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ABSTRACT

This dissertation addresses the challenging low-thrust trajectory optimization problems.
The goal is to improve the efficiency and effectiveness of the indirect method to advance and
mature the mission design methods.

First, analytic gradients are achieved and leveraged to improve both computational efficiency
and convergence robustness of the indirect method for low-thrust optimization with interior-
point constraints. Particular attention is placed on the analysis of discontinuities produced
by interior-point constraints and bang-bang control. The presented methods are able to offer
desired discontinuous bang-bang solutions and their accurate gradients. A variety of problems
have been solved, including interplanetary transfers with a variable specific impulse and
power-limited engine, Earth-orbit transfers with eclipses, and interplanetary transfers with
multiple flyby, rendezvous and gravity-assist events. Also, preliminary asteroid screening
of the M-ARGO (Miniaturised Asteroid Remote Geophysical Observer) mission has been
carried out by using the developed method.

Second, tailored homotopy continuation methods are designed to effectively solve fuel-optimal
many-revolution Earth-orbit transfers with eclipses, thrust continuation of time-optimal
many-revolution orbital transfers, and asteroid porkchops in the M-ARGO mission. A generic
homotopy method based on Theory of Functional Connections (TFC) is also developed. The
TFC-based homotopy method implicitly defines infinite homotopy paths, allowing for the
selection and switching of homotopy paths to remedy the failure of the continuation process.
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SOMMARIO

Questa tesi affronta i difficili problemi di ottimizzazione delle traiettorie spaziali a bassa
spinta. Il suo obiettivo è migliorare l’efficienza e l’efficacia dei metodi indiretti per far avanzare
e maturare i metodi di progettazione della missione.

Innanzitutto, i gradienti analitici vengono ottenuti e sfruttati per migliorare sia l’efficienza
computazionale sia la robustezza dei metodi indiretti per traiettorie a bassa spinta con
interior-point constraints. Particolare attenzione è posta all’analisi delle discontinuità prodotte
dagli interior-point constraints e dal controllo bang-bang. I metodi presentati sono in grado
di offrire le soluzioni bang-bang discontinue desiderate e i loro gradienti in maniera accurata.
È stata risolta una serie di problemi, inclusi i trasferimenti interplanetari con un impulso
specifico variabile e un motore a potenza limitata, i trasferimenti in orbita terrestre con
eclissi e i trasferimenti interplanetari con flyby multipli, rendez-vous e gravity-assist. Inoltre,
utilizzando il metodo sviluppato, è stato effettuato lo screening preliminare degli asteroidi
della missione M-ARGO (Miniaturised Asteroid Remote Geophysical Observer).

In secondo luogo, vengono presentati schemi di continuazione specificamente progettati per
risolvere trasferimenti orbitali a molte rivoluzioni con eclissi che minimizzino il consumo
di combustibile, e per risolvere trasferimenti orbitali a molte rivoluzioni al fine di min-
imizzare il tempo di volo; inoltre, questi schemi di continuazione vengono utilizzati per
definire i cosiddetti porkchop plots relativi alla missione M-ARGO. Viene infine sviluppato
un metodo basato sulla teoria chiamata Theory of Functional Connections (TFC). Il metodo
dell’omotopia basato su TFC definisce implicitamente percorsi di omotopia infiniti, consen-
tendo la selezione dei percorsi e la commutazione tra gli stessi per rimediare all’eventuale
fallimento del processo di continuazione.
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CHAPTER 1
INTRODUCTION

Exploration and exploitation of the uncharted universe is an essential direction to push
the scientific frontier, boom technological innovations and thrive the society. Ambitious space
missions are envisioned to be implemented in the foreseeable future, involving expeditions to
outer Solar System, human station construction on the Moon and Mars, asteroid mining, etc.
Space activities are further flourishing with the emerging and thriving of CubeSat missions.
The growing complexities of space missions, meanwhile the eternal pursuing of low-cost, high-
risk and high-gain goals, pose a high requirement on the mission analysis and design. This
thesis aims to advance and mature low-thrust trajectory design methods to benefit newer
mission scenarios.

1.1 Spacecraft Propulsion System

A propulsion subsystem is indispensable for effective orbital manoeuvring. From momentum
conservation principle, the thrust to accelerate the spacecraft is acquired by ejecting propel-
lants at high kinetic energy [1]. There are mainly two types of propulsion systems for in-space
missions [2], i.e., Chemical Propulsion (CP) and Electric Propulsion (EP). CP produces the
thrust by converting the chemical energy of the propellant combustion into spacecraft ki-
netic energy, achieved by accelerating the exhaust gas through an expansion procedure [2–4].
Meanwhile, EP accelerates the spacecraft by making use of electrical power to ionize and
eject the propellant at high exhaust speed [2–4].

The Tsiolkovsky rocket equation [1]

∆v “ c ln

ˆ

1`
mp

mf

˙

1
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relates the velocity increment ∆v to the propellant exhaust velocity c, propellant mass mp

and final mass mf . To achieve the desired ∆v, the thruster with high exhaust velocity is
preferable since it allows delivering more payload, which further increases scientific return.
In this aspect, the exhaust velocity of CP is limited by the energy stored in the propellant [3].
EP solves this problem since the electric energy is delivered from external energy source, and
a high exhaust velocity is consequently achieved [3]. The efficiency of the thruster in terms
of fuel consumption is indicated by the specific impulse Isp, defined as the thrust T “ 9mpc
per sea-level weight of propellant consumption. Also, it is the impulse delivered per unit of
propellant consumption. That is

Isp “
T

9mp g0

“
c

g0

“
I

g0 mp

where I is the total impulse, defined as the integral of the thrust over time duration. To reach
a desired total impulse, the higher Isp implies a lower fuel consumption. The high exhaust
velocity of EP offers a higher Isp, thus lower fuel consumption than CP.

However, the thrust level of EP is low, around two orders of magnitude lower than that of
CP, since the mass rate 9mp is very small, limited by the onboard power level [4]. To achieve
the desired final velocity and total impulse, EP is usually required to work for a long period
of time [3]. Distinct characteristics of CP and EP culminate in their different application
scenarios of orbital manoeuvring. The high-thrust feature of CP allows effective orbital
changes of the spacecraft in a short amount of time, and the spacecraft flies ballistically
during the majority of the mission time. On the other hand, EP burns a long duration to
steer the spacecraft to the desired orbit and the spacecraft follows a non-Keplian orbit.

Trajectory design is critical for the feasibility and cost of the mission, since the selected
trajectory implies the propellant consumption, time of flight and the corresponding steering
law [5]. For the spacecraft equipped with CP, the orbital manoeuvring is always approximated
as instantaneous increment of the velocity. For the spacecraft equipped with EP, the control
is considered to be continuously varied. This work focuses on the trajectory design for the
spacecraft equipped with EP, mainly because EP allows to deliver more payload to boost
scientific return and it also allows missions with high ∆v that are prohibitive with CP [3].
The success of a number of missions in recent decades, e.g., Deep Space 1 [6], Hayabusa [7],
SMART-1 [8], and Dawn mission [9], has validated the reliability of EP. It is noticed that EP
is the collection of high specific impulse engines, e.g., Solar electric propulsion (SEP), nuclear
propulsion, solar sails and tether techniques. SEP-based trajectory design is considered in
this work.

The low-thrust trajectory design is always formulated and solved as a nonlinear optimal
control problem (NOCP). The NOCP seeks to determine the control profile that optimize the
prescribed objective function while taking into account a set of dynamic constraints, boundary
constraints and path constraints. Two types of objectives are commonly minimized: one is
related to the quantity of control efforts, also the fuel consumption, the other is the transfer
time, or the combination of these two [10]. However, the low-thrust trajectory optimization
is difficult to solve due to the following reasons: 1) The thrust allows for two modes of
operation, i.e., thrusting and coasting modes. The thrust structure is always not known a
priori, thus the solver should determine the sequences of mode switching; 2) Discontinuities
in the state and costate variables may be present in the optimal trajectory. For example, the
costate is discontinuous when the SEP-based spacecraft enters and exists the shadow region
of the Earth, see Chapter 4; 3) Time-dependent forces and constraints may exist; 4) The
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long-duration time of flight may result in multi-revolution planetocentric transfers, which
increases the convergence difficulty.

1.2 Numerical Methods for Trajectory Optimization

Analytical solutions are challenging to obtain in space applications due to the high nonlinear
dynamics. Instead, numerical methods are always sought. Numerical methods dedicated
to solving NOCPs are mainly categorized as direct methods, indirect methods, dynamical
programming and evolutionary algorithms, based on their solving philosophies. In literature,
there are already extensive survey papers regarding the available numerical optimal control
methods and their advantages and disadvantages for trajectory optimization [5, 10–15]. For
the sake of brevity, these methods are briefly reported.

Direct methods Direct methods discretize an infinite dimensional NOCP into a finite di-
mensional nonlinear programming problem (NLP), then optimize the NLP by searching for
the discretized state and control solution, such that the Karush-Kuhn-Tucker conditions are
fulfilled [16]. Methods for solving the differential equations and quadrature of functions are
the foundation, mainly classified as time-marching and collocation methods [11]. The former
implements integration methods, such as Euler and Runge-Kutta methods, to obtain the
trajectory at each time step sequentially. The later approximates the trajectory by piece-
wise polynomials. Dynamical constraints are transformed to nonlinear constraints that are
required to satisfy at each collocation points.

Based on the way to transcribe differential equations, direct methods are mainly categorized
as three types, i.e., direct single shooting, direct multiple shooting and direct collocation. In
direct single shooting, only the control is discretized and time-marching method is executed in
the whole duration. In direct multiple shooting, the time domain is partitioned by multiple
segments and direct single shooting is executed over each segment. Defect constraints to
continuously connect each segment are imposed. In direct collocation methods, both state
and control are discretized, and collocation methods are employed to transform differential
equations to nonlinear constraints. Many types of collocation methods characterized by
quadrature rules have been developed in literature [10]. Nowadays, some commercial-off-
the-shelf softwares such as General Purpose OPtimal Control Software (GPOPS) [17] and
PseudoSpectral OPTimization (PSOPT) [18] for general NOCPs have been developed that
are able to automatically transform the NOCP to the NLP, and solve the NLP with state-of-
the-art optimization methods [11]. Also, some softwares tailored to trajectory optimization
have been developed to solve complex problems [19–21].

The main benefits of using direct methods are the easy handling of complicated path and
boundary constraints, and the broad convergence domain, making it easy for the user to pro-
vide the initial guess solution. Additionally, there is no need for the user to derive analytical
differentiations [10]. However, the obtained solution offers few information for the possible
improvement [10]. Besides, direct methods usually require much computational efforts, es-
pecially for many-revolution trajectories [14]. A large number of parameters and high-order
integrator are usually required to obtain an accurate solution [22]

Indirect methods Based on calculus of variations, indirect methods formulate the Euler-
Lagrange equations, i.e., first-order necessary conditions for local optimality, that the state
and costate should satisfy [10]. From Pontryagin’s Minimum Principle, the optimal control,
which is always the function of state and costate, is derived such that the Hamiltonian is
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minimized at any time on the optimal trajectory [10]. Indirect methods then transforms the
NOCP to a two-point boundary value problem (TPBVP) or a multiple point boundary value
problem (MPBVP) if interior-point constraints are involved [23]. The transformed problem
is mainly comprised of Euler-Lagrange equations, boundary conditions, transversality con-
ditions and complementary conditions [10]. The NOCP is further solved as a zero-finding
problem [24].

Similar to direct methods, three indirect methods are commonly used to solve the NOCP, i.e.,
indirect single shooting, indirect multiple shooting and indirect collocation [5]. In indirect
single shooting, differential equations of state and costate are integrated using time-marching
methods to the terminal time. The decision variables are guessed first, and iteratively updated
to match conditions in TPBVP/MPBVP using techniques such as the shooting method [24].
Indirect single shooting is straightforward, but it suffers from the numerical difficulty caused
by the high sensitivity to the initial guess such that small changes in the initial costate can
lead to abrupt change of the trajectory at the terminal time [12]. The indirect multiple
shooting is one of techniques to circumvent the sensitivity problem by dividing the time
interval into multiple subintervals. The sensitivity is reduced with the sacrifice of markedly
increased number of unknowns and constraints [12]. The other commonly used method
to mitigate the sensitivity is combining the shooting method with continuation methods,
which gradually approach the solution by solving a series of auxiliary problems, starting
from the solution of an easier problem [12]. The continuation process enables to effectively
expand the convergence domain, but with the cost of higher computational burden. The
indirect collocation method employs piecewise polynomial to represent the solution and a set
of nonlinear constraints are imposed to ensure that dynamical constraints are satisfied. The
difference with respect to direct collocation is that the state and costate dynamical equations
are required in indirect collocation [12].

The main benefits of indirect methods are that the solution produced is highly accurate and
guaranteed to be at least extremal [5, 11]. Also, it provides more theoretical insight about
the optimal solution [5]. The main drawback is the small convergence domain of a zero-
finding method. The guess of costate values becomes more difficult due to the possibility of
non-physical interpretation of the costate [12].

Dynamic programming In dynamic programming approaches, Bellman’s Principle of Opti-
mality is fundamental, stated as: "An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision" [25]. Based on Bellman’s
Principle of Optimality, dynamic programming handles the NOCP by searching the cost-to-
go function which satisfies a first-order nonlinear partial differential equations known as the
Hamilton–Jacobi–Bellman equation (HJB) [26]. The solution of HJB equation over domain
of interest provides optimal feedback control law, instead of the open-loop solution. How-
ever, the solution is difficult to determine due to the curse of dimensionality, i.e., the memory
and computational time grow rapidly with dimensionality, which limits its applications to
complicated NOCPs [5].

A variety of dynamic programming methods have been developed to alleviate the curse of
dimensionality [27]. One category gradually approaches the solution by solving a sequence of
approximate problems, such as series solution method [28], differential dynamic programming
(DDP) [29] and generating function method [30], etc. The other category is to solve the cost-
to-go function directly, such as finite difference method [31] and neural network method [32],
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etc. Among them, DDP has been applied to various studies on trajectory optimization [29, 33,
34]. The idea of DDP is to approach the optimal solution through a succession of quadratic
subproblems around a reference trajectory [5]. The curse of dimensionality is eased with the
cost by achieving a local optimal solution, instead of a global optimal solution [5].

Evolutionary methods Evolutionary methods are global techniques that mimic the process
of natural evolution [15]. Various methods have been developed in literature, e.g., genetic
algorithm [35], differential evolution [36] and particle swarm algorithms [37], etc. To imple-
ment evolutionary algorithms, the unknowns should be represented by a relatively smaller
number of discrete parameters [10]. Some features of evolutionary methods are distinct from
other methods [10]. Firstly, evolutionary methods do not require the initial guess solution,
since they search from a population of solutions; Secondly, the optimization process uses the
information of objective function but does not require gradient information. Thirdly, evolu-
tionary methods employ stochastic ways, instead of deterministic ways, to iteratively search
the solution. Even though they are more likely to converge to a global solution, it is not guar-
anteed and more than one optimizer is suggested to verify the solution [10]. Evolutionary
methods have proven to be effective for various trajectory optimisation problems [38–40].

1.3 The Research Questions

In preliminary space mission phase, mission designers are interested in exploring and assess-
ing as many trajectory options as possible, in a short duration and with limited resources [5].
However, mission tasks related to low-thrust trajectory optimization are challenging that
often require high computational load. For example, in asteroid missions, the trajectory de-
signer has the task of filtering appropriate targets from thousands of asteroids, which involves
assessment of tremendously high number of trajectories. However, numerical optimization
methods are usually time consuming and their convergence is questionable. Thus, the efforts
to enhance the rapid trajectory search capability with broader domains of convergence of the
mission design tool are desirable. This thesis aims to improve the efficiency, robustness and
reliability of the indirect method to favor the mission analysis and design.

In literature, the methods to improve the performance of indirect methods for low-thrust tra-
jectory optimization have been extensively studied from various aspects, including effective
continuation methods [41–43], initialization of non-intuitive costates [44–46], analytic gradi-
ents [45, 47], switch detection [48], etc. These techniques have been proposed to effectively
expand the convergence domain and determine the sequence of bang-bang control in the fuel-
optimal problem. However, most works did not consider some realistic constraints which are
critical for the mission analysis, thus the corresponding techniques may fail in more complex
environments. For instance, in Earth-orbit transfers considering shadow eclipses, the costate
is discontinuous when the spacecraft enters or exits the shadow region [49–51]. This extra
discontinuity causes the failure of techniques such as analytic gradients derived in [47].

Constraints for NOCPs can be roughly categorized as interior-point constraints and path con-
straints. This thesis mainly considers low-thrust trajectory optimization with interior-point
constraints, corresponding to a variety of low-thrust transfer problems, such as Earth-orbit
transfers with eclipses, interplanetary transfers with multiple flyby, rendezvous and gravity-
assist events, etc. The NOCP with interior-point constraints is actually a MPBVP [23]. Also,
these problems can be categorized as hybrid optimal control problems, which are NOCPs in-
volving discontinuous state, costate, dynamics and decision-making where the discontinuity
is produced by discrete events [5]. The aim of this thesis is to enhance the efficiency and
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effectiveness of the indirect method for these problems. The improvement in aspect of com-
putational efficiency and robust convergence is achieved by developing analytic gradients and
homotopy continuation methods.

Analytic gradients In trajectory optimization, the gradients of problem functions with re-
spect to problem decision variables are at the heart of most methods [52]. Finite difference
methods are classical gradient estimation methods which approximate the gradients by trun-
cating Taylor series of a function at a given point [53]. Although these methods are straight-
forward and easy to implement, the computational load is usually high, and the accuracy
inherently relies on the selected perturbation size, which is difficult to tune [54]. For example,
the forward difference first-order formula is

f 1pxq “
fpx` hq ´ fpxq

h
`Ophq

where h is the perturbation step-size and Ophq is the truncation error. When this formula
is employed to estimate the gradients, h has to be a small value to reduce truncation errors.
However, h cannot be too small, in order to avoid subtractive cancellation errors. This
step-size dilemma makes it difficult to select h that ensures accurate gradients.

Advanced techniques such as automatic differentiation (AD) [55], complex step differentiation
(CSD) [53] and the variational method [47] improve the numerical accuracy using different
philosophies. AD exploits the facts the complicated function can be expressed by the com-
bination of elementary arithmetic operators and functions, and evaluated by repeatedly ap-
plying the chain rule [56]. CSD estimates gradients by making use of complex variables [57].
The higher gradient accuracy is achieved since it elegantly eliminates the subtractive cancel-
lation error [57, 58]. However, both AD and CSD require extensive implementation and the
execution time could be high [54]. The variational method is a promising method that offers
accurate gradients with generally short computational time [52]. In the variational method,
gradients are computed through the state transition matrix (STM) and the chain rule, where
the STM provides sensitivities between states and costates at different time instants along
a given trajectory [45]. Unlike finite-difference methods, the STM offers accurate gradients
without tuning the perturbation step-size for each independent variable [59]. The drawback
is that symbolic manipulations are generally required, and the integration becomes more
complicated when discontinuities are involved.

Finite difference methods are sufficiently accurate in most cases. However, for trajectory
optimization with interior-point constraints, the gradient accuracy of finite difference methods
is problematic due to the discontinuity produced by interior-point constraints and bang-bang
control, see Section 4.3. It is worth to exploit analytic gradients due to their high benefits
on computational efficiency and gradient accuracy. Impulsive transfer problems are typical
NOCPs with interior-point constraints [60], and a number of works have been devoted to
exploiting the analytic gradients [54, 61–64]. However, for low-thrust optimization problems,
analytic gradients are only available for cases without interior-point constraints [45, 47]. To
the best of the author’s knowledge, analytic gradients for low-thrust optimization problems
that involve interior-point constraints are still vacant for indirect methods. Thus, the first
research question is:

For low-thrust trajectory optimization problems with interior-point constraints, how to
derive, calculate and assess analytic gradients in the indirect method ?
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Homotopy continuation methods Since the smoothing technique was introduced in [41], the
homotopy continuation methods have been extensively developed in low-thrust trajectory
design as an effective way to determine the solution with broader convergence domain [43,
44, 65]. The homotopy method solves the objective problem by tracking the homotopy path,
which is comprised of solutions of a series of auxiliary problems [66]. The design of homotopy
continuation process for complicated low-thrust transfer problems is the concern of this thesis.

Moreover, it is observed that the continuation process has the potential to fail to proceed
when the homotopy path encounters unfavorable conditions, such as limit points (where
the Jacobian matrix is ill-conditioned) or the path goes off to infinity [65]. In this aspect,
pseudo-arclength method is a general method to effectively pass limit points by reversing the
homotopy path direction and augmenting the Jacobian matrix [66]. Additionally, in [67, 68],
the continuation parameter was extended to the complex domain to avoid singular points.
However, these methods may still fail, e.g., when the homotopy path grows indefinitely [69,
70]. This in turn calls for enhancements to improve the algorithmic robustness in homotopy
methods. These raise the second research question:

How to design homotopy continuation methods to widen the convergence domain, re-
duce computational load and recover failures in low-thrust trajectory optimization ?

1.4 Overview and Contributions

The structure of this thesis is illustrated in Fig. 1.1, including research pillars, research prob-
lems, space applications and corresponding chapters. The work is based on three pillars,
M-ARGO CubeSat mission, indirect optimization and Theory of Functional Connections
(TFC). M-ARGO is the first European Space Agency (ESA) stand-alone CubeSat mission
to independently rendezvous with and characterise a NEA [71]. Whereas, TFC is a math-
ematical framework to perform linear functional interpolation. It has the property that no
matter what the auxiliary function is, the constrained function always satisfies a prescribed
set of constraints [72].

Research problems are abstracted from space applications and the corresponding algorithms
in turn are dedicated to enhancing the low-thrust trajectory optimization. Mainly two types
of research problems are studied: low-thrust optimization with interior-point constraints and
continuation methods in optimization. Research problems about low-thrust optimization
with scalar and multi-dimensional interior-point constraints are studied separately since the
former allows analytical expressions of scalar Lagrange multipliers corresponding to interior-
point constraints. In this work, this fact is explored to enable the indirect method to solve
a MPBVP as a TPBVP. Yet, scalar multipliers can also be treated as unknowns like the
multi-dimensional case, but the user has to provide good initial guesses and their number.

The contributions from a broader point of view:

1. Analytic gradients are achieved and leveraged to improve both computational efficiency
and convergence robustness of the indirect method for low-thrust optimization with
interior-point constraints.

2. Tailored homotopy continuation methods are designed to effectively solve a variety of
low-thrust optimization problems. A TFC-based homotopy method for general problems
is developed that enables to remedy the failure of the continuation process by selecting
and switching homotopy paths.
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In the following, the introduction and contributions of each chapter are depicted:

1. Chapter 2 studies power-limited asteroid rendezvous trajectory optimization by a SEP-
based spacecraft, motivated by M-ARGO and dedicated to the task of asteroid screening
(Chapter 3). The engine characterised with variable specific impulsive and limited power
input is taken into consideration. Particular attention is paid to analyzing the impact of
power constraints on the indirect optimization and the optimal solution. Methods and
contributions:

‚ The low-thrust optimization with scalar interior-point constraints is formulated.
Analytical multipliers related to interior-point constraints are obtained. This result
is leveraged to transform this MPBVP as a TPBVP.

‚ The STM across costate and dynamics discontinuities produced by power constraints
and bang-bang control is derived.

‚ In order to ease the costate initialization, two continuation methods are used to
approach a discontinuous control by a consecutive sequence of continuous controls:
1) energy-optimal to fuel-optimal continuation, to mitigate the convergence diffi-
culty associated to bang-bang control in the fuel-optimal problem, and 2) Hyper-
bolic Tangent Smoothing (HTS), to handle engine switch on/off related to power
bounds. The advancement to the HTS in [42] consists of the capability to achieve
the desired discontinuous solution.

‚ The flowchart in [47] is augmented by involving power-related branches. The com-
putational framework is established by combining analytic derivatives, switching
detection and continuation into the augmented flowchart. The core capability is the
accurate computation for both time-optimal and fuel-optimal trajectories and their
gradients.

2. Chapter 3 reports the preliminary asteroid screening in the M-ARGO mission. The
paramount task is to search reachable NEA targets with mission constraints. Methods
and contributions:

‚ The original and systematic multi-step selection process to extract the reachable
near-Earth asteroids and subsequently down-select asteroids is developed.

‚ Thousands of both time-optimal and fuel-optimal low-thrust trajectory optimisa-
tion problems have been solved, using the indirect method and the thruster model
featuring variable input power, thrust, and specific impulse presented in Chapter
2. The down-selection of asteroids are further executed by analyzing and filtering
porkchops, and fulfilling scientific requirements.

‚ Initial results indicate mission feasibility for M-ARGO, which has the potential to
enable a completely new class of low-cost deep-space exploration missions.

3. Chapter 4 concerns fuel-optimal Earth-orbit transfers with eclipses. This problem in-
herently belongs to the same problem category as Chapter 2. Here, many-revolution
solutions are sought. Methods and contributions:

‚ The events of shadow entrance and exit are modelled as scalar interior-point con-
straints. The analytical expression of the scalar multiplier is derived.

‚ The STM across costate and dynamics discontinuities produced by shadow con-
straints and bang-bang control is derived. It is found that the ill-conditioned STM
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may occur when the spacecraft flies over the edge of the shadow on the optimal
trajectory. The energy-optimal to fuel-optimal continuation may fail in many-
revolution transfers due to the ill-conditioned STM.

‚ To effectively find fuel-optimal many-revolution solutions, a continuation scheme is
proposed. It consists of determining the fuel-optimal solution without shadow con-
straints starting from the energy-optimal solution without shadow constraints first,
then determining the fuel-optimal solution with shadow constraints by gradually
increasing the number of eclipse arcs.

‚ The integration flowchart in [47] is augmented to involve event branches of shadow
entrance and exit. Fuel-optimal bang-bang solutions and their accurate gradients
for many-revolution transfers are achieved by using the indirect method for the first
time.

4. Chapter 5 studies fuel-optimal deep-space transfers with multi-dimensional interior-
point constraints. Interplanetary transfers with intermediate flyby, rendezvous and
gravity-assist events belong to this category. The corresponding NOCP is challeng-
ing since the state and costate are instantaneously varied due to discrete events, and
interior-point constraints are time-dependent. Moreover, the multipliers have to be
sought along with other decision variables. Methods and contributions:

‚ The time domain is partitioned into multiple segments with interior-point time,
initial and terminal time as boundaries. The derivatives of state, costate and each
constraint are carried out in each segment first, then extend to the whole domain
using the chain rule.

‚ The recursive formulae of derivatives of each constraint with respect to unknowns
at previous interior-point time instants are established in the chain rule.

‚ Analytic gradients of indirect optimization for deep-space transfers are achieved.
Compared to the finite difference method, the proposed method enables to improve
the performance of the shooting method effectively.

5. Chapter 6 investigates the thrust continuation for many-revolution time-optimal Earth-
orbit transfers, where the terminal orbit is specified by a subset of orbital elements.
Starting from the time-optimal solution with large thrust level and few revolutions, the
thrust continuation is implemented to approach the time-optimal solution with small
thrust level. However, it is observed that the thrust continuation fails at certain thrust
level due to the failure to determine the solution to the lower thrust, in the vicinity of
current solution. Methods and contributions:

‚ Based on the observation that many local solutions exist for the considered orbital
transfer problem, an enhanced thrust continuation scheme is presented that em-
beds the method to connect local solutions with different revolutions. The thrust
continuation allows to proceed by starting from another local solution with more
revolutions.

‚ The solution connection is achieved by augmenting the dynamics and solving a
series of auxiliary problems. This method can effectively search local solutions with
different revolutions for a specific thrust level.

‚ Numerical evident indicates the near constancy of tf ˆ Tmax exists for more general
orbital transfers.
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Chapter 1. Introduction

6. Chapter 7 develops the TFC-based homotopy continuation algorithm to solve zero-
finding problems. Current homotopy algorithms’ success highly relies on empirical
knowledge, due to manually, inherently selected homotopy paths. This calls for en-
hancements to improve the algorithmic robustness in homotopy methods. Methods and
contributions:

‚ The TFC-based homotopy function is defined. Different from existing homotopy
functions, the TFC-based homotopy function implicitly defines infinite homotopy
paths, from which the most promising ones are selected.

‚ A two-layer continuation algorithm is devised, where the first layer tracks the homo-
topy path by monotonously varying the continuation parameter, while the second
layer recovers possible failures resorting to a TFC representation of the homotopy
function.

‚ Compared to the pseudo-arclength method, the proposed TFC-based method retains
the simplicity of direct continuation while allowing a flexible path switching. Thus,
TFC-based method represents another general strategy to remedy the failure of the
homotopy path.

The core output of this work is the enhanced version of Low-Thrust Trajectory Optimizer
(LT2.0), which is the software toolkit initially developed by DART group. The development
of this thesis enhances and extends LT2.0 for more complex space applications.

Low-Thrust Optimization 
with Scalar Interior-Point 

Constraints

Low-Thrust Optimization 
with Multi-Dimensional 

Interior-Point Constraints

Power-Limited Asteroid 
Rendezvous

Earth-Orbit Transfers 
with Eclipses

Deep-Space Transfers 
with Intermediate Flyby, 
Rendezvous and Gravity-

Assist Events

Thrust Continuation of 
Earth-Orbit Transfers

TFC-based Homotopy 
Method

Continuation in 
Optimization

Research Pillars Research Problems Space Applications Chapters

Chapter 3

Chapter 2

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Asteroid Screening
M-ARGO CubeSat 

Mission

Indirect Optimization

Theory of Functional 
Connections (TFC)

Figure 1.1: Thesis structure.
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CHAPTER 2
POWER-LIMITED ASTEROID RENDEZVOUS

TRAJECTORY OPTIMIZATION

Energized by the electric power from solar panels, SEP is a paramount option to enable
cost-effective space access. The electrical power to accelerate the propellant used by most
SEP thrusters varies with heliocentric distance [73]. In turn, the thrust, propellant mass flow
rate, and specific impulse vary as a function of the input power [73–75]. Incorporating an ac-
curate SEP engine model into indirect optimization improves mass budget estimation. Due to
technological constraints, the input power to the engine is limited, and the related bounded
values are key thruster parameters [73–75]. The spacecraft flies ballistically if insufficient
power is provided [76], while the input power is capped when excess power is available [77].
Therefore, the convergence difficulty is exacerbated by dynamics discontinuities produced by
power constraints [78]. Smoothing techniques have been employed in [78–80]. Power opera-
tion detection was developed in [81] to improve solution accuracy. In indirect optimization,
the gradients of nonlinear boundary constraints with respect to problem decision variables
are critical for most zero-finding methods [52]. However, the effects of power constraints on
the gradients and the optimal solution are still unexplored. This chapter analyzes this issue
and further presents an efficient indirect method featuring analytic gradients for SEP-based
trajectory optimization. The method is tailored for target screening of M-ARGO mission in
Chapter 3.
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Chapter 2. Power-Limited Asteroid Rendezvous Trajectory Optimization

2.1 Problem Statement

2.1.1 Mathematical Model

The heliocentric phase of an interplanetary orbit transfer problem is considered. The equa-
tions of motion are

9x “ fpx, u,αq ñ

$

’

’

’

’

’

&

’

’

’

’

’

%

9r “ v

9v “ ´
µ

r3
r ` u

Tmax

m
α

9m “ ´u
Tmax

Isp g0

(2.1)

where r, v, and m are the spacecraft position vector, velocity vector, and mass, respectively;
x :“ rrJ,vJ,msJ is the state vector, u P r0, 1s is the thrust throttle factor and α is the thrust
direction unit vector; g0 is the gravitational acceleration at sea level. Both the maximum
thrust Tmax and the specific impulse Isp are assumed to vary with the engine input power
Pin, i.e. , Tmax “ TmaxpPinq and Isp “ IsppPinq. It is assumed that Pin “ Pinprq is a function
of the spacecraft-Sun distance.

We define Sp “ Spprq as the power switching function used to detect the thruster operation
logic (see Fig. 2.1):

if Spprq ě Pmax then Pin “ Pmax, u P r0, 1s (2.2)
if Spprq P rPmin, Pmaxq then Pin “ Spprq, u P r0, 1s (2.3)

if Spprq ă Pmin then Pin “ Spprq, u “ 0 (2.4)

where Pmax and Pmin are upper and lower bounds of power input to the engine, respectively.

r

in
P

max
P

p
S

in
P

min
P

0u =[0,1]uÎ

Figure 2.1: Geometric relationship between Pin and Sp.

It is convenient to define the following gradients

tr :“

ˆ

BTmax

Br

˙J

“

$

&

%

BTmax

BPin

BPin

Br

ˆ

Br

Br

˙J

if Sp ă Pmax

03ˆ1 otherwise
(2.5)

ir :“

ˆ

BIsp

Br

˙J

“

$

&

%

BIsp

BPin

BPin

Br

ˆ

Br

Br

˙J

if Sp ă Pmax

03ˆ1 otherwise
(2.6)

and pBr{BrqJ “ r{r.
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2.1. Problem Statement

Remark 2.1. In actual flight, the engine switches off when Sp ă Pmin, so implying Pin “ 0.
However, to mimic a ballistic flight, we set Pin “ Sp and u “ 0 for trajectory optimization
purposes. Setting Pin to 0 creates discontinuity that artificially increases the complexity of
the problem.

2.1.2 Fuel-Optimal Problem

With ti and tf given, the fuel-optimal problem is to minimize

Jf “

ż tf

ti

u
Tmax

Isp g0

dt (2.7)

under the following boundary conditions

rptiq ´ ri “ 0, vptiq ´ vi “ 0, mptiq ´mi “ 0 (2.8)
rptf q ´ rT ptf q “ 0, vptf q ´ vT ptf q “ 0 (2.9)

where rT ptq are vT ptq are the known time-dependent position and velocity vectors of the
moving target body, respectively.

The Hamiltonian function reads

H “ λr ¨ v ` λv ¨

ˆ

´
µ

r3
r ` u

Tmax

m
α

˙

` λm

ˆ

´u
Tmax

Isp g0

˙

` u
Tmax

Isp g0

(2.10)

where λ :“ rλJr ,λ
J
v , λms

J is the vector of Lagrange multipliers (costates) associated to x.

The optimal thrust direction is such that H is minimized at any time by virtue of the
Pontryagin minimum principle (PMP) [26], i.e.,

α˚ “ ´
λv
λv

(2.11)

where λv “ }λv}2 is the Euclidean norm of λv. The optimal throttle factor u˚ is determined
by the PMP and the power availability, as

u˚ “

$

’

’

&

’

’

%

0 Sf ą 0 or Sp ă Pmin

1 Sf ă 0 and Sp ě Pmin

P r0, 1s Sf “ 0 and Sp ě Pmin

(2.12)

where the fuel-optimal throttle switching function Sf is

Sf “ 1´ λm ´
Isp g0

m
λv (2.13)

Remark 2.2. An interior-point constraint should be addressed to ensure that Eq. (2.12)
satisfies necessary conditions of optimality; see Section 2.1.4.

It is clear from Eq. (2.12) that u˚ exhibits a bang-bang profile. In order to alleviate the
numerical difficulty, a smoothing technique is implemented to gradually enforce this discon-
tinuity. The following objective function [41]

Jε “

ż tf

ti

Tmax

Isp g0

ru´ εup1´ uqs dt (2.14)
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Chapter 2. Power-Limited Asteroid Rendezvous Trajectory Optimization

yields an energy-optimal problem for ε “ 1 and a fuel-optimal problem for ε “ 0. The
idea is to solve an energy-optimal problem (with ti, tf given and the boundary conditions in
Eqs. (2.8)-(2.9)) and to continue the solution manifold while gradually reducing ε, until the
fuel-optimal problem is solved [47].

The Hamiltonian of the auxiliary problem is

Hε “ λr ¨ v ` λv ¨

ˆ

´
µ

r3
r ` u

Tmax

m
α

˙

` λm

ˆ

´u
Tmax

Isp g0

˙

`
Tmax

Isp g0

ru´ εup1´ uqs (2.15)

The optimal thrusting direction α˚ is the same as in Eq. (2.11). Substituting Eq. (2.11) into
Eq. (2.15) yields

Hε “ λr ¨ v ´
µ

r3
r ¨ λv `

Tmax

Isp g0

u pSε ´ ε` εuq (2.16)

where the throttle switching function Sε is

Sε “ 1´ λm ´
Isp g0

m
λv (2.17)

The optimal throttle factor u˚ is determined by the PMP and the power availability, as

u˚ “

$

’

’

’

&

’

’

’

%

0 Sε ą ε or Sp ă Pmin

1 Sε ă ´ε and Sp ě Pmin

ε´ Sε
2ε

|Sε| ď ε and Sp ě Pmin

(2.18)

The motion of the spacecraft can be determined by integrating the following state-costate
dynamics

9y “ Fεpyq ñ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

9r

9v

9m

9λr
9λv
9λm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

v

´
µ

r3
r ´ u

Tmax

m

λv
λv

´u
Tmax

Isp g0

´
3µ

r5
pr ¨ λvq r `

µ

r3
λv `

uλv
m
tr `

pλm ´ 1` εqu´ εu2

Isp g0

ˆ

tr ´
Tmax

Isp

ir

˙

´λr

´
uλv Tmax

m2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.19)
where y :“ rxJ,λJsJ. Note that α˚ in Eq. (2.11) is already embedded into Eq. (2.19).

Since the terminal mass is free and the augmented terminal cost does not explicitly depend
on the mass, there exists

λmptf q “ 0 (2.20)

From Eq. (2.19), 9λm is always non-positive, thus λmptq ě 0 due to λmptf q “ 0, for t P rti, tf s.

2.1.3 Time-Optimal Problem

In a time-optimal problem, the spacecraft has to rendezvous with a moving target. The
terminal conditions are the same as in Eq. (2.9), but in this case tf is free. The objective
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2.1. Problem Statement

function is

Jt “

ż tf

ti

1 dt (2.21)

thus the Hamiltonian reads

Ht “ λr ¨ v ` λv ¨

ˆ

´
µ

r3
r ` u

Tmax

m
α

˙

´ λmu
Tmax

Isp g0

` 1 (2.22)

The optimal thrust direction α˚ is again given by Eq. (2.11), whereas the optimal throttle
factor u˚ is

u˚ “

$

’

’

&

’

’

%

0 St ą 0 or Sp ă Pmin

1 St ă 0 and Sp ě Pmin

P r0, 1s St “ 0 and Sp ě Pmin

(2.23)

where the time-optimal throttle switching function is

St “ ´λv
Isp g0

m
´ λm (2.24)

The transversality condition at terminal time tf is [81]

Htptf q ´ λrptf q ¨ vT ptf q ´ λvptf q ¨ aT ptf q “ 0 (2.25)

where aT is the acceleration of the target body.

The motion of the spacecraft can be determined by integrating the following state-costate
dynamics

9y “ Ftpyq ñ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

9r

9v

9m

9λr
9λv
9λm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

v

´
µ

r3
r ´ u

Tmax

m

λv
λv

´u
Tmax

Isp g0

´
3µ

r5
pr ¨ λvq r `

µ

r3
λv `

uλv
m
tr `

uλm
Ispg0

ˆ

tr ´
Tmax

Isp

ir

˙

´λr

´
uλv Tmax

m2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.26)

2.1.4 Interior-Point Constraint

When Sp ă Pmin in Eq. (2.4), insufficient power is generated, and the engine switches off (u “
0). However, according to the PMP, this action may not be optimal since it is not related to
the minimization of the Hamiltonian (Eqs. (2.16) and (2.22)). In order to satisfy the necessary
conditions of optimality, this event should be treated as an interior-point constraint [26].
Suppose that Sp crosses Pmin at ts, the following conditions have to be satisfied [26]

Hpt´s q “ Hpt`s q ´ π
BSp
Bt

(2.27)

λJr pt
´
s q “ λ

J
r pt

`
s q ` π

BSp
Br

(2.28)
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Chapter 2. Power-Limited Asteroid Rendezvous Trajectory Optimization

where t´s and t`s are time instants before and after ts, and π is a scalar Lagrange multiplier,
and BSp{Bt “ 0. In Eq. (2.28), only the component λr of the costate is discontinuous since
BSp{Br ‰ 0J. Let πt and πε be the scalar multipliers for the time- and energy-to-fuel-optimal
problems, respectively. The following can be said:

Energy-to-fuel-optimal problem The Hamiltonian function at t´s and t`s is

Hεpt
´
s q “ λrpt

´
s q ¨ v ´

µ

r3
λv ¨ r ` upt

´
s q
Tmax

Isp g0

pSε ´ ε` εupt
´
s qq (2.29)

Hεpt
`
s q “ λrpt

`
s q ¨ v ´

µ

r3
λv ¨ r ` upt

`
s q
Tmax

Isp g0

pSε ´ ε` εupt
`
s qq (2.30)

Combining Eq. (2.27), (2.29), and (2.30) yields

πε “ ∆u
Tmax

Isp g0

Sε ´ ε` pupt
`
s q ` upt

´
s qqε

9Sp
(2.31)

where ∆u “ upt`s q ´ upt
´
s q and 9Sp “ pBSp{Brq 9r.

Remark 2.3. Let yptq “ ϕεpyi, ti, tq be the solution flow for a specific ε value of Eq. (2.19)
integrated from the initial time ti to a generic time t, using xi, λi at ti, α˚ in Eq. (2.11)
and u˚ in Eq. (2.18). λrpt`s q is computed through Eq. (2.28) if Sp crosses Pmin at ts. The
energy-to-fuel optimal problem is to find λ˚i such that yptf q “ ϕεprxi,λ˚i s, ti, tf q satisfies

¨

˚

˝

rptf q ´ rT ptf q

vptf q ´ vT ptf q

λmptf q

˛

‹

‚

“ 0 (2.32)

Time-optimal problem The Hamiltonian function at t´s and t`s is

Htpt
´
s q “ λrpt

´
s q ¨ v ´

µ

r3
λv ¨ r ` upt

´
s q
Tmax

Isp g0

St ` 1 (2.33)

Htpt
`
s q “ λrpt

`
s q ¨ v ´

µ

r3
λv ¨ r ` upt

`
s q
Tmax

Isp g0

St ` 1 (2.34)

Combining Eqs. (2.27), (2.33), and (2.34) yields

πt “ ∆u
Tmax

Isp g0

St
9Sp

(2.35)

Remark 2.4. Let yptq “ ϕtpyi, ti, tq be the solution flow of Eq. (2.26) integrated from initial
time ti to a generic time t, using xi, λi at ti, α˚ in Eq. (2.11) and u˚ in Eq. (2.23). λrpt`s q
is computed through Eq. (2.28) if Sp crosses Pmin at ts. The time-optimal problem is to find
λ˚i and t˚f such that yptf q “ ϕtprxi,λ˚i s, ti, t˚f q satisfies

¨

˚

˚

˚

˝

rptf q ´ rT ptf q

vptf q ´ vT ptf q

λmptf q

Htptf q ´ λrptf q ¨ vT ptf q ´ λvptf q ¨ aT ptf q

˛

‹

‹

‹

‚

“ 0 (2.36)
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2.2. Solution Method

Remark 2.5. It is assumed that singular arcs where St “ 0 in the time-optimal problem and
Sε “ 0 in the fuel-optimal problem are absent over finite time intervals. Also, it is assumed
that Sp crosses Pmin isolated with 9Sp ‰ 0.

Remark 2.6. A NOCP with interior-point constraints is inherently a MPBVP [23]. By
leveraging the analytical expressions of πε in Eq. (2.31) and πt in Eq. (2.35), this MPBVP is
transformed into a TPBVP as stated in Remarks 2.3 and 2.4.

2.2 Solution Method

2.2.1 Initialization of Guess Solution

The Adjoint Control Transformation (ACT) [45] is used to guess the initial costate. The
idea is to map the estimation of physical control variables and their derivatives to initial
costates at ti, i.e., M : pαi, 9αi, βi, 9βi, Si, 9Siq Ñ pλri,λviq, where αi and βi are the in-plane and
out-of-plane thrust angles in a spacecraft-centered frame [45], Si and 9Si are initial values of
the switching function and its derivative. However, as shown in Eqs. (2.18) and (2.23), power
constraints may cause discontinuities in u for time- and energy-optimal problems, which
deteriorates the performance of ACT. In these cases, the Hyperbolic Tangent Smoothing
(HTS) method in [42] is used. The idea is to replace Tmax in the above equations with T̃max

defined as

T̃max :“

$

&

%

Tmax ˆ ~pρ, rq “ Tmax ˆ
1

2

„

tanh

ˆ

Pin ´ Pmin

ρ{PU

˙

` 1



ρ ą 0

Tmax ρ “ 0
(2.37)

where ρ is a smoothing factor, PU is the power unit, Pin and Pmin are normalized values by
PU. Since the power unit PU used in the simulations (see Table 2.1 in Section 2.3) is large,
normalized Pin and Pmin in Eq. (2.37) are very small. PU is inserted in Eq. (2.37) to ease the
selection of ρ0. The variations of T̃max w.r.t. input power for various ρ are shown in Fig. 2.2.

80 90 100 110 120
0

0.5

1

1.5

2

2.5

Figure 2.2: Variations of T̃max w.r.t. input power, with Pmin “ 95 W, and Pin determined by Eq. (2.59).

Then the derivative of T̃max w.r.t. r for ρ ą 0 becomes

t̃r :“

˜

BT̃max

Br

¸J

“

$

&

%

~pρ, rqtr ` Tmax

ˆ

B~
Br

˙J

if Sp ă Pmax

03ˆ1 otherwise
(2.38)
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where
ˆ

B~
Br

˙J

“ 2p~´ ~2
q
PU

ρ

ˆ

BSp
Br

˙J

(2.39)

Starting from ρ “ ρ0 ą 0 (a manually selected value that enables the algorithm to find
the solution with ρ0 after several attempts of ACT), T̃max approaches Tmax while gradually
reducing ρÑ 0. Here, ACT is used to guess the initial costate to the problem with ρ0. The
improvement to the HTS method in [42] is that the proposed method enables to reach ρ “ 0,
which corresponds to the desired discontinuous solution. This feature is desirable to better
assess the HTS method and better understand the optimal solution.

The approximate Hamiltonian functions when using Eq. (2.37) are given by replacing Tmax

in Eqs. (2.15) and (2.22) with T̃max. The switching functions (Eqs. (2.17) and (2.24)) and
the optimal control policies (Eqs. (2.18) and (2.23)) remain unaltered because they are in-
dependent on Tmax. Since discontinuous control is approximated by continuous control, the
interior-point constraints are not triggered. Thus, the HTS approaches the solution to the
MPBVP by solving a consecutive sequence of TPBVPs. The dynamics for the approximate
energy-to-fuel-optimal and time-optimal problems are simply given by replacing Tmax and tr
in Eqs. (2.19) and (2.26) with T̃max and t̃r. Let the right-hand side in Eqs. (2.19) and (2.26)
be Fεpy, Tmaxq and Ftpy, Tmaxq, respectively, then, the approximate dynamics for ρ ą 0 are
9y “ Fεpy, T̃maxq and 9y “ Ftpy, T̃maxq.

2.2.2 Analytic Derivatives

The variational method exploits the STM and the chain rule to compute the gradients [45].
The STM maps small variations in the initial conditions δyi over ti Ñ t, i.e., δyptq “
Φpt, tiqδyptiq. The STM is subject to the variational equation

9Φpt, tiq “ DyF Φpt, tiq, Φpti, tiq “ I14ˆ14 (2.40)

where DyF , the Jacobian matrix of F pyq, has two different expressions based on whether u˚
is constant (F pyq :“ Ftpyq for the time-optimal problem and F pyq :“ Fεpyq for the energy-
to-fuel-optimal problem). Let z :“ ryJ, vecpΦqJsJ be a 210-dimensional vector containing
y and the columns of Φ, where ‘vec’ is the operator that converts a matrix into a column
vector. There exists

9z “ Gpzq ñ

˜

9y

vecp 9Φq

¸

“

ˆ

F pyq

vecpDyF Φq

˙

(2.41)

Note that Φ maps states and costates along a continuous orbit. When a discontinuity is
encountered at the switching time ts, the STM compensation Ψptsq across the discontinuity
should be determined [45]. Suppose there are N discontinuities at t1, t2, ¨ ¨ ¨ , tN , the STM is
calculated using the chain rule as

Φptf , tiq “ Φptf , t
`
NqΨptNqΦpt

´
N , t

`
N´1qΨptN´1q ¨ ¨ ¨Φpt

´
2 , t

`
1 qΨpt1qΦpt

´
1 , tiq (2.42)

Suppose that the discontinuity detected at ts is indicated by a switching function S crossing
a threshold η, then there are three possible cases:

• Case 1: S “ Sε, ε “ 0, η “ 0; u jumps between 0 and 1 at ts.

• Case 2: S “ Sp, u ‰ 0, η “ Pmin; u jumps between a non-zero value and 0 at ts.
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2.2. Solution Method

• Case 3: S “ Sp, η “ Pmax; u remains the same, but the costate dynamics are discontin-
uous at ts.

Cases 1 and 3 belong to the first category, where y is continuous but 9y is discontinuous. Case
2 belongs to the second category, where both y and 9y are discontinuous. For both categories,
the switching function S at t´s ` δts of the neighboring extremal trajectory must satisfy

Spypt´s ` δtsqq “ 0 (2.43)

Expanding S at t´s yields

dS “
BS

By
dypt´s q “

BS

By
δypt´s q `

BS

By
9ypt´s qδts “ 0 (2.44)

thus there exists

δts “ ´
1

9S

BS

By
δypt´s q (2.45)

First category Since y is continuous across ts, then

ypt`s q “ ypt
´
s q (2.46)

Taking full differentials on both sides of Eq. (2.46) yields

δypt`s q “ δypt´s q ` p 9ypt´s q ´ 9ypt`s qqδts (2.47)

Substituting Eq. (2.45) into Eq. (2.47) yields Ψptsq as

Ψptsq “
Bypt`s q

Bypt´s q
“ I14ˆ14 `

`

9ypt`s q ´ 9ypt´s q
˘ 1

9S

BS

By
(2.48)

The expressions of BS{By and 9S are based on S:

• For S “ Sε, there exists

BSε
By

“

„

´iJr
g0

m
λv,01ˆ3,

Isp g0

m2
λv,01ˆ3,´

Isp g0

m

λJv
λv
,´1



, 9Sε “
Isp g0

mλv
λr ¨λv ´

g0λv
m
ir ¨ v

(2.49)

• For S “ Sp, there exists

BSp
By

“

„

BSp
Br

,01ˆ11



, 9Sp “
BSp
Br
v (2.50)

The geometric relationship between δypt´s q and δypt`s q is shown in Fig. 2.3, where δypt`s q is

δypt`s q “ δypt´s q `∆

“ δypt´s q `
`

9ypt´s q ´ 9ypt`s q
˘

δts

“

„

I14ˆ14 `
`

9ypt`s q ´ 9ypt´s q
˘ 1

9S

BS

By



δypt´s q

“ Ψptsqδypt
´
s q

(2.51)
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Perturbed

Figure 2.3: The geometric relationship between δypt´s q and δypt`s q for the first category.

Second category This category corresponds to the case when Sp crosses Pmin. Let us denote
the increment of y as ∆ypt,yq “ r07ˆ1, ∆λr, 04ˆ1s where ∆λr “ ´πpBSp{Brq

J, ypt`s q is
computed as

ypt`s q “ ypt
´
s q `∆y (2.52)

Taking full differential on both sides of Eq. (2.52) yields

δypt`s q “ δypt´s q `
B∆y

By
δypt´s q ` p 9ypt´s q ´ 9ypt`s q `∆ 9yqδts (2.53)

where

∆ 9y “
B∆y

By
9ypt´s q (2.54)

Substituting Eq. (2.45) into Eq. (2.53) yields Ψptsq as

Ψptsq “
Bypt`s q

Bypt´s q
“ I14ˆ14 `

B∆y

By
`
`

9ypt`s q ´ 9ypt´s q ´∆ 9y
˘ 1

9Sp

BSp
By

(2.55)

The geometric relationship between δypt´s q and δypt`s q is shown in Fig. 2.4. Let us denote
the increment of y as ∆ypyq, then δypt`s q satisfies

δypt`s q “ δypt´s q ` r∆ypypts ` δtsqq ´∆ypyptsqqs `∆

“ δypt´s q `

ˆ

B∆y

By
δypt´s q `∆ 9yδts

˙

` p 9ypt´s q ´ 9ypt`s qqδts

“ δypt´s q `
B∆y

By
δypt´s q `

`

9ypt´s q ´ 9ypt`s q `∆ 9y
˘

δts

“

«

I14ˆ14 `
B∆y

By
`
`

9ypt`s q ´ 9ypt´s q ´∆ 9y
˘ 1

9Sp

BSp
By

ff

δypt´s q

“ Ψptsqδypt
´
s q

(2.56)
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Figure 2.4: The geometric relationship between δypt´s q and δypt`s q for the second category.

2.2.3 Switching Detection Technique

The detection of the switching time ts is essential because of two facts. Firstly, computing
Ψptsq at ts is necessary for the STM accuracy. Secondly, the integration error accumulates
when crossing the discontinuity if the switching time is not explicitly detected. Let us consider
a switching function S and the constant threshold η, the task is to find ts such that Spyptsqq “
η. Suppose that at consecutive times tk and tk`1, there exists pSpykq´ηqˆpSpyk`1q´ηq ă 0,
where yk :“ yptkq and yk`1 :“ yptk`1q. Then the switching time determination algorithm
depicted in [47] is used to search ts P rtk, tk`1s, with 10´12 tolerance.

2.2.4 Augmented Integration Flowchart

To ease the discussion, let ptype and utype be the status of the available power input and the
thrust throttle, respectively. When ρ “ 0, the logic is

ptype “

$

’

’

&

’

’

%

On, if Sp ě Pmax

Medium, if Sp P rPmin, Pmaxq

Off, if Sp ă Pmin

, utype “

$

’

’

&

’

’

%

On, if u “ 1

Medium, if u P p0, 1q

Off, if u “ 0

(2.57)

When ρ ‰ 0, utype is the same as in Eq. (2.57), but ptype becomes

ptype “

#

On, if Sp ě Pmax

Medium, if Sp ă Pmax

(2.58)

thus ptype “ Off is not used for ρ ‰ 0.

The presented integration flowchart in Fig. 2.5 augments the flowchart in [47] (shown with
dashed blocks) in order to effectively tackle power constraints. The inputs required to execute
an integration step are 1) tk, the k–th integration time; 2) hp, the step size predicted by
previous integration step; 3) zk, the 210-dimensional state at tk; 4) utype, the logical type of
the thrust throttle; 5) ptype, the logical type of the power input; 6) ρ, the smoothing factor.

Three branches emanate according to utype, and for each integration block, a prediction
on zk`1, e.g., zk`1 “ ψRKpzk, tk, tk ` hp, utype, ptype, ρq, is executed, using a variable-step
seventh/eighth Runge–Kutta integration scheme. Note that zk`1 is the state corresponding
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to tk`1 “ tk ` hf , where hf is the corrected time step during Runge–Kutta integration [47].
For the time-optimal problem, ε “ 0 in Fig. 2.5.

For utype being On or Medium and ρ “ 0, the execution blocks are similar. The branch
utype “ On is analyzed below without losing generality. Since the engine is enforced to switch
off in case of insufficient power Pin, the fist task after one-step integration prediction is to
check the power status ptype,k`1 corresponding to zk`1. If ptype,k`1 “ Off, indicating that
Sp crosses Pmin, it is then required to execute Block 2 where the power switching time ts is
detected. Let zs be the 210-dimensional vector, and Sc be the value of Sε (energy-to-fuel-
optimal problem) or St (time-optimal problem) at ts. If Sc ă ´ε, the STM is computed using
Eq. (2.55) which is then stored in zs. zk`1 and tk`1 used for the next integration step are
saved as zk`1 “ zs and tk`1 “ ts. utype is updated to Off and ptype is updated to ptype,k`1.
Otherwise if Sc ą ´ε, indicating that the throttle switching arises within rtk, tk`1s, thus hp
is reduced.

If ptype,k`1 ‰ Off, the comparison of ptype and ptype,k`1 is made. If ptype ‰ ptype,k`1, indicating
that Sp crosses Pmax, then Block 2 is executed. If Sc ă ´ε is further satisfied, the STM
is computed using Eq. (2.48). zk`1 and tk`1 are saved as zk`1 “ zs and tk`1 “ ts. ptype

is updated to ptype,k`1. Otherwise, if ptype “ ptype,k`1, the thrust throttle is determined by
throttle switching function Sk`1 that is the value of Sε (energy-to-fuel-optimal problem) or St
(time-optimal problem) at tk`1, and the branch utype “ On of the flowchart in [47] is executed.
For the case ρ ‰ 0, the implementation is the same except that the branch ptype,k`1 “ Off is
not executed.

For utype being Off, the first task after the one-step integration prediction is to verify the
reason that causes the engine to switch off. If ptype “ Off, then u “ 0 is caused by insufficient
input power. In this case, if ptype,k`1 “ Off, the solution is saved. Otherwise if ptype,k`1 ‰ Off,
indicating that sufficient power is available for the next step, then Block 2 is executed. The
upt`s q after ts is determined by Sc. For example, if Sc ă ´ε, then the STM is calculated using
Eq. (2.55). zk`1 and tk`1 are saved as zk`1 “ zs and tk`1 “ ts. utype is updated to On. ptype

is updated to ptype,k`1.

If ptype ‰ Off, meaning that the engine switches off due to Sk ą ε. If ptype,k`1 “ Off, Block
2 is executed. Since no discontinuity exists, it is not necessary to update the STM, but the
power status is updated if Sc ą ε. Otherwise if ptype,k`1 ‰ Off, the check whether ptype,k

equals to ptype,k`1 is executed. If ptype ‰ ptype,k`1, implying that Sp crosses Pmax, Block 2 is
executed. The power status is updated if Sc ą ε. If ptype “ ptype,k`1, the branch utype “ Off
of the flowchart in [47] is executed.

2.3 Numerical Simulations

The M-ARGO Cubesat mission to the near-Earth asteroid 2000 SG344 is simulated [82]. The
physical constants are listed in Table 2.1. The thruster model is handled using fourth-order
polynomials as in [82]

TmaxpPinq “ a0 ` a1Pin ` a2P
2
in ` a3P

3
in ` a4P

4
in (2.59)

IsppPinq “ b0 ` b1Pin ` b2P
2
in ` b3P

3
in ` b4P

4
in (2.60)

Spprq “ c0 ` c1r ` c2r
2
` c3r

3
` c4r

4 (2.61)

where the coefficients are listed in Table 2.2. All coefficients are normalized before conducting
simulations. Figure 2.6 illustrates the variations of Pin, Tmax and Isp w.r.t. the scaled Sun-
spacecraft distance r, with Pmax “ 120 W. It can be seen that at 1 AU we have Pin “ 105.4 W,
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Figure 2.5: Flowchart for the implementation of a generic integration step. Dashed blocks are from [47].
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Tmax “ 1.89 mN and Isp “ 3022.59 s. The comparison between the 1{r2 law, Sp and Pin is
also shown in Fig. 2.6a, where Pin reaches Pmax when r ď 0.928 AU.

Table 2.1: Physical constants.

Physical constant Value

Mass parameter, µ 1.327124ˆ 1011 km3{s2

Gravitational field, g0 9.80665 m{s2

Astronomical unit, AU 1.495979ˆ 108 km
Time unit, TU 5.022643ˆ 106 s
Velocity unit, VU 29.784692 km{s
Mass unit, MU 22.6 kg
Power unit, PU 3991.74 W

Table 2.2: Thruster coefficients.

Tmax Value Unit Isp Value Unit Sp Value Unit

a0 ´0.7253 mN b0 2652 s c0 840.11 W
a1 0.02481 mN/W b1 ´18.123 s/W c1 ´1754.3 W/AU
a2 0 b2 0.3887 s/W2 c2 1625.01 W/AU2

a3 0 b3 ´0.00174 s/W3 c3 ´739.87 W/AU3

a4 0 b4 0 c4 134.45 W/AU4

The asteroid ephemerides are given by Spacecraft Planet Instrument Camera-matrix Events
(SPICE) kernel from HORIZONS system [83] 1. As a study case, the launch time is set to
1st Jan 2022, whereas the arrival date is set to 1st Jun 2024 for the energy-optimal and
fuel-optimal problems. The spacecraft is supposed to depart from Sun–Earth L2 Lagrange
point, and corresponding boundary conditions provided by HORIZON system are shown
in Table 2.3, where terminal position and velocity conditions are used for the energy- and
fuel-optimal problems in Sec. 2.3.2. Terminal position and velocity conditions for the time-
optimal problem in Sec. 2.3.1 depend on guessed transfer time and are varied during the
optimization. The initial mass is set to 22.6 kg, the same as MU in Table 2.1. All simula-
tions are conducted under an Intel Core i7–9750H, CPU@2.6GHz, Windows 10 system with
MATLAB R2019a. The integration code is converted to MEX file to speed up simulations.

Table 2.3: Boundary conditions.

Boundary Condition Value

Initial position vector, AU r´0.1764352209, 0.9774432047,´4.6698040914ˆ 10´5sJ

Initial velocity vector, VU r´1.0105715460,´0.1832792298, 1.2539059040ˆ 10´5sJ

Terminal position vector, AU r´0.6547598563, 0.6446483464,´1.5061497361ˆ 10´3sJ

Terminal velocity vector, VU r´0.7759381160,´0.7425308483, 1.1204008105ˆ 10´3sJ

A total of 6 cases in Table 2.4 are simulated. The inputs pαi, 9αi, βi, 9βi, Si, 9Siq of ACT are
randomly generated at the initial time within given bounds. The shape-based method in [84]
has been employed for case 5 to provide an intuition of initial thrust angles, using Tmax value
at 1 AU. It shows that the thrust direction at the initial time is close to the velocity. Thus the
bounds are set up as follows: αi P r´10, 10s deg, 9αi P r´5, 5s deg/TU, βi P r´1, 1s deg and

1See https://ssd.jpl.nasa.gov/?horizons
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Figure 2.6: Variations of Pin, Tmax and Isp w.r.t. r with Pmax “ 120 W [82].

9βi P r´0.1, 0.1s deg/TU. The initial mass costate is set to 1. From Eq. (2.17) and (2.24), Si
has to be negative. The bounds of Si and 9Si are: Si P r´1.5,´0.001s and 9Si P r´0.01, 0.01s.
The parameter bounds are applied to all simulation examples.

Table 2.4: Simulation results.

Case Type Pmin, W Optimal costate vector λ˚0 tf , days mf , kg

1 TOa 0 r15.42735,´61.81391, 0.18480, 74.40205, 4.50555, 0.04902, 4.38101sJ 593.2311 19.7994
2 TO 95 r´11.00728,´175.41465, 1.40145, 155.51247, 57.39753, 0.24116, 7.10106sJ 699.0125 20.6825

3 EOb 0 r0.32576,´0.97280, 0.03702, 1.20654, 0.00762, 0.00254, 0.05948sJ 821 21.1738
4 EO 95 r0.31165,´2.07603, 0.06691, 2.45955, 0.32964, 0.00996, 0.14322sJ 821 20.8288
5 FOc 0 r0.31717,´0.97395, 0.22169, 1.19851, 0.01910, 0.01280, 0.05682sJ 821 21.4370
6 FO 95 r0.23645,´1.28756, 0.08292, 1.61084, 0.17194, 0.04682, 0.11054sJ 821 20.9239

a time-optimal solution; b energy-optimal solution; c fuel-optimal solution;

2.3.1 Time-Optimal Transfers

Two time-optimal problems for Pmin “ 0 W and Pmin “ 95 W are solved for comparison. The
transfer time is monotonically increased (starting from 1 year) until one solution is found.
For each assumed tf , the optimization runs at most 5 times with different initial guesses
generated randomly using parameter bounds of ACT mentioned above. The corresponding
solutions are summarized as cases 1–2 in Table 2.4. For case 1, since Sp ă Pmin is not
triggered, the hyperbolic tangent smoothing (HTS) is not used. The time-optimal trajectory
is shown in Fig. 2.7a. The variations of u, St, m, Pin, Isp and Tmax are shown in Fig. 2.7b,
where the engine is always ‘on’. The minimum transfer time is 593.2311 days and the final
mass of the spacecraft is 19.7994 kg.

For case 2, the HTS is used first to find the approximate solution corresponding to ρ0 “ 4,
then ρ is gradually reduced to approach the optimal solution (ρ “ 0) with the step ∆ρ “ 0.5
(8 iterations are needed). The corresponding time-optimal trajectory is shown in Fig. 2.8a,
and the variations of u, St, m, Pin, Isp and Tmax are shown in Fig. 2.8b. The minimum
transfer time 699.0125 days, and the final mass of the spacecraft is 20.6825 kg. Compared to
case 1, the engine switches off twice due to insufficient input power, after 95.57 and 552.54
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days of flight. The engine-off lasts for 273.02 and 58.69 days, respectively. The transfer time
is 105.78 days longer than that of case 1, whereas 0.8831 kg of fuel is saved. Figure 2.9 shows
the variations of λr, where λr is discontinuous when Pin crosses Pmin and ∆u ‰ 0. The values
of πt when Pin crosses Pmin are ´943.3126, ´149.9713, ´308.6871 and ´659.5547.

(a) Time-optimal trajectory.
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Figure 2.7: Time-optimal solution (case 1). SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position
at arrival.

(a) Time-optimal trajectory.
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Figure 2.8: Time-optimal solution (case 2). SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position
at arrival.
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2.3.2 Fuel-Optimal Transfers

Fuel-optimal transfers for Pmin “ 0 W and Pmin “ 95 W are solved. The algorithm is able
to find the solution after several attempts of ACT. The energy-optimal (cases 3 and 4) and
fuel-optimal (cases 5 and 6) solutions are shown in Table 2.4, respectively. For cases 3-4,
the HTS is not used. The corresponding fuel-optimal trajectory is shown in Fig. 2.10a. The
variations of u, Sf , m, Pin, Isp and Tmax are shown in Fig. 2.10b, where Pmax is reached after
around 767.60 days of flight. The final mass of the spacecraft is 21.4370 kg.

For cases 5-6, the HTS is used to solve the approximate energy-optimal problem first, with
ρ0 “ 4. The energy-optimal solution is found by gradually reducing ρ to 0 with the step
∆ρ “ 0.5 (8 iterations are needed). Then, the fuel-optimal solution is gradually approached
by reducing ε to 0, with ∆ε “ 0.05 step. The step is halved if the continuation fails. The
corresponding fuel-optimal trajectory is shown in Fig. 2.11a. The variations of u, Sf and
m, Pin, Isp and Tmax are shown in Fig. 2.11b. The variations of λr is shown in Fig. 2.12.
The final mass of the spacecraft is 20.9239 kg. The insufficient input power is encountered
twice, after 92.16 and 532.08 days of flight, and the engine-off lasts for 262.26 and 107.69
days, respectively. The maximum input power is encountered after 764.47 days of flight until
to the end. Compared to the fuel-optimal solution of case 5, case 6 requires 0.5131 kg more
fuel. The values of πε when Pin crosses Pmin are 0, 0, ´8.6735 and ´9.0279. In terms of
computational time, the HTS and energy- to fuel-optimal continuation (not involving ACT)
in case 6 takes around 4 s, while it takes around 27 s if the gradients are computed by
finite differences. The benefits of the variational method become tremendous in terms of
computational time especially when a multitude of trajectories are required [82].

(a) Fuel-optimal trajectory.
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Figure 2.10: Fuel-optimal solution (case 5). SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position
at arrival.
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(a) Fuel-optimal trajectory.
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Figure 2.11: Fuel-optimal solution (case 6). SEL2: Sun–Earth L2 Lagrange point; AST: asteroid position
at arrival.
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Figure 2.12: Variations of optimal λr w.r.t. time for case 6. The discontinuities of λr labeled red.

2.3.3 Discussion

A comparison of thrust level (u ˆ Tmax) profiles for both time-optimal and fuel-optimal
problems using GPOPS [17] is performed (Fig. 2.13). It is clear that GPOPS solutions
coincide with solutions obtained by using the proposed method. Note that GPOPS handles
cases 1 and 5 as single phase problems, while it solves cases 2 and 6 as multi-phase problems,
since these are inherently MPBVPs. When the desired discontinuous solution is required,
the presented method has the advantage of solving the MPBVP as a TPBVP. Thus HTS
can be embedded into the computational framework. Also, there is no need to 1) guess the
values and number of multipliers related to interior-point constraints; 2) specify the solution
structure a priori. On the other hand, GPOPS has to solve the MPBVP separately with
HTS, and the solution structure must be guessed beforehand.

Additionally, it can been seen that the values of πt and πε obtained in simulations have
different order of magnitude w.r.t. the optimal costates. When the MPBVP is solved by the
indirect method without transforming it to a TPBVP, it is difficult to provide good initial
guesses to the multiplier. In [85], it is concluded that eliminating multipliers benefits to
improve the convergence robustness of the indirect method.
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Figure 2.13: Comparisons of time-optimal and fuel-optimal thrust level (uˆ Tmax) profiles to GPOPS
solutions.

2.4 Summary

The effects of thruster power constraints on indirect optimization are studied. The problem
becomes complicated when the input power reaches its lower bound, and costates become
discontinous. The gradients at discrete, discontinuous points produced by power constraints
are investigated by analyzing the behavior of the state transition matrix. By leveraging
the analytical multipliers related to the scalar interior-point constraints, an efficient indi-
rect method has been developed, which allows for solving a MPBVP as a TPBVP. The
computational framework for solving both time- and fuel-optimal problems is established
by combining analytic derivatives, continuation, and switching detection into an augmented
flowchart. The outcome is an algorithm that features accurate bang-bang solutions and
gradients with broader convergence domain and high computational efficiency. Thus, the
presented method is useful when solving a multitude of problems in the context of asteroid
target screening in Chapter 3. Moreover, the proposed computational framework is general
for solving bang-bang control problems with scalar interior point constraints, such as the
Earth-orbit low-thrust transfer problem with shadow constraints in Chapter 4.
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CHAPTER 3
TARGET SCREENING OF M-ARGO MISSION

Target selection is essential in preliminary design of many asteroid missions. This process
should take into account of specific mission requirements and objectives, and as such, it
differs from one mission to another. In this context, this chapter aims to find the reachable
NEA targets considering the requirements and constraints of the M-ARGO mission, using
the method developed in Chapter 2. A preliminary work along these lines was executed
by ESA’s Concurrent Design Facility. The present work is an enhancement with a more
comprehensive and sophisticated target asteroid search, cooperated with F. Topputo, C.
Giordano, and V. Franzese, etc. My responsibility is the computation of time-optimal and
fuel-optimal trajectories for the filtering purpose. For the completeness, the whole target
selection process is reported in this chapter.

3.1 M-ARGO Mission Outline

The success of CubeSats spurred increasing interests towards nano-satellite missions [86].
The low-cost nature of CubeSats allows small companies and universities to take part in
space missions, expanding the access to space to a wider community. Nowadays, CubeSats
have reduced the entry-level cost for space missions in Low Earth Orbit (LEO) by more than
one order of magnitude [87]. This is owing to the advances in miniaturized commercial-off-
the-shelf components and to the short design-to-launch time. CubeSats as M-ARGO, have
the potential to reduce the entry-level cost of interplanetary missions as well. Moreover,
deep-space CubeSats offer the possibility of augmenting and diversifying the Solar System
exploration at a lower cost compared to traditional missions, thus providing high science-
to-investment ratios. For instance, deep-space CubeSats would allow the characterization of
several asteroids in the Solar System, so contributing tremendously to the understanding of
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its evolution.

M-ARGO is a 12U CubeSat that is planned to piggyback on the launch of another large
spacecraft going towards the Sun–Earth Lagrange point L2. The first ESA mission to inde-
pendently explore asteroids. After insertion into a parking orbit at L2, M-ARGO will depart
from there performing a deep-space cruise towards a NEA target using low-thrust electric
propulsion. M-ARGO will perform an in-orbit demonstration of key technologies such as [87]
i) a miniaturized X-band transponder and reflectarray high gain antenna for communication
with Earth at distances of up to 1.5 AU; ii) a miniaturized solar drive array mechanism for
maximising solar power generation from two deployable steerable wings; iii) miniaturized
electric propulsion for orbital manoeuvres.

The M-ARGO mission objectives are reported in Table 3.1. These are to: (1) demonstrate the
capability of CubeSat nano-spacecraft systems to independently explore deep space for the
first time; (2) rendezvous with a near-Earth asteroid and characterize its physical properties
for the presence of in-situ resources; (3) advance miniaturized technologies currently under
development in Europe; (4) test autonomous guidance, navigation, and control techniques
and components performance during transfer to target object.

Table 3.1: M-ARGO mission objectives.

ID Title Statement

1 CubeSat Demonstration Demonstrate the capability of CubeSat nano-spacecraft
systems to independently explore deep space for the first
time.

2 Scientific Investigation Rendezvous with a near-Earth asteroid and character-
ize its physical properties for the presence of in-situ re-
sources.

3 Technology Advancement Advance miniaturized technologies currently under de-
velopment in Europe.

4 Autonomy Experimentation Test autonomous guidance, navigation, and control
techniques and components performance during transfer
to target object.

M-ARGO is planned to depart from the Sun–Earth L2 point within 1 Jan 2023 and 31 Dec
2024. The maximum transfer time to the asteroid is set to up to 3 years, and the close-
proximity operations (CPO) are planned to last up to 6 months. The preliminary spacecraft
mass amounts to m0 “ 22.6 kg, where mp,max “ 2.8 kg is the maximum available propellant.
The Sun-projected area for the computation of the solar radiation pressure is A “ 0.30 m2

with a reflectivity coefficient of (Cr “ 1.3). These values are given in Table 3.2.

Table 3.2: Mission time frame and spacecraft data assumptions.

S–E L2 Departure Transfer CPO m0 mp,max A Cr

2023 – 2024 ď 3 years ď 6 months 22.6 kg 2.8 kg 0.30 m2 1.3

3.2 Approach to Target Selection

This section shows the approach undertaken to down-select the NEA targets for M-ARGO.
To this aim, it is required to identify the subset of asteroids that are reachable considering
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the constraints of a 12U deep-space CubeSat. Figure 3.1 shows the procedure developed to
filter the database of known asteroids.

1. Minor Planet Center
(MPC) database

2. Full list of known minor 
planets ( > 900,000)

3. Pre-filtering
(bounds on 𝑟! , 𝑟", 𝑖, 𝑁#$%)

4. List of potential targets
(< 500)

5. Low-thrust transfers from 
SEL2 to asteroids with 

• Two-body dynamics
• Real thruster model
• Time-optimal problem

10. Fuel-optimal ranking

• Minimum theoretical 
propellant mass

9. Fuel-optimal filtering

• Bound on minimum 
propellant mass
(Output: < 150 asteroids)

7. Time-optimal ranking

• Minimum theoretical 
time of flight

12. Specific mission analysis
(5 different targets)

11. Lists of ranked 
optimal solutions

Input from ESA, small-body community

6. Time-optimal filtering

• Bound on minimum TOF
• Bound on propellant 

mass at minimum TOF
(Output: < 200 asteroids)

8. Low-thrust transfers 
from SEL2 to asteroids with

• Two-body dynamics
• Real thruster model
• Fuel-optimal problem

1Figure 3.1: Methodology of the NEA target screening.

The procedure is as follows:

1-2 Database retrieval. The Minor Planet Center (MPC) Database1 is considered as
the source of information for the minor planets in the Solar System. It comprehends
the designation and the orbit computation of all the discovered minor planets and it is
updated daily. More than 900, 000 objects are accounted for as of October 2020.

3-4 Pre-Filtering. The full list of asteroids is pre-filtered using ranges of orbital parame-
ters. Educated guesses on these parameters have been inferred from [88]. These involve
capping the aphelion, bottoming the perihelion, and bounding the inclination as well as
the number of observations. This filtering reduces the full list of asteroids to a prelimi-
nary list of approximately 500 potential targets; see Section 3.3.

5-6 Time-optimal transfers. A massive search is conducted to compute time-optimal
transfers to each of the asteroids in the preliminary list. The optimisation considers
the two-body problem with the realistic thruster model in Section 2.3, departure from
Sun–Earth L2, and departure window as specified in Section 3.1. The aim of this step is
to determine the minimum theoretical transfer time to each asteroid for each departure
epoch. The targets whose minimum transfer time is greater than 900 days are filtered-
out.

7 Time-optimal ranking. The filtered time-optimal solutions are ordered to produce
a time-optimal ranking. The number of targets is then reduced to „ 170 objects; see
Section 3.4.

8-9 Fuel-optimal transfers. The objects resulting feasible after the time-optimal analysis
are processed under the perspective of a fuel-optimal optimisation, using the same model
and boundary conditions as in the time-optimal optimisation. This analysis finds the
minimum propellant mass for each combination of departure epoch and transfer time.

1See https://minorplanetcenter.net/; last accessed on October 2020.
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Table 3.3: Asteroids data sources.

Source Acronym Type Data

Minor Planet Center2 MPC Database Asteroids Orbital Parameters
Asteroid Lightcurve3 Asteroid Lightcurve Database (LCDB) Database Asteroids Physical Data
HORIZONS4 HORIZONS SPICE Kernels Asteroids Ephemerides

The targets whose minimum required propellant mass is greater than 2.8 kg are excluded
from the list.

10 Fuel-optimal ranking. The fuel-optimal solutions as output of step 9 are ordered to
produce a fuel-optimal ranking made of approximately 150 reachable objects; see Section
3.5.

11 Lists of ranked optimal solutions. The ranked lists of time-optimal and fuel-optimal
solutions produced as output of the filtering chain has been examined in view of oper-
ational and scientific criteria; see Section 3.6. The 5 shortlisted targets have been then
selected; see Section 3.6.

3.3 Database Filtering

The MPC (Table 3.3) accounts for more than 900,000 objects in the Solar System. Figure
3.2a shows the semi-major axis (a) versus the eccentricity (e) for all the near-Earth asteroids
as a scatter plot, while Figure 3.2b displays the semi-major axis (a) versus the inclination (i)
for the same bodies.

Consistently with the preliminary work in [88], the subset of potential targets has been defined
by restricting the aphelion (ra) upper bound (UB) to 1.25 AU and the perihelion (rp) lower
bound (LB) to 0.75 AU. Moreover, in order to comply with realistic CubeSat propulsive
capabilities, an upper bound on the inclination equal to 10 degrees has been set. Higher
inclinations are unlikely to be reached due to the limited amount of propellant available.
This is confirmed by the outcome of the analysis (see Section 3.5). Eventually, a lower
bound of 10 observations (Nobs) is enforced to assure accuracy in the orbital elements of the
asteroids. Table 3.4 summarises the filtering parameters used. It is worth highlighting that
the intervals considered in this study are larger than those in [88]: this choice is to perform a
more comprehensive search not influenced by existing results. As a result, 456 objects satisfy
the bounds in Table 3.4. These have been represented as black dots in Figure 3.2.

Table 3.4: NEA database filtering parameters.

Parameter Lower Bound Upper Bound

ra – 1.25 AU
rp 0.75 AU –
i 0 deg 10 deg

Nobs 10 –

2See https://minorplanetcenter.net/
3See http://www.minorplanet.info/lightcurvedatabase.html
4See https://ssd.jpl.nasa.gov/?horizons

36

https://minorplanetcenter.net/
http://www.minorplanet.info/lightcurvedatabase.html
https://ssd.jpl.nasa.gov/?horizons


3.3. Database Filtering

0 2 4 6
0

0.2

0.4

0.6

0.8

1
Ast
Filt. Ast
r
p
 LB

r
a
 UB

0 2 4 6
0

10

20

30

40

50

60
Ast
Filt. Ast
i UB

(a) a vs e

0 2 4 6
0

0.2

0.4

0.6

0.8

1
Ast
Filt. Ast
r
p
 LB

r
a
 UB

0 2 4 6
0

10

20

30

40

50

60
Ast
Filt. Ast
i UB

(b) a vs i

Figure 3.2: Minor planets semi-major axis (a), eccentricity (e), and inclination (i). The filtering bounds
are the solid and dashed lines, while the filtered asteroids are highlighted in black.

Figure 3.3 shows the estimated diameter (D) of the minor planets with respect to their
semimajor axis (a), eccentricity (e), and inclination (i). In Fig. 3.3, the diameter D is
estimated as5 [89, 90]

D “ 103.1236´0.5 log10paLq´0.2H (3.1)

where H is absolute magnitude and aL is albedo, whose values are retrieved from the
databases in Table 3.3. The filtered asteroids are highlighted as black dots. The diame-
ter of the filtered asteroids ranges between 10´3 and 10´1 km.
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Figure 3.3: Minor planets diameter (D) versus semi-major axis (a), eccentricity (e), and inclination (i).
Filtered asteroids are the black dots.

Figure 3.4 shows the estimated size versus the rotational period of the asteroids catalogued
in the LCDB [91]; see Table 3.3. The plot highlights the so called spin barrier (horizontal
dashed line). Most of the big asteroids (with a diameter larger than 1 km) lie below the
spin barrier, meaning that they have a rotational period higher than 2 hours, while for small
asteroids the rotational period can be small, in the order of 1 hour or less. The filtered
asteroids for which light curves are known are also highlighted in black in Fig. 3.4.

5See https://cneos.jpl.nasa.gov/tools/ast_size_est.html
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Figure 3.4: Rotational period against diameter for minor planets. Filtered asteroids in black. Data
retrieved from the MPC and the LCDB; see Table 3.3. The U code defined in the LCDB database
provides a measure of the quality of the period solution. Only asteroids with U ě 2 are illustrated.

3.4 Time-Optimal Transfers

Performing a time-optimal search in a two-year departure window for different objects re-
quires solving approximately 3.3 ˆ 105 optimisation problems with a one-day time discreti-
sation. The indirect solver developed in Chapter 2 has been adapted for this purpose. The
dynamic model used is a standard two-body problem implementing the realistic thruster
model depicted in Section 2.3. Second-order effects such as third-body perturbation and
solar radiation pressure have been implemented in following phases of the mission analysis.

3.4.1 Methodology for Time-Optimal Solutions

Reconstructing the time-optimal transfers for 456 objects over a two-year departure window
requires solving approximately 3.3ˆ 105 time-optimal problems. Thus, an agile strategy has
been developed to scan the solution space.

The continuation strategy illustrated in Fig. 3.5 to scan the two-year window is employed
to reduce computational load. Specifically, the time-optimal solution for a given t0 is found
first. Then, the solution for t0 `∆t is sought, using the optimal solution of the former step
(t0) as initial guess, with ∆t “ 1 day. If a new solution is found, the continuation proceeds.
Otherwise, the time step ∆t is halved. This process is repeated until the final departure date is
reached. Consequently, the two-year window is processed with a nonuniform discretisation.
The initial guess solution to the first problem is generated using ACT [45], along with a
monotonically increasing transfer duration guess.

While these solutions are not feasible in practical applications, because they involve thrust
on for all times, they yield the minimum theoretical transfer time

τmin “ min
t0Prt0, t0s

τpt0q (3.2)

where τpt0q :“ tf pt0q´ t0, and rt0, t0s is the two-year departure window. τmin is used to prune
out those solutions not complying with the requirement in Table 3.2.
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Figure 3.5: Continuation strategy to solve time-optimal transfers within the two-year departure window.
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Figure 3.6: Minimum transfer time τ and associated propellant mass mppτq profiles as function of the
departure day for four sample asteroids.
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The results of the time-optimal search for four sample asteroids are shown in Fig. 3.6, where
the minimum transfer duration τ “ tf ´ t0 (left y-axis) and its associated propellant mass
mppτq (right y-axis) profiles are shown as function of the departure day t0 (in MJD20006). It
can be seen that there are considerable variations of the transfer time in the two-year window.
The minima of the transfer time corresponds to minima of the propellant mass because the
thrust is always on.

3.4.2 Search Space Pruning

For each of the asteroids processed, τmin is retrieved, as well as its corresponding propellant
mass mppτminq. The two quantities are reported in Fig. 3.7 in the form of cumulative distri-
bution functions. This information has been used to further narrow the set of asteroids that
can be reached by M-ARGO. Indeed, using the requirements in Table 3.2, and considering
that the real transfer time is longer than the one resulting from time-optimal computations,
the following criteria have been used.

1) Minimum theoretical transfer time lower than 900 days: τmin ď 900 days. There are 299
asteroids out of the ones processed satisfying this condition; see Fig. 3.7a.

2) Minimum propellant mass lower than 4 kg: mppτminq ď 4 kg. There are 181 asteroids
out of the one processed whose minimum propellant mass is below this threshold; see
Fig. 3.7b.

(a) Cumulative number of asteroids vs τmin
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(b) Cumulative number of asteroids vs mppτminq

Figure 3.7: Cumulative number of asteroids for increasing τmin and associated mppτminq. The filtering
bounds are the dashed lines, while the number indicates the asteroids below the threshold.

We further impose that these two conditions have to be verified simultaneously. The graphical
representation in Fig. 3.8 shows that the propellant mass condition is the more stringent one.
As a result of this pruning process, we have 172 asteroids ranked after the time-optimal
screening. The ranking is reported in Appendix A.1, and it is the input of the fuel-optimal
step as per the approach in Fig. 3.1.

6Julian Date is the interval of time measured in days from the epoch Jan 1, 4713 B.C., 12:00. Modified Julian Date
(MJD2000) is the adjustment of Julian Date from Jan 1, 2000, 12:00 [92].
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Figure 3.8: Time of flight for the time-optimal solutions against the associated propellant mass. The
filtering bounds are the black solid lines, while the number indicates the asteroids below both thresholds.

All time-optimal solutions lie within the inner and outer lines.

Inspection of Fig. 3.8 reveals that the points therein are the solution of the following differ-
ential equation

9m “ ´
TmaxpPinptqq

g0 IsppPinptqq
(3.3)

because uptq “ 1 @t P rt0, tf s. Differently from the standard cases in which Tmax and Isp are
both constant, Eq. (3.3) cannot be solved in closed form because Pin “ Pinprptqq. However,
it is easy to verify that TmaxpPinptqq{IsppPinptqq is monotonously increasing w.r.t. Pin. Thus,
transfers to inner and outer targets (where inner and outer is referred to the Earth orbit)
are bounded by Pinptq “ Pmax and Pinptq “ Pmin, respectively. These conditions define the
limiting minimum time to reach inner and outer targets, i.e.,

τmin,in “
g0 IsppPmaxq

TmaxpPmaxq
mp (3.4)

τmin,out “
g0 IsppPminq

TmaxpPminq
mp (3.5)

which correspond to the two blue lines in Fig. 3.8. Note that Pmin “ 75 W is considered
in the outer line in Fig. 3.8, since this is approximately the minimum power found in the
time-optimal screening. We can infer the following:

• For a given propellant mass, inner targets need shorter times than outer ones;

• For a given transfer time, outer targets need less propellant than inner ones.

3.5 Fuel-Optimal Transfers

The 172 potential targets that passed the time-optimal pruning are then processed under
the perspective of a fuel-optimal step. It is worth highlighting that the fuel-optimal process
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widens the variable space as both the departure epoch t0 and the time of flight (TOF) are let
to vary. That is, while time-optimal problems have a one-dimensional search space (t0), the
fuel-optimal problems have a two-dimensional search space: [t0, TOF]. A two-dimensional
grid is therefore used to construct pork chop plots7.

3.5.1 Methodology for Fuel-Optimal Solutions

Figure 3.9 shows the continuation strategy used for the fuel-optimal transfers. For each
departure day t0, the time of flight TOF is bottomed by the corresponding minimum transfer
time τpt0q (blue lines in Fig. 3.9) and capped by τ , the 3-year condition in Table 3.2. This
variable range has been discretised using a nonuniform grid, to ease efficiency. Specifically,
the time-optimal solution is retrieved for each departure date t0. From this point, the search
continues along vertical lines (see Fig. 3.9). Suppose that the solution for a given pair
tt0,TOFu is found; then, the fuel-optimal solution for tt0,TOF ` ∆τu is sought using the
previous solution as initial guess, with ∆τ “ 15 days. If a new solution is found, the scanning
proceeds. Otherwise, the time step ∆τ is halved. This process is repeated until the maximum
TOF is reached.

Time-optimal solution curve

TOF

DepDate0t



Maximum TOF

0( )t

Next solution point

          with



Fail to converge 

    with              

/2

Figure 3.9: Continuation strategy to solve fuel-optimal transfers for the two-year departure window.

The outcome porkchop plots are shown for four sample targets in Fig. 3.10, where the same
asteroids as in Fig. 3.6 have been used for consistency. The departure day (t0) is on the
x-axis, whereas the TOF is on the y-axis; the color code indicates the propellant mass mp

for each combination of pt0,TOFq. The red thick lines are the minimum-time profiles, and
correspond to the dark lines in Fig. 3.6. The dashed region below the red line is therefore
unfeasible: for a given departure date, M-ARGO can not take shorter than the corresponding
point on the red line.

A number of optimal solutions are sampled arbitrarily from the plot of asteroid 2000 SG344
in Fig. 3.11. The points are labelled A–I, and the corresponding coordinates are given in
Table 3.5. This exercise is performed to reveal the structure of the solutions inherent in
the porkchop plots. Note that the samples are evenly spaced in terms of departure epoch
and transfer time, except for A, D, and G that correspond to time-optimal solutions. The
solutions that correspond to each of the nine points are reported in Figs. 3.12–3.14. In these
figures, the following subfigures are given: Left: transfer trajectory in heliocentric frame (red:

7In practice, the search space of fuel-optimal transfers is three-dimensional because there is an homotopy parameter that is
used to map energy-optimal problems into fuel-optimal problems [47].
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(a) 2000 SG344 pork chop
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(b) 2010 UE51 pork chop
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(c) 2009 CV pork chop

8600 8800 9000
300

400

500

600

700

800

900

1000

1

2

3

4

Time-optimal solution

Available propellant mass

(d) 2014 JR24 pork chop

Figure 3.10: Pork chop plots for some sample asteroids. The available propellant mass (mp,max “ 2.8 kg)
is indicated with a black dashed line, while the red thick line shows the time-optimal solution. The color

code is the propellant mass used, see the bars on the right.
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thrust arc, blue: coast arc); Center: throttle factor uptq, switching function Sptq (Sptq “ Stptq
for time-optimal problems and Sptq “ Sf ptq for fuel-optimal problems), and spacecraft mass
mptq profiles; Right: thruster input power Pinptq, specific impulse Ispptq, and maximum thrust
Tmaxptq profiles.

Table 3.5: Coordinates of the samples in Fig. 3.11. The values of t0 are in MJD2000.

Point t0 TOF [d] Point t0 TOF [d] Point t0 TOF [d]

A 8600 τpt0q D 8800 τpt0q G 9000 τpt0q

B 8600 700 E 8800 700 H 9000 700
C 8600 900 F 8800 900 I 9000 900
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Figure 3.11: Pork chop plot for 2000 SG344 with sample points.

From Figs. 3.12–3.14 we can infer that: (1) the time-optimal solutions (A, D, G) have always
thrust on (u “ 1) as predicted by the theory; (2) the longer the transfer time, the higher
the final mass, and therefore the lower the propellant used (this trend is reflected in different
shades of blue in Fig. 3.11, though it is not always valid); (3) there is a 10–15% variability
of Isp and 40–80% variability of Tmax during the transfer, due to the variable Pin.

3.5.2 Search Space Pruning

For each target, worth to extract is the global minimum of the propellant mass, that is

mp,min “ min
t0Prt0, t0s

TOFPrτpt0q, τ s

mppt0,TOFq (3.6)

Graphically, mp,min is the blue-most point in the pork chop plots. For the 172 asteroid
processed, mp,min is retrieved, as well as the corresponding value of t0 and TOF. The global
minimum propellant mass mp,min is shown in the form of a cumulative distribution function
in Fig. 3.15. This information has been used to further reduce the search space by enforcing
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(a) Solution corresponding to point A in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).
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(b) Solution corresponding to point B in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).
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(c) Solution corresponding to point C in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).

Figure 3.12: Solutions corresponding to points A, B, C in Fig. 3.11 (departure epoch: 8600 MJD 2000).
In trajectory plots, AST: asteroid location upon arrival; SEL2: Sun-Earth Lagrange L2; red solid line:

thrust segment; blue dashed line: coast segment.
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(a) Solution corresponding to point D in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).
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(b) Solution corresponding to point E in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).
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(c) Solution corresponding to point F in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).

Figure 3.13: Solutions corresponding to points D, E, F in Fig. 3.11 (departure epoch: 8800 MJD 2000).
In trajectory plots, AST: asteroid location upon arrival; SEL2: Sun-Earth Lagrange L2; red solid line:

thrust segment; blue dashed line: coast segment.
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(a) Solution corresponding to point G in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).
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(b) Solution corresponding to point H in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).

0 200 400 600 800

0

0.5

1

0 200 400 600 800

-0.1

0

0.1

0.2

0.3

0 200 400 600 800

22

22.5

0 200 400 600 800

100

110

120

0 200 400 600 800

2950

3000

3050

0 200 400 600 800
1.5

2

(c) Solution corresponding to point I in Fig. 3.11 (left: transfer trajectory; center: u, S, m; right: Pin, Isp, Tmax).

Figure 3.14: Solutions corresponding to points G, H, I in Fig. 3.11 (departure epoch: 9000 MJD 2000). In
trajectory plots, AST: asteroid location upon arrival; SEL2: Sun-Earth Lagrange L2; red solid line:

thrust segment; blue dashed line: coast segment.
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the maximum propellant mass requirement in Table 3.2. It can be seen that 148 asteroids
result feasible when enforcing this requirement. The list of these 148 asteroids is reported in
Appendix A.2 where they are ranked in terms of the global minimum propellant mass.
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Figure 3.15: Cumulative number of asteroids for increasing global minimum propellant mass. The
available propellant mass (mp,max “ 2.8 kg) is indicated by the dashed line, while the number shows the

number of asteroids below the threshold.

Remark 3.1. The computational time for solving all time-optimal and fuel-optimal problems
above takes around 2 months, using parallel computation with 60 cores. As shown in Section
2.3.2 of Chapter 2, the computational time by using analytic gradients is about 6 times faster
than the finite difference method. Thus, much longer time is needed if the finite-difference
method is used. The average number of solution points for one asteroid over 2-year window
is: 1) around 818 solutions for the time-optimal curve; 2) around 2171 solutions for the
fuel-optimal pock chop.

3.6 Target Down-Selection

With reference to the procedure developed for the near-Earth object (NEO) target screening,
out of more than 900,000 minor bodies in the MPC database, 456 objects passed the pre-
filtering, which was based on simple geometrical criteria. For these 456 objects, a minimum-
time optimization was carried out, and a subset made of 172 targets passed the pruning
process when enforcing both a transfer time and a propellant mass thresholds (Section 3.4).
These asteroids were then processed under the perspective of a minimum-fuel optimisation,
and a subset of them made of 148 reachable targets was found (Section 3.5).

The whole process undertaken as well as the intermediate results are summarised in Table
3.6 (steps #1–#4). The focus is now on reducing further the set of reachable targets by
pruning out those ones associated to transfers that are not desirable from the mission design
point of view. This has been done through a one-by-one inspection of the porkchop plots,
and yields a subset of downselected asteroids (step #5 in Table 3.6).

The pork chop plots related to the 148 reachable targets are reported in Appendix A.3. These
figures embed relevant information, and their close-up analysis suggests that some targets
might be more desirable than others in the time frame under consideration. Indeed, the
following qualitative filtering criteria have been used:
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Table 3.6: NEO target screening process and results.

Step Target screening step No. of objects

#1 Asteroids in the Minor Planet Center database 900,000+
#2 Potential targets after orbital parameters pre-filtering 456
#3 Possible targets after minimum-time optimisation and pruning 172
#4 Reachable targets after minimum-fuel optimisation and pruning 148

#5 Downselected targets after statistical, pork chop analysis 41

A. Although the transfer time of the reachable targets is below the 3-year threshold, short-
lasting solutions are preferred over relatively longer ones (this involves, e.g., less mission
operation costs, less spacecraft cumulated radiation, etc.);

B. Although the propellant mass of the reachable targets is below the 2.8-kg threshold,
low-propellant solutions are preferred over those requiring relatively higher values (this
involves, e.g., having more room for avionics, launching a lighter CubeSat, etc.);

C. Although the reachable targets have at least one feasible solution within the 2-year de-
parture window, those spanning the entire window are preferred over those that partially
cover it, the departure epoch not being fixed (this assures mission robustness against
uncertainties in the departure time).

By enforcing criteria A, B, and C above, a high number of targets can be excluded from
the subsequent analysis. In particular, with reference to Appendix A.3: 40 asteroids have a
relatively long transfer time (condition A, see Table 3.7); 31 asteroids have a relatively high
propellant mass (condition B, see Table 3.8); 36 asteroids do not span the full departure
window (condition C, see Table 3.9). Thus, a total number of 107 asteroids is excluded from
the solution space. It is worth mentioning that sometimes two or even three of the conditions
above apply simultaneously.

Table 3.7: List of targets requiring long transfer time (40).

2007 WU3 2008 GM2 2011 MQ3 2012 WH 2016 FZ13 2016 RN20
2016 YR 2017 BZ6 2017 HK1 2017 JB2 2017 KJ32 2017 QB35
2017 RL16 2018 FM2 2018 LE1 2018 LQ2 2018 NX 2019 AU
2019 AC3 2019 DH1 2019 KM2 2019 LB1 2009 CV YORP
2004 QA22 2007 VU6 2010 FY9 2011 OJ45 2013 VM13 2014 HN2
2014 MZ17 2014 UN114 2014 WU200 2015 JD3 2015 TC25 2016 TY55
2017 QW1 2018 FH1 2018 PR7 2018 WV1

Table 3.8: List of targets requiring high propellant mass (31).

2014 EK24 1999 CG9 2005 QP11 2007 BB 2007 RO17 2010 WU8
2011 AA37 2012 AQ 2012 HK31 2012 PB20 2012 SX49 2012 VC26
2013 TG6 2014 FW32 2014 HW 2015 XD169 2015 XC352 2015 YK
2016 CH30 2016 EU84 2016 HF19 2018 FM3 2018 PN22 2018 SD2
2018 UE1 2019 GE1 2016 SX1 2017 UQ6 2017 YD1 2017 YS1
2017 VT7
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Table 3.9: List of targets not spanning the full departure window (36).

1991 VG 1999 AO10 2000 SZ162 2001 GP2 2004 VJ1 2006 JY26
2006 RH120 2007 UN12 2008 EA9 2008 KT 2009 HC 2010 HA
2011 CE22 2011 CL50 2011 ED12 2012 FM35 2013 GH66 2013 RZ53
2014 BA3 2015 DU 2017 TP4 2018 GR4 2018 KP1 2018 PK21
2018 PM28 2018 TS4 2018 VN5 2019 ED 2019 GV5 2008 UA202
2010 TE55 2013 BS45 2014 QN266 2014 YP44 2015 PS228 2016 GK135

Table 3.10: List of downselected targets (41).

2012 UV136 2000 SG344 2001 QJ142 2008 CM74 2008 DL4 2008 HU4
2008 JL24 2008 ST 2009 BD 2010 JR34 2010 UE51 2011 BQ50
2011 MD 2011 WU2 2012 BB14 2012 EP10 2012 TF79 2014 JR24
2014 LJ 2014 YD 2014 YN 2015 BM510 2015 KK57 2015 VU64
2015 VO142 2015 XZ378 2016 BQ 2016 CF137 2016 DF 2016 FU12
2016 TB18 2016 TB57 2016 WQ3 2017 DV35 2017 RL2 2017 YW3
2018 DC4 2018 GE 2019 AP8 2019 DJ1 2019 GF1

After filtering the list of reachable asteroids by virtue of criteria A, B, and C, the 41 targets
listed in Table 3.10 are found. Since the mission and spacecraft design had to be tailored
over five reference cases, (as per the statement of work), a choice has been made considering
the following properties:

• Information in LCDB: this is a desirable information to have as it is associated to more
knowledge of the target;

• Information known on spin-rate: like the light curve, this is desirable to have;

• Observability in future: the possibility to observe the target in the future allows refining
the orbital uncertainty, so increasing the chances of in-orbit detection;

• Promising targets: the targets being less sensitive to the departure epoch and transfer
time have been favoured over others.

Table 3.11: Orbital elements for the selected 5 asteroids (ecliptic J2000).

Name a [AU] e [-] i [deg] ω [deg] Ω [deg]

2000 SG344 0.9775 0.0669 0.1121 275.3026 191.9599
2010 UE51 1.0552 0.0597 0.6239 47.2479 32.2993
2011 MD 1.0562 0.0371 2.4455 5.9818 271.5986
2012 UV136 1.0073 0.1392 2.2134 288.6071 209.9001
2014 YD 1.0721 0.0866 1.7357 34.1161 117.6401

The five temporary targets suggested for the mission and spacecraft design are:

1. 2014 YD: Known high spin rate close to barrier and favourable mission opportunity;

2. 2010 UE51: #1 on time-optimal and fuel-optimal solution list;

3. 2011 MD: Present in light curve database and favourable mission opportunity.
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4. 2000 SG344: Chance for observation, higher inclination, good OCC 8;

5. 2012 UV136: Known spin rate, largest target size/brightest.

The orbital parameters of these five sample targets are reported in Table 3.11.

3.7 Summary

This chapter elaborates on the NEA targets screening for the M-ARGO mission. A multi-
step filtering activity has been performed to identify a subset of asteroids reachable by the
M-ARGO CubeSat. Bounds on orbital elements have reduced the Minor Planet Center
database list of asteroids to 456 objects. Out of these, 172 objects require less than 900
days and 4 kg for the time-optimal solution. Then, 148 asteroids require less than 2.8 kg
for the fuel-optimal solution. The list of 148 shapes the envelop of reachable targets by the
M-ARGO CubeSat. Considering desirable mission parameters, the list is further reduced to
41 downselected objects, out of which 5 samples are extracted.

8OCC is the Orbit Condition Code, where 0 implies a well-determined orbit and 9 implies a poorly determined orbit [93].
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CHAPTER 4
FUEL-OPTIMAL MANY-REVOLUTION EARTH-ORBIT

TRANSFERS WITH ECLIPSES

This chapter studies the SEP-based Earth-orbit low-thrust optimization with eclipses. This
task is challenging because the low thrust-to-mass radio usually requires long flight times and
thus large number of revolutions to steer the spacecraft to the desired orbit. Additionally, the
lack of power from solar panels when flying inside Earth-shadow eclipses prevents using the
engine, which makes this NOCP even more difficult to solve. In literature, thrust discontinuity
was avoided in [94, 95] by smoothing the thrust modulus during shadow entrance and exit.
Earth-shadow constraints were modelled as interior-point constraints in [50, 51] to solve
time-optimal transfers. Averaging technique was integrated into indirect optimization in
[96] to rapidly search nearly time-optimal solutions. However, many-revolution fuel-optimal
transfers with accurate bang-bang control have not been achieved yet by indirect methods.
Based on the method presented in Chapter 2, this chapter tackles this issue by developing
an efficient and robust indirect method.

4.1 Problem Statement

4.1.1 Dynamical Equations

The modified equinoctial elements (MEE) are used to describe the orbital dynamics of the
SEP-based spacecraft since they are non-singular orbital elements and are well behaved in
low-thrust optimization [97]. The relationship between MEE and classical orbital elements
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is
p “ ap1´ e2

q

ex “ e cos pω ` Ωq

ey “ e sin pω ` Ωq

hx “ tanpi{2q cos Ω

hy “ tanpi{2q sin Ω

L “ ω ` Ω` θ

(4.1)

where a is the semi-major axis, e is the eccentricity, i is the orbital inclination, Ω is the right
ascension of the ascending node, ω is the argument of perigee, θ is the true anomaly, p is the
semilatus rectum and L is the true longitude. Equations of motion of the spacecraft under
equatorial Earth-centered inertial (ECI) coordinate are

9x “ fpx,α, uq ñ
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where xmee “ rp, ex, ey, hx, hy, Ls
J is the MEE vector, x “ rxJmee,ms

J is the state vector, m
is the spacecraft mass; u P rumin, 1s is the thrust throttle factor. umin “ 0 when the SEP
engine is off. 0 ď umin ď 1 is used in the continuation scheme, see Section 4.2.3; α is the
thrust direction unit vector, Tmax is the maximum thrust magnitude, c “ Ispg0 is the exhaust
velocity where Isp is the specific impulse and g0 is the gravity acceleration at sea level. Both
Isp and Tmax are assumed constant. In Eq. (4.2),
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where µ is the gravitational parameter and

ν “ 1` ex cosL` ey sinL, s2
“ 1` h2

x ` h
2
y, κ “

?
µp

ˆ

ν

p

˙2

(4.5)

The boundary conditions are

pptiq “ pi, exptiq “ exi, eyptiq “ eyi,

hxptiq “ hxi, hyptiq “ hyi, Lptiq “ Li, mptiq “ mi

pptf q “ pf , exptf q “ exf , eyptf q “ eyf ,

hxptf q “ hxf , hyptf q “ hyf , Lptf q “ free, mptf q “ free

(4.6)
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where ti and tf are fixed initial and terminal time instants.

The MEE are related to the Cartisian coordinate pr,vq through [98]
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where
α2
“ h2

x ´ h
2
y (4.9)

4.1.2 Earth-Shadow Eclipses

A shadow switching function to discriminate between eclipsed and illuminated arcs is essen-
tial. It is now derived from the shadow model. In literature, mainly two shadow models, i.e.,
cylindrical model [50, 94, 95] and cone model [98, 99], are widely used. In the following, the
cone model in [99] is employed here since it is more accurate. When the spacecraft passes
through the umbra shadow, the solar energy is completely lost, while limited solar energy is
received in the penumbra shadow. To be on the safe side, we assume that the engine switches
off when the spacecraft passes through either umbra or penumbra. Since umbra shadow is a
portion of the penumbra shadow [98], only penumbra geometry in Fig. 4.1 is discussed.

pD
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p
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
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r

sr

Sun
Earth

sD

Penumbra

Orbit

s

Figure 4.1: Geometry of penumbra shadow. S/C: the spacecraft position.

Several assumptions are made to simplify the penumbra shadow model. Firstly, both the Sun
and the Earth are assumed spherical bodies, thus the penumbra shadow is conical. Secondly,
the Earth orbit is assumed planar and circular with respect to the Sun. In the ecliptic
ECI, the Sun–Earth angle is θs “ θs,i ` npt ´ tiq, where θs,i is the Sun–Earth angle at ti
and n “ 360{365.25636306 deg/day, and the solar unit vector is sec “ rcos θs, sin θs, 0s

J.
Transforming sec to s in equatorial ECI yields s “ rcospθsq, cospieq sinpθsq, sinpieq sinpθsqs,
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where ie “ 23˝26121.4482 is the ecliptic obliquity, i.e., the angle between the equatorial plane
and the ecliptic plane.

In Fig. 4.1, Dp and Ds are diameters of the Earth and the Sun, δp,s is the distance between
them, and χp satisfies

χp “
Dp δp,s
Ds `Dp

(4.10)

The angle αp is

αp “ sin´1 Dp

2χp
(4.11)

The projection of the spacecraft position vector on the solar unit vector s is

rs “ pr ¨ sqs (4.12)

The vertical vector between the center of the penumbra cone and the spacecraft is

δ “ r ´ rs (4.13)

The distance between the penumbra terminator point and the center of the penumbra cone
at the projection point is

κ “ pχp ` }rs}q tanαp (4.14)

The difference of the magnitude of δ to the distance κ is

Sdpt, rq “ }δ} ´ κ (4.15)

along with its partial derivatives as

BSd
Br

“
δJ

}δ}

`

I3ˆ3 ´ ss
J
˘

´
tanαp
}rs}

rJs ss
J (4.16)

BSd
Bt

“ ´

ˆ

δJ

}δ}
`
rJs
}rs}

tanαp

˙

`

rJsI3ˆ3 ` sr
J
˘ Bs

Bθs
n (4.17)

where Bs{Bθs “ r´ sinpθsq, cospieq cospθsq, sinpieq cospθsqs
J. The spacecraft is inside the penum-

bra cone if r ¨ s ă 0 and Sd ă 0. The shadow entrance and exit occur when Sd “ 0 and
r ¨s ă 0. Thus, Sd is defined as the shadow switching function, under the condition r ¨s ă 0.

To ease the discussion, a signal variable ptype is defined to label the position of the spacecraft
with respect to the shadow

ptype “

#

In, if Sd ă 0 and r ¨ s ă 0

Out, if otherwise
(4.18)

To favor the explanation of the continuation scheme in Section 4.2.3, the following definitions
are given. Let Nsptq be the number of accumulated eclipses at a time t, and let Nmax be the
user-defined maximum number of eclipses. The shadow is deemed active when Ns ď Nmax.
Inactive shadows contribute to Ns, yet they do not affect the engine status. Let p̃type denote
the spacecraft position with respect to the active shadow. Then

p̃type “

#

In, if Sd ă 0 and r ¨ s ă 0 and Ns ď Nmax

Out, if otherwise
(4.19)

56



4.1. Problem Statement

Thus p̃type “ ptype if sufficiently large Nmax is adopted. If the initial point is located outside
the active shadow, Nsptiq “ 0, otherwise, Nsptiq “ 0.5. The rule Ns Ð Ns ` 0.5 is executed
every time ptype switches its value. The updated Ns is then used to evaluate p̃type. Thus,
Nmax “ 0 indicates that the shadow constraints are inactive.

4.1.3 Fuel-Optimal Problem

The fuel-optimal performance index is

Jf “
Tmax

c

ż tf

ti

u dt (4.20)

Since the optimal thrust throttle profile u˚ is bang-bang [95], a continuation parameter ε is
employed [47]. The performance index becomes

Jε “
Tmax

c

ż tf

ti

ru´ εup1´ uqs dt (4.21)

The energy-optimal problem (ε “ 1) is solved first, then the solution manifold is traced by
gradually reducing ε, until the fuel-optimal problem (ε “ 0) is obtained.

The Hamiltonian function reads

Hε “
Tmax

c
ru´ εup1´ uqs ` λLκ` u

Tmax

m
λJmeeBα´ λm u

Tmax

c
(4.22)

where λ “ rλJmee, λms
J is the costate vector associated to x. By virtue of the PMP, the

optimal thrust direction α˚ satisfies [95]

α˚ “ ´
BJλmee

}BJλmee}
(4.23)

Substituting α˚ into Eq. (4.22) yields

Hε “ λLκ` u
Tmax

c
rSε ´ εp1´ uqs (4.24)

where the throttle switching function Sε is

Sε “ ´
c

m
}BJλmee} ´ λm ` 1 (4.25)

u˚ is determined by PMP and the Earth-shadow constraint (4.19) as

u˚ “

$

’

’

&

’

’

%

umin, if Sε ą p1´ 2uminqε or p̃type “ In

pε´ Sεq{2ε if ´ ε ă Sε ă p1´ 2uminqε and p̃type “ Out

1, if Sε ă ´ε and p̃type “ Out

(4.26)

Remark 4.1. An interior-point constraint should be addressed to ensure that Eq. (4.26)
satisfies necessary conditions of optimality, see Section 4.1.4.
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Let y :“ rxJ,λJsJ be the combined state and costate vector, the motion of the spacecraft is
determined by integrating the following state-costate dynamics

9y “ F pt,yq ñ

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

9xmee “ u
Tmax

m
Bα`A

9m “ ´
Tmax

c
u

9λmee “ ´λL

„

Bκ

Bxmee

J

´ u
Tmax

m

„

BBJλmee

Bxmee

J

α

9λm “ u
Tmax

m2
λJmeeBα

(4.27)

with α and u as in Eqs. (4.23) and (4.26), respectively.

Since the terminal true longitude and mass are free, and the augmented terminal cost does
not explicitly depend on the true longitude and the mass, there exists

λLptf q “ 0, λmptf q “ 0 (4.28)

4.1.4 Interior-Point Constraint

The SEP engine switches on/off when the spacecraft exits/enters Earth-shadow eclipses.
However, this operation maybe not optimal since it is not related to the minimization of
Hε. In order to satisfy necessary conditions of optimality, the events of shadow entrance and
exit should be treated as interior-point constraints [50]. Suppose that Sdptsq “ 0, and p̃type

switches between In and Out at ts, the following conditions should be satisfied [26]

Hεpt
´
s q “ Hεpt

`
s q ´ πε

BSd
Bt
ptsq (4.29)

λJmeept
´
s q “ λ

J
meept

`
s q ` πε

BSd
Bxmee

ptsq (4.30)

where t´s and t`s are time instants instantaneously before and after ts, and πε is a scalar
Lagrange multiplier. In Eq. (4.30), costate λmee is discontinuous since BSd{Bxmeeptsq ‰ 0J.
It can be verified that

Br

Bxmee

B “ 03ˆ3 (4.31)

Then we have

BJλmeept
`
s q “ B

J

«

λmeept
´
s q ´ πε

ˆ

BSd
Bxmee

˙J
ff

“ BJλmeept
´
s q (4.32)

Thus α˚ in Eq. (4.23) and Sε in Eq. (4.25) are continuous across ts. The time derivative of
Sd is simplified as

9Sd “
BSd
Bxmee

ˆ

A` u
Tmax

m
Bα

˙

`
BSd
Bt

“
BSd
BL

κ`
BSd
Bt

(4.33)

The Hamiltonian function at t´s and t`s is

Hεpt
´
s q “ λLpt

´
s qκ` upt

´
s q
Tmax

c

`

Sε ´ ε` εupt
´
s q
˘

(4.34)
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Hεpt
`
s q “ λLpt

`
s qκ` upt

`
s q
Tmax

c

`

Sε ´ ε` εupt
`
s q
˘

(4.35)

Combining Eq. (4.29), (4.30), (4.33), (4.34) and (4.35) yields the analytical expression of πε
as

πε “ ∆u
Tmax

c

Sε ´ ε` pupt
`
s q ` upt

´
s qqε

9Sd
(4.36)

where ∆u “ upt`s q ´ upt
´
s q.

Remark 4.2. Let yptq “ ϕεprxi,λis, ti, tq be the solution flow of Eq. (4.27) integrated from
the initial time ti to a generic time t, using xi, λi at ti, u˚ in Eq. (4.26), α˚ in Eq. (4.23) and
λmeept

`
s q in Eq. (4.30). The energy-to-fuel-optimal problem is to find λ˚i such that yptf q “

ϕεprxi,λ
˚
i s, ti, tf q satisfies Eqs. (4.6) and (4.28).

4.2 Solution Method

4.2.1 Analytic Derivatives

The variational method evaluates the gradients through tht STM and the chain rule. The
STM maps small variations in the initial conditions δyi over ti Ñ t, i.e., δy “ Φpti, tqδyi.
STM is subject to

9Φpt, tiq “ DyF Φpt, tiq (4.37)
where DyF , the Jacobian matrix of dynamical equations Eq. (4.27), has two different ex-
pressions based on whether u is constant or not. Φpti, tiq “ I14ˆ14. Let z :“ ry, vecpΦqs be
the 210-dimensional vector consisting of y and the columns of Φ, where the operator ‘vec’
converts the matrix into a column vector. There exists

9z “ Gpzq ñ

#

9y “ F pyq

vecp 9Φq “ vecpDyF Φq
(4.38)

Note that the integration of Φ matrix maps states and costates along a continuous trajectory.
When the discontinuity is encountered at the switching time ts, the STM compensation
matrix, Ψptsq, across the discontinuity should be determined [45]. Suppose that there are N
discontinuities at t1, t2, ¨ ¨ ¨ , tN , Φptf , tiq is calculated through the chain rule as

Φptf , tiq “ Φptf , t
`
NqΨptNqΦpt

´
N , t

`
N´1qΨptN´1q . . .Φpt

´
2 , t

`
1 qΨpt1qΦpt

´
1 , tiq (4.39)

Suppose the discontinuity detected at ts is indicated by a switching function S crossing a
constant threshold η, there are two possible cases:

• Case 1: S “ Sε, ε “ 0, η “ 0 in the fuel-optimal problem. In this case, y is continuous
but 9y is discontinuous. The thrust throttle u jumps between 0 and 1 at ts.

• Case 2: S “ Sd, u ‰ 0, η “ 0 for energy-to-fuel-optimal problems. In this case, both y
and 9y are discontinuous. The thrust throttle u jumps between upt˘s q and umin at ts, if
upt˘s q ‰ umin.

For both cases, the switching function S at t´s ` dts on the neighboring extremal trajectory
must satisfy

Spypt´s ` dtsq, t
´
s ` dtsq “ η (4.40)

Expanding S at t´s yields

dS “
BS

By
dypt´s q `

BS

Bt
dts “

ˆ

BS

By
δypt´s q `

BS

By
9ypt´s qδts

˙

`
BS

Bt
δts “ 0 (4.41)
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thus there exists

δts “ ´
1

9S

BS

By
δypt´s q (4.42)

In Case 1, since y is continuous across ts, there satisfies

ypt`s q “ ypt
´
s q (4.43)

and Ψptsq satisfies

Ψptsq “
Bypt`s q

Bypt´s q
“ I14ˆ14 `

`

9ypt`s q ´ 9ypt´s q
˘ 1

9Sε

BSε
By

(4.44)

In Case 2, ypt`s q is computed as

ypt`s q “ ypt
´
s q `∆y (4.45)

where ∆y “ r07ˆ1, ∆λmee, 0s. Ψptsq satisfies

Ψptsq “
Bypt`s q

Bypt´s q
“ I14ˆ14 `

B∆y

By
`
`

9ypt`s q ´ 9ypt´s q ´∆ 9y
˘ 1

9Sd

BSd
By

(4.46)

where

∆ 9y “
B∆y

By
9ypt´s q `

B∆y

Bt
(4.47)

Remark 4.3. From Eqs. (4.44) and (4.46), it is clear that the STM becomes ill-conditioned
on singular arcs indicated by either 9Sεptsq “ 0 or 9Sdptsq “ 0. The case 9Sεptsq “ 0 is not
considered in this work. The case 9Sdptsq “ 0, implying that the spacecraft flies over the
edge of the shadow at ts, may occur for optimal trajectories with many revolutions. The
ill-conditioned STM deteriorates the performance of the shooting method.

4.2.2 Switching Detection Technique

A switching time detection is twofold. Firstly, knowing Ψptsq at the switching time ts is
indispensable for the accuracy of gradients. Secondly, the integration error accumulates
across the discontinuity if the switching time is not explicitly detected. Suppose that at
consecutive time instants tk and tk`1, a switching function S and the constant threshold η
satisfy pSk ´ ηq ˆ pSk`1 ´ ηq ă 0, where Sk :“ Sptk,yptkqq and Sk`1 :“ Sptk`1,yptk`1qq, the
switching detection in [47] is then implemented to find ts such that Sptsq “ η. The switching
detection is embedded into the integration process, with the accuracy set as 10´12.

However, the assumption pSk ´ ηq ˆ pSk`1 ´ ηq ă 0 may not hold. For example, suppose the
shadow entrance is detected at tk, but the spacecraft flies out of the shadow at tk`1, the time
detection of the shadow exit fails since Sptkq “ 0. In this case, the time instant t̃k P ptk, tk`1q

that satisfies pSpt̃k,ypt̃kqq ´ ηq ˆ pSk`1 ´ ηq ă 0 and |Spt̃k,ypt̃kqq| ą 10´12 is searched first
using the bisection method. Then the switching time ts P pt̃k, tk`1q is detected using the
method in [47].

Remark 4.4. It is assumed that the throttle switching time and shadow switching time do
not coincide.
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4.2. Solution Method

4.2.3 Continuation Scheme

Since the discontinuity produced by shadow constraints narrows the convergence domain, the
Nmax continuation is proposed to approach the solution by gradually turning inactive shadows
into active shadows, achieved by increasing Nmax. The combination of ε continuation and
Nmax continuation is employed.

There are mainly two possible schemes. The starter of both schemes is the solution to the
energy-optimal problem without shadow constraints. The first strategy consists of determin-
ing the energy-optimal solution with shadow constraints by usingNmax continuation, and then
determining the fuel-optimal solution with shadow constraints by using ε continuation. How-
ever, this strategy maybe not effective for many-revolution transfers, since the ill-conditioned
STM maybe occur during ε continuation process. The second strategy consists of determin-
ing the fuel-optimal solution without shadow constraints by using ε continuation, and then
determining the fuel-optimal solution with shadow constraints by using Nmax continuation.
This scheme is preferred since the ill-conditioned STM will not be encountered unless at final
few steps.

Figure 4.2 shows five possible cases related to the position of the inactive shadow with respect
to the bang-bang u profile. When the inactive shadow is switched to the active shadow, the
u profile of case (e) is unchanged, while a new u profile has to be sought for cases (a)-(d).
The continuation process is shown in Fig. 4.3, where the case (a) is employed without loss of
generality. In Fig. 4.3, let uζ be the thrust throttle for Nmax–th time passage of the shadow,
the fuel-optimal solution without shadow constraints (Nmax “ 0 and uζ “ 0) is obtained first
through ε continuation. This solution is used as the initial guess to search the fuel-optimal
solution with Nmax “ 1 and uζ “ 0 using the single shooting method. The algorithm may
fail due to the narrow convergence domain produced by the control and costate discontinuity.
Suppose that the fuel-optimal solution with Nmax “ 1 and uζ “ 0 is obtained, but fails for
Nmax “ 2 and uζ “ 0, then the fuel-optimal problem with Nmax “ 2 and uζ “ 1 is solved
first. The uζ continuation proceeds by gradually reducing uζ from uζ “ 1 to uζ “ 0. Once
the solution is obtained, the fuel-optimal solution with Nmax “ 3 and uζ “ 0 is sought. This
process continues until Ns ď Nmax is true, or fails due to the ill-conditioned STM.

u

t

Inactive Shadow

u

t

u

t

u

t

u

t

(a) (b) (c)

(d) (e)

Figure 4.2: Position of the inactive shadow with respect to the bang-bang thrust throttle profile.

Since u is set to umin in Eq. (4.26) when the spacecraft is located inside the active shadow,
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u

t

max 2,  1N u 
u

t

max 2,  0.5N u 
u

t

max 2,  0N u 

u

t

max 0,  0N u 
u

t

max 1,  0N u 
u

t

max 2,  0N u 

...

Figure 4.3: Nmax Continuation scheme from the fuel-optimal solution without shadow constraint
(Nmax “ 0 and uζ “ 0) to the fuel-optimal solution with Nmax “ 2 and uζ “ 0.

incorporating Nmax continuation leads to the setting of umin as

umin “

#

uζ , if Ns ą Nmax ´ 1 and Ns ă Nmax

0 Otherwise
(4.48)

4.2.4 Augmented Integration Flowchart

The integration flowchart presented in [47] is insufficient to solve low-thrust transfers involving
Earth-shadow eclipses. In this section, the flowchart is augmented to involve shadow related
branches.

For simplicity of discussion, let utype be the engine status, the logic of which is

utype “

$

’

’

&

’

’

%

On, if u “ 1

Medium, if u P pumin, 1q

Off, if u “ umin

(4.49)

The augmented flowchart is presented in Fig. 2.5. The inputs required to execute one-step
integration are 1) tk, the k–th time step; 2) hp, the size of time step predicted by previous
step of integration; 3) zk, the full 210-dimensional state; 4) utype, the engine status; 5) Nsptq,
number of accumulated eclipses; 6) ptype, the position of the spacecraft with respect to the
shadow defined in Eq. (4.18); 7) p̃type, the position of the spacecraft with respect to the active
shadow defined in Eq. (4.19); 8) umin, the minimum level of thrust throttle; 9) uζ , the thrust
throttle of the Nmax–th time of the shadow crossing.

In Fig. 2.5, three branches separate at the beginning of integration according to utype. For
each integration block, a prediction on zk`1, i.e., zk`1 “ ψRKpzk, tk, tk ` hpq, is executed,
using variable-step seventh/eighth Runge–Kutta integration scheme. Note that zk`1 is the
state corresponding to tk`1 “ tk ` hf , where hf is the corrected time step according to the
integration accuracy set as 1ˆ10´14. The value of ptype,k`1 corresponding to zk`1 is computed
using Eq. (4.18). Ns is updated as Ns Ð Ns ` 0.5 if ptype ‰ ptype,k`1, which is then used to
compute p̃type,k`1 in Eq. (4.19).

For utype being On or Medium, execution blocks are similar. The branch of utype “ On is
depicted in the following. utype “ On implies that p̃type “ Out and umin “ 0. Since the
engine switches off when the active shadow is entered into, the first task after the one-step
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integration prediction is to check p̃type,k`1 at tk`1. If p̃type,k`1 “ Out, the next step is to check
whether ptype equals to ptype,k`1. Even though ptype does not affect the status of the engine,
the detection of ptype switching offers more information of the trajectory. If ptype ‰ ptype,k`1,
Block 2 is executed to detect the shadow switching time. Let Sc be the value of Sε at
the swithing time ts. If Sc ă ´ε is satisfied, the solution is saved and ptype is updated
to ptype,k`1. Otherwise, if Sc ě ´ε, it indicates that the throttle switching exists between
rtk, tk`1s, the step hp is reduced and Ns is rollback as Ns Ð Ns ´ 0.5. When p̃type,k`1 “ Out
and ptype “ ptype,k`1, the same execution block on the branch utype “ On of the flowchart
in [47] is implemented. Otherwise, if p̃type,k`1 “ In, Block 2 is required to execute to determine
the shadow switching time ts. If Sc ă ´ε is satisfied, umin is set by Eq. (4.48). Block 3 is
executed, and utype is set to Off.

The most complex branch is the case when utype,k “ Off. The first task after one-step
prediction is to check p̃type to verify the reason that the engine switches off. If p̃type “ In,
implying that the spacecraft is located inside the active shadow at k–th step, the next task is
to check whether the spacecraft is still inside the active shadow at tk`1. If p̃type,k`1 “ In, the
solution is saved. Otherwise, if p̃type,k`1 “ Out, the spacecraft flies out of the active shadow at
tk`1. Block 2 is executed to determine the shadow switching time ts. The upt`s q instantaneous
after ts is determined by the value of Sc with umin “ 0. For example, if Sc ă ´ε, utype is
updated to On and Block 3 is executed.

If p̃type “ Out, the spacecraft is located outside the active shadow and the engine switches
off due to Sε ą ε. If p̃type,k`1 “ In, the spacecraft flies inside the shadow at tk`1. Then the
shadow switching time is detected. Since ∆u “ 0, there is no need to update STM, but the
shadow status is updated if Sc ą ε. Otherwise, if p̃type,k`1 “ Out and ptype “ ptype,k`1, it
indicates that the Earth’s shadow is not encountered at tk`1, the same execution block on
the branch utype “ Off of the flowchart in [47] is implemented.

4.3 Numerical Simulations

The physical constants used are listed in Table 4.1, where LU is the Earth radius, VU “
a

µ{LU and TU “ LU{VU. The Geostationary Transfer Orbit (GTO) to Geostationary Or-
bit (GEO) transfer example from [95] is simulated, and the corresponding initial and terminal
orbital elements are listed in Table 4.2. Since the terminal inclination and eccentricity are
both set to null, the definitions of Ω and w are invalid, thus they are set as free variables.
Then the terminal conditions Eq. (4.6) are determined by Eq. (4.1). Moreover, m0 “ 100 kg,
Isp “ 3100 s. All simulations are conducted under an Intel Core i7–9750H, CPU@2.6 GHz,
Windows 10 system with MATLAB R2019a. The steps in ε continuation and uζ continua-
tion are ∆ε “ 0.025 and ∆uζ “ 0.1, respectively. Slightly larger steps ∆ε Ð 1.01 ˆ∆ε and
∆uζ Ð 1.01ˆ∆uζ are used for the next step if the current step succeeds, otherwise, half of
the step is used. uζ continuation fails if ∆uζ ă 0.005. The maximum iteration for solving
the NOCP is set as 150.

Numerical simulations for various thrust level Tmax “ r2, 0.5, 0.1, 0.035s N are executed.
The corresponding energy-optimal and fuel-optimal solutions, as well as the transfer time
tf , final mass mf , Nmax, Ns and computational time (CT) are reported in Table 4.3. The
energy-optimal solutions without shadow constraints (cases 1, 4, 7 and 10) are solved first,
which is used as the starter to find fuel-optimal solutions without shadow constraints (cases
2, 5, 8 and 11) using ε continuation. Fuel-optimal solutions with shadow constraints for
various Tmax and θs,i (case 3, 6, 9, 12-15) are further found through the second continuation
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Figure 4.4: Flowchart for the implementation of a generic integration step. Dashed blocks are from [47].
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scheme. For cases with θs,i “ 0˝ (vernal equinox departure), accurate fuel-optimal solutions
are returned without encountering ill-conditioned STM for Tmax “ 2 N (case 3), 0.5 N (case
6) and 0.1 N (case 9). On the other hand, an approximate fuel-optimal solution is obtained
for Tmax “ 0.035 N (case 12). More computational time is required when the thrust level
is reduced and when ill-conditioned STM occurs. Fuel-optimal solutions for different thrust
levels (cases 3, 6, 9, 12) are shown in Figs. 4.5. It can be seen that the shadow of fuel-optimal
trajectories exists near apogee and thrust-off segments indicated by Sε appear around perigee.
From variations of u, Sε and Sd, we can see that the bang-bang switching becomes more
frequent as Tmax is reduced. Variations of a, e and i imply that the fuel-optimal trajectories
successfully reach the terminal conditions. The corresponding fuel-optimal costate variations
are shown in Fig. 4.6, where costate discontinuities produced by shadow constraints are
clearly demonstrated.

Table 4.1: Physical constants.

Physical constant Value

Earth gravitational constant, µ 398600.4418 km3{s2

Gravitational field, g0 9.80665 m{s2

Length unit, LU 6378.1371 km

Time unit, TU 806.8111 s

Velocity unit, VU 7.9054 km{s

Mass unit, MU 100 kg

Earth diameter, Dp 2 LU
Sun diameter, Ds 1391020 km

Earth-Sun distance, δp,s 1.4959787069ˆ 108 km

Table 4.2: Initial and terminal classical orbital elements.

Type a pkmq e i pdegq Ω pdegq w pdegq θ pdegq

GTO 24505 0.725 7 0 0 0

GEO 42165 0 0 free free free
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(a) Solution with Tmax “ 2 N (case 3).
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(b) Solution with Tmax “ 0.5 N (case 6).
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(c) Approximate solution with Tmax “ 0.1 N (case 9).

0 20 40 60 80
0

0.5

1

0 20 40 60 80
-2
-1
0

0 20 40 60 80
0
2
4
6

0 20 40 60 80

3

4
104

0 20 40 60 80
0

0.5

0 20 40 60 80
0

5

(d) Approximate solution with Tmax “ 0.035 N (case 12).

Figure 4.5: Fuel-optimal solutions with different thrust levels and θs,i “ 0˝ of cases 3, 6, 9, 12 in Table
4.3. Left: fuel-optimal trajectories. Blue dashed line: thrust-off segments outside shadow; red line:
thrust-on segments; green dashed dot line: thrust-off segments inside shadow ‘o’: initial point; ‘x’:

terminal point. Middle: variations of u, Sε and Sd w.r.t. time. Red dash line: threshold of Sd. Right:
variations of a, e and i w.r.t. time. Line types are the same for Figs. 4.8 and 4.9.
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(b) Costate variations for Tmax “ 0.5 N (case 6).
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(c) Costate variations for Tmax “ 0.1 N (case 9).
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(d) Costate variations for Tmax “ 0.035 N (case 12).

Figure 4.6: Fuel-optimal costate variations with different Tmax levels and θs,i “ 0˝ (cases 3, 6, 9, 12 in
Table 4.3).

More solution information of case 6 is provided. The computational time for this case is » 7
mins, while the continuation fails when the finite difference method inherently embedded in
MATLAB is used. The failure is caused by the inaccuracy of the finite difference method
analyzed in the following. Differently from the energy-optimal to fuel-optimal continuation,
the control of auxiliary solutions in the second continuation scheme is discontinuous. Based
on the optimal trajectory in Fig. 4.5b, the gradient accuracy of the finite difference method is
assessed. The Jacobian matrix obtained by analytic gradients is used as the reference value,
denoted as JAGptq. The formula of the central finite difference method is used, as [100]

f 1pxq “
´fpx` 2ηq ` 8fpx` ηq ´ 8fpx´ ηq ` fpx´ 2ηq

12η

where η “ 1ˆ10´6 is a small perturbation step. The obtained Jacobian matrix is denoted as
JFDptq. The gradient accuracy of the finite difference method at a given time t is calculated
as the maximum value in the element of the matrix |JFDptq ´ JAGptq|.

Figure 4.7 shows the variation of the gradient accuracy using the finite difference method. It
can be clearly seen that the accuracy deteriorates rapidly around the time of the discontinuous
control and the error is accumulated as time increases. Thus, when the terminal state of an
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Table 4.3: Simulation results.

Case Type θs,i Tmax (N) pλ˚i q
J tf (days) mf (kg) Nmax Ns CT pminsqd

1 EO w/oa / 2 r´0.024240,´0.042279, 0.000130, 0.039448,´0.000181,´0.000083, 0.075124s 2 93.84 / / /
2 FO w/ob / 2 r´0.026538,´0.062339, 0.000234, 0.033722,´0.002614,´0.000009, 0.062911s 2 94.74 / / 0.62
3 FOc 0˝ 2 r´0.029159,´0.057720,´0.000427, 0.041554,´0.008385,´0.000079, 0.077206s 2 94.22 3 3 1.54
4 EO w/o / 0.5 r´0.043971,´0.122824, 0.000083, 0.052453,´0.001645, 0.000040, 0.106335s 6 93.66 / / /
5 FO w/o / 0.5 r´0.041008,´0.132771, 0.000090, 0.040169,´0.002677, 0.000098, 0.083086s 6 94.12 / / 1.7
6 FO 0˝ 0.5 r´0.049630,´0.111368, 0.002182, 0.069476,´0.025579,´0.000004, 0.138935s 6 93.18 8 8 7.0
7 EO w/o / 0.1 r´0.042528,´0.114285, 0.000011, 0.052643,´0.000245, 0.000007, 0.103373s 30 93.73 / / /
8 FO w/o / 0.1 r´0.036987,´0.104961, 0.000024, 0.042263,´0.000462, 0.000011, 0.083938s 30 94.15 / / 6.0
9 FO 0˝ 0.1 r´0.040920,´0.102379, 0.004436, 0.058269,´0.041627, 0.000006, 0.105747s 30 93.63 29 29 43
10 EO w/o / 0.035 r´0.036844,´0.054583, 0.000016, 0.065573,´0.000096,´0.000006, 0.124880s 80 93.67 / / /
11 FO w/o / 0.035 r´0.033988,´0.063944, 0.000014, 0.054932,´0.000116,´0.000003, 0.102696s 80 93.96 / / 10
12 FO 0˝ 0.035 r´0.037486,´0.062639, 0.003888, 0.071624,´0.031690,´0.000004, 0.121337s 80 93.61 49 50 95
13 FO 90˝ 0.035 r´0.034889,´0.067054,´0.000268, 0.056064,´0.000141,´0.000003, 0.103954s 80 93.94 118 118 28
14 FO 180˝ 0.035 r´0.028093,´0.021725, 0.000015, 0.059236,´0.000069,´0.000007, 0.109418s 80 93.93 87 87 26
15 FO 270˝ 0.035 r´0.034330,´0.063464,´0.000270, 0.056766, 0.002185,´0.000004, 0.105290s 80 93.92 45 45 73

a energy-optimal solution without shadow constraints; b fuel-optimal solution without shadow constraints; c fuel-optimal solution with shadow constraints; d approximate computational time starting
from EO w/o.

auxiliary trajectory is close to the shadow region, the gradient accuracy obtained by the finite
difference method is low, which deteriorates the performance of the zero-finding method.
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Figure 4.7: Variation of the gradient accuracy w.r.t. the time using the finite difference method.
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Figure 4.8: Second fuel-optimal solution for Tmax “ 0.5 N and θs,i “ 0˝.

Additionally, the second fuel-optimal solution for this case is obtained by using the first
continuation scheme, as

λ˚i “ r´0.048686,´0.049344, 0.003478, 0.093319,´0.042607,´0.000173, 0.180324sJ
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(a) Solution with θs,i “ 90˝ (case 13).
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(b) Solution with θs,i “ 180˝ (case 14).
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(c) Solution with θs,i “ 270˝ (case 15).

Figure 4.9: Fuel-optimal solutions for Tmax “ 0.035 N and different θs,i (cases 13, 14, and 15 in Table
4.3).

The corresponding fuel-optimal trajectory, variations of u, Sε and Sd, and variations of a,
e and i are shown in Fig. 4.8. The accurate bang-bang solution is returned with Nmax “ 8
and Ns “ 8. Compared to the solution in [95], both fuel-optimal trajectories pass through 8
times the shadow, and the variations of u almost coincide with each other. The final mass
of fuel-optimal solution in [95] is 93.085 kg, while our solution results in 92.955 kg. The
slight difference exists since the explicit time dependence of the shadow model is considered
here. Compared to the hyperbolic tangent smoothing method in [95], the desired accurate
bang-bang solution is obtained by our method. The first scheme requires only » 1.1 mins to
obtain the solution, faster than the second scheme, and » 20 mins is required when the finite-
difference method is used. However, for Tmax “ 0.1 N (case 9), an accurate energy-optimal
solution with shadow constraints is obtained but ε continuation fails. For Tmax “ 0.035 N
(case 12), an approximate energy-optimal solution with shadow constraints is obtained by
using the first continuation scheme, which fails to proceed ε continuation.

In order to further verify the effectiveness of the developed method (second continuation
scheme), fuel-optimal solutions for Tmax “ 0.035 with summer solstice (θ0 “ 90˝), autumnal
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equinox (θ0 “ 180˝) and winter solstice (θ0 “ 270˝) departures are summarized as cases
13–15 in Table 4.3. The corresponding fuel-optimal trajectories, variations of u, Sε and Sd,
and variations of a, e and i are shown in Figs. 4.9. For all three cases, accurate solutions
are obtained without encountering singularity, and final mass of these three cases are close
to each other. For the summer solstice transfer, the spacecraft travels through the shadow
region at each revolution. For autumnal equinox transfer, the initial point locates inside the
shadow, and the shadow region appear in the beginning of the transfer. On the other hand,
additional shadow region appears in the last few revolutions in the winter solstice transfer.
Simulation tests reveal that the first scheme solves cases 13 and 14 taking » 45 mins and
» 70 mins, respectively, slower than the second scheme, and it fails to converge for case 15.

4.4 Summary

This work considers the low-thrust optimization in presence of Earth-shadow eclipses. The
developed method incorporates analytic derivatives, switching detection, and continuation
with an augmented integration flowchart. The advantages of the proposed indirect method
include that: 1) there is no need to prescribe the thrust structure a priori; 2) it enables to
find fuel-optimal many-revolution bang-bang solutions; 3) it provides accurate gradients for
robust convergence. GTO to GEO transfer simulations are conducted to test the algorithm
performance.
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CHAPTER 5

FUEL-OPTIMAL DEEP-SPACE TRANSFERS WITH
MULTI-DIMENSIONAL INTERIOR-POINT

CONSTRAINTS

Space applications considered in Chapters 2-4 require to tackle NOCPs with scalar interior-
point constraints. This chapter aims to address NOCPs with multi-dimensional interior-point
constraints. Here, the multipliers corresponding to the interior-point constraints cannot be
solved in closed form, thus they have to be solved along with other unknowns. The benefits
of the variational method are more distinct, because the computational burden of finite-
difference methods grows rapidly when more unknowns, and thus more derivatives, have to be
computed. Deep-space transfers involving intermediate flyby, rendezvous and gravity-assist
events belong to this category. The combination of low-thrust propulsion with gravity-assist
maneuvers allows new type of trajectories that shorten mission duration and reduce fuel
consumption [101]. This chapter depicts the detailed procedure to calculate the gradients in
deep-space transfers using the variational method.
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5.1 Problem Statement

5.1.1 Fuel-Optimal Problem

The heliocentric phase of an interplanetary transfer is studied. Equation (2.1) is employed
to model the motion of the spacecraft in the heliocentric inertial frame, rewritten here as

9x “ fpx, u,αq ñ

$

’

’

’

’

’

&

’

’

’

’

’

%

9r “ v

9v “ ´
µ

r3
r ` u

Tmax

m
α

9m “ ´u
Tmax

Isp g0

(5.1)

where Tmax and Isp are assumed constant. With the initial time ti and the terminal time tf
given, the fuel-optimal problem is to minimize

Jf “ λ0
Tmax

c

ż tf

ti

u dt (5.2)

with boundary conditions

rptiq ´ ri “ 0, vptiq ´ vi “ 0, mptiq ´mi “ 0 (5.3)
rptf q ´ rT ptf q “ 0, vptf q ´ vT ptf q “ 0 (5.4)

where rT ptf q and vT ptf q are the position and velocity vectors of the final target body at tf ,
respectively.

The positive factor λ0 does not inherently change the NOCP. On the other hand, it restricts
the initial costates on a unit hypersphere [44]. In order to gradually approach bang-bang
discontinuity, ε continuation is used with the performance index as [41]

Jε “ λ0
Tmax

c

ż tf

ti

ru´ εup1´ uqs dt (5.5)

The Hamiltonian function is

Hε “ λr ¨ v ` λv ¨

ˆ

´
µ

r3
r ` u

Tmax

m
α

˙

` λm

ˆ

´u
Tmax

c

˙

` λ0
Tmax

c
ru´ εup1´ uqs (5.6)

where λ “ rλJr ,λJv , λmsJ is the costate vector associate to x. According to PMP [26], the
optimal thrusting direction unit vector α˚ satisfies

α˚ “ ´
λv
λv

(5.7)

Substituting Eq. (5.7) into Eq. (5.6) yields

Hε “ λr ¨ v ´
µ

r3
r ¨ λv ` λ0

Tmax

c
u pS ´ ε` εuq (5.8)

where the throttle switching function S is

S “ 1´
λm
λ0

´
c

mλ0

λv (5.9)
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along with its derivatives as

BS

By
“

„

01ˆ6,
c λv
m2 λ0

, 01ˆ3, ´
cλJv

mλ0 λv



, 9S “
c

mλ0

λr ¨ λv
λv

,
BS

Bλ0

“
λm
λ2

0

`
c λv
mλ2

0

(5.10)

where y “ rxJ,λJsJ P R14 is the canonical vector. The optimal thrust throttle u˚ is stated
in terms of S and ε as

u˚ “

$

’

’

’

&

’

’

’

%

0 S ą ε

1 S ă ´ε

ε´ S

2ε
|S| ď ε

(5.11)

The corresponding equations of costate dynamics are
$

’

’

’

’

&
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’

’
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%

9λr “ ´
3µ

r5
pr ¨ λvq r `

µ

r3
λv

9λv “ ´λr

9λm “ ´
uλv Tmax

m2

(5.12)

where α˚ in Eq. (5.7) is already embedded into Eq. (5.12).

Since the terminal mass is free and the augmented terminal cost does not explicitly depend
on the mass, there exists

λmptf q “ 0 (5.13)

The motion of the spacecraft is determined by integrating the following state-costate dynam-
ics

9y “ F pyq ñ
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(5.14)

5.1.2 Interior-Point Constraint

Let hjptj,xcptjqq “ 0 and φjptj,xdpt´j q,xdpt
`
j qq “ 0 be the interior-point constraints deter-

mined by the continuous state xc and discontinuous state xd at tj respectively, where the
subscript j denotes the interior-point constraints at tj, j “ 1, 2, ¨ ¨ ¨ , w. That is

hjptj,xcptjqq “ 0 hj P Rpj (5.15)

φjptj,xdpt
´
j q,xdpt

`
j qq “ 0 (5.16)

where pj is the dimension of the constraint hj. φj in Eq. (5.16) and σj in Eq. (5.17) are
scalar constraints. The inequality constraint at tj is

σjptj,xdpt
´
j q,xdpt

`
j qq ď 0 (5.17)
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Let λc and λd be the costate vectors corresponding to xc and xd respectively. The state
and costate components that are not involved in xc, xd, λc and λd are denoted as x̃ and λ̃.
The bold vectors x̃ and λ̃ are used in the following even though they may be scalar variables
in specific applications. The discussions below clarify expressions of Eqs. (5.15)-(5.17) for
two types of transfers: 1) deep-space transfers with intermediate flyby and rendezvous; 2)
deep-space transfers with intermediate gravity-assist events.

Intermediate flyby and rendezvous transfer

1. Intermediate flyby. In this case, xc “ r, x̃ “ rv,ms, λc “ λr, λ̃ “ rλv, λms, then

hjptj,xcptjqq “ rptjq ´ rT,jptjq, pj “ 3 (5.18)

where rT,jptjq is the position vector of jth target body at tj.

2. Intermediate rendezvous. In this case, xc “ rr,vs, x̃ “ m, λc “ rλr,λvs, λ̃ “ λm, then

hjptj,xcptjqq “ rrptjq ´ rT,jptjq, vptjq ´ vT,jptjqs pj “ 6 (5.19)

where vT,jptjq is the velocity vector of jth target body at tj.

In this category, there is no constraints expressed by φj and σj. According to the optimal
control theory, the necessary conditions of optimality are [26]

χJj
Bhj
Btj

`Hεpypt
´
j q, λ0q ´Hεpypt

`
j q, λ0q “ 0 (5.20)

χJj
Bhj
Bxc

´ λJc pt
´
j q ` λ

J
c pt

`
j q “ 0J (5.21)

where χj P Rpj is jth multiplier vector corresponding to the constraint hj.

Remark 5.1. Let yptq “ ϕεpyi, λ0, ti, tq be the solution flow integrating Eq. (5.14) from
the initial time ti to the generic time t, using yi at ti, λ0, and λcpt`j q in Eq. (5.21). The
energy-to-fuel-optimal problem is to find rλ0,λi,χj, tjs P R8`ppj`1qw such that yptq satisfies

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

rptf q ´ rT ptf q

vptf q ´ vT ptf q

λmptf q

hjptj,xcptjqq

χJj
Bhj
Btj

`Hεpypt
´
j q, λ0q ´Hεpypt

`
j q, λ0q

a

λ2
0 ` λ

J
i λi `

řw
l“1χ

J
l χl ´ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0, j “ 1, ¨ ¨ ¨ , w (5.22)

Intermediate gravity-assist transfer The unpowered gravity-assist transfer illustrated in Fig. 5.1
is considered. Let rp be the radius of gravity-assist maneuver and u “ v˘8{v

˘
8 where

v˘8 “ }v
˘
8} and v˘8 “ vpt

˘
j q ´ vT,jpt

˘
j q, then rp is computed as [44]

cos θ “ u´ ¨ u` (5.23)

rp “
µj

v´8v
`
8

ˆ

1

sinpθ{2q ´ 1

˙

(5.24)

where θ is the deflection angle and µj is the gravity parameter of jth gravity-assist planet.
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v

v

pr
Planet 

Figure 5.1: Illustration of the unpowered gravity-assist transfer.

In this case, xc “ r, xd “ v, x̃ “ m, λc “ λr, λd “ λv, λ̃ “ λm, and

hjptj,xcptjqq “ rptjq ´ rT,jptjq pj “ 3 (5.25)

φjptj,xdpt
´
j q,xdpt

`
j qq “ v´8 ´ v

`
8 (5.26)

σjptj,xdpt
´
j q,xdpt

`
j qq “ 1´ rp{rmin ď 0 (5.27)

where rmin is the minimum radius required to perform the gravity-assist maneuver.

The slack variable αj is introduced to transform the inequality constraint Eq. (5.27) to the
equality constraint, as [102]

σjptj,xdpt
´
j q,xdpt

`
j qq ` α

2
j “ 0 (5.28)

Suppose the corresponding multiplier is κj, it must satisfy

κjαj “ 0 (5.29)

The necessary conditions of optimality for jth interior-point constraints are

χJj

„

Bhj
Btj

,
Bφj
Btj



` κj
Bσj
Btj

`Hε,jpypt
´
j q, λ0q ´Hε,jpypt

`
j q, λ0q “ 0 (5.30)

χJc,j
Bhj
Bxc

´ λJc pt
´
j q ` λ

J
c pt

`
j q “ 0J (5.31)

χd,j
Bφj

Bxdpt
´
j q
´ λJd pt

´
j q ` κj

Bσj
Bxdpt

´
j q
“ 0J (5.32)

χd,j
Bφj

Bxdpt
`
j q
` λJd pt

`
j q ` κj

Bσj
Bxdpt

`
j q
“ 0J (5.33)

where χj “ rχJc,j, χd,js
J P Rpj`1 is the multiplier vector corresponding to the constraints

Eqs. (5.25) and (5.26).

Remark 5.2. Let yptq “ ϕεpyi, λ0, ti, tq be the solution flow integrating Eq. (5.14) from
the initial time ti to the generic time t, using yi at ti, λ0, λcpt`j q and λdpt

`
j q in Eq. (5.31)
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and Eq. (5.33). The energy-to-fuel-optimal problem is to find rλ0,λi,χj,xdpt
`
j q, αj, κj, tjs P

R8`10w such that yptq satisfies

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

rptf q ´ rT ptf q

vptf q ´ vT ptf q

λmptf q

hjptj,xcptjqq

φjptj,xdpt
´
j q,xdpt

`
j qq

σjptj,xdpt
´
j q,xdpt

`
j qq ` α

2
j

κjαj

χJj

„

Bhj
Btj

,
Bφj
Btj



` κj
Bσj
Btj

`Hε,jpypt
´
j q, λ0q ´Hε,jpypt

`
j q, λ0q

χd,j
Bφj

Bxdpt
´
j q
´ λJd pt

´
j q ` κj

Bσj
Bxdpt

´
j q

a

λ2
0 ` λ

J
i λi `

řw
l“1pχ

J
l χl ` κ

2
l q ´ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0, j “ 1, ¨ ¨ ¨ , w (5.34)

Remark 5.3. For transfers involving both two types of events, let yptq “ ϕεpyi, λ0, ti, tq be
the solution flow integrating Eq. (5.14) from the initial time ti to the generic time t, using
yi at ti, λ0, λcpt`j1q and λdpt

`
j1q in Eq. (5.31) and Eq. (5.33) at gravity-assist time tj1 (j1

“ 1, ¨ ¨ ¨ , ŵ), λcpt`j2q in Eq. (5.21) at flyby and rendezvous time tj2 (j2 “ ŵ ` 1, ¨ ¨ ¨ , w), the
energy-to-fuel-optimal problem is to find rλ0,λi,χj1,xdpt

`
j1q, αj1, κj1, tj1,χj2, tj2s such that

yptq satisfies

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

rptf q ´ rT ptf q

vptf q ´ vT ptf q

λmptf q

hj1ptj1,xcptj1qq

φj1ptj1,xdpt
´
j1q,xdpt

`
j1qq

σj1ptj1,xdpt
´
j1q,xdpt

`
j1qq ` α

2
j1

κj1αj1

χJj1

„

Bhj1
Btj1

,
Bφj1
Btj1



` κj1
Bσj1
Btj1

`Hε,j1pypt
´
j1q, λ0q ´Hε,j1pypt

`
j1q, λ0q

χd,j1
Bφj1

Bxdpt
´
j1q
´ λJd pt

´
j1q ` κj1

Bσj1
Bxdpt

´
j1q

hj2ptj2,xcptj2qq

χJj2
Bhj2
Btj2

`Hεpypt
´
j2q, λ0q ´Hεpypt

`
j2q, λ0q

b

λ2
0 ` λ

J
i λi `

řŵ
j1“1pχ

J
j1χj1 ` κ

2
j1q `

řw
j2“ŵ`1χ

J
j2χj2 ´ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0 (5.35)
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5.2. Solution Method

5.2 Solution Method

5.2.1 State Transition Matrix

As shown in Fig. 5.2, the state transition matrix is computed by sweeping each segment
consecutively, with interior-point time tj, initial time t0 (equals to ti) and terminal time tf
as the boundary. Within the segment rt`k , t

´

pk`1qs, the STM subjects to

9Φpt, t`k q “ DyF Φpt, t`k q, k “ 0, 1, ¨ ¨ ¨ , w (5.36)

where DyF is the derivative of dynamical equations Eq. (5.14) w.r.t. y, Φpt`k , t
`
k q “ I2nˆ2n.

In the following, tk “ tj if k “ 1, ¨ ¨ ¨ , w, and t`0 :“ ti, t´w`1 :“ tf . Note that DyF has two
different expressions based on whether u˚ is constant.

The time derivative of ζ “ dy{dλ0 is

9ζ “ DyF ζ `
BF

Bλ0

(5.37)

where BF {Bλ0 is non-zero if u˚ “ pε´ Sq{p2εq. The value of ζptiq at ti is 014ˆ1.

Let z “ ry, vecpΦq, ζs P R224 be the vector consisting of y, the columns of Φ converted by
‘vec’ operator, and ζ, there exists

9z “ Gpzq ñ

$

’

’

’

&

’

’

’

%

9y “ F pyq

vecp 9Φq “ vecpDyF Φq

9ζ “ DyF ζ `
BF

Bλ0

(5.38)
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Figure 5.2: Integration of STM by sweeping each segment consecutively.

Note that the integration of Eq. (5.38) maps states and costates along a continuous trajectory.
Since the fuel-optimal solution exhibits bang-bang control, the value of zpt`s q instantaneously
after the throttle switching time ts P pt`k , t

´
k`1q should be determined. The switching function

S at t´s ` δts of the neighboring extremal trajectory must satisfy

Spt´s ` δts,ypt
´
s ` δtsq, λ0 ` dλ0q “ 0 (5.39)

Expanding S at t´s yields

dS “
BS

By
δypt´s q `

BS

Bλ0

dλ0 ` 9Sdts “ 0 (5.40)
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thus

dts “ ´
1

9S

ˆ

BS

By
δypt´s q `

BS

Bλ0

dλ0

˙

(5.41)

Since y is continuous across ts, there satisfies

ypt`s q “ ypt
´
s q (5.42)

Taking full differentials of both sides of Eq. (5.42) yields

δypt`s q “ δypt´s q `
`

9ypt´s q ´ 9ypt`s q
˘

dts (5.43)

The derivatives of Ψptsq and Bypt`s q{Bλ0 are only related to the derivatives of δypt˘s q w.r.t.
yi and λ0. Thus, substituting

δypt˘s q “
Bypt˘s q

Byi
dyi `

dypt˘s q

dλ0

dλ0 (5.44)

and Eq. (5.41) into Eq. (5.43) yields

Bypt`s q

Byi
dyi`

dypt`s q

dλ0
dλ0 “

Bypt´s q

Byi
dyi`

dypt´s q

dλ0
dλ0`

`

9ypt`s q ´ 9ypt´s q
˘ 1

9S

ˆ

BS

By

Bypt´s q

Byi
dyi `

BS

By

dypt´s q

dλ0
dλ0 `

BS

Bλ0
dλ0

˙

(5.45)
Note that Eq. (5.44) is only used to derive Ψptsq and Bypt`s q{Bλ0. The true expressions of
δypt˘s q should involve derivatives w.r.t. other unknowns. Collecting factors of dyi and dλ0

in Eq. (5.45) yields

Ψptsq “
Bypt`s q

Bypt´s q
“ I14ˆ14 `

`

9ypt`s q ´ 9ypt´s q
˘ 1

9S

BS

By
(5.46)

and
dypt`s q

dλ0

“
dypt´s q

dλ0

`
`

9ypt`s q ´ 9ypt´s q
˘ 1

9S

ˆ

BS

By

dypt´s q

dλ0

`
BS

Bλ0

˙

(5.47)

Suppose there are N discontinuities at ts,1, ts,2, ¨ ¨ ¨ , ts,N P pt`k , t
´
k`1q, Φpt´k`1, t

`
k q is calculated

following the chain rule as

Φpt´k`1, t
`
k q “ Φpt´k`1, t

`
s,NqΨpts,NqΦpt

´
s,N , t

`
k q

“ Φpt´k`1, t
`
s,NqΨpts,NqΦpt

´
s,N , t

`
s,N´1qΨpts,N´1q ¨ ¨ ¨Φpt

´
s,2, t

`
s,1qΨpts,1qΦpt

´
s,1, t

`
k q

(5.48)
At the same time, ζpt´k`1q is obtained by integrating Eq. (5.37) with ζpt`s q determined by
Eq. (5.47).

The integration of Eq. (5.38) from ti to tf is achieved by integrating each segment consecu-
tively. Then Φptf , tiq is computed as

Φptf , tiq “ Φptf , t
`
wq
By`w
By´w

Φpt´w , t
`
w´1q ¨ ¨ ¨Φpt

´
2 , t

`
1 q
By`1
By´1

Φpt´1 , tiq

“ Φptf , t
`
wqΦpt

`
w , t

`
w´1q ¨ ¨ ¨Φpt

`
2 , t

`
1 qΦpt

`
1 , tiq

(5.49)

where Φpt`k , t
`
k´1q “ By

`
k {By

`
k´1. The value of zpt

`
k q used as the initial point for the integration

of the segment rt`k , t
´
k`1s, as well as Φpt`k , t

`
k´1q, requires the gradient information of ypt`k q

stated in Section 5.2.2.
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5.2.2 Partial Derivatives of the Canonical Vector

In this section, the partial derivatives of ypt`j q at interior-point time tj is derived. For
simplicity of notations, the subscript j of a general variable xpt˘j q is simplified as x˘j , unless
specific statements.

Intermediate flyby and rendezvous transfer The differential of y´j is

dy´j “
By´j
By`j´1

dy`j´1 `
By´j
Bλ0

dλ0 ` 9y´j dtj `
j´1
ÿ

q“1

By´j
Btq

dtq (5.50)

There exists

ζ´j “
dy´j
dλ0

“
By´j
By`j´1

By`j´1

Bλ0

`
By´j
Bλ0

(5.51)

The term By´j {Bλ0 is non-zero since S is explicitly dependent on λ0. Both By´j {By
`
j´1 and

ζ´j are obtained directly from the integration of Eq. (5.38). The last term in Eq. (5.50), and
similar terms related to dtq in the following, will be discussed in Section 5.2.4.

Since x is continuous across tj, the differential of x`j is

dx`j “ dx´j “
Bx´j
By`j´1

dy`j´1 `
Bx´j
Bλ0

dλ0 ` 9x´j dtj `
j´1
ÿ

q“1

Bx´j
Btq

dtq (5.52)

From Eq. (5.21), the differential of dλ`c,j is

dλ`c,j “ dλ´c,j ´ d
`

hJc,jχj
˘

“
Bλ´c,j
By`j´1

dy`j´1 ´ h
J
c,jdχj `

Bλ´c,j
Bλ0

dλ0 `
9λ´c,jdtj `

j´1
ÿ

q“1

Bλ´c,j
Btq

dtq
(5.53)

where hc,j “ Bhj{Bxc is the constant matrix.

The differential of λ̃ is

dλ̃`j “ dλ̃´j “
Bλ̃´j
By`j´1

dy`j´1 `
Bλ̃´j
Bλ0

dλ0 `
9̃λ´j dtj `

j´1
ÿ

q“1

Bλ̃´j
Btq

dtq (5.54)

Combining Eqs. (5.52), (5.53) and (5.54) yields

dy`j “
By`j
By`j´1

dy`j´1 `
By`j
Bχj

dχj `
By`j
Bλ0

dλ0 `
dy`j
dtj

dtj `
j´1
ÿ

q“1

By`j
Btq

dtq (5.55)

where

By`j
By`j´1

“
By´j
By`j´1

,
By`j
Bχj

“

»

—

–

0

´hJc,j

0

fi

ffi

fl

,
By`j
Bλ0

“
By´j
Bλ0

,
By`j
Btq

“
By´j
Btq

(5.56)

and
dy`j
dtj

“ py`t,j ` qy`t,j (5.57)
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with py`t,j “ 9y´j and qy`t,j “ 0. The term dy`j {dtj is splitted into two parts based on whether
the time is explicitly dependent on.

The value of ζ`j is

ζ`j “
By`j
By`j´1

dy`j´1

dλ0

`
By`j
Bλ0

“
By´j
By`j´1

dy`j´1

dλ0

`
By´j
Bλ0

“ ζ´j (5.58)

The vectors y`j “ rx
´
j ,λ

´
c,j´h

J
c,jχj, λ̃

´
j s, and ζ

`
j in Eq. (5.58) are used to integrate Eq. (5.38)

within rt`j , t
´
j`1s. The matrix Φpt`j , t

`
j´1q is computed using Eq. (5.55).

Intermediate gravity-assist transfer The differential of y´j at tj is

dy´j “
By´j
By`j´1

dy`j´1 `
By´j
Bλ0

dλ0 ` 9y´j dtj `
j´1
ÿ

q“1

By´j
Btq

dtq (5.59)

The differential of x`c,j at tj is,

dx`c,j “ dx´c,j “
Bx´c,j
By`j´1

dy`j´1 `
Bx´c,j
Bλ0

dλ0 ` 9x´c,jdtj `
j´1
ÿ

q“1

Bx´c,j
Btq

dtq (5.60)

The differential of x`d,j is not required since x`d,j is the decision variable to solve. The differ-
ential of x̃`j is

dx̃`j “ dx̃´j “
Bx̃´j
By`j´1

dy`j´1 `
Bx̃´j
Bλ0

dλ0 ` 9̃x´j dtj `
j´1
ÿ

q“1

Bx̃´j
Btq

dtq (5.61)

From Eq. (5.31), the differential of λ`c,j is

dλ`c,j “ dλ´c,j ´ d
`

hJc,jχc,j
˘

“
Bλ`c,j
By`j´1

dy`j´1 `
Bλ`c,j
Bχj

dχj `
Bλ`c,j
Bλ0

dλ0 `
dλ`c,j
dtj

dtj `
j´1
ÿ

q“1

Bλ`c,j
Btq

dtq
(5.62)

where

Bλ`c,j
By`j´1

“
Bλ´c,j
By`j´1

,
Bλ`c,j
Bχj

“ ´
`

hJc,j, 0
˘

,
dλ`c,j
dtj

“ 9λ´c,j,
Bλ`c,j
Bλ0

“
Bλ´c,j
Bλ0

,
Bλ`c,j
Btq

“
Bλ´c,j
Btq
(5.63)

From Eq. (5.33), the differential of λ`d,j is

dλ`d,j “ ´d
`

φJd,j`χn,j
˘

´ d
`

σJd,j`κj
˘

“
Bλ`d,j
By`j´1

dy`j´1 `
Bλ`d,j
Bχj

dχj `
Bλ`d,j
Bκj

dκj `
dλ`d,j
dtj

dtj `
Bλ`d,j
Bλ0

dλ0 `
Bλ`d,j
Bx`d,j

dx`d,j `
j´1
ÿ

q“1

Bλ`d,j
Btq

dtq

(5.64)
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where φd,j`pt,x`d,jq “ Bφj{Bx
`
d,j, σd,j`pt,x

´
d,j,x

`
d,jq “ Bσj{Bx

`
d,j, and

Bλ`d,j
By`j´1

“ ´
BσJd,j`κj

Bx´d,j

Bx´d,j
By`j´1

,
Bλ`d,j
Bχj

“ ´
`

0,φJd,j`
˘

dλ`d,j
dtj

“ ´
BσJd,j`κj

Bx´d,j
9x´d,j ´

˜

BφJd,j`χn,j

Btj
`
BσJd,j`κj

Btj

¸

Bλ`d,j
Bκj

“ ´σJd,j`,
Bλ`d,j
Bλ0

“ ´
BσJd,j`κj

Bx´d,j

Bx´d,j
Bλ0

,
Bλ`d,j
Bx`d,j

“ ´

˜

BφJd,j`χn,j

Bx`d,j
`
BσJd,j`κj

Bx`d,j

¸

(5.65)

The differential of λ̃`j is

dλ̃`j “ dλ̃´j “
Bλ̃´j
By`j´1

dy`j´1 `
Bλ̃´j
Bλ0

dλ0 `
9̃λ´j dtj `

j´1
ÿ

q“1

Bλ̃´j
Btq

dtq (5.66)

Combining Eqs. (5.60) - (5.66) yields

dy`j “
By`j
By`j´1

dy`j´1`
By`j
Bχj

dχj`
By`j
Bκj

dκj`
dy`j
dtj

dtj`
By`j
Bλ0

dλ0`
By`j
Bx`d,j

dx`d,j`
j´1
ÿ

q“1

By`j
Btq

dtq (5.67)

where

By`j

By`j´1

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Bx´c,j

By`k´1

0

Bx̃´j

By`j´1

Bλ´c,j

By`j´1

Bλ`d,j

By`j´1

Bλ̃´j

By`j´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
By`j
Bχj

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

0

dλ`c,j
dχj

dλ`d,j
dχj
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
By`j
Bκj

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

0

0

dλ`d,j
dκj
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
By`j
Bλ0

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Bx´c,j
Bλ0

0

Bx̃´j
Bλ0

Bλ´c,j
Bλ0

Bλ`d,j
Bλ0

Bλ̃´j
Bλ0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
By`j

Bx`d,j
“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0

I

0

0

dλ`d,j

dx`d,j
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
By`j
Btq

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Bx´c,j
Btq
0

Bx̃´j
Btq
Bλ´c,j
Btq
Bλ`d,j
Btq
Bλ̃´j
Btq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.68)
and

dy`j
dtj

“ py`t,j ` qy`t,j (5.69)

with

py`t,j “

»

—

—

—

—

—

—

—

—

—

—

—

–

9x´c,j

0

9̃x´j
9λ´c,j

´
BσJd,j`κj

Bx´j
9x´j

9̃λ´j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

qy`t,j “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

0

0

´

˜

BφJd,j`χn,j

Btj
`
BσJd,j`κj

Btj

¸

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.70)
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The value of ζ`j is

ζ`j “

»

—

—

—

—

—

—

—

—

—

—

—

–

I3ˆ3

03ˆ3

1

I3ˆ3

´
BσJd,j`κ

Bx´d,j
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ζ´j (5.71)

The vectors

y`j “ rx
´
c,j,x

`
d,j, x̃

´
j ,λ

´
c,j ´ h

J
c,jχc,j,´φ

J
d,j`χn,j ´ σ

J
d,j`κj, λ̃

´
j s

and ζ`k in Eq. (5.71) are used to integrate Eq. (5.38) within rt`j , t
´
j`1s. The matrix Φpt`j , t

`
j´1q

is computed using Eq. (5.68).

5.2.3 Partial Derivatives of Constraints

The calculation of gradients of the constraints at tj involves two steps. The first step is to
derive the constraints w.r.t. decision variables at tj, and the next step is to apply the chain
rule to derive the derivatives of the constraints w.r.t. decision variables at tj´q, q ě 1. This
section focuses on the first step.

Intermediate flyby and rendezvous transfer 1) For constraints Eqs. (5.18) and (5.19),

dhj “
Bhj
By`j´1

dy`j´1 `
dhj
dtj

dtj `
Bhj
Bλ0

dλ0 `

j´1
ÿ

q“1

Bhj
Btq

dtq (5.72)

where
Bhj
By`j´1

“
Bhj
Bxc,j

Bxc,j
By`j´1

,
dhj
dtj

“ pht,j ` qht,j,
Bhj
Bλ0

“
Bhj
Bxc,j

Bxc,j
Bλ0

(5.73)

and
pht,j “

Bhj
Bxc,j

9xc,j, qht,j “
Bhj
Btj

(5.74)

Therefore we have
dhj
dλ0

“
Bhj
Bλ0

`
Bhj
By`j´1

By`j´1

Bλ0

“
Bhj
Bxc,j

dxc,j
dλ0

(5.75)

The full differentials of other constraints w.r.t. λ0 have the similar process as Eq. (5.75) in
the following.

2) For constraint Eq. (5.20), let Hj be

Hj “ χ
J
j ht,j ` L

´
j ´ L

`
j `

`

λ´j
˘J
f´j ´

`

λ`j
˘J
f`j (5.76)

The differential of Hj is

dHj “
BHj

By`j´1

dy`j´1 `
BHj

Bχj
dχj `

dHj

dtj
dtj `

BHj

Bλ0

dλ0 `

j´1
ÿ

q“1

BHj

Btq
dtq (5.77)
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where

BHj

By`j´1

“
BL´j

By´j

By´j

By`j´1

´
BL`j

By`j

By`j

By`j´1

`
`

f´j
˘J Bλ´j

By`j´1

`
`

λ´j
˘J Bf

´
j

By´j

By´j

By`j´1

´
`

f`j
˘J Bλ`j

By`j´1

´
`

λ`j
˘J Bf

`
j

By`j

By`j

By`j´1

BHj

Bχj
“ ht,j ´

BL`j

By`j

By`j
Bχj

´
`

f`j
˘J Bλ

`
j

Bχj
´
`

λ`j
˘J Bf

`
j

By`j

By`j
Bχ

dHj

dλ0
“
BL´j

By´j

dy´j
dλ0

`
BL´j
Bλ0

´
BL`j

By`j

dy`j
dλ0

´
BL`j
Bλ0

`
`

f´j
˘J dλ´j

dλ0
`
`

λ´j
˘J Bf

´
j

By´j

dy´j
dλ0

`
`

λ´j
˘J Bf

´
j

Bλ0

´
`

f`j
˘J dλ`j

dλ0
´
`

λ`j
˘J Bf

`
j

By`j

dy`j
dλ0

´
`

λ`j
˘J Bf

`
j

Bλ0

dHj

dtj
“ xHt,j ` |Ht,j

(5.78)
and

xHt,j “
BL´j

By´j
9y´j ´

BL`j

By`j
py`t,j `

`

f´j
˘J 9λ´j `

`

λ´j
˘J Bf

´
j

By´j
9y´j ´

`

f`j
˘J Bλ

`
j

By`j
py`t,j ´

`

λ`j
˘J Bf

`
j

By`j
py`t,j

|Ht,j “ χ
J
j htt,j

(5.79)

where htt,j “ Bht,j{Btj.

Intermediate gravity-assist transfer 1) For constraint Eq. (5.25), there satisfies

dhj “
Bhj
By`j´1

dy`j´1 `
dhj
dtj

dtj `
Bhj
Bλ0

dλ0 `

j´1
ÿ

q“1

Bhj
Btq

dtq (5.80)

where
Bhj
By`j´1

“
Bh

Bxc,j

Bxc,j
By`j´1

,
dhj
dtj

“ pht,j ` qht,j,
dhj
dλ0

“
Bhj
Bxc,j

dxc,j
dλ0

(5.81)

and
pht,j “

Bhj
Bxc,j

9xc,j, qht,j “
Bhj
Btj

(5.82)

2) For constraint Eq. (5.26), there satisfies

dφj “
Bφj
By`j´1

dy`j´1 `
Bφj
Bx`d,j

dx`d,j `
dφj
dtj

dtj `
Bφj
Bλ0

dλ0 `

j´1
ÿ

q“1

Bφj
Btq

dtq (5.83)

where
Bφj
By`j´1

“
Bφ

Bx´d,j

Bx´d,j
By`j´1

,
dφj
dtj

“ pφt,j ` qφt,j,
dφj
dλ0

“
Bφj
Bx´d,j

dx´d,j
dλ0

(5.84)

and
pφt,j “

Bφj
Bx´d,j

9x´d,j,
qφt,j “

Bφj
Btj

(5.85)

3) For constraint Eq. (5.32), let ψj “ χn,jφ
J
d,j´ ´ λ

´
d,j ` κjσ

J
d,j´, where φd,j´pt,x

´
d,jq “

Bφj{Bx
´
d,j, σd,j´ptj,x

´
d,j,x

`
d,jq “ Bσj{Bx

´
d,j, there satisfies

dψj “
Bψj
By`j´1

dy`j´1`
Bψj
Bx`d,j

dx`d,j`
Bψj
Bχj

dχj`
Bψj
Bκj

dκj`
dψj
dtj

dtj`
Bψj
Bλ0

dλ0`

j´1
ÿ

q“1

Bψj
Btq

dtq (5.86)
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where

Bψj
By`j´1

“

˜

BφJd,j´χn,j

Bx´d,j
`
BσJd,j´κj

Bx´d,j

¸

Bx´d,j
By`j´1

´
Bλ´d,j
By`j´1

Bψj
Bx`d,j

“
BσJd,j´κj

Bx`d,j
,
Bψj
Bχj

“ r0,φJd,j´s,
Bψj
Bκj

“ σJd,j´,
dψj
dtj

“ pψt,j ` qψt,j

dψj
dλ0

“

˜

BφJd,j´χn,j

Bx´d,j
`
BσJd,j´κ

Bx´d,j

¸

dx´d,j
dλ0

´
dλ´d,j
dλ0

(5.87)

and

pψt,j “ ´ 9λ´d,j `

˜

BφJd,j´χn,j

Bx´d,j
`
BσJd,j´κj

Bx´d,j

¸

9x´d,j,
qψt,j “

BφJd,j´χn,j

Btj
`
BσJd,j´κj

Btj
(5.88)

4) For constraint Eq. (5.30), let Hj be

Hj “ χ
J
j rht,j, φt,js ` κjσt,j ` L

´
j ´ L

`
j `

`

λ´j
˘J
f´j ´

`

λ`j
˘J
f`j (5.89)

where φt,j “ Bφj{Btj and σt,j “ Bσj{Btj. The differential of Hj is

dHj “
BHj

By`j´1

dy`j´1 `
BHj

Bx`d,j
dx`d,j `

BHj

Bχj
dχj `

BHj

Bκj
dκj `

dHj

dtj
dtj `

BHj

Bλ0

dλ0 `

j´1
ÿ

q“1

BHj

Btq
dtq

(5.90)
where

BHj

By`j´1

“

˜

BχJj rht,j , φt,js

Bx´j
`
Bσt,jκ

Bx´j

¸

Bx´j

By`j´1

`
BL´j

By´j

By´j

By`j´1

´
BL`j

By`j

By`j

By`j´1

`
`

f´j
˘J Bλ´j

By`j´1

`
`

λ´j
˘J Bf

´
j

By´j

By´j

By`j´1

´
`

f`j
˘J Bλ`j

By`j´1

´
`

λ`j
˘J Bf

`
j

By`j

By`j

By`j´1

BHj

Bx`d,j
“

˜

Bφt,jχn,j

Bx`d,j
`
Bσt,jκj

Bx`d,j

¸

´
BL`j

By`j

By`j

Bx`d
´
`

f`j
˘J Bλ

`
j

Bx`d
´
`

λ`j
˘J Bf

`
j

By`j

By`j

Bx`d

BHj

Bχj
“ rht,j , φt,js ´

BL`j

By`j

By`j
Bχj

´
`

f`j
˘J Bλ

`
j

Bχj
´
`

λ`j
˘J Bf

`
j

By`j

By`j
Bχj

BHj

Bκj
“ σt,j ´

BL`j

By`j

By`j
Bκj

´
`

f`j
˘J Bλ

`
j

Bκj
´
`

λ`j
˘J Bf

`
j

By`j

By`j
Bκj

dHj

dλ0
“

˜

BχJj rht,j , φt,js

Bx´j
`
Bσt,jκj

Bx´j

¸

dx´j
dλ0

`
BL´j

By´j

dy´j
dλ0

`
BL´j
Bλ0

´
BL`j

By`j

dy`j
dλ0

´
BL`j
Bλ0

`
`

f´j
˘J dλ´j

dλ0
`
`

λ´j
˘J Bf

´
j

By´j

dy´j
dλ0

`
`

λ´j
˘J Bf

´
j

Bλ0
´
`

f`j
˘J dλ`j

dλ0
´
`

λ`j
˘J Bf

`
j

By`j

dy`j
dλ0

´
`

λ`j
˘J Bf

`
j

Bλ0

dHj

dtj
“ xHt,j ` |Ht,j

(5.91)
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and

xHt,j “

˜

BχJj rht,j, φt,js

Bx´j
`
Bσt,jκj
Bx´j

¸

9x´j `
BL´j
By´j

9y´j ´
BL`j
By`j

pyt,j `
`

f´j
˘J 9λ´j `

`

λ´j
˘J Bf

´
j

By´j
9y´j

´
`

f`j
˘J Bλ

`
j

By`j
pyt,j ´

`

λ`j
˘J Bf

`
j

By`j
pyt,j

|Ht,j “
BχJj rht,j, φt,js

Btj
`
Bσt,jκj
Btj

´
BL`j
By`j

qyt,j ´
`

f`j
˘J Bλ

`
j

By`j
qyt,j ´

`

λ`j
˘J Bf

`
j

By`j
qyt,j

(5.92)
5) For constraint Eq. (5.28), the differential of ηj “ σj ` α

2
j is

dηj “
Bηj
By`j´1

dy`j´1 `
Bηj
Bαj

dαj `
Bηj
Bx`d,j

dx`d,j `
dηj
dtj

dtj `
Bηj
Bλ0

dλ0 `

j´1
ÿ

q“1

Bηj
Btq

dtq (5.93)

where

Bηj
By`j´1

“
Bηj
Bx´d,j

Bx´d,j
By`j´1

,
Bηj
Bαj

“ 2αj,
dηj
dtj

“ pηt,j ` qηt,j,
dηj
dλ0

“
Bηj
Bx´d,j

dx´d,j
dλ0

(5.94)

and

pηt,j “
Bηj
Bx´d,j

9x´d,j, qηt,j “
Bηj
Btj

(5.95)

6) For constraint Eq. (5.29), the differential of κjαj is

dpκjαjq “ κjdαj ` αjdκj (5.96)

Terminal and multiplier constraints The derivatives of terminal conditions and multiplier
normalization condition apply to both categories of missions. LetCptf ,xptf q, rtptf q,vtptf qq “
rrptf q ´ rT ptf q,vptf q ´ vT ptf q, λmptf qs, the differential of it is

dC “
BC

By`w
dy`w `

dC

dtf
dtf `

BC

Bλ0

dλ0 `

w´1
ÿ

q“1

BC

Btq
dtq (5.97)

where
BC

By`w
“
BC

Byf

Byf
By`w

,
dC

dtf
“ pCt,j ` qCt,j,

dC

dλ0

“
BC

Byf

dyf
dλ0

(5.98)

and
pCt,j “

BC

Byf
9yf , qCt,j “

BC

Btf
(5.99)

Besides, the differential of Cλ “

b

λ2
0 ` λ

J
i λi `

řŵ
j1“1pχ

J
j1χj1 ` κ

2
j1q `

řw
j2“ŵ`1χ

J
j2χj2 ´ 1

in Eq. (5.35) satisfies

dCλ “
λ0dλ0 ` λ

J
i dλi `

řŵ
j1“1pχ

J
j1dχj1 ` κj1dκj1q `

řw
j2“ŵ`1pχ

J
j2dχj2q

b

λ2
0 ` λ

J
i λi `

řŵ
j1“1pχ

J
j1χj1 ` κ

2
j1q `

řw
j2“ŵ`1χ

J
j2χj2

(5.100)
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5.2.4 Chain Rules

The differentials of the constraints at tj w.r.t. decision variables at tj´q, q ě 1 are obtained
in this section. Since the interior-point constraints are explicitly dependent on time, the
derivatives are splitted based on whether they are derived w.r.t. the time. Let a general
constraint at tj be Nj. The derivatives of Nj w.r.t. χj´q, x`d,j´q, αj´q and κj´q are similar.
Take the differential of Nj w.r.t. χj´q as an example. When q “ 1, there exists

dNj

dχj´1

“
BNj

By`j´1

By`j´1

Bχj´1

(5.101)

while the derivative of Nj w.r.t. χj´q, q ą 1 is

dNj

dχj´q
“
BNj

By`j´1

By`j´1

By`j´2

¨ ¨ ¨
By`j´q`1

By`j´q

By`j´q
Bχj´q

(5.102)

The analysis of the derivative of Nj w.r.t. tj´q is more complex. When q “ 1, the derivative
is divided into two parts. That is

dNj

dtj´1

“
BNj

By`j´1

dy`j´1

dtj´1

`
BNj

Btj´1

(5.103)

The first term can be obtained directly, while the analysis of the second term is depicted in
the following. As shown in Fig. 5.3, when y`j´1 remains unchanged, the effect of the slight
increment ∆t is to move the trajectory horizontally. Thus there exists

Bypt´j q

Btj´1

“ lim
∆tÑ0

ypt´j ´∆tq ´ ypt´j q

∆t
“ ´ 9ypt´j q (5.104)

y

1jt  jt

1( )jty

t

( )jty

( )jt t  y

t

Figure 5.3: Analysis of the derivative of ypt´j q w.r.t. tj´1.

The derivative of y`j w.r.t. tj´1 is

By`j
Btj´1

“
By`j
By´j

By´j
Btj´1

“ ´pyt,j (5.105)
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where the term qyt,j is not involved since tj is unaltered. Applying the chain rule, the derivative
of y˘j w.r.t. tj´q, q ě 2 is

dy˘j
dtj´q

“
By˘j
By`j´1

By`j´1

By`j´2

¨ ¨ ¨
By`j´q`1

By`j´q

dy`j´q
dtj´q

`
By˘j
Btj´q

(5.106)

where
By˘j
Btj´q

“ ´
By˘j
By`j´1

By`j´1

By`j´2

¨ ¨ ¨
By`j´q`2

By`j´q`1

pyt,j´q`1 (5.107)

Similarly, the derivative of Nj w.r.t. tj´1 is

BNj

Btj´1

“
BNj

By´j

By´j
Btj´1

`
BNj

By`j

By`j
Btj´1

“ ´ xNt,j (5.108)

Thus
dNj

dtj´1

“
BNj

By`j´1

dy`j´1

dtj´1

´ xNt,j (5.109)

Applying the chain rule, the derivative of Nj w.r.t. tj´q, q ě 2 is

dNj

dtj´q
“
BNj

By`j´1

By`j´1

By`j´2

¨ ¨ ¨
By`j´q`1

By`j´q

dy`j´q
dtj´q

`
BNj

Btj´q
(5.110)

where
BNj

Btj´q
“ ´

BNj

By`j´1

By`j´1

By`j´2

¨ ¨ ¨
By`j´q`2

By`j´q`1

pyt,j´q`1 (5.111)

In order to recursively calculate Eqs. (5.102) and (5.110), Bj´1 is defined first as follows

Bj´1 “
BNj

By`j´1

(5.112)

Next, Bl, l “ j ´ q, ¨ ¨ ¨ , j ´ 2 is computed as

Bl “ Bl`1

By`l`1

By`l
(5.113)

then
dNj

dχj´q
“ Bj´q

dy`j´q
dχj´q

(5.114)

and
dNj

dtj´q
“ Bj´q

dy`j´q
dtj´q

´Bj´q`1pyt,j´q`1 (5.115)

The integration flowchart for each segment is extracted from [47]. The process to construct
the shooting function along with analytic gradients is shown in Algorithm 1, where the
following abbreviations are used to label the transfer types: MF: asteroid flyby; MR: asteroid
rendezvous; MG: gravity assist.
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Algorithm 1 Shooting functions and their gradients.
Require: Guess solution, w
1: for k “ 0 : w do{Loop each segment}
2: Integrate Eq. (5.38) using flowchart in [47] from t`k to t´k`1. Return y

´
k`1, Φpt´k`1, t

`
k q and ζ

´
k`1.

3: if k ď w ´ 1 then
4: j “ k ` 1.
5: Compute rT,jptjq, 9rT,jptjq, :rT,jptjq, vT ptjq, 9vT,jptjq, :vT,jptjq.
6: Compute y`j based on Section 5.2.2.
7: Compute interior-point constraints: MF: Eqs. (5.18) and (5.20); MR: Eq. (5.19) and (5.20); MG: Eqs. (5.25),

(5.26), (5.28), (5.29), (5.30) and (5.32).
8: Compute partial derivatives of y`j , MF and MR: Eqs. (5.55); MG: Eqs. (5.67).
9: Formulate z`j based on Section 5.2.2.

10: for l “ j : ´1 : 0 do
11: if l “ j then
12: Compute derivatives of the constraints at tj w.r.t. decision variables at tj , MF and MR: Eqs. (5.72), (5.77);

MG: Eqs. (5.80), (5.83), (5.86), (5.90), (5.93), (5.96) (not computing terms related to dtq.)
13: else
14: Compute derivatives of the constraints at tj w.r.t. decision variables at tl: Eqs. (5.101), (5.102), (5.109)

and (5.110).
15: end if
16: end for
17: end if
18: end for
19: Compute terminal constraints: (5.4) and (5.13).
20: Compute differentials in Eq. (5.98).
21: for l “ w : ´1 : 0 do
22: Compute derivatives of terminal constraints w.r.t. decision variables at tl: Eqs. (5.101), (5.102), (5.109) and

(5.110).
23: end for
24: Compute Cλ and Eq. (5.100).

5.3 Numerical Simulations

Three simulation examples for a variety of deep-space transfers are presented. All simulations
are implemented under an Intel Core i7-9750H, CPU@2.6 GHz, Windows 10 system with
MATLAB R2019a. The code for the integration of Eq. (5.38) is converted to MEX file to
speed up simulations. In the following, the physical constants g0, AU, TU, VU, Sun mass
parameter µs are reported in Table 2.1. The position and velocity of the planet and asteroid
are computed from NASA HORIZON1and MPC2, respectively. The method to generate the
initial guess solution for the energy-optimal problem is not discussed since it is outside of
the scope of this work. In the following, the energy-optimal solutions are found by trial and
errors. MATLAB function fsolve is employed to solve the shooting problem. The initial
ε step is ∆ε “ 0.05. When the solution for current ε succeeds, a slightly larger ∆ε step is
awarded, as ∆εÐ 1.01ˆ∆ε, otherwise half of ∆ε step is used, as ∆εÐ 0.5ˆ∆ε.

5.3.1 Earth-Jupiter Transfer via Mars Gravity Assist

The example of Earth-Jupiter transfer from [44] is reproduced. The task is to find the fuel-
optimal trajectory that rendezvouses with Jupiter via Mars gravity assist, with the transfer
time tf “ 2201 days. The spacecraft parameters, Mars parameters and boundary conditions
are given in Table 5.1, where the initial and terminal heliocentric position and velocity are
set to coincide with those of the Earth and Jupiter, respectively. The boundary conditions

1See https://ssd.jpl.nasa.gov/planets/approx_pos.html
2See https://minorplanetcenter.net/
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generated are slightly different from [44], but their impact on the fuel-optimal solution is
ignorable.

The unknowns are rλ0,λi,χ1,x
`
d,1, α1, κ1, t1s P R18, with λi P R7, χ1 P R4 and x`d,1 P R3,

corresponding to the shooting function in Eq. (5.34). Both energy-optimal and fuel-optimal
solutions are summarized in Table 5.2, where the fuel-optimal final mass of the spacecraft is
16027.3 kg. The fuel-optimal trajectory is shown in Fig. 5.4, involving four thrust segments
and three coast segments. The corresponding fuel-optimal variations of u, S, m are shown
in Fig. 5.5, where accurate bang-bang control profile coincides with [44]. The variations of
costates are shown in Fig. 5.6, where the discontinuity of the costate across the gravity-assist
time is illustrated. In terms of computational time, the ε continuation using the presented
method takes around 2.4 mins, while the ε continuation with the finite difference method
inherently imbeded in MATLAB takes around 1.4 hours. The computational efficiency of
the former is apparently superior than the later. The computational time is less than [44]
(» 3 mins), but the improvement is not apparent, maybe because of the differences in the
platform (Microsoft Visual C++ 6.0 in [44]) and the integrator (RK4 in [44]).

Table 5.1: Parameters for Earth-Jupiter rendezvous via Mars gravity assist.

Physical constant Value

Isp, s 6000

Tmax, N 2.26

Mass Unit, kg 20000.0

Mars mass parameter, km3{s2 42828.3

Mars rmin, km 3889.9

Mars radius, km 3389.9

Initial time 16-Nov-2021, 00:00:00
Flight time, days 2201.0

Initial position, AU [0.587638, 0.795476, ´3.953062ˆ 10´5]
Initial velocity, VU [-0.820718, 0.590502, ´2.934460ˆ 10´5]
terminal position, AU [-5.205108, 1.491385, 0.110274]
terminal velocity, VU [-0.126219, -0.401428, 4.494423ˆ 10´3]

Table 5.2: Energy-optimal and fuel-optimal solutions for Earth-Jupiter rendezvous via Mars gravity assist.

Terms Energy-optimal solution Fuel-optimal solution

λ0 0.615841 0.819085
λri [-0.278574, -0.459643, -0.053818] [-0.211713, -0.293488, -0.031748]
λvi [0.362598, -0.334005, -0.055783] [0.279598, -0.208178, -0.085726]
λmi 0.176741 0.177985
χ1 [-0.007492, -0.103902, 0.062598, -0.191078] [0.026271, -0.058226, 0.077165, -0.161649]
x`d,1, VU [0.912146, 0.285079, -0.004974] [0.820778, 0.514477, -0.003464]
α1 0.017361 0.020703
κ1 0 0
GA date t1 19-Feb-2024 14:09:23 19-Mar-2024 04:10:34
GA v8, km/s 3.189 3.602
GA altitude, km 500 500
Final mass, kg 15742.7 16027.3
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Figure 5.4: Fuel-optimal trajectory for Earth-Mars-Jupiter transfer. Red solid line: thrust segment; blue
dashed line: coast segment. Gray dashed line: orbits of the Earth, Mars and Jupiter.
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Figure 5.5: Fuel-optimal variations of u, S, and m for Earth-Mars-Jupiter transfer.
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Figure 5.6: Fuel-optimal variations of costates for Earth-Mars-Jupiter transfer.

5.3.2 Earth-Earth Transfer via Asteroids Flyby and Rendezvous

The problem of Earth-Earth transfer via asteroid 2014 YD flyby, 2000 SG344 rendzvous and
2010 UE51 flyby is solved. Spacecraft parameters and boundary conditions are shown in
Table 5.3, where the initial and terminal heliocentric position and velocity are set to coincide
with those of the Earth. The unknowns to solve are rλ0,λi,χ1,χ2,χ3, t1, t2, t3s P R19, with
χ1 P R3, χ2 P R6 and χ3 P R3, corresponding to the shooting function in Eq. (5.22). Both
energy-optimal and fuel-optimal solutions are summarized in Table 5.4, with fuel-optimal
final mass of the spacecraft as 535.07 kg. The fuel-optimal trajectory is shown in Fig. 5.7,
involving four thrust segments and three coast segments. The fuel-optimal variations of u,
S, m are shown in Fig. 5.8. The fuel-optimal variations of costates are shown in Fig. 5.9,
where λr discontinuity appears at flyby and rendezvous time, λv discontinuity exists only
at rendezvous time and λm is continuously varied. In terms of computational time, the ε
continuation using the presented method takes around 10 mins. On the other hand, the ε
continuation with the finite difference method fails to converge since the inaccurate gradients
prevent the continuation process.

Table 5.3: Parameters for Earth-Earth transfer via 2014 YD flyby, 2000 SG344 rendezvous and 2010
UE51 flyby.

Physical constant Value

Isp, s 2500

Tmax, N 0.3

Mass unit MU, kg 1500

Initial time 01-Feb-2023, 00:00:00
terminal time 01-Mar-2026
Initial position, AU [-0.653263, 0.737562, ´3.866946ˆ 10´5]
Initial velocity, VU [-0.764969, -0.666884, 3.496388ˆ 10´5]
terminal position, AU [-0.931249, 0.338086, ´2.007635ˆ 10´5]
terminal velocity, VU [-0.357572, -0.943864, 5.604891ˆ 10´5]
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Table 5.4: Energy-optimal and Fuel-optimal solutions for Earth-Earth transfer via 2014 YD flyby, 2000
SG344 rendezvous and 2010 UE51 flyby.

Terms Energy-optimal solution Fuel-optimal solution

λ0 0.211647 0.271881
λri [-0.202188, 0.206945, 0.028747] [-0.202201, 0.198694, 0.026776]
λvi [-0.305011, -0.226613, -0.037294] [-0.298819, -0.215361, -0.032584]
λmi 0.282487 0.272639
χ1 [0.049098, -0.004485, 0.048495] [0.047540, -0.005221, 0.047607]
χ2 [-0.129290, -0.356127, 0.002973 [ -0.149403, -0.345161, -0.001346

-0.496797, 0.210566, -0.002674] -0.482830, 0.229925, -0.006558]
χ3 [0.360288, 0.275325, -0.000372] [0.365608, 0.261172, -0.002431]
Flyby date t1 29-Oct-2023 11:07:23 27-Oct-2023 19:39:44
Rendzvous date t2 14-Nov-2024 04:07:59 11-Nov-2024 01:36:59
Flyby date t3 30-May-2025 19:29:21 28-May-2025 16:20:37
Final mass, kg 509.72 535.07

Figure 5.7: Fuel-optimal trajectory for Earth-Earth transfer via 2014 YD flyby, 2000 SG344 rendezvous
and 2010 UE51 flyby.
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Figure 5.8: Fuel-optimal variations of u, S and m for Earth-Earth transfer via 2014 YD flyby, 2000
SG344 rendezvous and 2010 UE51 flyby.
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Figure 5.9: Fuel-optimal variations of costates for Earth-Earth transfer via 2014 YD flyby, 2000 SG344
rendezvous and 2010 UE51 flyby.

5.3.3 Earth-Mars Transfer via Venus Gravity Assist and 2014 YD Flyby

The problem of Earth-Mars rendezvous via Venus gravity assist and asteroid 2014 YD flyby,
consisting of both two types of intermediate events, is solved. Spacecraft parameters, Venus
parameters and boundary conditions are shown in Table 5.5, where the initial and terminal
heliocentric position and velocity are set to coincide with those of the Earth and Mars,
respectively. The unknowns to solve are rλ0,λi,χ1, κ1, α1,x

`
d,1, t1,χ2, t2s P R22, with χ1 P R4,

x`d,1 P R3 and χ2 P R3, corresponding to the shooting function as Eq. (5.35). Both energy-
optimal and fuel-optimal solutions are summarized in Table 5.6, with fuel-optimal final mass
of the spacecraft as 153.59 kg. The fuel-optimal trajectory is shown in Fig. 5.10, consisting
of three thrust segments and two coast segments. The fuel-optimal variations of u, S and m
are shown in Fig. 5.11. The fuel-optimal variations of costates are shown in Fig. 5.12, where
λr discontinuity exists at both gravity-assist and flyby moment, λv discontinuity exists only
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at gravity-assist moment and λm is continuously varied. In terms of computational time, the
ε continuation using the presented method takes around 5.3 mins. On the other hand, the ε
continuation with the finite difference method takes around 3.2 hours.

Table 5.5: Parameters for Earth-Mars transfer via Venus gravity assist and 2014 YD flyby.

Physical constant Value

Isp, s 2300

Tmax, N 0.75

Initial mass, kg 1300

Venus mass parameter, km3{s2 324858.6

Venus rmin, km 35000
Venus radius, km 6051.8
Initial time 13-Apr-2015, 00:00:00
terminal time 01-Aug-2016, 00:00:00
Initial position, AU [-0.925875, -0.384412, 1.337409ˆ 10´5]
Initial velocity, VU [0.367225, -0.927443, 3.226668ˆ 10´5]
terminal position, AU [0.268192, -1.408461, -0.036094]
terminal velocity, VU [0.829838, 0.222071, -0.015714]

Table 5.6: Energy-optimal and fuel-optimal solutions for Earth-Mars rendezvous via Venus gravity assist
and 2014 YD flyby.

Terms Energy-optimal solution Fuel-optimal solution

λ0 0.361074 0.521907
λri [0.178198, 0.166881, -0.032364] [0.164820, 0.147779, -0.022443]
λvi [0.233904, -0.000741, 0.009953] [0.202269, 0.009468, 0.007458]
λmi 0.573123 0.548787
χ1 [0.527044, 0.137126, 0.013999, -0.055746] [ 0.473332, 0.107366, 0.005633, -0.040304]
κ1 0.011789 0.010211
α1 0 0
x`d,1 [-0.160377, 1.344821, 0.009991] [-0.126897, 1.349805, 0.007997]
χ2 [-0.303371, -0.183195, 0.008816] [-0.275167, -0.150929, 0.007256]
GA date t1 12-Sep-2015 10:23:07 11-Sep-2015 16:55:04
GA v8, km/s 5.479 5.523
GA altitude, km 28948.2 28948.2
Flyby date t2 28-Apr-2016 06:17:04 19-Apr-2016 16:38:07
Final mass, kg 126.98 153.59
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Figure 5.10: Fuel-optimal trajectory for Earth-Mars rendezvous via Venus gravity assist and 2014 YD
flyby. Red line: thrust segments; Blue dot line: coast segments; Gray dashed line: orbits of the Earth,

Venus, asteroid 2014 YD and Mars.

0 100 200 300 400
0

0.5

1

0 100 200 300 400
-1

-0.5

0

0 100 200 300 400
0

500

1000

Flyby dateGA date

Figure 5.11: Fuel-optimal variations of u, S and m for Earth-Mars rendezvous via Venus gravity assist
and 2014 YD flyby.
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Figure 5.12: Fuel-optimal variations of costates for Earth-Mars rendezvous via Venus gravity assist and
2014 YD flyby.

5.4 Summary

Indirect optimization for deep-space transfers involving intermediate flyby and rendezvous
and gravity-assist events are investigated. The NOCPs with explicit time-dependent multi-
dimensional interior-point constraints are established. The procedure to derive and calculate
the analytic gradients is depicted. The main feature of our method is the capability to offer
the desired fuel-optimal bang-bang solutions and their gradients. Numerical experiments
show that the presented method enables to improve effectively the solver execution speed
and enhance the optimizer robustness compared to the finite difference method.
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CHAPTER 6
THRUST CONTINUATION OF TIME-OPTIMAL

EARTH-ORBIT TRANSFERS

The low level of the thrust usually culminates in the optimal planetocentric transfer en-
compassing many revolutions before reaching the desired orbit. The corresponding NOCP
is difficult to solve directly since the sensitivity of the problem to the initial guess solution
amplifies as the number of revolutions grows [103]. Continuation is an effective method in
trajectory optimization to expand the convergence domain. A continuation scheme is always
specifically designed to improve the algorithmic robustness. A natural idea is to employ
thrust continuation which starts from the time-optimal solution with high thrust level and
few revolutions, and gradually reduces the thrust to the desired level. This chapter stud-
ies the indirect optimization of the low-thrust, time-optimal Earth-orbit transfers toward a
general orbit specified by a subset of orbital elements. The main difficulty is the failure of
thrust continuation when the thrust is reduced down to a certain level. This chapter presents
a simple method that allows thrust continuation by connecting local solutions with different
revolutions.

6.1 Problem Statement

The time-optimal Earth-orbit transfer is studied, with the terminal orbit specified by a given
subset of orbital elements (orbit transfer problem), instead of terminal fixed points (it is not a
rendezvous problem). The equations of motion of the spacecraft subject to the gravitational
attraction of the Earth under Cartesian coordinate are employed based on the following facts:

1. Classical orbital elements are not used to represent the state due to the singularity of
their dynamics at zero inclination and zero eccentricity [104].
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2. The analytical reduced transversality conditions introduced in [85] allow tackling differ-
ent kinds of soft terminal orbital conditions without solving the corresponding multipli-
ers.

3. Even though MEE shows a good numerical robustness in planetocentric transfers, the
terminal multipliers are required to solve when the final orbit is specified by a subset
of orbital elements (except fixed final orbit specified by a, e, i, Ω and w), unless the
corresponding reduced conditions are derived analytically.

The equations are the same as Eq. (2.1), where both Tmax and Isp are assumed constant.
The performance index of the time-optimal problem and the Hamiltonian function are given
by Eqs. (2.21) and (2.22). By virtue of the PMP [26], the optimal thrust direction α˚ is in
Eq. (2.11), while the optimal thrust throttle factor u˚ is

u˚ “

"

1 S ă 0

0 S ą 0
(6.1)

where the switching function S is Eq. (2.24).

Once α˚ and u˚ are determined, the motion of the spacecraft is determined by integrating
the following equations

9y “ F pyq ñ
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9r “ v

9v “ ´
µ

r3
r ´ u

Tmax

m

λv
λv

9m “ ´u
Tmax

c

9λr “ ´
3µλJv r

r5
r `

µ

r3
λv

9λv “ ´λr

9λm “ ´uλv
Tmax

m2

(6.2)

where y “ rx,λs is a 14-dimensional canonical variable.

Since the terminal mass is free and the augmented terminal cost does not explicitly depend
on the mass, there exists

λmptf q “ 0 (6.3)

Since 9λm ě 0 and λmptf q “ 0, thus λmptq ě 0, which implies S ă 0 and therefore u˚ “ 1 for
the whole trajectory. The initial condition is

xptiq “ xi (6.4)

where ti is the initial time.

When a subset of orbital elements, e.g., a, e and i, are specified, by applying the transforma-
tion between Cartesian coordinates and orbital elements, the terminal conditions are labeled
as

φprf ,vf q “ 0 P Rk, k ď 6 (6.5)
The reduced transversality conditions [85] allows to solve the problem by shooting the ter-
minal conditions (including Eq. (6.3))

Φpyf q “ 0 P R7 (6.6)
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without solving explicitly terminal Lagrange multipliers. Additionally, the transversality
condition at terminal time tf is

Hpyf q “ 0 (6.7)

Remark 6.1. Let ϕpt, ti, rλi,xis, Tmaxq be the solution of Eq. (6.2) integrated from ti to a
general time t with the given Tmax, the time-optimal problem is to find the optimal ξ˚ “
rλ˚i , t

˚
f s P R8 such that

ϕpt˚f , ti, rλ
˚
i ,xis, Tmaxq satisfies

"

Φpyf q “ 0

Hpyf q “ 0
(6.8)

Proper guessed initial costates and transfer time are required to determine the time-optimal
solution. However, the major difficulty is the sensitivity of the solution to the a priori
unknown initial costate, which further amplifies when the trajectory is made of many revo-
lutions [103].

6.2 Methodology

6.2.1 Thrust Continuation

The idea of thrust continuation is to solve the easier time-optimal problem with high thrust
level and few revolutions first. Then the solution with low thrust level is approached by
gradually reducing the Tmax value. Suppose the time-optimal solution λ˚i and t˚f with the
given Tmax value is found, for the small thrust variation Tmax ` dTmax, there satisfies

#

Φpyf pλ
˚
i ` dλi, Tmax ` dTmax, t

˚
f ` dtf qq “ 0

Hpyf pλ
˚
i ` dλi, Tmax ` dTmax, t

˚
f ` dtf q, Tmax ` dTmaxq “ 0

(6.9)

Take the full differential of above equations yields
$
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dΦ “
BΦ
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Byf
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(6.10)

Then we have
»

—

—

–

dλ˚i
BTmax
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BTmax

fi

ffi

ffi

fl

“ ´A´1b (6.11)

where
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`
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In the vector b,
BH

BTmax

“ u
S

c
(6.13)

99



Chapter 6. Thrust Continuation of Time-optimal Earth-Orbit Transfers

and Byf{BTmax is computed by integrating the following dynamical equations

d

dt

By

BTmax

“
BF

By

By

BTmax

`
BF

BTmax

(6.14)

with the initial condition By{BTmaxptiq “ 014ˆ1 and BF {BTmax “ r01ˆ3,´u
λJv
mλv

,´
u

c
,01ˆ6,´u

λv
m2
sJ.

Generally, the thrust continuation process can proceed if Eq. (6.11) can be solved, i.e., A
is regular. However, it is observed that Eq. (6.11) goes off to infinity at certain Tmax value.
As shown in Fig 6.1, it is possible that 1) the costate remains finite, and the corresponding
termination point is called limit point [65]; 2) the costate goes to infinity as well. For both
cases, thrust continuation fails to proceed by gradually reducing Tmax, since there are no
solutions corresponding to the reduced Tmax in the neighborhood of current solution point.
Simultaneously, the shooting method is a local method which searches the solution nearby
the guessed solution.

*

2iλ

maxT

Limit Point

To Infinity

Figure 6.1: Failures of thrust continuation.

6.2.2 Manifold Connection

Fixed-point terminal conditions This work is inspired by the thrust continuation for the time-
optimal low-thrust problem with fixed-point terminal conditions designed in [105], which is
reported here first. The method is based on the fact that the time-optimal problem has
multiple local solutions with different spirals. In Fig. 6.2, suppose that the solution manifold
α is currently traced, until the continuation becomes difficult to proceed at the solution ξ˚α,f .
The idea in [105] is to switch to and trace another manifold β. The manifold connection is
achieved by searching the solution ξ˚β,0 which is another local solution with the same Tmax as
ξ˚α,f , but involving more revolutions than ξ˚α,f . The more revolutions allow the trajectory with
smaller thrust to reach the terminal conditions. The thrust continuation enables to proceed
by tracing another manifold β starting from the solution ξ˚β,0. The manifold connection
developed is the process to search local solutions with different revolutions for the fixed Tmax.

Figure 6.3 shows the process to find the solution ξ˚β,0 involving one more revolution than the
solution ξ˚α,f . The auxiliary orbit that frees the true anomaly of the terminal point is identified
first. Starting from solution ξ˚α,f , a succession of auxiliary problems, with the terminal points
moving forward on the auxiliary orbit by gradually increasing the true anomaly, are solved.
The solution ξ˚β,0 is found once the true anomaly increases by 2π. It can be summarized that
the thrust continuation for fixed-point terminal conditions is effective since it satisfies the
following three criteria:
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6.2. Methodology

1. the switch from the solutions ξ˚α,f to the solution of the auxiliary problem is smooth;

2. the criterion when the solution ξ˚β,0 is reached is clear;

3. the switch from the solutions of the auxiliary problem to the solution ξ˚β,0 is smooth.

*

2iλ

maxT

...
Manifold 

Connection

*

, f

Solution Manifold 

Solution Manifold 
*

,0

*

, f

Auxiliary Problems 

Figure 6.2: Manifold connection.

Solution 

Solution

Auxiliary Orbit

Terminal point

Auxiliary Transfer

*

, f

*

,0

Figure 6.3: Solution connection for fixed-point terminal conditions.

Soft terminal conditions When soft terminal conditions are taken into consideration, the
key is to establish the auxiliary problem that satisfies criteria mentioned above. Suppose
that the terminal orbit are specified by orbital elements a, e and i, as shown in Fig. 6.4, we
still hope to connect solutions with different revolutions through solving a series of auxiliary
problems by gradually increasing ζ. The solution corresponding to the increased ζ indicates
that it involves more revolutions. The auxiliary orbit may be not unique anymore. One may
define the auxiliary problem that targets the terminal orbit specified by a, e, i and increased
true anomaly θ, where ζ :“ θ. Unfortunately, numerical practice reveals that the transform
from the solution ξ˚α,f to the solution of this auxiliary problem is not smooth, due to the
differences in reduced transversality conditions [85] for the orbits specified by a, e, i and
by a, e, i, θ. The auxiliary problem will be established by using the augmented dynamics
elaborated below.

6.2.3 Augmented Dynamics

The variable ζ which represents the angle that trajectory has swept through is used, with
the following dynamics

9ζ “
h

r2
(6.15)
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Solution 

Solution



Auxiliary transfer

Auxiliary orbit

*

, f

*

,0

Figure 6.4: Solution connection for soft terminal conditions.

where 9ζ ą 0 regardless of the direction of the thrust, h is the magnitude of the instantaneous
momentum h “ rˆ v. The ture anomaly θ is not employed to define ζ because θ is singular
when the eccentricity e “ 0. Also, the value of true anomaly is affected by the value of Ω
and w which are varied during the transfer. Additionally, the dynamics of 9ζ is simpler since
the control variables are not involved. The number of revolutions of the trajectory is defined
as

Nrev “
ζf ´ ζi

2π
(6.16)

where ζi and ζf are the values of ζ at initial and terminal time.

The equations of augmented dynamics are

dx̂

dt
“ fpx̂, u,αq ñ

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

9r “ v

9v “ ´
µ

r3
r ` u

Tmax

m
α

9m “ ´u
Tmax

Isp g0

9ζ “
h

r2

(6.17)

with the initial value x̂i “ rxi, 0s.

The corresponding augmented Hamiltonian function is

Ĥ “ 1` λJr v ` λ
J
v

ˆ

´
µ

r3
r ` u

Tmax

m
α

˙

´ λmu
Tmax

Ispg0

` λζ
h

r2
(6.18)

The α˚ and u˚ are the same as Eqs. (2.11) and (6.1). The motion of the spacecraft is
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determined by integrating the following augmented state-costate dynamics

dŷ

dt
“ F̂ pŷq ñ
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9r “ v

9v “ ´
µ

r3
r ´ u

Tmax

m

λv
λv

9m “ ´u
Tmax

Isp g0

9ζ “
h

r2

9λr “ ´
3µλJv r

r5
r `

µ

r3
λv ` λζ

ˆ

Bh{r2

Br

˙J

9λv “ ´λr ` λζ

ˆ

Bh{r2

Bv

˙J

9λm “ ´uλv
Tmax

m2

9λζ “ 0

(6.19)

where ŷ “ rx̂, λ̂s and
ˆ

Bh{r2

Br

˙J

“ ´2
h

r3

r

r
`
hˆ v

r2
,

ˆ

Bh{r2

Bv

˙J

“
r ˆ h

r2
(6.20)

In Eq. (6.19), 9λζ “ 0 implies that λζ is constant during the flight. Moreover, the solution of
the augmented problem is equivalent to the solution of the original problem if

λζptf q “ 0 (6.21)

Let ϕ̂pt, ti, rλ̂i, x̂isq be the solution integrating Eq. (6.19) from ti to a general time t, the
following two problems are defined:

Definition 6.1 (Problem P0). Find the optimal λ̂˚i and t˚f such that

ϕ̂pt˚f , ti, rλ̂
˚
i , x̂isq satisfies

$

’

&

’

%

Φpŷf q “ 0

Ĥpŷf q “ 0

λζptf q “ 0

(6.22)

Definition 6.2 (Problem P1). Find the optimal λ̂˚i and t˚f such that

ϕ̂pt˚f , ti, rλ̂
˚
i , x̂isq satisfies

$

’

&

’

%

Φpŷf q “ 0

Ĥpŷf q “ 0

ζptf q “ ζ̂

(6.23)

where ζ̂ is a prescribed value.

Here, Problem P0 is equivalent to the original problem as stated in Remark 6.1, while Problem
P1 is the auxiliary problem. The solution to Problem P0 is equivalent to the solution to
Problem P1 if ζ̂ is set to the ζf calculated from the solution to P0. The solution to Problem
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P1 is equivalent to the solution to Problem P0 if λζptf q “ 0 is additionally satisfied. Thus, the
solution switching between P0 and P1 is smooth. Besides, Problem P0 offers a simple criteria
to switch back from P1 to P0, i.e., λζptf q “ 0. Thus, the definition of the auxiliary problem
elegantly satisfies the three criteria.

The indirect method featuring analytic gradients is employed to solve the time-optimal prob-
lem. The gradients are computed through the state transition matrix (STM) and the chain
rule, with the STM subject to

9Φpti, tq “ DyF̂Φpti, tq Φpti, tiq “ I16ˆ16 (6.24)

whereDyF̂ is the jacobian matrix of F̂ pŷq w.r.t. ŷ. Let z “ rŷ, vecpΦqs be a vector containing
ŷ and columns of Φ. There exists

9z “ Gpzq ñ

˜

9̂y

vecp 9Φq

¸

“

˜

F̂ pŷq

vecpDyF̂Φq

¸

(6.25)

Moreover, Eq. (6.14) is integrated along with Eq. (6.25), using variable–step seventh/eighth
Runge–Kutta integration scheme.

It is observed that the frequency to execute the manifold connection increases rapidly as the
Tmax value decreases. More executions of the manifold connection indicate more computa-
tional load. In order to reduce the frequency of solution manifold connection, minimum ζmin

has to be satisfied before checking whether a new solutions is found. In the simulation part,
ζmin is set according to numerical experiences as

ζmin “ 2π ˆ

ˆ

Ceil

ˆ

ζα,f
2π

˙

` Ceilp4ˆ p| log
Tmax

m0

| ´ 2qq

˙

(6.26)

where ζα,f is the terminal ζf for the solution ξ˚α,f and ‘Ceil’ is the round up operator.

6.3 Numerical Simulations

In the following, orbital elements of the terminal orbit is specified by a, e and i, while freeing
Ω, ω and θ. The corresponding terminal conditions are [85]

Φpŷf q “
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’
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’
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%

hJf hf ´ h
2

1

2
vJf vf ´

1

rf
`

µ

2a

IJz hf ´ hf cos i

pλrf ˆ rf ` λvf ˆ vf q
J hf

pλrf ˆ rf ` λvf ˆ vf q
J Iz

λJrfvf ´
µ

r3
f

λJvfrf

λmptf q

(6.27)

where Iz “ r0, 0, 1sJ. The physical constants and spacecraft parameters are listed in Ta-
ble 6.1, where the initial spacecraft mass is equivalent to the mass unit. Orbit transfers from
GTO to GEO and from GTO to Elliptic Inclined Geosynchronous Orbits (EIGSO) are simu-
lated to verify the algorithmic effectiveness. The corresponding orbital elements are given in
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Table 6.2. It can be seen that the departure orbit GTO is highly eccentric with e “ 0.7. The
semi-major axis of EIGSO is the same as GEO, but eccentricity and inclination are non-zero.

Table 6.1: Physical constants and spacecraft parameters.

Physical constant Value

Mass parameter, µ 398600.4418 km3{s2

Gravitational field, g0 9.80665 m{s2

Length unit, LU 6378.137 km

Time unit, TU 806.8111 s

Velocity unit, VU 7.9054 km{s

Mass unit, MU 1500 kg

Specific Impulse, Isp 1994.75 s

Table 6.2: Orbital elements for departure orbit GTO and terminal orbits GEO and EIGSO.

Orbit a (km) e i (deg) Ω (deg) w (deg) θ (deg)

GTO 26571.43 0.75 7.004 360 0 180
GEO 42165 0 0 free free free
EIGSO 42165 0.3 50 free free free

6.3.1 GTO to GEO

The simulation of GTO to GEO transfer extracted from [106] is reported. The thrust contin-
uation starts from the time-optimal transfer with Tmax “ 60 N. The corresponding optimal
trajectory requires the transfer time t˚f “ 14.80 h and involves only 1.05 revolutions; see case
A in Table 6.3. The optimal initial costate is

λ˚i “ r´2.206184,´1.192697,´0.401076,´47.309921, 48.309300,´21.856674, 29.145137sJ

The procedure of thrust continuation by using manifold connections are illustrated in Fig. 6.5,
including the variations of the norm of optimal initial costate and the optimal transfer time
with respect to the variation of Tmax. From Fig. 6.5a, it can be seen that the frequency to
execute the manifold connection increases as Tmax approaches to 0. The manifold connection
is triggered mainly in cases when the costate goes off to infinity. Figure 6.5b shows that
t˚f grows exponentially as Tmax is reduced. The zoom-in curve of Fig. 6.5a implies that the
t˚f variation is not smooth. The overview of sample solutions for different thrust levels are
provided in Table 6.3, including the optimal transfer time, final mass and orbital revolutions.
It can be seen that the number of revolutions increases drastically when Tmax is reduced.
The time-optimal trajectories, corresponding variations of u, S, m, and a, e, i for sample
solutions A-D in Fig. 6.5a are shown in Fig. 6.6. It can be seen that as number of revolution
increases, the evolution of a, e and i becomes more flat.

Time-optimal solutions obtained in Fig. 6.5a only represent one single local solution for one
specific Tmax. Better solutions maybe be reached through searching local solutions with
different revolutions by using the proposed manifold connection method. Figure 6.7 shows
the multiple local solutions for Tmax “ 12 N (case B) and Tmax “ 3 N (case C) by applying
forward and backward manifold connections. It is interesting to see that the optimal transfer
time t˚f of local solutions does not monotonously vary with respect to Nrev. In Fig. 6.7a, the
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solution B1 is consistent with the time-optimal solution obtained in [106], with the transfer
time 70.249 days. A slightly better solution B2 with Nrev “ 3.57 and t˚f “ 70.19 h is found.
The solution B2 is the local solution with fewest revolutions and shortest transfer time that
can be obtained by the presented method for this example. Time-optimal trajectories for
solutions B1 and B2 are illustrated in Figs. 6.8a and 6.8b, respectively. As shown in Fig. 6.7b,
the same process is executed for Tmax “ 3. The solution C1 is consistent with the solution
obtained in [106], with the transfer time 285.77 h. On the other hand, only 281.97 h is
required for the solution C. Thus, the local solution C performs better than C1. Moreover,
the local solution C2 with fewest revolution is found, with the transfer time 283.33 h, which is
longer then the solution C. It indicates that the solution with minimum revolution may not be
the same to the one with minimum transfer time, but their transfer time is close. The time-
optimal trajectories for solutions C1 and C2 are shown in Figs. 6.8c and 6.8d, respectively.
Additionally, it can be seen from Figs. 6.7 that the norm of costate increases as the revolution
decreases, and the minimum-revolution solution has the largest norm of costate. Thus the
solution ξ˚α,f in Fig. 6.2 is at least close to the best solution for the corresponding Tmax.

Table 6.3: Summary of solution points A-H.

Case Tmax (N) Transfer time (hours) Final mass (kg) Nrev

A 60 14.80 1336.58 1.05
B 12 75.12 1334.09 5.15
B1 12 70.25 1344.86 4.15
B2 12 70.19 1344.98 3.57
C 3 281.97 1344.32 15.16
C1 3 285.77 1342.23 15.84
C2 3 283.33 1343.58 14.66
D 0.5 1698.56 1343.71 89.64
E 60 23.56 1239.80 1.39
F 12 114.58 1246.96 4.05
G 3 455.91 1248.29 18.75
H 0.5 2801.81 1242.19 110.21
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Figure 6.5: Variations of optimal initial costate λ˚i and optimal transfer time t˚f w.r.t. Tmax.
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(a) Time-optimal solution with Tmax “ 60N (Point A in Fig. 6.5a).
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(b) Time-optimal solution with Tmax “ 12N (Point B in Fig. 6.5a).
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(c) Time-optimal solution with Tmax “ 3N (Point C in Fig. 6.5a).
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(d) Time-optimal solution with Tmax “ 0.5N (Point D in Fig. 6.5a).

Figure 6.6: Sample solutions A-D in Fig. 6.5a. Blue dashed line: GTO; green line: GEO.
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Figure 6.7: Multiple local solutions (labeled as dots) for Tmax “ 12 N and Tmax “ 3 N.

(a) Time-optimal trajectory of solution B1 (b) Time-optimal trajectory of solution B2

(c) Time-optimal trajectory of solution C1 (d) Time-optimal trajectory of solution C2

Figure 6.8: Time-optimal trajectories for solution B1, B2, C1 and C2 in Fig. 6.7. Blue dashed line: GTO;
green line: GEO.
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6.3.2 GTO to EIGSO

The orbit transfer from GTO to EIGSO is simulated. Since e and i are non-zero values,
the terminal orbit is not a fixed orbit. The thrust continuation starts from the time-optimal
transfer with Tmax “ 60 N. The corresponding optimal trajectory requires the transfer time
t˚f “ 23.56 h and involves only 1.39 revolutions; see case E in Table 6.3. The optimal initial
costate is

λ˚i “ r0.650360,´0.103051,´0.669053,´4.087638,´16.199545, 200.110687, 83.272316sJ

Variations of the norm of optimal initial costate and the optimal transfer time with respect
to Tmax are shown in Fig. 6.9, indicating that the proposed method is also effective for this
case. Similar to Fig. 6.5, the t˚f profile is non-smoothly and exponentially varied. The sample
solutions E-H in Fig. 6.9a are extracted and shown in Fig. 6.10. From the variations of
semi-major axis, it can be seen that the spacecraft increases the orbital energy higher than
that of EIGSO first, and then it decreases the orbital energy to match EIGSO. On the other
hand, from Fig. 6.6, the spacecraft gradually increases the orbital energy in the GTO-GEO
transfer. The optimal transfer time, final mass and revolutions are reported in Table 6.3. It
shows that longer transfer time and more orbital revolutions are required than those in the
GTO-GEO transfer for the same Tmax. Moreover, compared to the GTO-GEO transfer, the
transfer time is increased more rapidly as Tmax is reduced.

Figure 6.11 illustrates the near constancy of tf ˆ Tmax for both studied cases. The slope
for GTO-EIGSO transfers is steeper than GTO-GEO transfers, indicating that it is more
expansive to transfer to EIGSO than GEO. This empirical result has been observed for
GTO to GEO, intercept and rendezvous transfers in [106–108]. This work indicates that this
conclusion exists for more general orbit transfers, with the slope dependent on the terminal
conditions.
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Figure 6.9: Variation of optimal initial costate λ˚i and optimal transfer time t˚f w.r.t. Tmax.
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(a) Time-optimal solution with Tmax “ 60N (Point A in Fig. 6.9a).

0 20 40 60 80 100
0

1

2

0 20 40 60 80 100
-10000

-5000

0 20 40 60 80 100
1200
1300
1400
1500

0 20 40 60 80 100

4
6
8

104

0 20 40 60 80 100
0

0.5

0 20 40 60 80 100
0

50

(b) Time-optimal solution with Tmax “ 12N (Point B in Fig. 6.9a).

0 100 200 300 400
0
1
2

0 100 200 300 400
-5

0
104

0 100 200 300 400
1200
1300
1400
1500

0 100 200 300 400
2

4

6
104

0 100 200 300 400
0

0.5

0 100 200 300 400
0

50

(c) Time-optimal solution with Tmax “ 3N (Point C in Fig. 6.9a).
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(d) Time-optimal solution with Tmax “ 0.5N (Point D in Fig. 6.9a).

Figure 6.10: Sample solutions E-H in Fig. 6.9a. Blue dashed line: GTO; green line: EIGSO.
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Figure 6.11: Near constancy of the product tf ˆ Tmax for both cases.

6.4 Summary

In this chapter, indirect optimization of low-thrust time-optimal Earth-orbit transfers with
terminal conditions specified by a subset of orbital elements is studied. Since the shooting
method alone is not effective to find the multi-revolution solutions, the combination of thrust
continuation and the shooting method is developed. The failure of thrust continuation is
analyzed and tackled by developing an enhanced thrust continuation method that is able
to connect local solutions with different revolutions. GTO to GEO and GTO to EIGSO
transfers are simulated to verify the effectiveness of the presented method. Better solutions,
compared to the solutions reported in literature, are found for the GTO to GEO transfer.
Also, it is found that the minimum-revolution solution may not coincide with the minimum-
time solution. Moreover, numerical evidences indicate the near constancy of tf ˆ Tmax exists
for more general orbital transfers.
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CHAPTER 7
A HOMOTOPY METHOD USING THEORY OF

FUNCTIONAL CONNECTIONS

Numerical homotopy continuation is widely used in optimization methods to expand their
convergence domain. By traversing a series of auxiliary problems, the homotopy method
solves the objective problem by tracking the homotopy path, which is comprised of solutions
of former [66]. Developing the method to tackle failures in the continuation process is essen-
tial to enhance the algorithmic robustness. Chapter 6 designed an effective method to remedy
the failure of the thrust continuation, tailored to low-thrust orbital transfers. Inspired by the
conceptual similarity between homotopy and TFC, this chapter presents a TFC-based homo-
topy method for general optimization problems, which paves the way to resolve continuation
failures by leveraging the freedom in the selection of the homotopy line.

7.1 Fundamentals of Homotopy Methods

7.1.1 Homotopy Function

Consider the zero-finding problem
F pxq “ 0 (7.1)

where x P Rn and F : Rn Ñ Rn is a C2 function. Newton’s method is widely used to solve
problem (7.1). However, it fails if the initial guess solution lies beyond its convergence domain,
or singular points are encountered during iterations. These issues are likely in high-sensitive,
nonlinear systems.

Homotopy is an effective strategy to solve difficult zero-finding problems, which lacks a priori
knowledge on good initial guesses [66]. To solve Eq. (7.1), one may define a homotopy or
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deformation function Γpκ,xq : Rˆ Rn Ñ Rn such that

Γp0,xq “ Gpxq, Γp1,xq “ F pxq (7.2)

where κ P r0, 1s is the homotopy parameter and Gpxq : Rn Ñ Rn is a user-defined, auxiliary
function. Gpxq is usually defined to be similar to F pxq, and the solution x0 to Gpxq “ 0 is
easier to determine. The convex homotopy function is the commonly used form for Γ:

Γpκ,xq :“ κ F pxq ` p1´ κq Gpxq

Three types of homotopy are commonly used [109], depending on G:

1. Newton homotopy, Gpxq :“ F pxq ´ F px0q

2. Fixed-point homotopy, Gpxq :“ x´ x0

3. Affine homotopy, Gpxq :“ A px´ x0q

where A is a nˆ n matrix.

k

x

0 1

Type 2Type 3

Type 4

Type 1

Type 5

Figure 7.1: Different types of homotopy paths rxpθq, κpθqs “ Γ´1p0q starting from κ “ 0.

Under regularity assumptions [66, 110], defining the homotopy function inherently generates
a unique curve cpθq :“ rκpθq,xpθqs “ Γ´1p0q : J Ñ Rn`1 for some open interval J Ă R
starting from x0, which contains points satisfying the consistency condition Γpκ,xq “ 0. θ
is the continuation parameter that varies monotonously. The tracked solution curve in Rn`1

is called homotopy path or zero curve. With reference to Fig. 7.1, the homotopy paths can
be mainly classified in five Types [111]:

1) The homotopy path ends in t1u ˆ Rn, with non-monotonic κ;

2) The homotopy path ends in t1u ˆ Rn, with monotonic κ;

3) The homotopy path returns to a solution of Γp0,xq in t0u ˆ Rn;

4) The homotopy path is unbounded, with non-monotonic κ P r0, 1q;

5) The homotopy path is unbounded, with monotonic κ P r0, 1q.
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Homotopy methods attempt to track the homotopy path starting from p0,x0q to p1,x˚q.
When this happens, one zero of Eq. (7.1) is found. The sufficient conditions for the existence
of the homotopy path are given by probability-one homotopy theory [111, 112], based on
differential geometry concepts.

Definition 7.1 (Transversality). Let U Ă Rn and V Ă Rp be open sets, and let ρ: r0, 1q ˆ
U ˆV Ñ Rn be a C2 map. ρ is said to be transversal to zero if the Jacobian Dρ P Rnˆp1`n`pq

has full rank on ρ´1p0q.

Theorem 7.1 (Sard’s theorem). Let ρ: r0, 1qˆU ˆV Ñ Rn be a C2 map. If ρ is transversal
to zero, then for almost all a P U , the map

ρapκ,xq :“ ρpκ,x,aq

is also transversal to zero.

The parametrized Sard’s theorem indicates that for almost all a P U , the zero set of ρa
consists of smooth, nonintersecting curves [111]. In the following, we take U ” Rn and
V ” Rp.

Theorem 7.2 (Homotopy path). Let ρ : r0, 1q ˆ Rn ˆ Rp Ñ Rn be a C2 map, and let
ρapκ,xq “ ρpκ,x,aq. Suppose that:

i) for each fixed a P Rp, ρ is transversal to zero;

ii) ρap0,xq “ 0 has a unique nonsingular solution x0;

iii) ρap1,xq “ F pxq;

iv) ρ´1
a p0q is bounded;

then, the solution curve reaches a point p1,x˚q such that F px˚q “ 0. Furthermore, if DF px˚q
is invertible, then the homotopy path has finite arc length.

Transversality is hard to verify for arbitrary a P Rp, and a proper a is required to construct
the homotopy function. For example, fixed-point homotopy methods require selecting a
proper x0. However, in current homotopy methods [66], a is manually selected and it cannot
vary during iterations. Thus, the success of the entire procedure relies heavily on the initial
point chosen, and thus once again on the empirical knowledge of the problem.

Remark 7.1. The homotopy satisfying the hypotheses of Theorem 7.2 is called a globally con-
vergent probability-one homotopy [111]. Designing probability-one homotopy algorithms for
general applications is still an open problem. Theorem 7.2 is a guideline for robust homotopy
algorithm design.

Remark 7.2. The C2 class is required for ρ, and this condition cannot be relaxed [111]. C2

is used to ease the following arguments.

Remark 7.3. Predicting the homotopy path in the later iterations is generally difficult, unless
the conditions of Theorem 7.2 are satisfied or the problem is simple enough (see the example
in [70]). The behavior in the small neighborhood of current solution point is known if the
conditions of Implicit Function Theorem are satisfied.

7.1.2 Path Tracking Methods

Once the homotopy function is defined, the focus is on tracking its implicitly defined path.
Two predictor-corrector methods are reviewed: Discrete Continuation Method (DCM) and
Pseudo-arclength Method (PAM).
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7.1.2.1 Discrete Continuation Method

DCM tries to solve Γpκ,xq “ 0 with monotonous variation of κ [43], i.e., θ :“ κ. The solution
curve cpθq is reduced as cpθq :“ xpκq As shown in Fig. 7.2, starting from initial solution at
κ “ 0, DCM solves the next solution on homotopy path using the former solution as initial
guess. This process continues until the κ “ 1 line is reached. DCM is simple and easy to
implement, but it fails when the homotopy path exhibits limit points (Type 1, 3, 4) or goes
off to infinity (Type 5). Limit points are points where the Jacobian Γxpκ,xq is singular,
thus DCM cannot continue by monotonously varying κ [65]. In Fig. 7.2, the simple zero-
order DCM method is shown. In principles, one can construct a higher-order predictor using
polynomial extrapolation [66]. This could result in a more efficient algorithm, yet higher-
order DCM will still fail at limit points. Another type of singular points are bifurcation
points where homotopy path branches emanate [65]. For the problems considered in this
work, it is assumed that DCM failure is caused by limit points or infinite paths.

k

x

0 1

Initial

Solution

Guess

Solution

Homotopy Path

Figure 7.2: Graphical interpretation of DCM.

7.1.2.2 Pseudo-Arclength Method

PAM is an alternative to pass limit points that uses the arclength s as the continuation
variable θ. Suppose that a solution point pκi,xiq satisfies the consistency condition and its
unit tangent direction pκ̂i, x̂iq is known, where the hat is the derivative w.r.t. s. In order to
find the next solution point pκi`1,xi`1q, the following augmented system is to be solved for
pκ,xq

#

Γpκ,xq “ 0

px´ xiq
J x̂i ` pκ´ κiq κ̂i ´ ds “ 0

(7.3)

The augmented Jacobian of system (7.3) evaluated at pκi,xiq, that is,

Japκi,xiq “

«

Γxpκi,xiq Γκpκi,xiq

x̂Ji κ̂i

ff

is generally regular [66].

The ability of PAM to pass a limit point is graphically shown in Fig. 7.3. When a limit point
is approached, PAM attempts to track the homotopy path by predicting the solution along
the tangent direction, and refining the solution until system (7.3) is solved. Geometrically,
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Figure 7.3: Graphical interpretation of PAM near a limit point.

the solution curve continues on the opposite κ direction (in Fig. 7.3, κ decreases across the
limit point). PAM can elegantly satisfy condition iq in Theorem 7.2, but it still fails when
dealing with homotopy path Types 3–5. Compared to DCM, PAM has broader convergence
domain, but its implementation is more involved [113].

7.2 Theory of Functional Connection Homotopy Method

7.2.1 Theory of Functional Connections

The Theory of Functional Connections (TFC) is the extension of the Theory of Connections
(TOC) [72]. The latter investigates the arbitrary connections between points by constructing
a constrained function expressed in terms of an auxiliary function [72]. It has the property
that no matter what the auxiliary function is, the constrained function always satisfies a
prescribed set of constraints.

Suppose we define the scalar function

ypηq :“ gpηq `
η ´ η0

ηf ´ η0

pyf ´ gf q `
ηf ´ η

ηf ´ η0

py0 ´ g0q (7.4)

where ypηq and gpηq are the constrained function and auxiliary function, respectively, whereas
η P rη0, ηf s is the independent variable. It is easy to verify that Eq. (7.4) inherently satisfies
ypη0q “ y0 and ypηf q “ yf regardless of the specific choice of gpηq (note that g0 “ gpη0q

and gf “ gpηf q). Therefore, the line ypηq will always connect the points P0 “ pη0, y0q and
Pf “ pηf , yf q. Equation (7.4) is the generalization of interpolation formulae: it is not the
interpolating expression for a class of functions but for all functions [72].

In the multi-dimensional case, the two-point condition is

ypη0q “ y0, ypηf q “ yf (7.5)

where y P Rn. The general expression of the constrained function ypηq is

ypηq “ gpηq ` P1pηqc1 ` P2pηqc2 (7.6)

where P1,2 : R Ñ Rnˆn are matrices whose elements are scalar-valued functions of η, while
c1,2 P Rn are constant vectors of weights [72]. Substituting Eq. (7.5) into Eq. (7.6) and
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solving for c1,2 yields
«

c1

c2

ff

“

«

P1pη0q P2pη0q

P1pηf q P2pηf q

ff´1 «

y0 ´ g0

yf ´ gf

ff

“

«

Q11 Q12

Q21 Q22

ff«

y0 ´ g0

yf ´ gf

ff

(7.7)

where again g0 “ gpη0q and gf “ gpηf q. Moreover

Q11 “
“

P1pη0q ´ P2pη0qP
´1
2 pηf qP1pηf q

‰´1

Q21 “ ´P´1
2 pηf qP1pηf q Q11

Q12 “ ´P´1
1 pη0qP2pη0q Q22

Q22 “
“

P2pηf q ´ P1pηf qP
´1
1 pη0qP2pη0q

‰´1

(7.8)

The selection of P1,2pηq in Eq. (7.6) must ensure the existence of Qij in Eq. (7.8). Substituting
Eq. (7.7) into Eq. (7.6) gives the general form of constrained function

ypηq “ gpηq `
2
ÿ

i“1

PipηqQi1py0 ´ g0q `

2
ÿ

i“1

PipηqQi2pyf ´ gf q (7.9)

The constrained function ypηq in Eq. (7.9) defines arbitrary connection paths between y0

and yf produced by the infinitely possible choices of gpηq. The constrained function for
arbitrary boundary conditions can also be established [72]. The TFC extends the idea above
to construct the constrained function on a functional domain [114].

7.2.2 TFC-Based Homotopy Function

From a geometrical point of view, the homotopy function defines the solution curve connect-
ing the two zero-finding problems defined at the boundaries of κ, which satisfy Eq. (7.2).
Analogously, the constrained function in the TFC connects points at the boundaries of η.
Interpreting the constrained function as describing an homotopy path is therefore natural.

In Eq. (7.9), replacing the constrained function ypηq by the homotopy function Γpη,xq, and
y0, yf by Gpxq, F pxq, respectively, we have

Γpη,xq “ gpηq `
2
ÿ

i“1

PipηqQi1pGpxq ´ g0q `

2
ÿ

i“1

PipηqQi2pF pxq ´ gf q (7.10)

The auxiliary function gpηq can be expressed as a linear combination of basis functions with
corresponding weights, that is

gpηq “ Ωhpηq (7.11)

where hpηq : R Ñ Rm is the vector of basis functions, whereas Ω P Rnˆm is the matrix of
weights. Note that g0 “ Ωh0 and gf “ Ωhf , where h0 “ hpη0q and hf “ hpηf q. A linear
map between κ P r0, 1s and η P rη0, ηf s is also used:

ηpκq “ p1´ κq η0 ` κ ηf (7.12)

Substituting Eq. (7.11) and Eq. (7.12) into Eq. (7.10) yields

Γpκ,x,Ωq “ Ωhpκq `
2
ÿ

i“1

PipκqQi1 pGpxq ´ Ωh0q `

2
ÿ

i“1

PipκqQi2 pF pxq ´ Ωhf q (7.13)
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Notice that Γ in Eq. (7.13), beside the natural dependence on κ and x, is also a function of
the free parameter Ω, which can be varied to steer the solution curve from G´1p0q to F´1p0q.

It is convenient to isolate in Eq. (7.13) the part depending on κ and x only

Γpκ,x,Ωq “ Ω

˜

hpκq ´
2
ÿ

i“1

PipκqQi1h0 ´

2
ÿ

i“1

PipκqQi2hf

¸

` Γ0pκ,xq (7.14)

where

Γ0pκ,xq :“
2
ÿ

i“1

PipκqQi1Gpxq `
2
ÿ

i“1

PipκqQi2F pxq

By taking the partial derivative of Eq. (7.14) w.r.t. x, we find that

BΓpκ,x,Ωq

Bx
“
BΓ0pκ,xq

Bx

indicating that when a limit point is encountered, both Jacobian matrices are singular, re-
gardless of the selection of Ω. In order to regularize BΓ{Bx by varying Ω, we let the basis
functions h to depend on the present solution x as well; that is, h “ hpκ,xq. Thus, Eq. (7.14)
becomes

Γpκ,x,Ωq “ ΩΓΩpκ,xq ` Γ0pκ,xq (7.15)

where

ΓΩpκ,xq :“ hpκ,xq ´
2
ÿ

i“1

PipκqQi1h0pxq ´
2
ÿ

i“1

PipκqQi2hf pxq

Inspired by Eq. (7.15), the formal definition of TFC-based homotopy is given.

Definition 7.2 (TFC-based homotopy function). Let ρ̂pκ,x, ε,aq : r0, 1qˆRnˆRqˆRp Ñ Rn

be a C2 map, and let ρ̂apκ,x, εq “ ρ̂pκ,x, ε,aq for fixed a. ρ̂apκ,x, εq is called TFC-based
homotopy function if

i) it automatically satisfies the boundary conditions

ρ̂ap0,x, εq “ Gpxq and ρ̂ap1,x, εq “ F pxq

for arbitrary ε;

ii) @κ P p0, 1q and @x P Rn, D ε such that Bρ̂apκ,x, εq{Bx is regular.

In traditional homotopy methods (e.g., Newton homotopy), the term a in the homotopy
function ρapκ,xq in Theorem 7.1 is set at the beginning of the continuation procedure (e.g., by
providing the solution x0 to the initial problem Gpxq “ 0) and so is the homotopy path. The
TFC-based homotopy function ρ̂apκ,x, εq is the generalization of ρapκ,xq. Here, although
a is fixed, ε brings in flexibility in the homotopy path while not affecting the boundary
conditions Eq. (7.2). The TFC-based homotopy function implicitly defines infinite homotopy
paths because of the infinite possible selections of ε. Moreover, condition ii) in Definition
7.2 enables regularizing the path by varying ε. Therefore, it is a tool to recover improperly
defined paths, by detecting them and switching to different, yet feasible, homotopy paths.

Equation (7.15) provides a general form of TFC-based homotopy function. Here, Γ0pκ,xq is
equivalent to ρapκ,xq and Ω can be seen as ε (see Remark 7.4). Let τ “ eη0´ηf , the following
three examples are given based on different choice of P1,2pηq
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1. For P1 “ I and P2 “ ηI

Γpκ,x,Ωq “ Ω phpκ,xq ` pκ´ 1qh0pxq ´ κhf pxqq ` Γ0pκ,xq (7.16)

2. For P1 “ I and P2 “ eηI

Γpκ,x,Ωq “ Ω

ˆ

hpκ,xq ´
1´ τ p1´κq

1´ τ
h0pxq ´

´τ ` τ p1´κq

1´ τ
hf pxq

˙

` Γ0pκ,xq (7.17)

3. For P1 “ I and P2 “ e´ηI

Γpκ,x,Ωq “ Ω

ˆ

hpκ,xq ´
τ ´ τκ

τ ´ 1
h0pxq ´

´1` τκ

τ ´ 1
hf pxq

˙

` Γ0pκ,xq (7.18)

Remark 7.4. Let Ωcol “ vecpΩq P Rmnˆ1, where ‘vec’ is an operator that converts matrices
into column vectors. Then, ΩΓΩpκ,xq “ Γ̃Ωpκ,xqΩcol, where

Γ̃Ωpκ,xq :“

»

—

—

—

—

–

h̃Jpκ,xq

h̃Jpκ,xq

. . .

h̃Jpκ,xq

fi

ffi

ffi

ffi

ffi

fl

P Rnˆmn

and

h̃pκ,xq :“

˜

hpκ,xq ´
2
ÿ

i“1

PipκqQi1h0pxq ´
2
ÿ

i“1

PipκqQi2hf pxq

¸

Thus, Ω can be seen as a column vector ε P Rq where q “ mn.

7.2.3 Regularization

This section shows the sufficient conditions for point ii) in Definition 7.2.

Lemma 7.1. Suppose that a matrix A P Rnˆn is the product of two matrices B P Rnˆm and
C P Rmˆn; A “ BC. If m ă n, then A is singular.

Proof. Consider the linear equation
Cx “ 0

if m ă n, the number of equations is less than that of unknowns, thus there exists nonzero
solution x̃ such that

Cx̃ “ 0

then
BCx̃ “ Ax̃ “ 0

indicating that the matrix A is singular.

Lemma 7.2. If A P Rmˆn is full row rank and m ď n, then B “ AAJ P Rmˆm is regular.

120



7.2. Theory of Functional Connection Homotopy Method

Proof. Consider the linear equation

Bx “ AAJx “ 0

which equals to
xJAAJx “

`

AJx
˘J
AJx “ 0 Ñ AJx “ 0

Since m ď n and A is full row rank, thus x “ 0. Therefore, B is regular.

Theorem 7.3 (Sufficient Conditions). Let Γpκ,x,Ωq “ ΩΓΩpκ,xq`Γ0pκ,xq be a candidate
TFC-based homotopy function. If m “ n and BΓΩpκ,xq{Bx P Rmˆn is regular, then D Ω P

Rnˆm such that BΓpκ,x,Ωq{Bx is regular.

Proof. Taking the derivative of Eq. (7.15) w.r.t. x yields

BΓpκ,x,Ωq

Bx
“ Ω

BΓΩpκ,xq

Bx
`
BΓ0pκ,xq

Bx

Applying singular value decomposition to BΓ0pκ,xq{Bx, there exists

BΓ0pκ,xq

Bx
“ UJ

«

Σ1

Σ2

ff

V

where Σ1 are nonzero singular values, and Σ2 are zero singular values if BΓ0pκ,xq{Bx is
singular. U and V are corresponding singular vectors. We can construct a regular matrix
S P Rnˆn as

S “ UJ

«

Λ1

Λ2

ff

V

where Λ1 and Λ2 are non-zero singular values. There always exists Λ1 and Λ2 such that the
matrix

BΓpκ,x,Ωq

Bx
“ S `

BΓ0pκ,xq

Bx
“ UJ

«

Λ1 ` Σ1

Λ2 ` Σ2

ff

V P Rnˆn

is regular. Let S :“ Ω BΓΩpκ,xq{Bx. From Lemma 7.1, this requires m ě n. Since
BΓΩpκ,xq{Bx is full rank and m “ n, from Lemma 7.2, D Ω such that

Ω “ S

ˆ

BΓΩpκ,xq

Bx

˙J
«

ˆ

BΓΩpκ,xq

Bx

˙ˆ

BΓΩpκ,xq

Bx

˙J
ff´1

According to Theorem 7.3, the following criteria are provided. Firstly, m “ n. Secondly,
monotonous functions such as exponential functions are preferred to construct each element of
hpκ,xq. Thirdly, the selection of hpκ,xq should consider the concrete form of TFC homotopy
function. In Eqs. (7.16)–(7.18), hpκ,xq should be nonlinear in κ to ensure the explicit
dependence of ΓΩpκ,xq on κ. In Section 4, the TFC homotopy function in Eq. (7.16) is used.
The state-dependent basis function hpκ,xq is constructed as

hpκ,xq “

»

—

—

—

—

–

ex1κ2

ex2κ2

...
exnκ2

fi

ffi

ffi

ffi

ffi

fl
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and then ΓΩ becomes

ΓΩpκ,xq “

»

—

—

—

—

–

ex1pκ2 ´ κq

ex2pκ2 ´ κq
...

exnpκ2 ´ κq

fi

ffi

ffi

ffi

ffi

fl

Thus, since the derivative of exi , i “ 1, 2, ¨ ¨ ¨ , n, is not zero, the Jacobian of ΓΩ w.r.t. x is
regular, @κ P p0, 1q.

7.2.4 A Two-Layer TFC-based DCM Algorithm

Following the definition of the TFC-based homotopy function in Eq. (7.15), a two-layer DCM
algorithm is proposed.

7.2.4.1 Singular Point Management

Fig. 7.4 illustrates the method, with a focus on limit point management. Starting from x0

at κ “ 0, the DCM is used first to track the initial homotopy path, defined by Γ0pκ,xq.
Since the DCM terminates at limit points, limit points can be detected if the step-size is
small enough, and the solution point satisfies }x}8 ď Th where Th is the threshold defined in
Section 7.2.4.2. When a limit point xL,0 is encountered at κL,0, another feasible homotopy
path defined by Γpκ,x,Ω1q is found by searching for a proper Ω1. Then, the new starting
point x0,1 at κL,0 triggers a new homotopy path, again tracked by DCM. At xL,1, the new
homotopy path defined by Γpκ,x,Ω2q is found and tracked. This process is repeated until
the line κ “ 1 is reached.
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Figure 7.4: Graphical layout of the singular point management.

In general, suppose that the DCM encounters a limit point xL,j´1 at κL,j´1 while tracking
the homotopy path defined by Γpκ,x,Ωj´1q. The goal is to switch to a new solution curve by
finding a new homotopy path defined by Γpκ,x,Ωjq starting from x0,j at κL,j´1. The unknown
variables for the j-th homotopy path are Ωj and x0,j; that is, a total of pm`1qˆn unknowns
against the n-dimensional consistency condition. The problem is clearly underdetermined,
and therefore Ωj and x0,j are found by solving an optimization problem.

122



7.2. Theory of Functional Connection Homotopy Method

k

2
Γ

0 , 1L j
k - , 1L j

k z k- + D , 1 2
L j

k z k- + D

Candidate Homotopy Path

, 1 2
( )

L j
k k- + DΓ

, 1 2
( )

L j
k z k- + DΓ

, 1 2
( 2 )

L j
k z k- + DΓ

kD

Figure 7.5: Error trend along a candidate homotopy path.

The main feature sought in a candidate homotopy path are feasibility and an easy progression
of the DCM. Ideally, one may want to switch to a new feasible horizontal path, which would
easily lead to the solution of the objective problem (κ “ 1). In this respect, the projected }Γ}2
error trend along a candidate homotopy path is considered. In Fig. 7.5, the projected error
is discerned into a near-side error, ΓpκL,j´1`∆κ,x,Ωjq, and a far-side error ΓpminpκL,j´1`

iζ∆κ, 1q,x,Ωjq. The former is minimized to ease restart of the DCM, while the latter is
weighted to select a mild path. The problem is therefore to

min
Ωj ,x0,j

J s.t. ceq “ 0 (7.19)

where

J :“ }Γ pminpκL,j´1 `∆κ, 1q,x0,j,Ωjq }2`

N
ÿ

i“1

γi}Γ pminpκL,j´1 ` iζ∆κ, 1q,x0,j,Ωjq }2 (7.20)

and

ceq :“

#

1nˆ1, if |det pBΓ pκL,j´1,x0,j,Ωjq{Bxq| ď δ

Γ pκL,j´1,x0,j,Ωjq , otherwise
(7.21)

In Eq. (7.20), γ P r0, 1q is a discount factor, ζ is the predicted horizon, and N is the number of
predicted points. An artificial violation of the equality constraint in Eq. (7.21) is introduced
to avoid near-singular paths. Moreover, Ωj´1 and xL,j´1 are taken as initial guess for the
optimization problem in Eq. (7.19).

7.2.4.2 Indefinite Growth Management

Beside tackling limit points, paths of Type 5 in Fig. 7.1 are also considered. As shown in Fig.
7.6, indefinite growth is managed through thresholding. An a-priori threshold Th on }x}8
is set. Once the homotopy path crosses the threshold line, the second layer is triggered to
switch to an alternative, feasible homotopy path.

In Fig. 7.6, when the initial homotopy path exceeds Th, the solution point xI,0 at κI,0 is
detected. This is used as initial guess to solve the optimization problem in Eq. (7.19), and a
new homotopy path (using Ω1 and starting from x0,1) is tracked. If this new homotopy path
exceeds Th (Failed Case 1) or the solver fails to converge (Failed Case 2), the solution point
near but below Th{2 is considered, until a new feasible path is found. In Fig. 7.6, the new
homotopy path defined by Γpκ,x,Ω3q starting from x0,3 at κI,2 is found by using Th{4.
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Figure 7.6: Graphical layout of the indefinite growth management.

The algorithmic rationale of the two-layer, TFC-based homotopy method is summarized in
Algorithm 2, where ∆κmin is the step-size threshold to detect the limit point, and Ns is the
total times of path switching.

7.3 Numerical Simulations

In this section, three numerical experiments are performed using the TFC-based DCM
method. To ease assessment of the developed algorithm, the outcome of each problem is
compared to the solution obtained using PAM. The zero-finding and optimization problems
are solved using Matlab’s fzero and fmincon implementing interior-point method, respec-
tively. In both algorithms, the function residual (TolFun) and solution tolerance (TolX) are
both set to 10´12. All test cases have been performed using Matlab R2019a with Intel Core i7-
9750H CPU @2.60 GHz, Windows 10 operating system. The parameters of the optimization
problem in Eqs. (7.20)–(7.21) are γ “ 0.5, ζ “ 15, N “ 3, δ “ 1ˆ10´4 and ∆κmin “ 1ˆ10´8.

7.3.1 Algebraic Zero-Finding Problem

The zero of the following two-dimensional function is sought [115]

F px1, x2q “

«

apx1 ` x2q

apx1 ` x2q ` px1 ´ x2q ppx1 ´ bq
2 ` x2

2 ´ cq

ff

(7.22)

where a “ 4, b “ 2, c “ 1. The state-dependent basis function hpκ,xq is

hpκ,xq “

«

ex1κ2

ex2κ2

ff

and ∆κ “ 0.001.

In [115, 116], it is stated that if the initial condition is located inside the circle px1´2q2`x2
2 “

1, the Newton homotopy function implementing PAM will fail to find the solution. This
property is independently confirmed by our numerical experiment. In Fig. 7.7, Newton
homotopy function is used. Both PAM and TFC-based DCM for various initial conditions
x0 (the solution to Gpxq “ 0) are executed. For cases x0 “ r1.5, 0.5s

J and x0 “ r1.5,´0.5sJ
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Algorithm 2 Two-layer TFC-based DCM Algorithm

Require: ∆κ, ∆κmin, hpκ,xq, Gpxq, and Th.
Ensure: Solution to F pxq “ 0.
1: Set κ “ 0, κold “ 0, j “ 0, ∆κiter “ ∆κ, and Ω0 “ 0nˆn, Ns “ 0.
2: Solve the auxiliary problem Gpxq “ 0.
3: while κ ă 1 do
4: κÐ κ`∆κiter.
5: Solve the zero-finding problem Γpκ,x,Ωjq “ 0.
6: if Converged but the solution satisfies }x}8 ą Th then
7: Solve the optimization problem Eq. (7.19).
8: Switch to the new homotopy path Γpκ,x,Ωj`1q, j Ð j ` 1.
9: ∆κiter Ð minp1´ κ,∆κq, κold Ð κ, Ns Ð Ns ` 1.

10: else
11: if Converged then
12: ∆κiter Ð minp1´ κ,∆κq. κold Ð κ.
13: else
14: if ∆κiter ď ∆κmin and the solution satisfies }x}8 ď Th then
15: Solve the optimization problem Eq. (7.19).
16: Switch to the new homotopy path Γpκ,x,Ωj`1q, j Ð j ` 1.
17: ∆κiter Ð minp1´ κ,∆κq, κold Ð κ, Ns Ð Ns ` 1.
18: else
19: ∆κiter Ð ∆κiter{2. κÐ κold.
20: end if
21: end if
22: end if
23: end while

inside the disc, PAM effectively passes a singular point but the paths return back to κ “ 0,
while the presented method reaches the solution by switching the path Ns “ 1 and Ns “ 4
times, respectively. For the case x0 “ r3,´0.5sJ, PAM passes two singular points before
reaching the solution, while the presented method switches to another feasible homotopy
path that eventually converges to the solution of the objective problem.

When the TFC-based DCMmethod is used for the case x0 “ r1.5, 0.5s
J, the limit point xL,0 “

r1.3406,´0.6978sJ is detected at κL,0 “ 0.6786. Here, the second-layer of the algorithm is
triggered, and a new homotopy path is followed, starting from x0,1 “ r´0.2269,´0.2570sJ

with

Ω1 “

«

´15.4518 ´10.7949

´6.7812 ´18.0602

ff

The new homotopy path leads smoothly to κ “ 1 where x˚ “ r0, 0sJ.

When fixed-point homotopy method is employed, numerical experiments show that it per-
forms worse than Newton homotopy. In Fig. 7.8, fixed-point homotopy function is used. Both
PAM and TFC-based DCM for the same x0 in Fig. 7.7 are simulated. For all cases, PAM fails
and the x2 paths go to infinity, while the paths generated by the presented method success-
fully reach the solution after few path switching. Thus, there is evidence that the presented
method is robust to different user-defined homotopy functions for the current problem.

From Eq. (7.20), it is noticed that the step-size ∆κ affects the selection of the new path. In
Fig. 7.9, the paths generated by the TFC-based DCM method with user-defined fixed-point
homotopy function and x0 “ r2.5, 0.5s

J for various ∆κ are illustrated. It can be seen that
when ∆κ “ 0.03 is used, one more path switching arises compared to other values of ∆κ.
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Figure 7.7: Homotopy paths generated by the Newton homotopy method using PAM and the TFC-based
DCM while attempting to find the zero of the function in Eq. (7.22).

Thus, smaller values of ∆κ are preferred that favour smooth paths. As a general rule, ∆κ
has to be smaller when the problem complexity increases.

Moreover, the effect of number of predicted points N in Eq. (7.20) on the new path selection
is studied in Fig. 7.10. It can be seen that the new paths for N “ 8 and N “ 20 are very close,
implying that the effect of N decreases as N increases if Γpκ,x,Ωq is not abruptly changed
when κ varies. Small N are preferred since larger N involve increased computational costs.

7.3.2 Nonlinear Optimal Control Problem

Solving a nonlinear optimal control problem means find the zero of a shooting function, which
solves the associated two-point boundary value problem [26]. Consider the dynamical system

9x1 “ x1 ` x2 ` u1

9x2 “ tanx2
1 ` u2

(7.23)

along with the performance index

J “
1

2

ż tf

0

`

u2
1 ` u

2
2

˘

dt

where the terminal time is tf “ 1, and the boundary conditions are set to x0 “ r´1,´1sJ and
xf “ r0, 0s

J. An homotopy from linear to nonlinear dynamics is constructed by embedding
κ into Eq. (7.23), i.e.,

9x1 “ x1 ` x2 ` u1

9x2 “ κ tanx2
1 ` u2

Based on the optimal control theory [26], the Euler–Lagrange equations are

9x1 “ x1 ` x2 ´ λ1

9x2 “ κ tanx2
1 ´ λ2

9λ1 “ ´λ1 ´ 2κx1λ2{ cos2 x2
1

9λ2 “ ´λ1

(7.24)
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Figure 7.8: Homotopy paths generated by the fixed-point homotopy method using PAM and the TFC-based
DCM while attempting to find the zero of the function in Eq. (7.22).
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Figure 7.9: Homotopy paths generated by the TFC-based DCM method with user-defined fixed-point
homotopy function and x0 “ r2.5, 0.5s

J for different ∆κ.
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Figure 7.10: Homotopy paths generated by the TFC-based DCM method with user-defined fixed-point
homotopy function and x0 “ r2.5, 0.5s

J for different N .

For a given κ, the flow xpt,x0,λ0q can be obtained by integrating Eq. (7.24) with initial
conditions x0 and λ0, where λ0 “ rλ1pt0q, λ2pt0qs

J is the initial costate vector. The zero-
finding problem is to find λ0 such that F pλ0q “ 0, where

F pλ0q “ xptf ,x0,λ0q ´ xf

When κ “ 0, the system is linear, and the corresponding initial costate is λ0 “ r´2.9411,´2.0820sJ.
In this example, the state-dependent function hpκ,λq is selected as

hpκ,λq “

«

eλ1κ2

eλ2κ2

ff

and ∆κ “ 0.001.

The simulation results are shown in Fig. 7.11, where the comparison of the homotopy paths
for PAM (grey dashed line) and TFC-based DCM (red solid line) is shown in Fig. 7.11a,
whereas the optimal trajectory is shown in Fig. 7.11b. Notice that in Fig. 7.11a the solution
curve tracked by PAM successfully passes a limit point but returns back to κ » 0. PAM fails
to reach the solution to the objective problem at κ “ 1.

When the TFC-based DCM method is used, the limit point λL,0 “ r´1.2251,´1.5879sJ is
detected at κL,0 “ 0.5376. The second layer switches to a new homotopy path starting from
λ0,1 “ r´0.9834,´0.6184sJ with

Ω1 “

«

´5.7765 ´4.1086

´7.6160 5.7975

ff

The new homotopy path leads smoothly to the solution of the objective problem, where
λ˚pt0q “ r0.4728,´0.0739sJ.

7.3.3 Elastic Rod Problem

While in Sections 7.3.1 and 7.3.2 the issue was overcoming a singular point (Type 1, 3, and
4 in Fig. 7.1), in this example the path goes off to infinity without encountering any limit
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Figure 7.11: Simulation results for the nonlinear optimal control problem. (a): Comparison of homotopy
paths tracked by PAM and TFC-based DCM method; (b): Optimal trajectories x1ptq and x2ptq.

point (Type 5 in Fig. 7.1). The cantilever beam problem, which is to find the position pa, bq
of the tip of the rod given the force Q ‰ 0 and P “ 0, has a closed-form solution in terms
of elliptic integrals. The inverse problem, where the tip’s position pa, bq and orientation c
are specified, while the forces pQ,P q and torque pMq are to be determined, has no similar
closed-form solution. It is a nonlinear problem that is difficult to solve [117]. The inverse
problem is solved in this section. The dynamic equations

9x “ cos θ

9y “ sin θ

9θ “ Qx´ Py `M

are supported by the boundary conditions

xp0q “ yp0q “ θp0q “ 0, xp1q “ a, yp1q “ b, θp1q “ c

The unknown variables are denoted as v “ rQ,P,M sJ, and the corresponding flow is denoted
as xpt,vq, ypt,vq, θpt,vq. The problem is to find v˚ such that

F pv˚q “

»

—

–

xptf ,v
˚q ´ a

yptf ,v
˚q ´ b

θptf ,v
˚q ´ c

fi

ffi

fl

“ 0 (7.25)

A fixed-point homotopy function is defined as

Γ0pκ,vq “ p1´ κqF pvq ` κGpvq with Gpvq “ pv ´ v0q

where v0 is the initial guess solution. The parameters are set to a “ 0, b “ 2π, c “ π, and
v0 “ r0, 0, 1.85sJ. In this case, the solution to the objective problem in Eq. (7.25) is known
to be v˚ “ r0, 0, πsJ [118]. The Jacobian matrix of Eq. (7.25) w.r.t v has been computed
using finite differences, and the limit threshold Th is set to 100. The selected state-dependent

129



Chapter 7. A Homotopy Method Using Theory of Functional Connections

basis function hpκ,vq is

hpκ,vq “

»

—

–

eQκ2

ePκ2

eMκ2

fi

ffi

fl

and ∆κ “ 0.001.
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Figure 7.12: Simulation results for elastic red problem. (a): Comparison of homotopy paths tracked by
PAM (grey dashed lines) and TFC-based DCM (red solid lines); (b): Zoom-in comparison of homotopy

paths when κÑ 1.

The simulation results are shown in Fig. 7.12, where the homotopy paths generated by PAM
(grey lines) and TFC-based DCM (red lines) are shown (Fig. 7.12b shows an enlarged view
of Fig. 7.12a when κ Ñ 1). PAM is not able to reach v˚ because the homotopy path grows
indefinitely when κÑ 1.

Using TFC-based DCM, the failure of the initial homotopy path is detected when }v}8
exceeds Th. The point vI,0 “ r´99.2011,´50.7766, 11.0163sJ at κI,0 “ 0.9965 is used as
initial guess for problem (7.19). A new start point v0,1 “ r´99.1925,´50.7788, 11.0155sJ is
found, with

Ω1 “

»

—

–

0 0 ´2.56ˆ 10´5

0 0 ´1.60ˆ 10´5

0 0 3.21ˆ 10´4

fi

ffi

fl

which is very close to the initial path. Since this homotopy path excesses Th again, a second
switch is attempted using Th{2. The initial guess vI,1 “ r´49.6995,´24.9227, 7.8530sJ at
κI,1 “ 0.9940 is detected, and problem (7.19) is solved gain. The new homotopy path with
starting point v0,2 “ r´51.4515,´4.9992, 9.6862sJ and

Ω2 “

»

—

–

0 9.03ˆ 10´6 ´2.60ˆ 10´3

0 ´1.60ˆ 10´6 1.73ˆ 10´3

0 1.27ˆ 10´5 7.44ˆ 10´4

fi

ffi

fl

is found. From this point on, the TFC-based DCM successfully reaches v˚.
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7.4 Summary

Homotopy is a deformation used in zero-finding problems. The idea is to connect an initial
easy-to-solve problem to the final, objective problem through the solution of a number of
intermediate, auxiliary problems that define the homotopy path. Traditional techniques
based on pure DCM or PAM fail to reach the objective problem, e.g., when the homotopy
path exhibits singular points or indefinite growth. The fate of these methods is already
determined when the homotopy function is formulated and the initial condition is given.

The TFC-based homotopy function presented in this paper implicitly defines infinite homo-
topy paths. This property can be leveraged whenever either a singularity is found or the
path tends to go off to infinity. In these cases, the algorithm is able to switch to a new ho-
motopy path, which attempts to reach the objective problem. A two-layer TFC-based DCM
algorithm has been developed to support our intuition. The effectiveness of this algorithm
has been proved by solving sample problems where the traditional continuation methods fail.
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CHAPTER 8
CONCLUSIONS

8.1 Answers to Research Questions

Answer to the first research question

For low-thrust trajectory optimization problems with interior-point constraints, how to
derive, calculate and assess analytic gradients in the indirect method ?

This thesis successfully derived analytic gradients by using calculus of variations, calculated
them through establishing the computational framework, and assessed their performance
with comparison to the finite difference method, for low-thrust trajectory optimization with
interior-point constraints in Chapters 2, 4, and 5.

For low-thrust optimization with scalar interior-point constraints, analytical formulas of mul-
tipliers for both time-optimal and energy-to-fuel-optimal problems are obtained and leveraged
such that the MPBVP is solved as a TPBVP by using the developed methods. The STM for
two categories of costate and dynamics discontinuities, produced by interior-point constraints
and bang-bang control, respectively, are derived. The flowchart in [47] is further augmented
to involve interior-point event branches. Overall, the computational framework is established
by combining analytic derivatives, continuation and switching detection into an augmented
integration flowchart, which enables to achieve the desired discontinuous bang-bang solu-
tions and their accurate gradients. The developed indirect methods have been applied to
solve power-limited asteroid rendezvous (Chapter 2) and fuel-optimal many-revolution Earth-
orbit transfers with eclipses (Chapter 4). Moreover, the developed method in Chapter 2 has
been used to solve thousands of time-optimal and fuel-optimal trajectories to favor asteroid
screening in the M-ARGO mission (Chapter 3).
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For low-thrust optimization with multi-dimensional interior-point constraints, the multi-
dimensional multipliers have to be sought along with other unknowns. In this case, both state
and costate may be discontinuous across interior-point time instants. Analytic gradients are
derived for the deep-space transfer with intermediate flyby, rendezvous and gravity-assist
events in Chapter 5. The analysis is carried out for each segment first, then extends to the
whole domain by using the chain rule. Special attention is paid to the derivatives of state,
costate and constraints with respect to interior-point time instants, since the constraints
considered are time-dependent. The recursive formulae of derivatives of each constraint
with respect to unknowns at previous interior-point time instants are established. The fuel-
optimal bang-bang solutions for deep-space transfers with intermediate flyby, rendezvous and
gravity-assist events have been achieved.

A number of simulations have been executed in Chapters 2, 4 and 5 to assess the performance
of analytic gradients. For low-thrust trajectory optimization with interior-point constraints,
numerical evidences show that analytic gradients improve both computational efficiency and
convergence robustness of the indirect method effectively against the finite difference method.

Answer to the second research question

How to design homotopy continuation methods to widen the convergence domain, re-
duce computational load and recover failures in low-thrust trajectory optimization ?

This thesis designed tailored homotopy continuation methods for various low-thrust trajec-
tory optimization problems. In Chapter 2, the combination of energy-to-fuel-optimal contin-
uation and hyperbolic tangent smoothing is employed to expand the convergence domain. In
Chapter 3, continuation strategies are designed to compute hundreds of asteroid pockchops,
in order to reduce the computational load. In Chapter 4, an effective continuation process
is proposed to determine many-revolution, fuel-optimal transfers by gradually increasing the
number of the shadow pass through.

Additionally, the homotopy methods are designed to recover failures in homotopy continu-
ation. In Chapter 6, the failure of thrust continuation for orbital transfers is resolved by
connecting solutions with different revolutions. In Chapter 7, a potential TFC-based homo-
topy continuation method, which remedies the failure of the homotopy process for general
problems through flexible path switching, is presented.

8.2 Limitations and Future Work

The limitations and future work are stated in the following.

Power-limited asteroid rendezvous trajectory design Future work will focus on the following
aspects: 1) The analysis of this work does not consider singular arcs. Handling singular arcs
will improve the solver robustness; 2) The assessment of the presented method for solving
low-thrust fuel-optimal problems with free terminal time is of interest; 3) The extension of the
presented method for the low-thrust optimization using the engine with dual-Isp engine [119]
and multiple operation modes [80] benefits to expanding the scope of applications of our
method.
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Target screening of M-ARGOmission The outcome of this work is valid for M-ARGOmission
under current assumptions of departure dates and thruster model. As for the latter, it is worth
observing that Pmin is never reached by optimal solutions. Should this be the case in future
iterations, the rankings would be affected. The same applies to Pmax as well as to the other
thruster coefficients.

More realistic dynamics model will be used in the next mission phase. The computation of
asteroid pockchops using 3-body dynamics model (Sun-Earth-Spacecraft) is ongoing. Com-
parisons of 2000 SG344 and 2010 UE51 pockchops using 2-body and 3-body dynamics are
shown in Fig. 8.1. Initial results indicate that 2-body pockchops enable capturing main
structural characteristics of 3-body pockchops. Also, the difference on the fuel consumption
is minimal. However, these preliminary conclusions have to be verified after more results
coming out. Additionally, the methods to fast estimate fuel-optimal trajectories are worthy
to explore [120].
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Figure 8.1: Pork chop plots for asteroids 2000 SG344 and 2010 UE51 under 2-body and 3-body dynamics.

Earth-orbit transfers with eclipses Evidences from numerical simulations show that the pro-
posed method allows effectively determining many-revolution, fuel-optimal transfers with
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Earth-shadow eclipses. Our computational framework is also effective for time-optimal trans-
fers, see [49]. However, the issue arises when trying to solve many-revolution time-optimal
transfers. In this case, the transfer time is one of the unknowns to solve. When the con-
tinuation fails, it is difficult to find out the reason behind the failure, i.e., it is not clear if
the failure is caused by the ill-conditioned STM or by the fact that the guessed transfer time
is not long enough. Future work will try to solve this issue from two aspects. One is to
redesign a better continuation procedure. The other is to develop a mathematical method to
regularize the possibility of the ill-conditioned STM.

Space missions with multi-dimensional interior-point constraints The method by trial and
errors is used to search a good initial guess solution. The number of tries is dozens of times
until one solution is found. The probability of convergence is low. Thus, the automatic
method to generate a good initial guess is necessary to improve the algorithmic effectiveness,
especially for the interplanetary transfers with intermediate gravity-assist events where many
unknowns are involved. In this aspect, particle swarm algorithm has been developed in [44]
to generate the initial guess. Future work will try to develop global optimization methods
and the combination with direct methods to search a good initial guess with higher solution
efficiency.

Thrust continuation for Earth-orbit transfers The developed method is tailored to the plan-
etocentric transfers. However, the method is unable to directly solve the trajectory opti-
mization problems in the three-body system, such as the Earth-Moon system. Moreover, the
computational effort is high, which may require several days. Future work will investigate
the possibility to extend the idea of this work to the three-body system, and the method to
further reduce the computational burden.

TFC-based homotopy continuation method The effectiveness of the presented TFC-based
homotopy method is demonstrated through simple examples. Future work will investigate
the following aspects to enhance the robustness of TFC-based homotopy method: 1) Methods
with high computational efficiency such as convex programming, least-square methods or
Lyapunov methods, etc., are worth to explore; 2) The presented method is a local continuation
method, yet it is a valuable direction towards designing probability-one homotopy methods
for general applications; 3) The extension of this method to aerospace applications is of
interest.
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APPENDIX A

A.1 Rankings of Time-Optimal Transfers

Time-optimal transfers are ranked here below. #: position in the ranking; Name: aster-
oid name; τmin: minimum transfer time; mppτminq: fuel consumption corresponding to the
minimum-time solution; Dep. Date: departure date; H: absolute magnitude; D: estimated
diameter; Nobs: number of observations; Nopp: number of oppositions.

# Name τmin [d] mppτminq [kg] Dep. Date H [-] D [m] Nobs Nopp

1 2010 UE51 131.82 0.693 04 Mar 2023 28.3 7.5 175 1
2 2015 KK57 295.28 1.359 03 Oct 2023 27.5 10.9 43 1
3 2011 MD 302.11 1.597 07 Jan 2023 28 8.6 1487 1
4 2009 BD 312.82 1.441 01 Jan 2023 28.1 8.2 178 3
5 2016 TB57 340.70 1.611 05 Dec 2024 26.1 20.7 137 1
6 2014 JR24 345.15 1.966 01 Jan 2023 29.3 4.7 54 1
7 2019 DJ1 349.56 1.770 31 Dec 2024 26.7 15.7 82 2
8 2016 CF137 352.89 1.656 05 Dec 2024 25.6 26.0 50 1
9 2014 BA3 355.69 2.032 17 Nov 2023 28.2 7.9 69 1
10 2012 BB14 361.40 1.793 04 Apr 2023 25 34.3 35 2
11 2014 LJ 367.31 1.699 21 May 2024 28.5 6.8 25 1
12 2017 YW3 370.33 1.968 31 Dec 2024 26.5 17.2 53 1
13 2008 CM74 373.96 2.028 24 Apr 2024 28.1 8.2 17 1
14 2012 EP10 378.58 2.066 16 Dec 2024 29.1 5.2 31 1
15 2008 ST 384.77 2.098 19 Jun 2023 27.1 13.0 49 1
16 2014 YD 395.10 1.932 31 Dec 2024 24.3 47.4 104 1
17 2017 RL2 402.66 1.860 22 Jul 2023 26.1 20.7 44 1
18 2001 QJ142 410.17 2.005 15 May 2023 23.7 62.4 91 2
19 2011 BQ50 419.76 2.488 01 Jan 2023 28 8.6 25 1
20 2010 JR34 421.98 2.464 31 Dec 2024 27.7 9.9 36 1
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21 2012 UV136 423.38 2.088 06 Feb 2023 25.5 27.3 125 7
22 2000 SG344 427.48 2.109 10 Jun 2024 24.7 39.4 31 2
23 2015 VO142 427.82 2.339 15 Nov 2024 28.9 5.7 112 1
24 2008 JL24 432.43 2.390 01 Jan 2023 29.6 4.1 81 1
25 2015 VU64 435.24 2.507 01 Jan 2023 30.6 2.6 30 1
26 2018 GE 441.42 2.430 31 Dec 2024 27.5 10.9 54 1
27 2016 EU84 446.65 2.576 31 Dec 2024 29 5.4 94 1
28 2015 XD169 446.86 2.330 18 Jul 2023 26.9 14.3 46 1
29 2016 WQ3 452.13 2.077 31 Dec 2024 28.8 6.0 37 1
30 2019 ED 459.03 2.723 31 Dec 2024 26.9 14.3 67 1
31 2017 KJ32 459.49 2.670 12 Mar 2023 28.9 5.7 37 1
32 2017 HK1 459.85 2.646 13 Apr 2023 25.1 32.8 78 1
33 2019 AP8 461.14 1.989 31 Dec 2024 24.3 47.4 68 2
34 2019 GF1 472.58 2.810 22 Aug 2024 27.4 11.4 27 1
35 2008 DL4 479.15 2.790 31 Dec 2024 26.9 14.3 29 1
36 2017 DV35 479.49 2.755 24 Oct 2024 27.2 12.5 43 1
37 2011 WU2 479.65 2.152 19 Jun 2023 24.9 35.9 14 1
38 2014 YN 485.35 2.799 19 Nov 2023 25.7 24.9 80 1
39 2009 HC 487.47 2.757 15 Jun 2024 24.7 39.4 145 1
40 2018 TS4 493.54 2.671 20 Jul 2023 27.6 10.4 28 1
41 1999 AO10 497.74 2.773 31 Dec 2024 23.9 56.9 73 1
42 2016 TB18 502.17 2.822 18 Jun 2023 24.8 37.6 96 1
43 2015 BM510 503.39 2.676 03 Aug 2024 25.1 32.8 58 1
44 2013 TG6 504.07 2.882 17 Oct 2024 26.6 16.4 63 1
45 2012 SX49 510.97 2.885 31 Dec 2024 26.2 19.7 35 1
46 2018 PK21 511.00 3.025 12 Oct 2023 25.9 22.7 72 1
47 2016 BQ 511.59 2.598 30 Apr 2023 26.8 15.0 40 1
48 2016 FU12 514.43 2.631 24 Oct 2023 26.9 14.3 19 1
49 2016 HF19 515.16 2.960 11 Nov 2024 26.5 17.2 90 1
50 2018 PN22 516.02 2.932 01 Jan 2023 27.5 10.9 17 1
51 2018 DC4 516.59 3.016 18 May 2023 27.3 11.9 19 1
52 2011 ED12 520.33 2.824 31 Dec 2024 26.8 15.0 82 1
53 2016 CH30 521.75 2.872 01 Jan 2023 28 8.6 34 1
54 2011 CL50 526.32 3.016 03 Jun 2023 27.6 10.4 28 1
55 2012 VC26 531.30 2.897 09 Jul 2024 28.7 6.2 28 1
56 2012 TF79 531.37 2.998 04 Jun 2024 27.4 11.4 59 1
57 2008 HU4 532.62 2.979 31 Dec 2024 28.3 7.5 77 2
58 2015 XZ378 536.69 2.486 14 Apr 2024 27.2 12.5 35 1
59 2016 DF 542.00 2.623 15 Jun 2024 27 13.7 45 1
60 2010 HA 545.07 2.865 20 Sep 2023 23.9 56.9 62 2
61 2018 VN5 549.44 2.892 31 Dec 2024 25.4 28.5 94 1
62 2007 BB 550.99 2.986 01 Jan 2023 27.8 9.5 20 1
63 2019 GE1 552.81 2.896 26 Jun 2023 27 13.7 17 1
64 2000 SZ162 568.64 3.119 15 Aug 2023 27.3 11.9 30 1
65 2014 FW32 569.12 3.311 31 Dec 2024 27 13.7 23 1
66 2014 HW 569.71 2.852 03 Mar 2023 28.4 7.2 28 1
67 2018 NX 572.39 3.200 26 Apr 2024 27.7 9.9 28 1
68 2001 GP2 574.12 2.613 14 Jul 2023 26.9 14.3 28 1
69 2018 KP1 576.44 2.782 01 Jan 2023 25.1 32.8 50 2
70 2011 CE22 581.04 2.837 19 Jun 2023 25.4 28.5 18 1
71 2007 RO17 582.26 3.148 13 Jan 2023 25.8 23.7 18 1
72 2010 TE55 583.87 3.557 06 Oct 2024 28 8.6 139 1
73 2006 RH120 589.52 3.376 12 Mar 2023 29.5 4.3 133 2
74 2019 GV5 590.94 3.116 15 Mar 2023 29.3 4.7 31 1
75 2013 GH66 591.70 3.417 31 Dec 2024 28 8.6 46 1
76 2014 EK24 592.30 2.950 24 Oct 2024 23.3 75.1 583 2
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77 2012 WH 593.13 3.319 27 May 2024 25.5 27.3 43 1
78 2004 VJ1 594.69 3.010 07 Jan 2023 24.1 51.9 98 2
79 2017 QB35 595.29 3.314 31 Dec 2024 29.3 4.7 33 1
80 2014 YP44 597.54 3.665 17 Sep 2024 26.1 20.7 13 1
81 2013 BS45 604.69 3.710 30 Aug 2023 25.9 22.7 92 2
82 2010 WU8 605.66 3.103 14 Jul 2024 24.2 49.6 24 1
83 2018 PM28 605.99 2.742 01 Jan 2023 25.7 24.9 46 2
84 2018 LQ2 606.60 3.363 31 Dec 2024 24.9 35.9 468 1
85 2016 GK135 607.52 3.679 17 Jul 2023 28.1 8.2 21 1
86 2018 SD2 611.04 3.161 16 Oct 2024 28.6 6.5 14 1
87 2019 LB1 614.23 3.471 01 Jan 2023 27 13.7 61 1
88 2017 TP4 615.43 3.403 18 Sep 2024 26.3 18.9 41 1
89 2008 UA202 616.60 3.687 31 Dec 2024 29.4 4.5 16 1
90 2018 FM3 617.95 2.961 22 Oct 2023 27.2 12.5 47 1
91 2014 QN266 618.60 3.707 14 Mar 2023 26.3 18.9 81 1
92 2011 AA37 619.08 3.373 01 Jan 2023 22.8 94.5 130 2
93 2018 VT7 619.15 3.784 04 Dec 2023 27.9 9.0 23 1
94 2013 RZ53 619.45 2.775 24 Apr 2023 31.1 2.1 31 1
95 2017 QW1 619.56 3.741 17 Aug 2023 26.2 19.7 36 1
96 2016 CO248 620.02 3.592 10 Dec 2023 27.5 10.9 30 1
97 2016 SX1 620.71 3.584 08 Dec 2024 28.6 6.5 37 1
98 2015 YK 623.23 2.960 16 Dec 2023 25.9 22.7 96 1
99 2014 HN2 625.70 3.810 02 Jan 2023 26.5 17.2 64 1
100 2015 JD3 629.20 3.583 01 Jan 2023 25.5 27.3 37 1
101 2017 UA45 632.36 3.526 14 Nov 2023 26.1 20.7 39 1
102 2019 AU 634.09 3.168 12 Nov 2024 26.7 15.7 48 1
103 2015 PS228 639.44 3.830 24 Mar 2023 28.8 6.0 38 1
104 2019 HM 640.18 3.761 25 Feb 2023 25.9 22.7 32 1
105 2017 YS1 644.07 3.913 01 Jan 2023 28.9 5.7 31 1
106 2018 GR4 644.78 3.150 31 Dec 2024 27.1 13.0 64 1
107 2016 RN20 645.02 3.463 31 Dec 2024 28.2 7.9 19 1
108 2012 PB20 646.80 3.431 31 Dec 2024 24.9 35.9 45 1
109 2010 FY9 647.95 3.522 31 Dec 2024 26.7 15.7 22 1
110 2012 AQ 653.45 2.821 01 Jan 2023 30.7 2.5 24 1
111 2017 YD1 654.94 3.665 16 Jan 2024 30 3.4 29 1
112 2019 FS2 657.28 3.952 01 Jan 2023 27.3 11.9 46 1
113 1999 CG9 662.48 3.058 11 Jan 2023 25.2 31.3 42 1
114 2018 RO5 662.50 3.592 16 Jun 2024 25.6 26.0 96 1
115 2017 BZ6 662.73 3.469 13 Sep 2024 26.1 20.7 71 1
116 2012 HK31 666.02 2.988 01 Nov 2023 25.4 28.5 63 1
117 2010 XF3 666.52 3.990 16 Feb 2024 24.4 45.2 94 1
118 2014 UN114 666.60 3.520 01 Jan 2023 24.5 43.2 177 1
119 2016 FZ13 668.88 3.346 19 Feb 2023 28.3 7.5 20 1
120 2015 XC352 670.87 3.177 26 Jan 2023 25.7 24.9 75 2
121 2015 DU 671.74 2.859 15 Sep 2023 26.6 16.4 96 1
122 2016 HF2 675.09 3.860 23 Jul 2023 26.1 20.7 77 1
123 2018 ER1 680.94 3.541 31 Dec 2024 25.6 26.0 61 1
124 2016 LC9 685.49 3.803 05 Jul 2024 27 13.7 30 1
125 2019 JN2 689.59 3.396 07 Apr 2023 25.7 24.9 47 1
126 2006 JY26 690.41 3.111 31 Dec 2024 28.4 7.2 76 1
127 2005 QP11 698.41 3.345 31 Dec 2024 26.4 18.0 53 1
128 2012 FM35 698.42 3.108 25 Jul 2024 27.3 11.9 77 1
129 2019 GM1 699.46 3.804 31 Dec 2024 27.5 10.9 14 1
130 2008 KT 699.94 3.140 22 Jul 2023 28.2 7.9 30 1
131 2007 UN12 704.27 3.080 31 Dec 2024 28.7 6.2 120 1
132 2017 RL16 707.17 3.241 29 Jul 2024 25 34.3 51 1
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133 2018 SF3 708.99 3.605 08 Aug 2023 25.2 31.3 31 1
134 2019 AC3 712.91 3.230 31 Oct 2024 27.3 11.9 43 1
135 2013 UT4 714.24 3.335 27 Jun 2024 26.2 19.7 24 1
136 2018 UE1 723.22 3.416 01 Jan 2023 26.7 15.7 55 1
137 2017 DR109 724.49 3.414 31 Dec 2024 27.6 10.4 28 1
138 2017 UQ6 726.82 3.532 25 Sep 2024 27.2 12.5 25 1
139 2017 KU34 729.10 3.418 02 Sep 2023 23.6 65.4 78 3
140 2014 AE29 729.65 3.824 15 Jan 2023 27.4 11.4 26 1
141 2011 MQ3 736.52 3.326 31 Dec 2024 24.8 37.6 71 1
142 2013 VM13 739.72 3.572 09 Mar 2023 23.9 56.9 46 2
143 2008 EA9 744.24 3.118 04 Apr 2023 27.7 9.9 56 1
144 2014 MZ17 745.60 3.549 05 Jan 2023 24.1 51.9 47 2
145 2018 FM2 746.00 3.497 08 Apr 2023 26.6 16.4 18 1
146 2017 FP101 747.34 3.972 01 Jan 2023 24.7 39.4 48 1
147 2008 GM2 747.74 3.254 20 Jul 2024 28.3 7.5 54 1
148 2016 YR 748.47 3.279 31 Dec 2024 27.2 12.5 52 1
149 2017 JB2 749.62 3.418 24 Jan 2023 29.2 5.0 33 1
150 2007 WU3 750.25 3.382 23 Dec 2024 23.8 59.6 35 3
151 2016 EE28 752.08 3.391 25 Feb 2023 26.8 15.0 22 1
152 1991 VG 755.50 3.193 18 Nov 2024 28.3 7.5 66 3
153 2009 CV 763.83 3.240 02 Jul 2023 24.3 47.4 174 4
154 2013 WR45 776.78 3.620 01 Jan 2023 25.7 24.9 22 1
155 2019 KM2 788.09 3.420 27 Jul 2023 25.5 27.3 14 1
156 2018 FH1 794.30 3.866 20 Dec 2024 26.6 16.4 43 1
157 2019 DH1 796.84 3.423 14 Mar 2023 26.2 19.7 53 1
158 2018 LE1 799.03 3.489 13 Apr 2024 27.5 10.9 55 1
159 2018 PR7 804.18 3.534 27 Apr 2023 28.5 6.8 55 1
160 2014 JX54 810.60 3.425 16 Jun 2023 24.4 45.2 17 1
161 2011 OJ45 811.69 3.551 17 Oct 2023 26 21.6 21 1
162 YORP 818.52 3.687 30 Sep 2023 22.7 99.0 533 5
163 2009 BK2 830.55 3.780 15 Aug 2024 25.3 29.9 27 1
164 2001 GO2 842.00 3.780 13 Jul 2023 24.3 47.4 23 1
165 2018 WV1 843.23 3.636 22 Jul 2024 30.3 3.0 87 1
166 2004 QA22 844.14 3.845 25 Sep 2024 27.9 9.0 44 1
167 2016 TY55 852.18 3.724 26 Jan 2023 26.9 14.3 44 1
168 2014 WU200 855.27 3.558 08 Sep 2023 29.1 5.2 46 1
169 2015 TC25 858.58 3.716 01 Jan 2023 29.3 4.7 44 2
170 2007 VU6 864.20 3.890 07 May 2023 26.5 17.2 38 1
171 2019 LE1 875.50 3.831 01 Jan 2023 26.4 18.0 28 1
172 2018 XX3 878.36 3.778 09 Jan 2023 29.7 3.9 23 1

Table A.1: Ranking of time-optimal transfers.

A.2 Ranking of Fuel-Optimal Transfers

Fuel-optimal transfers are ranked here below. mp,min: minimum fuel consumption; TOF:
time of flight corresponding to the minimum-fuel solution.

# Name mp,min [kg] TOF [d] Dep. Date H [-] D [m] Nobs Nopp

1 2010 UE51 0.452 1095 07 Nov 2023 28.3 7.5 175 1
2 2009 BD 0.638 1095 05 Feb 2024 28.1 8.2 178 3
3 2000 SG344 0.717 972.93 01 Jan 2023 24.7 39.4 31 2
4 2001 GP2 0.740 967.70 09 Aug 2023 26.9 14.3 28 1
5 2015 KK57 0.848 720.62 01 Jan 2023 27.5 10.9 43 1
6 2016 TB57 0.873 920.64 05 Feb 2024 26.1 20.7 137 1
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7 2008 JL24 0.917 1089.18 27 Nov 2023 29.6 4.1 81 1
8 2014 YD 0.969 1089.88 21 Apr 2023 24.3 47.4 104 1
9 2012 TF79 0.985 1072.06 14 Jun 2024 27.4 11.4 59 1
10 2008 HU4 1.033 1095 05 May 2024 28.3 7.5 77 2
11 2011 MD 1.035 1071.06 11 Dec 2024 28 8.6 1487 1
12 2016 TB18 1.052 1093.60 30 Jul 2023 24.8 37.6 96 1
13 2012 EP10 1.056 1059.41 21 Dec 2024 29.1 5.2 31 1
14 2016 WQ3 1.100 1038.50 21 May 2023 28.8 6.0 37 1
15 2015 VO142 1.122 1000.31 01 Apr 2023 28.9 5.7 112 1
16 2014 QN266 1.173 1079.37 09 Aug 2023 26.3 18.9 81 1
17 2018 TS4 1.192 1070.21 02 Mar 2023 27.6 10.4 28 1
18 2019 GF1 1.208 1095 15 May 2024 27.4 11.4 27 1
19 2006 RH120 1.221 1095 28 Oct 2023 29.5 4.3 133 2
20 2015 XZ378 1.240 1095 01 Jan 2023 27.2 12.5 35 1
21 2017 TP4 1.242 1095 11 Jan 2023 26.3 18.9 41 1
22 2008 UA202 1.261 1095 14 Jul 2024 29.4 4.5 16 1
23 2015 PS228 1.277 1080.73 06 Mar 2024 28.8 6.0 38 1
24 2006 JY26 1.307 1095 19 Aug 2023 28.4 7.2 76 1
25 2007 UN12 1.316 1095 16 Jan 2024 28.7 6.2 120 1
26 2017 RL2 1.323 1084.56 11 Apr 2023 26.1 20.7 44 1
27 2018 FM2 1.335 1072.13 26 Jan 2024 26.6 16.4 18 1
28 2018 GR4 1.339 933.23 07 Dec 2023 27.1 13.0 64 1
29 2016 CF137 1.352 912.60 08 Sep 2023 25.6 26.0 50 1
30 2018 PM28 1.358 1048.49 01 Jan 2023 25.7 24.9 46 2
31 2014 JR24 1.369 1095 21 May 2023 29.3 4.7 54 1
32 2013 RZ53 1.374 1095 21 Nov 2024 31.1 2.1 31 1
33 2008 EA9 1.375 1095 20 Jul 2023 27.7 9.9 56 1
34 2014 LJ 1.396 795.84 17 Nov 2023 28.5 6.8 25 1
35 2018 PK21 1.401 968.35 10 Jul 2023 25.9 22.7 72 1
36 2017 UQ6 1.401 1095 21 Dec 2024 27.2 12.5 25 1
37 2019 AP8 1.404 1095 10 Jul 2023 24.3 47.4 68 2
38 2015 BM510 1.415 1037.66 21 Apr 2023 25.1 32.8 58 1
39 2017 YW3 1.417 845.92 15 Feb 2024 26.5 17.2 53 1
40 2018 LQ2 1.442 1095 01 Jan 2023 24.9 35.9 468 1
41 2008 ST 1.451 903.82 01 May 2023 27.1 13.0 49 1
42 2011 BQ50 1.474 1017.07 11 Dec 2024 28 8.6 25 1
43 2018 KP1 1.478 1095 01 Jan 2023 25.1 32.8 50 2
44 2008 KT 1.487 1095 30 Jul 2023 28.2 7.9 30 1
45 2018 GE 1.505 939.72 15 May 2024 27.5 10.9 54 1
46 2010 JR34 1.521 1061.92 21 Apr 2023 27.7 9.9 36 1
47 2013 BS45 1.524 1068.37 21 Dec 2024 25.9 22.7 92 2
48 2012 FM35 1.561 1073.42 02 Mar 2023 27.3 11.9 77 1
49 2008 CM74 1.618 1023.81 31 May 2023 28.1 8.2 17 1
50 2018 VN5 1.638 1095 03 Aug 2024 25.4 28.5 94 1
51 2012 BB14 1.645 1051.41 01 Jan 2023 25 34.3 35 2
52 1991 VG 1.645 1055.50 20 Jun 2023 28.3 7.5 66 3
53 2000 SZ162 1.645 982.97 10 Jul 2023 27.3 11.9 30 1
54 2019 DJ1 1.671 834.90 01 Jan 2023 26.7 15.7 82 2
55 2014 BA3 1.683 1095 10 Jul 2023 28.2 7.9 69 1
56 2012 UV136 1.686 1080.14 30 Jul 2023 25.5 27.3 125 7
57 2016 FU12 1.706 1041.21 01 Apr 2023 26.9 14.3 19 1
58 2001 QJ142 1.721 1078.27 05 Apr 2024 23.7 62.4 91 2
59 2015 JD3 1.772 1095 20 Jun 2023 25.5 27.3 37 1
60 2011 ED12 1.783 1095 24 Jun 2024 26.8 15.0 82 1
61 2004 VJ1 1.789 1090.48 01 Jan 2023 24.1 51.9 98 2
62 2015 VU64 1.792 902.88 10 Jul 2023 30.6 2.6 30 1
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63 2010 TE55 1.827 1026.83 10 Jul 2023 28 8.6 139 1
64 2011 AA37 1.834 1058.16 21 Dec 2024 22.8 94.5 130 2
65 2015 DU 1.855 1095 28 Sep 2023 26.6 16.4 96 1
66 2011 WU2 1.865 1034.97 26 Mar 2024 24.9 35.9 14 1
67 2014 YN 1.867 933.26 21 Apr 2023 25.7 24.9 80 1
68 2013 GH66 1.873 1051.13 20 Feb 2023 28 8.6 46 1
69 1999 AO10 1.884 1072.70 31 May 2023 23.9 56.9 73 1
70 2012 HK31 1.884 1095 21 May 2023 25.4 28.5 63 1
71 2016 HF19 1.901 1095 07 Nov 2023 26.5 17.2 90 1
72 2007 VU6 1.911 1093.00 12 Mar 2023 26.5 17.2 38 1
73 2019 ED 1.916 1095 01 Jan 2023 26.9 14.3 67 1
74 2014 WU200 1.921 1095 27 Nov 2023 29.1 5.2 46 1
75 2012 AQ 1.929 1088.45 01 Dec 2024 30.7 2.5 24 1
76 2017 DV35 1.931 977.24 01 Jan 2023 27.2 12.5 43 1
77 2018 DC4 1.935 977.05 11 Dec 2024 27.3 11.9 19 1
78 2017 YD1 1.937 1095 21 Dec 2024 30 3.4 29 1
79 2016 DF 1.964 1016.21 27 Nov 2023 27 13.7 45 1
80 2018 VT7 1.965 1095 25 Feb 2024 27.9 9.0 23 1
81 2009 CV 1.985 1095 11 Jan 2023 24.3 47.4 174 4
82 2016 BQ 1.989 1095 01 Dec 2024 26.8 15.0 40 1
83 2011 CL50 1.993 972.21 20 Jul 2023 27.6 10.4 28 1
84 2008 DL4 1.998 875.56 01 Jan 2023 26.9 14.3 29 1
85 2018 WV1 2.012 1083.23 12 Mar 2023 30.3 3.0 87 1
86 2015 XD169 2.022 1095 31 Jan 2023 26.9 14.3 46 1
87 2014 EK24 2.029 1095 06 Jan 2024 23.3 75.1 583 2
88 2016 YR 2.046 1095 30 Jul 2023 27.2 12.5 52 1
89 2018 SD2 2.050 1095 21 May 2023 28.6 6.5 14 1
90 2013 VM13 2.056 1077.70 21 Dec 2024 23.9 56.9 46 2
91 2018 FM3 2.057 1093.49 22 Oct 2024 27.2 12.5 47 1
92 2016 CH30 2.067 1062.13 10 Jul 2023 28 8.6 34 1
93 2010 HA 2.071 1095 03 Aug 2024 23.9 56.9 62 2
94 2019 DH1 2.075 1095 01 Jan 2023 26.2 19.7 53 1
95 2018 PN22 2.099 1095 21 Nov 2024 27.5 10.9 17 1
96 2009 HC 2.101 1089.68 21 Dec 2024 24.7 39.4 145 1
97 2017 HK1 2.112 1095 28 Sep 2023 25.1 32.8 78 1
98 2004 QA22 2.127 1095 20 Feb 2023 27.9 9.0 44 1
99 2011 OJ45 2.129 1095 02 Oct 2024 26 21.6 21 1
100 2017 KJ32 2.146 971.47 21 Jan 2023 28.9 5.7 37 1
101 2012 SX49 2.147 1095 31 May 2023 26.2 19.7 35 1
102 2016 GK135 2.150 1095 10 Jun 2023 28.1 8.2 21 1
103 2019 GV5 2.169 1067.54 01 Jan 2023 29.3 4.7 31 1
104 2016 EU84 2.169 926.65 16 Jan 2024 29 5.4 94 1
105 2014 FW32 2.182 1095 21 Nov 2024 27 13.7 23 1
106 2012 VC26 2.185 1095 19 Aug 2023 28.7 6.2 28 1
107 2014 YP44 2.189 1095 02 Oct 2024 26.1 20.7 13 1
108 1999 CG9 2.198 1095 01 Dec 2024 25.2 31.3 42 1
109 2011 CE22 2.201 1095 11 Apr 2023 25.4 28.5 18 1
110 2019 AU 2.210 1095 20 Jun 2023 26.7 15.7 48 1
111 2014 HN2 2.269 1016.28 31 May 2023 26.5 17.2 64 1
112 2007 WU3 2.277 1095 10 Jun 2023 23.8 59.6 35 3
113 2016 SX1 2.279 1095 11 Jan 2023 28.6 6.5 37 1
114 2015 YK 2.295 948.47 10 Jul 2023 25.9 22.7 96 1
115 2017 RL16 2.318 1095 08 Sep 2023 25 34.3 51 1
116 2013 TG6 2.321 1007.76 13 Aug 2024 26.6 16.4 63 1
117 2019 KM2 2.331 1095 01 Jan 2023 25.5 27.3 14 1
118 2019 AC3 2.341 1095 02 Mar 2023 27.3 11.9 43 1
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119 2016 RN20 2.352 1095 02 Mar 2023 28.2 7.9 19 1
120 2007 BB 2.395 1065.55 01 Apr 2023 27.8 9.5 20 1
121 2017 JB2 2.410 1095 25 Apr 2024 29.2 5.0 33 1
122 2010 WU8 2.412 1044.28 14 Jun 2024 24.2 49.6 24 1
123 2018 UE1 2.420 1095 02 Oct 2024 26.7 15.7 55 1
124 2018 LE1 2.423 1095 13 Aug 2024 27.5 10.9 55 1
125 2007 RO17 2.457 1050.54 12 Mar 2023 25.8 23.7 18 1
126 2016 FZ13 2.461 1095 17 Nov 2023 28.3 7.5 20 1
127 2014 HW 2.468 1023.04 30 Jun 2023 28.4 7.2 28 1
128 2015 TC25 2.488 1095 21 Dec 2024 29.3 4.7 44 2
129 2014 MZ17 2.510 1095 01 Jan 2023 24.1 51.9 47 2
130 2008 GM2 2.522 1095 16 Jan 2024 28.3 7.5 54 1
131 2017 BZ6 2.536 1095 14 Jul 2024 26.1 20.7 71 1
132 2012 WH 2.555 1078.02 04 Jun 2024 25.5 27.3 43 1
133 2017 QW1 2.560 1020.03 11 Jan 2023 26.2 19.7 36 1
134 2018 PR7 2.561 1095 30 Jun 2023 28.5 6.8 55 1
135 2017 QB35 2.579 1000.15 21 Dec 2024 29.3 4.7 33 1
136 2019 GE1 2.592 1095 03 Aug 2024 27 13.7 17 1
137 2014 UN114 2.598 922.45 01 Jan 2023 24.5 43.2 177 1
138 2005 QP11 2.603 1095 21 Jan 2023 26.4 18.0 53 1
139 2018 FH1 2.613 1095 04 Jul 2024 26.6 16.4 43 1
140 2012 PB20 2.626 1095 01 Jan 2023 24.9 35.9 45 1
141 2018 NX 2.634 1032.48 10 Jun 2023 27.7 9.9 28 1
142 2015 XC352 2.647 1092.40 05 Apr 2024 25.7 24.9 75 2
143 2016 TY55 2.702 1095 21 Dec 2024 26.9 14.3 44 1
144 2017 YS1 2.722 1095 11 May 2023 28.9 5.7 31 1
145 2019 LB1 2.726 1095 01 Nov 2024 27 13.7 61 1
146 2011 MQ3 2.765 1095 01 May 2023 24.8 37.6 71 1
147 YORP 2.776 1095 01 Apr 2023 22.7 99.0 533 5
148 2010 FY9 2.791 994.37 01 Jan 2023 26.7 15.7 22 1

Table A.2: Ranking of fuel-optimal transfers.

A.3 Fuel-Optimal Porkchops Plots

Fuel-optimal porkchop plots for the 172 targets in A.1. The plots style has been simplified to
favour readability, and common axes and color range have been adopted to ease comparison.
The following conventions are used:

• x-axis: departure date; Range: Jan 1st, 2023–Dec 31st, 2024 (8401–9131 MJD2000);

• y-axis: time of flight; Range: 290–1095 days;

• Color code: fuel consumption; Range: 0.25–4.45 kg, same color code as in Fig. 3.11;

• Isolines step: 0.3 kg.

In all plots, the tick red line is the locus of time-optimal solutions, while the black dashed
line (if present) indicates the available propellant mass isoline (2.8 kg).
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