
Executive Summary of the Thesis

LYMPH3D: A new library to solve PDE problems with Discontinuous
Galerkin methods on three-dimensional polytopic meshes

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Nicoletta De Giosa

Advisor: Prof. Paola Antonietti

Co-advisor: Prof. Ilario Mazzieri

Academic year: 2022-2023

1. Introduction
Classical finite element methods typically only
support computational grids composed of stan-
dard element shapes; tetrahedral, hexahe-
dral, prismatic or pyramidal elements in three-
dimensions. The use of these kind of elements
necessitates the exploitation of very fine com-
putational meshes when the geometry is com-
plicated. In such situations, for a given mesh,
a large number of elements is required to pro-
duce a mesh that adequately describes the un-
derlying geometry. Thereby, the solution of the
algebraic system of equations stemming from
a finite element discretization of a generic dif-
ferential problem on the underlying mesh, may
be impractical due to the large number of de-
grees of freedom involved. To overcome this
problem in the last decade numerical meth-
ods that support computational meshes com-
posed of polytopic elements (polygonal or poly-
hedral) have gained a lot of relevance. One of
the advantages of choosing polytopic element
shapes over standard simplicial/tensor product
elements is that the average number of elements
needed to discretize complicated domains is sub-
stantially smaller and this allows to reduce the
computational complexity of the given prob-

lem. This advantage becomes even more ev-
ident whenever the domain contains complex
geometrical features. In this program frame-
work, we implement and validate a new library
called LYMPH3D, written in Fortran, based
on discontinuous Galerkin (DG) finite element
methods on polytopic grids (PolyDG) in three-
dimensions, which is the natural extension of
the classical discontinuous Galerkin methods on
standard element shape grids to meshes com-
posed of polytopic elements. We refer to [3, 4]
and [1] for a comprehensive overview of the
PolyDG method.

2. Discontinuous Galerkin
Methods on Polytopic
meshes

Let Th be a subdivision of the computational
domain Ω ⊂ Rd, d = 3, into disjoint open poly-
hedral elements E. For each element we denote
by |E| its measure, hE its diameter and we set
h = maxE∈Th

hE .
Next we introduce the concept of mesh inter-
faces, which consist of general polygons which
we assume may be decomposed into sets of co-
planar triangles. We refer to these (d − 1)-
dimensional simplices, whose union forms the in-

1

Executive summary Nicoletta De Giosa

terfaces of Th as the faces of the computational
mesh. We denote the set of all the triangles by
Fh. We introduce a partition of the set Fh into
two subsets Fh = F I

h ∪ FB
h , where F I

h is the
set of interior faces and FB

h is the set of faces on
the boundary of the domain ∂Ω. Finally, given
an element E ∈ Th, for any face F ⊂ ∂E, with
F ∈ Fh, we define nF as the unit normal vector
on F which points outwards from E.
For each element E ∈ Th we associate a local
polynomial degree pE ≥ 1. We collect the pE
in the vector p = {pE : E ∈ Th}. With this
notation we introduce the following space.

V p(Th) = {vh ∈ L2(Ω) : v|E ∈ PpE
(E) ∀E ∈ Th}

We recall that Pp(E) denotes the space of poly-
nomials of total degree p on E.
Finally we introduce some assumptions on Th.
We denote by SF

E a d-dimensional simplex con-
tained in E which shares with E a specific face
F ⊂ ∂E, F ∈ Fh. We need this notation to
introduce the following definition.
Definition 2.1 (Polytopic Regular Mesh). A
mesh Th is said to be polytopic-regular if:

∀E ∈ Th ∃{SF
E}F⊂∂E such that ∀F ⊂ ∂E

hE ≲ d|SF
E ||F |−1 ,

where {SF
E}F⊂∂E is a set of non-overlapping d-

dimensional simplices contained in E.

Definition 2.2 (Covering). A covering T# =
{TE} related to the polytopic mesh Th is a set of
shape-regular d-dimensional simplices TE, such
that:

∀E ∈ Th ∃TE ∈ T# such that E ⊊ TE .

Assumption 2.2.1. The mesh Th satisfies the
following properties:
1. Th is polytopic-regular.
2. There exists a covering T# of Th such that

for each pair E ∈ Th and TE ∈ T#, with
E ⊂ TE it holds:
(a) hTE

≲ hE;
(b) maxE∈Th

|E′| ≲ 1 where
E′ ∈ Th : E′ ∩TE ̸= ∅, TE ∈ T#, E ⊂ TE.

We now introduce average and jump operators
on a face. Let F ∈ F I

h be an interior face shared
by the elements E±. We define n± to be the
unit normal vectors on F pointing exterior to
E±, respectively. Then, for sufficiently regular
scalar-valued and vector-valued functions q,v re-
spectively, we define the average {·} and jump

J·K operators on F as

{q} =
1

2
(q+ + q−), JqK = q+n+ + q−n−,

{v} =
1

2
(v+ + v−), JvK = v+ · n+ + v− · n−,

where the subscript ± on q denote the respective
traces of the functions on F restricted to E±,
respectively.
On a boundary face F ∈ FB

h , we set analogously
{q} = q, JqK = qn, {v} = v, JvK = v ·n, where n
is the outward normal vector on ∂Ω.

2.1. PolyDG Discrete Formulation
Given an open bounded Lipschitz domain Ω in
Rd, d = 3, with boundary ∂Ω, we consider
the following boundary-value problem subject to
Dirichlet boundary conditions:
find u such that{

−∆u+ cu = f in Ω,

u = gD on ∂Ω.
(1)

Here f ∈ L2(Ω) and c ∈ L∞(Ω) is a positive
function. The well-posedness of the boundary
value problem (1) can be deduced, based on em-
ploying the Lax-Milgram Theorem.
We write the following PolyDG discrete formu-
lation:
find uh ∈ V p(Th) such that

Bd(uh, vh) +Br(uh, vh) = F (vh) (2)

for all vh ∈ V p(Th), where

• Bd : V p × V p → R is defined as

Bd(wh, vh) =
∑

E∈Th

∫
E

∇wh · ∇vh dx

−
∫

Fh

({∇vh} · JwhK + {∇wh} · JvhK) ds

+

∫
Fh

σJwhK · JvhK ds

(3)

• Br : V p × V p → R is defined as

Br(wh, vh) =
∑

E∈Th

∫
E

cwhvh dx (4)

• F : V p → R is defined as

F (vh) =
∑

E∈Th

∫
E

fvh dx

−
∫
FB

h

gD(∇vh · n− σvh) ds .

(5)

2

Executive summary Nicoletta De Giosa

The well-posedness and stability properties of
the above method depend on the choice of the
discontinuity-penalization σ.
The penalization function σ is face-wise defined
as σ : Fh → R+ such that

σ = α


p2E
hE

on F ∈ FB
h

max{p2
E+ , p2

E−}
min{hE+ , hE−} on F ∈ F I

h

, (6)

where α is a constant to be chosen large
enough. Here, for semplicity we report the re-
sults of the analysis of the problem in the case
of a polytopic-regular computational mesh and
choosing c = 0 in problem (1). We define the
space V = H1(Ω) ⊕ V p(Th) and we introduce
the associated DG norm given by:

||v||2DG = ||∇v||2L2(Th)
+ ||σ 1

2 JvK||2L2(Fh)
, ∀v ∈ V ,

where we used the notation

|| · ||L2(Fh) =
∑

F∈Fh

|| · ||L2(F),

|| · ||L2(Th) =
∑

E∈Th

|| · ||L2(E).

Given that Assumption 2.2.1 holds and that the
constant α appearing in the Definition 6 of the
penalization function is chosen sufficiently large
then, problem (2) is well-posed over V , c.f. [4]
for the details.
Hence, we report the a priori error estimates in
norm DG and in L2 norm in the case of uni-
form orders, pE = p for all E ∈ Th, p ≥ 1
and h = maxE∈Th

hE , s = min {p+ 1, r}. The
generalization to element-wise variable order is
straightforward provided that a local bounded
variation property holds. Given that Assump-
tion 2.2.1 holds we have the following estimates.
If u ∈ Hr(Ω), r > 1 + d/2 we have that:

||u− uh||DG ≲
h(s−1)

p(r−
3
2)
||u||Hr(Ω) . (7)

If u ∈ Hr(Ω) for some r ≥ 2 we have that:

||u− uh||L2(Ω) ≲
hs

pr−1
||u||Hs(Ω) . (8)

Note that the hidden constants depend on the
shape-regularity of T#, but are independent of
h, p and the number of faces of the elements.

2.2. Basis Functions
To constuct the discrete space V p(Th), we ex-
ploit the approach presented in [4]. Given an

element E ∈ Th, we first construct the Carte-
sian bounding box BE , such that Ē ⊆ B̄E .
In Figure 1 there is an example of a polygo-
nal element E in R2 with its Cartesian bound-
ing box BE . Given BE we can define a linear
map between BE and the reference hypercube
B̂ = (−1, 1)d as follow: Gk : B̂ → BE such
that FE : x̂ ∈ B̂ 7→ GE(x̂) = JE x̂ + c. Now,
on B̂ we may employ tensor-product Legendre
polynomials to construct the polynomial space
PpE (B̂) spanned by a set of basis functions ϕ̂i,E

i, . . . , dim(PpE (B̂)). Then, the basis functions
{ϕi,E}, i = 1, . . . , dim(PpE (BE)) for the poly-
nomial space PpE (BE) are defined by using the
map GE . Thereby, the polynomial basis over
the general polytopic element E may be defined
by simply restricting the support of these basis
functions to E.

Figure 1: Cartesian bounding box for a polygon

2.3. Quadrature Rules
The simplest, and perhaps most natural ap-
proach to design the quadrature rules is to sim-
ply construct a sub-tessellation of each polytopic
element into standard element shapes, upon
which standard quadrature rules may be em-
ployed, c.f. [4]. Since we are considering agglom-
erated meshes, the sub-tessellation will already
be available. This approach is computation-
ally expensive and more sophisticated quadra-
ture free approaches have been proposed, see [2],
however this is not considered in this work and
will be the subject of future research.

2.4. Assembling of the linear system
We write the algebraic formulation of problem
(1) considering the case pE = p ∀E ∈ Th and
Ω ⊂ R3.
For simplicity we consider gD = 0. At the end
of the section we will present the case of gD ̸=
0. By fixing a basis {ϕi}Nh

i=1, Nh denoting the
dimension of the discrete space V p(Th), (2) can
be rewritten as:

3

Executive summary Nicoletta De Giosa

find u ∈ RNh

(A+ cM)u = f , (9)

where u contains the expansion coefficients of
uh ∈ V p(Th),

• f is the right hand side vector given by

fi =

∫
Ω

fϕi dx, i = 1, . . . , Nh. (10)

• M is the mass matrix given by

Mi,j =

∫
Ω

ϕi ϕj dx, i, j = 1, . . . , Nh, (11)

• A is the stiffness matrix given by

A = V − IT − I+ S , (12)

where
Vi,j =

∫
Ω

∇ϕj · ∇ϕi dx, (13)

and

Ii,j =
∑

F∈Fh

∫
F

JϕjK · {∇hϕi} ds ,

Si,j =
∑

F∈Fh

∫
F

σJϕjK · JϕiK ds ,
(14)

for any i, j = 1, . . . , Nh.
In the case of gD ̸= 0, Dirichlet boundary con-
ditions can be enforced by penalization, i.e.,

fi =
∑

E∈Th

∫
E

fϕi,E dx

−
∑

F∈Fh

∫
F

gD(∇hϕ
+
i · n+ σϕ+

i) ds.

(15)

In Section 2.2 we introduced the polynomial
basis over a general polytopic element E,
{ϕi,E |E}, i = 1, . . . , dim(PpE (BE)). Choosing
Pp(BE) as discrete space we have that Np =
dim(Pp(BE)) = (p + 1)(p + 2)(p + 3)/6 in 3D.
We call Npoly the number of polyhedra in the
mesh Th. Moreover, we choose the penalization
function according to (6) where hE is the diam-
eter of the bounding box BE of the element E.
We employ this notation in the functions of the
library LYMPH3D needed to solve the algebraic
lineary system (9).

3. Description of the library
LYMPH3D is a library written in Fortran. In
LYMPH3D we can find the implementation of

PolyDG method to discretize problem (1) on
a computational mesh made of polytopic ele-
ments. The code uses the open-source libraries,
METIS for mesh agglomeration, MPI for
message passing, and PETSc, for solving the al-
gebraic linear systems. Figure 2 shows the basic
structure of the main file Lymph3D. First, we
declare PETSc and Fortran variables and we ini-
tialize the PETSc and MPI environment. Next,
we call the subroutine READ_INPUT_FILES
to read the input file and the subroutine
MAKE_PARTITION_AND_MPI_FILES
to make the partition and to store the
mesh information, then we define and as-
semble the PETSc matrices and vectors
by calling SET_PETSC_MATRICES,
MAKE_MATRICES,
SET_PETSC_VECTORS and MAKE_RHS.
We set the algebraic solver and finally solve the
linear system by calling the PETSc function
KSPSolve and then export the solution.

Call INITIALIZATION

Call READ_INPUT_FILES

Call MAKE_PARTITION_AND_MPI_FILES

Declaration of Petsc and Fortran variables

Call SET_PETSC_MATRICES

Call MAKE_MATRICES

Call SET_PETSC_VECTORS

Call MAKE_RHS

Call SOLVER_SETTINGS

Call KSP_Solve

Call PETSC_SCATTER_VECTOR

Call EXPORT_SOLUTION

Figure 2: Basic structure of the main program
Lymph3D.

In the following subsections we briefly describe
the structure of the library.

3.1. Reading input files and store
mesh structure

The starting point of a finite element discretiza-
tion consists in reading the mesh file and store
the key information about the geometry of the

4

Executive summary Nicoletta De Giosa

Name field Description

num_tet_in_poly Number of tetrahedra contained
in the polyhedron

tet_in_poly Global indexes of the tetrahedra
contained in the polyhedron

b_box
Coordinates in the three different
directions of the bounding box of
the polyhedron

hk
Diameter of the bounding box of
the polyhedron

neigh_bbox
Coordinates of the bounding box
of a neighbouring polyhedron

neigh_hk
Diameter of the bounding box of
a neighboring polyhedron

Table 1: Fields of the structure Polyhedron

problem. The main feature is given by the in-
troduction of the structure Polyhedron storing
the key properties of the polyhedral mesh. In
Table 1 we can see the description of its fields.
After reading the mesh file with the function
READ_INPUT_FILES, we call the subroutine
MAKE_PARTITION_AND_MPI_FILES
that performs the partition of the mesh into the
different processors and stores the local prop-
erties of the mesh in the correspondent fields
of the Mesh_Structure. The subroutine
MAKE_PARTITION_AND_MPI_FILES.f90
calls the following subroutines:

• MESH_PARTITIONING performs the
partition of the mesh into different proces-
sors by using METIS.

• WRITE_PARTITION writes the partition
in the mpi files storing the connettivity of
tetrahedra and triangles.

• MESH_AGGLOMERATION generates
the polyhedral mesh by agglomerating the
tetrahedral mesh read from the .mesh file.

• MESH_CORRECTION ensures that each
polyhedron contains at least one tetrahe-
dron.

• CREATE_GLOBAL_POLY_MAP allo-
cates and stores the field elem_in_poly
that contains for each tetrahedron the in-
dex of polyhedron it belongs to.

• CREATE_LOCAL_MESH stores the lo-
cal properties of the tetrahedral mesh
into the correspondent fields of the
Mesh_Structure.

• CREATE_VERT_LIST stores the coordi-
nates of the vertices of the local tetrahedra.

• CREATE_POLY_LIST stores the map
poly_loc2glo to go from local polyhedron
to the global one and initializes the other
fields of the structure Polyhedron.

• CREATE_NORMAL_FACE performs the
computation of the coordinates of the nor-
mal and the area to each face.

• CREATE_BBOX_EL performs the com-
putation of the bounding box for each poly-
hedron.

• CREATE_NEIGH_EL_TRIA stores the
information of the neighbouring tetrahedra
and polyhedra.

• WRITE_MESH_INFO writes the mesh in-
formation in suitable mpi files.

In this work we generate the tetrahedral
mesh with the software CUBIT. Then, the
agglomeration is performed in the subrou-
tine MESH_AGGLOMERATION employing
the METIS library for graph partitioning, c.f.
[6, 7]. In Figure 3a we can see the mesh com-
posed of Ntet = 4496 generated with the CUBIT
software, while Figure 3b shows the mesh that
is generated with the METIS algorithm agglom-
erating the tetrahedral mesh in Figure 3a with
Npoly = 720. The different colours represent the
polyhedra obtained with the agglomeration al-
gorithm.

(a) Tetrahedral mesh
of a cube with Ntet =
4496.

(b) Polyhedral mesh agglomer-
ated with METIS.

Figure 3: Example of a tetrahedral mesh (left)
and agglomerated mesh (right) of Ω = (0, 1)3.

3.2. Basis functions and quadrature
formulas

Here we briefly describe the module ba-
sis_function that contains the following subrou-
tines:
• blist that returns the list of the degrees of

monomials of the Np basis functions up to

5

Executive summary Nicoletta De Giosa

a total degree p
• quadrature that computes the two-

dimensional and three-dimensional quadra-
ture nodes and weights

• LegendreP where we evaluate the scaled
Legendre Polynomials and their derivatives
in one dimension on the edge of the bound-
ing box in one particular direction

• basis that evaluates the basis functions
and their partial derivatives at the three-
dimensional quadrature nodes for every el-
ement

• basis_boundary where we evaluate the ba-
sis functions for every face of two neigh-
bouring tratrahedra at the two-dimensional
quadrature nodes.

3.3. Solving the linear system
This library can be used to solve diffusion-
reaction problems, therefore, beside the right
hand side f , we need to assemble the
stiffness matrix A and the mass matrix
M. To solve the linear system we use
an open source library called PETSc, that
stands for Portable, Extensible Toolkit for
Scientific Computation, see https://petsc.
org/release/overview/. PETSc requires
the definition of its own matrices and vec-
tors. In SET_PETSC_VECTORS and
SET_PETSC_MATRICES we create and ini-
tialize the PETSc matrices and vectors. The
assembly part is performed with the following
routines:
• assemble_local

In this module we assemble the local stiff-
ness and mass matrices and the right hand
side vector;

• MAKE_MATRICES where we assemble
the two PETSc matrices, the stifness ma-
trix A and the mass matrix M;

• MAKE_RHS where we assemble the term
on the right hand side f .

Once we have assembled the PETSc ma-
trices and vectors, in the subroutine
SOLVER_SETTINGS we set the solver:
direct or iterative, and optionally the precon-
ditioner. Finally, we solve the linear system by
calling the PETSc function KSPSolve. This
can be done only after creating the object KSP
with the function KSPCreate. Now that we
have the solution as PETSc vector, we collect

the values of the solution from the different
processors and we copy them into a Fortran
vector. This task is performed by the subroutine
PETSC_SCATTER_VECTOR.

3.4. Post-Processing
Once we solved the linear system, the pro-
gram Lymph3D performs the post-processing
by calling two subroutines contained in the mod-
ule post_processing.
• export_solution where we evaluate the so-

lution function at the vertices of the tetra-
hedra and then we write these values on a
.vtk file in order to visualize them on a suit-
able software, as for example Paraview.

• errors where, we perform the computation
of the errors in norm L2 and DG.

4. Numerical Tests
We present some numerical results to test in
practice the performance of LYMPH3D and to
compare the performance of the PolyDG method
when we consider a mesh composed of tetrahe-
dra and a polyhedral mesh, respectively.

4.1. Test case 1
Consider the diffusion reaction problem (1) in-
troduced in Section 2.1 with Ω = (0, 1)3,
uex(x, y, z) = exyz and gD = uex on ∂Ω and
c = 0.5. With this choice, the forcing term is
f(x, y, z) = −exyz((xy)2 + (xz)2 + (yz)2 − 0.5).
We solve the problem with the PolyDG method
(2). The penalty discontinuity function is de-
fined in (6) with penalty coefficient α = 10.
In Figure 4 we plot the computed errors (both
in L2 and DG norms) on a sequence of suc-
cessively finer tetrahedral meshes by varying
Ntet ∈ {48, 384, 1296, 3072} for different values
of the polynomial degrees p between 1 and 3.
The same results obtained on a sequence of ag-
glomerated polyhedral grids obtained by METIS
starting from the tetrahedral meshes we used
for the previous analysis are shown in Figure
5. We consider in this case a varying number of
polyhedra Npoly ∈ {10, 100, 400, 700}. For each
Npoly we solve the linear system for p = 1, 2, 3, 4.
For each fixed p we plot the errors, measured in
terms of both the L2 norm and DG norm versus
the diameter of the elements, tetrehedra in the
first case and polyhedra in the second one. In
both cases we clearly observe that ||u−uh||L2(Ω)

6

https://petsc.org/release/overview/
https://petsc.org/release/overview/

Executive summary Nicoletta De Giosa

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Plot of the errors for Diffusion Reaction Equation - Tetrahedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

(a) Errors in L2 norm

0.3 0.4 0.5 0.6 0.7 0.8

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Reaction Equation - Tetrahedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

(b) Errors in DG norm

Figure 4: Test case 1. Computed errors in L2 and DG norms for p = 1, 2, 3 (tetrahedral meshes).

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Reaction Equation - Polyhedral Mesh

p = 1

Order2

p = 2

Order3

p = 3

Order4

p = 4

Order5

(a) Errors in L2 norm

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

h

10
-4

10
-3

10
-2

10
-1

10
0

Plot of the errors for Diffusion Reaction Equation - Polyhedral Mesh

p = 1

Order1

p = 2

Order2

p = 3

Order3

p = 4

Order4

(b) Errors in DG norm

Figure 5: Test case 1. Computed errors in L2 and DG norms for p = 1, 2, 3, 4 (polyhedral meshes).

and ||u − uh||DG converge to zero at the opti-
mal rates O(hp+1) and O(hp) respectively, as
the mesh size h tends to zero for each fixed p.
The numerical analysis confirms the optimality
of the PolyDG method in accordance with the
theoretical convergence results, see (7) and (8).

4.2. Test case 2
Now we present a numerical test where we solve
the PDE problem (1) with c = 0, f(x, y, z) =
e−(x2+y2+z2) and gD = 0. We solve the diffu-
sion problem with the PolyDG method (2) on
the agglomerated mesh of a human brain choos-
ing basis functions of degree p = 1. The three-
dimensional mesh of a human brain is one ex-
ample of a very complicated geometry and the
PolyDG method is perfectly suited to be em-
ployed in the context of brain modelling, c.f.
[5]. The advantage of choosing polytopic ele-
ment shapes is that the average number of el-

ements needed to discretize such a complicated
domain is smaller and this allows to reduce the
overall computational complexity while retain-
ing a good approximation of the domain. If we
consider the tetrahedral mesh in Figure 6a, we
cannot solve the numerical problem on this kind
of mesh because the number of degrees of free-
dom is too high, even for p = 1. For this reason
we solve the numerical problem on the polyhe-
dral mesh in Figure 6b.
The polyhedral mesh is obtained with METIS
by agglomerating the tetrahedral mesh in Fig-
ure 6a and by choosing a number of polyhedra
Npoly = 2000. In Figure 7 we can see the nu-
merical solution of this diffusion problem.

7

Executive summary Nicoletta De Giosa

(a) Tetrahe-
dral mesh of
the brain with
Ntet = 127824 .

(b) Agglomerated mesh of
the brain with Npoly = 2000
.

Figure 6: Test case 2. In Fig. 6a we have the
tetrahderal mesh composed of Ntet = 127824 of
a human brain while in Fig. 6b we have the ag-
glomerated polyhedral mesh with Npoly = 2000.

Figure 7: Test case 2. Numerical solution of
the diffusion problem on the agglomerated mesh
of the brain with Npoly = 2000. In the first
image there is the three-dimensional numerical
solution. The other two images show the nu-
merical solution on two different sections of the
human brain.

5. Conclusions
We developed a new library named LYMPH3D
to solve diffusion-reaction problems with the
PolyDG method in three-dimensions. We pre-
sented two numerical tests to validate the the-
oretical estimates and test the practical capa-
bilities of the proposed library. These tests
confirmed the known theoretical results on the

discontinuous Galerkin methods on polyhedral
meshes. Then we solved the diffusion equa-
tion on a complicated geometry of the human
brain. One possible improvement of this work
is to introduce in the library the Quadrature
Free algorithm, c.f. [2], to compute the inte-
grals without the need of the sub-tessellation.
It has been shown that this integration ap-
proach leads to a considerable improvement in
the computational performance compared to
classical quadrature algorithms based on sub-
tessellation. Moreover, one could expand the
library in order to read generic hybrid grids
based on a convenient combination of hexahe-
dral/tetrahedral/prysmatic elements. Finally,
another possible development of this work is to
implement the algorithms to solve more compli-
cated problems, first introducing also the trans-
port term in a general elliptic PDE, then trying
to solve a dynamic equation. The idea is that
this library is the starting point in order to have
an efficient open source library to solve the het-
erogeneous differential models.

References
[1] P. F. Antonietti, A. Cangiani, J. Col-

lis, Z. Dong, E. H. Georgoulis, S. Giani,
and P. Houston. Review of discontinuous
Galerkin finite element methods for Partial
Differential Equations on complicated do-
mains. Building bridges: connections and
challenges in modern approaches to numeri-
cal partial differential equations, pages 281–
310, 2016.

[2] P. F. Antonietti, P. Houston, and G. Pen-
nesi. Fast numerical integration on poly-
topic meshes with applications to discontinu-
ous Galerkin finite element methods. Journal
of Scientific Computing, 77(3):1339–1370,
2018.

[3] A. Cangiani, Z. Dong, E. H. Georgoulis,
and P. Houston. hp-Version Discontinuous
Galerkin Methods on Polygonal and Polyhe-
dral Meshes. Springer Publishing Company,
1 edition, 2023.

[4] A. Cangiani, E. H. Georgoulis, and P. Hous-
ton. hp-version discontinuous Galerkin
methods on polygonal and polyhedral

8

Executive summary Nicoletta De Giosa

meshes. Mathematical Models and Methods
in Applied Sciences, 24(10):2009–2041, 2014.

[5] M. Corti, P. F. Antonietti, L. Dede, and
A. M. Quarteroni. Numerical modelling of
the brain poromechanics by high-order dis-
continuous Galerkin methods. M3AS, 2023.

[6] G. Karypis and V. Kumar. A fast and high
quality multilevel scheme for partitioning ir-
regular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1998.

[7] G. Karypis and V. Kumar. METIS – un-
structured graph partitioning and sparse ma-
trix ordering system, version 4.0. 2009.

9

	Introduction
	Discontinuous Galerkin Methods on Polytopic meshes
	PolyDG Discrete Formulation
	Basis Functions
	Quadrature Rules
	Assembling of the linear system

	Description of the library
	Reading input files and store mesh structure
	Basis functions and quadrature formulas
	Solving the linear system
	Post-Processing

	Numerical Tests
	Test case 1
	Test case 2

	Conclusions

