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Abstract

The processing and analysis of hyperspectral imaging data in various fields, such as
biomedical research and material science, often necessitate custom software development
or the use of specialized commercial tools. However, these options frequently present
challenges, including the need for programming expertise, difficulty in use, high costs, or
a combination of these factors. Consequently, researchers’ ability to efficiently perform
various analyses is hindered, limiting research output and collaboration. This problem is
further exacerbated by the limited computing resources available.

To address these issues, RamApp was developed as a comprehensive solution. It is a
free and web-based application designed to be intuitive, interactive and user-friendly,
enabling researchers from diverse backgrounds to effectively process, explore and analyze
hyperspectral imaging data. Its web-based nature allows access through any modern
browser and operating system without necessitating a local installation or computing
resources. Moreover, users can seamlessly benefit from new features and bug fixes.

Supporting both popular open and commercial file formats, RamApp promotes data inter-
operability and provides a versatile tool for users of commercial and custom-built instru-
ments. Easy export options for raw and processed data, as well as high-quality images,
facilitate downstream analysis and publication.

RamApp offers several spectral and spatial preprocessing methods and algorithms, along
with various analysis and visualisation features for hyperspectral data. These include
cropping, denoising, substrate identification and correction, clustering, spectral unmixing
(MCR, N-FINDR) and the creation of masks and intensity maps.

Although the application is primarily tailored for Raman spectroscopy data, its funda-
mental features also make it compatible with other kinds of hyperspectral data.

Keywords: hyperspectral imaging, data processing, data analysis, Raman spectroscopy,
web application, chemometrics





Abstract in lingua italiana

L’elaborazione e l’analisi dei dati di imaging iperspettrale, utilizzati in vari ambiti come
la ricerca biomedica e la scienza dei materiali, richiedono lo sviluppo di codice e software
personalizzati o alternativamente l’uso di strumenti commerciali. Tuttavia, entrambe
le opzioni presentano dei limiti come la necessità di possedere competenze di program-
mazione, la difficoltà di utilizzo, i costi elevati o una combinazione di questi fattori. Tutto
ciò limita la capacità dei ricercatori di analizzare i dati in modo efficiente, impattando
direttamente sulla produttività. Inoltre, questi problemi sono aggravati dalle limitate
risorse di calcolo disponibili.

Per far fronte a questi ostacoli è stata sviluppata RamApp, un’applicazione web gratuita
appositamente progettata per essere intuitiva, interattiva e di facile utilizzo, consentendo
agli utenti di elaborare, esplorare e analizzare efficacemente dati di imaging iperspettrale.
Essendo un’applicazione web, RamApp può essere utilizzata attraverso qualsiasi browser e
sistema operativo senza richiedere un’installazione locale o impegnare di risorse di calcolo.
Inoltre, gli utenti possono beneficiare dell’implementazione di nuove funzionalità e di
correzioni di bug senza dover scaricare alcun aggiornamento software.

Potendo importare immagini iperspettrali provenienti da formati aperti e proprietari,
RamApp consente l’interoperabilità dei dati fornendo uno strumento versatile sia per
i ricercatori che utilizzano strumenti commerciali sia per chi ha costruito su misura il
proprio setup di acquisizione.

L’applicazione offre diversi algoritmi di elaborazione dei dati iperspettrali a livello spaziale
e spettrale, oltre a funzionalità di analisi e visualizzazione. Tra queste ci sono il croppping,
il denoising, l’identificazione e rimozione del substrato, il clustering, la scomposizione
spettrale (MCR, N-FINDR) e la creazione di maschere e mappe di intensità.

Sebbene RamApp sia stata pensata per i dati di spettroscopia Raman, le sue caratteris-
tiche la rendono compatibile anche con altri tipi di dati iperspettrali.

Parole chiave: imaging iperspettrale, elaborazione dati, analisi dati, spettroscopia Ra-
man, applicazione web, chemometria
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1| Introduction

This thesis presents the development and implementation of RamApp, a web-based appli-
cation designed to provide an accessible, intuitive and powerful platform for hyperspectral
data analysis.

Before going into details, in this chapter some context about the project will be provided.

1.1. Project context and actors involved

1.1.1. 3rdPlace S.r.l.

This project was developed in 2022 during my curricular internship period at 3rdPlace
S.r.l., an innovative SME part of Datrix S.p.A. group.

Founded in 2010, 3rdPlace is a data-driven tech company that specializes in machine
learning model serving, data governance and data science. Recently, it merged with
ARAMIS S.r.l. to become Aramix S.r.l..

Figure 1.1: 3rdPlace S.r.l. and Datrix S.p.A. logos.

The company is also a technological partner of international consortia for important Re-
search & Development projects funded by European or national institutions and based
on Artificial Intelligence.

1.1.2. Politecnico di Milano

The need for a new tool to process and analyse hyperspectral imaging data emerged from
interactions between 3rdPlace and research groups at Politecnico di Milano, specifically
with members of Nonlinear Optical Microscopy Lab (VIBRA) from the Physics
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Department.

In this lab, Professor Dario Polli and his team, which includes a researcher from the
Italian national research council (Consiglio Nazionale delle Ricerche, CNR), are
developing a next-generation microscopy system based on coherent Raman spectroscopy,
which is capable of rapidly visualising the chemical content of a biological sample to
identify tumours in human biopsies with greater accuracy and reproducibility than current
methods.

Given that the team developed their own custom-built setups for both coherent and
spontaneous Raman microscopy, commercial software solutions for managing experiment
results were found to be incompatible with these systems. Consequently, the team found
themselves in need of a flexible and adaptable tool to process and analyse their data. This
necessity led to the conception and development of RamApp, a platform designed to
accommodate various hyperspectral imaging data, including those obtained from custom-
built Raman microscopy systems.

1.1.3. Research projects

The collaboration between 3rdPlace and Politecnico di Milano took place in the context
of two research projects: NEWMED and CRIMSON.

NEWMED

NEWMED is a collaborative research project co-funded by the European Regional De-
velopment Fund of the Lombardy Region that aims to develop innovative solutions and
technologies to address the challenges faced by the healthcare industry. The project
focuses on various aspects of healthcare, such as diagnostics, therapeutics and medical
devices, with the ultimate goal of improving patient outcomes and reducing healthcare
costs.

Figure 1.2: NEWMED logo.

Through the collaboration of various stakeholders, including academic institutions, re-
search organisations and private companies, NEWMED seeks to foster innovation and
accelerate the translation of research findings into practical applications. By working to-
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gether, project participants aim to develop new methods and tools that will help advance
the state of the art in healthcare and contribute to the well-being of the population.

Some of the key areas of focus for the NEWMED project include:

1. Development of novel diagnostic techniques, such as advanced imaging methods and
biomarker identification, to facilitate early detection and more accurate diagnosis of
diseases.

2. Exploration of new therapeutic approaches, including targeted drug delivery systems
and personalized medicine, to enhance treatment efficacy and minimize side effects.

3. Advancement of medical devices and technologies, such as wearable sensors and
telemedicine platforms, to improve patient monitoring and healthcare delivery.

By addressing these and other challenges in healthcare, the NEWMED project aims to
contribute to a more sustainable and efficient healthcare system that is better equipped
to meet the needs of the growing and aging population.

CRIMSON

CRIMSON, acronym for Coherent Raman Imaging for the Molecular Study of the Origin
of Diseases, is a project funded by the European Union that aims to develop an innovative
biophotonic system based on vibrational spectroscopy for cell/tissue imaging, which will
be used as a research tool to understand the cellular origin of diseases, allowing novel
approaches toward personalised therapy.

The main impact of CRIMSON will be the development of a non-invasive, label-free
optical microscopy-endoscopy tool, based on broadband coherent Raman scattering
(CRS) spectroscopy, for fast, quantitative and objective imaging of biological specimens
like 2D/3D cells, tissue sections or organs, to determine their morphological and molecular
nature with an unprecedented precision.

Figure 1.3: CRIMSON logo.

Coherent Raman microscopy enables real-time observation of a cell and the mapping of
various chemical species’ concentrations at any given moment. In biology, this technique
offers valuable insights into the spatial distribution of proteins, lipids, DNA, water and
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other cellular components. It also eliminates the need for sample preparation with con-
trast agents, which could disrupt or even contaminate the sample, altering its biological
function. Moreover, this method allows for remote analysis and minimizes the risk of sam-
ple damage under investigation, as its faster acquisition time compared to spontaneous
Raman methods reduces the likelihood of photodamage.

CRIMSON brings together a multidisciplinary team of academic organisations, biomedical
end users and innovative SMEs with the aim to bridge the gap between research and
product development, increasing the Technology Readiness Level (TRL) and making CRS
a user-friendly, robust and cost-effective mainstream tool for a vast biological research
community.

1.2. Structure of the Thesis

The document is structured in the following Chapters.

• Chapter 2 contains essential preliminaries information, laying the foundation for a
better understanding of the concepts and topics discussed in the subsequent chapters
and clarifying some aspects already mentioned in this introduction.

• Chapter 3 covers the entire system description, detailing all the functionalities im-
plemented within RamApp and its overall architecture.

• Chapter 4 presents a practical use case example that shows RamApp’s capabilities
and how it can be applied to real-world scenarios.

• Chapter 5 provides a summary of the conclusions drawn from the project and de-
scribes potential future developments.



5

2| Preliminaries

In this chapter, essential concepts and foundational knowledge pertinent to the subject
matter are presented.

2.1. Hyperspectral data

Hyperspectral imaging (HSI) data, also referred to as imaging spectroscopy, is a type of
data that combine spatial and spectral information, resulting in a three-dimensional
data cube. In this data cube, each pixel corresponds to a spectrum which contains the
reflectance, emissivity, radiance or other arbitrary unit values at various wavelengths or
wavenumbers.

Wavenumbers

x

y

Figure 2.1: A 3D representation of HSI data cube.

These data can provide valuable information about the chemical composition, molecular
structure and physical properties of materials. This is because different chemical com-
pounds and materials exhibit unique spectral signatures, or patterns of reflectance or
absorption across different wavelengths of the electromagnetic spectrum.

By analyzing these spectral signatures, researchers can gain insights into the properties
of the materials being studied. For example, the spectral signature of a mineral can
be used to identify its chemical composition and distinguish it from other minerals that
have different spectral signatures. Similarly, the spectral signature of a plant leaf can be
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used to identify the presence of specific pigments or other molecules that are indicative
of plant health or stress. For these reasons, imaging spectroscopy has a wide range of
applications, including remote sensing, agriculture, geology, environmental monitoring,
biomedical imaging and many others.
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Figure 2.2: Raman spectral signature of toluene.

The collection of hyperspectral data is based on various types of spectroscopy, each of
which can employ a different portion of the electromagnetic spectrum. Some examples of
spectroscopy techniques include: infrared spectroscopy, Ultraviolet-Visible spec-
troscopy, mass spectrometry and Raman spectroscopy.

Although a discussion of the various spectroscopy techniques is beyond the scope of this
thesis, Raman spectroscopy, which is particularly relevant to the presented work, will
be explained in greater detail in the following section. In fact, the name «RamApp»
is a portmanteau that combines the words «Raman», «Map» and «App», reflecting its
primary focus on Raman spectroscopy.

2.2. Raman spectroscopy

Raman spectroscopy is a non-destructive analytical technique based on inelastic scattering
of monochromatic light, typically from a laser source. It provides valuable information
about the vibrational modes and molecular structure of a sample, making it an essential
tool for the study of a wide range of materials, including chemicals, polymers, biological
samples and minerals.
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When a laser beam interacts with a sample, most of the scattered light has the same
frequency as the incident light, which is known as elastic or Rayleigh scattering. How-
ever, a small portion of the scattered light has a frequency different from the incident
light due to the molecular vibrations of the sample. This inelastic scattering is called
Raman scattering and it can be either Stokes or anti-Stokes, depending on whether the
scattered light has a lower or higher frequency than the incident light, respectively.

Figure 2.3: Molecular energy levels and Raman effect [1].

In Raman spectroscopy, the difference in frequency between the incident light and the
Raman scattered light (Raman shift) is measured. The Raman shift is typically ex-
pressed in wavenumbers (cm-1) and plotted against the intensity of the scattered light to
generate a Raman spectrum, which serves as a unique molecular fingerprint for the sam-
ple. This allows the identification of molecular species and the investigation of molecular
interactions, conformations and crystal structures.

There are several types of Raman spectroscopy techniques, each designed to address
specific analytical challenges or to optimize the collection of Raman signals. Some com-
mon types include Spontaneous Raman Spectroscopy, Resonance Raman Spectroscopy,
Surface-Enhanced Raman Spectroscopy (SERS), Stimulated Raman Spectroscopy and
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Coherent Anti-Stokes Raman Spectroscopy (CARS). Each technique offers unique advan-
tages and applications, making Raman spectroscopy a versatile tool for the analysis of
diverse samples.

Although Raman spectroscopy has been used in a range of specialised areas, including
pharmaceutical analysis, geology, mineralogy and environmental monitoring, its applica-
tions in the biomedical field are increasingly gaining prominence.

In the following chapters, hyperspectral imaging data obtained from biomedical samples
using Raman spectroscopy will be used to demonstrate the key features of RamApp. In
particular, they are as follows:

Figure 2.4: Raman imaging of in vitro labeled murine microglial cells with nanoformula-
tions of PERFECTA [2].

Figure 2.5: Raman imaging of breast tissues [3].

Figure 2.6: Raman imaging of a cultured breast cancer cell (MCF7).
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Figure 2.7: Raman imaging of a leukemic cell from a patient suffering from acute myeloid
leukemia (AML M5a).

The 2D images presented above depict the HSI cubes by displaying the mean spectrum
intensity for each pixel. This offers a visually accessible representation of the hyperspec-
tral data, enabling users to rapidly evaluate and interpret the spatial distribution of the
spectral information within the sample.

2.3. Preprocessing and analysis software

Preprocessing and analysis software for hyperspectral data play a crucial role in the effi-
cient handling and interpretation of large and complex datasets generated by hyperspec-
tral imaging systems.

These software packages are designed to facilitate the extraction of meaningful information
from a large amount of data by applying various algorithms, statistical methods and
visualisation techniques.

A wide range of software tools have been developed over the years, both commercial and
open source, each offering unique features and catering to different application domains.

2.3.1. State of the art

Some notable commercial Raman spectroscopy software packages include:

• WiRE (Renishaw) [4]: WiRE (Windows-based Raman Environment) is a software
package developed by Renishaw for their Raman spectrometers. It offers a range
of functionalities for spectral acquisition, processing and analysis, such as baseline
correction, peak fitting and multivariate analysis.

• LabSpec (HORIBA) [5]: LabSpec is a software suite developed by HORIBA for
their Raman spectrometers. It provides a comprehensive set of tools for data acqui-
sition, processing and analysis, including advanced functions like Raman mapping,
multivariate curve resolution and particle analysis.
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In the open-source domain, several software tools and libraries have been developed for
Raman spectroscopy data processing and analysis, often leveraging the power of popular
programming languages:

• hyperSpec [6]: hyperSpec is an R package designed for handling and processing
hyperspectral data, including Raman spectroscopy data. It provides a suite of func-
tions for data import, preprocessing and visualisation.

• Raman Tool Set: Raman Tool Set is an open-source software for Raman spec-
tra preprocessing and analysis. It offers a variety of functions, including baseline
correction, peak fitting and multivariate analysis.

• RamanLIGHT (MATLAB® app) [7]: RamanLIGHT is a MATLAB app to pre-
process Raman mapping datasets and apply unsupervised unmixing algorithms to
find spectra of the pure compounds and create abundance maps.

Commercial tools, while often feature-rich and user-friendly, present certain downsides
that can limit their suitability to some researchers. These limitations include:

• Costs: Commercial software packages typically come with a significant price tag,
which can be prohibitive for researchers with limited budgets, particularly those in
academia or smaller research institutions.

• Limited customization: Commercial software may not always be easily customizable
or adaptable to address unique or specific research requirements. Furthermore,
researchers using home-built setups typically face difficulties when attempting to
utilize software provided by other vendors for their analyses.

• Black box algorithms: Commercial tools may use proprietary algorithms without
disclosing the underlying details, making it difficult for researchers to understand
and interpret the results fully. This lack of transparency can pose challenges when
it comes to validating findings, reproducibility and peer review.

• Restricted access to updates and support: Access to software updates and techni-
cal support may be limited to paid subscribers or those with active maintenance
contracts. This can lead to outdated software versions and hinder researchers from
taking advantage of new features or improvements.

On the other hand, the use of open source packages can also present challenges for re-
searchers in certain contexts. Some of the downsides associated with these tools include:

• Steeper learning curve: Writing custom code to leverage open tools often necessitates
a deeper understanding of programming languages, libraries and algorithms. This
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can result in a steeper learning curve for researchers who may not have extensive
programming experience.

• Time-consuming development: Developing custom code for data preprocessing and
analysis can be time-consuming, particularly for complex research projects. This
additional time investment can detract from the core research focus and reduce
overall productivity.

• Lack of user-friendly interfaces: Open tools and custom code solutions may not
always include intuitive or user-friendly interfaces. This can make the tools less
accessible for researchers who are not comfortable with programming or those who
prefer a graphical user interface (GUI) for data analysis.

• Code maintenance: Custom code may require ongoing maintenance and updates to
remain compatible with new software versions, libraries, or operating systems.

Given the challenges and limitations associated with both commercial tools and open-
source solutions that require custom code, the development of a user-friendly, flexible
and cloud-based platform for the preprocessing and analysis of hyperspectral data, par-
ticularly in the context of Raman spectroscopy, was deemed necessary and consequently
undertaken.

Using RamApp, researchers can benefit from a solution that combines the best features of
commercial and open-source tools, offering an accessible interface, extensive functionality
and adaptability to various research needs.

In the following chapter, a comprehensive and detailed overview of RamApp will be
presented, covering its features, functionalities and underlying architecture to offer readers
a complete understanding of the application and its potential applications in the field of
hyperspectral data analysis.

Figure 2.8: RamApp logo.
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3| System description

The proposed solution is an intuitive, user-friendly and modular web application designed
to streamline the processing and analysis of hyperspectral imaging data.

As a web-application, RamApp offers several advantages over traditional desktop appli-
cations. One of the key benefits is platform independence, allowing users to access the
application from any device with a modern web browser and an internet connection. This
ensures compatibility across different operating systems, including Windows, macOS and
Linux, providing a consistent user experience.

In addition, web applications facilitate easy deployment and maintenance. Users always
access the latest version of the application without needing to install updates manually,
as updates and bug fixes can be centrally managed.

Scalability is another advantage of web applications. RamApp can be designed to han-
dle a wide range of users and workloads, making it possible to scale the application as
needed. This is particularly useful for managing an increasing number of users or larger
hyperspectral datasets over time.

Additionally, web applications generally have lower system requirements for the client-
side, as the majority of processing occurs on the server. This enables users to work
with large hyperspectral datasets without the need for high-performance local hardware,
reducing the barrier to entry for users with limited resources.

Lastly, web applications can easily integrate with other web-based services and APIs,
enhancing the functionality of RamApp by incorporating additional features and tools as
needed. This integration capability makes it possible to continuously expand and adapt
the application to meet the evolving needs of the hyperspectral imaging community.

In the following sections, the various aspects and functionalities of RamApp will be thor-
oughly detailed and discussed.
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3.1. Graphical interface

The web-application interface of RamApp has been designed with an emphasis on user-
friendliness and intuitive navigation, aiming to make the platform self-explanatory and
easily accessible to researchers. This approach ensures that users can quickly understand
the functionalities and efficiently utilize the available tools for preprocessing and analyzing
hyperspectral data.

The application’s layout consists of three main sections.

Figure 3.1: Graphical appearance of RamApp for hyperspectral imaging data analysis.

On the left side, a menu provides access to all the preprocessing and analysis functions.

In the centre, the upper part is dedicated to the map visualiser, which displays the images
blended together and the masks representing spatial regions of interest. This visualization
can be zoomed in and out, offering users a more accurate and detailed view of the map.
Immediately below the map visualiser, a plot presents the spectra associated with the
data.

On the right side, a menu lists all the generated images and masks, allowing users to
easily navigate and select the desired results.

This organization of the interface ensures that users can quickly locate the necessary
functions and tools, streamlining their workflow and enhancing their overall experience.
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3.2. Functionalities

In this section, a detailed overview of the functionalities incorporated within RamApp
is provided, elucidating the various techniques employed to address the complexities of
hyperspectral imaging data.

3.2.1. Data import and export

RamApp provides users with the flexibility to work with hyperspectral data in multiple
formats, addressing the wide-ranging needs of the research community.

The platform supports importing data from commercial Raman spectroscopy instruments,
such as Renishaw™ grid map (.wdf) and Horiba™ LabSpec 5 (.ngc), as well as
other formats like CSV tables (.csv), Apache Parquet/Feather (.parquet/.feather),
MATLAB®/Octave (.mat) and custom-defined formats, ensuring compatibility be-
tween multiple instruments and software packages.

For exporting the processed hyperspectral cube, RamApp provides options such as CSV
tables (.csv), Feather data frames (.feather) and MATLAB®/Octave files (.mat), facili-
tating seamless integration with other data processing and analysis tools and promoting
efficient data exchange between researchers. In addition, RamApp enables the export of
the entire project as a single file (.zarr [8]), including processed data, generated images and
masks, allowing users to easily share complete projects with colleagues or collaborators.

3.2.2. Preprocessing

The necessity of preprocessing hyperspectral imaging data prior to analysis arises from
several factors that can significantly affect the quality and reliability of the resulting
information.

First, these high-dimensional datasets often contain noise, originating from sensor imper-
fections or environmental factors, which may obscure the underlying patterns and signals
of interest. Preprocessing techniques help reduce this noise and enhance the signal-to-
noise ratio, thus improving data quality.

Second, variations in illumination, atmospheric conditions, or sensor calibration can in-
troduce inconsistencies in the spatial and spectral dimensions of the data. When prepro-
cessing methods are applied, these inconsistencies can be mitigated, allowing for more
accurate comparisons and interpretations.

Lastly, the sheer volume and complexity of hyperspectral imaging data can present com-
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putational challenges, necessitating data reduction techniques to minimise processing time
and resource demands. Dimensionality reduction and image compression methods can be
employed during preprocessing to achieve this goal, ensuring efficient analysis without
compromising data integrity.

In the following paragraphs, the main preprocessing features of RamApp are presented.

Map rotation

This simple preprocessing function enables users to manipulate the spatial orientation of
the hyperspectral cube within its spatial axes, allowing for precise alignment and optimal
visualisation of specific regions of interest.

(a) Original (b) 90° (c) 180° (d) 270°

Figure 3.2: Anti-clockwise rotation of the hyperspectral cube over the spatial axes.

Map crop

The Map crop function offers users the ability to selectively isolate and extract specific
regions of interest from the hyperspectral cube along the spatial axes, significantly en-
hancing both visualization and computational efficiency.

(a) Original

(b) Cropped

Figure 3.3: Hyperspectral cube cropped over the spatial axes.

Through an intuitive interface, users can define the desired spatial boundaries for cropping,
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effectively trimming the cube to retain only the specified region. This tailored approach
not only improves visualization by allowing for a closer examination of the selected area
but also facilitates more focused and accurate analysis by eliminating extraneous data
that may otherwise introduce noise or distractions.

Spectral truncation

The preprocessing function Spectral truncation provides users with the capability to re-
duce the size of the hyperspectral cube by selectively truncating the spectral range. It
also supports the selection of non-contiguous spectral regions, enabling users to exclude
irrelevant or uninformative sections, such as the silent region in a Raman spectrum. By
allowing researchers to focus on specific bands of interest in the spectral axis, this function
contributes to a more targeted and efficient analysis process, minimizing processing time
and resource demands.

Smooth map

The Smooth map function equips users with a spatial denoising tool to enhance the quality
of their hyperspectral cube by applying a non-linear digital filter designed to remove noise
across the spatial dimensions of the data.

Two distinct filtering methods can be employed for this purpose: the median filter and
the Gaussian filter.

The median filter works by replacing each pixel’s value with the median value of the
neighboring pixels in a defined window size. This nonlinear filtering method is particularly
effective in reducing salt-and-pepper noise while preserving edges, as it considers the local
distribution of pixel intensities and maintains sharp transitions.

The Gaussian filter, on the other hand, employs a Gaussian function to calculate the
weighted average of neighboring pixel values with a specified scale. The weights decrease
with distance from the central pixel, resulting in a smooth transition between adjacent
pixels. This filter is adept at reducing Gaussian noise and blurring the image, which can
improve the overall quality of the hyperspectral data.

By mitigating the impact of noise on the individual maps corresponding to each wavenum-
ber, this function fosters a clearer representation of the underlying patterns and features.
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(a) Original (b) Median filter (c) Gaussian filter

Figure 3.4: Hyperspectal cube smoothed with a median filter (window size 3x3 pixels)
and with a Gaussian filter (filter scale σ= 0.5).

Smooth spectrum

The function Spectral smoothing offers users the ability to enhance the quality of their
hyperspectral cube by applying a filter designed to smooth the spectrum associated with
each pixel. This function provides two versatile filter options: the Savitzky-Golay filter
[9] and the Whittaker filter [10].

The Savitzky-Golay filter operates by fitting a low-degree polynomial to a set of adjacent
data points using a least-squares approach. The fitted polynomial is then used to estimate
the central point of the window. This method is effective in preserving the shape of the
original spectrum while reducing high-frequency noise. The filter can be fine-tuned by
adjusting the window size and polynomial degree, allowing the user to balance between
noise reduction and spectral resolution.
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Figure 3.5: A selected pixel of the hyperspectral cube smoothed with Savitzky-Golay
filter.
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The Whittaker filter, on the other hand, employs a roughness-penalized least squares
approach to control variations in the second derivative of the spectrum. This method
aims to find a smooth curve that best fits the original data while minimising the sum
of squared residuals and the roughness penalty, controlled by a regularisation parameter.
The Whittaker filter is particularly useful for removing baseline drifts and preserving
sharp peaks in the spectrum.
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Figure 3.6: A selected pixel of the hyperspectral cube smoothed with Whittaker filter.

Despike

The Despike preprocessing function helps to address the issue of bad pixels containing
spikes in their signal, which may result from various factors such as cosmic rays. By
detecting and correcting these anomalous pixels, the Despike function contributes to a
more accurate and reliable representation of the hyperspectral data.

Users are provided with a choice of two outlier detection algorithms to suit their specific
needs.

1. Z-score: The Z-score method identifies intensities in the spectrum that deviate
significantly from the mean, flagging them as potential bad pixels. To utilize this
method, users must specify a threshold value, which determines the degree of devi-
ation from the mean required for a pixel to be classified as an outlier.

2. Modified Z-score: The modified Z-score method offers a more robust approach by
employing the median absolute deviation (MAD) as a measure of variability. This
method is less sensitive to extreme values in the data and can more accurately iden-
tify bad pixels in the presence of such values. Similarly to the Z-score method, users
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need to define a threshold value for the modified Z-score method, which dictates the
deviation required from the median to classify a pixel as an outlier.

(a) Original (b) Identified spikes (c) Corrected

Figure 3.7: Hyperspectal cube presenting spikes detected using the Z-score algorithm and
subsequently corrected using a linear interpolation.

In addition to detecting spikes within spectra, the Despike preprocessing function also
offers the capability to correct these anomalies using linear interpolation. In fact, once
the spikes are identified within a spectrum, they can be replaced with interpolated data
derived from their neighbouring data points within a specified window.

Resample

The Resample method gives users the ability to restructure their hyperspectral data using
a new spectral grid featuring equally-spaced nodes. This function is particularly beneficial
when comparing datasets with different calibration axes, as it standardizes the data and
facilitates more accurate comparisons and analyses.

Five distinct interpolation methods are available to cater to varying requirements: four of
them employ spline interpolation (constant, linear, quadratic and cubic), while the fifth
utilizes Whittaker’s interpolation. Spline interpolation methods, by using lower-degree
polynomials over smaller intervals, can help mitigate the issue of Runge’s phenomenon,
ensuring a smoother and more accurate representation of the data. Whittaker’s interpo-
lation, on the other hand, offers a robust alternative.

To utilize this resampling function, users must specify a step size for the new grid. This
parameter determines the spacing between the nodes in the resampled spectral grid and
directly influences the interpolation process.
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Normalize

The preprocessing function for normalisation and scaling offers users a versatile solution
to optimise their hyperspectral data by transforming the values into a more standardised
and comparable format. With eight distinct normalisation and scaling methods available,
users can select the most appropriate approach for their specific requirements.

• L1 Norm: By employing the L1 norm method, each spectrum is normalized based
on the sum of the absolute values of its elements.

• L2 Norm: The L2 norm method normalises each spectrum using the square root
of the sum of the squared values of its elements.

• Max: This method scales each spectrum by dividing its elements by the maximum
value found within the spectrum. For non-negative values, this results in a range
between 0 and 1.

• Scale: This approach standardises each spectrum by centering the data around the
mean and scaling it according to the standard deviation, resulting in a mean of 0
and a standard deviation of 1.

• Min-Max Scale: The Min-Max scaling method normalises each spectrum by lin-
early transforming its values into a range between 0 and 1, using the minimum and
maximum values found within the spectrum.

• Frobenius Norm: This method normalises the entire data matrix by calculating
the Frobenius norm, a measure of the overall magnitude of the data.

• Wavenumber Normalisation: This approach normalizes each spectrum relative
to a provided wavenumber, ensuring that the values are directly comparable across
different wavenumbers.

• Area: This method normalises each spectrum according to the area under the curve,
ensuring that the integrated values of all spectra are equal.

Correct baseline

The Correct baseline preprocessing function offers users a powerful tool to remove the
fluorescence baseline.

The fluorescence baseline is an unwanted low-frequency background signal that can be
present in hyperspectral data, particularly when dealing with fluorescent materials or
samples. It can interfere with the accurate representation and interpretation of the data
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as it can obscure or distort the true spectral features and peaks that are of interest
to researchers. Removing the fluorescence baseline is a crucial preprocessing step in
the analysis of hyperspectral data, as it helps to minimise the impact of the unwanted
background signal and enhance the clarity of the underlying spectral features.

With several distinct methods provided by the pybaselines library [11], users can select
the most appropriate approach for their specific needs. These functions were divided into
three categories:

1. Polynomial methods

(a) Polynomial : This method uses a straightforward least-squares fitting approach
to model the fluorescence baseline with a polynomial function. The polynomial
method is suitable for cases with smooth and relatively predictable baseline
shapes.
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Figure 3.8: Mean spectrum of an hyperspectral cube before and after applying a Polyno-
mial baseline correction.

(b) IModPoly (Improved Modified Polynomial) [12]: The IModPoly method im-
proves on simple polynomial fitting by incorporating an iterative reweighted
least-squares fitting process. This approach provides a more robust fit by as-
signing lower weights to points that are likely to be part of peaks, reducing
their influence on the baseline estimate.
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Figure 3.9: Mean spectrum of an hyperspectral cube before and after applying IModPoly
baseline correction.

(c) Goldindec [13]: The Goldindec is a highly effective method based on polyno-
mial fitting approach that uses a linear combination of a polynomial function
and a discrete Gaussian function to model the baseline. By incorporating the
Gaussian component, this method effectively captures the influence of overlap-
ping peaks on the baseline.
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Figure 3.10: Mean spectrum of an hyperspectral cube before and after applying Goldindec
baseline correction.
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2. PLS-based (Penalised Least Square) methods

(a) arPLS (Asymmetrically reweighted PLS) [14]: This method introduces an
asymmetric weighting scheme to the PLS-based approach.
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Figure 3.11: Mean spectrum of an hyperspectral cube before and after applying arPLS
baseline correction.

(b) IarPLS (Improved asymmetrically reweighted PLS) [15]: Building upon the
arPLS method, IarPLS further enhances the baseline estimation by incorpo-
rating an iterative reweighted least-squares fitting process.
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Figure 3.12: Mean spectrum of an hyperspectral cube before and after applying IarPLS
baseline correction.
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(c) drPLS (Doubly reweighted PLS) [16]: The drPLS method uses a doubly
reweighted least squares fitting approach, which combines the benefits of both
symmetric and asymmetric weighting schemes.
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Figure 3.13: Mean spectrum of an hyperspectral cube before and after applying drPLS
baseline correction.

(d) asPLS (Adaptive smoothness PLS) [17]: The asPLS method focuses on adap-
tively adjusting the smoothness of the baseline estimation based on the local
characteristics of the spectrum by considering the local variability in the data.
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Figure 3.14: Mean spectrum of an hyperspectral cube before and after applying asPLS
baseline correction.
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3. Miscellaneous

(a) Rubberband : The Rubberband method is a parameter-free approach that esti-
mates the baseline by connecting local minima in the spectrum. This method
effectively creates a convex hull around the spectrum, which is then subtracted
to remove the baseline. The Rubberband method is particularly useful for cases
where the baseline has a simple, convex shape and requires minimal user input.
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Figure 3.15: Mean spectrum of an hyperspectral cube before and after applying Rubber-
band baseline correction.

(b) BEADS (Baseline estimation and denoising with sparsity) [18]: The BEADS
method is a more advanced approach that uses the concept of sparsity to
simultaneously estimate the baseline and denoise the spectrum. This method
models the baseline as a smooth, low-frequency component and the noise as a
sparse, high-frequency component.
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Figure 3.16: Mean spectrum of an hyperspectral cube before and after applying BEADS
baseline correction.

(c) SNIP (Statistics-sensitive Non-linear Iterative Peak-clipping) [19]: The SNIP
method is a non-linear, iterative approach that progressively clips peaks from
the spectrum to estimate the baseline. By iteratively clipping and averaging
the data points, SNIP considers the local statistical properties of the spectrum.
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Figure 3.17: Mean spectrum of an hyperspectral cube before and after applying SNIP
baseline correction.

For all baseline correction methods with the potential to produce negative spectra values,
an option to enforce non-negativity is provided, which applies a rubberband correction
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after the specified method.

Identify substrate

The Identify substrate function is designed to segment cells (the «foreground») from their
substrate (the «substrate») using a clustering approach, such as k-means, mini-batch k-
means or hierarchical clustering. These algorithms group the data into distinct clusters
based on their similarity. The cluster with the lowest average signal is then considered
as the substrate. By applying this segmentation method, users can remove the average
background signal from the foreground or restrict certain processing steps to operate
exclusively on foreground pixels. This enhances the clarity and accuracy of subsequent
analyses, making it easier to focus on the relevant information within the hyperspectral
data.

(a) Map (b) Foreground-substrate
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Figure 3.18: Identification of substrate pixels from the hyperspectral cube’s signal.
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3.2.3. Analysis

The analysis of hyperspectral data serves multiple purposes across various fields and
contexts, as it enables the extraction of detailed information about the composition,
structure and properties of materials and objects within the imaged scenes.

After performing the analysis, users may want to export their results. These exports can
be of high quality and resolution, suitable for use in scientific publications, presentations,
or other forms of communication.

In the following sections, a detailed explanation of the various functions for hyperspectral
data analysis, as implemented within RamApp, will be provided.

Univariate analysis

Univariate analysis is a vital aspect of hyperspectral data analysis, focusing on the study
and interpretation of individual spectral bands, or wavelengths, within the hyperspectral
data cube.

Figure 3.19: Menu appearance for customizing intensity images.

Unlike multivariate techniques that consider the relationships between multiple spectral
bands, univariate analysis is concerned with extracting information from each band inde-
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pendently. This approach can reveal specific characteristics of the materials or chemical
species present in the scene based on their spectral signatures at individual wavelengths.

RamApp provides an intuitive interface to perform univariate analysis, starting by the
creation of individual intensity images.

Univariate analysis can provide insights into the following:

• Spectral features: Examine individual spectral bands to identify specific features,
such as peaks, valleys, or inflection points, that may be indicative of the presence of
certain materials or chemical species. This information can be used to detect, iden-
tify and characterize the substances present in the scene based on their characteristic
spectral peaks.

• Band selection: Select a subset of spectral bands that provide the most relevant
information for a particular application or analysis objective. This may involve
selecting bands that correspond to specific features, highlight particular materials
or chemical species, or maximise the signal-to-noise ratio.

• Visualization and interpretation: Generate false-colour images or other visual
representations using individual or combinations of spectral bands. This can help
visualise and interpret the spatial distribution of materials or chemical species within
the scene, as well as reveal patterns or structures that may not be apparent in
multivariate analyses.

(a) [770 cm-1] (b) [787 cm-1] (c) [1450 cm-1] (d) Composite image

Figure 3.20: Example of univariate analysis peformed on individual spectral bands. The
intensity images are then blended to produce the final result.

Cluster analysis

This analysis function performs a cluster analysis on the hyperspectral map, allowing users
to identify patterns and groupings within the data. Users, after specifying the number of
clusters, can choose from three clustering algorithms:
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1. K-means: A popular and efficient clustering algorithm that minimizes within-
cluster sum of squares by iteratively assigning data points to their nearest cluster
centroid.

2. Mini-batch k-means [20]: A variation of the k-means algorithm that uses a ran-
dom subset (or "mini-batch") of data points in each iteration, reducing the compu-
tational complexity and processing time.

3. Hierarchical agglomerative clustering (with Ward linkage): A bottom-up
clustering method that successively merges clusters based on their similarity, with
the Ward linkage criterion minimizing the total within-cluster variance.

The Cluster Analysis function and the subsequent analyses techniques presented in the
following sections enable users to narrow down the analysis to specific regions of interest
in both spatial and spectral domains. This targeted approach facilitates more focused
and in-depth analyses of relevant areas within the hyperspectral data.

Additionally, users have the option of performing a reduction in principal components
(PCs) prior to clustering. This step can help reduce dimensionality and computational
complexity, while retaining the majority of the information in the data.

(a) Map (b) Identified clusters

Figure 3.21: Cluster analysis performed on a leukemia cell.

The results of the cluster analysis will be displayed as cluster masks. A mask, in the
context of the RamApp, refers to a spatial region of interest within the hyperspectral
data. Specifically, it is a binary representation of the pixels in the data, with each pixel
assigned a value of either 1 (included in the region of interest) or 0 (excluded from the
region of interest).

When cluster analysis is performed, the resulting masks separate the pixels into distinct
groups based on their cluster membership. By visually overlaying these masks on the
hyperspectral map, users can better understand the spatial distribution and relationships
between the identified clusters.
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PCA

The Principal Component Analysis (PCA) function in RamApp is an essential analytical
tool that performs dimensionality reduction on hyperspectral data, allowing users to gain
insight into the underlying structure and variations in the data. PCA identifies the
directions in the data with the most significant variance, transforming the original data
into a new set of linearly uncorrelated components.

Algorithm 3.1 Principal Component Analysis (PCA)

Require: Data matrix X ∈ Rn×p (n pixels, p spectral points)
1: Standardize X if necessary: Xstandardized ← X−mean(X)

std(X)

2: Compute covariance matrix: Cov(X)← 1
n−1

XT
standardizedXstandardized

3: Calculate eigenvectors (V) and eigenvalues (D) of Cov(X): Cov(X)× V = V ×D
4: Sort eigenvectors and eigenvalues in descending order based on eigenvalues
5: Compute PCA scores (T): T ← Xstandardized × V

Ensure: PCA Loadings (V) and PCA Scores (T)

Principal Component Analysis generates two main sets of results:

• Scores: The scores are the transformed data points in the new coordinate system
defined by the principal components. Each score represents the projection of the
original data point onto the respective principal component’s axis. Scores can be
visualised as intensity images, where each image corresponds to a principal com-
ponent. These images reveal the spatial distribution of the variance explained by
each principal component, highlighting patterns or regions of interest within the
hyperspectral data.

• Loadings: The loadings represent the coefficients of the linear combination of the
original variables used to create the principal components. Each loading vector
corresponds to a principal component and indicates the contribution of each original
variable to that component. In the context of hyperspectral data, loadings can be
interpreted as the spectral signature associated with each principal component.

By examining PCA loadings and scores, researchers can identify patterns, relationships
and sources of variance within the hyperspectral data. This information can be utilised
for various applications, including dimensionality reduction, noise reduction, feature ex-
traction and data visualisation. Furthermore, PCA results can be employed to guide
subsequent analyses and enhance the understanding of the underlying processes respon-
sible for the observed spectral features.
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MCR

Multivariate Curve Resolution (MCR) is a powerful chemometric technique used for the
analysis of hyperspectral data. It aims to decompose the data into a set of pure compo-
nent spectra (also called endmember spectra) and their corresponding spatial distribution
profiles (abundances or concentrations).

One of the most common implementations of MCR is the alternating least squares (ALS)
approach, called MCR-ALS [21]. Implementing the algorithm was made possible through
the pyMCR library [22].

Algorithm 3.2 Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS)

Require: Data matrix X ∈ Rn×p (n pixels, p spectral points), number of components (r)

1: Initialize pure component spectra matrix C ∈ Rp×r or spatial profiles matrix ST ∈
Rn×r

2: repeat
3: Update spatial profiles matrix: ST ← argminST ||X − CST ||2
4: Apply constraints on ST (e.g., non-negativity, unimodality, normalization)
5: Update pure component spectra matrix: C ← argminC ||X − CST ||2
6: Apply constraints on C (e.g., non-negativity, unimodality, normalization)
7: until convergence or stopping criterion is met

Ensure: Pure component spectra matrix (C) and spatial profiles matrix (ST)

The primary outputs of MCR-ALS are the estimated pure component spectra (C) and
their corresponding spatial profiles (ST). These results can be utilized for various appli-
cations, including the identification and quantification of chemical species, the extraction
of features related to the underlying physical or chemical processes and the visualization
of spatial distribution patterns.
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(a) Map (b) Identified components
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Figure 3.22: Example of MCR analysis on a breast tissue.

N-FINDR

The N-FINDR [23] algorithm is a widely used method for endmember extraction in hy-
perspectral data analysis. The goal of endmember extraction is to identify the purest
spectral signatures (endmembers) present in the data, which represent the underlying
materials or chemical species. These endmembers can be used for various purposes, such
as unmixing analysis, classification and anomaly detection.

Implemented using the pyspc-unmix library [24], N-FINDR is a geometric approach that
aims to identify the endmembers by searching for the simplex with the maximum volume
in high-dimensional spectral space. The vertices of this simplex are assumed to correspond
to the endmember spectra.
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Algorithm 3.3 N-FINDR
Require: Hyperspectral data X, number of endmembers p
Ensure: Endmember matrix E
1: Initialize E by randomly selecting p spectra from X
2: while not converged do
3: Compute the projection matrix P = E(ETE)−1ET

4: Compute the residual matrix R = X − PX
5: Compute the norms of the columns of R, r1, r2, . . . , rn
6: Select the column of X with the maximum norm as the next endmember
7: Orthogonalize the new endmember w.r.t. E using Gram-Schmidt process
8: Replace the endmember with the lowest loading in P with the new endmember
9: end while

10: return Endmember matrix E

(a) Map (b) Identified endmembers
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Figure 3.23: Example of N-FINDR analysis on a neuronal cell.

The primary result provided by the N-FINDR algorithm is a set of endmember spectra,
which represent the purest spectral signatures in the hyperspectral data. These end-
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members correspond to the vertices of the simplex with the maximum volume in the
high-dimensional spectral space. In the context of hyperspectral data, each endmember
spectrum is associated with a distinct material or chemical species present in the scene.

3.3. Architecture

The architecture of the web application is designed to provide a user-friendly and effi-
cient platform. RamApp is built upon a modular structure consisting of three distinct
components that work together to deliver a comprehensive and interactive experience to
users.

These components are:

• the frontend, the module responsible for the graphical interface of the application;

• the backend, the module that serves as the backbone of the application, handling
user requests and managing their interaction with the computation module;

• a computational module, called ramappy, that performs all the operations on the
hyperspectral data cube.

Figure 3.24: Diagram of the architecture of RamApp.

Each module will be detailed in the following sections.

3.3.1. Frontend

The frontend of RamApp is designed to provide users with an intuitive interface for in-
teracting with the application, ensuring an enjoyable and efficient experience. Built using
the popular web development library React and TypeScript, the frontend allows users
to easily navigate through the application and input the necessary data for processing
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and analysis.

To enhance the application’s visual aesthetics and functionality, the frontend employs the
react-bootstrap library. This library provides a collection of reusable components that
adhere to the Bootstrap framework, ensuring a clean and modern design. By lever-
aging react-bootstrap, the application ensures a consistent and professional appearance
across various platforms, while also providing users with familiar and easy-to-use interface
elements.

(a) React (b) TypeScript (c) Bootstrap

Figure 3.25: Frontend technology stack.

A key aspect of the frontend design is its ability to communicate effectively with the
backend, exchanging messages and processing requests in real time. To achieve this, the
application utilises the axios library, which enables the frontend to send asynchronous
HTTP requests to the backend, ensuring a smooth and uninterrupted user experience.
This approach allows efficient data exchange between the frontend and backend, facilitat-
ing quick processing and presentation of results.

3.3.2. Backend

The backend of RamApp serves as the central hub for managing user requests and orches-
trating the interactions between the frontend and the computation module. Developed
using Python, the backend is designed to be both efficient and robust, ensuring a seamless
user experience as the application processes hyperspectral imaging data.

FastAPI, a modern and high-performance web framework for Python, is employed as the
foundation of the backend. With its simplicity and ease of use, FastAPI enables the devel-
opment of a highly scalable and reliable backend architecture. This framework not only
ensures that the application can handle a large number of user requests simultaneously,
but also allows for rapid development and deployment of new features and improvements.
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(a) Python (b) FastAPI (c) MongoDB

Figure 3.26: Backend technology stack.

User data management, including login and registration, is handled by the FastAPI-
users library. This library provides an extensive set of tools to manage user authentica-
tion, authorisation and data storage.

In addition, FastAPI-users also supports various login and registration options. RamApp
offers users the flexibility to register and log in using their email and password, or opt for
a more convenient approach by leveraging Google as a social login option. The integration
of Google’s social login simplifies the registration and authentication process by allowing
users to quickly access the platform using their existing Google account credentials.

Figure 3.27: RamApp login interface.

MongoDB, a popular NoSQL database, is used for user data and project metadata. Its
flexible schema design and high scalability make it a suitable choice for handling user
data.
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Figure 3.28: Interface for RamApp user projects.

3.3.3. Computational module

The computational module, ramappy, serves as the core engine responsible for processing
and analysing data within RamApp. Written in Python, ramappy is structured with a
collection of classes designed to represent and manipulate hyperspectral data.

Several renowned Python libraries play a vital role in enabling ramappy to deliver powerful
and efficient functionality to users. Among these libraries are NumPy [25], Scikit-
learn [26], SciPy [27][28] and Pandas [29] to perform complex mathematical operations,
data manipulation, pre-processing and analysis on hyperspectral data arrays. Numba
[30] is particularly valuable for optimising performance, as it employs just-in-time (JIT)
compilation to accelerate the execution of computationally intensive tasks, significantly
reducing processing time. Python Imaging Library (PIL) [31] and Matplotlib [32]
are used to process and manipulate images generated from the hyperspectral data.

(a) NumPy (b) Scikit-learn (c) SciPy (d) Pandas

(e) Numba (f) PIL (g) Matplotlib

Figure 3.29: Ramappy technology stack.
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4| Use case example

In this chapter, a use case example is presented, showcasing the capabilities and potential
of RamApp in processing and analyzing HSI data.

The selected imaging spectroscopy data for this example is a Raman image of in vitro
labeled murine microglial cells with nanoformulations of PERFECTA, a superfluorinated
molecular probe for highly sensitive Functional Magnetic Resonance Imaging (F-MRI) [2].
These data were acquired with spatial size of 93x93 pixels and spectral resolution of 1015
spectral points.

4.1. Data import

The initial step involves properly uploading the data to RamApp. Depending on the file
format, the application may necessitate additional information prior to processing the
data (name of the variables, width and height of the image, scan pattern, etc.).

Figure 4.1: File uploader interface.

In this case, the hyperspectral data were acquired using a commercial setup (Renishaw),
ensuring that all the parameters required to accurately read the cube were included within
the proprietary file format (*.wdf). Once the data file has been successfully uploaded, it
will appear in the user’s personal workspace, ready to be opened and analysed.
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4.2. Data exploration

After opening a new analysis, the main focus is on exploring the data. The first intensity
image displayed represents the mean intensity for each pixel. This initial visualisation
provides a useful starting point for users to get a general overview of the hyperspectral
data. This image offers a basic understanding of the spatial distribution of the signal
across the map, allowing users to identify any patterns or anomalies before diving deeper
into the analysis.

Figure 4.2: Map visualiser and spectra plot of RamApp. In orange, the spectrum relative
to the orange pixel.

RamApp is designed to facilitate the exploration of the data cube, allowing users to
quickly gain insights into their hyperspectral data. One way this is achieved is through
the map visualiser: by simply clicking on a pixel within the displayed image, users can
instantly view the spectrum corresponding to that specific pixel. This interactive feature
provides a convenient way to examine the spectral information across the data, enabling
a better understanding of the dataset as a whole.
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4.3. Preprocessing

Although users can opt for their preferred workflow, this example follows a Raman spec-
troscopy protocol that outlines a complete preprocessing pipeline [33].

4.3.1. Spikes removal

After exploring the data, it becomes evident that some pixels of the hyperspectral dataset
contain spikes in their signal, which can hinder the analysis process. To address this issue
and improve data quality, the Despike preprocessing function should be used.

In this case, bad pixels were identified using the Z-score method with a threshold of 13,
since selecting lower values led to incorrect classification of some pixels as spikes. The
signals were subsequently corrected using a linear interpolation function.
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Figure 4.3: In magenta, the pixels identified as spikes and their mean signal.
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4.3.2. Fluorescence baseline removal

The following step in the preprocessing workflow involves removing the fluorescence base-
line from the signal by using the Correct baseline function. This essential step helps to
isolate the Raman signal from the background fluorescence, ensuring that the subsequent
analysis focuses on the relevant spectral features.

In this case, the baseline was identified using the Goldindec method with a polynomial
order of 5 and subsequently subtracted from the signal.
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Figure 4.4: The mean signal of the hyperspectral cube before and after removing the
fluorescence baseline.

4.3.3. Substrate background removal

Following the removal of the fluorescence baseline, it is necessary to address the presence of
substrate-related Raman signals in the measured spectra. To accomplish this, the Identify
substrate function can be employed. This step helps to isolate and remove the contribution
of the substrate from the acquired Raman spectra, ensuring that the remaining signals
correspond solely to the sample of interest.

The substrate-related cluster was identified using a k-means approach and subsequently,
the mean signal of all pixels in that cluster, was subtracted from the overall mean signal.
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(b) The mean signal of the hyperspectral cube before and after removing the substrate.

Figure 4.5: In dark blue, the identified substrate and its corresponding mean signal.

4.3.4. Smoothing

Smoothing, which is optional in Raman spectra analysis, can be performed through spec-
tral and/or spatial filtering. In this case, spatial smoothing will be performed using the
Smooth map function, employing a 3x3-pixel square median filter.

Figure 4.6: The resulting intensity image after applying a spatial smoothing.
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4.3.5. Truncation

Spectral truncation helps eliminate wavenumber regions lacking significant Raman signals
(silent regions) or those with strong contributions from the substrate, water, or artefacts.

In the example case, the Raman signal displays minor artefacts at the beginning and
the end of the spectrum, which were generated during the fluorescence baseline removal
phase. With the Spectral truncation function, the spectrum was refined from the 592-1704
cm-1 range to the 610-1695 cm-1 region.

4.3.6. Normalisation

Following spectral truncation, normalisation is applied as the final preprocessing step,
with the aim of mitigating the impact of fluctuations in excitation intensity or focusing
changes. In this specific case, the L2 norm was used as the normalisation method.
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Figure 4.7: Mean signal of the hyperspectral cube after applying L2 norm.

4.4. Analysis

The primary objective of the analysis is to determine the localisation of PERFECTA
within cells to gain valuable insight into its behaviour and interactions within the cellular
environment.
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4.4.1. Univariate analysis

Given that PERFECTA exhibits a well-defined spectral signature, with a particularly
intense peak centred around 770 [cm-1], it becomes feasible to employ univariate analysis
techniques for its detection.

Figure 4.8: Intensity image creation to highlight the localisation of PERFECTA.

Another substance worth locating is DNA. With its low intensity peak near 787 [cm-1], it
becomes advantageous to limit the spatial domain of the intensity image to the previously
identified Foreground mask, ensuring a more focused and accurate analysis.

Figure 4.9: Intensity image creation to highlight the localisation of DNA.
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Lastly, it is interesting to highlight the cellular organic matrix. This component can be
easily identified due to its spectral signature, which features a broad peak around 1450
[cm-1].

Figure 4.10: Intensity image creation to highlight the localisation of the organic matrix.

In conclusion, the univariate analysis and the resulting composite image provide valu-
able insights into the distribution and localisation of PERFECTA, DNA and the organic
matrix within the cells, enhancing the understanding of their spatial relationships and
interactions.

Figure 4.11: Composite image showing the combined intensity maps of PERFECTA,
DNA and organic matrix distributions.
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developments

In conclusion, this thesis has successfully documented the development and implementa-
tion of RamApp, a versatile and adaptable tool for processing and analysing hyperspectral
imaging data.

Since its closed-beta release in September 2022, followed by the official launch in March
2023, RamApp has demonstrated its value to researchers across various fields and coun-
tries, offering the flexibility and adaptability often lacking in commercial software solu-
tions. The user-friendly graphical interface, complemented by a comprehensive range of
functionalities, facilitates efficient data processing and analysis, empowering researchers
to extract significant insights from their hyperspectral data.

Moreover, RamApp has garnered numerous positive testimonials from users, who report
that it has substantially accelerated their analysis tasks, streamlined their workflows and
allowed them to focus on deriving meaningful insights from their data more quickly and
efficiently.

To promote the application, a poster has been presented at some conferences, including
the 12th International Conference on Clinical Spectroscopy (SPEC) held in Dublin in
June 2022. RamApp is also scheduled to be presented at future events, maintaining
engagement with the scientific community and highlighting its capabilities.

Moving forward, there are several areas for future development of RamApp that have
great potential to improve its capabilities and user experience.

First, a key objective involves expanding the range of supported import formats, allow-
ing users to easily incorporate data from additional proprietary formats. By increasing
RamApp’s compatibility with a variety of file types, the platform can better serve a diverse
user base and meet the requirements of researchers working with different instruments and
software.

Moreover, efforts will be made to simplify the upload process for custom-defined files.
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This enhancement will further simplify data import, enabling researchers to seamlessly
integrate RamApp into their existing workflows, irrespective of their particular file for-
mats.

Another promising avenue for future development of RamApp involves integrating a task
developed within the CRIMSON project, which centres on implementing a neural network
to eliminate the non-resonant background from Broadband Coherent Anti-Stokes Raman
Scattering (B-CARS) spectra. The non-resonant background refers to the part of the
B-CARS signal that does not result from molecular vibrations but arises due to the
interaction of the probing light with the sample’s electronic environment.

Although various numerical techniques exist for eliminating this undesired component and
isolating the resonant vibrational signal of interest, they all necessitate user intervention
and are highly dependent on the spectral shape of the non-resonant background. This
background, in turn, must be independently measured, adding complexity to the process.

Figure 5.1: CARS to Raman-like spectrum translation scheme.

By incorporating this neural network into RamApp, researchers will be able to more
effectively remove the non-resonant background, enhancing the clarity and interpretability
of their B-CARS data.
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