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E come il vento
odo stormir tra queste piante, io quello

infinito silenzio a questa voce
vo comparando:

e mi sovvien l’eterno,
e le morte stagioni, e la presente

e viva, e il suon di lei.
Così tra questa

immensità s’annega il pensier mio:
e il naufragar m’è dolce in questo mare.
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Abstract

The wind induced loads caused by the buffeting actions of the turbulent wind
on long-span bridges are the object of this thesis, in particular the Braila bridge,
which is under construction in Romania. Starting from a Fourier Transform
(FFT) frequency domain approach, it has been developed a numerical model that
works by means of Power Spectral density (PSD), both for the generation of the
PSD of the lagrangian component of the wind (Input), and the PSD of the response
of bridge deck itself (Output).

In previous years different researchers in the world have pointed out that the
computation of the buffeting forces considering the strip assumption provides an
important underestimation of these forces. The current buffeting theory based on the
strip assumption did not suffice to represent the measured wind loading. A review
of the models available in literature of span-wise coherence of the aerodynamic
forces is provided in chapter 2.

At this point, it has been introduced in this frequency representation the
span - wise coherence of the buffeting forces based on adapted models of Larose
G. and Jakobsen J. The response of the Braila bridge deck, considering its
first thirteen vibration modes, has been compared to the recorrelated case com-
puted with both the models in chapter 3 for three different mean-wind velocities
(U = 20 m/s, 50m/s, 65 m/s).

In the end of this work, considerations about how to consider the recorrelation
of the buffeting forces in the bridge deck response without computing the span-wise
coherence have been made for each wind velocity.
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Sommario

I carichi aerodinamici causati dall’azione turbolenta del vento su ponti di
lunghezze elevate sono oggetto dello studio fatto in questa tesi. Nello specifico verrà
trattato il caso del ponte Braila che è in costruzione in Romania.

Partendo da un approccio in frequenza che usa le trasformate di Fourier, è stato
sviluppato un programma che lavora mediante densità di potenza spettrale (PSD).
Tale approccio è stato seguito sia per la creazione della PSD della lagrangiana del
vento in ingresso (Input), che per il calcolo della risposta del deck del ponte Braila
in forma di PSD (Output).

Negli anni passati molteplici studiosi hanno evidenziato come il calcolo delle
forze indotte dalla turbolenza (buffeting) mediante la strip assumption causi una
importante sottostima di tali forze. Per tale motivo questa assunzione in molti casi
non è adeguata per il calcolo di questi contributi.

Una revisione dei modelli di ricorrelazione presenti nella letteratura scientifica è
presente nel capitolo 2.

A questo punto è stata introdotta nel modello numerico che fa uso di PSD
la ricorrelazione delle forze aerodinamiche, adattando i modelli di Larose G. e
Jakobsen J. mediante fitting numerico e processo di adimensionalizzazione.

La risposta del deck del ponte Braila tenendo in considerazione i suoi primi
tredici modi di vibrare è stata confrontata con quella calcolata mediante i modelli di
ricorrelazione nel capitolo 3 per tre differenti velocità medie del vento (U = 20m/s,
50m/s, 65m/s).

Alla fine di questo lavoro sono state fatte considerazione su come tenere conto
della ricorrelazione numerica delle forze di buffeting, considerando un numero di
sezioni ridotto rispetto al caso originale.
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Introduction

The phenomena concerning wind loads on structures are very complex due to
the difficulty in describing the wind itself and the modeling of such structures.
In this work I will only deal with one type of structure: namely the long span
Bridges, specifically the Braila bridge, which is still under construction in Romania
(1974 m).

Figure 1: 3D Rendering of the Braila Bridge

The Brăila Bridge is a long span suspension bridge that is under construction
over the Danube river, between Brăila, a city in the east of Romania, and the
opposite bank of the river in Tulcea County. It will be the fourth bridge over
the Romanian coast of the river. It will improve the road traffic accessibility and
connection to Moldova.
Bridges, in particular large ones, such as Braila have the function of connecting
very distant territories. All this has side effects, the greater the distance they
connect, the more their stiffness decreases, the natural frequencies become smaller
and smaller and consequently more easily excitable by the turbulence of the wind.
The interaction between wind and structure can cause very intense vibrations,
which can affect the fatigue life of the structure. For this reason it is necessary to
have the contributions of stiffness, damping of the wind on its side, in order to
avoid problems related to comfort, in the case of intense wind when crossing the
bridge, or in the most serious cases real phenomena of instability that can lead to
the collapse of the structure itself, as happened with the Takoma bridge.
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In addition to these dynamic instability phenomena, these structures must also
be able to withstand static loads due to traffic, railways and pedestrians. In this
study I will focus on the problems inherent in the action of the wind.
What is the complexity of the wind due to? The wind represents a random
completion phenomenon, describable only through statistical parameters.
Geography of the territory, seasons and climatic events associated with them,
the buildings present or not present and their dimensions influence the wind
measurements, and connected to these, the feasibility study for the construction of
a structure.
The analysis of these problems is very relevant both in the design phase and in
the various construction phases. The study of the problems related to wind loads
on a bridge is articulated both in numerical and experimental fields, in order to
have a validation of the numerical model itself, starting from the study of what has
been done previously in scientific literature. The experimental part is related to
the construction of scale models of the whole bridge or the bridge deck.
These models are created in order to identify the frequencies and modes of vibration
and to study the interaction between wind and structure in a controlled wind tunnel
environment.
The numerical part can be divided into two macro-areas:

1. Modeling by means of FEM softwares of the bridge structure, of the modes
and of the vibration frequencies

2. Simulation of the wind action on the structure and calculation of the response

Numerical models for the buffeting analysis of long-span bridges can be developed
in the time and frequency domains. Over time, the models are capable of modeling
at best the non-linearities that have an interaction between fluid and structure,
but they are very often heavier from the computational point of view. Frequency
models are linear models, but they are numerically more fluid, but this depends on
the frequency resolution used.

Figure 2: Wind action on a long span bridge

In both cases, the definition of this numerical procedure is quite complex as the
aerodynamic forces depend on both the angle of incidence and the reduced speed.
These functions vary from bridge to bridge and from the precise conditions of the
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site, therefore they must be appropriately identified in wind tunnel.
In the absence of such data, reference is made to the literature, specifically to
Davenport for the Admittance Function and the Quasi Steady theory for the flutter
derivatives. In this study I will consider only the deck of the Braila bridge, as this is
the part most subjected to the action of the wind and specifically the first thirteen
modes of vibration will be considered, as they are in the frequency range easily
excitable by the action of the wind.
The deck was initially divided into 82 sections, to then consider an increasingly
higher number, until obtaining the number of convergent sections, that is, the one
for which a further increase always leads to the same response. The bridge, as we
well know, is a continuum, but from the numerical point of view it can only be
represented as divided into a limited number of sections. For each section, the
response to the incoming wind action was calculated, understood as aerodynamic
forces. The response of each section correlates with that of the near or distant parts
in a different way.
The calculations of bridge buffeting, both in frequency and in time domain, are
usually made by means of the strip assumptions, but this assumption is valid only
when the incident gusts have much larger scales than the characteristic length of
the bridge deck. Based on the strip assumption the coherence among the span
of the bridge of the aerodynamic forces can be be represented by the one of the
incident wind fluctuations.
Over the years, various researchers have highlighted how the response of the bridge
is more correlated with respect to the action of the incoming wind. In order to
study this effect, two experimental re-circulation models of Prof. Larose G. [1] and
Prof. Jakobsen J. [2] have been adapted, through appropriate fitting and numerical
adimensional analysis.
In the final chapter a comparison was made between the two models, which in any
case led to a more recurrent response than that of the incoming turbulence.
In addition it has been found the number of sections into divide the Braila bridge
deck which is equivalent to implementing the coherence of the two models in the
numerical representation.

In order to make the computational part more fluid, starting from a model that
works in Fourier transform, I developed one for wind generation and the calculation
of the response that works in PSD and this has led to a considerable increase of
the computational efficiency.
In order to validate the code that uses the PSDs, the results have been compared
with the one that uses the FFTs, already previously validated by wind tunnel
testing. Essentially as we expected, using the same frequency resolution both give
the same results.





Chapter 1

Numerical Power Spectral Density
model

1.1 Introduction

In annex A is described all the theoretical background in order to be able
to understand and properly describe the problem of computing the Braila deck
response. Starting from this it is necessary to know how the wind generation has
been performed, as well as the Braila bridge deck response. I have followed a
frequency domain approach in both the cases, in particular using power spectral
densities. Starting from a code that works by means of Fourier transform, I have
built up a new one that works in PSD and I obtained the subsequent advantages:

1. I have decreased the computational time.

2. The wind generation and the deck’s response computation are characterized
by the same frequency resolution.

Starting from this, I have implemented in the code the span-wise coherence function
for both Larose G. [1] model and Jakobsen J. one [2].

1.2 Response in frequency domain

In annex A, I have described how the aerodynamic forces can be translated
in the equivalent stiffness [Kaero] and damping [Raero] matrices for a generic deck
section and how the buffeting forces F buff can be described as function of the wind
turbulence. At the beginning the aerodynamic forces are obtained in time domain,
then it is convenient to linearise them and solve the problem in frequency domain.

The advantages of the frequency approach are many:

• The computations are performed in a easier way and it doesn’t require
numerical integration.

• The frequency approach is well appropriated for the determination of extreme
responses.
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6 Chapter 1. Numerical Power Spectral Density model

• The characteristics of the the turbulence and deck’s transfer function are
more suitable to be reported in the frequency domain.

When the wind is generated and the response of the bridge is computed, this is
performed on a certain range of frequencies. In my work I have taken into the
frequency range f = 0 - 0.4 Hz that covers all the first thirteen vibration modes of
Braila bridge deck. Being [Kaero], [Raero] and [Am] function of the reduced frequency
f ∗, at each step ∆f of the frequency vector, all these matrices need to be updated.

1.2.1 Frequency Response function (FRF)

In order to characterize the aerodynamic problem in frequency, we consider for
simplicity an harmonic excitation:

[Ms]Ẍ + [Rs +Raero]Ẋ + [Ks +Kaero]X = Feiωt (1.1)

We consider a solution that has the shape of the excitation (steady state solution):

X(t) = [H(ω)]Feiωt (1.2)

Substituting equation 1.2 in 1.1 we have:

−ω2[Ms][H(ω)]Feiωt+iω[Rs+Raero][H(ω)]Feiωt+[Ks+Kaero][H(ω)]Feiωt = Feiωt

(1.3)
If we isolate in this expression [H(ω)] we have the complex transfer function, also
called Frequency Response Function (FRF), between the buffeting force F buff (f)

and the deck response X̃(f):

[H(ω)] = (−ω2[Ms] + iω[Rs +Raero(f
∗)] + [Ks +Kaero(f

∗)])−1 (1.4)

The frequency response function (FRF) is the one that allows to pass from the
input F buff to the output X̃(f) accordind to:

X̃(f) = [H(f)]F buff (f) (1.5)

Solving the equation 1.5 on the whole frequency range, for each frequency step
∆f , it is possible to compute the response of the deck. The matrix inversion in
equation 1.4 must be computed at every frequency step ∆f . The computation cost
of the determination of the FRF rises increasing the number of modes that we are
considering.

1.2.2 PSD of the Lagrangian of the Wind

In order to generate the input for study the response of the Braila bridge deck,
it has been followed a sectional approach. In this sectional approach the deck that
is phisically a continous element has been been divided in sections of equal length
(figure 1.1).

For each part the wind has been generated. In my numerical model the wind
sections coincide with Braila bridge deck ones.
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Figure 1.1: Braila bridge deck model divided in sections of equal length

The adopted reference system and the position of sections S2, S3 and S4, whose
response will be highlighted in chapter 3 is defined in figure 1.2 and table 1.1.

Figure 1.2: Braila bridge reference system with the Cobra probes location

Table 1.1: Braila bridge position of sections S2, S3 and S4

Position Length Reference Length

Main span Center 1.120 m 1.120 m
Braila side Left side 489.65 m 489.65 m
Jijila side Right Side 364.65 m 364.65 m
S2 1

4
main span 769.65 m - 280.35 m

S3 1
2
main span 1049.65 m - 0.3 m

S4 3
4
main span 1329.65 m 279.7 m
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As I have already mentioned above, the numerical model works in frequency
domain, in particular by means of PSD approach. Now I want to enter in details
about the generation of the PSD of the Lagrangian of the generated wind. The
admittance function is defined by means of Davenport [3] [4] approach in this way
and it changes for each frequency step ∆f and for each section in which the deck
of the Braila bridge is divided. It assumes this form:

[Am(f)] ==
1

2
ρV 2BL

 AmDu AmDw

AmLu AmLw

AmMuB AmMwB

 (1.6)

Knowing this, it is necessary to define the matrix of the spectra of the generated
wind that for two sections at a distance ∆y:

[S(f)] =


Siiuu(f) Siiuw(f) Sijuu(f) Sijuw(f)
Siiuw(f) Siiww(f) Sijuw(f) Sijww(f)
Sijuu(f) Sijuw(f) Sjjuu(f) Sjjuw(f)
Sijuw(f) Sijww(f) Sjjuw(f) Sjjww(f)

 (1.7)

The reasoning can be extended to all the ij sections in which is divided the deck
having a [S(f)] matrix of dimensions 2n x 2n. Since v turbulence component has
no effect on the bridge response, it has been neglected. Then it is possible to
introduce the matrix that contains all the thirteen modes interpolated in each deck
section: [Φ]. Knowing this we can compute the power spectral density (PSD) of
the lagrangian of the wind:

PSDWind
Lagr. = [Φ]T [Am(f)][S(f)][Am(f)]T [Φ] (1.8)

Equation 1.8 represents the input in order to compute the deck response.
While the PSD of the forces of the wind can be introduced as:

PSDWind
Force = [Am(f)][S(f)][Am(f)]T (1.9)

In equation 1.9, the PSDWind
Force can be expressed as :

Du
2Siiuu + 2DuDwS

ii
uw +Dw

2Siiww DuLuS
ii
uu +DwLuS

ii
uw +DuLwS

ii
uw +DwLwS

ii
ww DuMuS

ii
uu +DwMuS

ii
uw +DuMwS

ii
uw +DwMwS

ii
ww

SYM Lu
2Siiuu + 2LuLwS

ii
uw + Lw

2Siiww LuMuS
ii
uu + LuMwS

ii
uw + +LwMuS

ii
uw + LwMwS

ii
ww

SYM SYM Mu
2Siiuu + 2MuMwS

ii
uw +Mw

2Siiww


(1.10)

This matrix (equation 1.10) could be extended to every ij section of the Braila
deck spaced of ∆y.

1.2.3 Span - wise coherence of the Aerodynamic force

The span - wise coherence of the aerodynamic buffeting forces has been intro-
duced in equation 1.9 multipling the terms that affects only lift and aerodynamic
moment due to turbulence component w for the respective ratios coh1/2

L /coh
1/2
w

and coh
1/2
T /coh

1/2
w defined in chapter 3 in the adapted Jakobsen J. and Larose

G. representations. This moltiplication has been performed in order to take into
account the recorrelation of the buffeting forces with respect to the w gusty wind.
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For what regards the cross terms, that are the products between lift and moment

because of w turbulence component, they have been multiplied for

√(
coh

1/2
L

coh
1/2
w

coh
1/2
T

coh
1/2
w

)
.

This operation has been done in order to produce suitable physical result in the
deck response, considering the correlation of the buffeting lift with respect to the
buffeting moment with this simplified formulation.

1.2.4 Braila bridge deck response computation

Starting from the PSDWind
Lagr as input it is necessary to define the transfer function

[H] in this way:

[H(ω)] = (−ω2[Ms +Maero(f
∗)] + iω[Rs +Raero(f

∗)] + [Ks +Kaero(f
∗)])−1 (1.11)

Then the PSD of the displacement of the Braila deck [PSDdisp.
Modal] for each vibration

mode and for each frequency step ∆f in the frequency range can be introduced as:

[PSDdisp.
Modal] = [H][PSDWind

Lagr ][H]T (1.12)

and in a similar way the PSD of the modal acceleration matrix [PSDacc.
Modal]:

[PSDacc.
Modal] = [PSDdisp.

Modal]ω
4 (1.13)

These are the instruments in order to build up the response of the Braila deck
in both the cases in which we introduce or not the span - wise coherence of the
aerodynamic forces. The models of normalized span wise cross-spectra available in
literature will be described extensively in next chapter.





Chapter 2

Span-wise Coherence of the
Aerodynamic Forces

2.1 Introduction

The importance of the knowledge of the spatial distribution of the aerodynamic
forces induced by turbulent wind is at the basis of the buffeting response of the
structure. At the beginning of this work, a comparison was made between the various
models available in literature in order to calculate the re-correlation of aerodynamic
forces with respect to the turbulent incident wind. This review underlined how the
buffeting response computed by means of the strip assumption is underestimated
compared to the one calculated by means of the experimental re-correlation models
present in the literature. These representations were developed through wind tunnel
tests on a motionless closed box girder deck. Among all the available models the
most promising are those of Larose G. [1] and Jakobsen J. [2].

After having analyzed the representations mentioned above extensively, I have
adapted the most promising ones through numerical fitting and dimensionless
analysis to the study of the buffeting Response of the full Braila Bridge considering
its first thirteen natural frequencies.

2.2 Davenport’s spectral approach limitations

The limitations and assumptions of the Davenport’s [3] [4] spectral approach
are here below presented:

• Wind loading caused by the turbulence is a stochastic process of the stationary
random type.

• Quasi − steady assumption: The instantaneous forces acting on the deck
are made equal to the stationary forces caused by a steady wind having the
same relative velocity and direction as the instantaneous wind. The static
aerodynamic coefficients are considered in order to solve the equation of
motion governing the deck dynamics under the action of turbulent wind as
described in the first chapter.

11
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• Strip assumption The aerodynamic forces acting on one strip are only gener-
ated by the turbulent fluctuations on that strip. This means that the coherence
of the wind in the space is enough to describe the spatial distribution of the
buffeting forces

• Natural frequencies of structure are separated, in this way we cannot have
coupling between the different modes of vibration. The study in this way can
be done mode by mode and then the overall response can be computed by
means of the superposition principle of each single degree-of-freedom system.

• The fluctuations induced by the wind turbulence are considered small enough
compared to the mean velocity so that gust loads can be formulated as linear
function of the gust velocities

• The direction much more influenced by the action of the wind is considered
the one normal to the bridge axis.

• Cross − spectra between u and w turbulence components of the wind are
negligible.

• The aerodynamic damping is a linear function of the wind speed and is
independent of amplitude, The contribution of the aerodynamic stiffness is
not considered.

• The parent distribution of the extreme response is taken as Gaussian.

The Davenport’s spectral approach, is assumed to be valid for large reduced
velocities V ∗.

The limitations imposed by the quasi − steady aerodynamic assumption can
be overcome by considering the notion of aerodynamic admittance. Davenport
proposed to apply the aerodynamic admittance in order to consider:

• The loss of lift force in correspondence of the small gusts of the turbulence at
high frequency

• The variation along the space in the flow, because the aerodynamic forces on
one strip are caused, not only,by the fluctuations on that strip but also from
ones acting on the region surrounding the considered strip.

2.3 Span-wise coherence and joint acceptance func-
tion

The span− wise coherence and the joint acceptance function [5] [6] are the
statistical parameters that is necessary to define in order to describe how the
aerodynamic forces are correlated along the length of the bridge.
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2.3.1 Span-wise coherence

The magnitude squared coherence function can be defined as the modulus
squared of the cross spectrum of the considered function (for example the Lift force)
measured at two points which are at a distance of ∆y:

coh(f,∆y) =
|Co12(f) +Qu12(f)|2

SL1(f)SL2(f)
(2.1)

Where:

• Co12(f) represents the real part of the cross spectrum between points one and
two

• Qo12(f) represents the imaginary part of the cross spectrum between points
one and two

• SL1(f) and SL2(f) are the power spectrum in correspondence of point one
and two

The root coherence can be calculated by making the square root of equation(2.1).
In the buffeting analysis, the contribution of imaginary part of the cross spectrum
Qo12(f) can be considered null. Then it is possible to define the root coherence
which can be determined as:

coh1/2(f,∆y) =
Co12(f)√

SL1(f)SL2(f)
(2.2)

2.3.2 Joint acceptance function

The joint acceptance function JL(f ∗) measures the correlation along space and
modes of vibration for that span of the aerodynamic forces. It can be defined as:

|JL(f ∗)|2 =

∫ l

0

∫ l

0

SL1L2(f ∗,∆y)

SL(f ∗)
µj(y1)µj(y2)dy1dy2 (2.3)

Where:

• µj is the j mode shape considered in position in y1 and y2

• SL1L2 is the cross spectrum of the considered function (in this case the Lift
force) between points one and two at a distance ∆y

If we know the root coherence of the considered function coh1/2
L , then it is possible

to rewrite the joint acceptance function as:

|JL(f ∗)|2 =

∫ l

0

∫ l

0

coh
1/2
L (f ∗,∆y)µj(y1)µj(y2)dy1dy2 (2.4)

This formulation is valid for both the aerodynamic forces and turbulence compo-
nents.
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2.4 Strip assumption
If the strip assumption is assumed to be valid, the spatial distribution of the

wind velocity fluctuations is sufficient to describe the span-wise coherence of the
forces.

coh1/2
w (f ∗,∆y) = coh

1/2
L (f ∗,∆y) (2.5)

coh1/2
w (f ∗,∆y) = coh

1/2
M (f ∗,∆y) (2.6)

coh1/2
w (f ∗,∆y) = coh

1/2
D (f ∗,∆y) (2.7)

This is valid only when the incident gusts have much larger scales than the charac-
teristic length of the bridge deck. Very often this condition is not satisfied and using
the spatial coherence of wind in order to describe the buffeting response causes an
important underestimation of the response itself. The strip assumption could be
not valid for closed box girder decks because their width is often characterized by
the same dimensions as the scales of the turbulence component w.

2.4.1 Davenport model

Davenport [7] introduced one of the first experimental model in order to describe
the coherence of u and w components in the atmospheric boundary layer (ABL):

coh1/2
u,w(f,∆y) ≈ exp

[(
− c1

f∆y

V

)c2]
(2.8)

Where:

• c1 is a set of constants that changes, changing the direction and turbulence
component considered x, y, z

• V is mean wind speed velocity.

• ∆y is the distance between two different points of the deck.

• c2 is the exponent introduced by Naito [8] in order to consider the sea exposure
and it can vary between one and two depending on the specific conditions of
the site.
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2.5 When the strip assumption is not valid
Several researchers during the years have developed different models for describ-

ing the correlation of the aerodynamic forces and the width of the correlation.

2.5.1 Nettleton model

Nettleton [9] was the first to show the importance of the effect of the variations
along the span for the lift forces of having gusts passing by a thin airfoil with a
larger chord than the vertical length scale of turbulence (the strip assumption is
not valid). He observed that the forces were more correlated than the incident
wind.

The integral length scale of the correlation along y can be represented as :

Ly =

∫ ∞
0

R12(∆y)d(∆y) (2.9)

Where:

• R12 is the coefficient related to the cross correlation

During his research Nettleton found that the correlation length of the forces
was 3.6 times larger than the one of the incident wind:

LyL = 3.6Lyw (2.10)

2.5.2 Melbourne model

Melbourne [10] confirmed the researches developed by Nettleton, by comparing
the span-wise coherence of the pressures of the leading edge on the West Gate
Bridge and the coherence of turbulence component u.

He conducted experiments both in full scale conditions on the prototype bridge
and in wind tunnel simulating the action of the turbulent wind on proper scaled
model. The results of the Melbourne’s studies displayed a larger coherence of the
pressures.

The experimental data was fitted by means of exponential functions. He obtained
for the scaled model and the full scale prototype that the coherence of the pressure
in correspondence of the leading edge was:

cohpressure = exp[−4
f∆y

V
] (2.11)

and for the fluctuation due to u turbulence components:

cohu = exp[−16
f∆y

V
] (2.12)

The results showed that the pressures in correspondence of the leading edge were
much more correlated with respect to the turbulence component u considering the
West gate bridge study. During the experiments it was not possible to fix the deck
and then its movement could have increased the coherence of the pressures.
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Figure 2.1: West Gate bridge

2.5.3 Empirical model of Hjorth-Hansen et al.

Hjorth-Hansen et al. [11] developed an empirical model of the root coherence
of the aerodynamic forces that is a decreasing exponential, characterized by an
additional term. This additional term has been considered in order to take into
account of the absence of correlation at low frequency and large separation.

Hjort-Hansen et al. discovered that the integral length scale of the drag force
LyD along y direction was found to be from 20% to 200% than the integral length
scale of u turbulence component along the same direction Lyu.

After the experimental measures by means of pressure taps on three strips, the
aerodynamic forces were computed by the simultaneous integration of the unsteady
pressure distribution experimentally computed.

The root coherence according to Hjorth-Hansen et al. can be defined as:

coh
1/2
D (f,∆y) = exp

{
−
[
c1
f∆y

V
+ c2

(
∆y

LyD

)2]}
(2.13)

Where:

• c1 = 7, c2 = 2 - 3 are constants obtained by proper fitting of the experimental
wind tunnel test for the drag force

• LyD = 0.20 m experimentally tuned

• c1 = 10, c2 = 1 obtained after the numerical fitting for the u turbulence
component
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• Lyu = 0.10 m for the u turbulence component

From their experiments Hjorth-Hansen et al. realized that there were lower
than anticipated drag forces on a strip when confronted to quasy-steady buffeting
theory.

The larger coherence according to the researchers could be compensated by a
lower cross-sectional admittance.

2.5.4 Empirical model of Kimura et al.

Kimura et al. [12] performed experiments on flat hexagonal and rectangular
cylinders (figure 2.2) in order to clarify the characteristics of the buffeting response.

Figure 2.2: Model Cross sections: (a) Flat hexagon B/D = 8.7:1, (b) Rectangular B/D
= 8.7:1, (c) Rectangular B/D 4:1

The experiments were conducted considering three different wind speeds, re-
spectively 4 m/s , 8 m/s and 12 m/s and different turbulence conditions as can
be observed in figure 2.3. Actually, the length scales of Lxw, Lyu, and Lxw, defined
in figure 2.3 correspond to the double of the ones considered for the isotropic
turbulence condition.

The effect of the turbulence length scales on the buffeting aerodynamic forces
were studied for three different grids resulting from the subsequent Lyw/B ratios:
0.47, 0.30 and 0.20. Also in this research, the span-wise coherence was found to
be higher than that of the turbulence of the wind, which was in accordance with
the previous studies. The forces were obtained by integration of the experimental
surface pressures recorded during wind tunnel tests.

Coherence of the incident wind field was based on the representation made by
Irwin [13] which computed an analytical root coherence function of the w turbulence
component based on the Von Kárman spectrum. This exponential function was
able to fit well the wind data.

For what concerns the correlation of aerodynamic forces, Kimura et al. developed
a new exponential function in order to fit the experimental data based on Von
Kárman spectrum.
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Figure 2.3: Flow characteristics according to Kimura et al. experiments

The span-wise coherence of the lift buffeting force can be defined as:

coh
1/2
L (f∆y) = 0.994

(
η5/6K5/6(η)−

η11/6K1/6(η)

1 + 188.7

[
f 0.74(4.5Ly

w

V
)

]2

)
(2.14)

Where η is defined as:

η =
∆y

4.5Lyw
0.747

√
1 + 70.8

[
f 0.74(

4.5Lyw

V
)

]2

(2.15)

The other parameters inside this formulation are:

• K5/6 and K1/6 are second kind order modified Bessel functions

• Lyw is the span wise length scale of wind turbulence w component

The empirical formulation fitted well the correlation of the lift forces for the
three cross section examined. Kimura et al. are in accordance with the other
researchers in affirming that the buffeting lift is more correlated than the incident
wind. For what concerns the drag aerodynamic force, they discovered that in this
case the strip assumption could be applied, in this way the coherence along the
span of the incident gusts is enough to describe the one of the drag force.

In addition they noted a smaller cross-sectional lift than anticipated. This
difference according to Kimuta el al. could be led back to secondary flow that
decreases the force because an incident gust on the specif strip but increases its
influence considering all the span.

This effect is more important lowering the turbulence length scales associated.
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In figure 2.4 it is possible to compare the joint acceptance functions for the
wind turbulence and the lift. It can be clearly seen that the buffeting lift is much
more correlated than the incident wind.

Figure 2.4: Joint acceptance function computed with uniform mode shape
(µ(y1) = µ(y2) = 1) for the wind turbulence root coherence (dashed line)
and for the one of the lift forces (solid line)
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2.5.5 Empirical model of Bogunovic Jakobsen

Jakobsen J. [2] derived experimentally an expression of the span-wise coherence
for the buffeting lift and moment and for the w turbulence component. The forces
were computed starting from pressure tube measurements with a fixed section
model.

Experimental set-up

The model of closed box girder (figure 2.5) deck was in 1:70 scale. It was
characterized by:

• A deck span of B = 0.286 m

• The length of the model L = 2.64 m spanning the width of the section chamber
of the wind tunnel

• The ratio between the span and the height of the deck B/H = 4.5

Figure 2.5: Suspension closed box deck equipped with pressure taps

The prototype was vertically and torsionally connected to a pair of stiff rods on
each of its ends and attached by drag wires along the wind direction.

Flow conditions

The tests were performed in turbulent flow conditions. Turbulence generation
involved a fairly coarse grid consisting of horizontal and vertical bars, that were
positioned in correspondence of the entrance of the working section.

Turbulence intensity in correspondence of the model’s position, 6.25 m far from
the beginning of the working section, was close to 8% both in the along wind and
vertical directions. The integral length scales of turbulence were:

• Lyu ≈ 130 mm for the u turbulence component along the y direction

• Lyw ≈ 108 mm for the w turbulence component along the y direction

The integral length scales derived above are both for a ∆y along the prototype of
the deck.
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Span-wise coherence model

Jakobsen J. made a comparison between the measured buffeting forces and the
incident wind and obtained that there was a relation between the correlation width
of the lift and of the w turbulence component of the wind:

LyL = 3.0Lyw (2.16)

This data is in accordance with the previous studies mentioned before.
The span-wise coherence of the buffeting lift and moment was the result of a fitting
by a least square minimization algorithm of the experimental tests.

Jakobsen J. used the same negative exponential function in order to define the
coherence of the aerodynamic forces and of the turbulence component w:

coh
1/2
L,M,w(f,∆y) = exp

{
−
[
∆y
√
c2

2 + (c3f/V )2

]c1}
(2.17)

The constants c1, c2 and c3 (table 2.1) take different values passing from the lift to
the moment or considering the w gust speed.

Table 2.1: Fitting coefficients c1, c2 and c3 for lift, torsion and w turbulence component

c1 c2 (m−1) c3

Turbulence component w 1.00 4.21 5.47
Buffeting, Lift 1.40 2.11 2.24
Buffeting, Torsion 1.35 2.44 2.15

The frequencies analyzed were in the range 0 - 30 Hz (f ∗ up to 0.6), considering
a mean wind speed U = 15.36 m/s. Very similar coefficients c1, c2 and c3 were
derived for U = 9.38 m/s.

The selected frequency range was able to incorporate the main part of the wind
loading process on the deck.

Jakobsen J. computed (figure 2.6) the joint acceptance function |J(f ∗)|2 of the
span-wise coherence of the aerodynamic forces and comparing it to the one of the
turbulence wind component w, discovered an important underestimation when
the strip assumption was assumed to be valid. This suggests that the structure
perturbs the oncoming flow in a relevant way.

With respect to Hjorth-Hansen et al. who compared the span wise coherence of
the drag force and the one of the along wind component for a rectangular closed
box girder deck, Jakobsen J. made the parallel of the root coherence for the lift
and the buffeting moment with the one of w turbulence component of the wind.
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Figure 2.6: Joint acceptance function computed with uniform mode shape
(µ(y1) = µ(y2) = 1) for the wind turbulence root coherence (dashed line)
and for the one of the lift forces (solid line) according to Jakobsen J.
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Experimental results

In the figures below it is possible to observe the normalized co-spectrum of
w-fluctuations, for the buffeting lift and aerodynamic moment for four different
separations in the range ∆y/B = 0.07 and 0.70, considering the mean wind speed
of U = 15.36 m/s and B = 0.286 m.

Figure 2.7: Span-wise coherence of w turbulence component of the wind for four different
separations ∆y/B.

Is possible to observe in figure 2.7 the span-wise correlation of w for reduced
frequencies f ∗ between 0 and 2 for four different ∆y/B. Increasing the distance
between the points considered ∆y, as we expected we experience a decrease of the
coherence. These plot has been computed for each case, changing the fixed ∆y.

At high reduced frequencies f ∗ and large separations ∆y/B, we have the lowest
values of correlation, in a specific case ∆y/B = 0.7 and f ∗ close to 2 we can
experience slightly negative values of coherence. This has not any physical meaning,
and it is caused from the numerical fitting of the Jakobsen J. model.

When I have adapted this model to the full Braila bridge case, I have considered
a smaller range of f ∗ in order to do not meet this issue.

In figures 2.8 and 2.9 there is the trend of the buffeting lift and moment for the
same case mentioned above. As we expected there is an increase of correlation of
the aerodynamic forces with respect the one of the gusty wind. The coherence also
in this case decreases increasing the spacing ∆y between the considered points.
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Figure 2.8: Span-wise coherence of the lift for four different separations ∆y/B.

Figure 2.9: Span-wise coherence of the moment for four different separations ∆y/B.
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Figure 2.10: Span-wise coherence of the ratio coh1/2
L /coh

1/2
w for four different ∆y/B.

Figure 2.11: Span-wise coherence of the ratio coh1/2
T /coh

1/2
w for four different ∆y/B.
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In correspondence of high values of reduced frequency f ∗, and high ∆y we
experience too high ratios between coh1/2

T /coh
1/2
w and coh1/2

L /coh
1/2
w as it is possible

to observe in figure 2.10 and 2.11. Having noticed this, in addition to what has been
observed for the w span-wise coherence, the model has been adapted to the full
case of the Braila bridge for a smaller range of reduced frequencies f ∗. In addition,
in the Jakobsen J. original representation small negative values of w normalized
cross-spectrum in the tail of the raw version of the curves and the subsequent values,
either positive or negatives have been substituted by zeros, that is another way to
tell that this specific reduced frequency range f ∗ have not been considered.

Figure 2.12: Normalized cross-spectrum of w turbulence component for different ∆y/B
and f∗

In figures 2.12, 2.13 and 2.14 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component and lift and aerodynamic mo-
ment, taking into account at the same time the reduced frequency f ∗ and the
normalized distance between two different point ∆y

B
. Also these results confirm the

underestimation given by the strip assumption.
The experimental tests, also in this case have been performed at a mean wind

speed U = 15.16 m/s, and considering a deck span B = 0.286 m.
These 3D curves are the ones that best approximate the experimental results

obtained by means of wind tunnel testing.
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Figure 2.13: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 2.14: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 2.15: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 2.16: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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In figures 2.15, 2.16, it is possible to watch the 3D trends of the ratio between
coh

1/2
w /coh

1/2
L and coh1/2

w /coh
1/2
T taking into account at the same time the reduced

frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, displays an higher recorrelation with respect the one
of the turbulent wind. The results at high reduced frequency f ∗ and big distance
∆y have been not considered in the adapted model for the full Braila bridge, for
the reasons already mentioned above.
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2.5.6 Empirical model of Larose G.

The experimental technique of Larose G. [1] consists in determining the normal-
ized cross-spectra of the buffeting lift and moment starting from measures of the
vertical, torsional and lateral forces at the extremities of a deck sectional model.

Wind tunnel tests were made in turbulent flow and the model was fixed in order
to not experience any wind induced motion. The method developed by Larose is
able to compute the aerodynamic admittance for decks of any cross section. The
admittance matrix calculated in this way contains two contributions:

1. Contribution of the cross sectional admittance

2. Contribution because of the spatial distribution along the span of the aerody-
namic forces.

Figure 2.17: Höga Kusten Bridge

Experimental Set-up

The sectional model of closed box girder figure (2.18) deck of the Höga Kusten
Bridge in its construction stage (60% porous railings, no median divider) was tested
in the wind tunnel of the Danish Maritime Institute (DMI). The scale of the model
was 1:60.

It was rigidly connected to the force balance. The dimensions of the test rig
were: 2.6m wide, 1.8m high and 21m long.
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At the two extremities of the sectional prototype were measured drag, lift and
pitching moment with a sampling frequency of 200 Hz for a time period of 180 s.

Figure 2.18: Höga Kusten Bridge tested model by Larose G.

In figure 2.18 is possible to observe the tested model and its dimensions:

• A deck span of B = 0.367 m

• The length of the model L = 2.55 m spanning the main part of the width of
the section chamber of the wind tunnel

• The ratio between the span and the height of the deck B/D = 5.5

Flow conditions

The tests were performed in turbulent flow conditions. Turbulence generation
involved large spires, mounted at the entrance of the wind tunnel, 15 m before than
the tested deck working section.

The vertical turbulence intensity in correspondence of the model’s position, Iw
was 7.3% and vertical turbulence macroscale index L was 0.22m.

Considering the Von Kárman spectrum Lu,w is linked to the integral length
scale by the following relationships:

Lxu ≈ 0.92Lu (2.18)

Lxw ≈ 0.67Lw (2.19)

Integral length scales of turbulence Lxw can be derived by means of equation 2.19
and is equal to Lxw = 147 mm. In general the turbulence macroscale index Lw is
defined as the inverse of the wave number k1=2πf

U
corresponding to the peak of the

wind spectrum in its fSw(f) modelling.
During the experiments was observed that the buffeting lift and moment were

not linked to the u turbulence component length scales. It is believed that u gusty
wind component slightly influences the generations of the two aerodynamic actions
mentioned above.
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Span-wise coherence model

The span-wise normalized cross spectrum for the w turbulence component can
be defined according to Larose in this way:

coh1/2
w = exp [−c1γ

c2 ] cos (c3γ) (2.20)

where:

γ = k1∆y

√
1 +

1

(k1L)2
(2.21)

It is necessary to introduce the subsequent parameters that can be noticed in
equations 2.20 and 2.21:

• Wave number : k1 = 2πf

V

• Length scale fitted to the experiments Lcoh = 0.27 that changes, changing the
dimension of the spires in the turbulence generation process (medium grid)

• Von Kárman collapsing parameter γ (equation 2.21)

• Fitting constants c1, c2 and c3, where c1 = 0.73, c2 = 1.03 and c3 = 0.27.

In a similar way it is possible to define the co-coherence of the lift 1 and the pitching
moment2: :

coh
1/2
L = exp [−c1η

c2 ] cos (c3η) (2.22)

Where for the lift:

η = kaL1 ∆y

√
1 +

1

(kaL1 LL)2
(2.23)

LL = L
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 1.0, q = 0.46, r = 1.42, L = 0.39 m (2.24)

aL =

(
B

D

)−0.25
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 0.160, q = 0.088, r = 0.935 (2.25)

Where:

• Fitting constants c1, c2 and c3, where c1 = 0.346, c2 = 1.5 and c3 = 0.

• Length scale L fitted to the experiments considering lift (medium grid)

• Fitting constants p, q, r assuming different values for aL and LL
1The exponent of B/D in aL (equation 2.25) differs from the one presented by Larose in its

work because it contained a misprint.
2The exponent of B/D in aT (equation 2.29) differs from the one presented by Larose in its

work because it contained a misprint.
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And for the pitching moment:

coh
1/2
T = exp [−c1η

c2 ] cos (c3η) (2.26)

Where:

η = kaT1 ∆y

√
1 +

1

(kaT1 LT )2
(2.27)

LT = L
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 1.0, q = 0.46, r = 1.42, L = 0.39 m (2.28)

aT =

(
B

D

)−0.15
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 0.098, q = 0.059, r = 0.970 (2.29)

Where:

• Fitting constants c1, c2 and c3, where c1 = 0.341, c2 = 1.33 and c3 = 0.22

• Fitting constants p, q, r assuming different values for aT and LT

In figures 2.19 and 2.20 it is possible to see the trend of aL and aT as a function of
the adimensional spacing ∆y/B for three different ratios

(
B
D

)
= 5, 10 and 12.67.

This comparison has been carried out by Larose in his PhD thesis [6], and it is
shown in order to have a validation of the coefficients mentioned above.

Figure 2.19: aL coefficient for different ratios
(
B
D

)
= 5, 10 and 12.67
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The trend of aL and aT is similar considering all the B/D ratios and this can be
attributed to the similar exponent of B/D in the two formulations (2.25 and 2.29).

The influence of B/D ratios is important in both aL and aT . In correspondence
of the lowest one (B/D = 5) we meet the highest values of the two coefficients as
we expected. The decks examined in these experiments were characterized always
by the same D, with changing B. The shape of the cross section in all cases was
the same.

Figure 2.20: aT coefficient for different ratios
(
B
D

)
= 5, 10 and 12.67

In figures 2.21 and 2.22 we can look the the trend of aL and aT coefficients without
the influence of the ratio B/D , as a function of the spacing ∆y/B. As expected
the two trends plots are very similar, small differences are because of the different
p, q and r coefficients in the two expressions 2.25 and 2.29.
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Figure 2.21: Coefficient aL multiplied by
(
B
D

)0.25 with changing ∆y
B

Figure 2.22: Coefficient aT multiplied by
(
B
D

)0.15 with changing ∆y
B
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Figure 2.23: Normalized cross-spectrum of w turbulence component for different ∆y/B
and f∗

In figures 2.23, 2.24 and 2.25 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component and lift and aerodynamic moment,
taking into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the Larose model, it

confirm the underestimation given by the strip assumption.
The experimental tests, also in this case have been performed at a mean wind

speed U = 8 m/s, and considering a deck span B = 0.367 m.
These 3D curves are the ones that best approximate the experimental results

obtained by means of wind tunnel testing.
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Figure 2.24: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 2.25: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 2.26: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 2.27: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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In figures 2.26, 2.27, it is possible to watch the 3D trends of the ratio between
coh

1/2
w /coh

1/2
L and coh1/2

w /coh
1/2
T taking into account at the same time the reduced

frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the Larose model, display an higher
recorrelation with respect the one of the turbulent wind. The results at high reduced
frequency f ∗ and big distance ∆y have been not considered in the adapted model
for the full Braila bridge, because in these cases there was a lower fitting between
the experimental curves and the exponential fitting function.

Figure 2.28: Joint acceptance function computed with uniform mode shape
(µ(y1) = µ(y2) = 1) for the wind turbulence root coherence (red line), for
the lift force (green line) and for the buffeting moment (blue line) according
to Larose G.

In figure 2.28 it is possible to look the joint acceptance function3 |J(f ∗)|2 of
the span-wise coherence of the aerodynamic forces and of the w component of the
turbulent wind. Comparing the green and blue curves to the one of the gusty
wind, (red curve), Larose confirmed what was discovered in the previous years by
Jakobsen G. and other researchers: there was an important underestimation when
the strip assumption was assumed to be valid.

3This Joint acceptance function has been computed by me considering the Larose G. model
described in previous pages.





Chapter 3

Span-wise Coherence of the
Aerodynamic Forces for the Braila
bridge deck

3.1 Introduction

In this last chapter of my work I am going to introduce the effect of the
recorrelation of the aerodynamic forces into the full numerical model of the Braila
bridge deck, considering its first thirteen vibration modes.

In order to do this I have adapted through dimensional analysis and numerical
fitting the models of Jakobsen J. [2] and Larose G. [1]. For each of the two
representations I am going to show how I have obtained the adapted one, and in
which way the response of the bridge is affected by the span-wise coherence of the
buffeting forces.

In the end of this work I am going to show how is possible to take into account
of the recorrelation of the buffeting forces by lowering the number of sections in
which is divided the bridge’s deck.

Figure 3.1: Braila bridge FEM model
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3.2 Model of Jakobsen J. for Braila Bridge
Starting from the original model I have adapted it by means of non-dimensionalization

of c2 (m−1) constant in this way:

coh
1/2
L,M,w(f,∆y) = exp
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(3.1)

Where the term c2,Braila is obtained by:

c2,Braila =
BJakobsenc2

BBraila

(3.2)

And the terms in the equation are:

• Fitting coefficient of the Jakobsen J. model c2 (m−1) that changes passing
from w turbulence component to the buffeting lift and moment

• Deck width of the Braila bridge BBraila = 31.6 m

• Deck with of the model tested by Jakobsen J. BJakobsen = 0.367 m

The non-dimensionalization process has been done in order to obtain the same
non-dimensional groups passing from the original deck section to the Braila one. It
has been performed only on the product Bc2 because c2 it is the only dimensional
(m−1) constant among c1, c2 and c3. In this way the value of c1 and c3 remains the
same. In the table 3.1 is summarized the value taken by c1, c2 and c3. As expected
the value of c2 constant decreased, taking into account of the ratio between BJakobsen

and BBraila

Simulations have been performed for three different speeds: 20 m/s, 50 m/s and
65 m/s.

Table 3.1: Coefficients c1, c2, c3 of the adapted Jakobsen J. model for the Braila bridge

c1 c2 (m−1) c3

Turbulence component w 1.00 0.049 5.47
Buffeting, Lift 1.40 0.025 2.24
Buffeting, Torsion 1.35 0.028 2.15

Once introduced the adapted model, I am going to show the trends of the
functions described above (coh1/2

w , coh1/2
L and coh1/2

w , coh1/2
L ) for every wind speed

considered (20 m/s, 50 m/s, 65 m/s) and the ratios between coh
1/2
w and coh

1/2
L ,

coh
1/2
T . After this I am going to define the input parameters of each numerical

simulation that I made. In the end I am going display the effect of the recorrelation
on the response of the bridge itself.
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3.2.1 Braila bridge deck response for 20 m/s wind velocity

Span-wise coherence for 20 m/s wind velocity

Figure 3.2: Normalized cross-spectrum of the w turbulence component for different
∆y/B and f∗

In figures 3.2, 3.3 and 3.4 it is possible to examine the 3D trend of the span-wise
coherence for w gusty wind component, lift and aerodynamic moment, taking
into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the adapted Jakobsen J.

representation, as we expected, it confirms the underestimation given by the strip
assumption. In pictures 3.5, 3.6, it is possible to watch the 3D trends of the ratio
between coh1/2

w /coh
1/2
L and coh1/2

w /coh
1/2
T taking into account at the same time the

reduced frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the adapted Jakobsen J. model, display an
higher recorrelation with respect the one of the turbulent wind. These functions have
been considered in the simulations for all the entire frequency range (f = 0 - 0.4 Hz),
but for a reduced spacing between the sections: in the range ∆y/B = 0 – 1.52 for
the moment and ∆y/B = 0 – 0.76 for the lift. This has been done in order to cover
part of the range of ∆y/B of Jakobsen J. model and to obtain physical results.

In table 3.2 it is possible to find the parameters concerning the wind generation
and the kind of admittance matrix considered in the simulation of the bridge
response at 20 m/s.
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Figure 3.3: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 3.4: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 3.5: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 3.6: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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Generation of the PSD of the wind for 20 m/s wind

Table 3.2: Parameters considered for the simulation at 20 m/s

Parameter Target Value

U 20 m/s

Lxu 160 mm

Lxw 16 mm

Iu 0.143

Iw 0.0715

Cwx 0.5

Cwy 6.5

Cwz 3

Cux 3

Cuy 10

Cuz 10

Cvx 3

Cvy 6.5

Cvz 6.5

Admittance Davenport

In figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 it is possible to observe the PSD of
the Lagrangian of the generated wind for each vibration mode. It has been plotted
for each of the thirteen modes of the Braila bridge the comparison between the
recorrelated case (red line) and the strip assumption case (blue line).

(a) Mode 1H (b) Mode 1V

Figure 3.7: PSD of the Lagrangian of the generated wind for mode 1H and 1V
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(a) Mode 2A (b) Mode 2V

Figure 3.8: PSD of the Lagrangian of the generated wind for mode 2A and 2V

(a) Mode 3V (b) Mode 2H

Figure 3.9: PSD of the Lagrangian of the generated wind for mode 3V and 2H

(a) Mode 4V (b) Mode 5V

Figure 3.10: PSD of the Lagrangian of the generated wind for mode 4V and 5V
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(a) Mode 3H (b) Mode 6V

Figure 3.11: PSD of the Lagrangian of the generated wind for mode 3H and 6V

(a) Mode 7V (b) Mode 1T

Figure 3.12: PSD of the Lagrangian of the generated wind for mode 7V and 1T

Figure 3.13: PSD of the Lagrangian of the generated wind for mode 2T
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As we expected, for each mode, the recorrelated curve is higher in terms of
amplitude with respect to the strip assumption case in the whole considered
frequency range. The modes whose curves are superimposed are the ones that are
mainly influenced by the drag contribution, that based on considerations made by
previous researchers (i.e. Kimura et al.) have been computed by means of the strip
assumption.

The convergent number of sections for 20 m/s wind velocity

Figure 3.14: PSD of the displacement of the deck for each vibration mode changing
number of sections: 82 sections (green line), 164 sections (blue line), 328
sections (red line).

In order to study the dynamic behaviour of the Braila bridge deck, it was
initially divided in 82 sections. In order to apply the span - wise coherence function
it was necessary to find the number of sections into divide the bridge deck for which
the dynamic response did not change. In figures 3.14 and 3.15 it is possible to
recognize that the convergent number of sections is 328. In order to have a better
representation, in figure 3.15, the contribution of the first mode of vibration has
been cancelled.
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Figure 3.15: PSD of the displacement of the deck for each vibration mode except 1st
changing number of sections: 82 sections (green line), 164 sections (blue
line), 328 sections (red line).
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Effect of the span-wise coherence on the bridge response for 20 m/s
wind velocity

Figure 3.16: PSD of the displacement of the deck for each vibration mode with the
span-wise coherence (red line) or the strip assumption (blue line).

In figure 3.16 and 3.17 it is possible to recognize the modal displacement of the
Braila deck for each vibration mode. In picture 3.18 it is possible to see the modal
acceleration of the deck. In figures 3.19, 3.20, 3.21 we can watch the accelerations
along y, z and ϑ for sections S2, S3, S4.

All the plots described above have been performed using a number of sections
equal to 328 (convergent number).

It is clear that the effect of recorrelation of buffeting forces is more important
in correspondence of the peaks of resonance, then it is an effect that has to be
considered during the design of the bridge and in its fatigue life. As we expected in
all the cases mentioned above the strip assumption produces an underestimation
of the results, that in certain cases could be quite big and it has to be taken into
account.
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Figure 3.17: PSD of the displacement of the deck for each vibration mode except 1st
with the span-wise coherence (red line) or the strip assumption (blue line).

Figure 3.18: PSD of the modal acceleration of the deck with recorrelation (red line) or
strip assumption (blue line).
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Figure 3.19: PSD of the acceleration along y, z and ϑ for section S2.
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Figure 3.20: PSD of the acceleration along y, z and ϑ for section S3.
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Figure 3.21: PSD of the acceleration along y, z and ϑ for section S4.
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3.2.2 Braila bridge deck response for 50 m/s wind velocity

Span-wise coherence for 50 m/s wind velocity

Figure 3.22: Normalized cross-spectrum of the w turbulence component for different
∆y/B and f∗

In figures 3.22, 3.23 and 3.24 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component, lift and aerodynamic moment,
taking into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the adapted Jakobsen

J. representation, as we expected, it confirms the underestimation given by the
strip assumption. In pictures 3.25, 3.26, it is possible to watch the 3D trends of
the ratio between coh1/2

w /coh
1/2
L and coh1/2

w /coh
1/2
T taking into account at the same

time the reduced frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the adapted Jakobsen J. model, display an
higher recorrelation with respect the one of the turbulent wind. These functions have
been considered in the simulations for all the entire frequency range (f = 0 - 0.4 Hz),
but for a reduced spacing between the sections: in the range ∆y/B = 0 – 1.52 for
the moment and ∆y/B = 0 – 0.76 for the lift. This has been done in order to cover
part of the range of ∆y/B of Jakobsen J. model and to obtain physical results.

In table 3.3 it is possible to find the parameters concerning the wind generation
and the kind of admittance matrix considered in the simulation of the bridge
response at 50 m/s.
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Figure 3.23: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 3.24: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 3.25: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 3.26: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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Generation of the PSD of the wind for 50 m/s wind

Table 3.3: Parameters considered for the simulation at 50 m/s

Parameter Target Value

U 50 m/s

Lxu 160 mm

Lxw 16 mm

Iu 0.143

Iw 0.0715

Cwx 0.5

Cwy 6.5

Cwz 3

Cux 3

Cuy 10

Cuz 10

Cvx 3

Cvy 6.5

Cvz 6.5

Admittance Davenport

In figures 3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33 it is possible to observe the
PSD of the Lagrangian of the generated wind for each vibration mode. It has been
plotted for each of the thirteen modes of the Braila bridge the comparison between
the recorrelated case (red line) and the strip assumption case (blue line).

(a) Mode 1H (b) Mode 1V

Figure 3.27: PSD of the Lagrangian of the generated wind for mode 1H and 1V
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(a) Mode 2A (b) Mode 2V

Figure 3.28: PSD of the Lagrangian of the generated wind for mode 2A and 2V

(a) Mode 3V (b) Mode 2H

Figure 3.29: PSD of the Lagrangian of the generated wind for mode 3V and 2H

(a) Mode 4V (b) Mode 5V

Figure 3.30: PSD of the Lagrangian of the generated wind for mode 4V and 5V
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(a) Mode 3H (b) Mode 6V

Figure 3.31: PSD of the Lagrangian of the generated wind for mode 3H and 6V

(a) Mode 7V (b) Mode 1T

Figure 3.32: PSD of the Lagrangian of the generated wind for mode 7V and 1T

Figure 3.33: PSD of the Lagrangian of the generated wind for mode 2T
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As we expected for each mode the recorrelated curve is higher in terms of
amplitude with respect to the strip assumption case, in the whole considered
frequency range. The modes whose curves are superimposed are the ones that are
mainly influenced by the drag contribution, that based on considerations made by
previous researchers (i.e. Kimura et al.) have been computed by means of the strip
assumption.

The convergent number of sections for 50 m/s wind velocity

Figure 3.34: PSD of the displacement of the deck for each vibration mode changing
number of sections: 82 sections (green line), 164 sections (blue line), 328
sections (red line).

In order to study the dynamic behaviour of the Braila bridge deck, it was
initially divided in 82 sections. In order to apply the span - wise coherence function
it was necessary to find the number of sections into divide the bridge for which
the dynamic response did not change. In figures 3.34 and 3.35 it is possible to
recognize that the convergent number of sections is 328. In order to have a better
representation, in figure, 3.35, the contribution of the first mode of vibration has
been cancelled.
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Figure 3.35: PSD of the displacement of the deck for each vibration mode except 1st
changing number of sections: 82 sections (green line), 164 sections (blue
line), 328 sections (red line).
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Effect of the span-wise coherence on the bridge response for 50 m/s
wind velocity

Figure 3.36: PSD of the displacement of the deck for each vibration mode with the
span-wise coherence (red line) or the strip assumption (blue line).

In figure 3.36 and 3.37 it is possible to recognize the modal displacement of the
Braila deck for each vibration mode. In picture 3.38 it is possible to see the modal
acceleration of the deck. In figures 3.39, 3.40, 3.41 we can watch the accelerations
along y, z and ϑ for sections S2, S3, S4.

All the plots described above have been performed using a number of sections
equal to 328 (convergent number).

It is clear that the effect of recorrelation of buffeting forces is more important
in correspondence of the peaks of resonance, than it is an effect that has to be
considered during the design of the bridge and in its fatigue life. As we expected in
all the cases mentioned above the strip assumption produces an underestimation
of the results, that in certain cases could be quite big and it has to be taken into
account. Passing from 20 m/s to 50 m/s it is possible to see that the effect of
recorrelation is decreasing (blue and red curve are closer).
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Figure 3.37: PSD of the displacement of the deck for each vibration mode except 1st
with the span-wise coherence (red line) or the strip assumption (blue line).

Figure 3.38: PSD of the modal acceleration of the deck with recorrelation (red line) or
strip assumption (blue line).
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Figure 3.39: PSD of the acceleration along y, z and ϑ for section S2.
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Figure 3.40: PSD of the acceleration along y, z and ϑ for section S3.
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Figure 3.41: PSD of the acceleration along y, z and ϑ for section S4.
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3.2.3 Braila bridge deck response for 65 m/s wind velocity

Span-wise coherence for 65 m/s wind velocity

Figure 3.42: Normalized cross-spectrum of the w turbulence component for different
∆y/B and f∗

In figures 3.42, 3.43 and 3.44 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component, lift and aerodynamic moment,
taking into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the adapted Jakobsen

J. representation, as we expected, it confirms the underestimation given by the
strip assumption. In pictures 3.45, 3.46, it is possible to watch the 3D trends of
the ratio between coh1/2

w /coh
1/2
L and coh1/2

w /coh
1/2
T taking into account at the same

time the reduced frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the adapted Jakobsen J. model, display an
higher recorrelation with respect the one of the turbulent wind. These functions have
been considered in the simulations for all the entire frequency range (f = 0 - 0.4 Hz),
but for a reduced spacing between the sections: in the range ∆y/B = 0 – 1.52 for
the moment and ∆y/B = 0 – 0.76 for the lift. This has been done in order to cover
part of the range of ∆y/B of Jakobsen J. model and to obtain physical results.

In table 3.4 it is possible to find the parameters concerning the wind generation
and the kind of admittance matrix considered in the simulation of the bridge
response at 65 m/s.
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Figure 3.43: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 3.44: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 3.45: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 3.46: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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Generation of the PSD of the wind for 65 m/s wind

Table 3.4: Parameters considered for the simulation at 65 m/s

Parameter Target Value

U 65 m/s

Lxu 160 mm

Lxw 16 mm

Iu 0.143

Iw 0.0715

Cwx 0.5

Cwy 6.5

Cwz 3

Cux 3

Cuy 10

Cuz 10

Cvx 3

Cvy 6.5

Cvz 6.5

Admittance Davenport

In figures 3.47, 3.48, 3.49, 3.50, 3.51, 3.52, 3.53 it is possible to observe the PSD
of the Lagrangian of the generated wind for each vibration mode. It has been plot
for each of the thirteen modes of the Braila bridge the comparison between the
recorrelated case (red line) and the strip assumption case (blue line).

(a) Mode 1H (b) Mode 1V

Figure 3.47: PSD of the Lagrangian of the generated wind for mode 1H and 1V
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(a) Mode 2A (b) Mode 2V

Figure 3.48: PSD of the Lagrangian of the generated wind for mode 2A and 2V

(a) Mode 3V (b) Mode 2H

Figure 3.49: PSD of the Lagrangian of the generated wind for mode 3V and 2H

(a) Mode 4V (b) Mode 5V

Figure 3.50: PSD of the Lagrangian of the generated wind for mode 4V and 5V
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(a) Mode 3H (b) Mode 6V

Figure 3.51: PSD of the Lagrangian of the generated wind for mode 3H and 6V

(a) Mode 7V (b) Mode 1T

Figure 3.52: PSD of the Lagrangian of the generated wind for mode 7V and 1T

Figure 3.53: PSD of the Lagrangian of the generated wind for mode 2T
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As we expected, for each mode, the recorrelated curve is higher in terms of
amplitude with respect to the strip assumption case in the whole considered
frequency range. The modes whose curves are superimposed are the ones that are
mainly influenced by the drag contribution, that based on considerations made by
previous researchers (i.e. Kimura et al.) have been computed by means of the strip
assumption.

The convergent number of sections for 65 m/s wind velocity

Figure 3.54: PSD of the displacement of the deck for each vibration mode changing
number of sections: 82 sections (green line), 164 sections (blue line), 328
sections (red line).

In order to study the dynamic behaviour of the Braila bridge deck, it was
initially divided in 82 sections. In order to apply the span - wise coherence function
it was necessary to find the number of sections into divide the bridge for which
the dynamic response did not change. In figures 3.54 and 3.55 it is possible to
recognize that the convergent number of sections is 328. In order to have a better
representation, in figure, 3.55, the contribution of the first mode of vibration has
been cancelled.
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Figure 3.55: PSD of the displacement of the deck for each vibration mode except 1st
changing number of sections: 82 sections (green line), 164 sections (blue
line), 328 sections (red line).
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Effect of the span-wise coherence on the bridge response for 65 m/s
wind velocity

Figure 3.56: PSD of the displacement of the deck for each vibration mode with the
span-wise coherence (red line) or the strip assumption (blue line).

In figure 3.56 and 3.57 it is possible to recognize the modal displacement of the
Braila deck for each vibration mode. In picture 3.58 it is possible to see the modal
acceleration of the deck. In figures 3.59, 3.60, 3.61 we can watch the accelerations
along y, z and ϑ for sections S2, S3, S4.

All the plots described above have been performed using a number of sections
equal to 328 (convergent number).

It is clear that the effect of recorrelation of buffeting forces is more important
in correspondence of the peaks of resonance, than it is an effect that has to be
considered during the design of the bridge and in its fatigue life. As we expected in
all the cases mentioned above the strip assumption produces an underestimation
of the results, that in certain cases could be quite big and it has to be taken
into account. Passing from 50 m/s to 65 m/s it is possible to see that we have a
similar effect of recorrelation between the two speeds. In the conclusion of this
work a comparison between the case of 328 sections with span-wise coherence of
the buffeting forces and the one characterized by each section of length equal to B
(deck width) and 1.5 B considering the strip assumption will be made.



78
Chapter 3. Span-wise Coherence of the Aerodynamic Forces for the

Braila bridge deck

Figure 3.57: PSD of the displacement of the deck for each vibration mode except 1st
with the span-wise coherence (red line) or the strip assumption (blue line).

Figure 3.58: PSD of the modal acceleration of the deck with recorrelation (red line) or
strip assumption (blue line).
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Figure 3.59: PSD of the acceleration along y, z and ϑ for section S2.



80
Chapter 3. Span-wise Coherence of the Aerodynamic Forces for the

Braila bridge deck

Figure 3.60: PSD of the acceleration along y, z and ϑ for section S3.
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Figure 3.61: PSD of the acceleration along y, z and ϑ for section S4.
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3.3 Model of Larose G. for Braila Bridge
Starting from the original Larose G. [1] representation I have adapted it to the

Braila deck case, in order to maintain the ratios L/BLarose, LL/BLarose, LT/BLarose

constant between the two models in equations 3.4, 3.6, 3.10. Another modification
is given by the fact that the exponents aL and aT in equations 3.6 and 3.10 have
been applied not only to k1 but to k1 and to all the terms for which it is multiplied
both outside the square root and inside. This operation has been performed in
order to take into account of the dimensional analysis. I have verified, in addition,
to work in a similar range of reduced frequency f ∗ for each considered wind velocity
(20 m/s, 50m/s, 65 m/s).

The formulation of the span-wise normalized cross spectrum of the adapted
model of Larose G. for the Braila deck could be schematized in this way:

coh1/2
w = exp [−c1γ

c2 ] cos (c3γ) (3.3)

where:

γ = k1BBraila
∆y

BBraila

√
1 +

1

(k1BBraila
L

BLarose
)2

(3.4)

It is necessary to introduce the subsequent parameters that can be noticed in
equations 3.3 and 3.4:

• Wave number : k1 = 2πf

V

• Length scale fitted to the experiments L = 0.27 m that changes, changing the
dimension of the spires in the turbulence generation process (medium grid)

• Von Kárman collapsing parameter adapted for the case of the Braila bridge γ
(equation 3.4)

• Fitting constants c1, c2 and c3, where c1 = 0.73, c2 = 1.03 and c3 = 0.27, that
being not dimensional remained equal to the ones of the original representation

In a similar way it is possible to define the co-coherence of the lift and the pitching
moment:

coh
1/2
L = exp [−c1η

c2 ] cos (c3η) (3.5)

Where for the lift:

η =

(
k1BBraila

∆y

BBraila

)aL√
1 +

1

(k1BBraila
LL

BLarose
)2aL

(3.6)

LL = L
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 1.0, q = 0.46, r = 1.42, L = 0.39 m (3.7)

aL =

(
B

D

)−0.25
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 0.160, q = 0.088, r = 0.935 (3.8)
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Where:

• Fitting constants c1, c2 and c3, where c1 = 0.346, c2 = 1.5 and c3 = 0 that
being not dimensional remained equal to the ones of the original representation

• Length scale L fitted to the experiments considering lift (medium grid)

• Fitting constants p, q, r assuming different values for aL and LL

And for the pitching moment:

coh
1/2
T = exp [−c1η

c2 ] cos (c3η) (3.9)

Where:

η =

(
k1BBraila

∆y

BBraila

)aT√
1 +

1

(k1BBraila
LT

BLarose
)2aT

(3.10)

LT = L
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 1.0, q = 0.46, r = 1.42, L = 0.39 m (3.11)

aT =

(
B

D

)−0.15
(p+ ∆y/B)2

(q + r(∆y/B)2
p = 0.098, q = 0.059, r = 0.970 (3.12)

Where:

• Fitting constants c1, c2 and c3, where c1 = 0.341, c2 = 1.33 and c3 = 0.22, that
being not dimensional remained equal to the ones of the original representation

• Length scale L fitted to the experiments considering moment (medium grid)

• Fitting constants p, q, r assuming different values for aT and LT

Simulations have been performed for three different speeds: 20 m/s, 50 m/s
and 65 m/s. Once introduced the adapted model I am going to show the plots of
the functions described above coh1/2

w , coh1/2
L and coh1/2

w , coh1/2
L for every wind speed

considered (20 m/s, 50 m/s, 65 m/s) and the ratios between coh
1/2
w and coh

1/2
L ,

coh
1/2
T . After this I am going to define the input parameters of each numerical

simulation that I made. In the end I am going display the effect of the recorrelation
on the response of the bridge deck itself.
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3.3.1 Braila bridge deck response for 20 m/s wind velocity

Span-wise coherence for 20 m/s wind velocity

Figure 3.62: Normalized cross-spectrum of the w turbulence component for different
∆y/B and f∗

In figures 3.62, 3.63 and 3.64 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component, lift and aerodynamic moment,
taking into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the adapted Larose G.

representation, as we expected, it confirms the underestimation given by the strip
assumption. In pictures 3.65, 3.66, it is possible to watch the 3D trends of the
ratio between coh1/2

w /coh
1/2
L and coh1/2

w /coh
1/2
T taking into account at the same time

the reduced frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the adapted Larose G. model, display an
higher recorrelation with respect the one of the turbulent wind. These functions have
been considered in the simulations for all the entire frequency range (f = 0 - 0.4 Hz),
but for a reduced spacing between the sections: in the range ∆y/B = 0 – 1.52 for
the moment and ∆y/B = 0 – 0.76 for the lift. This has been done in order to obtain
physical results and to compare the results with the Jakobsen J. representation,
having considered the same ∆y/B ranges.

In table 3.5 it is possible to find the parameters concerning the wind generation
and the kind of admittance matrix considered in the simulation of the bridge
response at 20 m/s.
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Figure 3.63: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 3.64: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 3.65: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 3.66: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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Generation of the PSD of the wind for 20 m/s wind

Table 3.5: Parameters considered for the simulation at 20 m/s

Parameter Target Value

U 20 m/s

Lxu 160 mm

Lxw 16 mm

Iu 0.143

Iw 0.0715

Cwx 0.5

Cwy 6.5

Cwz 3

Cux 3

Cuy 10

Cuz 10

Cvx 3

Cvy 6.5

Cvz 6.5

Admittance Davenport

In figures 3.67, 3.68, 3.69, 3.70, 3.71, 3.72, 3.73 it is possible to observe the
PSD of the Lagrangian of the generated wind for each vibration mode. It has been
plotted for each of the thirteen modes of the Braila bridge the comparison between
the recorrelated case (red line) and the strip assumption case (blue line).

(a) Mode 1H (b) Mode 1V

Figure 3.67: PSD of the Lagrangian of the generated wind for mode 1H and 1V
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(a) Mode 2A (b) Mode 2V

Figure 3.68: PSD of the Lagrangian of the generated wind for mode 2A and 2V

(a) Mode 3V (b) Mode 2H

Figure 3.69: PSD of the Lagrangian of the generated wind for mode 3V and 2H

(a) Mode 4V (b) Mode 5V

Figure 3.70: PSD of the Lagrangian of the generated wind for mode 4V and 5V
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(a) Mode 3H (b) Mode 6V

Figure 3.71: PSD of the Lagrangian of the generated wind for mode 3H and 6V

(a) Mode 7V (b) Mode 1T

Figure 3.72: PSD of the Lagrangian of the generated wind for mode 7V and 1T

Figure 3.73: PSD of the Lagrangian of the generated wind for mode 2T
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As we expected, for each mode, the recorrelated curve is higher in terms of
amplitude with respect to the strip assumption case in the whole considered
frequency range. The modes whose curves are superimposed are the ones that are
mainly influenced by the drag contribution, that based on considerations made by
previous researchers (i.e. Kimura et al.) have been computed by means of the strip
assumption.

The convergent number of sections for 20 m/s wind velocity

Figure 3.74: PSD of the displacement of the deck for each vibration mode changing
number of sections: 82 sections (green line), 164 sections (blue line), 328
sections (red line).

In order to study the dynamic behaviour of the Braila bridge deck, it was
initially divided in 82 sections. In order to apply the span - wise coherence function
it was necessary to find the number of sections into divide the bridge for which
the dynamic response did not change. In figures 3.74 and 3.75 it is possible to
recognize that the convergent number of sections is 328. In order to have a better
representation, in figure, 3.75, the contribution of the first mode of vibration has
been cancelled.
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Figure 3.75: PSD of the displacement of the deck for each vibration mode except 1st
changing number of sections: 82 sections (green line), 164 sections (blue
line), 328 sections (red line).
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Effect of the span-wise coherence on the bridge response for 20 m/s
wind velocity

Figure 3.76: PSD of the displacement of the deck for each vibration mode with the
span-wise coherence (red line) or the strip assumption (blue line).

In figure 3.76 and 3.77 it is possible to recognize the modal displacement of the
Braila deck for each vibration mode. In picture 3.78 it is possible to see the modal
acceleration of the deck. In figures 3.79, 3.80, 3.81 we can watch the accelerations
along y, z and ϑ for sections S2, S3, S4.

All the plots described above have been performed using a number of sections
equal to 328 (convergent number).

It is clear that the effect of recorrelation of buffeting forces is more important
in correspondence of the peaks of resonance, than it is an effect that has to be
considered during the design of the bridge and in its fatigue life. As we expected in
all the cases mentioned above the strip assumption produces an underestimation
of the results, that in certain cases could be quite big and it has to be taken into
account.
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Figure 3.77: PSD of the displacement of the deck for each vibration mode except 1st
with the span-wise coherence (red line) or the strip assumption (blue line).

Figure 3.78: PSD of the modal acceleration of the deck with recorrelation (red line) or
strip assumption (blue line).
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Figure 3.79: PSD of the acceleration along y, z and ϑ for section S2.
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Figure 3.80: PSD of the acceleration along y, z and ϑ for section S3.
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Figure 3.81: PSD of the acceleration along y, z and ϑ for section S4.
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3.3.2 Braila bridge deck response for 50 m/s wind velocity

Span-wise coherence for 50 m/s wind velocity

Figure 3.82: Normalized cross-spectrum of the w turbulence component for different
∆y/B and f∗

In figures 3.82, 3.83 and 3.84 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component, lift and aerodynamic moment,
taking into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the adapted Larose G.

representation, as we expected, it confirms the underestimation given by the strip
assumption. In pictures 3.85, 3.86, it is possible to watch the 3D trends of the
ratio between coh1/2

w /coh
1/2
L and coh1/2

w /coh
1/2
T taking into account at the same time

the reduced frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the adapted Larose G. model, display
an higher recorrelation with respect the one of the turbulent wind. These functions
have been considered in the simulations for all the entire frequency (f = 0 - 0.4 Hz),
but for a reduced spacing between the sections: in the range ∆y/B = 0 – 1.52 for
the moment and ∆y/B = 0 – 0.76 for the lift. This has been done in order to obtain
physical results and to compare the results with the Jakobsen J. representation,
having considered the same ∆y/B ranges.

In table 3.6 it is possible to find the parameters concerning the wind generation
and the kind of admittance matrix considered in the simulation of the bridge
response at 50 m/s.
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Figure 3.83: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 3.84: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 3.85: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B and f∗

Figure 3.86: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B and f∗
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Generation of the PSD of the wind for 50 m/s wind

Table 3.6: Parameters considered for the simulation at 50 m/s

Parameter Target Value

U 50 m/s

Lxu 160 mm

Lxw 16 mm

Iu 0.143

Iw 0.0715

Cwx 0.5

Cwy 6.5

Cwz 3

Cux 3

Cuy 10

Cuz 10

Cvx 3

Cvy 6.5

Cvz 6.5

Admittance Davenport

In figures 3.87, 3.88, 3.89, 3.90, 3.91, 3.92, 3.93 it is possible to observe the
PSD of the Lagrangian of the generated wind for each vibration mode. It has been
plotted for each of the thirteen modes of the Braila bridge the comparison between
the recorrelated case (red line) and the strip assumption case (blue line).

(a) Mode 1H (b) Mode 1V

Figure 3.87: PSD of the Lagrangian of the generated wind for mode 1H and 1V
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(a) Mode 2A (b) Mode 2V

Figure 3.88: PSD of the Lagrangian of the generated wind for mode 2A and 2V

(a) Mode 3V (b) Mode 2H

Figure 3.89: PSD of the Lagrangian of the generated wind for mode 3V and 2H

(a) Mode 4V (b) Mode 5V

Figure 3.90: PSD of the Lagrangian of the generated wind for mode 4V and 5V
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(a) Mode 3H (b) Mode 6V

Figure 3.91: PSD of the Lagrangian of the generated wind for mode 3H and 6V

(a) Mode 7V (b) Mode 1T

Figure 3.92: PSD of the Lagrangian of the generated wind for mode 7V and 1T

Figure 3.93: PSD of the Lagrangian of the generated wind for mode 2T
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As we expected, for each mode, the recorrelated curve is higher in terms
of amplitude of respective the strip assumption case, in the whole considered
frequency range. The modes whose curves are superimposed are the ones that are
mainly influenced by the drag contribution, that based on considerations made by
previous researchers (i.e. Kimura et al.) have been computed by means of the strip
assumption.

The convergent number of sections for 50 m/s wind velocity

Figure 3.94: PSD of the displacement of the deck for each vibration mode changing
number of sections: 82 sections (green line), 164 sections (blue line), 328
sections (red line).

In order to study the dynamic behaviour of the Braila bridge deck, it was
initially divided in 82 sections. In order to apply the span - wise coherence function
it was necessary to find the number of sections into divide the bridge for which
the dynamic response did not change. In figures 3.94 and 3.95 it is possible to
recognize that the convergent number of sections is 328. In order to have a better
representation, in figure, 3.95, the contribution of the first mode of vibration has
been cancelled.
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Figure 3.95: PSD of the displacement of the deck for each vibration mode except 1st
changing number of sections: 82 sections (green line), 164 sections (blue
line), 328 sections (red line).
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Effect of the span-wise coherence on the bridge response for 50 m/s
wind velocity

Figure 3.96: PSD of the displacement of the deck for each vibration mode with the
span-wise coherence (red line) or the strip assumption (blue line).

In figure 3.96 and 3.97 it is possible to recognize the modal displacement of the
Braila deck for each vibration mode. In picture 3.98 it is possible to see the modal
acceleration of the deck. In figures 3.99, 3.100, 3.101 we can watch the accelerations
along y, z and ϑ for sections S2, S3, S4.

All the plots described above have been performed using a number of sections
equal to 328 (convergent number).

It is clear that the effect of recorrelation of the buffeting forces is more important
in correspondence of the peaks of resonance, than it is an effect that has to be
considered during the design of the bridge and in its fatigue life. As we expected in
all the cases mentioned above the strip assumption produces an underestimation
of the results, that in certain cases could be quite big and it has to be taken into
account. Passing from 20 m/s to 50 m/s it is possible to see that the effect of
recorrelation is decreasing (blue and red curve are closer).
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Figure 3.97: PSD of the displacement of the deck for each vibration mode except 1st
with the span-wise coherence (red line) or the strip assumption (blue line).

Figure 3.98: PSD of the modal acceleration of the deck with recorrelation (red line) or
strip assumption (blue line).
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Figure 3.99: PSD of the acceleration along y, z and ϑ for section S2.
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Figure 3.100: PSD of the acceleration along y, z and ϑ for section S3.
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Figure 3.101: PSD of the acceleration along y, z and ϑ for section S4.



110
Chapter 3. Span-wise Coherence of the Aerodynamic Forces for the

Braila bridge deck

3.3.3 Braila bridge deck response for 65 m/s wind velocity

Span-wise coherence for 65 m/s wind velocity

Figure 3.102: Normalized cross-spectrum of the w turbulence component for different
∆y/B and f∗

In figures 3.102, 3.103 and 3.104 it is possible to examine the 3D trend of the
span-wise coherence for w gusty wind component, lift and aerodynamic moment,
taking into account at the same time the reduced frequency f ∗ and the normalized
distance between two different point ∆y

B
. Also considering the adapted Larose G.

representation, as we expected, it confirms the underestimation given by the strip
assumption. In pictures 3.105, 3.106, it is possible to watch the 3D trends of the
ratio between coh1/2

w /coh
1/2
L and coh1/2

w /coh
1/2
T taking into account at the same time

the reduced frequency fB
U

and the adimensional spacing ∆y
B
.

The plots, also in this case, considering the adapted Larose G. model, display an
higher recorrelation with respect the one of the turbulent wind. These functions have
been considered in the simulations for all the entire frequency range (f = 0 - 0.4 Hz),
but for a reduced spacing between the sections: in the range ∆y/B = 0 – 1.52 for
the moment and ∆y/B = 0 – 0.76 for the lift. This has been done in order to obtain
physical results and to compare the results with the Jakobsen J. representation,
having considered the same ∆y/B ranges.

In table 3.7 it is possible to find the parameters concerning the wind generation
and the kind of admittance matrix considered in the simulation of the bridge
response at 65 m/s.
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Figure 3.103: Normalized cross-spectrum of the buffeting L for different ∆y/B and f∗

Figure 3.104: Normalized cross-spectrum of the buffeting T for different ∆y/B and f∗
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Figure 3.105: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
L for different ∆y/B, f∗

Figure 3.106: Ratio of normalized cross-spectra coh1/2
w /coh

1/2
T for different ∆y/B, f∗
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Generation of the PSD of the wind for 65 m/s wind

Table 3.7: Parameters considered for the simulation at 65 m/s

Parameter Target Value

U 65 m/s

Lxu 160 mm

Lxw 16 mm

Iu 0.143

Iw 0.0715

Cwx 0.5

Cwy 6.5

Cwz 3

Cux 3

Cuy 10

Cuz 10

Cvx 3

Cvy 6.5

Cvz 6.5

Admittance Davenport

In figures 3.107, 3.108, 3.109, 3.110, 3.111, 3.112, 3.113 it is possible to observe
the PSD of the Lagrangian of the generated wind for each vibration mode. It has
been plotted for each of the thirteen modes of the Braila bridge the comparison
between the recorrelated case (red line) and the strip assumption case (blue line).

(a) Mode 1H (b) Mode 1V

Figure 3.107: PSD of the Lagrangian of the generated wind for mode 1H and 1V
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(a) Mode 2A (b) Mode 2V

Figure 3.108: PSD of the Lagrangian of the generated wind for mode 2A and 2V

(a) Mode 3V (b) Mode 2H

Figure 3.109: PSD of the Lagrangian of the generated wind for mode 3V and 2H

(a) Mode 4V (b) Mode 5V

Figure 3.110: PSD of the Lagrangian of the generated wind for mode 4V and 5V
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(a) Mode 3H (b) Mode 6V

Figure 3.111: PSD of the Lagrangian of the generated wind for mode 3H and 6V

(a) Mode 7V (b) Mode 1T

Figure 3.112: PSD of the Lagrangian of the generated wind for mode 7V and 1T

Figure 3.113: PSD of the Lagrangian of the generated wind for mode 2T
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As we expected for each mode the recorrelated curve is higher in terms of
amplitude of respective the strip assumption case, in the whole considered frequency
range. The modes whose curves are superimposed are the ones that are mainly
influenced by the drag contribution, that based on considerations made by previous
researchers (i.e. Kimura et al.) have been computed by means of the strip
assumption.

The convergent number of sections for 65 m/s wind velocity

Figure 3.114: PSD of the displacement of the deck for each vibration mode changing
number of sections: 82 sections (green line), 164 sections (blue line), 328
sections (red line).

In order to study the dynamic behaviour of the Braila bridge deck, it was
initially divided in 82 sections. In order to apply the span - wise coherence function
it was necessary to find the number of sections into divide the bridge for which
the dynamic response did not change. In figures 3.114 and 3.115 it is possible to
recognize that the convergent number of sections is 328. In order to have a better
representation, in figure 3.115, the contribution of the first mode of vibration has
been cancelled.
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Figure 3.115: PSD of the displacement of the deck for each vibration mode except 1st
changing number of sections: 82 sections (green line), 164 sections (blue
line), 328 sections (red line).



118
Chapter 3. Span-wise Coherence of the Aerodynamic Forces for the

Braila bridge deck

Effect of the span-wise coherence on the bridge response for 65 m/s
wind velocity

Figure 3.116: PSD of the displacement of the deck for each vibration mode with the
span-wise coherence (red line) or the strip assumption (blue line).

In figure 3.116 and 3.117 it is possible to recognize the modal displacement of
the Braila deck for each vibration mode. In picture 3.118 it is possible to see the
modal acceleration of the deck. In figures 3.119, 3.120, 3.121 we can watch the
accelerations along y, z and ϑ for sections S2, S3, S4.

All the plots described above have been performed using a number of sections
equal to 328 (convergent number).

It is clear that the effect of recorrelation of buffeting forces is more important
in correspondence of the peaks of resonance, than it is an effect that has to be
considered during the design of the bridge and in its fatigue life. As we expected in
all the cases mentioned above the strip assumption produces an underestimation
of the results, that in certain cases could be quite big and it has to be taken
into account. Passing from 50 m/s to 65 m/s it is possible to see that we have a
similar effect of recorrelation between the two speeds. In the conclusion of this
work a comparison between the case of 328 sections with span-wise coherence of
the buffeting forces and the one characterized by each section of length equal to B
(deck width) and 1.5 B considering the strip assumption will be made.
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Figure 3.117: PSD of the displacement of the deck for each vibration mode except 1st
with the span-wise coherence (red line) or the strip assumption (blue
line).

Figure 3.118: PSD of the modal acceleration of the deck with recorrelation (red line) or
strip assumption (blue line).
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Figure 3.119: PSD of the acceleration along y, z and ϑ for section S2.
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Figure 3.120: PSD of the acceleration along y, z and ϑ for section S3.
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Figure 3.121: PSD of the acceleration along y, z and ϑ for section S4.



Conclusions

In this last part I want to compare the response of the Braila deck considering
328 sections with the span-wise coherence (with both the adapted Larose G. and
Jakobsen J. representation) with the one characterized by a length of each section
equal to the deck width B (62 sections) and equal to 1.5B (41 sections) both with
the strip assumption. I am going the repeat the comparison for each considered
wind speed U = 20 m/s (figure I and II), 50 m/s (figure III and IV), 65 m/s (figure
V and VI).

The choice of considering 62 sectors in the discussion is due to the fact that
nowadays is common practice to use a length of each section similar to the deck
width B. It is well known that it represents a good approximation. I have taken
into account the case characterized by 41 sectors (1.5B) in order to understand
in which range I can find the number of sections in which I can divide my Bridge,
considering the strip assumption, that well approximates the behaviour with the
convergent number of sections (328) with the span-wise coherence of the buffeting
forces.

In addition I have made a comparison between the two span-wise normalized
cross spectra representations in terms of modal acceleration of the Braila deck for
each wind velocity (20 m/s figure VII, 50 m/s figure VIII, 65 m/s figure IX).
There is a good agreement between the Larose G. adapted model and Jakobsen J.
one at every wind speed considered. The differences between the two representation
decreases passing from 20 m/s to 65 m/s. Larose G. adapted model slightly
underestimate the modal acceleration with respect to the Jakobsen J. one.

Looking at figures I II, III, IV, V and VI it is possible to recognize which is
the number of sections that well approximate the behavior of the curves with the
span-wise recorrelation of the buffeting forces for both Larose G. and Jakobsen J.:

• 58 sections (1.08B) for 20 m/s wind speed

• 54 sections (1.16B) for 50 m/s wind speed

• 41 sections (1.5B) for 65 m/s wind speed

These values have been computed interpolating the relative distance between the
three curves. I have to notice that these three values are affected by the high
reduced frequency content that was not estimated well, initially, in the original
representations. The value of sections depends on frequency, wind velocity and
specific conditions of the site.
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Figure I: PSD of the modal acceleration with Jakobsen J. recorrelation (red line) or strip
assumption with 62 sections (blue line B) and 41 (green line 1.5B) at 20 m/s.

Figure II: PSD of the modal acceleration with Larose G. recorrelation (red line) or strip
assumption with 62 sections (blue line B) and 41 (green line 1.5B) at 20 m/s.
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Figure III: PSD of the modal acceleration with Jakobsen J. recorrelation (red line) or
strip assumption with 62 sections (blue line B) and 41 (green line 1.5B) at
50 m/s.

Figure IV: PSD of the modal acceleration with Larose G. recorrelation (red line) or
strip assumption with 62 sections (blue line B) and 41 (green line 1.5B) at
50 m/s.
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Figure V: PSD of the modal acceleration with Jakobsen J. recorrelation (red line) or
strip assumption with 62 sections (blue line B) and 41 (green line 1.5B) at
65 m/s.

Figure VI: PSD of the modal acceleration with Larose G. recorrelation (red line) or
strip assumption with 62 sections (blue line B) and 41 (green line 1.5B) at
65 m/s.
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Comparison among the two adapted models of Larose and Jakobsen

Figure VII: PSD of the modal acceleration with Larose G. recorrelation (red line) or
Jakobsen J (green line) at 20 m/s.

Figure VIII: PSD of the modal acceleration with Larose G. recorrelation (red line) or
Jakobsen J (green line) at 50 m/s.
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Figure IX: PSD of the modal acceleration with Larose G. recorrelation (red line) or
Jakobsen J (green line) at 65 m/s.

Future developments

In order to deeply study the effect of recorrelation on bridges, it is necessary,
by means of wind tunnel testings in the wind velocity range of the buffeting, to
evaluate a new span-wise coherence function on a bridge deck section, specifically
taking into account of the high frequency content. The next step is to compare
the new span-wise coherence function with the previous ones of Larose G. and
Jakobsen J. in order to validate the results. A further step is to repeat the study
that I made for the Braila bridge with the new normalized co-sprectrum function
and to implement it for the case of different bridges. This has to be performed in
order to study the dependence of the recorrelation on:

• The specific wind conditions of the site

• The interested frequency range

• The geometry of the deck.

A CFD study would also be feasible and possible. In addition the recorrelation of
the buffeting forces, being higher in correspondence of the resonance peaks, has to
be investigated in the fatigue design of the bridge.



Appendix A

Wind action on Long Span Bridges

A.1 Introduction
The action of the wind produces static and dynamic loads on multiple types of

structures and vehicles, such as bridges, buildings, high voltage cables, cars, freight
and high-speed trains and many others.

In this work I will focus only on long span bridges, specifically the Braila bridge
which is under construction in Romania. I make reference to the longest bridges
because longer is the Bridge, worst is the problem related to wind effect. For short
bridges the main problems are related to road and railway traffic.

We can have two types of long span bridges: cable stayed bridges and suspension
bridges. The former have maximum lengths of the order of 1000m while the latter
can exceed 1500m. The increase in length has the effect that the bridge becomes
more and more flexible and its natural frequencies take on ever smaller values, until
they are easily excitable by the wind.

The Braila bridge is the longest suspended bridge that is constructed in Romania,
has a length of 1974m and is therefore a long span bridge for which the wind-structure
interaction is very important and must be analyzed in detail.

Figure I: Rendering of the Braila Bridge
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A.2 Fluid-structure interaction

The wind can be schematized mainly by three components, namely the mean
speed velocity and two turbulence components. Depending on the component
considered, static or dynamic loads can occur.
The action of the wind takes place through aerodynamic forces, specifically the lift,
the drag and the aerodynamic moment.

Figure II: Components of the wind action and aerodynamic forces

The most sensitive part of a bridge to the wind is the deck. These aerodynamic
forces can be defined on a generic deck section as follows:

FL =
1

2
ρSV 2CL(α) (A.1)

FD =
1

2
ρSV 2CD(α) (A.2)

M =
1

2
ρSV 2CM(α) (A.3)

Where ρ is the density of the air, V is the wind velocity, S is the deck upper surface
and B is a reference body dimension usually the deck chord. The aerodynamics
coefficient are CL(α), CD(α), CM(α), and are a function of the angle of attack of
the wind, which under the hypothesis of small displacements and speeds can be
defined as:

α = ϑ+ ψ = ϑ+
ω −B1ϑ̇− ż
V + u− ẏ

(A.4)

These coefficients are a function of the type of the deck that we are considering.
The problems that the wind generates on bridges can be divided into two macro
categories:

- Static Problems due to average wind speed velocity,that are function of the
angle attack

- Dynamic Problems due to turbulence components u, v, w and of the motion
of bridge itself under aerodynamic forces.
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A.2.1 Static Problem

Static loads are due only to the effect of the average wind speed and not to
turbulence. They are a function of the aerodynamic coefficients CL, CD, CM and
the angle of attack α. An example of a very important static load for bridges is
that to which the towers are subjected, or more specifically the tower foundations.

Figure III: Load transfer on Akashi Bridge

The load from the deck is transferred, through the hangers, to the main cables
and finally to the top of the towers producing a huge overturning moment on the
tower foundations. In order to reduce this effect, it is important to minimize the
deck drag. One of the aims of the static analysis is find the equilibrium position
around which is possible to linearize the aerodynamic forces.

To summarize, in order to take the static problem under control, during the
design of a long span bridge, it is important to keep the drag coefficient as low as
possible.



132 Appendix A. Wind action on Long Span Bridges

A.2.2 Dynamic Problem

They are due to the turbulent nature of the wind and to the motion of the
bridge induced by the aerodynamic forces (aeroelastic problem). The main dynamic
issues that we can have are :

- One d.o.f instability : we can experience this kind of issue, for example, when
the derivative of the CM (α) with respect to the incident angle α is lower than
zero [14] (Takoma bridge).

- Flutter instability : It happens in the bridges of nowadays because they have a
deck section that is of airfoil type [15], it can be single box or multi-box. With
multi-box, like in Messina [16] Bridge we are able to have an higher flutter
critical speed. It happens when we have the coupling of the first vertical mode
and the first torsional mode, and the the resulting motion is a combination of
the two.

- Buffeting : it is the result of the motion of the bridge due to the incoming
turbulence. It is always present, not only in bridges, and there is not a way
in order to avoid that.

- Vortex Shadding : The main problems for this type of instability are related
to the towers and the deck. All decks are affected by vortex shadding. This
problem is linked with the separation of flow from upstream edge of the deck
to produce a vortex that moves downstream.

Figure IV: Takoma bridge collapse due to one d.o.f. instability
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The wind forces can be expressed in terms of equivalent damping and stiffness
matrices that can lead to the types of instability mentioned above. Usually the
behaviour of long span bridges is linked to the wind velocity:

- When we are at null wind speed the damping contribution is only due to the
structural part

- Increasing the speed, we have the contribution of the aerodynamic damping
and for this reason it becomes larger

- A further increase of the velocity will cause a reduction in the overall damping.
The velocity at which we have negative damping is called flutter velocity.

The solution, when we design a bridge, is to put the wind in favour of the bridge,
in order to insert into the system a positive equivalent damping contribution and to
design the bridge in order to have an high critical flutter velocity. Large vibrations
can lead to fatigue problems and decrease of comfort when we are crossing the
structure.

Figure V: Aerodynamic forces acting on a deck section
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A.3 Wind description

Before going into the specifics of the various approaches to study the response
of the structures under the action of the wind, it is important to know how the
wind itself is described.

When the wind approaches the earth’s surface, the frictional forces caused by
the wind-earth interaction are growing more and more. Because of this, the wind
becomes turbulent and changes according to space and time.

It is possible to define as "gradient height", the height zg where the effects of
frictional forces are negligible.

In wind engineering, the part of the atmosphere of our interest, where the
structures subject to the action of the wind are immersed, is located below the zg
and is called the Atmospheric Boundary Layer (ABL). The ABL extends typically
to 500-1000 m above the ground [17] [18].

Figure VI: Atmospheric Boundary layer on surface Earth

The wind in this zone behaves randomly both in space and in time, therefore
in order to know its characteristics it is necessary to refer to the analysis of large
databases of anemometric records, that are taken in different places of the world for
many years. Another facility in order to record useful datas is the weather station.
The weather station is equipped in order to measure temperature, barometric
pressure, humidity, wind speed and direction and amount of precipitations.
Its main aim is to provide weather forecast, while anemometers (Figure VII) are
able mainly to measure the wind speed.

Wind measurements are commonly taken at a standard height of 10 m, in
locations far from obstacles that could affect the measurement.

Due to the random nature of the wind, the repetition of measurements in the
same areas leads to different results, however there are common characteristics that
can be highlighted in long term measurements in the boundary layer. This suggests
that an empirical model could be developed.

In Figure VIII it is possible to have a look to a six hour time history taken at
128 m from the ground on the Messina strait.
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Figure VII: Rotating cup anemometer

Figure VIII: Wind speed measures taken at Messina strait
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The following characteristics can be highlighted [18]:

- The wind speed varies irregularly due to its turbulent nature.

- There is a change in the average speed over the course of a day.

- There are limited oscillations around the average speed and this is a charac-
teristic of turbulence.

- The oscillations cover a very wide frequency range.

As is known, turbulence is a random signal therefore it requires an appropriate set
of statistical parameters in order to describe it, statistical methods must be used.

Figure IX: Wind speed measures taken at different heigths at Messina strait

Consequently, from the analysis of multiple time history taken at different height
in the same place (Figure IX), the following characteristics can be highlighted:

- The average wind speed rise, increasing the height from ground

- There is some similitude between the pattern of the gusts at all height. It is
because of the spatial correlation of the wind turbulence.

The data recorded by the anemometers contain both "global" informations related
to the wind climate, and "local" informations related to the Atmospheric Boundary
Layer. This is due to the fact that the wind contains contributions related to
various characteristic scales of the phenomena.
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The first to notice this was Van Der Hoven, who in 1957 developed the first
wind spectrtum that was based on the data recorded at Brookhaven, NY [19].

Figure X: Van der Hoven wind spectrum

Van der Hoven spectrum is represented in Figure X and it features three main
energy peaks. The explanation of these peaks is the following:

1. The leftmost peak is at 0.01 Hz and It is because of the movement of fully
developed weather systems. It is named macrometereological peak.

2. The second peak is in correspondence of 0.1 Hz (24 Hours period). It shows
how wind speed increases during the day, and decreases during the night.

3. The rightmost peak is called micro-metereological peak (close to 100 Hz) and
it contains a set of higher frequencies related to the turbulence in the ABL
that are in the interval 10 minutes to less than 3 seconds.

4. The absence of wind speed variation is the central zone of Van Der Hoven’s
spectrum is called spectral gap. It separates the fluctuations associated with
wind climate and the ones associated with wind turbulence

To summarize the macro-meteorological peak is caused by the movement of large
pressure systems and it is related to the variations of the mean wind speed. These
variations have a low frequency and correspond only to static effects of buildings.
High frequency fluctuations, or the ones associated to the micro-meteorological
peak, are associated to the Atmospheric Boundary Layer fluctuations. They are
caused by the wind turbulence. These fluctuations are in the frequency range of
civil structures and for this reason they are very important for wind engineering.
When we make the design of a structure, in the site, it is important to define the
average wind speed, the turbulence and its correlation.
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A.3.1 Mean wind speed profile

The spectral gap represents the boundary between the frequencies associated
with the average flow (at the left of the gap) and those associated with the turbulent
flow (at the right of the gap).

Usually the wind speed is calculated over a period of 10 minutes (EUROCODE)
or 1 hour.

The average wind speed and its slow speed fluctuations produces only static
effect on structures. The Atmospheric Boundary Layer is heavily influenced by
frictional forces caused by interaction with the ground. Therefore we expect the
surface roughness of the soil to be an important parameter. The average wind speed
is affected by the surface roughness that can be defined by the parameter z0, called
aerodynamic roughness parameter. It is related to the dimension and spacing of
roughness elements. There are various formulations of the average wind profile.

Logarithmic profile

The first model of the average wind is represented by the Logarimic profile:

U(z) =
u∗

κ
ln
z

z0

(A.5)

• u∗ is the friction velocity. It is not a physical velocity but an abstraction
introduced for introducing the shear stress in the dimension of a velocity.

• 1
κ
is a constant of proportionality that is named V on Karman constant, its

value is around 0.4.

The logarithmic profile represents the physical formulation of average wind
speed in ABL . If we compare it with the real profile of the wind it is a good
approximation up to 200m.

Power Law profile

An emprirical formulation that is used in North America is represented by the
Power Law profile :

U(z) = Uref

(
z

zref

)α
(A.6)

• Uref is the wind velocity at the reference height zref

• α is the power law exponent that changes, varying the terrain type. It usually
ranges from 0.12 – 0.30.

It and can be linked to the aerodynamic length parameter z0 by this formulation :

α ∼=
(

1

ln z
zref

)
(A.7)
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Eurocode

Eurocode proposes a formulation of the mean wind that is based on the
Logarithmic profile described before:{

U(z) = Vbkr ln
(
z
z0

)
zmin ≤ z ≤ 200m

U(z) = U(zmin) z ≤ zmin
(A.8)

Where :

• Vb is the basic wind velocity that depends on the wind climate and it is
evaluated a 10 m above the ground, considering a terrain category .

• kr is the terrain factor that that takes into account the aerodynamic roughness
parameter z0.

The aerodynamic roughness length parameter is reduced to consider only five
different terrain categories that are highlighted in Figure XI and Figure XII:

Figure XI: Terrain categories and parameters according to Eurocode

The difference with the physical formulation is that we removed the friction
velocity u∗ and we introduced basic wind speed Vb and terrain factor kr. The friction
velocity u∗ has the dimension of a velocity strictly speaking but it’s more related
to surface stresses. On the contrary the basic wind velocity Vb is a speed that has a
physical meaning and can be measured. Every code has additional formulation in
order to take into account of additional parameters such as :

1. Obstacles are very close each other (zero− plane displacement d)

2. Changes in surface roughness

3. Directionality effects

4. Topography effects.

Additional effects can be taken into account depending on the specific location.
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Figure XII: Terrain categories description according to Eurocode
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A.3.2 Wind Turbulence

Turbulence is associated with high frequency phenomena, located at the right
of the spectral gap. It is composed of three components u, v and w respectively,
longitudinal, lateral and vertical components.

Turbulence is associated with high frequency oscillations (micrometeorological)
and these fluctuations are in the frequency range of civil structures. Therefore they
can be easily excited by this phenomenon. How we can measure the fluctuations
associated to the turbulence? The oscillations due to turbulence represents a
random phenomena and for this reason we have to use a statistical approach.

Turbulence intensity

In the Atmospheric Boundary Layer the standard deviation σ of wind speed
decreases with the height and it is near to zero in correspondence of the height
where the friction effects are zero zg (gradient height). Despite this, up to 200
meters, it is possible to consider that σ remains more or less constant. Therefore it is
possible to define a dimensionless parameter called turbulence intensity which can
be defined for each turbulence component as the ratio of the standard deviation of
the turbulence component considered divided by the average speed, both calculated
at the same height :

Iu(z) =
σu(z)

U(z)
(A.9)

Iv(z) =
σv(z)

U(z)
(A.10)

Iw(z) =
σw(z)

U(z)
(A.11)

• σu(z), σv(z), σw(z) are the standard deviation of the turbulence components
u, v, w

• U(z) is the average wind speed

It is possible to consider a link to the turbulence intensity along the longitudinal
direction and the roughness parameter z0:

Iu(z) =
1

ln ( z
z0

)
(A.12)

It can be clearly seen that the turbulence rises as the roughness increases and
decrease with the height above the ground [20].

In addition is possible to link the different components of the turbulence intensity
in this way :

Iv(z) = 0.75Iu (A.13)

Iw(z) = 0.5Iu (A.14)

Eurocode proposes the same forumulation for the along wind turbulence intensity
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Figure XIII: Turbulence intensity components measured at the Messina strait over a
period of 10 minutes, measured at 64 m height

Integral length scales

An indicator used to describe the spatial coherence of the turbulence is given
by the Integral length scales [20]. They represent the mean dimension of a gust
in a given direction. The integral length scale along the longitudinal direction x for
the turbulence component u can be defined as:

Lu(x) =

∫ ∞
0

Ru(rx)drx (A.15)

• Ru(rx): is the cross correlation of two different points separated along x
(means wind speed direction) of a distance rx and measured simultaneously.

In a similar way we can define the matrix of the Integral length scales for turbulence
components u, v, w along x, y, z directions:

for longitudinal turbulence component u Lxu L
y
u L

z
u (A.16)

for lateral turbulence component v Lxv L
y
v L

z
v (A.17)

for vertical turbulence component w Lxw L
y
w L

z
w (A.18)

Usually we have measures taken in a point for a long time. Considering the Taylor
hypothesis (1938) of frozen turbulence we can calculate the longitudinal scale of
turbulence taking into account the measures recorded in one point. By means of
the auto-correlation Ru(τ) is possible to compute the time scale T :

Tu(z) =

∫ ∞
0

Ru(z, τ)dτ (A.19)
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According to the Taylor’s hypothesis the frozen turbulence is carried by the mean
with speed and then:

Lzu = Tu(z)U(z) (A.20)

Figure XIV: Autocorrelation function of the u turbulence component

In Eurocode, as we expected , there is a dependence of the integral length scale
on the height and terrain roughness :

Lxu(z) = 300
( z

200

)α (A.21)

where α is :
α = 0.67 + 0.05 ln (z0) (A.22)

The other length scale components could expressed as a function of the longitudinal
one :

Lxv ≈ 0.25Lxu Lxw ≈ 0.1Lxu (A.23)
Lyu ≈ 0.3Lxu Lzu ≈ 0.2Lxu (A.24)

Commonly we are interested in the components along the x axis, because it is the
direction of the mean wind and for this reason they are generally bigger and the
most important ones.
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Power spectral density

The power spectral density explains how the wind energy is distributed along
different frequencies, normalized by the frequency resolution. It represents a one-
point analysis. Why is important to give a description of the energy introduced at
different frequencies? Because if we are dealing with dynamics of the structures, if
the wind energy is placed in correspondence of one the natural frequencies of the
construction, this is responsible of dynamic effects.

Many formulations have been introduced in literature. V on Karman proposed
the equation for u component [21]:

f · Su(f)

σ2
u

=
4
(fLx

u

U

)[
1 + 70.8

(fLx
u

U

)2] 5
6

(A.25)

and for i = v, w
f · Si(f)

σ2
i

=
4
(fLx

I

U

)(
1 + 755.2

(fLx
i

U

)2)[
1 + 283.2

(fLx
i

U

2)] 11
6

(A.26)

Where :

• Su(f) Sv(f) Sw(f) are respectively the power spectal density of the turbulence
components u, v, w.

In order to normalize the frequency It is possible to define the non− dimensional
frequency as :

f ∗ =
fLxu
U

(A.27)

Another PSD formulation is the one given by EUROCODE :

f · Su(f)

σ2
u

=
6.8
(fLx

u

U

)[
1 + 10fL

x
u

U

] 5
3

(A.28)

We can observe in Figure XV that this formulation is very similar to the one given
by V on Karman. From the plot it is clear that most of the energy of the wind is
introduced at low frequencies. If the natural frequencies of our structures are in
this range, as it commonly happens we could have dynamic amplification in the
wind induced response.

Cross spectral density and coherence

We are interested in defining the cross spectral density and the coherence if we
want to make a multiple point analysis, or in other words if we want to evaluate
the statistical dependence between two points P and Q spaced in y direction at a
frequency f .
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Figure XV: Wind speed measures taken at different heigths at Messina strait

The coherence is defined as :

γ2
uu =

|Suu(P,Q, f)|2

Suu(P, f) · Suu(Q, f)
(A.29)

• Suu(P, f) and Suu(Q, f) are the power spectral density evaluated in points P
and Q.

• Suu(P,Q, f) is the cross spectral density functions between points P and Q.

Coherence is a real quantity that is in between zero and one, while Cross spectral
density is in general a complex quantity described by modulus and phase. The
formulation of root coherence by Davenport [20] is given by:

γuu(∆y, f) = exp
[
−
(
− Cy

∆yf

U

)]
(A.30)

Where:

• Cy is a non dimensional decay constant ( Cy = 10 ).

In a similar way it is possible to define the other coherence components, con-
sidering different coherence decay parameters. The major limitation of Davenport
formulation is given by the fact that this considers value close to the unit for small
frequencies but this is not exact if we consider large separations (∆y).
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A.4 Deck aerodynamics
After describing with which statistical methodologies it is possible to describe

the wind, it is necessary to introduce how we can evaluate the dynamic effects that
the wind causes on a structure under consideration. To do this, a section of deck
subjected to the action of a turbulent wind will be considered below.

There are multiple approaches, with a different level of detail, in order to evaluate
the dynamic response of the deck, among all that capable of fully explaining the
physics of the problem is represented by the Quasi Steady Theory (QST ) [22] [23].
The QST theory is able to reproduce in a complete way the aerodynamic forces
acting on a deck section function of its motion and the wind turbulence, if the
reduced velocity :

V ∗ =
V

fB
is higher than > 10-15 (A.31)

• V is the average wind speed

• B is the reference dimension of the body

• f is the frequency of the motion

The reduced velocity could be seen as the ratio between fp and fm where fm is
the vibration frequency of the motion, and fp is 1

Tp
and Tp B

V
, the time needed by

the fluid particle to move through the deck width B.
If the condition on V ∗ is satisfied then you can use as aerodynamic forces the

ones that you really measure statically, because statically the frequency of motion
is going to zero, or, in another way the aerodynamic forces are not influenced by
the frequency of the motion.

With these premises it is possible to write the motion equation as:

[Ms]ẍ+ [Rs]ẋ+ [Ks]x = Fa(ẋ, x, t) (A.32)

• Fa(ẋ, x, t) are the aerodynamic forces which are a function of the motion of
the bridge in terms of displacements, speed and time

Several approaches can be considered in order to define the Fa(ẋ, x, t) and the
QST is one of them.

In the following we will consider a deck section under the wind action taking
into account only u and w turbulence components and the first three modes of
the deck, respectively the vertical (z), horizontal (y) and torsional (ϑ), A modal
approach will be considered. The QST considers the same aerodynamic coefficients
that are measured on static models in wind tunnels, considering the motion in
terms of Vrel that is the relative velocity of the fluid with respect to the body.

The aerodynamic forces in Figure XVI can be described as:

FL =
1

2
ρSV 2

relCL(α) (A.33)

FD =
1

2
ρSV 2

relCD(α) (A.34)

M =
1

2
ρSV 2

relCM(α) (A.35)
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Where :

• CL(α), CD(α), CM(α) are the static aerodynamic coefficients.

• α is the angle between the relative wind velocity and the deck during its
movement.

Figure XVI: Aerodynamic forces acting on a deck section

Knowing this it is possible to define the horizontal component of the speed of point
P belonging to the deck as:

VP,y = ẏ (A.36)

And the vertical as :
VP,z = ż + PGϑ̇ (A.37)

As a result considering different points P we will experience different relative
velocities. Our choice of the reference point is the one at a distance B, upwind the
deck centre G. This distance will be defined experimentally in the corrected quasi
steady theory (QSTC).

Figure XVII: Deck velocity components
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Then we can define the relative velocity components along y and z direction in
this way for the reference point we have chosen :

VRel,y = Vy − ẏ (A.38)

VRel,z = Vz − ż −B1ϑ (A.39)

• Vy and Vz are the horizontal and vertical components of the incoming relative
wind

Considering that the wind is characterized by:

1. Vm average wind speed

2. u, v turbulence components

We can define V 2
rel as :

V 2
Rel = (Vm + v − ẏ)2 + (w − ż −B1ϑ̇)2 (A.40)

Where ψ is the angle of attack of the relative wind speed :

ψ = arctan
w − ż −B1ẏ

Vm − v − ϑ̇
(A.41)

ψ is changing in time for two reasons:

1. Turbulence is changing in time

2. Motion of the body is changing in time

Figure XVIII: Definition of relative wind speed Vrel
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The aerodynamic forces acting on the Deck section can be defined according to
the QST theory as:

FL =
1

2
ρSV 2

relCL(α) (A.42)

FD =
1

2
ρSV 2

relCD(α) (A.43)

M =
1

2
ρSV 2

relCM(α) (A.44)

and α is defined as:
α = ψ + ϑ (A.45)

The angle α represents the angle of attack between the relative velocity and the
deck.

The problem can be modelled as in Figure XIX where the elastic links have the
same stiffness and damping of the first vibration modes.

Figure XIX: Deck model with concentrated damping and stiffness elements

The equations of motion of the system are :

myÿ + ryẏ + kyy = FD cosψ − FL sinψ = FY (A.46)

mz z̈ + rz ż + kzz = FD sinψ + FL cosψ = Fz (A.47)

JGϑ̈+ rϑϑ̇+ kϑϑ = FM = Fϑ (A.48)

Where:

• my, mz and Jz are the modal masses and the modal moment of inertia.

• ry, rz e rϑ and ky, kz and kϑ are the respective damping e stiffness of the first
three modes of vibration.

The equation is fully non linear and this approach is in condition to give the
aerodynamic forces function of the incoming turbulence and the motion.

If we replace the expression of the aerodynamic forces found previously we
obtain the equations:
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myÿ+ryẏ+kyy =
1

2
ρS
(
(Vm+v− ẏ)2 +(w− ż−B1ϑ̇)2

)
(CD(α) cosψ−CL(α) sinψ)

(A.49)

mz z̈+rz ż+kzz =
1

2
ρS
(
(Vm+v− ẏ)2 +(w− ż−B1ϑ̇)2

)
(CD(α) sinψ+CL(α) cosψ)

(A.50)

JGϑ̈+ rϑϑ̇+ kϑϑ =
1

2
ρS
(
(Vm + v − ẏ)2 + (w − ż −B1ϑ̇)2

)
CM(α) (A.51)

This formulation is called Corrected Quasi steady theory (QSTC) and the term
that takes in consideration a specific characteristic length of body B1 changes for
each component of the aerodynamic forces (B1y, B1z, B1ϑ). Taking into account
the X vector that contains the physical displacements,

X =


x
y
z
ϑ


We can rewrite the equations (A.49) (A.50) (A.51) in matrix formulation:

[Ms]Ẍ + [Rs]Ẋ + [Ks]X = FA

(
X, Ẋ, Vm, v(t), w(t)

)
(A.52)

This approach is able to reproduce in a non linear way the response of the bridge,
under the assumption of high reduced velocity (V ∗>15).

Linearized Quasi Steady Corrected theory (QSTC)

The main aim of this analysis is to linearize the equation of the QSTC in order
to obtain the equivalent stiffness matrix KAERO and damping matrix RAERO due
to the aerodynamic forces.

There are more sophisticated models based on nonlinear equations or numerical
integration with explicit or implicit methods. With these complex models, you
can grasp every detail, but you don’t understand the physics of the problem. On
the contrary with the linear theory is sufficient to look if some conditions on the
matrices RAERO and KAERO is verified in order to have a stable system, but the
results are valid only for small displacements. In other words with the linearised
equation of motion we are able to deeply understand the physics of the problem.
The vector containing the aerodynamic forces FA is in general function of the bridge
motion (X, Ẋ), the wind speed (V ) and turbulence components b:

FA =

FyFz
Fϑ

 X =

yz
ϑ

 Ẋ =

ẋẋ
ϑ̇

 b =

(
u
w

)
Starting from the static deformation reached under mean wind speed as equilibrium
position :

X0 =

y0

z0

ϑ0

 Ẋ =

0
0
0

 b =

(
0
0

)
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Under the iphotesys of small obscillations of the deck and turbulent fluctations
close to the equilibrium values, it is possible to lineayze the aerodynamic forces in
this way:

FA

(
X, Ẋ, b

)
= FA

(
X0, Ẋ0, b0

)
+
∂FA
∂X

∣∣∣∣
0

(X −X0) +
∂FA

∂Ẋ

∣∣∣∣
0

Ẋ +
∂FA
∂b

∣∣∣∣
0

b (A.53)

Those three partial derivatives modify the natural frequencies of the system and con-
sequently influence the stability itself. Recalling the expression of the aerodynamic
forces found in QSTC :

Fy =
1

2
ρV 2

relBL(CD(α) cosψ + CL(α) sinψ) (A.54)

Fz =
1

2
ρV 2

relBL(CD(α) sinψ + CL(α) cosψ) (A.55)

Fϑ =
1

2
ρV 2

relB
2LCM(α) (A.56)

It is needed the linearization of the aerodynamic forces (A.54) (A.55) (A.56) around
y0, z0 and ϑ0, defining: 

y = y − y0

z = z − z0

ϑ = ϑ− ϑ0

And we obtain:

ψ =
w −B1ż −B1ϑ̇

V
(A.57)

α = ϑ+ ψ (A.58)

sinψ = ψ (A.59)

cosψ = 1 (A.60)

V 2
rel = V 2

m + 2Vmv − 2Vmẏ (A.61)

α0 = 0 (A.62)

CD(α) = CD0 +
∂CD
∂α

∣∣∣∣
0

(α) = CD0 +KDα (A.63)

CL(α) = CL0 +
∂CL
∂α

∣∣∣∣
0

(α) = CL0 +KLα (A.64)

CM(α) = CL0 +
∂CM
∂α

∣∣∣∣
0

(α) = CM0 +KMα (A.65)
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Neglecting high order terms and subdividing the contribution of the aerodynamic
forces into static F aero,st and dynamic F aero,dyn:

F aero,st =
1

2
ρSV 2

m

 CD0

CL0

BCM0

 (A.66)

F aero,dyn =
1

2
ρSV 2

m

0 0 KD

0 0 KL

0 0 KM

X
− 1

2
ρSVm

 2CD0 (KD − CL0) B1y(KD − CL0)
2CL0 (KL + CD0) B1z(KL − CD0)

2CM0B BKM B1ϑBKM

 Ẋ
+

1

2
ρSVm

 2CD0 (KD − CL0)
2CL0 (KL + CD0)

2CM0B BKM

 b (A.67)

The dynamic contribution of aerodynamic foces F aero,dyn can be rewritten in a
compact way as :

F aero,dyn = −[Kaero]X − [Raero]Ẋ + [Am]b (A.68)

Then the linearized equation of motion can be rewritten as:

[Ms]Ẍ + ([Rs] + [Raero])Ẋ + ([Ks] + [Kaero])X = [Am]b (A.69)

Where the [Ms] [Ks] [Rs] are respectively the modal structural mass, damping and
stiffness matrices and they are diagonal:

[Ms] =

my

mz

J

 [Rs] =

ry rz
rϑ

 [Ks] =

ky kz
kϑ


[Kaero] and [Raero] are the equivalent stiffness and damping matrices due to aerody-
namic forces. The [Kaero] and [Raero] multiplied respectively for the velocity vector
Ẋ and stiffness vector X are responsible of the aerodynamic forces function of the
motion, while [Am] multiplied by the vector of the turbulence components b defines
the aerodynamic forces because of the incoming turbulence.

The matrix [Kaero] changes the natural frequency of the system with respect the
ones computed in absence of the wind excitation, while [Raero] changes the system
overall damping. Depending on the terms inside these two matrix is possible to
meet the one − degree of freedom and flutter instability. But in order to verify
the stability of the system we need to compute the homogeneous equation.
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A.5 Aerodynamic forces identification through wind
tunnel tests

Until now we have studied the aerodynamic forces using the Quasi steady
theory, but this approach is valid when the reduced velocity V ∗ is high enough. We
have to define the forces due to incident wind also in case of low reduced velocity.
For this reason it is necessary to the define through wind tunnel testing drag, lift
and moment as a function of y, z, ϑ, and u, w turbulence components.

Matrices [Kaero] and [Raero] contain so called flutter derivatives, while the
matrix [Am] is called admittance matrix.

A.5.1 Flutter derivatives identification

We can consider two methods in order experimentally define flutter derivatives
or forces identification as a function of the bridge motion:

1. Free motion method

2. Forced motion method

The main difference between the two approaches is that the second is much reliable
but is more expensive.

Free motion method

During the wind tunnel tests the deck sectional model, linked to an elastic
supporting systems, is let free to vibrate under the Vm wind action. The response
of the system to fixed initial condition is recorded.

Flutter derivatives are defined by comparing the response of the structure
under the action of the mean wind Vm and the one in still air. Excitation of
torsional and vertical modes have to be considered in order to define properly
flutter derivatives.

Forced motion method

As explained above, this method is more reliable and expensive with respect the
previous one. A deck sectional model is forced to vibrate by means of hydraulic or
electromagnetic actuators (Figure XX) and then the response to this forced motion
is computed.

The aerodynamic forces, as previously said, are non linear function of the motion
of deck:

Fy = FL =
1

2
ρV 2SCL

(
X, Ẋ, Vm, b

)
(A.70)

Fz = FD =
1

2
ρV 2SCD

(
X, Ẋ, Vm, b

)
(A.71)

Fϑ = FM =
1

2
ρV 2SBCM

(
X, Ẋ, Vm, b

)
(A.72)
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Figure XX: Forced motion testing on a deck sectional model

There are many formulation of flutter derivatives changing university or coun-
try [24], the PoliMi notation of flutter derivatives is given by:

F se
y =

1

2
ρV 2BL

(
−p∗1

ż

V
− p∗2

Bϑ̇

V
+ p∗3ϑ+ p∗4

π

2V ∗2ω

z

B
− p∗5

ẏ

V
+ p∗6

π

2V ∗2ω

y

B

)
(A.73)

F se
z =

1

2
ρV 2BL

(
−h∗1

ż

V
− h∗2

Bϑ̇

V
+ h∗3ϑ+ h∗4

π

2V ∗2ω

z

B
− h∗5

ẏ

V
+ h∗6

π

2V ∗2ω

y

B

)
(A.74)

M se =
1

2
ρV 2B2L

(
−a∗1

ż

V
− a∗2

Bϑ̇

V
+ a∗3ϑ+ a∗4

π

2V ∗2ω

z

B
− a∗5

ẏ

V
+ a∗6

π

2V ∗2ω

y

B

)
(A.75)

Where:

• V ∗ω = v∗/2π

• p∗i = Flutter derivatives of the drag force (i = 1, . . . , 6)

• h∗i = Flutter derivatives of the lift force (i = 1, . . . , 6)

• a∗i = Flutter derivatives of the pitching moment (i = 1, . . . , 6)

Grouping (A.73) (A.74) (A.75) in compact matrix form it is possible to define
Kaero and Raero matrices containing the flutter derivatives :
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[Kaero] = −1

2
ρBLV 2

 p∗6
π

2V ∗2
ω

1
B

p∗4
π

2V ∗2
ω

1
B

p∗3
h∗6

π
2V ∗2

ω

1
B

h∗4
π

2V ∗2
ω

1
B

h∗3
a∗6

π
2V ∗2

ω

1
B
B a∗4

π
2V ∗2

ω

1
B
B a∗3B

 (A.76)

[Raero] = −1

2
ρBLV 2

 p∗5
1
V

p∗1
1
V

p∗2
B
V

h∗5
1
V

h∗5
1
V

h∗2
B
V

a∗5
1
V
B a∗1

1
V
B a∗2

B
V

 (A.77)

Flutter derivatives are function of the frequency of the motion, but also of the
static equilibrium around which wind tunnel tests are done. The frequency of the
motion is in general expressed in terms of reduced velocity V ∗ = V

fB

A.5.2 Aerodynamic admittance function

The best way to compute this matrix by means of wind tunnel testing is to
identify the aerodynamic forces as a function of a well defined wind turbulence
by means of an active turbulence generator. This device generates the w vertical
component of turbulence that has a sinusoidal shape, while the deck position is
fixed, and in this condition the forces are measured. It is necessary the definition
of the transfer function between the turbulence and the measured forces in order to
define the coefficients of the admittance matrix.

In 1962, Davenport [3] [4] presented a model for computing fluctuating wind
loads on structure immersed in the atmospheric boundary layer. The admittance
functions are responsible of converting the air flow properties in wind loads on
the structure. According to the Davenport’s approach, buffeting forces acting on a
section of the deck of length L are defined in this way:

[F buff ] =


Fy
Fz
M


buff

=
1

2
ρV 2BL

 χ∗yu χ∗yw
χ∗zu χ∗zw
Bχ∗ϑu Bχ∗ϑw

{ u
V
w
V

}
(A.78)

Where:

• χ∗(f ∗) are the complex admitance function

• f ∗ = fB
V

Considering only the turbulence fluctuations related to the w component we can
define the associated aerodynamic forces as:

Fy =
1

2
ρV 2BL

[
Re(χ∗yw)

ω

V
+ iIm(χ∗yw)

ω

V

]
(A.79)

Fz =
1

2
ρV 2BL

[
Re(χ∗zw)

ω

V
+ iIm(χ∗zw)

ω

V

]
(A.80)

M =
1

2
ρV 2BL

[
Re(χ∗ϑw)

ω

V
+ iIm(χ∗ϑw)

ω

V

]
(A.81)
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The Davenport model is one of the formulations available in literature, but it
is one of the most commonly used. The admittance matrix coefficients can be
obtained through proper wind tunnel testing or using the QST values weighted by
the Davenport adimittance in this way:

χ∗yu = 2CDA(f ∗); χ∗yu = 2CLA(f ∗); χ∗ϑu = 2CMA(f ∗) (A.82)

χ∗yw = (KD − CL)A(f ∗); χ∗zw = (KL + CD)A(f ∗); χ∗ϑw = KMA(f ∗) (A.83)

Where A(f ∗) is a real function responsible of weighting in frequency the QST values
of the buffeting forces:

A(f ∗) =
2

(7f ∗)2
(7f ∗ − 1 + e−7f∗) (A.84)

The trend of A(f ∗) as a function of the reduced frequency and velocity can be
observed in figures XXI XXII

Figure XXI: A(f∗) as a function of the reduced frequency

Figure XXII: A(f∗) as a function of the reduced velocity

The admittance matrix can be defined as:

[Am] =
1

2
ρV 2BL

 χ∗yu χ∗yw
χ∗zu χ∗zw
Bχ∗ϑu Bχ∗ϑw

 (A.85)



Bibliography

[1] Guy L. Larose. “Experimental determination of the aerodynamic admittance
of a bridge deck segment”. In: 1999.

[2] Jasna B. Jakobsen. “Span-wise structure of lift and overturning moment on a
motionless bridge girder”. In: 1997.

[3] A. G. Davenport. “The response of slender, line-like structures to a gusty wind.”
In: Proceedings of the Institution of Civil Engineers 23.3 (1962), pp. 389–408.

[4] A. G. Davenport. “Buffeting of a Suspension Bridge by Storm Winds”. In:
1962.

[5] Einar Strømmen. “Theory of Bridge Aerodynamics”. In: (Jan. 2010).

[6] Guy Larose. “The dynamic action of gusty winds on long-span bridges”. PhD
thesis. Aug. 1997. isbn: 87-7877-088-2.

[7] A. G. Davenport. “The spectrum of horizontal gustiness near the ground in
high winds”. In: Quarterly Journal of the Royal Meteorological Society 87.372
(1961), pp. 194–211. url: https://rmets.onlinelibrary.wiley.com/doi/
abs/10.1002/qj.49708737208.

[8] G. Naito. “Spatial structure of surface wind over the ocean”. In: Journal of
Wind Engineering and Industrial Aerodynamics 13.1 (1983), pp. 67–76. issn:
0167-6105. url: http://www.sciencedirect.com/science/article/pii/
0167610583901290.

[9] Masaru Kiya and Kyuro Sasaki. “Structure of a turbulent separation bubble”.
In: Journal of Fluid Mechanics 137 (1983), pp. 83–113.

[10] W.H. Melbourne. “Comparison of model and full-scale tests of a bridge
and chimney stack”. In: Proc. of Int’l Workshop on Wind Tunnel Modelling,
Maryland, USA. 1982, pp. 637–653.

[11] E Hjorth-Hansen, A Jakobsen, and E Strømmen. “Wind buffeting of a rect-
angular box girder bridge”. In: Journal of Wind Engineering and Industrial
Aerodynamics 42.1-3 (1992), pp. 1215–1226.

[12] K. Kimura et al. “Characteristics of buffeting forces on flat cylinders”. In:
Journal of Wind Engineering and Industrial Aerodynamics 69-71 (1997).
Proceedings of the 3rd International Colloqium on Bluff Body Aerodynam-
ics and Applications, pp. 365–374. issn: 0167-6105. url: http : / / www .
sciencedirect.com/science/article/pii/S0167610597001694.

157

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49708737208
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49708737208
http://www.sciencedirect.com/science/article/pii/0167610583901290
http://www.sciencedirect.com/science/article/pii/0167610583901290
http://www.sciencedirect.com/science/article/pii/S0167610597001694
http://www.sciencedirect.com/science/article/pii/S0167610597001694


158 BIBLIOGRAPHY

[13] Hamlyn Peter A.H. Irwin. “Wind tunnel and analytical investigations of the
response of Lions’ Gate Bridge to a turbulent wind”. In: National Research
Council Canada june (1977).

[14] G. Diana and F. Cheli. Dinamica e vibrazioni dei sistemi meccanici. Dinamica
e vibrazioni dei sistemi meccanici v. 1, v.2. UTET Università, 1993. isbn:
9788877502292. url: https://books.google.it/books?id=aPBeAAAACAAJ.

[15] Xinzhong Chen, Ahsan Kareem, and Masaru Matsumoto. “Multimode coupled
flutter and buffeting analysis of long span bridges”. In: Journal of Wind
Engineering and Industrial Aerodynamics 89.7 (2001). 10th International
Conference on Wind Engineering, pp. 649–664. issn: 0167-6105. url: http:
//www.sciencedirect.com/science/article/pii/S0167610501000642.

[16] F. Brancaleoni et al. The Messina Strait Bridge: A Challenge and a Dream.
CRC Press, 2009. isbn: 9781482266368. url: https://books.google.it/
books?id=1WG1DwAAQBAJ.

[17] N.J. Cook. The Designer’s Guide to Wind Loading of Building Structures: Part
2 : Static Structures. Building Research Establishment report. Butterworths,
1990. isbn: 9780408008716. url: https://books.google.it/books?id=
I0RSAAAAMAAJ.

[18] R.B. Stull. An Introduction to Boundary Layer Meteorology. Atmospheric and
Oceanographic Sciences Library. Springer Netherlands, 1988. isbn: 9789027727695.
url: https://books.google.it/books?id=eRRz9RNvNOkC.

[19] Isaac van der Hoven. “POWER SPECTRUM OF HORIZONTAL WIND
SPEED IN THE FREQUENCY RANGE FROM 0.0007 TO 900 CYCLES
PER HOUR”. In: 1957.

[20] C. Dyrbye and S.O. Hansen. Wind Loads on Structures. Wiley, 1997. isbn:
9780471956518. url: https://books.google.it/books?id=fb7EQgAACAAJ.

[21] Characteristics of atmospheric turbulence near the ground. Part 2. Unknow.
Oct. 1985.

[22] G. Diana et al. “Suspension bridge parameter identification in full scale
test”. In: Journal of Wind Engineering and Industrial Aerodynamics 41.1
(1992), pp. 165–176. issn: 0167-6105. url: http://www.sciencedirect.
com/science/article/pii/016761059290404X.

[23] Giorgio Diana et al. “Comparisons between wind tunnel tests on a full
aeroelastic model of the proposed bridge over Stretto di Messina and numerical
results”. In: 1995.

[24] Alberto Zasso. “Flutter Derivatives: Advantages of a New Representation
Convention”. In: 1996.

https://books.google.it/books?id=aPBeAAAACAAJ
http://www.sciencedirect.com/science/article/pii/S0167610501000642
http://www.sciencedirect.com/science/article/pii/S0167610501000642
https://books.google.it/books?id=1WG1DwAAQBAJ
https://books.google.it/books?id=1WG1DwAAQBAJ
https://books.google.it/books?id=I0RSAAAAMAAJ
https://books.google.it/books?id=I0RSAAAAMAAJ
https://books.google.it/books?id=eRRz9RNvNOkC
https://books.google.it/books?id=fb7EQgAACAAJ
http://www.sciencedirect.com/science/article/pii/016761059290404X
http://www.sciencedirect.com/science/article/pii/016761059290404X

	Contents
	List of Figures
	List of Tables
	Abstract
	Sommario
	Introduction
	Numerical Power Spectral Density model
	Introduction
	Response in frequency domain
	Frequency Response function (FRF)
	PSD of the Lagrangian of the Wind
	Span - wise coherence of the Aerodynamic force
	Braila bridge deck response computation


	Span-wise Coherence of the Aerodynamic Forces
	Introduction
	Davenport's spectral approach limitations
	Span-wise coherence and joint acceptance function
	Span-wise coherence
	Joint acceptance function

	Strip assumption
	Davenport model 

	When the strip assumption is not valid
	Nettleton model
	Melbourne model
	Empirical model of Hjorth-Hansen et al.
	Empirical model of Kimura et al.
	Empirical model of Bogunovic Jakobsen
	Empirical model of Larose G.


	Span-wise Coherence of the Aerodynamic Forces for the Braila bridge deck
	Introduction
	Model of Jakobsen J. for Braila Bridge
	Braila bridge deck response for 20 m/s wind velocity
	Braila bridge deck response for 50 m/s wind velocity
	Braila bridge deck response for 65 m/s wind velocity

	Model of Larose G. for Braila Bridge
	Braila bridge deck response for 20 m/s wind velocity
	Braila bridge deck response for 50 m/s wind velocity
	Braila bridge deck response for 65 m/s wind velocity


	Conclusions
	Wind action on Long Span Bridges
	Introduction
	Fluid-structure interaction
	Static Problem
	Dynamic Problem

	Wind description
	Mean wind speed profile
	Wind Turbulence

	Deck aerodynamics
	Aerodynamic forces identification through wind tunnel tests
	Flutter derivatives identification
	Aerodynamic admittance function



