improvements and 

increased the clinicians’ confidence in prediction 

results. 

Figure 2. a) TP case of severe BACs correctly 

identifying the calcified vessels; b) TN case 

highlighting the whole breast; c) FP case, fibrous 

tissue mislabeled as BAC; d) FN case, mislabeling is 

caused by tissue density 

  

a) True positive c) True negative 

b) False positive d) False negative 

Fibrous tissue  

mislabeled as BAC 

BAC under  

dense tissue 
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Severity scoring 

The scoring dataset was composed of 56 BAC+ 

patients; for each patient, the two mediolateral 

views were considered, for a total of 112 

mammograms, of which 95 BAC+ and 17 BAC- 

images. 

BAC-Net sigmoidal outputs for this set of 

mammograms allowed to compute P-th=0.7, F1-

th=0.6 and R-th=0.1. By using P-th, BAC-Net 

predicted 78 images as BAC+, 34 images as  

BAC-, of which 0 false positive predictions and 

17 false negative predictions. Correlation 

between ABAC, IBAC and LBAC   and 𝑙𝐵𝐴𝐶  was 

assessed for variable binarization threshold 

Theatmap. The Theatmap maximising Spearman’s 

correlation coefficient between 𝑙𝐵𝐴𝐶  and ABAC 

was Topt-A= 0.2, the same value resulted for IBAC, 

so that Topt-I= 0.2, while for LBAC, Topt-L= 0.3. These 

optimal thresholds were also the one 

minimizing p-value for Spearman’s coefficient.  

By using the respective binarization threshold, 

correlations of 𝑙𝐵𝐴𝐶  with ABAC  (Rspearman=0.90,  

p-value=6.33e-41), with IBAC (Rspearman=0.90,  

p-value=4.36e-41), and with LBAC (Rspearman=0.89,  

p-value=1.64e-39) were compared. The best 

predictor for BACs real length was found to be 

ABAC . A linear regression between 𝑙𝐵𝐴𝐶  with ABAC 

is shown in Figure 3a.  

The comparison of 𝑙𝑄 with quartiles-based 

scores resulted in identical performances for AQ 

and IQ (accuracy=0.47) while LQ predictions were 

slightly worse (accuracy=0.46). The confusion 

matrix comparing 𝑙𝑄 to AQ can be found  

in Figure 3b. 

Figure 3. a) Linear regression between real length 

𝑙𝐵𝐴𝐶 and predicted area ABAC  (Rspearman=0.90, 

 p-value=6.33e-41); b) Confusion matrix displaying 

real length score 𝑙𝑄 on vertical axis,  predicted area 

score AQ on horizontal axis (accuracy=0.47) 

Evaluation of linear regression for scores 

extracted by using F1-th and R-th resulted in 

lower correlations, due to the increase in number 

of false positives caused by lower classification 

thresholds. Nonetheless, performances of ABAC 

were always better than the ones of IBAC and LBAC. 

Quartiles-based scores computed with F1-th 

provided better results with respect to the ones 

computed with P-th, while R-th worsened the 

predictions. AQ resulted the best predictor for 𝑙𝑄 

both when using F1-th and R-th as classification 

thresholds: F1-th provided best results with 

respect to P-th (accuracy=0.53) while R-th 

worsened the predictions (accuracy= 0.36).  

It must be considered that preliminary results 

here reported for the scoring procedure are 

tested on a small dataset, which required 

manual BACs segmentation. So, further 

validation with a larger dataset is needed to 

provide a more robust correlation and to fix 

continuous (SBAC) and ordinal (SQ) final BACs 

scores. Nonetheless, this work demonstrates the 

feasibility of predicting BACs severity without 

requiring the manual segmentation of the 

training set images. 

4. Conclusions 

All technical steps needed to develop an 

automated procedure for BACs analysis have 

been studied in this thesis, demonstrating the 

possibility to classify mammograms based on 

BACs presence by using a convolutional neural 

network, and to quantify calcifications severity 

extracting geometrical scores from network’s 

heatmaps.  

Once the scoring procedure will be finalized, it 

will be possible to actuate the workflow 

proposed in Figure 4.  
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Figure 4. Possible workflow for automatic detection 

and quantification of BACs 

 

The clinicians’ workload for BACs detection and 

quantification will be reduced by this procedure, 

since all steps are automatized. Ultimately, 

clinicians will be supported in their decision 

about the need to further investigate patient’s 

CVD risk. 

This would help increasing the number and 

quality of BACs reports during screening 

mammography, and ultimately improve CVD 

stratification for women. Moreover, a higher 

amount of data quantifying BACs severity could 

be produced, encouraging further clinical tests 

for BACs correlation with cardiovascular 

pathologies such as coronary heart disease or 

cerebrovascular disease, but also with other 

CVD risk factors.  
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1 Introduction 

1.1. General aim of the study 

Breast Arterial Calcifications (BACs) appear in mid-age women with a prevalence 

slightly above 10% (increased by ageing) and are shown in the mammography of 

one or both breasts as hyperintense tracts (order of a few centimetres) in one or more 

arterioles. The search for BACs is foreseen as a valuable screening of cardiovascular 

(CV) risk, secondary to the primary oncological screening, at zero cost both 

economic and relevant to RX exposure since mammography is anyway 

recommended to all the women population, with ageing. Importantly, this 

population is subject to a high incidence of CV diseases, so, the detection of BAC is 

believed a precious alert to prescribe further clinical exams addressing the main 

vascular districts (e.g., coronaries, brain, etc.). 

A major problem in BAC detection is the high heterogeneity of the breast images 

(mainly, size and density) and of the BACs themselves (position, lengths, tortuosity, 

etc.). Furthermore, similar structures such as laciferous ducts and healthy blood 

vessels represent consistent confounding factors. Finally, the radiologist inspection 

is primarily direct to the spotty shapes of small oncological lesions and an 

additional search specific to BACs would consistently increase the workload. 

For the above reasons, an Artificial Intelligence (AI) approach is proposed to assist 

radiologist in the detection of BACs, also providing maps pointing the BAC (or 

BACS) localization and quantifying their size. 

The first aim of this thesis is the validation of a Convolutional Neural Network 

(CNN) able to discriminate the presence or absence of Breast Arterial Calcifications 

(BACs). The architecture of the CNN adopted is the one proposed in a previous 

thesis by Ienco [1]. In the present progression, a larger population was address, thus 

permitting to split the dataset into: i) a large training-set; ii) a validation set for a 

finer tuning of hyperparameters; iii) a test set to quantify performances on 

independent data. Consistent preliminary work was devoted to the randomized 

composition of the subsets, which implied a segmentation into age classes to correct 

(at least partially) the prevalence trend with age. 
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A further advancement developed by the present thesis was in the direction of AI 

explainability, with the obvious aim to increase the clinicians’ confidence in the 

automatic predictions. To this purpose, a visualization method highlighting regions 

of interest found by CNN in the mammograms was proposed. Lastly, such 

localization maps permitted to develop a protocol to automatically extract BAC 

quantification parameters relevant to size and intensity. This was preliminary tested 

on a smaller database annotated with the manual quantifications. This procedure 

was motivated by the knowledge that BACs intensity and size are correlated with 

CV risk. This is foreseen as an effective refinement of screening, based on a 

quantitative threshold rather than a binary detection indicator. Finally, quantitation 

is believed to play a core role in the prospective follow-up of women undergoing 

many mammographies through the years.  

Overall, this thesis lays the technical bases for future development of a fully 

automated workflow, able to process of mammograms focusing on BACs: the CNN 

allows a fast detection of positive cases; this is followed by the visualization of 

heatmaps highlighting BACs predicted position, and finally by the assessment of a 

severity score that correlates with CVD risk.  

1.2. Digital mammography  

Breast Arterial Calcifications detection is done by means of mammography. An 

analysis of this imaging technique is necessary to understand the challenges of 

BACs recognition on radiological images. To this end, mammographic technical 

equipment will be described in this chapter, followed by a depiction of breast and 

BAC appearance on mammograms. 

1.2.1. Digital mammography equipment 

Mammography is an X-ray-based two-dimensional breast imaging technique. It is 

used mainly for breast cancer detection and is widely applied in cancer screening 

programmes. It presents several challenges and requires highly specialized X-ray 

equipment, as well as a specific acquisition technique different from other 

radiological methods.  

The major challenge is the need to provide contrast for small high-density 

calcifications (ranging from 20 to 100 μm) and for ill-defined masses, against a 

background of mixed densities. The achievement of differentiation between 

glandular tissue and tumoral mass is possible only at low energies, because of their 

similar densities [2]. Therefore, low-energy X-rays are employed, with the side 

benefit of minimization of the dose of radiations delivered to the patient, allowing 
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repeated image acquisitions for screening purposes (the EU recommends one 

mammography every two years for women over 50 [3]). Breast compression must 

also be provided correctly by the mammographic equipment. This is required to 

improve image resolution and homogeneity, as well as to reduce movement-

induced blurring. For compression, the breast is placed between a support and a 

plate while paying great attention to minimize the patient's discomfort.  

The digital mammographic X-ray unit is designed to overcome these challenges; it 

is composed of a specific C-shaped arm adjustable in height and orientation. At one 

end of the arm, the X-ray tube generates a photon beam with an energy of around 

30keV that is directed at the patient’s breast. The ray must pass through the 

compression plate, the breast, and the breast support before reaching the part of the 

X-ray unit dedicated to detection (Figure 1.1). 

 

Figure 1.1 Digital mammographic X-ray unit components [http://elektroarsenal.net/x-

ray.html] 

The image acquisition is performed using scintillators that convert X-rays into 

visible light and Flat Panel Detectors (FPDs) that are composed of a matrix of light-

sensitive elements, each capturing the image intensity related to a single pixel. An 

anti-scatter collimation grid is also used before the scintillator: more than 40% of the 

X-rays directed toward the detector may scatter, producing noise in the image if not 

correctly stopped by the grid [4].  

Nowadays, the beam energy, the type of the X-ray beam filtration, and the exposure 

time are automatically adjusted considering the breast thickness and position over 

the support. The image acquisition is commonly followed by pre-processing, 

display, and post-processing to increase the image readability. 
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During a screening mammography, two views are acquired per patient’s breast: 

craniocaudal (CC) and mediolateral oblique (MLO) (Figure 1.2). Thus, four images 

are collected for each subject (Figure 1.3). 

 

 

Figure 1.2 Breast support and compression plate position to acquire CC and MLO views 

of the right breast 

 

Figure 1.3 Visualization of right and left CC and MLO views 
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1.2.2. Image characteristics 

Pixel sizes on digital mammograms usually range from 50 µm to 100 µm. They 

usually have a field size of 24x30cm and are shown on a scale of 4096 grey levels, 

using 12 bits per pixel [5]. Spatial resolution of mammograms is affected by the 

dimensions of the focal spot of the system. Movements of the patient with respect 

to the detector, detector’s structure, and spatial sampling also have an influence on 

resolution. 

Different noise sources affect mammographic images, compromising their 

interpretability and ultimately the radiologist’s medical report [4]. The production 

of X-rays and their interaction in the detector follows the Poisson distribution. This 

phenomenon is reflected as poissonian noise in the image, also known as quantum 

noise, which is the predominant noise in digital mammograms. Scattering of rays 

inside the patient’s breast, which reduces up to 80-90% by the anti-scatter grid [4], 

can still decrease the contrast of the images, and add random noise that lowers the 

signal to noise ratio. Moreover, the electronic noise generated by the 

instrumentation can be modelled as a gaussian noise. Salt and pepper noise is 

detected on the images as random black or white pixels caused by sudden 

fluctuations in signal intensity during the sampling of FPD data. The quality of 

images is also affected by size, shape, and density of the breast.  

1.2.3. Breast and BAC representation in mammograms 

Breast is sited on the anterior chest wall and overly the pectoralis major muscle. Its 

anatomy can be divided into two main parts: a glandular component and a 

supporting structure. The glandular component consists of 15-20 lobes that radiate 

from the nipple; each one is made of tens of lobules containing multiple acini, where 

milk is produced and stored. A network of ducts allows for the milk to reach the 

surface of the nipple. The supportive structure includes connective tissue, fat tissue, 

and Cooper’s ligaments that allow the connection between the adipose tissue and 

the skin (Figure 1.4). 

A gradual regression of breast tissues, called involution, is noticeable starting from 

the end of the fourth decade of life causing replacement of connective tissue with 

adipose tissue [2]. Moreover, progressive lobular atrophy and reduction of 

glandular components occur; post-menopausal breast might therefore appear 

entirely fatty, as seen in Figure 1.5. 
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Figure 1.4 A. Lactiferous duct, B. Lobules, C. Cross-section of lactiferous duct, D. Nipple, 

E. Adipose tissue, F. Pectoralis major muscle, G. Chest wall/ribs, H. Cooper’s ligaments, I. 

Retromammary space, J. Skin, K. Inframammary fold [2] 

 

Figure 1.5 (left) mature breast; (right) involuted breast [2] 

Breasts that are predominantly fatty appear as low-density since adipose tissue is 

less dense and consequently more transparent to X-rays. As the prevalence of 

glandular tissue increases, so does the density of the image. Density is important 

particularly when considering the sensitivity to detection of tumoral masses or 

calcifications on mammograms. In fact, X-ray beam attenuation is similar in dense 

tissue, cancer tissue, and calcifications. Several studies have shown that women 

with dense breast tissue have higher risk of developing breast cancer because it can 

be obscured in the dense tissue, and so not diagnosed [6]. Furthermore, there is high 

variability in the breast vascular system visualization, given both by the variable 

number of branches of the vessels, and by the 2D projections of the highly complex 

3D vascular system. Around 60% of the blood supply to the breast comes from the 
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perforating branches of the internal mammary artery; additional supply is derived 

from the thoracoacromial artery, the lateral thoracic artery, and the intercostal 

arteries. Venous drainage is mainly through the axillary vein. When BACs are well 

recognizable on mammography, they appear as linear and parallel opacities on both 

sides of a vessel’s lumen. However, they can have various representations due to 

different directions of the vessel’s projection. They can either involve only one side 

of the artery, appear as small intense dots, or be highly fragmented due to variances 

in calcium deposition. (Figure 1.6). 

 

Figure 1.6 a. Mammogram of two patients positive to BACs. a-d) different BACs 

appearance due to different calcium depositions and to 2D projections, adapted from [7]; 

e) railroad track appearance of BACSs; f) complete calcification of the artery rendering a 

full opacification 

 

Figure 1.7 Left: linear milk ducts calcifications, right: BACs [8] 
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The complexity of BACs detection is even higher, considering that BACs are not the 

only type of calcifications visible on mammographic images. Calcifications may 

have different distributions inside the breast, different origins, and different shapes. 

Round or punctate calcifications can originate at lobular level. Skin calcifications 

also appear to have a round shape, but they are bigger and located on the surface of 

the breast. Milk ducts can show large linear calcifications, usually bilateral, or thin 

linear calcifications when they are compromised by carcinoma [8]. Any of these 

distributions and shapes can have a confounding effect on BACs recognition, but 

the linear calcifications originated in the milk ducts are more likely to be 

misclassified as arterial calcifications (Figure 1.7) which are not rare, especially in 

dense breasts with lower visibility. Additionally, it should be considered that many 

radiologists are not used to reporting BACs, therefore are not highly trained for 

their recognition. Automatic detection could make up this difficulty (see chapter 

1.6) and reduce the false positives resulting from different types of calcifications 

misclassified as BACs in medical reports. 

1.3. Cardiovascular disease and Breast Arterial 

Calcifications 

Cardiovascular disease (CVD) is a class of diseases involving either the heart or 

blood vessels. CVDs include a wide range of conditions, such as ischaemic heart 

disease (IHD), stroke, heart failure, and heart rhythm disturbances. CVDs are the 

main global death cause, constituting 32% of overall deaths in 2019 according to the 

World Health Organization. IHD and stroke occupy the first two places in the global 

cause of death ranking (Figure 1.8), both for men and women, and account for 84% 

of deaths caused by CVD [9]. 

 

Figure 1.8 IHD and Stroke as the leading causes of death in 2019. Adapted from [9] 
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CVDs mortality has been decreasing since 1980 within the European Region [10]  

and in America [11], nonetheless, several studies report signs of stagnation in the 

reduction of CVD cases [Martinez et al., 2021]. The rate of the decline is historically 

lower for women than for men [11], especially when considering IHD (Figure 1.9). 

Therefore, development of strategies to improve the decline of CVDs is a major 

source of concern in the medical field; screening and risk stratification are required 

to allow prevention and early treatment. 

 

Figure 1.9 Coronary heart disease (CHD, synonym of IHD) mortality per 100.000 subjects, 

evaluated for male and female patients of different ages. Stagnation in the number of 

cases since the early 2000’ can be noted. Women’s mortality decline rate is lower with 

respect to men’s one in all age classes. Adapted from [11] 

1.3.1. Cardiovascular Disease: traditional and non-traditional risk 

factors 

Risk stratification is defined as the estimation of the probability of dying from a 

disease or benefitting from medical treatment. It is used to identify the best suited 

level of care for each individual, therefore increasing disease prevention and 

improving patient treatment. Being CVD the leading cause of mortality at the global 

level, this procedure is of the main importance in this field.  

The main traditional CVD risk factors considered for stratification are cholesterol, 

high systolic blood pressure, cigarette smoking, diabetes mellitus, and adiposity [3]. 

Typically, these features are collected for each patient and serve as input of 

algorithms used to estimate the CVD risk. The European Society for Cardiology 

(ESC) Guidelines on cardiovascular disease prevention suggest the use of the 

Updated Systematic Coronary Risk Estimation (SCORE2) algorithm. SCORE2 

combines CVD mortality and morbidity (non-fatal myocardial infarction or stroke) 



| Introduction 25 

 

 

estimating the 10-year risk of both fatal and non-fatal CVD events based on age, sex, 

and the main CVD risk factors which are mentioned above [3]. Pooled Cohort 

Equations (PCE) developed by the American College of Cardiology [12], 

Framingham risk score (FRS) [13], largely used in clinical practice, and Reynolds 

Risk Score (RRS) [14] are alternative methods to estimate the 10-year risk of fatal 

CVD. These algorithms may provide various outcomes but are all based on the same 

factors considered for SCORE2.  

Further research demonstrated that the outlined algorithms predicted the 10-years 

CVD risk inaccurately. As an example, a prospective epidemiologic study on a 

multi-ethnic population compared the calibration of PCE, FRS and RRS [15], 

reporting a high overestimation of the expected risk when compared to the 

observed one, both for men and women. The authors claimed that this 

overestimation was mostly due to the incomplete capture of cardiovascular events 

through traditional risk factors. As a result, it has been suggested that non-

traditional risk variables are added to the existing traditional factors. According to 

a literature review by Van Bussel et al. [16], homocysteine, coronary calcium score 

(see chapter 1.3.2), patient’s frailty, and number of medications used can improve 

accuracy of risk scoring. The ESC is recommending non-traditional variables for the 

risk assessment as well; amongst them, female-specific factors such as menopause, 

pregnancy disorders, and gynaecologic conditions [3], have now been introduced. 

Despite not being incorporated in the risk predicting algorithms yet, a correlation 

between these factors and CVD has been proven [17], and they might contribute to 

the increase in predictions accuracy. Moreover, some studies have focused on the 

presence of a sex-bias during risk assessment. Abuful et al. claimed the presence of 

a lower perceived risk for women during diagnosis [18], and Hyun et al. reported 

that women are less likely to be assessed for CVD risk [19]. Another study by 

Tabenkin et al. found no difference in patient treatment during risk evaluation [20]. 

Nonetheless, the three studies agree on the presence of a lower number of 

pharmacological prescriptions aimed at preventing CVD for women patients. The 

introduction of sex-specific factors might therefore improve on this aspect, 

supporting an equal evaluation for men and women. 
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1.3.2. Coronary Artery Calcification as a risk factor 

Along with traditional and non-traditional risk classification based on patient’s 

history and blood samples, European and American guidelines recommend using 

Coronary Artery Calcification (CAC) score [3], [21] which has been demonstrated 

to improve clinical risk-assessment. CACs are calcifications of the inner layer 

(tunica intima) of the coronary arteries resulting from inflammatory atherosclerotic 

processes (Figure 1.10a). Their detection is based on non-contrast chest computed 

tomography (CT), currently acquired by means of multidetector CT (MDCT). Even 

though the CAC scoring is accurate and cost-effective [22], it requires exposure to 

radiation. State of the art research allows to reach 1 mSy of radiation [22], but the 

dose can reach up to 7mSy in clinical practice [23]. The high radiation dose makes 

CAC an unadvisable measure, especially if the intention is to use it for screening. 

CAC scoring is therefore only recommended when the risk assessment is uncertain 

[24]. 

1.3.3. Breast Arterial Calcifications as a risk factor 

Mammography is another imaging technique that can improve CVD risk 

evaluation, while at the same time reduce the sex-bias of predictions. Breast Arterial 

Calcifications (BACs) are common incidental findings on mammograms. BACs are 

caused by sheet-like deposit of calcifications in the tunica media of breast arteries, 

known as Mönckeberg medial calcific sclerosis. This phenomenon causes 

thickening of the vessels that make them stiffer and less compliant (Figure 1.10b). 

BACs do not occlude the vessels like coronary artery calcifications, hence are not 

considered as a risk for the patient; they are usually ignored when observed on 

mammograms and rarely mentioned instated on the medical report. 

 

Figure 1.10 a) arterial intimal calcifications that constitutes CACs; b) arterial medial 

calcifications typical of BACs [25] 
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In research by Hendriks et al., BACs were detected in 12.7% of women undergoing 

mammography [26]. The prevalence of BAC highly depends on age (Figure 1.11), 

ranging from lower than 10% for women under 50 years, to around 50% for women 

in their 80 [27]. 

 

Figure 1.11 Correlation between age and BAC prevalence [27] 

In a recent study, Bui et al. reviewed twenty studies on the correlation between 

BACs and CVD, finding that most of them confirm this association with an adjusted 

odds ratio between 0.96 and 8.13. The authors claimed that variability of the results 

was due to the different way the outcome of CVD was defined, as self-report by 

patients, CAC score, angiography, or risk stratification by traditional factors [28]. 

A meta-analysis of 59 studies from Lee et al. [29] highlighted the correlation of BACs 

with Coronary Artery Disease (CAD), one of the major CVDs. The study reported a 

summarized odds ratio of 2.61 between BAC and CAD.  

The correlation of BACs with the traditional risk factors has also been investigated. 

As reported by a systematic review of 52 articles [26], diabetes is associated with 

BAC with an odds ratio of 1.72. Hyperlipidaemia and hypertension were not 

considered by the authors because of the heterogeneity of different studies. 

Interestingly, the odd ratio is below 1 for smoking, implying that BACs prevalence 

is lower amongst smokers; this is justified by the effects of smoking on weight and 

metabolism and by the survival rate of smokers without BAC after the age of 50. 

Margolies et al. retrospectively studied the association between BAC (assessed by 

quantitative scoring from 0 to 12) and CAC score, in women that underwent both 

mammography and chest CT [30]. BAC scoring was evaluated as a predictor for 

CAC, resulting in an adjusted odd ratio of 2.3 for mild BAC (with scores 1-3) and of 

3.2 for marked BAC (scores 4-12). Moreover, the predicting capability of BAC was 

assessed by studying the area under the ROC curve (AUC); it’s demonstrated that 

BACs score >0 had an AUC of 0.73 for identification of women with CAC. This result 

is equivalent to the predicting ability of both the established FSR and PCE 

algorithms for CAC score. 
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The proven correlation between CAC and BAC, along with the predictive capability 

of BAC for CVDs, suggests the possibility to use BACs presence instead of CAC 

score for women when encountering an uncertainty in risk assessment. This is 

further motivated by the lower radiation dose needed to perform the analysis: 

mammography’s effective dose is 0.64 mSy [23], ten times lower than the one 

required for chest CT dedicated to CAC scoring. Moreover, mammography is a 

routine exam for women with more than 50 years which is employed for breast 

cancer detection: according to Eurostat, considering European states, in 2014 the 

share of women between 50 and 69 years that never underwent mammography is 

only between 5.0% and 10.0% (Figure 1.12) [31]. Similarly, in 2015, 71.3% of United 

States’ women between 50 and 64 years had at least one mammography within the 

past two years [32]. One of the important issues to consider is the age of screened 

women, since younger patients are excluded from screening mammographic 

exams. Nonetheless, women younger than 50 have a BAC prevalence lower than 

10% [27]; age is also associated with the increased likelihood of development of 

other CVD risk factors, and most CVD occurs starting from 50 years [33]. Therefore, 

under the hypothesis of developing a CVD screening for women using BACs as an 

indicator, the population group that should be screened is the same as the 

population group that is already being tested for breast cancer Therefore, BACs 

analysis would not require any additional radiation exposure or further sanitary 

expenses. Despite this evidence, a survey amongst the European Society of Breast 

Imaging members demonstrates that only 60% of radiologists report the presence 

of BACs, even though 80% of them are conscious of the association between BAC 

and cardiovascular risk. Moreover, 64.8% of reports are a simple annotation of 

presence, and the remaining are based on quantitative or semiquantitative notes 

with different scoring systems [34]. 

The correlation between BACs and CVDs intensities has also been demonstrated 

[35], proving the need for the development of a unified system for BACs 

quantification. Several quantitative and semiquantitative scores have been 

proposed (see chapter 1.4) but there are still no official guidelines to direct 

radiologists’ annotations.  

Increasing the physicians’ awareness and number of BAC reports, as well as 

defining a quantitative classification method are the most challenging aspects of 

using BACs as a risk factor for CVDs. Another problem is the absence of 

commercially available software able to assist BACs detection during a possible 

screening program and to help radiologists throughout the current highly time-

consuming scoring procedure. Overcoming these issues will lead to reducing the 

gender-bias and to increasing risk assessment accuracy, ultimately helping in the 

battle against CVDs amongst women population. 
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Figure 1.12 Frequency of mammographic examination for women between 50 and 69 

years in EU states. Note how in most states more than 50% of the considered population is 

examined at most every two years [31] 

1.4. Quantitative and semiquantitative methods for 

BAC classification 

Most of the available literature focused on association between BACs and 

cardiovascular diseases relates the two only by studying the presence or absence of 

BACs. Further studies investigated the relationship between BACs and CVDs 

severities, finding a positive correlation [30], [36]. For this reason, quantitative BAC 

scores could provide a stratification of patients’ CVD risk based on mammograms 

and at the same time, allow deeper study of the phenomenon. Several approaches 

are presented in different studies, proposing a scoring procedure either quantitative 

or semiquantitative which are summarized in Table 1.1.  

Author Type of score Scale Variables considered 

Molloi et al. [37] Quantitative 
Continuous scale 

0 to 100 mg of calcium 

Densitometry 

(prediction of BACs calcium 

 mass from BACs pixel value) 

Mostafavi et al. [35], 

Ružičić et al. [36] 
Semiquantitative 

Score 

1-4 

Number of vessels 

Shape (punctuate or coarse BACs) 

Margolies et al. [30] Semiquantitative 
Score 

0-12 

Number of vessels 

Density of calcifications 

Length of calcifications 

Trimboli et al.[38] Semiquantitative 
Score 

0 to (5+Nv) 

Number of vessels (Nv) 

Opacification of the vases 

Length of calcifications 

Table 1.1 Summary of the state-of-the-art BACs scoring methods 
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In the quantitative study by Molloi et al. [37], the correlation between BACs and the 

calcium mass of each BAC segment extracted by densitometry was investigated. 

After the acquisition of the mammogram, a region of Interest (ROI) was manually 

determined around all the noticeable BACs. In each region, an estimation of the 

background of pixels showing a calcification was made through a linear 

interpolation algorithm based on the surrounding pixel values. This estimate is 

subtracted from the original ROI, yielding an approximation of only the calcium 

elements (Figure 1.13). The pixel values corresponding to BACs were then summed 

to give the total calcium mass [37], [39]. This technique was not tested for correlation 

with CVD risk stratification or CAC scoring but showed a good inter-reader 

reproducibility (correlation coefficient 0.97 between two observers’ measurements). 

 

Figure 1.13 a) original mammogram; b) regions of interest around the calcified arteries; c) 

removal of arteries’ pixels, substituted with estimated background; d) subtraction of c 

from a, showing the calcified arteries. Adapted from [37] 

Mostafavi et al. focused on BACs predictive ability for Coronary Artery Disease 

(CAD) diagnosed with computed tomography angiography (CTA) [35]. The group 

evaluated mammograms ad CTA scans on a semiquantitative scale from 1 to 4, 

where 1 corresponds to no BAC, 2 to few punctate BAC, 3 to coarse BAC with tram 

track appearance in less than three vessels, and 4 to coarse BAC in ≥3 vessels (Figure 

1.14).Amongst the patients positive to BACs, 83% resulted positive also to CAD, 

and moderate to severe BACs (with scores 3 and 4) resulted associated with 

moderate to severe CAD. The same semiquantitative score has been used by Ružičić 

et al. [36] to search for a correlation with CAD severity (evaluated through the 

SYNTAX score [40]), proving that intermediate-to-high SYNTAX group had a 

significantly higher prevalence of severe BAC. 



| Introduction 31 

 

 

 

Figure 1.14 BAC scoring according to the studies by Mostafavi et al., and Ružičić et al. A) 

Grade 1: No vascular calcifications, B) Grade 2: Few punctate vascular calcifications, no 

tram track or ring calcifications. C) Grade 3: Coarse or tram track calcifications affecting 

<3 vessels. D) Grade 4: Coarse or tram track calcifications affecting ≥3 vessels [35]  

Margolies et al. evaluated the relationship between BAC and coronary artery 

calcifications (CAC) on non-contrast CT scans, as well as the correlation of BAC 

score with the Framingham Risk Score (FRS), clinically in use for risk stratification 

of CVDs [30]. Both BAC and CAC were evaluated on a semiquantitative scale from 

0 to 12; for BACs, the number of calcified vessels, the length of the vessels, and the 

density of calcium deposits were considered to assign the score. The study proved 

the correlation, showing that in the severe CAC group (score 4 to 12), 56% of patients 

were also classified as severe BACs. Furthermore, BAC and FRS provided similar 

results for the identification of women with severe CAC. 

Similarly, in a recent study Trimboli et al. [38] defined the BAC Semiquantitative 

Score (BAC-SS) as: 

 𝐵𝐴𝐶_𝑆𝑆 = 𝑁𝑣 + 𝑂𝑣 + 𝐿 ( 1.1 ) 

where 𝑁𝑣 refers to the number of calcified vessels and 𝑂𝑣 is the vessel opacification 

(assigned with 0 if the arterial walls are visible, 1 if they are calcified). 𝐿 is based on 

the sum of the lengths of all the calcifications in a single mammography, resulting 

in scores from 1 to 4 based on length quartiles defined over the studied population 

(score L=0 was assigned in case of BAC absence) (Figure 1.15). The study only tested 

medio-lateral oblique mammograms and reported a 77% intra-reader and a 64% 

inter-reader reproducibility, without analysing the possible correlation between the 

score and CVDs severity. 
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Figure 1.15 Analysis of a MLO view for assigning BAC-SS score: A) mammogram with a 

single calcified vessel, 𝑁𝑣= 1 ; B) full opacification of the vessel, giving 𝑂𝑣= 1; C) 

demonstration of the length computation and scoring based on length quartiles, resulting 

in 𝐿= 4 ; D) resulting BAC-SS of 6 [38] 

In case a standard BACs scoring procedure was to be fixed, the efficacy of state-of-

the-art scores must be assessed by taking into consideration their ability to correctly 

predict CVD risk; moreover, inter-reader reproducibility of results and time needed 

to perform the scoring have to be considered. The definition of a ROI for 

densitometry measurement or the segmentation of BACs is needed for all the 

proposed scores. These procedures can reduce reproducibility and increase the time 

needed for the analysis. On the other hand, they are necessary to increase the 

accuracy of scoring. The proposal of automatic detection and segmentation methods 

is growing, aiming at reducing the burden of the scoring procedure, as well as 

increasing its reproducibility. Nonetheless, none of these methods is presently used 

in clinical practice. 
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1.5. Importance of Artificial Intelligence and Machine 

Learning in radiology 

Over the years, Artificial Intelligence (AI) and Machine learning (ML) are becoming 

more and more relevant in the medical field, especially in radiology. The number of 

scientific publications in radiological applications of AI and ML has increased from 

about 100 articles in 2016, to more than 900 in 2020 [41]. In 2019, The interest in the 

topic was also manifested at the European Congress of Radiology (ECR), where AI 

was reported amongst the top five trends [42]. Commercially available applications 

are also growing in number. Considering 100 products on the market analysed by 

Van Leeuwen et al., two-thirds of them were commercialized between 2018 and 

2020 [43].  

To better understand the reason for such interest in the field, the definitions of 

Artificial Intelligence and Machine Learning must be understood. Considering a 

cognitive modelling approach [44], a machine based on AI can be defined as able to 

“think humanly”, mimicking human abilities such as learning or solving problems.  

ML is the branch of AI focused on producing algorithms that allow computers to 

learn from data, improving their performances through experience. When working 

with images, classic Machine Learning exploits some features that need to be 

manually extracted, pre-processed, and fed into the model to perform training and 

ultimately to obtain the desired results [45]. The most recent technique in the ML 

field employs artificial neural networks (NN) to process data (see chapter 2.1) and 

is referred to as Deep Learning (DL). The use of NN allows to train algorithms 

avoiding manual features extraction, obtaining a higher robustness of the results 

[45]. The main drawback of this technique is the request of higher amount of 

training data when compared to classical ML methods; on the other hand, DL can 

be efficiently applied to image-based operations of classification, segmentation, or 

detection, since NN are able to process a high number of data [46]. For this reason, 

DL algorithms are especially suited to the development of applications for 

radiology, where the ability to extrapolate information from images is of the main 

importance.  

Furthermore, advances in medical imaging technologies have allowed for the 

generation of an increasing amount of data in recent years, which require 

technological improvements in their analysis. According to a study based in Mayo 

Clinic, Minnesota, the number of images that each radiologist must interpret per 

minute during his workday increased four times from 2.9 in 1999 to 16.1 in 2010 

[47]. A similar workload changes the image analysis modality for radiologists, 

shifting it from clinical interpretation to a mere detection task [48].  
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AI is a tool that can support the radiologists’ work, taking care of time-consuming 

jobs such as [49]: 

▪ images screening, detecting with high sensitivity the negative studies, 

leaving the problematic ones for radiologists to inspect 

▪ segmentation of structures of interest  

▪ comparison of current and previous images taken on the same patient, to 

allow follow-ups  

The growth in the production of medical images is also pushing radiology to move 

from a subjective perceptual skill to an objective science[48]. Reproducibility of 

radiological results requires a reduction of intra- and inter-reader variability in 

image interpretation. This can be easily obtained by AI applications that could be 

used as a unified tool for the extraction of results, ultimately aiming at 

standardization in radiology. 

The development of radiomics is also pushing toward a more quantitative approach 

for image interpretation. The term radiomics refers to the derivation of a large 

number of features from medical images, their storage in databases and the 

subsequent mining of the data for knowledge extraction. The process is focused on 

improving medical decision-making based on patients’ data [50]. This method 

heavily relies on ML algorithms that are currently being tested with promising 

results in the oncological [51], [52] and cardiovascular fields [53], [54], but have not 

been translated into clinical use yet.  

Following the possible applications of AI technology outlined above, some 

commercial applications have recently been introduced to the market. The 

Diagnostic Image Analysis Group (DIAG) from the Radboud University Medical 

Center in the Netherlands has performed a market analysis in 2020, finding 100 AI 

commercial applications that satisfied the requirement of being approved by both 

the Food and Drug Administration (FDA) and marked as conform with European 

health, safety, and environmental protection standards (CE-mark) [43]. Of these, the 

majority addresses neuroradiology and chest radiology, followed by breast and 

musculoskeletal radiology. The main tasks executed by the software are 

quantification, detection, and diagnosis (Figure 1.16). The group found evidence for 

lack of independent validations of the tools developed, and for absence of a 

standard model to evaluate the efficacy of AI applications.  
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Figure 1.16 AI commercial applications divided by subspecialty (left) and main 

functionality (right). Adapted from [43] 

Medical device regulation is still evolving and just starting to include the notion of 

AI-based medical software [55]. For this reason, some gaps are still present in the 

regulatory frameworks. As reported by Larson et al.: examining FDA, International 

Medical Device Regulators Forum and EU frameworks, the study highlighted a lack 

of mechanisms to compare similar algorithms, an insufficient characterization of 

safety and performance elements, and a low number of resources to assess 

performance at the installation sites [56].  

These are symptoms of a market still in its infancy but growing at a fast pace: the 

DIAG study considered only 100 applications in 2020, but in the past year 80 new 

products satisfying the same inclusion criteria were added on the group’s official 

website. Without any doubt, AI applications on the market and under research will 

continue to grow in the future and will become an integral part of radiology. They 

will help physicians to work in a more quantitative and accurate way, at the same 

time allowing them to focus more on the clinical interpretation of results and 

patients’ wellbeing.  
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1.6. Artificial intelligence in BAC detection:  

state of the art 

AI is the new frontier of radiology, and its use is spreading in the field: Machine 

Learning algorithms and numerous Neural Networks are being developed to 

facilitate radiologists’ tasks (see chapter 1.5). Both BACs detection and severity 

assessment present some challenges that could be solved with AI: the calcifications 

are sometimes hidden by dense breast tissue, can present themselves in many 

different shapes and be confused with other types of breast calcifications (see 

chapter 1.3.3). Moreover, all the scoring procedures proposed so far for BACs 

quantification require a time-consuming process for length evaluation or for the 

definition of region of interest around BACs (see chapter 1.4).  

State of the art literature is focused on BACs segmentation, using both Machine 

Learning (ML) and Deep Neural Networks (DNN) methods. One of the first 

algorithms dedicated to BAC detection was developed by Cheng et al. It is based on 

a Machine Learning procedure that is able, when provided with seeding points, to 

track a calcified vessel. The segmentation algorithm started with the pre-processing 

of the mammography that allowed to highlight the vessels, generating a vesselness 

map [57]. A global thresholding of this map produces the seeding points that were 

used as starting pixels for vessel tracking. The latter was done through the random-

walk technique, that generated multiple paths for each seed by searching points 

with a high value in the vesselness map, within a predefined distance range around 

the seed. After their definition, paths needed to be further processed and linked to 

obtain the final vessels segmentation (Figure 1.17). Length and diameters of 

resulting calcified vessels were compared with the ground truth given by two 

readers, finding only small differences [7]. Other ML-based methods have been 

proposed by the same research group [58], but the advancement of deep neural 

network techniques has provided a more efficient mean to segment BACs.  

Wang et al. developed a deep Convolutional Neural Network (CNN) (see chapter 

2.1) for BAC segmentation based on a pixel-wise binary classification: for each pixel, 

a patch of its surroundings is extracted from the image and fed to the network. The 

CNN’s output was a classification of the central pixel of the patch as one if it 

belonged to the BAC class, as zero otherwise. The operation was repeated for all the 

pixels in the image, yielding a segmentation of BACs. Results were evaluated by 

extracting the calcium mass from the pixel classified as positive (through the 

densitometry technique, see chapter 1.4) and comparing it to the ground truth mass, 

computed over manual segmentation. Linear regression analysis resulted in only a 

small deviation from the perfect correlation[59].  
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U-Nets (see chapter 2.1) have been proposed for BACs segmentation, inspired by 

their application to many biomedical tasks with good results [60]. lghamdi et al. 

proposed a modification to the U-net structure, adding a dense layer after each 

convolutional layer to prevent the model from learning redundant features [61] The 

resulting network, called DU-Net, has shown better results (F1=92.19) compared to 

the CNN used by Wang et al. (F1=56.8), and outperformed the segmentation done 

by two experts with three years of experience. To reduce the computational burden 

given by U-Nets, Guo et al. introduced the Simple Context U-Net (SCU-Net) [62]. 

This network has a similar structure to the U-Net, but thanks to input dimensions 

reduction, its parameters number is two orders of magnitude smaller than the one 

of U-Net. The input images used in the study are in fact cropped into partially 

overlapping patches, and each patch is separately processed by the network; the 

results for all patches are further merged. The segmentation results (F1=0.729) are 

comparable to U-Nets output (F1=0.735). Moreover, the ability to track BACs over 

time was proven (Figure 1.18). To study the time evolution, the group evaluated the 

severity of BACs summing the area of pixels labelled as belonging to a BAC and 

with an intensity over a fixed threshold, generating the Sum of Mask Area with 

Threshold x Metric (TAMx score). TAMx scores were then normalized by breast 

area to overcome differences in breast positioning between scans done in different 

years. Finally, the normalized TAMx was summed for all the mammographic views 

of a patient, generating a score able to track the increase of BACs in time. All the 

described methodologies demonstrate that BAC detection and segmentation is 

possible with great accuracy, especially through Deep Learning techniques. 

 
Figure 1.17 Chang et al. ML procedure: a. original image, b. vesselness map, c. seed points 

found by thresholding, d. segmentation results. Adapted from [7] 

 
Figure 1.18 BACs longitudinal quantification by TAMx score. Left: TAMx score for five 

different patients over subsequent years. Right: segmented mammograms for a single 

patient evaluated from 2009 to 2020 [62] 
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2 Method 

2.1. Neural Networks and Deep Learning 

Artificial Neural Networks (ANN, often simplified as NN) are computing systems 

modelled on biological neural networks. They are one of the many available 

Machine Learning techniques, and the one that’s showing the most promising 

results in a wide application range. Their structure is based on a fundamental unit 

called artificial neuron, that was first theorized in 1943 by McCulloch and Pitts [63] 

and represents the computational model of a neuron. At a biological level, the 

electrical signal that travels through the neuron’s dendrite is perceived by a 

receiving neuron thanks to synapses, whose efficiency is defined as the ability of the 

presynaptic input to influence the postsynaptic output. Efficiency depends on the 

frequency of synaptic activity. The receiving neuron can intercept multiple stimuli, 

both excitatory and inhibitory, that are integrated inside the soma and compared 

with an activation threshold. If the sum of stimuli is greater than the threshold, the 

receiving neuron activates producing an action potential, which in turn will 

stimulate further neurons (Figure 2.1a). This process is reflected by the artificial 

neural structure (Figure 2.1b): it combines several inputs, that are weighted 

modelling synaptic strength with excitation or inhibition properties. If the signal 

resulting from input integration, called action potential (P), is higher than an 

activation threshold, it is passed as argument to the activation function, that 

produces a proportional output. 

 

Figure 2.1 a) schematic biological neuron; b) artificial neuron model 
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In a NN several artificial neurons are arranged in layers: the input layer reads the 

processed data and produces an output that is fed into the next layer; this 

procedure, called forward propagation, is repeated up to the output layer, where a 

score is obtained. The layers between input and output are called hidden layers 

(Figure 2.2a). The score produced can consist of a binary classification (0 or 1) or it 

can be more complex, for instance when the desired output is a multilabel 

classification or an image segmentation. These different outputs can be obtained by 

modifying the network’s structure. Importantly, the operation in a single layer is a 

linear weighted sum combining the synapse weights with the output of the 

previous layer. Conversely, the thresholding of activation is a non-linear operation 

described by the so called “activation function”. As a result, NNs are providing a 

vast set of non-linear I/O functions, if properly trained. 

The NN’s architecture, especially the number of hidden layers, plays a key role on 

the quality of the results. The presence of multiple hidden layers allows to have a 

high flexibility in the interpretation of input signals, and permits to reach high levels 

of generalization, because each passage from one layer to the next can extract 

information with superior level of abstraction. A NN that presents a high number 

of hidden layers (Figure 2.2b) is called Deep Neural Network (DNN).  

 

Figure 2.2 a) neural network; b) deep neural network 

The majority of DNNs are trained with the supervised learning technique: the 

dataset to be analysed is labelled by experts in the field of interest; these labels 

represent the reference value that the network should learn to predict. The learning 

ability of neural networks resides in the possibility to tune their weights and the 

neuron’s activation thresholds, aiming at minimizing the cost function, that 

represents the error between the predicted output and the reference. This can be 

done by backpropagation: the cost function’s gradient is transmitted from the 

output layer to the input one, updating the weights through an optimization 

algorithm (see chapter 2.1.2).  
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DNN architectures with different purposes have been proposed in literature. 

Structures such as illustrated in Figure 2.2b are also called Feed Forward NN 

(FFNN); if their hidden layers are of convolutional type, they can also be called 

Convolutional NN; these kinds of structures are generally used for images 

classification. Recurrent NN present connections between non-consecutive layers, 

and have been introduced to solve the vanishing gradient problem (see chapter 2.2) 

often present in CNN and FFNN. Structures such as U-Nets [60] are able to provide 

outputs of the same dimensions as their input, and are often used for images 

segmentation (see chapter 1.6); their architecture contains a contracting path 

(encoder) that allow to extract features from the whole image; its output is fed into 

an expanding path (decoder) that generates the segmentation; the two paths are 

linked also by long-skip connections, that connect opposing layers from the 

contracting to the expanding path (Figure 2.3).  

 

Figure 2.3 U-net structure. The green layers represent the contracting (encoding) path, the 

blue layers the expanding (decoding) path [60]. 

All the cited structures are used for supervised learning, and require an annotated 

training set. DNNs also allows for unsupervised learning, that can be developed for 

example through Generative Adversarial Networks (GANs) [64], and for solving 

temporal problems such as natural language processing through Recurrent 

architectures (RNN) [65].  

Since this thesis deals with the interpretation and classification of mammographic 

images, a CNN based on VGG16 architecture [66] was considered. For this reason, 

the next paragraph lays the foundations of Convolutional Neural Networks (CNN) 

architectures, explaining how they are able to process images and extract positional 

information. Further details about VGG16 and the specific network used in the 

present work can be found in chapter 3.3.2.  
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2.1.1. Convolutional Neural Networks  

Recognizing an object inside an image is a basic ability of the human brain, but it 

becomes a challenging computational task when performed by artificial 

intelligence. Physiologically, each neuron of the visual pathway is sensitive to a 

small sub-region of the visual field, called receptive field; therefore, neurons act as 

local filters over the input space. The image that hits the retina is fed to a series of 

visual cortices, that allow to encode the image’s meaning throughout their layers 

[67]. From one layer to the next, the neuronal population size decreases, while the 

generalization ability grows because the spatial receptive field of each cell increases. 

Despite this, spatial correlations present in the image are maintained. Moreover, 

specific neurons are devoted to encoding different image properties, such as lines 

orientation, vertices, colours and light intensities [67]. Thanks to this neuronal 

division of tasks, any visual item is encoded by the brain into a visual feature map, 

that is generated by stacking several layers, each representative of a specific image 

characteristic. 

Convolutional Neural Networks are deigned to mimic the previously described 

neuronal organization; they are therefore able to exploit local spatial correlation. 

CNNs architectures may vary according to the task they are focused on, but they 

are usually deep neural networks composed of convolutional and subsampling 

layers (called pooling layers) stacked on top of each other. These modules are 

always followed by one or more fully connected layer, the last of which provides a 

prediction of the input image class label (Figure 2.4). In the following paragraphs, 

an in-depth description of the structure and role of each type of layer can be found. 

 

Figure 2.4 Basic convolutional neural network structure. The input image is fed to a single 

convolution layer composed of multiple feature maps, represented by the blue squares. 

Subsequently, the output of each feature map is fed to a pooling layer (green squares) that 

reduces the signal’s dimensions. The pooled data are the input of a fully connected layer, 

whose outcomes are fed to the output layer that provides the wanted results.  
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Convolutional Layers  

Convolution is the main processing step of a CNN, and takes place in layers devoted 

to this operation, where the layer’s input is convolved by a square set of weights 

smaller than the image’s dimensions, called kernel. The kernel slides along the 

image with a predefined stride, is multiplied point by point with the data, and the 

results of this multiplication are summed generating a feature map that forms the 

input of the following layer (Figure 2.5). The same convolutional layer might 

contain multiple filtering kernels, representing a high dimensional feature space. 

Importantly, the convolutional structure gains position invariance relevant to object 

detection or segmentation. Such spatial invariance is also mirrored by the training 

of convolutional weights, which dramatically reduces the degrees of freedom in 

CNNs presenting a very high number of synaptic weights to be adapted in the 

training process. 

According to the convolution procedure, each neuron of one layer is connected only 

to a neighbourhood of neurons in the previous layer thanks to the kernel’s weights. 

The presence of a shared kernel over the whole input image allows features to be 

detected regardless of their position in the visual field. Moreover, it reduces the 

number of weights to be trained, decreasing the computational burden. 

 

Figure 2.5 Convolution of an input image with a kernel, producing a feature map as 

output. 

Considering a kernel with dimensions LxM, the input of a single neuron in position 

i,j, is determined by the sum of the input signals 𝑎𝑖+𝑙,𝑗+𝑚 in its receptive field, 

weighted by the kernel’s values 𝑤𝑙,𝑚; this input is summed to the neuron’s threshold 

𝑏. The resulting value is the action potential 𝑃𝑖𝑗, that is the argument of the neural 

activation function 𝑓(𝑃𝑖𝑗): 

 
𝑢𝑖𝑗 = 𝑓 (𝑏 +∑∑ 𝑤𝑙,𝑚𝑎𝑖+𝑙,𝑗+𝑚

𝑀

𝑚=1

𝐿

𝑙=1

) = 𝑓(𝑃𝑖𝑗) ( 2.1 ) 
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The activation function 𝑓(𝑃𝑖𝑗) is traditionally either a sigmoid (Figure 2.6a) or a 

hyperbolic tangent (Figure 2.6b). Recently Rectified Linear Unit (ReLU) activation 

function [68]  became popular due to its simplicity and efficiency (Figure 2.6c). 

ReLU is expressed as: 

 
𝑓(𝑃𝑖𝑗) = {

𝑃𝑖𝑗   𝑖𝑓 𝑃𝑖𝑗 ≥ 0

0      𝑖𝑓 𝑃𝑖𝑗 < 0
 ( 2.2 ) 

It was demonstrated that this activation function leads to fast convergence and 

avoids the vanishing gradient problem (see chapter 2.2), but when the neuron is not 

active (Pij=0) the ReLU derivative is equal to zero and this might lead to suboptimal 

training and slow convergence. Leaky ReLU [69] was introduced to solve this 

problem. It is a function with a small non-null gradient when the neuron is inactive 

(Figure 2.6d), defined as: 

 
𝑓(𝑃𝑖𝑗) = {

𝑃𝑖𝑗       𝑖𝑓 𝑃𝑖𝑗 ≥ 0

𝜆𝑃𝑖𝑗    𝑖𝑓 𝑃𝑖𝑗 < 0
 ( 2.3 ) 

with 𝜆 between [0,1]. Xu et al. compared the results of a CNN with ReLU and with 

Leaky ReLU as activation functions, finding that the network performance 

improves when lambda is big enough [70]. 

 

 

Figure 2.6 Commonly used activation functions (P= neuron’s action potential). a) Sigmoid; 

b) Hyperbolic tangent; c) Rectified Linear Unit; d) Leaky Rectified Linear Unit 
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Pooling Layers 

Convolutional layers are typically followed by pooling layers, that execute a down 

sampling on the feature map coming from the convolution, producing a new feature 

map with reduced resolution. This procedure lessens the computational cost of 

training, and irrelevant details are discarded allowing an analysis of the image’s 

invariant features. It also allows the combination of local features in a larger scale, 

which eventually leads to object recognition. 

There are two strategies to develop a pooling layer: the max-pooling operator 

applies a window function to the feature map of the previous layer and computes 

the maximum in the neighbourhood resulting from the windowing (Figure 2.7a); 

alternatively, average-pooling computes the average value of the set of pixel that 

results from the window function (Figure 2.7b). Pooling layers do not require 

training, as their input is not weighted.  

 

Figure 2.7 a) Max pooling; b) Average pooling [71] 

Fully connected and output Layers 

Fully connected layers are used after the stack of convolutional and pooling layers 

to allow the production of an output. Each neuron of a fully connected layer receives 

as input the weighted output of all the neurons of the previous layer (Figure 2.4). 

As opposed to convolutional layers, the weights in fully connected layers are 

numerous, and the spatial features are lost during the processing.  

For multi-class classification problems, the activation function of the last fully 

connected layer is the Soft Max. It maps the output into a vector of values in range 

(0,1) that add up to one, representing the predicted probability of the input image 

to belong to each class.  If the problem is binary, a single neuron with a sigmoid 

activation function (Figure 2.6a) is added at the network’s output after the fully 

connected layer. A threshold is fixed to perform a crisp classification. The resulting 

value will be 0 or 1 according to the predicted class. 
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2.2. Neural network training 

The training of a neural network is based on supervised learning: the desired output 

is known thanks to the reference that is associated with each input; therefore the 

objective is to minimize the cost function (that represents the error) between the 

ground truth and the prediction.  

The cost function originally proposed for neural networks was the mean square 

error, that caused stagnation in learning, influencing the training times. To solve 

this problem, the cross-entropy (CE) cost function was introduced by Badr et al. 

[72]. It accelerates the training algorithm, reducing stagnation periods. Considering 

C classes for the classification, cross entropy of the i-th neuron is expressed as: 

 
𝐶𝐸𝑖 = −∑𝑡𝑐,𝑖 log(𝑢𝑐,𝑖)

𝐶

𝑐=1

 ( 2.4 ) 

Where for each class c, 𝑡𝑐 is the reference value and 𝑢𝑐,𝑖 is the prediction. Note that, 

differently from the notation previously used, neurons are here considered as 

arranged in vectors and indexed with i, but the following equations hold, with slight 

modifications, also for convolutional layers, where neurons are arranged in 2D 

matrices with indexes i,j.  

When the classification problem is binary, the binary cross entropy (BCE) is used, 

and the previous equation becomes:  

 𝐵𝐶𝐸𝑖 = −𝑡𝑖 log(𝑢𝑖) − (1 − 𝑡𝑖) log(𝑢𝑖) ( 2.5 ) 

The cost function can be computed only for the last layer, since the output of 

neurons belonging to hidden layers cannot be compared to any reference. For this 

reason, the training procedure aims at backpropagating the error from the output 

layer to the hidden ones, updating the weights according to an optimization 

procedure. The most basic optimization is the gradient descent, that updates each 

weight proportionally to the gradient of the BCE cost function with respect to the 

weight itself. 

Prior to backpropagation, the outputs for all the possible N input data, with k 

ranging from 1 to N, must be computed through forward propagation. 

Subsequently, for each i-th neuron of the output layer L, the derivative of the cost 

function BCE is computed with respect to the neuron’s output 𝑢𝑖
𝑘 and multiplied by 

both the derivative of the activation function 𝑓(𝑃𝑖
𝑘) with respect to the neuron’s 

action potential 𝑃𝑖
𝑘, and the output of the previous layer’s j-th neuron 𝑦𝑗

𝐿−1,𝑘 .  



| Method 47 

 

 

The product  
𝜕𝐵𝐶𝐸𝑖

𝑘

𝜕𝑢𝑖
𝑘 𝑓′(𝑃𝑖

𝑘) is also called 𝛿𝑖
𝐿,𝑘. This operation is equivalent to the 

derivative of the cost function of the i-th neuron with respect to the weight 𝑤𝑖𝑗
𝐿 , 

computed for the k-th input data:  

 𝜕𝐵𝐶𝐸𝑖
𝑘

𝜕𝑤𝑖𝑗
=
𝜕𝐵𝐶𝐸𝑖

𝑘

𝜕𝑢𝑖
𝑘 𝑓′(𝑃𝑖

𝑘)𝑦𝑗
𝐿−1,𝑘 = 𝛿𝑖

𝐿,𝑘𝑦𝑗
𝐿−1,𝑘 ( 2.6 ) 

Finally, for each k, the BCE derivatives with respect to 𝑤𝑖𝑗 are summed and 

multiplied by a factor η called learning rate, that modulates the amplitude of the 

update: 

 
∆𝑤𝑖𝑗

𝐿 = 𝜂∑ 𝛿𝑖
𝐿,𝑘𝑦𝑗

𝐿−1,𝑘
𝑁

𝑘=1
 ( 2.7 ) 

The next backpropagation step updates the weights of layer L-1; its result is passed 

to layer L-2 and so on until reaching the input layer. Weight updating for the i-th 

neuron in the l-th hidden layer follows the equations: 

 
𝛿𝑖
𝑙,𝑘 = ∑(𝛿𝑟

𝑙+1,𝑘𝑤𝑟𝑖
𝑙+1)

𝑀𝑙+1

𝑟=𝑖

𝑓′(𝑃𝑖
𝑘) ( 2.8 ) 

 
∆𝑤𝑖𝑗

𝑙 = 𝜂∑ 𝛿𝑖
𝑙,𝑘𝑦𝑗

𝑙−1,𝑘
𝑁

𝑘=1
 ( 2.9 ) 

Where 𝑀𝑙+1is the number of neurons connected to the i-th neuron in the (l+1) hidden 

layer. 

Backpropagation technique has a high computational cost because of the high 

number of neurons in a NN. Moreover, since DNNs have many hidden layers, and 

the error’s gradient is smaller in each backpropagation step, the vanishing gradient 

problem might arise, bringing the layers closer to the input to learn slowly or to 

have an erratic update of weights that reduces the learning ability.   

Optimization based on gradient descent also comes with some challenges; the 

choice of learning rate can be hard, and the minimization can get trapped in local 

minima or saddle point of the cost function without reaching the global minima. 

Several alternative optimizations algorithms have thus been proposed, ranging 

from batches gradient descent, that processes subsets of the training dataset, to 

stochastic gradient descent that updates weights considering one input data at a 

time [73]. 
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One of the most used algorithms is the Adaptive Moment Estimation (Adam), a 

stochastic optimization method that presents an adaptive learning rate for each 

network weight and adds to the weights update equations data related to the first 

and second momentum of the gradient of the loss function.  This improves the speed 

of convergence and requires less memory for the computation with respect to 

gradient descent [74].  

During the training procedure, only a part of the whole dataset is fed to the network. 

This training dataset usually consists of 70% of the whole data, while 15% is used 

as validation set, to monitor the network results during training. The remaining 15% 

is the test dataset, used only when the network is fully trained, to test the 

generalizability of the results on an independent set. The training set is cyclically 

scanned during the learning procedure: it is typically subdivided into n batches that 

are used to update the weights n times. One scanning of the whole dataset is called 

epoch; several epochs are needed to minimize the loss function.  

The main reason for the use of a validation set is the need to avoid overfitting, that 

occurs when the network adapts too much to the training data, so that its 

generalization ability decreases. Through the validation set is possible to evaluate 

how each training step affects the generalization: if the results of the monitored 

metric start to worsen on the validation data, early stopping is performed, 

interrupting the training procedure and saving the network at the epoch that shows 

the lowest overfitting. The validation set is also used to optimize core 

hyperparameters such as the learning rate and the number of training epochs. 

2.2.1. Transfer Learning 

A major assumption in many machine learning algorithms is that train and test 

dataset belong to the same feature space, and are both independent and identically 

distributed (iid) [75]. When the distribution of data changes (for example, due to 

new data added to the test set), most of the ML models need to be rebuilt. 

This could represent a problem when the number of data available is lower than 

what is required to effectively train the algorithm. Indeed, for deep neural networks 

the presence of a high number of parameters (weights connecting one layer to the 

next) requires extremely large datasets to be trained. In literature, during the 

developing of deep convolutional neural networks, the ImageNet dataset is usually 

exploited for training: it contains over 14 million images belonging to 1000 classes. 

E.g., VGG16 [66], AlexNet [76], [77] and ResNet [78] are state-of-the-art 

convolutional networks based on ImageNet. In many real-world applications, it is 

highly expensive, if not impossible, to obtain such a huge amount of data. This is 

especially true when considering problems such as diseases identification from 
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radiographic images: the low prevalence of a disease amongst the population is the 

first reason for the scarcity of data, along with the time-consuming process of image 

labelling that has to be done by an expert radiologist. Moreover, experiments are 

often based on single-centre studies, meaning that the dataset is collected in a single 

hospital, and is therefore in the order of hundreds of images, an exiguous number 

when compared to ImageNet. 

A specific training technique has been developed to solve the problem of low data 

availability and to develop networks able to provide a high accuracy even if trained 

with a small number of images. This solution is inspired by physiological learning: 

human brain can store knowledge gained while solving one problem and apply it 

to a related issue that has never been presented to it. A similar process can be 

followed for CNNs, if the idea that the train and test dataset are iid is relaxed [79] 

by using transfer learning. This technique is based on the hypothesis that is possible 

to transfer knowledge from a source domain to a target one with a different 

distribution, if they share a set of common features. A network can therefore be 

trained with a big dataset such as ImageNet (source domain) and subsequently 

adapted, to be used for the study of medical images (target domain) that are not 

belonging to the 1000 labels that ImageNet has learnt to classify.  

The process of modifying the output structure of an already trained CNN and 

retraining only some of its layers with a target dataset is called fine tuning. The first 

convolutional layers are dedicated to learning general image characteristics such as 

borders or lines orientation, consequently what they learn can be applied to any 

kind of image. During the fine tuning these layers are frozen, so that their weights 

are not modified. The last convolutional layers and the fully connected output of a 

CNN adapt to the specific task that is required during the classification; therefore 

they need to be fine-tuned with data coming from the target domain. Overall, the 

re-raining of the network requires to optimize a lower number of parameters with 

respect to the number of weights that had to be learnt while training from scratch, 

producing good results even if with a small dataset. Several studies have proven 

that the fine-tuning strategy is effective when dealing with medical images. 

Amongst them, Tajbakhsh et al. based their CNN on AlexNet, and studied 

classification, detection and segmentation tasks for three different medical imaging 

modalities. Their results suggest that fine-tuned CNNs should be preferred to 

network trained from scratch, especially if the dataset contains less than 100 samples 

[80].Lastly, a recent study analysed eight different pre-trained networks (VGG16, 

VGG19, AlexNet and ResNet amongst them) fine-tuned with mammographic 

images for breast cancer detection. It finds an accuracy of prediction ranging from 

82.5% to 94.3%, and compares these results with a network trained from scratch, 

that gives an accuracy of only 74.2%[81]. 



50 | Method 

 

 

2.3. Explainable AI 

The explainability of an AI model’s results is a problem intrinsic in all artificial 

intelligence applications: an inverse proportion exists between the predictive 

accuracy and the explainability of models[82].  

 

Figure 2.8 Relationship between accuracy and interpretability for several AI techniques. 

Blue dots represent classical ML techniques The red dot represents explainable AI that 

presents both high interpretability and prediction accuracy. Adapted from [82] 

As can be seen in Figure 2.8, neural networks are the AI technique with the 

maximum accuracy, although with the minimum explainability. This is justified by 

the fact that they do not exploit a-priori knowledge about the behaviour of a system: 

they don’t require to define a mathematical model for the extraction of information 

from data. This approach makes them extremely flexible and simplify their 

application, but their trained parameters do not have any intelligible meaning. The 

“reasoning” that allows from the input signal to produce an output is not 

understandable, and for this reason NNs are defined as “black boxes”. This holds 

for any NN architecture but is especially true for deep neural networks because of 

their multilayer nonlinear structure, along with the high number of weights. 

This lack of explainability and interpretability is problematic in sensitive areas such 

as criminal justice, autonomous driving [82] and especially healthcare [83]. Lots of 

medical applications of CNNs showing a great predictive ability have been 

proposed, but to be applied in the field they must gain the trust of physicians, giving 

them the possibility to understand why and how a prediction has been made. 

Explainable AI (XAI) is a new research branch of AI focused on solving this 

problem, whose possibility are explored especially for neural networks given their 

high complexity. It is possible to distinguish two types of explainability [83]: ante-

hoc explainability that incorporates the interpretability of results directly in the 
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structure of the NN by adding specific layers [84], and post-hoc explainability that 

explains what the model predicts only after the generation of the results. The latter 

allows to exploit traditional NN structures, implementing new algorithms to extract 

information about the interpretation of results. This procedure is particularly 

suitable for convolutional neural networks: their input signal is usually an image, 

to which it is possible to superimpose information about the importance of each 

pixel for the prediction, that can be extracted from the convolutional layers. 

To this aim, several methods have been proposed in literature, and well synthesized 

in the review by Angelov et al. [82]. In the next paragraph, an in-depth examination 

of the Saliency maps and Grad-CAM methods can be found. 

2.3.1. Saliency maps and Grad-CAM visualizations 

Saliency maps [85] were one of the first techniques developed for the visual 

explanation of CNNs. Convolutional NN are queried about the spatial support of a 

class 𝑐 in a specific image 𝐼0 by ranking the pixels of 𝐼0 based on their influence on 

the score 𝑆𝑐(𝐼) (with 𝐼 representing any possible input image). This score is the 

network’s output, therefore is a highly non-linear function, but it can be 

approximated by first order Taylor expansion as: 

 𝑆𝑐(𝐼) ≈ 𝑤𝑐
𝑇𝐼 + 𝑏𝑐 ( 2.10 ) 

Where 𝑤𝑐 is the weights matrix that represents the pixels influence on 𝑆𝑐(𝐼), and can 

be derived for the image 𝐼0 from the previous equation: 

 
𝑤𝑐 =

𝜕𝑆𝑐(𝐼)

𝜕𝐼
|
𝐼0

 ( 2.11 ) 

The saliency map is a representation of 𝑤𝑐’s intensities, therefore it renders the 

partial derivative of the output score for class 𝑐, computed for a selected image. The 

𝑤𝑐 matrix can also be interpreted as an indication of which pixels need to be changed 

the least to maximally affect the output score: these pixels correspond to the object’s 

location in the image [85]. An example of saliency map is displayed in Figure 2.9b. 

This visualization has been used by Ienco et al. for the analysis of the output of a 

CNN for the classification of mammograms based on the presence of breast arterial 

calcifications.  

Saliency maps are usually considered too noisy and other later developed methods 

are preferred in literature. Amongst them, Grad-CAM (Gradient-weighted Class 

Activation Mapping) and its modifications are widely applied [86]. Grad-CAM uses 

the gradient information entering one of the convolutional layers of a CNN to 
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determine the importance of each pixel for the class 𝑐. The weights 𝑤𝑐
𝑘 are 

proportional to the gradient of 𝑆𝑐(𝐼) computed respect to the k-th feature maps 

activations 𝐴𝑘 of the selected convolutional layer considered: 

 
𝑤𝑐
𝑘 ∝

𝜕𝑆𝑐(𝐼)

𝜕𝐴𝑘
|
𝐼0

 ( 2.12 ) 

The partial derivative is computed by backpropagation from the output layer (see 

chapter 2.2). Once the weights are estimated, the class-specific heatmap to be 

visualized is expressed as: 

 𝐿𝑐 =  𝑅𝑒𝐿𝑈 (∑ 𝑤𝑐
𝑘𝐴𝑘

𝑘
) ( 2.13 ) 

The last convolutional layer is generally the one considered for heatmap generation, 

as it contains high-level information about the class prediction, as well as precise 

spatial details (Figure 2.9c). This method has been improved in its localization 

accuracy and in the ability to localize multiple occurrences of the same class in an 

image by the Grad-CAM ++ algorithm [87]. Examples of the application of Grad-

CAM and Grad-CAM++ can be found in literature for the detection of breast cancer 

[88], Covid-19 [89],  and for the examination of histologic images [90].  

 

Figure 2.9 a. mammogram, containing one severe BAC (classified as class=1), b. saliency 

map for class 1, c. Grad-CAM map for class 1 
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2.4. Heatmaps thresholding for segmentation of 

medical images 

GradCAM and saliency maps results can be expected to highlight image regions 

corresponding to the position of the element that a neural network aims at 

classifying. This is due to their mathematical definition (see chapter 2.3.1) and is 

usually exploited to better analyse the behaviour of the network and the reasons for 

a given result. However, since these heatmaps highlight an area of the image that 

the network considers as region of interest (ROI), they can also be used for the 

extraction of the ROI’s contours and for quantitative measures. This could be of 

interest particularly for radiological applications, where the outline of the object 

under analysis (denoted as image segmentation), along with interesting 

measurements as area, mean intensity or length, are extracted manually for the 

assessment of the pathology under exam. 

Neural networks dedicated to segmentation have already been developed with 

excellent accuracy results (see chapter 1.6), and they fall into the category of 

supervised segmentation algorithms. Their main drawback is the need for high 

number of images with pixel-wise annotations about presence or absence of the 

object of investigation: since segmentation is a time-consuming practice for 

radiologists, it’s often difficult to have access to enough data to perform the training 

of such networks. On the other hand, networks for the classification of presence or 

absence of a pathology are easier to train given the higher availability of classified 

images. From these networks, GradCAMs or saliency maps can be generated and 

used for the extraction of the ROI without the need of a segmented ground truth. 

This possibility is referred to as unsupervised segmentation and has been explored 

in a limited number of studies in the medical field.  

Amongst them, a paper by Nunnari et al. [91] compares automatically generated 

and manually segmented ROIs of a publicly available skin cancer dataset. The 

automatic extraction is done by thresholding the GradCAM generated both by 

VGG16 and by RESNET50 (a CNN with lower number of layers with respect to 

VGG16 [78]): the pixels of the GradCAM with a value higher than a predefined 

threshold are considered as part of the ROI. Several thresholds (τ) are evaluated, 

and the quality of the segmentation is assessed with the Jaccard coefficient (J-

coefficient) that counts the number of common pixels between manual and 

automatically generated ROIs. VGG16 has shown better results than RESNET50, 

and the threshold that produces the highest J-coefficient is τ=0.5. The results of this 

study prove that the segmentation obtained through this method is possible but has 
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a J-coefficient that is less than half the one obtained with networks dedicated to 

pixel-level classification of the same database [92] 

Guan et al. [93] applied the same approach on chest X-rays but analysing the overlap 

of bounding boxes enclosing the thresholded ROI with ground truth bounding 

boxes, therefore delivering only a localization and not a true segmentation. This 

method proves to be more accurate than other unsupervised localization methods 

[Wang Xiaosong and Peng, 2019] but, as for the Nunnari et al. study, the results are 

less accurate than the ones generated by using information about the ground truth 

bounding boxes during the network’s training [95]. 

In conclusion, unsupervised segmentation based on heatmaps has yet to be 

developed to its full potential, but even if it’s true that this approach might never 

reach the accuracy of neural networks developed for supervised segmentation 

purposes, it can be a valid alternative especially for the detection of pathologies that 

do not require extreme precision in their localization. An example of possible 

application is BACs detection: what is of the highest importance in this field is the 

severity of the calcifications, that has been proven to be correlated with 

cardiovascular disease risk. The exact location and extent of the calcified vessels are 

less clinically relevant, as can be noticed by analysing the prevalence of 

semiquantitative over quantitative scores for BACs classification available in 

literature (see chapter 1.4). Nonetheless, no study has been found in literature about 

heatmap-based segmentation of BACs; an ad-hoc strategy has therefore been 

developed in this thesis, along with a proposal for the application of the 

unsupervised segmentation to the prediction of BACs severity (see chapter 3.6). 
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3 Protocol 

3.1. Protocol Overview 

The protocol followed during the development of this thesis aimed at producing an 

algorithm able to automatically classify mammograms based on the presence and 

severity of breast arterial calcifications. 

First, data were collected and preprocessed (chapter 3.2). This included an 

anonymization procedure to protect patients’ privacy and an image-processing 

protocol to prepare the images for being analysed by the neural network. The 

dataset was then split into three subsets, namely the training, validation, and test 

set. To perform this splitting two factors were taken into consideration: the age 

distribution of patients in the subsets needed to reflect the original one, since BAC 

is an age-dependent phenomenon; moreover, considering that patients positive to 

BACs (BAC+) are a minority in the database compared to the negative ones (BAC-), 

the data unbalance needed to be tackled to avoid the training of a network too 

focused on BAC- patients.  

The convolutional neural network was developed relying on transfer learning from 

a network previously built by Ienco et al. for BAC+ classification (see chapter 3.3.2). 

Considering the presence of unbalanced data, particular attention was paid to the 

metrics used to evaluate the performances. Traditional measures such as accuracy 

are biased by the low BAC+ prevalence, therefore precision, recall and F1 metrics 

were preferred. Tuning of network was performed by manual optimization of the 

most influential hyperparameters (chapter 3.4), with the aim of improving the CNN 

prediction ability. Results were evaluated image-wise on the training and validation 

sets during this phase. The best-performing network (BAC-Net) was used for an 

independent evaluation of the metrics over the test set (chapter 3.5), allowing to 

analyse the tradeoff between precision and recall. Moreover, since each patient is 

associated with four mammograms (two views per side, see chapter 1.2.3), patient-

wise metrics were computed as well. Network classification of the test set was also 

used to generate heatmaps displaying the influence of each image’s pixel on the 

final prediction: this allowed to start to open the “black box” of the CNN in the 

general framework of AI explainability, facilitating a discussion with the clinical 

team about the network performances.  
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Lastly, a preliminary study was conducted to define a method for the automatic 

classification of the severity of BACs (chapter 3.6). The proposed technique is based 

on the extraction of geometrical and intensity scores from the heatmaps previously 

generated. The correlation between these scores and BACs length as measured by a 

radiologist was finally assessed for a subset of patients.  

3.2. Mammographic dataset 

3.2.1. Collection, annotation, anonymization 

To perform this study, a series of consecutive patients aged 45 years and over were 

retrospectively enrolled. They underwent mammography for oncological screening 

purposes at IRCCS Policlinico San Donato between January 2nd and March 14th, 

2018. The project was preliminarily approved by the local Ethical Committee (Ethics 

Committee of IRCCS Ospedale San Raffaele; protocol code SenoRetro, authorized 

on November 9th, 2017 and updated on July 18th, 2019).  

For each patient enrolled, four-view mammograms were acquired using two 

different full-field digital mammography devices produced by IMS Giotto s.p.a. The 

labelling procedure involved three readers; two of them worked at patient level, 

labelling patients as positive to BACs presence (BAC+) or negative to it (BAC-). The 

third reader performed second level screening in all BAC+ patients, labelling each 

of the four views. Every image was labelled as positive to BAC if at least one 

calcified vessel was visible, while women were classified as BAC+ if at least one 

view was BAC+. 

For privacy protection, all patients were pseudo-anonymized by coding their 

identity; the code was assigned randomly and is known only to one of the clinicians, 

allowing to perform back tracing of women for clinical purposes. For each patient, 

single images were labelled using the anonymised code along with an encoding of 

the view they were representing; this permitted to perform both image-wise and 

patient-wise analysis of the results after the classification done by the network. If 

more than four images were acquired per patient, which might occur due to 

imaging artifacts or mispositioning of the breast, clinical opinion was requested to 

remove the mammograms with lower quality from the dataset, ensuring to 

maintain one image per view. All demographic data deemed as non-useful such as 

birth date, acquisition date, and performing physician’s name, were removed from 

the files. All labels, along with patients' codes and views’ codes, were collected in a 

database and served as the ground truth for training and testing the neural 

network’s models.  
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3.2.2. Images preprocessing 

Mammograms were preprocessed by following two stages, as proposed by Ienco et 

al. [1]. The whole dataset was prepared to enhance the wanted mammographic 

characteristics: region of interest (ROI) extraction and pixels intensity normalization 

were performed. After the dataset splitting, online image number augmentation 

was implemented only on the training set to reduce overfitting. 

Data preparation 

An analysis of mammographic images shows histograms characterised by a 

bimodal distribution of grey levels (Figure 3.1a): the peak with lower values 

represents background pixels, while the second peak refers to the breast tissues. The 

automatic generation of a threshold with the Otsu thresholding method [96] 

allowed to separate these two peaks and to generate a binary image: over-threshold 

pixels belonging to biological tissues were labelled as 1, under-threshold pixels as 

0. Since multiple objects might be identified in each image, the wanted breast ROI 

was extracted by selecting the object with the biggest area; the bounding box around 

it was used to crop the image (Figure 3.2b).  

The desired image size of 1536x768 pixels was based on the standard measures used 

as input for the network initialized by Ienco et al. To reach the correct measures, a 

rigid rescaling of the cropped image was performed (Figure 3.2c): the longest size 

of the ROI was matched with the corresponding standard dimension, while the 

other size was scaled maintaining proportions. If the resulting image didn’t have 

the wanted dimensions, it was padded with background pixels (Figure 3.2d). To 

determine if the breast was on the right or on the left side of the original image its 

centroid was used. This information was needed to fix the ROI position on the top 

left or top right of the image before the padding procedure. The resizing has the 

main consequence of producing higher magnification in smaller breasts; this 

doesn’t represent a confounding factor for the classification through deep 

convolutional network, but a posterior rescaling was necessary when dealing with 

BACs severity scoring. 

Pixels corresponding to the background of cropped and resized images were fixed 

to a value of -20. Biological tissues (with values higher than Otsu’s threshold) were 

normalized to obtain a zero-mean distribution, with variance equal to 1  

(Figure 3.1b). Each pixel 𝑝(𝑥, 𝑦) with over-threshold value was normalized as: 

𝑝(𝑥, 𝑦) =
𝑝(𝑥, 𝑦) − 𝑀

𝜎
 

where 𝑀 is the mean and 𝜎 the standard deviation of the over-threshold pixels.  
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All the preprocessed images were saved in a single Hierarchical Data Format 

version 5 (HDF5) file, containing information about the anonymization code and of 

the view code for each mammogram. 

 

 

Figure 3.1 a) original image histogram, highlighting the bimodal distribution and the 

position of the binarization threshold found by Otsu’s thresholding; b) final image’s 

histogram, highlighting the background pixels fixed at -20 and the biological tissues 

normalized around 0. 

 

 

Figure 3.2 Image preprocessing steps. a) original image; b) binarized image, the bounding 

box around the breast and position of breast’s centroid are shown; c) ROI resized by 

matching the height with the standard dimension (1536 pixels) and scaling the width; d) 

padding with background pixels to reach the wanted dimensions (1536 x 768 pixels); e) 

enlargement of the final image, resized and normalized 
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Image number augmentation 

One of the major problems that can be encountered during neural network training 

is overfitting, that might be caused by lack of data variability. Data augmentation 

provides a possible solution to this [97]. The training set is augmented by surrogate 

data derived from the original ones. In imaging, augmentation is obtained by 

geometric transformations, adding noise, and filtering. In this way, the CNN is 

trained to fix salient features and, conversely, overlook features randomly related 

to the image acquisition process. More details about the transformations applied are 

reported in Table 3.1[1]. 

 Transformation Details 

Geometrical 

Vertical flip 
Applied with a probability of 50% 

Horizontal flip 

Zoom Selected in a uniform distribution between -30% and +5% 

Width shift Randomly selected in a uniform distribution between −0.001𝑛 and 

0.001𝑛  pixels (𝑛 = number of columns or rows in the image) Height shift 

Rotation 
Randomly selected in a uniform distribution between -3 and +3 

degrees, with step equal to 10−16 

Noise 

Gaussian noise 

With probability density function is defined by a mean value 

randomly selected in the range [ 0, 0.5] with step equal to 10−16 and 

standard 

deviation in range [ 0.01, 0.4] 

Salt and pepper 

noise 

Covering randomly from the 0.01 to 1 % of breast pixels.  

Salt pixels have random intensity in the range [𝐼𝑚𝑎𝑥, 1.2𝐼𝑚𝑎𝑥]  

(Imax= maximum image intensity).  

Pepper pixels intensities belong to the range [1.2𝐼𝑚𝑖𝑛, 𝐼𝑚𝑖𝑛]  

(Imin= minimum image intensity). The ratio between bright and 

dark noisy pixels ranges from 0 to 100 % 

Filtering 
Gaussian filtering 

Filter with a randomly selected kernel size in range [3, 7] pixels 
Average filtering 

Table 3.1 Transformations applied during image augmentation [1] 

3.2.3. Splitting strategy 

A study of normality of age distribution in the dataset was performed through 

Shapiro-Wilk test [98]. The distribution was found to be not normal, so that for all 

the subsequent analysis the median was used as measure of central tendency, and 

the interquartile range as measure of age dispersion [99]. Since no patient BAC+ was 

found with an age lower than 45 years, and considering that mammographic 
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screening is recommended by the EU for women older than 50 [3], an exclusion 

criterion was established: patients of age <45 were removed from the dataset, and 

the final dataset was called truncated dataset.  

After the removal of younger patients, data-splitting was performed. The splitting 

strategy was based on the knowledge that age is a critical factor when dealing with 

breast arterial calcifications: BAC+ prevalence is correlated with it (see chapter 

1.3.3), and mammograms acquired at different ages show several differences, 

especially in tissue density (see chapter 1.2.3). Age distribution of patients was 

therefore preserved across subsets created from the splitting. As a first step, the age 

distribution quartiles of BAC+ population were used to define four age classes. The 

truncated dataset was split following these classes; median and BAC+ prevalence 

were computed for all classes. Next, aiming at maintaining the original age 

distribution, the splitting was performed for each class independently by random 

patients’ extraction. It was decided to include 70% of data in the training subset, 

15% in the validation subset and 15% in the test subset, complying with the most 

used proportion found in literature. The four classes for each subset were then 

merged, generating the three complete subsets. Median and BAC+ prevalence for 

each subset were then compared with the original ones for every class. 

After the splitting, since BAC+ patients are the minority of the population, the 

problem of training a network with unbalanced data was considered. Unbalance 

might lead to biased predictions since it causes the CNN to be more focused  on 

BAC- cases (majority class) and less able to recognize BAC+ (minority class). To 

solve this problem, two opposite approaches are proposed in literature [100]: 

oversampling, which requires to apply a larger data augmentation for the minority 

class, or, conversely, undersampling, based on the reduction of samples in the 

majority class to balance the data distribution. Maintaining the strategy used by 

Ienco et al., undersampling was applied to the training subset aimed at rising the 

BAC+ prevalence from the native 10% to 30% patient-wise, in each age class. Based 

on a technique inspired by the work of Veni et al. [101]., the BAC+ prevalence in 

each age group was checked and, if needed, the BAC- class was randomly 

undersampled to reach the wanted prevalence. Validation and test set were instead 

kept with the original data unbalance, to reflect the real distribution of BACs 

amongst patients. It must be noted that the described procedure was based on data 

analysed per patient, but the dataset is composed of four images per subject that 

might have different labels (see chapter 3.2.1), therefore the BAC+ prevalence results 

are different when computed image-wise. 
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3.3. Convolutional Neural Network architecture 

The neural network architecture used to accomplish the classification of BACs is the 

one developed by Ienco et al. [1], that was built specifically for this task. It relies on 

transfer learning, starting from the VGG16 network (see Par. 3.3.2 Network 

structure). The previous study was carried on a smaller dataset, which permitted 

only a cross-validation, while data were insufficient for the real testing. That work 

addressed the selection of the best number of initial layers to be frozen (transfer 

learning) and the later ones to be retrained addressing BACs, the design of the fully 

connected output layers, and the validation of the optimal hyperparameters. This 

thesis aims at further training the cited network with a wider database, while fine-

tuning some of the hyperparameters. Moreover, results are examined over a test 

dataset, independent from training and validation sets.  

The network was built by using Python 3.8.11 and relies on Tensorflow 2.5.0 library. 

Graphic processor NVIDIA GEFORCE RTX 3080 (12 GB of memory) was used. 

Since the whole training dataset was too big to fit in the GPU memory, the code was 

optimised so that each batch of images could be independently loaded on the GPU 

after being augmented. This procedure allowed to speed up the training time. 

3.3.1. Evaluation metrics 

Before proceeding with the description of the network architecture, a remark about 

the evaluation metrics used from here on is necessary. BACs classification is a 

binary problem: the network output can be 1, representing the presence of BACs in 

the mammogram (referred to as BAC+), or 0, indicating the absence of BACs 

(referred to as BAC-). Classification results can therefore be described by a 

confusion matrix (Figure 3.3) including:  

▪ True Negatives (TN), mammograms correctly predicted as BAC-; 

▪ True Positives (TP), mammograms correctly predicted as BAC+; 

▪ False Negatives (FN), mammograms incorrectly predicted as BAC-; 

▪ False Positives (FP), mammograms incorrectly predicted as BAC+. 

Being the dataset highly unbalanced (BAC+ prevalence per image is about 12% in 

validation and test set, and 32.7% in the training set, see chapter 4.1.1), the number 

of TP will always be lower than the one of TN even in case of a perfect prediction. 

The metrics used to evaluate the network results need to consider this unbalance.  
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Figure 3.3 Structure of a confusion matrix 

Accuracy is the most common evaluation metric, and is defined as the number of 

correct predictions divided by the total number of predictions: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 ( 3.1 ) 

This metrics is misleading when working with an unbalanced dataset: it can be 

biased by the number of TN, much higher than the one of TP, producing good 

results even if the minority class (BAC+) prediction is not performing well. To deal 

with the unbalance, balanced accuracy has been considered, which is defined as: 

 
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
)  ( 3.2 ) 

Other metrics are particularly suited to tackle data unbalance, such as precision, 

recall (equivalent to sensitivity) and F1, defined as follows: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ( 3.3 ) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ( 3.4 ) 

 
𝐹1 =  2 (

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) ( 3.5 ) 

Precision represents the percentage of correct positive predictions over the total 

number of positive predictions. Instead, recall is the percentage of correct positive 

predictions over the total number of positively labelled images. A tradeoff is often 

needed between these two measures, and the preference of one or the other is 

dependent on the application field. F1 represents the harmonic mean of precision 

and recall, giving equal weights to the two metrics and allowing to consider only 

one performance metric rather than multiple during comparison of results for 

different models.  
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Graphical tools can also be used for performances evaluation; the most common 

approach is the use of receiver operating characteristic (ROC) curves. They illustrate 

the network performance when the discrimination threshold of the sigmoidal 

output neuron is varied, plotting the TP rate (TPR, corresponds to Recall) versus the 

FP rate (FPR, corresponds to 1-Specificity): 

 𝑇𝑃𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 ( 3.6 ) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

( 3.7 ) 

 
𝐹𝑃𝑅 =  1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

( 3.8 ) 

A random classifier performance is plotted as the bisector of the FP rate–TP rate 

plane. Increases in the classifier’s performance are visualized as an increase of the 

area under the curve (AUC), that would be equal to 1 in case of perfect 

prediction(Figure 3.4a). ROC AUC is widely used for unbalanced datasets since the 

effect of the majority class over the AUC result is balanced thanks to the TP rate.  

A second graphical tool allowing to isolate the results for the minority class is the 

precision-recall (PR) curve, that evaluates precision and recall while varying the 

discrimination threshold (Figure 3.4b). This procedure allows to better visualize the 

trade-off between the two measures. The AUC can be computed for the PR curve as 

well and, as for the ROC curve, if its value is 1 it represents the perfect network 

performance.  

Overall, balanced accuracy, precision, recall, ROC and PR curves are the metrics 

considered for the study of classification performances (see chapter 3.4). The 

tradeoff between precision and recall was evaluated by analysing different 

discrimination thresholds as shown in chapter 3.5.1. 

 

Figure 3.4 a): ROC curves with increasing AUC; b): PR curves with increasing AUC. In 

both images, curve D depicts the random prediction (AUC=0.5), curve A the perfect 

prediction (AUC=1). 
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3.3.2. Network structure  

Ienco et al. CNN is based on VGG16 structure [66], that was designed to process 

RGB images belonging to 1000 classes of ImageNet dataset. VGG16 has an input 

shape of (224,224,3) pixels, followed by 13 convolutional layers organised into 

blocks as depicted in Figure 3.5a. Multiple kernels are used for each layer, allowing 

the generation of a correspondent number of feature maps. Kernel size is 3x3 pixels, 

stride and padding are fixed to 1, and ReLU activation function is used for all 

convolutional layers. After each block of convolutional layers, a pooling layer 

performs max pooling over a 2 x 2 window, halving the signal’s dimensions. The 

convolutional layers are followed by two fully connected (FC) layers, with ReLU 

activation function and 4096 neurons. The classification is finally produced by an 

output layer with SoftMax activation function and 1000 neurons, one per ImageNet 

class. 

This structure was modified to be adapted to BACs classification by Ienco et al 

(Figure 3.5b). The architecture they proposed is the same used in this thesis, while 

the hyperparameters of the network were changed according to the tuning strategy 

(see chapter 3.4).  

VGG16 input size was adjusted to one of the preprocessed mammograms (1536x768 

pixels); the two fully connected layers were modified, decreasing the number of 

neurons to 256, setting leaky ReLU as activation (lambda=0.3) and adding a 0.3 

dropout rate. A single output neuron characterized by sigmoidal activation was 

used instead of the SoftMax layer. To allow a binary classification, outputs with 

values <0.5 were considered as BAC-, while outputs with values ≥0.5 were 

considered as BAC+. Transfer learning was applied by freezing VGG16 weights for 

the first 8 convolutional layers, thus retaining the network original ability to detect 

the basic image characteristics such as borders and their orientation or texture. 

The weights of the last 5 convolutional layers, as well as the ones of the FC and 

output layers, were trained after being initialized with Glorot uniform distribution 

[102]. A re-weighting method was applied to deal with the unbalance of the dataset, 

by assigning higher costs to errors made for the minority BAC+ class. Overall, this 

structure has 13.176.577 trainable and 1.735.488 non-trainable weights (also called 

network’s parameters), for a total of 14.912.065.  
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Figure 3.5 a) VGG16 structure; ReLU activation function is used for every layer except for 

the output layer, where SoftMax is applied; b) Modifications by Ienco et al.; leaky ReLU 

activation function is used in all layers other than the output layer, where Sigmoid 

function is used. For both networks, each convolutional layer (conv) has a number k of 3x3 

kernels. The max pooling operation (red arrows) halves the images dimensions. The fully 

connected layers (FC) are composed of n neurons 

The network was originally trained for 50 epochs, with a batch size of 8 images. 

Adam optimizer was used to optimize the binary crossentropy loss function. A 

learning rate decay was implemented to avoid local minima of the loss function’s 

derivative and to speed up the convergence. Learning rate was computed at each 

iteration through a Cosine Annealing schedule [103], defined as follows: 

 
𝑙𝑟𝑒𝑝ℎ = 𝑙𝑟𝑠𝑡𝑎𝑟𝑡  ∗

𝑐𝑜𝑠(𝜋 ∗ 𝑒𝑝ℎ 𝑒𝑝ℎ𝑚𝑎𝑥) + 1⁄

2
 ( 3.9 ) 

Where, at each epoch 𝑒𝑝ℎ, learning rate is 𝑙𝑟𝑒𝑝ℎ; learning rate’s starting value before 

the decay is 𝑙𝑟𝑠𝑡𝑎𝑟𝑡, and 𝑒𝑝ℎ𝑚𝑎𝑥 is the number of epochs after which the learning rate 

goes to zero. The value set by Ienco et al. for these parameters are: 𝑙𝑟𝑠𝑡𝑎𝑟𝑡 =

 10−5  and 𝑒𝑝ℎ𝑚𝑎𝑥 = 2 ∗ 𝑛°𝑒𝑝ℎ = 100 (where 𝑛°𝑒𝑝ℎ is the total number of epochs set 

for training). The network was trained performing 7-fold cross-validation, with a 

dataset of 992 images. For each cross-validation’s fold, 851 images were used for 

training, 141 for validation. Classification results of the best CNN model produced 

during cross-validation (from here on called MG-Net) are reported in Table 3.2.  

Dataset Precision Recall F1 AUC 

Training 0.912 0.881 0.897 0.96 

Validation 0.95 0.76 0.84 0.94 

Table 3.2 Results of MG-Net as reported by Ienco et al. 
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3.4. Tuning strategy: 

The tuning of the CNN described in chapter 3.5.2 was made by manually searching 

for the best hyperparameters’ values, since both the network and the dataset were 

too big to allow an automatic grid search on the available hardware. Each network’s 

model was coded with the letter M followed by the model’s number; a summary of 

the networks analysed is reported in Table 3.3. 

 

Model Initialization 𝑙𝑟𝑠𝑡𝑎𝑟𝑡 𝑒𝑝ℎ𝑚𝑎𝑥 neph Dropout 

M1 Glorot 10^-5 100 50 0.3 

M2 MG-Net 10^-5 100 50 0.3 

M3 MG-Net 10^-4 200 100 0.3 

M4 MG-Net 10^-5 200 100 0.3 

M5 MG-Net 10^-6 200 100 0.3 

M6==M5 MG-Net 10^-6 200 100 0.3 

M7 MG-Net 10^-6 400 100 0.3 

M8 MG-Net 10^-6 600 100 0.3 

M9 MG-Net 10^-6 800 100 0.3 

M10 MG-Net 10^-6 800 25 0.3 

M11 MG-Net 10^-6 800 50 0.3 

M12==M9 MG-Net 10^-6 800 100 0.3 

M13 MG-Net 10^-6 800 200 0.3 

M14 MG-Net 10^-6 800 300 0.3 

M15 MG-Net 10^-6 800 25 0.2 

M16==M10 MG-Net 10^-6 800 25 0.3 

M17 MG-Net 10^-6 800 25 0.4 

M18 MG-Net 10^-6 800 25 0.5 

Table 3.3 . List of studied models. Bold data refer to the parameter under analysis for each 

model. All networks have been trained with batch size=8, binary crossentropy loss 

function and Adam optimizer. 
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Monitored metric 

To save the best model produced during training, a metric needs to be chosen for 

the evaluation of performances over the validation dataset. The metric used by 

Ienco et al. was the network’s loss. In this study, the AUC of PR curve evaluated on 

the validation dataset was chosen, aiming at maximising BAC+ correct predictions, 

balancing precision, and recall. A further advantage of using AUC of PR curve is 

that it is generated by evaluating the results for different thresholds of the sigmoid 

output (see chapter 3.3.1). This allowed to evaluate the network without fixing the 

threshold hyperparameter, that was studied in a later step of the hyperparameters 

analysis.  

Network models were saved every time the AUC of the PR curve for the validation 

set improved, overwriting any older saving, thus reducing the probability of 

overfitting the training data. 

Network initialization 

The network is being trained with transfer learning from VGG16. Weights 

belonging to the first 8 convolutional layers do not need initialization since they are 

non-trainable, therefore identical to the ones of VGG16 during the whole training. 

On the other hand, the trainable layers (the last 5 convolutional layers and the fully 

connected ones) need weights’ initialization as a starting point for the training 

procedure.  

As a first attempt, a CNN was trained following Ienco et al.’s method, initializing 

the trainable weights with Glorot uniform function, that draws samples from a 

uniform distribution decreasing the probability of vanishing gradient problem 

(model M1). Moreover, the idea of using MG-Net to perform the initialization of 

trainable weights was explored in M2. This procedure allows exploiting the 

knowledge already present in the MG-Net about BACs interpretation, providing 

the network with a more specialized starting point. All hyperparameters of M1 and 

M2 were fixed as the ones described by Ienco et al. The model trained with Glorot 

initialization and the one with MG-Net initialization were compared by analysing 

the AUC of the PR curve during epochs and the performances on the validation set, 

allowing to fix the best initialization strategy. 
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Learning rate 

Since learning rate (lr) is considered to be the “most important hyperparameter” 

[104]  in the tuning procedure, it was the first parameter to be explored.  

The cosine annealing strategy applied by Ienco et al., also known as stochastic 

gradient descent with warm restart (SGDR) [103] was maintained, since its efficacy 

has been proven by literature [105].The initial learning rate 𝑙𝑟𝑠𝑡𝑎𝑟𝑡was explored first, 

assigning it values of  10-n , with n=[4,5,6] while keeping the 𝑒𝑝ℎ𝑚𝑎𝑥fixed at 2*n°eph, 

to avoid a too small learning rate (models M3 to M5). Values for 𝑙𝑟𝑠𝑡𝑎𝑟𝑡were chosen 

according to previous work and based on the typical values used for learning rates 

in deep neural networks. The number of epochs used for this test was 100, since it 

allowed to visualize better the network behaviour.  

Once fixed 𝑙𝑟𝑠𝑡𝑎𝑟𝑡, the lr decay rate was explored by changing 𝑒𝑝ℎ𝑚𝑎𝑥, assigning 

values of 200, 400, 600 and 800 (models M6 to M9). Results were evaluated by 

comparing the metrics described in chapter 3.3.1, computed over the validation set, 

while assuring to avoid reaching perfect predictions on the training set to avoid 

overfitting. 

Number of epochs 

After fixing the initialization and the learning rate decay strategy, the number of 

training epochs (neph) was explored; the range considered was between 25 and 300 

epochs (model M10 to M14). It must be noticed that neph is the maximum number of 

epochs, but the final version of a model may not be the one produced during the 

last epoch, since the saving of the model is based on AUC of PR curve maximization. 

Resulting metrics computed over the validation set, along with network overfitting, 

were evaluated to choose the best number of epochs.  

Moreover, the validation set results prior to the application of a classification 

threshold were examined for models M10 to M14 by histogram visualizations. This 

allowed to study the potential saturation of the output neuron. Indeed, its activation 

function is a sigmoid, therefore if its input weights are too high or too low, they 

might bring the output layer to operate outside the linear sigmoid range, behaving 

like a binary classifier instead of a continuous one (Error! Reference source not 

found.). This would cause a loss of the ability to discriminate the severity of possible 

BACs present in the image, and a reduction in the possibility to tune the tradeoff 

between precision and recall. 

A method to avoid saturation is network regularization done by modifying the 

loss function, as reported in literature[106]. This method was not applied, since it 

implied a modification of a network that was proven effective on a smaller 
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dataset. On the other hand, it was empirically noted that higher number of epochs 

led to higher output saturation, therefore to worse results on the validation and 

test set. This phenomenon was analysed by producing the histograms of output 

scores assigned to mammograms and considering as an ideal case a uniform 

distribution between 0 and 1 [106]. 

 

Figure 3.6 Sigmoid function and respective saturations zones (coloured): for any P 

belonging to these areas, the output can be only a binary classification of 0 or 1. 

Dropout value 

Dropout was used in the two fully connected (FC) layers of the network; MG-Net 

was built with a 0.3 dropout rate, meaning that during training, for each weights 

update, the neurons of the FC layers are turned off (temporarily removed from the 

network) with a 30% probability, and their weights are not trained. Conversely, 

when using the model as a predictor, all the network’s neurons are active [107], This 

technique is used to reduce overfitting: the higher the dropout rate, the lower the 

overfitting probability. However, it must be considered that a high dropout reduces 

the learning ability of the network to the point where it’s not able to acquire new 

knowledge. To tune the dropout rate, the hyperparameters previously fixed were 

used, and dropout values between 0.2 and 0.5 (models M15 to M18, Table 4.5) were 

compared. The choice was based on network results evaluated on validation and 

training set. Moreover, considering that the behaviour of the CNN with inactive 

neurons can be studied only during training, the AUC of PR curve was analysed for 

the training set at each epoch, and the results were compared to confirm the dropout 

rate choice. 

Best performing network 

After the hyperparameters analysis, the best performing network was renamed as 

BAC-Net. BAC-Net was used to perform the testing of results (see chapter 3.5) and 

for the preliminary study of BACs scoring strategy (see chapter 3.6) 
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3.5. Evaluation of network performances 

After the hyperparameters tuning, the results of the BAC-Net were studied. Firstly, 

the sigmoid output was analysed without binarizing it with a threshold, to examine 

the precision-recall tradeoff. This allowed a discussion with the clinicians about 

which could be the pros and cons of a high precision versus a high recall score, that 

will be treated in chapter 5. Secondly, since the network results are given image-

wise, they were converted into patient-wise classification, to better assess the 

potential of BACs automatic detection during the production of medical reports. As 

a last step, several visualization methods were compared and the best one was 

chosen; an analysis of the resulting heatmaps was performed, paying particular 

attention to false positives and false negatives results to allow an interpretation of 

the network behaviour.  

3.5.1. Precision-recall tradeoff assessment 

The tradeoff between precision and recall was examined on the test set. Firstly, the 

raw output from the last layer’s sigmoidal activation function was computed. A 

vector of possible classification thresholds was then created with values between 0 

and 1 with a step of 0,0016. For each threshold, classification of the test set was 

performed, allowing to compute precision and recall. The two thresholds 

maximising precision and recall were extracted and called P-th and R-th 

respectively. The same procedure was applied to compute the threshold 

maximising F1, called F1-th.  

These evaluations allowed to understand the outputs’ behaviour and are valuable 

especially for clinical use of the network developed. On the other hand, to enable a 

clearer presentation of the network performances over the test set, and to provide a 

reference for future works, it was decided to fix an ultimate threshold named . 

Since F1 offers a balance between precision and recall,  was based on this measure, 

and calculated as the average of F1-th computed over the test and validation 

subsets. This procedure was used to avoid over-tuning  over the test set. The 

training subset was excluded from the average since BAC+ prevalence is different 

from the real one in this dataset.  

3.5.2. Patients' classification 

Patients’ classification was performed by following the clinical procedure used to 

classify a subject during breast arterial calcifications assessment: since BACs 

detection is used as predictor of risk factor for cardiovascular diseases (CVDs), 

BACs presence in at least one of the four mammographic views is sufficient to 

consider the patient as BAC+, and consequently to start an in-depth evaluation of 
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his CVD risk. Practically, after having fixed the final threshold for sigmoidal output 

binarization, the four binary predictions for each patient were grouped together, 

and the logic OR between them was computed. Confusion matrix, precision, recall 

and F1 metrics were assessed, and the results discussed were with the clinicians.  

3.5.3. Results visualization  

After predicting the class label of mammograms based on BAC-Net, post-hoc 

explainability methods (see chapter 2.3) were applied and compared. Visual 

explanation methods were chosen with the expectation that the calcifications’ 

position would be highlighted by them. Visualizations were automatically 

generated by using the tf-keras-vis library. All the methods proposed in the library 

were analysed and compared, since no standard for radiologic studies is available 

in literature.  

At first, the strategy introduced by Ienco et al. was tested: saliency maps were 

generated considering the predicted score of each test image (𝑆𝑐(𝐼), see chapter 

2.3.1) and superimposed to the preprocessed grey-scale mammograms. To obtain 

better interpretability of the results, the lower gradients of the colour map used were 

set as transparent. SmoothGrad, GradCAM and GradCAM++ methods were also 

studied, and the latter was selected as the one producing better results, even when 

compared with Saliency maps. The GradCAM++ heatmaps of the last convolutional 

layer were generated by considering the predicted score 𝑆𝑐(𝐼) (see chapter 2.3.1) of 

images in the test dataset and superimposed to the preprocessed grey-scale 

mammograms with a transparency of 0.5.  

Lastly, GradCAM++ method allowed to study the activations of all convolutional 

layers, that were computed and displayed in sequence to explore the procedure 

followed by the network to extract BACs position and compare it to the one used to 

state their absence. 
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3.6. BACs severity scoring 

The purpose of the work reported in the following chapter is to produce a first 

assessment of an automatic method to estimate of severity of BACs, after their 

detection performed by BAC-Net. The aim of such estimation is to evaluate patients’ 

risk of cardiovascular disease (CVD), being it directly correlated with BACs 

intensity. By thresholding GradCAM++ heatmaps generated by the CNN (see 

chapter 2.4), it was possible to extract the following scores: area of the calcifications, 

sum of pixels’ intensities, estimation of BACs length. The correlation between these 

automatic measures and BACs quantification produced by human readers was 

measured. The latter was taken from the database used for development of the 

BACs semiquantitative scoring (BAC-SS) [38]. BAC-SS encompasses information 

about the length of calcified vessels, their number, and the vessels opacification (see 

chapter 1.4). It was chosen to work only with data regarding the length of BACs, 

since the opacification had a low weight on the overall score, and the number of 

calcifications was the measurement showing the lowest inter-reader 

reproducibility. 

3.6.1. Scoring dataset analysis and images preparation 

The dataset considered was the one used to produce the BAC-SS score. It is 

composed of patients positive to BACs and represents a subset of the data used to 

develop BAC-Net. To reflect the procedure applied by Trimboli et al. [38], only 

mammograms reporting mediolateral oblique (MLO) views were included in the 

study, accounting for two images per patient, one for the right view and one for the 

left. Since a patient is considered positive if at least one of the two MLO views 

results positive, negative images are present in the dataset as well, despite the 

inclusion of BAC+ patients only. Measurements of length in millimetres (𝑙𝐵𝐴𝐶) and 

quartiles-based length score (𝑙𝑄) were provided for each image as assessed by two 

readers. The arithmetic mean between the two readers was computed both for 𝑙𝐵𝐴𝐶 

and 𝑙𝑄, to mitigate the possible human error and increase the robustness of results. 

It must be noted that 𝑙𝑄 is defined as follows: 

 

𝑙𝑄 =

{
 
 

 
 
0, 𝑙𝐵𝐴𝐶 = 0𝑚𝑚
1, 0 < 𝑙𝐵𝐴𝐶 ≤ 𝑄1
2, 𝑄1 < 𝑙𝐵𝐴𝐶 ≤ 𝑄2
3, 𝑄2 < 𝑙𝐵𝐴𝐶 ≤ 𝑄3
4, 𝑄3 < 𝑙𝐵𝐴𝐶 ≤ 𝑄4

 ( 3.10 ) 

Where 𝑄𝑛 with n from 1 to 4 represent the quartiles of BACs length distribution, and 

𝑙𝑄= 0 was assigned to images negative to BACs.  
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The mammograms belonging to the database were preprocessed following the 

procedure presented in chapter 3. As already described, to fit the network’s input 

each mammogram was resized maintaining its proportions. Smaller breasts 

incurred therefore in higher magnification with respect to larger ones; this could 

represent an error factor during the extraction of automatic scores related to BACs 

length. In view of the need to rescale the extracted scores, a scaling factor (𝑆𝐹) was 

computed for each image as follows: 

 
𝑆𝐹 =

𝐻𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝐻𝑟𝑒𝑠𝑖𝑧𝑒𝑑
 ( 3.11 ) 

Where 𝐻𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the height of the breast’s ROI in the original image and  𝐻𝑟𝑒𝑠𝑖𝑧𝑒𝑑 

is the height of the breast’s ROI after the resizing due to preprocessing. By using 𝑆𝐹, 

any score can be weighted to account for the magnification of the image as follows: 

 𝑠𝑐𝑜𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑠𝑐𝑜𝑟𝑒 ∗ 𝑆𝐹 ( 3.12 ) 

3.6.2. Network performances on scoring dataset 

The database was fed to BAC-Net, and to simulate a real application of the 

procedure under analysis it was decided to include in the scoring procedure only 

images classified as BAC+ (both true positive and false positive predictions). 

Conversely, for negative predictions (true negatives and false negatives), 0 value 

was assigned to all scores computed, without further processing of the images. 

The number of BAC+ predictions depends on the classification threshold used on 

the network sigmoidal output, therefore an evaluation of the tradeoff between 

precision and recall was performed as described in chapter 3.5.1, generating F1-th, 

R-th and P-th classification threshold. BAC-Net’s results were evaluated for the 

three thresholds. Severity scores computation was firstly carried on by using P-th 

as a classification threshold, allowing to include in the positive predictions only 

images that are classified as BAC+ with high confidence by the network. The 

procedure was then repeated for F1-th to seek a balance between precision and 

recall, and for R-th to include the maximum number possible of images predicted 

as BAC+.  

3.6.3. Heatmaps thresholding and scores computation 

For each image predicted as BAC+, the GradCAM++ heatmap was thresholded with 

a binarizing threshold (Theatmap). Theatmap values were selected ranging from 0.1 to 0.9 

with 0.1 step. Nine binary masks were therefore generated for each image’s 

heatmap (Figure 3.7), with value 1 for over-threshold pixels and 0 for under-

threshold ones.  
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Figure 3.7 Binarization of GradCAM++ heatmap with the application of nine different 

Theatmap. Over-threshold values are considered as 1, under-threshold as 0. 

As described in chapter 2.4, pixels labelled as 1 belong to regions where a BAC was 

detected by the CNN. For this reason, for each Theatmap, the area (𝑎) was computed as 

sum of the over-threshold pixels (Figure 3.8a). Subsequently, the binary mask was 

multiplied by the original mammogram, allowing to assign a value 0 to all the pixels 

outside the area of interest. The sum of pixels intensities (𝑖) of the resulting image 

was computed (Figure 3.8b). Lastly, to extract an estimation of the sum of BACs 

length (𝑙), skeletonization was applied to the masks. It allowed to iteratively remove 

from each BAC object its border pixels, on the condition that they didn’t break the 

object’s connectivity. Ultimately, a 1-pixel-wide representation was obtained 

(Figure 3.8c); the number of resulting pixels was computed for all BACs present in 

the image to extract the predicted length 𝑙.  



| Protocol 75 

 

 

 

Figure 3.8 a) GradCAM++ heatmap; b) binary mask used to extract the area 𝑎; c) original 

mammogram’s pixels belonging to the extracted area, 𝑖 is the sum of their intensities; d) 

skeletonization of the extracted area, used to estimate overall BACs length 𝑙 

Measurements directly extracted from the thresholding of GradCAM++ were 

further multiplied by SF to account for image scaling, producing the three severity 

scores ultimately examined: ABAC, IBAC  and LBAC  respectively. 

 𝐴𝐵𝐴𝐶 = 𝑎 ∗ 𝑆𝐹 ( 3.13 ) 

 𝐼𝐵𝐴𝐶 = 𝑖 ∗ 𝑆𝐹 ( 3.14 ) 

 𝐿𝐵𝐴𝐶 = 𝑙 ∗ 𝑆𝐹 ( 3.15 ) 

Moreover, quartiles-based scores were defined by following the same procedure 

used by clinicians to produce 𝑙𝑄: the quartiles of ABAC, IBAC and LBAC were computed, 

and used as thresholds to generate values ranging from 1 to 4; value 0 was assigned 

to BAC- image. The resulting scores are referred to as AQ, IQ and LQ respectively. It 

must be noticed that for each image, the scores in Table 3.4. were computed for all 

the considered Theatmap. During the correlation assessment, an analysis of the best 

heatmap’s threshold for each severity score was performed. 

score details scale 

𝐴𝐵𝐴𝐶  Number of pixels over Theatmap, scaled by 𝑆𝐹 

Continuous 𝐼𝐵𝐴𝐶 Sum of intensities f pixels over Theatmap, scaled by 𝑆𝐹 

𝐿𝐵𝐴𝐶 Number of pixels after skeletonization, scaled by 𝑆𝐹 

AQ Area score based on 𝐴𝐵𝐴𝐶  quartiles 

0 to 4 IQ Pixels’ intensity score based on 𝐼𝐵𝐴𝐶  quartiles 

LQ Length score based on 𝐿𝐵𝐴𝐶 quartiles 

Table 3.4 Summary of the considered severity scores. Note that value of 0 is assigned to all 

scores when an image is predicted as BAC- 
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3.6.4. Correlation assessment with gold standards 

The assessment of bivariate normality of data was performed through Henze-

Zirkler test. This allowed determining whether to use Pearson’s or Spearman’s 

correlation coefficient for the computation of the correlation measure [108]. 

Subsequently, the length of BACs measured in mm (𝑙𝐵𝐴𝐶), considered as gold 

standard, was compared with ABAC, IBAC and LBAC  through linear regression. 

Regression and correlation measure were computed for each Theatmap and the optimal 

binarization threshold value was considered as the one maximising correlation. 

Optimal thresholds for area, intensity and length are indicated respectively as Topt-

A, Topt-I and Topt-L.  

The quartiles-based length 𝑙𝑄 (gold standard) was compared with AQ, IQ and LQ 

obtained by thresholding the heatmap with Topt-A, Topt-I and Topt-L. The scores’ 

correlation was assessed by producing a confusion matrix comparing AQ, IQ and LQ   

predictions with 𝑙𝑄 ground truth. Accuracy of predictions was computed as the sum 

of true positive predictions over the total number of predictions.  



 77 

 

 

4 Results 

4.1. Dataset  

Mammograms from 1557 female patients were analysed. During each 

mammography, four images were collected (one per view), for a total of 6228 

images. The device for the acquisition of mammograms was GIOTTO 3DL for 80% 

of patients and GIOTTO TOMO for the remaining 20%. After labelling, 194 patients 

resulted positive to BACs, representing the 12.46% of the population. Patients’ age 

ranged from 33 to 87 years, and no patient positive to BACs was found with an age 

lower than 45 years (Figure 4.1). By following the exclusion criterion fixed, 64 

patients with age lower than 45 years and negative to BACs were removed from the 

complete dataset generating the truncated dataset, including 1493 patients. The final 

BAC+ prevalence was 14.93% (Table 4.1). 

 

Figure 4.1 Histogram of patient’s age. Red bar refers to patients positive to BACs, blue bar 

to negative patients. The dashed line is at 45 years, all patients below this age were 

excluded from the dataset. Note that no BAC+ patient is below the truncating line. 

 Complete dataset Truncated dataset 

N° of patients 1557 1493 

BAC+ 
194 

(12.46%) 

194 

(14.93%) 

BAC- 1363 1299 

Table 4.1 Number of patients and BAC+ prevalence for the original and for the truncated 

datasets 
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Shapiro-Wilk test was performed on the truncated dataset, resulting in W= 0.96, p-

value< 0.01, confirming that patients’ ages follow a non-normal distribution. 

Median age is 59 years, with an interquartile range of 52-68 years.  

Quartiles of the BAC+ distribution were computed, and used as age classes named 

as follows: 

▪ Class 1: corresponding to the first quartile, age 45-60; 

▪ Class 2: corresponding to the second quartile, age 61-70; 

▪ Class 3: corresponding to the third quartile, age 71-73; 

▪ Class 4: corresponding to the fourth quartile, age 74-87. 

The truncated dataset was split into these classes to assess the BAC+ prevalence in 

each of them, confirming that it is correlated with age (Table 4.4).  

4.1.1. Training, validation and test sets 

Data splitting applied to each age class resulted in three datasets: the training subset 

with 1042 patients, of which 908 negatives and 134 positives to BACs (12.85% 

prevalence); the validation subset, containing 222 patients, of which 194 BAC- and 

28 BAC+ (12.61%); lastly the test set, with 229 patients, 197 BAC- and 32 BAC+ 

(13.9%).  

The undersampling of training set aimed at reaching around 30% prevalence in each 

age class. Since Class 3 (71-73 years) and Class 4 (74-87 years) were already 

characterized by such percentage of BAC+ patients, undersampling was performed 

only for Class 1 and Class 2. This resulted in randomly removing 474 BAC- patients 

from Class 1 and 158 BAC- patients from Class 2. The final training dataset is 

therefore composed of 410 patients, of which 276 BAC- and 134 BAC+ (32.68% BAC+ 

prevalence). The number of patients and images for each dataset is summarized in 

Table 4.2 and Table 4.3 respectively. 

 Training set Validation set Test set 

N° of patients 410 222 229 

BAC+ 
134  

(32.68%) 

28  

(12.61%) 

32  

(13.97%) 

BAC- 276 194 197 

Table 4.2 Number of patients per subset 
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 Training set Validation set Test set 

N° of images 1640 888 916 

BAC+ 
398  

(24.27%) 

89  

(10.03%) 

94  

(10.26%) 

BAC- 1242 799 822 

Table 4.3 Number of images per subset. Note that four images per patient are present in 

the dataset, and that a subject is considered BAC+ if at least one image out of four is 

labelled as BAC+. 

Considering the BAC- undersampling and the patient left out from the study due 

to inclusion criteria, the original 1557 patients dataset was reduced to 861 patients. 

For each subset, the histograms of age distribution for BAC+ and BAC- patients are 

represented in Figure 4.2, while a comparison of the median and BAC+ prevalence 

of the age classes is reported in Table 4.4. The prevalence of BAC+ for validation 

and test set was found to be in line with the original dataset prevalence for each 

quartile. 

 

Figure 4.2 Histograms of patient’s ages for a) training set, b) validation set, c) test set 

 Class 1 (45-60y) Class 2 (61-70y) Class 3 (71-73y) Class 4 (74-87y) 

 Median BAC+ % Median BAC+ % Median BAC+ % Median BAC+ % 

Truncated dataset 53 6.3% 65 11.6% 73 34.3% 77 38.21% 

Training 54 30.8% 65 30% 73 34.3% 77 37.64% 

Validation 53 6.3% 64 11% 73 33.3% 77.5 38.9% 

Test 52 6.9% 65 12.3% 72 34.8% 77 40% 

Table 4.4 Median and BAC+ prevalence (BAC+ %) of each age class for the truncated 

dataset, compared with the training, validation, and test subsets. Note that the training 

subset has been undersampled aiming at about 30% of BAC+ patients in each class, while 

the validation and test subsets are in line with the original population  
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4.2. Tuning of CNN parameters 

The following paragraph reports an evaluation of the models listed in Table 3.3 (see 

chapter 3.4), aimed at determining the best set of hyperparameters amongst the 

studied combinations. F1, precision and recall metrics evaluated for validation and 

training set for each model is reported in Table 4.5. 

 

Model Parameter analysed 
Validation set Training set 

F1 Precision Recall F1 Precision Recall 

M1 Glorot initialization 0,178 0,900 0,090 0,387 1,000 0,323 

M2 MG-Net initialization 0,406 0,930 0,259 0,642 0,961 0,482 

M3 lrstart= 10-4 0,170 1,000 0,090 0,370 1,000 0,230 

M4 lrstart= 10-5 0,647 0,790 0,540 0,978 1,000 0,956 

M5 lrstart= 10-6 0,602 0,872 0,460 0,857 0,959 0,775 

M6==M5 lrmax=200 0,602 0,872 0,460 0,959 0,775 0,990 

M7 lrmax=400 0,603 0,884 0,457 0,969 0,757 0,990 

M8 lrmax=600 0,542 0,883 0,391 0,964 0,705 0,980 

M9 lrmax=800 0,604 0,872 0,462 0,859 0,964 0,775 

M10 neph=25 0,780 0,710 0,870 0,830 0,730 0,960 

M11 neph=50 0,561 0,872 0,414 0,790 0,920 0,698 

M12==M9 neph=100 0,604 0,872 0,462 0,859 0,964 0,775 

M13 neph=200 0,609 0,872 0,468 0,896 0,994 0,816 

M14 neph=300 0,663 0,848 0,544 0,952 0,995 0,914 

M15 Dropout=0.2 0,653 0,898 0,513 0,763 0,886 0,669 

M16==M10 Dropout=0.3 0,780 0,710 0,870 0,830 0,730 0,960 

M17 Dropout=0.4 0,618 0,910 0,468 0,756 0,891 0,656 

M18 Dropout=0.5 0,577 0,910 0,421 0,727 0,899 0,609 

Table 4.5. Resulting metrics for all the model evaluated. Models are grouped according to 

the parameter under examination; models highlighted in orange show the final 

parameter’s choice for each group. 
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Network initialization 

M1 model trainable weights were initialized with Glorot uniform function. M1 

performances, both for the validation and training set, reported a low precision and 

a high recall. The initialization of M2 model with MG-Net allowed to increase the 

precision (Table 4.5). After the first epoch of training, M1 presented an AUC of PR 

curve of 0.32 over the validation set, while M2 of 0.87 (Figure 4.3). As expected, 

initializing the trainable layers with MG-Net’s weights is a better choice, since this 

initialization provides a network already able to search for BACs from the first 

epoch. The training adds to the network’s knowledge, allowing to improve the 

results.MG-Net initialization was therefore considered the best choice and applied 

to all the models developed later. 

 
Figure 4.3 Area under the PR curve of the validation set for network initialized with 

Glorot unform function (model M1) and with MG-Net (model M2) 

Learning rate 

The initialization of the learning rate at 10-4 (model M3) resulted in a completely 

random behaviour of the network during training, confirming that no maximization 

of the AUC of PR curve was possible with this learning rate (Figure 4.4). 

 
Figure 4.4 Area under PR curve for M3, showing random behaviour during training with 

learning rate lr= 10-4 
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The comparison between a learning rate of 10-5 (M4) and 10-6 (M5) highlighted better 

results over the validation set for M4. However, the predictions over the training 

set were almost perfect in M4, and the high difference in results between validation 

and test set confirmed that the network was overfitting the training set and losing 

its generalization ability (Table 4.5). Therefore, it was chosen to fix lrstart= 10-6.  

The choice of lrmax was done by comparing the results over the validation set for 

models M6 to M9 (Table 4.5); lrmax=800 resulted in better performances.  

Number of epochs 

Model from M10 to M14 were compared to fix the best number of training epochs. 

The model giving best results over the validation set was M10; during its 25 epochs, 

the maximum AUC of PR curve for validation set was found at epoch 23, therefore 

M10 has been saved at this epoch. 

Histograms of the network output before applying the classification threshold 

allowed to study saturation of the output neuron. It can be noted from Figure 4.5 

that when increasing neph the number of images classified exactly as 0 or as 1 grows, 

therefore the network behaved approximately a binary classifier. This explains the 

worsening of results that can be noticed in Table 4.5 from model 10 to model 14. 

 

Figure 4.5 Histograms of network sigmoidal output, showing the number of validation 

images classified at each possible value between 0 and 1. a) histogram of the outputs of 

M10 (neph=25) in logarithmic scale; b) histogram of the outputs of M14 (neph=300) in 

logarithmic scale. c) comparison of M10 and M14 output in linear scale: notice that 

saturation of M14 is higher than the one of M10 

Dropout value  

Increasing the dropout value from 0.2 to 0.5 (models from M15 to M18) resulted in 

a progressive reduction of the learning ability of the network, that was manifested 

during training. Indeed, in Figure 4.6a it can be observed that, when evaluating the 

AUC of PR curve over the training set, the network performances improves for 

lower dropout values. Conversely, as predicted, the performances over the 

validation set are not directly influenced by the dropout value (Figure 4.6b), since 
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the dropped neurons were turned off during the training but were turned back on 

when evaluating the validation set. Nonetheless, having an appropriate dropout 

rate allows to avoid overfitting. A 0.3 rate (M16) confirmed to be the best choice 

according to the evaluation metrics computed over the validation set (Table 4.5) 

 

Figure 4.6 a) AUC of PR curve for training set; with increasing dropout value, a reduction 

in learning ability can be noticed as a decrease in the AUC values. b) AUC of PR curve for 

validation set; changing the dropout value does not affect the AUC in this case.   

Best performing network 

According to the previous evaluations, the best performing network was found to 

be M10, henceforth called BAC-Net. In summary. 

BAC-Net is built as follows: 

▪ Network architecture: identical to MG-Net (see chapter 3.3.2); 

▪ Initialization of non-trainable weights (first 8 convolutional layers): VGG16; 

▪ Initialization of trainable weights (last 5 convolutional layers and FC layers): 

MG-Net; 

▪ Strategy for model’s saving: maximization of AUC of PR curve over the 

validation set; 

▪ Learning rate: set by cosine annealing schedule at each epoch, with 𝑙𝑟𝑠𝑡𝑎𝑟𝑡= 

10-6  and 𝑒𝑝ℎ𝑚𝑎𝑥= 800; 

▪ Maximum number of training epochs: neph= 25; 

▪ Dropout rate: 0.3, applied only in the fully connected layers; 

▪ Batch size: 8 images;  

▪ Loss function: binary crossentropy; 

▪ Optimizer: Adam; 

▪ Errors weighting: class 0= 0.65, class 1= 2.14. 
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4.3. Classification results 

4.3.1. Precision-Recall trade-off and image-wise metrics 

BAC-Net was fed with the test set. The sigmoidal output was analysed to study the 

precision-recall trade-off and ultimately extract an optimal discrimination threshold 

, to be used in further work for output’s binarization.  

The precision and recall metrics resulting from variable thresholds are reported in 

Figure 4.7. The thresholds maximising precision (P-th), recall (R-th) and F1 (F1-th) 

on the test are specified in Table 4.6, along with the corresponding metrics.   

 

Figure 4.7 Precision (blue curve), recall (green curve) and F1 (red curve) results for a range 

of classification thresholds from 0.1 to 1. 

 Threshold value Precision Recall F1 

P-th 0.99 1 0.394 0.565 

R-th 0.13 0.131 1 0.232 

F1-th 0.88 0.802 0.734 0.767 

Table 4.6 Thresholds’ evaluation 

F1-th was also evaluated for the validation set, resulting in 0.83. The ultimate 

optimal threshold  was computed as the average of F1-th computed on test and 

validation set, resulting in =0.85. 

Results for the classification of the training, validation and test sets by using  are 

reported in Table 4.7. For the test set, a confusion matrix of predictions is shown in 

fig. 4.8; PR and ROC curve are displayed in Figure 4.8. 
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Dataset Balanced accuracy Precision Recall F1 

Training 0.857 0.963 0.723 0.723 

Validation 0.849 0.9 0.707 0.792 

Test 0.833 0.831 0.680 0.748 

Table 4.7 Resulting metrics (for =0.85) evaluated image-wise over train, validation, and 

test set 

 

Figure 4.8 Evaluation of network classification over the test set. a) Confusion matrix; b) 

ROC curve; c) PR curve 

 

4.3.2. Patient-wise metrics 

Patient-wise results were computed using the BAC-Net, with the optimal 

classification threshold . They were evaluated on all the subsets, as reported in 

Table 4.8. 

Dataset Balanced accuracy Precision Recall F1 

Train 0.893 0.914 0.873 0.893 

Validation 0.866 0.813 0.928 0.866 

Test 0.862 0.831 0.680 0.748 

Table 4.8 Resulting metrics (for =0.85) evaluated patient-wise over train, validation, and 

test set 
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4.3.3. Results visualization  

A comparison between the four visualization methods is displayed in Figure 4.9. 

GradCAM++ method was chosen as the one with best precision in BACs localization 

and lower noise. 

 

Figure 4.9 Comparison of the analysed visualization methods 

Results of GradCAM++ heatmaps are displayed from Figure 4.10 to Figure 4.16, 

along with the BAC-Net’s sigmoidal output and the final classification when 

considering as classification threshold =0.85. 

Images from Figure 4.10 to Figure 4.12 illustrate true positive predictions. It can be 

noticed that in case of severe BACs, the whole calcified artery is highlighted (Figure 

4.10). Less intense calcifications can be also detected as shown in Figure 4.11. In case 

of multiple BACs, the network is able to focus its attention on their different 

positions in the heatmap. When other types of benign calcifications are present in 

BAC+ mammograms, the network behaves differently according to their shape and 

surroundings, as can be seen in Figure 4.12: if the calcification is round and well 

defined it is not highlighted by the GradCAM++, while less distinct cases might 

represent a confounding factor. Nonetheless, if true BACs are also detected in the 

image, the heatmap intensity of BACs area is higher with respect to the ones of other 

types of misclassified calcifications. Figure 4.13 represents typical cases of false 

positives, where fibrous tissue or other benign calcifications under dense tissues are 

mislabelled as BACs, causing the incorrect prediction. GradCAM++ of negative 

predictions usually highlight the whole breast and do not focus on a specific area 

(Figure 4.14). In Figure 4.15 four mammograms showing medical implants are 

reported: pacemakers, cardiac loop recorders, breast implants and radiopaque 

markers do not interfere with the prediction, as confirmed by the heatmaps. A 

typical case of false negative is reported in Figure 4.16, highlighting how dense 

tissue might hinder small BACs detection. 
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Figure 4.10 True positive predictions of severe BACs: mammograms belonging to a single 

patient represented in craniocaudal (CC) view (a) and mediolateral oblique (MLO) view 

(b) of the same breast. The network sigmoidal output for these two mammograms are 1, 

therefore they are correctly labelled as BAC+ with a high confidence 

 

Figure 4.11True positive prediction of small BACs: mammograms belonging to a single 

patient with dense breast tissue. BACs localization is correct despite tissue density; details 

of the calcifications can be seen in 1. and 2. The network sigmoidal output is 1 for both 

mammograms 
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Figure 4.12 True positive prediction of small BACs: mammograms belonging to a single 

patient. In a) correct detection of BAC position (1) is performed, and distinct 

microcalcifications (2,3) are not misclassified; network sigmoidal output for this case is 1. 

In b) BAC position (4) is correctly identified, but microcalcifications under dense tissue 

are considered as BACs (5,6); network sigmoidal output for this case is 0.87, therefore the 

image is classified with a lower confidence as BAC+ 

 

Figure 4.13 False positive cases: a) fibrous tissue (1) misclassified as BAC (network 

sigmoidal output=0.92). b) Microcalcifications under dense tissue (2,3) misclassified as 

BACs (network sigmoidal output=0.94). c) Skin calcifications (4) misclassified as BAC 

(network sigmoidal output=1). Note that in a) and b) the shape of calcifications identified 

as BACs is linear and therefore misleading for BAC-Net 
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Figure 4.14 True negative case, mammograms belonging to a single patient. In both 

images GradCAM++ highlights the whole breast area, as it is typical in case of true 

negative predictions. a) network sigmoidal output= 0.07, b)mnetwork sigmoidal 

output=0.19 

 

Figure 4.15 True negative cases with medical implants. Note how the implants do not 

disturb BAC-Net predictions. Network sigmoidal outputs are respectively: a) 0.01, b) 0.06, 

c) 0.23, d) 0.2 
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Figure 4.16 False negative prediction: small BAC under dense tissue (1) is not correctly 

identified by BAC-Net. Network sigmoidal output is 0.55, higher with respect to the 

typical true negative predictions (Figure 4.14) 

Lastly, the GradCAM++ heatmaps were generated for all the convolutional layers 

of the network for a true positive prediction (Figure 4.17). It was noted that the 

first eight convolutional layers (not trained with transfer learning) were not 

distinguishing characteristics of the breast, and as typical of shallow convolutional 

layers, they focused on the analysis of the objects’ shapes and contours. 

Conversely, in the five deep trainable convolutional layers, the network focused 

on the detection of the breast’s shape and of BACs since deep layers were able to 

extract high-level features.  

When BACs are present, in case of correct image classification, the only area 

highlighted by GradCAM++ corresponded to the calcification, that was identified 

not only in the last layer, but also in the previous four layers (Figure 4.18a). For BAC- 

predictions, the heatmap intensity was high over the whole breast, without any 

particular area of focus, in the last convolutional layer, while usually only breast 

contours were considered in shallower layers (Figure 4.18b). 
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Figure 4.17 Correlation between GradCAM++ visualization and network’s training 

strategy. In blue: non-trainable convolutional layers with VGG16 weights, only able to 

detect objects contours. In orange: layers trained for BACs detections, showing the ability 

to highlight calcifications. 

 

 

Figure 4.18 Detail of the trainable convolutional layers, for a BAC+ image (a) and a BAC- 

image (b). 

 

4.4. BACs severity scoring results 

4.4.1. Dataset 

The dataset used for this preliminary severity scoring study corresponds to the one 

used by Trimboli et al. [34]. It was originally composed of 57 positive patients, but 

after double checking the dataset, one patient was excluded from the study since no 

agreement was found between the clinicians on the actual presence of calcifications 

on both the right and left views. 

Thus 56 patients were analysed, with ages ranging from 49 to 82 years. Since only 

MLO views were considered, 112 mammograms were used for the study, of which 

95 BAC+ and 17 BAC-. 
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4.4.2. Precision-recall tradeoff and network performances 

BAC-Net was fed with the described dataset; the resulting ROC and PR curve are 

shown in Figure 4.19. P-th, F1-th and R-th were assessed and reported in Table 4.9 

along with the classification metrics. Confusion matrices for the three classification 

thresholds considered are displayed in Figure 4.20. 

 

Figure 4.19 a) ROC curve; b) PR curve 

 

 Threshold value Precision Recall F1 

P-th 0.7 1 0.832 0.908 

F1-th 0.6 0.966 0.884 0.923 

R-th 0.1 0.848 1 0.918 

Table 4.9 Threshold’s evaluation 

 

 

Figure 4.20 Confusion matrices resulting from using different classification thresholds: a) 

P-th=0.7; b) F1-th=0.6; c) R-th=0.1  
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4.4.3. Graphical visualization of BAC score computation 

The scaling factors computed during image preprocessing ranged from 1.4 to 3.5 

(mean value=2.1±0.3). Scores computation was performed through heatmap’s 

thresholding. Figure 4.21 reports examples of GradCAM++ with a thresholding of 

Theatmap=0.2. BACs present in these images are of increasing severity, and this is 

detected both when computing ABAC, IBAC, LBAC  and when assessing quartiles-based 

scores (AQ, IQ ,LQ).  

 

 

Figure 4.21 Examples of GradCAM++ thresholding for increasing BACs intensity from a) 

to d) 
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4.4.4. Correlation results  

Henze-Zirkler test results proved that the bivariate distributions 𝑝(𝑙𝐵𝐴𝐶 , 𝐴𝐵𝐴𝐶), 

𝑝(𝑙𝐵𝐴𝐶 , 𝐼𝐵𝐴𝐶) and 𝑝(𝑙𝐵𝐴𝐶 , 𝐿𝐵𝐴𝐶) were not normal. Spearman’s correlation coefficient 

was therefore used as a correlation measure for all the linear regressions.  

P-th was initially used to classify BAC+ images with maximum precision. BAC-Net 

predicted 78 images as BAC+, 34 images as BAC-. Correlation between ABAC, IBAC and 

LBAC   and 𝑙𝐵𝐴𝐶 was assessed for all values of the binarization threshold Theatmap. The 

binarization threshold maximising Spearman’s correlation coefficient between 𝑙𝐵𝐴𝐶 

and ABAC was found to be Topt-A= 0.2. The same value resulted to be the optimal 

binarization threshold also for IBAC, so that Topt-I= 0.2. Lastly, optimization of the 

Theatmap for LBAC   resulted in Topt-L= 0.3. These three optimal thresholds were also the 

one minimizing p-value for Spearman’s coefficient for the respective correlations, 

as reported in Figure 4.22. 

 

 

Figure 4.22 Evaluation of Spearman’s coefficient and p-value for every Theatmap value. 

Notice the similar behaviour of predicted area (ABAC) and pixels intensities sum (IBAC) score, 

that results in the same optimal threshold Topt-A= Topt-I= 0.2. Predicted length (LBAC ) behaves 

differently, with Topt-L=0.3 
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Linear regression results and correlation metrics obtained by using P-th as a 

classification threshold are reported in Figure 4.23. Comparison between the 

quartile-based length 𝑙𝑄 and the scores AQ, IQ and LQ  is displayed in Figure 4.24. 

 

a) Area prediction 

Rspearman=0.90, p-value=6.33e-41 

b) Sum of pixels intensity 

Rspearman=0.90, p-value=4.36e-41 

c) Length prediction 

Rspearman=0.89, p-value=1.64e-39 

   

slope=401.20[p/mm] 
stderr=18.12[p/mm] 
intercept=1574.95[p] 

intercept stderr=1506.10[p] 
 

slope=8188.411[pi/mm] 
stderr=368.08[pi/mm] 
intercept=32052.37[pi] 

intercept stderr=30619.29[pi] 

slope=4.35 [p/mm] 
stderr=0.22[p/mm] 
intercept=-32.59 [p] 

intercept stderr=17.96 [p] 

Note: [p]=pixel, [p/mm]=pixel per millimetre, [pi]= pixel intensity, [pi/mm]=pixel intensity per millimetre 

Figure 4.23 Results for P-th classification threshold. a) Linear regression between 𝑙𝐵𝐴𝐶  

and ABAC (Topt-A=0.2); b) Linear regression between 𝑙𝐵𝐴𝐶 and IBAC  (Topt-I=0.2); c) Linear 

regression between 𝑙𝐵𝐴𝐶 and LBAC  (Topt-L=0.3) 

 

Figure 4.24 Results for P-th classification threshold. a) Confusion matrix of 𝑙𝑄 and AQ 

 (Topt-A=0.2); b) confusion matrix of 𝑙𝑄 and IQ (Topt-I=0.2); c) confusion matrix of and 𝑙𝑄 and LQ 

(Topt-L=0.3) 
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Secondly, classification of mammograms based on F-th was performed, maximising 

F1 measure. 85 images were predicted as BAC+, 88 as BAC-. The three optimal 

binarization thresholds computed were identical, corresponding to Topt-A= Topt-I= Topt-

L= 0.3. Linear regression results and correlation metrics obtained by using F1-th as 

a classification threshold are reported in Figure 4.25. Quartiles-based scores 

correlation was assessed by confusion matrix, as reported in Figure 4.26. 

a) Area prediction 

Rspearman=0.90, pvalue=6.49e-41 

b) Sum of pixels intensity 

Rspearman=0.90, pvalue=3.35e-41 

c) Length prediction 

Rspearman=0.89, pvalue=7.76e-40 

   

slope=274.23[p/mm] 
stderr=14.03[p/mm] 
intercept=1587.89[p] 

intercept stderr=1167.41[p] 
 

slope=5611.41[pi/mm] 
stderr=286.01[pi/mm] 
intercept=32123.27[pi] 

intercept stderr=23791.97[pi] 

slope=4.33[p/mm] 
stderr=0.21[p/mm] 
intercept=-26.54[p] 

intercept stderr=17.65[p] 

Note: [p]=pixel, [p/mm]=pixel per millimetre, [pi]= pixel intensity, [pi/mm]=pixel intensity per millimetre 

Figure 4.25 Results for F1-th classification threshold. a) Linear regression between 𝑙𝐵𝐴𝐶 

and ABAC (Topt-A=0.3); b) Linear regression between 𝑙𝐵𝐴𝐶 and IBAC  (Topt-I=0.3); c)  

Linear regression between 𝑙𝐵𝐴𝐶 and LBAC  (Topt-L=0.3) 

 

Figure 4.26 Results for F1-th classification threshold. a) Confusion matrix of 𝑙𝑄 and AQ  

(Topt-A=0.3); b) confusion matrix of 𝑙𝑄 and IQ (Topt-I=0.3); c) confusion matrix of and 𝑙𝑄 and LQ 

(Topt-L=0.3) 
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Lastly, images were classified with R-th, maximising recall. All 112 images were 

predicted as BAC+. Optimal binarization thresholds were computed as Topt-A= 0.7, 

Topt-I= 0.7, Topt-L= 0.5. Linear regression results and correlation metrics obtained by 

using F1-th as a classification threshold are reported in Figure 4.27. Correlation of 

quartiles-based scores is displayed in Figure 4.28. 

 a) Area prediction  

Rspearman=0.67 pvalue=8.83e-16 

b) Sum of pixels intensity 

Rspearman=0.67 pvalue=8.08e-16 

c) Length prediction 

Rspearman =0.54 pvalue=1.05e-09 

   

slope=26.71[p/mm] 
stderr=9.58[p/mm] 

intercept=2514.29[p]  
intercept stderr=796.55[p/mm] 

 

slope=558.14[pi/mm] 
stderr=197.96[pi/mm] 
intercept=51188.28[pi] 

intercept stderr=16467.63[pi] 
 

slope=-3.09 [p/mm] 
stderr=3.46[p/mm]  
intercept=725.09[p] 

intercept stderr=287.81[p/mm] 
 

Note: [p]=pixel, [p/mm]=pixel per millimetre, [pi]= pixel intensity, [pi/mm]=pixel intensity per millimetre 

Figure 4.27 Results for R-th classification threshold. a) Linear regression between 𝑙𝐵𝐴𝐶 

 and ABAC (Topt-A=0.7); b) Linear regression between 𝑙𝐵𝐴𝐶 and IBAC  (Topt-I=0.7); c) Linear 

regression between 𝑙𝐵𝐴𝐶 and LBAC  (Topt-L=0.5) 

 

Figure 4.28 Results for R-th classification threshold. a) Confusion matrix of 𝑙𝑄 and AQ 

 (Topt-A=0.7); b) confusion matrix of 𝑙𝑄 and IQ (Topt-I=0.7); c) confusion matrix of and 𝑙𝑄 and LQ 

(Topt-L=0.5) 
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In each linear correlation outlined above, it is possible to notice three outliers on 

the right side of the image, corresponding to three true positive predictions with 

high BAC severity; the heatmap of these cases correctly predicts the position of 

calcifications, but the resulting scores are overestimated, most likely due to noise 

in the heatmap that generates small dots during thresholding that are considered 

in scores computation (Figure 4.29b). For score computation performed with R-

th=0.1, it is also possible to notice outliers on the left side of the image (Figure 

4.29a); these are either false positive predictions or cases of low BACs length and 

correspond to network’s sigmoid outputs between 0.1 and 0.22., therefore were 

predicted as positive with low confidence. Heatmap thresholding of this images 

gives high scores results since their GradCAM++ are not highlighting only BACs 

regions but the entire breast, as is typical of true negative heatmaps (see chapter 

4.3.3), therefore the scores computed are biased (Figure 4.14).  

 

Figure 4.29 a) Worst case of outlier with small BAC; b) Worst outlier with significative 

BACs Network’s output for this case is 1. c) Highlighting of outlier cases on the regression 

plot for 𝑙𝐵𝐴𝐶-LBAC  (R-th classification, Topt-L=0.5). Cases on bottom right are common to all 

linear regressions performed; cases on top left are not present for P-th and F1-th 

regressions.  

Amongst the three continuous scores proposed, the best performing one on this 

dataset was ABAC  computed with P-th and Topt-A=0.2. A comparison of linear 

regressions of ABAC  computed for the three combinations of thresholds considered 

is displayed in Figure 4.30. For the ordinal scores, AQ and IQ, had almost identical 

performances, and were better BACs severity predictors with respect to LQ. When 

considering AQ , a reduction of classification threshold from 0.7 (P-th) to 0.6 (F1-th) 

improved the results by increasing accuracy from 0.47 to 0.53, while classification 

with threshold 0.1 (R-th) resulted in an accuracy of 0.36 (Figure 4.31). 
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Figure 4.30 Comparison of linear regression results for 𝑙𝐵𝐴𝐶-ABAC computed with the three 

combinations of thresholds considered. 

 

 

Figure 4.31 Comparison of confusion matrices for 𝑙𝑄-AQ  for the three combinations of 

thresholds considered, highlighting correct predictions: a) P-th, Topt-A= 0.2, resulting in 

accuracy=0.47; b) F1-th, Topt-A= 0.3, accuracy=0.53; c) R-th, Topt-A= 0.7, accuracy=0.36. 
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5 Discussion and future developments  

In this thesis, an automatic method for detection and quantification of breast arterial 

calcifications has been investigated and validated. BACs are frequent findings in 

mammograms and are indicated as a woman-specific cardiovascular risk factor: 

their intensity is directly correlated to the severity of CVDs risk. Cardiovascular 

diseases are the leading death cause in the world, and great effort is being made to 

reduce their occurrences. Despite that, women’s CVD risk is often underestimated 

and the rate of decline of deaths for CVDs is lower for women than for men. The 

introduction of sex-specific risk factors such as BACs in clinical practice is therefore 

a priority.  

Mammography screening is already performed on the majority of European and US 

female population above 50 years, hence women screened for breast cancer are the 

same that would benefit from BACs screening: no further radiation exposure for the 

patients nor sanitary expenses would be required. However, BACs presence is not 

yet included by most clinicians in mammography reports, therefore its predictive 

ability for CVD risk is poorly exploited, so far. The procedure proposed in this work 

could play a role in the solution of this problem, by automatically evidencing the 

presence and intensity of BACs to the radiologists, thus reducing the workload 

required by this additional inspection.  

The development of this thesis has been made possible with the collaboration of the 

IRCCS Policlinico San Donato radiology team, that provided an annotated dataset 

of 6228 mammographic images (1557 patients) labelled as BAC+ or BAC-, i.e. with 

or without BACs, respectively. Is worth remarking that such huge annotation work 

is a necessary to the subsequent training, validation, and testing of AI approaches, 

such as the applied CNN. Compared to the previous thesis work (Ienco et al.) the 

annotated data-base grew about two fold, which permitted the present 

improvement of the study. BAC+ patients in the actual dataset (12.46%) reflected 

BACs prevalence amongst women reported in literature (12.7%) [26]. The lowest 

age for a BAC+ patients was found to be 45 years. Therefore, along with the 

clinicians, it was decided to fix an exclusion criterion for patients younger than 45 

years, that will be used also for future studies.  
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The problem of age distribution amongst training, validation and test subsets has 

not been investigated by other studies applying neural networks to BACs detection 

[59], [61], [62]. These studies perform splitting and undersampling by random data 

extraction on the whole data sets, overlooking the issue of uneven BAC+ prevalence, 

strongly increasing with age. Conversely, the dataset splitting procedure here 

proposed was based on the extraction from four age classes independently, thus 

maintaining BAC+ original age distribution amongst subsets. Validation and test 

sets need to be representative of the real population that might be subject to BACs 

screening, therefore their age distributions must reflect the one of the original 

dataset; so, no BAC- undersampling was performed on the validation and test sets. 

Still, the segmentation into 4 age classes was applied in the splitting procedure, 

which had a significant positive impact on the whole procedure. Indeed, the 

problem of feature extraction permitting to detect BACs within the breast 

background does change significantly with age since the breast density significantly 

decreases. We might say that we treated our CNN as an expert radiologist would 

challenge a young one to be trained showing him/her mammographies from 

different age classes. 

The architecture of the CNN used was firstly developed by Ienco et al. [1] for BACs 

classification (MG-Net) and relied on transfer learning from VGG16 network. 

Network’s hyperparameters were not previously explored, and lack of data did not 

allow for testing of MG-Net’s performances on an independent dataset. As a first 

step for the development of the new BAC-Net, hyperparameters tuning was 

performed. Learning rate decay and dropout were fixed by maximising results over 

the validation set. Tuning the number of training epochs was found to be 

particularly challenging, since it was noted that network performances on the 

validation set were worsening, especially in sensitivity, when increasing the 

number of epochs. On the other hand, the network wasn’t showing signs of 

overfitting in the loss curve. An analysis of the sigmoidal output before the 

application of classification’s threshold allowed to hypothesize that this behaviour 

was due to saturation of the output sigmoid neuron, that led it to behave like a 

binary classifier instead of operating in its linear region. Considering that BAC-Net 

trainable weights were initialized with MG-Net, results were already promising 

with a low number of epochs, therefore no measure has been taken to 

counterbalance the saturation. However, future development of BAC-Net might 

explore regularization methods such as L2 or modify errors weighting to overcome 

this issue and improve upon classification results.  

Testing of BAC-Net was performed on the independent test dataset. Since the raw 

output of BAC-Net has a sigmoidal distribution, a classification threshold must be 

fixed to extract a binary label indicating presence or absence of BACs. While 
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choosing this threshold, a tradeoff between precision and recall is necessary, but the 

decision of which measure to favour highly depends on the scope of the prediction. 

If the network is to be used for screening purposes, recall must be privileged, 

therefore a low classification threshold must be used to increase the number of 

patients predicted as BAC+, avoiding the exclusion of positive patients from further 

analysis. On the other hand, if BACs classification is being made for research 

purposes, such as the extraction of positive images to be used for the scoring 

procedure, the threshold must be high, favouring precision, in order to consider as 

BAC+ only images where the network finds BACs with a good confidence. Results 

of different classification thresholds were reported in this work, and it was decided 

to leave the final decision to future users of the network to allow for adaptability of 

the system to the clinicians’ aims. For clarity in results presentation a threshold 

maximising F1 measure over validation and test set was fixed as =0.85, balancing 

precision and recall. This resulted in a prediction over the test set with 

precision=0.831, recall=0.68, F1=0.748 and ROC AUC=0.95. The difference between 

current results and the best performing network reported by Ienco et al. is faint, but 

when considering MG-Net average results over the 7-fold cross validation, an 

improvement can be noticed (average precision=0.864±0.040, average 

recall=0.667±0.132, average F1=0.744±0.094, average ROC AUC=0.86 ± 0.07). 

Moreover, MG-Net was evaluated on validation datasets of 141 images each, not 

independent from the training procedure, while BAC-Net results refer to an 

independent test set of 916 images.  

As a further step in BAC-Net results analysis, an exploration of state-of-the-art 

visual explainability methods was performed. Saliency maps were previously used 

for this scope by Ienco et al. [1]. They correctly identified the position of 

calcifications but resulted noisy and did not follow the calcified vessels. On the 

other hand, SmoothGrad maps often displayed high values for pixels not related to 

BACs. Conversely, GradCAM and GradCAM++ heatmaps were similarly able to 

locate and highlight the whole calcified vase as shown in Figure 4.9. Considering 

the lower noise present in the GradCAM++ method with respect to GradCAM [87], 

GradCAM++ heatmaps were considered as the ones with best performance.  

The generation of heatmaps with this technique is fast enough to be used in real 

applications and allows not only to analyse the image areas that are considered by 

the network as prevalent in reaching a decision, but also to study the behaviour of 

each convolutional layer. Moreover, use of GradCAM++ for radiologic images has 

been already reported in literature, e.g., for detection of breast cancer [88] and 

Covid-19 [89]. 
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GradCAM++ showed a good precision in highlighting the position of BACs, even 

though the area considered was always wider than the calcified arteries. This could 

be explained by the fact that the network bases its decision not only on pixels 

belonging to the calcification, but also on their contrast with respect to other breast 

tissues. Indeed, BAC pixels have higher intensity with respect to soft tissues, since 

they are more radiopaque. Shape also plays a role in BAC classification: linear 

calcium deposits of different origins or fibrous tissues might represent a 

confounding factor for network prediction, generating false positive results. 

Conversely, round calcifications and microcalcifications usually do not disturb 

BACs detection, unless they are superimposed to dense tissue that makes their 

boundaries not well defined, sometimes resembling a line. Interestingly, heatmaps 

of the last convolutional layer (Figure 5.1f) demonstrated that well-distinguished 

round calcifications (that are not BACs) are not considered for the final prediction, 

while are analysed in previous convolutional layers (Figure 5.1b-e) presumably for 

their pixel intensities.  

 

Figure 5.1 a) BAC+ image with round well-distinguished microcalcifications. b)-f) 

heatmaps of the last five convolutional layers: the microcalcifications are highlighted by 

BAC-Net until the penultimate layer, presumably for their pixel intensity, but do not have 

any influence on the last convolutional layer (where only the real BAC is highlighted) 

since their shape is clearly distinguishable from BACs linear shape. 

The analysis of false positive predictions performed together with a radiologist 

allowed to understand that for most false positive cases, the network’s detection of 

BACs position on the heatmap is considered wrong from the clinician without any 

doubt (see chapter 4.3.3, Figure 4.13). On the other hand, some images labelled as 

BAC- by human readers, and predicted as BAC+ by BAC-Net, were indeed 

reviewed as positive to BACs presence when analysing the heatmap (Figure 5.2). 

These two cases are suggesting that, in clinical application, the visualization of 

results could play an important role in the mitigation of both human and network 

errors. Moreover, the possibility to study BAC-Net results with graphical 
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representations encouraged a discussion between engineers and radiologists that 

would have never been possible by only considering quantitative results of network 

performances; this allowed both groups to improve their understanding and 

confidence in the CNN predictions, and to better contribute to the development of 

the proposed BACs scoring procedure. 

 

Figure 5.2 Case labelled as BAC- by manual reader, as BAC+ by the network (false 

positive). After heatmap analysis was considered as BAC+ by the radiologist. 

The radiology team, collaborating with this study, had previously developed a 

semiquantitative score (BAC-SS), based on BACs number 𝑁𝑣, vessels opacification 

𝑂𝑣 and an ordinal BACs length score 𝑙𝑄. Data for 𝑁𝑣 and 𝑂𝑣 can be quickly retrieved 

from the mammogram. On the other hand, 𝑙𝑄 computation requires to extract the 

length of BACs through manual segmentation, a high precision and time-

consuming procedure. The obtained length is further compared with quartiles of 

BACs lengths computed for a wide population, and the final length score 

considered is the one corresponding to the quartile to which the calcifications 

belong, so that 𝑙𝑄 ranges from 1 to 4.  

The idea for an automation of the scoring process originates from the need to speed 

up the described procedure. For this preliminary study a subset of 56 BAC+ patients 

(scoring dataset), whose mammograms were already classified with BAC-SS, was 

used for scores extraction and correlation tests. BAC-Net sigmoidal outputs were 

computed for images belonging to the scoring dataset, and again an analysis of the 

precision-recall tradeoff was performed. It was decided to compute correlation 

results considering three possible classification thresholds: the one maximising 

precision (P-th), that was discussed as the primary case since it included in the 

positive predictions only true positive images classified with high confidence by 
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BAC-Net, and the ones maximising F1 (F1-th) and recall (R-th). As a ground truth 

both continuous BACs length in millimetres (𝑙𝐵𝐴𝐶) and quartiles-based 

semiquantitative length score (𝑙𝑄) were considered. The scores examined as possible 

candidates for a definitive BACs numerical score (SBAC) were the heatmap’s area 

with intensity above threshold Theatmap (ABAC), the sum of pixels’ intensities inside this 

area (IBAC), and an estimation of BACs length obtained by skeletonization of the 

over-threshold objects (LBAC). For the definition of a semiquantitative BACs score (SQ 

), three quartiles-based scores were derived from the continuous ones previously 

defined: AQ, IQ, LQ .  

Linear regression was firstly performed for data classified with P-th, and showed 

high correlation coefficient for all three proposed continuous scores: 𝑙𝐵𝐴𝐶-ABAC  

correlation resulted in RSpearman=0.90, p-value=6.33e-41 ; 𝑙𝐵𝐴𝐶-IBAC resulted in 

RSpearman=0.90, p-value=4.36e-41 ; 𝑙𝐵𝐴𝐶-LBAC  resulted in RSpearman=0.89, p-value=1.64e-39. 

Lowering the classification threshold to F1-th and R-th produced worse results due 

to the increase of false positive predictions, that represented outliers in the 

regression’s scatterplot. Interestingly, for each classification threshold considered, 

linear regression results between 𝑙𝐵𝐴𝐶 and ABAC, IBAC, LBAC were similar; a possible 

reason is that the three scores might be proportional to each other, since IBAC could 

be considered as product of ABAC   and mean pixels intensity, while LBAC   as ratio 

between ABAC  and mean width of the objects considered as BACs. Ultimately, in this 

analysis, ABAC has shown the best correlation results, but further testing with a 

higher number of images needs to be performed in order to choose a definitive 

continuous score SBAC.  

The correlation between 𝑙𝑄 and the quartiles-based scores AQ, IQ, LQ  was analysed by 

confusion matrices. AQ and IQ, had almost identical performances, and were better 

BACs severity predictors with respect to LQ; these behaviours well reflect the 

correlations of continuous scores with length in millimetres. A comparison of AQ 

results for P-th, F1-th and R-th can be used to illustrate the predictive abilities of 

quartiles-based scores for variable classification threshold. Considering results 

produced using P-th, the predictions resulted either coincident with the real score 

or lower (the confusion matrix was lower-triangular, accuracy=0.47); the 

diagonality of confusion matrix was improved with F1-th (accuracy=0.53), while R-

th produced the worst confusion matrix (accuracy=0.36) due to high number of false 

positives. This suggests that using lower classification thresholds improves results, 

as long as the number of false positive is not too high; this is caused by a shift of the 

quartiles considered for the production of AQ, IQ and LQ  toward lower values, due to 

inclusion of mammograms with smaller BACs (that are classified by BAC-Net with 

a lower sigmoid output). This behaviour demonstrates the future necessity of a 
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careful study of the proper classification threshold to obtain optimal results, 

together with the need for testing on a wider dataset to fix the best SQ. 

The use of thresholded heatmaps for unsupervised segmentation applied to medical 

images has been poorly explored in literature, and the possibility to use this method 

for BACs quantification has not been previously investigated. The majority of 

literature studies use heatmaps for the extraction of region of interest instead of 

dealing with a precise segmentation: an example of this application can be found in 

research by Guan et al. [93], applied on chest X-rays (Figure 5.3c). Segmentation for 

skin cancer starting from VGG-16 network and using GradCAM was previously 

explored  [91] following a procedure very similar to the one here applied. However, 

skin cancer presents a different shape with respect to BACs, and its analysis is based 

on skin digital pictures with high contrast of the detected shape, so that GradCAM 

appears to highlight with more precision the cancer area (Figure 5.3b) when 

compared to BACs detection (Figure 5.3a).  

 

Figure 5.3 a) BACs unsupervised segmentation proposed in the present work; b) skin 

cancer unsupervised segmentation [91]; c) unsupervised ROI extraction of chest diseases 

from chest X-ray [89]  

Overall, the final workflow proposed in this thesis is illustrated in Figure 5.4. 

Images of the four mammographic views for each patient are automatically pre-

processed, and each mammogram is fed to BAC-Net. The network assesses the 
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presence (BAC+ image) or absence (BAC- image) of BACs in the four views; the 

patient is considered as positive to BAC if at least one image was detected as BAC+. 

Secondly, for the scoring procedure, scores SBAC = 0 and SQ = 0 are assigned to all 

images labelled as BAC-. Conversely, heatmaps of mammograms labelled as BAC+ 

are processed to extract a raw continuous score SBAC related to BACs extent, that 

could be either area, sum of pixels’ intensities or length. Score SQ from 1 to 4 is then 

computed evaluating the correspondence of the raw score to one of its four quartiles 

assessed on a wide population. Finally, the heatmaps of positive views highlighting 

areas where BACs were detected are presented to the radiologist, along with 

indications about the BAC-Net classification, the raw scores and the quartiles-based 

scores computed. This would allow a complete patient’s assessment, without 

requiring any manual work for BACs detection or segmentation, leaving to the 

radiologist only the final decision about the need of further investigation on 

patient’s CVD risk. 

 

Figure 5.4 Workflow of the proposed system for automatic BACs detection and 

quantification. Text in orange highlights the steps developed in the present work: 

preprocessing, BAC-Net classification, heatmaps visualization and scoring process. The 

only non-automated step is the radiologist’s final assessment on each image (highlighted 

in green), performed with the aid of heatmaps and BACs severity scores. 

The final aim of the proposed workflow is BACs quantification based on BAC-Net 

CNN; literature reports a single case of CNN used for this aim [59], that takes in 

input single pixels and a patch of their surroundings, and returns as output a 

prediction of the probability of each pixel to belong to a BAC. Moreover, two 

architectures based on U-Net for automatic BACs segmentation have been 

proposed (named SCU-Net and DU-Net)  [61], [62]. Both the CNN and U-Nets 

require manually segmented images as gold standard, which are time-consuming 

to produce. Indeed, the output of these networks is evaluated by measuring the 

number of pixels correctly detected as BACs when compared to ground-truth 

segmentation. This results in a precise extraction of BACs positions and dimensions 

BACs as shown in Figure 5.5. It is foreseen that such a clean visual enhancement 

procedure can concretely help clinicians in BAC diagnosis supported by a 

semiquantitative score. Indeed, at clinical level there is no need for exact BACs 
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measurement: state-of-the-art BACs manual scoring methods are all based on 

semiquantitative scales (Table 1.1), that according to the radiology team 

contributing to this study provide enough information to evaluate CVDs risk.  

 

Figure 5.5 a) Segmentation performed through CNN: red lines represent ground 

truth segmentation, blue lines automatic segmentation [59], [62]; b) Segmentation 

of a mammogram (left) performed through SCU-Net (right) compared with 

ground truth (middle) [62] 

The method here proposed shows low precision in segmenting BACs contours but 

allows to extract BACs scores from GradCAM++ heatmaps BAC-Net without the 

need of a ground truth about BACs segmentation during training. Indeed, BAC-Net 

is trained by providing mammograms with image-level annotations 

(presence/absence of BACs), that can be more easily produced: BAC-Net was 

trained with 1640 images, while the state-of-the-art CNN was trained with 420 

images, SCU-Net with 527 images and DU-Net with 689 images. Moreover, 

according to Trimboli et al. [38], intra-reader agreement on BAC presence/absence 

is 99%, and inter-reader agreement is 98%; on the other hand, length of calcified 

vessels shows 87% intra-reader and 82% inter-reader agreement. This suggests that 

annotated data for CNN training based on BAC presence/absence only do contain 

a lower number of human annotation errors, compared to segmentation 

annotations, thus lowering gold-standard related biases.  

A first limitation of this thesis is related to BAC-Net development: hyperparameters 

such as batch size, loss function, optimizer and errors weighting were not analysed, 

and regularization techniques e.g., L1 or L2 were not explored. Thus, a possible 

near-future development of this work should consider these factors to possibly 

improve network results and reduce neurons saturation. Moreover, increase in 

number of data used for training and testing could be beneficial, especially if 

mammograms were provided by different centres, including in the database images 
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acquired from multiple devices. Continual learning [109] might also be envisioned: 

new data produced every day in the radiology departments could be quickly 

annotated as BAC+ or BAC- and provided to BAC-Net, increasing the variability of 

cases included in the training set, ultimately improving network performances. A 

second main limitation is related to the scoring procedure, that has been tested on a 

small dataset, and still needs to be improved. Further testing with a higher number 

of data will allow to fix SBAC, SQ, and efficient thresholds for classification and 

heatmaps binarization. Moreover, a choice between continuous SBAC and ordinal SQ 

might also be necessary for future developments. Lastly, it’s clear that in order to 

create a software useful in clinical practice, the workflow proposed has to be unified 

and a graphic user interface needs to be created to allow clinicians to visualize BACs 

heatmaps and scoring without the engineers’ assistance, that for now is required to 

properly run the algorithm.  

It can be envisioned that, after its finalisation, the procedure here proposed might 

contribute not only to BACs screening in population, but also to research. Indeed, 

automatization of the scoring procedure allows to extract BACs severity for a higher 

number of cases and in a fraction of time with respect to manual scoring. With these 

data, the correlation of BACs automatic score with CVDs could be evaluated to 

ensure its efficacy as a cardiovascular risk factor. Moreover, a correlation test with 

coronary arteries calcifications (CAC) score would be possible. Lastly, wider 

applications in clinical research might be explored related to comorbidities typical 

in the aged population. E.g., contributing to the investigation of correlation between 

BAC and white matter hyperintensities [110], bone density [111] or chronic kidney 

disease [112]. 
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