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1. Introduction
The Artemis program is just the beginning of a
new era of lunar exploration, wherein mankind
will not only be engaged in discovering new
frontiers but also exploiting the resources from
space. Within this framework, improving lunar
transfer trajectories is a fundamental measure
towards achieving more economical and efficient
missions. Moreover, as space missions become
more demanding, high-fidelity astrodynamical
models are necessary to design unique trajec-
tories. Nevertheless, simplified models offer a
deeper grasp of the dynamics of the cislunar en-
vironment, and are more suitable to perform ex-
tensive optimization searches. Hence, the tran-
sition from easier formulations to more complex
ones is a crucial step in planning future missions.
This thesis is divided into two parts. The first
addresses the possibility of reducing the fuel cost
of two-impulse Earth–Moon transfers in a four-
body model with the addition of an intermedi-
ate impulse, by means of a semi-analytical ap-
proach. Instead, the second concerns the trans-
formation of multi-impulse trajectories from the
four-body model to a full-ephemeris model of
the solar system. If the first part is intended to
have a more theoretical orientation, dealing with
basic research, the second part is more geared
towards practical real-world applications.

2. Trajectories Optimization
Lawden’s Primer Vector theory is applied to
identify Earth–Moon transfers which could ben-
efit from the introduction of an additional inter-
mediate impulse. Subsequently, three-impulse
transfers are designed with a direct numerical
optimization method.

2.1. Earth–Moon Transfers
The starting point of the thesis is the collec-
tion of two-impulse Earth–Moon transfers found
by Topputo in the Planar Bicircular Restricted
Four Body Problem (PBRFBP), with the Sun,
the Earth, and the Moon as primaries [5].
On these reference trajectories the spacecraft is
transferred from an Earth-circular orbit of al-
titude hi = 167 km, to a lunar circular or-
bit of altitude hf = 100 km. Each transfer is
achieved by means of an initial and a final im-
pulse, both parallel to the local velocities. The
total number of solutions found by Topputo is
almost 300 000 and ranges from simple interior-
direct transfers, to exterior low-energy transfers
with ballistic capture at the Moon.

2.2. Primer Vector Theory
Primer Vector theory, formulated by Lawden in
[3], is a collection of first-order necessary con-
ditions for fuel-optimal impulsive trajectories.
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These conditions are expressed in terms of a par-
ticular vector comprised of the adjoin variables
associated with the velocity, called primer vector
and indicted by p. However, Lawden’s theory
was derived in the framework of the Restricted
Two-Body Problem. Following the analysis of
Hiday, who adapted the principle to the Ellip-
tic Restricted Three-Body Problem in [2], the
theory is extended to the PBRFBP. The first-
order Lawden’s necessary conditions (LNC) for a
fuel-optimal impulsive transfer in the PBRFBP,
with fixed terminal times, positions and veloci-
ties, are obtained by means of Pontryagin’s Max-
imum Principle. Particularly they require that

1. p and ṗ are continuous and satisfies

p̈ = Grp+Gvṗ ,

where Gr and Gv are the derivatives
of the gravitational acceleration with
respect to the position and the veloc-
ity, respectively;

2. ∥p∥ ≤ 1, with impulses occurring at
those instants when ∥p∥ = 1;

3. at all impulses, the primer is a unit
vector aligned in the thrust direction;

4. at all interior impulses p · ṗ = 0.

2.3. Methodology

2.3.1. Non-Optimal Trajectory

Among the thousand reference solutions, some
of them already meet LNC, but others can be
further optimized. The litmus paper is the his-
tory of the primer vector associated with each
trajectory, which also gives a clear indication of
how a trajectory can be improved [2]. The ad-
dition of a midcourse maneuver is a potential
way of decreasing the cost of an impulsive mis-
sion. Therefore, each non-optimal reference tra-
jectory, indicated with γ 1, is compared with a
neighboring three-impulse trajectory γ, named
perturbed trajectory. The two share the same
terminal conditions, but γ has an additional in-
termediate impulse.
Let J represent the total characteristic velocity,
or simply cost, of each transfer, defined as the
sum of the magnitudes of all the maneuvers.

1Barred letters indicate quantities evaluated on the
reference trajectory.

The following analytical criterion is used to de-
termine if the addition of an intermediate im-
pulse can reduce the total cost of the transfer.

A perturbed trajectory with a cost Jγ
lower than Jγ exists if ∥p∥ exceeds unity
at any intermediate time. Moreover, the
cost difference between the two is, to the
first-order:

δJ = κ
(
1− p⊤

mκ̂
)

,

where κ denotes the magnitude of the in-
termediate maneuver, and κ̂ its direction.

If δJ can be made negative, then γ represents
an improvement in the cost over γ. The opti-
mal location and timing for the new impulse are
computed in two steps: 1) identifying a first ini-
tial guess for the position rm and time tm of the
third impulse; 2) iterating on these values until
a local minimum of the cost is achieved.

2.3.2. Perturbed Trajectory

The time of maximum primer magnitude tm is
selected as an initial estimate for tm. Let δ sym-
bolize the difference between a quantity eval-
uated on the perturbed and reference trajec-
tory; the position of the impulse is computed
as rm = δrm + rm, where rm is the position on
γ at t = tm. A first-order analysis results in

δrm = κK−1 pm

∥pm∥
,

where

K ≡ Φvv(tf− , tm+)Φ
−1
rv (tf− , tm+)

− Φvv(ti+ , tm−)Φ
−1
rv (ti+ , tm−) .

The quantity Φ is the state transition matrix as-
sociated with the flow φ4 of the PBRFBP and
evaluated on γ. If the value of κ is selected small
enough to justify a first-order analysis, the pre-
vious choice for δrm ensures that κ̂ and ∥pm∥
are aligned at the time tm2. Once the location in
time and space of the midcourse impulse is deter-
mined, it is needed to build a trajectory connect-
ing the prescribed initial and final states with
the newly computed position of the intermedi-
ate maneuver. Therefore, a forward-backward

2This choice is compliant with the third LNC.
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Figure 1: Double-shooting
problem solved to compute
the perturbed trajectory γ
from the reference one γ;
the PBRFBP is described
in a synodic frame which
co-rotates with the Earth
(P1) and the Moon (P2)
and is centered at their
barycenter; the distances
and the sizes of the Sun
(P3) and the two primaries
are not to scale; the trans-
fers lie on the (x, y)-plane

shooting problem is set up, which consists in
solving two Lambert’s problems, connecting:
• {ri, ti} with {rm + δrm, tm};
• {rf , tf} with {rm + δrm, tm}.

The idea of the solution method, represented in
Fig. 1, consists in guessing the values of vi+ and
vf− and propagating the two states (forward
and backward in time) until the continuity on
the position is satisfied at rm. Concerning κ,
its value is initially set to 1 m/s, but it is pro-
gressively reduced until the Matlab®’s built-in
function fsolve reaches convergence in a pre-
scribed number of iterations.

2.3.3. Refined Trajectory

The inclusion of an additional impulse (as it was
discussed up to this point) does not necessarily
yield an optimal three-impulse trajectory. The
time history of the primer vector on γ must be
examined again, in order to verify the compli-
ance with LNC. When some conditions are not
met, then a neighboring three-impulse solution
γ̃ with a lower cost must exist. This shares the
same terminal conditions with γ and γ, but, dif-
ferently from the perturbed trajectory, the mid-
course impulse is allowed to be located at a time
t̃m ̸= tm and a position r̃m ̸= rm. Therefore, γ̃,
named refined trajectory, consists of two ballistic
arcs connecting the states

• {ri, ti} with
{
r̃m t̃m

}
,

•
{
r̃m t̃m

}
with {rf , tf} .

The idea now is to iterate on the position and
time of the mid-course impulse, until a local
minimum of Jγ̃ is reached. Thus, a nonlinear

programming (NLP) problem is stated, where
the unknowns are r̃m and t̃m. However, the
two arcs of the solution must meet at the po-
sition of the second impulse and this depends
on the velocities just after the initial impulse,
and before the final one. Therefore, to avoid
solving a shooting problem at each iteration of
the NLP problem, both ṽi+ and ṽf− are con-
sidered among the unknowns of the problem.
These are collected in a vector of NLP variables
y ≡

(
ṽi+ , ṽf− , r̃m, t̃m

)
and Problem 1 is solved

by means of Matlab®’s suite fmincon. For nu-
merical efficiency, the variations of the cost Jγ̃
and the nonlinear equality constraints hm− , hm+

with respect to y are computed analytically.

Problem 1 (Trajectory Optimization). —
The refined trajectory is computed by solving:

min
y

Jγ̃(y) := ∥∆ṽi∥+ ∥∆ṽm∥+ ∥∆ṽf∥

subject to the constraints
hm−(y) := φr(ri, ṽi+ , ti; t̃m)− r̃m = 0 ,

hm+(y) := φr(rf , ṽf−, tf ; t̃f )− r̃m = 0 ,

ti < t̃m < tf .

2.4. Results
More than 10 000 trajectories are improved au-
tomatically following the aforementioned proce-
dure. A global picture of the results obtained in
the first part of the thesis, is presented in Fig. 2.
Here, three-impulse transfers are reported in the
(∆t,∆v) plane3, with the color of each point in-

3∆t is the time of flight of the transfer, and ∆v its
total cost, i.e., J .
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Figure 2: Multiple-
impulse Earth–Moon
transfers in a (∆t,∆v)
graph [5]. Black dots
represent two-impulse
solutions, while colored
dots correspond to
three-impulse refined
trajectories; the color
is related to the im-
provement in the cost
provided by the ad-
ditional impulse with
respect to the reference
two-impulse transfer

dicating the improvement achieved by adding a
midcourse impulse: G̃ = Jγ − Jγ̃ . Instead, black
dots represent two-impulse transfers that are not
optimized further, either because they are al-
ready optimal, or their trajectories are deemed
irrelevant for a real mission to the Moon. Gen-
erally, the incorporation of a third impulse leads
to a small percentage variation in the total cost
of the final solutions. Nonetheless, intermedi-
ate maneuvers are beneficial for transfers with a
moderate time of flight (e.g., 50 days) that in-
volve an initial lunar flyby. In such scenarios,
the additional degrees of freedom allow to take
full advantage of the lunar gravity assist, and
still achieve a feasible transfer by modifying the
path after the Moon encounter. As a result, the
largest improvement is obtained, which is in the
range of tens m/s (red dots in Fig. 2).
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Figure 3: Primer vector magnitude on a refer-
ence, perturbed and refined trajectory

Figure 3 shows the primer vector magnitude on a
reference, perturbed and refined transfer of this
class. Note that the refined trajectory is the only
one compliant with LNC, and thus optimal.

3. High-Fidelity Continuation
In the second part of the thesis, a procedure is
developed to facilitate the transition of multi-
impulse Earth–Moon transfers from a four-body
model to a complete model of the solar system
(this is what is intended for "continuation").

3.1. Background

3.1.1. Rotopulsating n-Body Problem

The astrodynamical model selected to describe
the solar system is the Rotopulsating Restricted
n-Body Problem (RPRnBP) [1]. Here, the mo-
tion of the spacecraft is described under the
gravitational attraction of n − 1 celestial bod-
ies, in a local reference frame that rotates and
pulsates with the Earth and the Moon, named
rotopulsating frame (RPF). The coordinate axes
and the adimensionalization scheme are such
that the Earth and the Moon always occupy a
fixed position in the RPF. SPICE toolkit is used
to read the states of the celestial bodies from the
JPL ephemeris data DE432 at any epoch. More-
over, the oblateness of the celestial bodies and
the effects of solar radiation pressure are taken
into account. Adimensional time, position, and
velocity are computed with the transformation
between sidereal coordinates (inertial), and syn-
odic ones (non-inertial) reported in [1].
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3.1.2. Low-Energy Transfers

The focus of the second part is on ballistic low-
energy Earth–Moon transfers, due to their nu-
merous advantages [4]. In short, these trajec-
tories involve putting the spacecraft beyond the
orbit of the Moon, and taking advantage of the
Sun’s gravity to reduce the transfer fuel cost.

3.2. Methodology
Let γ4 be an Earth–Moon transfer in the
PBRFBP that embeds either two or three im-
pulsive maneuvers. The final transfer γn in
the RPRnBP should connect two circular orbits
with the same altitudes as those in the four-body
model. However, while the orientation of the ini-
tial parking orbit is not constrained, the arrival
orbital plane is fixed in a Moon-Centered Moon-
Equatorial frame. Particularly, it is possible to
select in advance the values of right ascension
of the ascending node and inclination. Further-
more, also the case of a generically oriented polar
orbit is accounted for. The methodology pre-
sented consists of two steps:

1. the generation of an initial seed trajectory;
2. the recursive correction with a modified

multiple-shooting strategy.

3.2.1. Initial Seed Trajectory

The first guess solution for the multiple-shooting
problem is obtained by transforming the states
of γ4 into the RPRnBP. To this aim, a suitable
epoch must be computed to define the RPF.
Given an alignment time in the PBRFBP, the
Frames Alignment problem consists in finding
an alignment epoch such that the configurations
of the three primaries (Earth, Moon, and Sun)
in the two models are as close as possible. A
careful choice is to set the alignment time on
each transfer γ4 when the Sun’s effects on the
trajectories are more relevant, i.e., when space-
craft distance from the Earth–Moon barycenter
is maximum. Then, a grid-search algorithm is
implemented to find the best alignment epoch
within a given time window (e.g, a solar year).
In Fig. 4, the trajectories of the Sun in the two
models are depicted during the time of a trans-
fer. In the four-body model the Sun moves on
a circular orbit, while in the n-body model its
trajectory is read from the ephemerides. The
solution to the Frame Alignment problem is in-

dicated with an asterisk, while the positions at
the departure are spotted with a dot. The more
precise the overlap of the two models, the closer
the initial seed orbit is to a feasible trajectory in
the PBRFBP (with positive consequences on the
quality of the guess solution). Subsequently, a
series of transformations, through a non-rotating
frame in the PBRFBM, the International Celes-
tial Reference Frame, and finally the RPF, are
used to convert the states of γ4 to the nondi-
mensional quantities of the RPRnBP.
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Figure 4: Trajectories of the Sun in the two mod-
els during the time of a transfer; departure and
alignment times are spotted with a circle and an
asterisk, respectively; coordinates are adimen-
sional according to the definition of each model

3.2.2. Multiple-Shooting Strategy

The initial seed orbit is then refined with a di-
rect transcription and multiple-shooting tech-
nique, which maps the current optimal control
problem to a NLP problem [1]. The trajectory
is sampled at a finite number of points evenly
spaced in time, called nodes, where the state
vector (position and velocity) is taken as an
unknown variable. The overall NLP variables
vector comprises the collection of the states at
each node, the initial and final states of the tra-
jectory, and the time of each maneuver. The
problem to be solved is to minimize the cost of
the trajectory J , while preserving the continu-
ity of the states at each node and constraining
the initial and final states to the parking or-
bits around the Earth and the Moon. Moreover,
when a midcourse impulse is present, an addi-
tional constraint makes the velocities before and
after the maneuver aligned, to prevent any sin-
gularity of the cost function. Again, the problem
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is solved by means of Matlab®’s suite fmincon,
provided with the analytical expressions for the
derivatives of the objective function and the con-
straints with respect to the NLP variables.

3.3. Results
Figure 5 shows a low-energy transfer targeting
a polar orbit around the Moon without any pre-
scribed right ascension of the ascending node.
The spacecraft path is made of an initial lunar
flyby, a corrective maneuver, and a final ballis-
tic capture at the Moon. The continuation al-
gorithm preserves both the geometrical features
of the trajectory as well as its time of flight and
cost. Furthermore, in this case, the cost of the
final solution is lower than the one of the ini-
tial transfer in the four-body model. The algo-
rithm succeeds also in continuing other families
of transfers. For instance, exterior weak stability
boundary transfers with a time of flight of up to
90 days, and interior transfers, both direct and
with an Earth gravity assist.
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Figure 5: Low-energy transfer successfully
adapted to the RPRNBP

4. Conclusions
With the beginning of a new phase of lunar ex-
ploration, finding optimal trajectories in high-
fidelity astrodynamical models is a crucial step
for maximizing the scientific and exploratory po-
tential of future missions.
In the first part of the thesis, Primer Vector
theory is applied to improve time-fixed, two-

impulse, Earth–Moon transfers. For the first
time, a set of first-order optimality necessary
conditions is derived in a four-body model.
These are employed to design more than 10 000
three-impulse trajectories, which result in lower
fuel consumption compared to the original two-
impulse transfers. Even if the incorporation of
a third impulse typically produces a little varia-
tion in the total cost of the transfer, some spe-
cific trajectories with an initial lunar flyby are
improved by tens of m/s.
The second part of the thesis describes a proce-
dure to adapt a multi-impulsive transfer target-
ing any lunar circular orbit, from a four-body
model to an ephemerides-based model of the
complete solar system. Obtaining a feasible final
trajectory heavily relies on the quality of the ini-
tial guess. For this reason, an algorithm based
on the Sun’s positions in the two models is de-
veloped to find a proper epoch when to plant
the initial seed orbit in the real solar system.
Then, a direct multiple-burn, multiple-shooting
method is applied to refine the orbit until a
desired transfer is achieved. The methodology
described successfully generates various families
of Earth–Moon transfers starting from solutions
obtained with a simplified, but still meaningful,
astrodynamical model.
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