
A framework to manage access con-
trol policies in federated Data Mesh

Tesi di Laurea Magistrale in
Computer Science and Engineering
Ingegneria Informatica

Author: Diego Caronni

Student ID: 928230
Advisor: Prof. Pierluigi Plebani
Co-advisor: Dott. Mattia Salnitri
Academic Year: 2022-23

i

Abstract

In recent years, data have become increasingly heterogeneous so, the old monolithic and
centralized data platforms, such as the data warehouses and the data lakes, showed their
limitations. The new paradigm of the Data Mesh data architecture, introduced by Zhamak
Dehghani in 2019, tries to overcome these limitations. The core concept of the Data Mesh
is considering the data as a product. Each domain team, inside a Data Mesh, is respon-
sible for the data provided and manages it in order to make it available to other domain
teams. Being a recent topic, the literature offers few works about it and some aspects
must be better clarified. In our work, we want to investigate how can be possible to de-
fine and manage security policies to access the data in the federated context of the Data
Mesh. We will provide models to design a security framework, with the related compo-
nents to access the data and tools to run the policies. The models proposed, regulate
the interactions between data consumers and data products. We will adopt Open Pol-
icy Agent (OPA) as the policy decision point (PDP) to test the policies that we will define.

Keywords: Data Mesh, Access Control, Security Policies, OPA, Rego

Abstract in lingua italiana

Negli ultimi anni, i dati sono diventati sempre più eterogenei e di conseguenza le vecchie
piattaforme di contenimento dei dati, monolitiche e centralizzate, come le data warehouses
e i data lakes, hanno mostrato i loro limiti. Il nuovo paradigma dell’architettura dati del
Data Mesh, introdotto da Zhamak Dehghani nel 2019, prova a superare questi limiti. Il
concetto centrale del Data Mesh è considerare il dato come un prodotto. Ogni team di do-
minio, all’interno di un Data Mesh, è responsabile dei dati forniti e li rende disponibili ad
altri team di dominio. Trattandosi di un argomento recente, lo stato dell’arte offre pochi
articoli a riguardo e alcuni aspetti dovrebbero essere chiariti meglio. In questo lavoro
di tesi, vogliamo indagare come sia possibile definire e gestire delle politiche di sicurezza
per accedere ai dati, nel contesto federato del Data Mesh. Forniremo modelli per definire
i componenti coinvolti nell’accesso dei dati e gli strumenti per eseguire le politiche. I
modelli proposti regolano la relazione tra consumatori e dati. Adotteremo Open Policy
Agent (OPA) come decisore di politiche (PDP) per testare le politiche che definiremo.

Parole chiave: Data Mesh, Controllare l’Accesso, Politiche di Sicurezza, OPA, Rego

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 State of the art 3
2.1 Access control . 3
2.2 Security patterns . 5
2.3 Declarative languages for policies . 11

3 Baseline 15
3.1 XACML architecture . 15
3.2 Open Policy Agent . 16
3.3 Datalog . 18
3.4 Rego . 19

4 Proposed approach 21
4.1 Data Mesh components and design patterns 21
4.2 The three levels to access the data . 22

4.2.1 Location of PDP and PEP . 23
4.3 Scenarios . 24

4.3.1 Simple data product . 24
4.3.2 Aggregation of data products . 26

4.4 Definition of the policies . 28

5 Examples and tests 33
5.1 Policies at the business level . 33

5.2 Policies at the technical level . 33
5.3 Tests . 37

5.3.1 Example 1 . 37
5.3.2 Example 2 . 38
5.3.3 Example 3 . 38
5.3.4 Example 4 . 39

6 Conclusions 41

Bibliography 43

List of Figures 47

List of Tables 49

Listings 51

Acknowledgements 53

1

1| Introduction

The term Data Mesh was first introduced by Zhamak Dehghani in 2019, this term refers
to a new paradigm for data platform architectures, that tries to overcome the limita-
tions of the old generations of data platforms. Among them, there is a first generation
of proprietary enterprise data warehouses and business intelligence platforms. Then ar-
rived the second generation of the big data ecosystems with the data lakes. Finally there
is a third generation of architectures that are similar to the previous ones and concen-
trate on the streaming for real-time data availability with architectures such as Kappa,
unifying the batch and stream processing for data transformation with frameworks such
as Apache Beam, as well as exploiting cloud based managed services for storage, data
pipeline execution engines and machine learning platforms.

Despite some improvements during the decades, these architectures still suffer of the
following problems, as Dehghani explained in [14] and [15]:

• They are centralized and monolithic and they ingest data from all corners of the
enterprise; this could be a problem for enterprises with rich domains, large number of
sources and different set of consumers because, as more as data become ubiquitously
available, the ability to harmonize it in one place under the control of one platform
diminishes.

• They have a coupled pipeline decomposition, that lead to the creation of independent
teams to parallelize the work and reach higher operational scalability and velocity.
Though this model provides some level of scale, by assigning teams to different
stages of the pipeline, it has a limitation that slows the delivery of features: it has
high coupling between the stages of the pipeline to deliver an independent feature
or value.

• They have siloed and hyper-specialized ownership, the data platform engineers are
separated and grouped into a team based on their technical expertise of big data
tooling, often absent of business and domain knowledge.

In the last years, the Data Mesh led to new principles, as stated by Dehghani in [16] and

2 1| Introduction

[17]:

• The domain ownership principle: there are domain teams that are responsible for
their data. The analytical and operational data ownership is moved to the domain
teams, away from the central data team.

• The data as a product principle: a domain team is responsible for satisfying the
needs of other domains by providing high-quality data. Data is distributed across
many domains.

• The self-serve data infrastructure platform principle: a dedicated data platform
team provides domain-agnostic functionality, tools, and systems to build, execute,
and maintain the interoperability of data products for all domains.

• The federated governance principle: there is an interoperability of all data prod-
ucts through standardization, thanks to a data ecosystem with adherence to the
organizational rules and industry regulations.

Among famous societies that started to introduce the Data Mesh architecture there are
Zalando and Netflix as reported by [27].

We can state, from the literature, that this new paradigm for data platform architectures
seems to have a lot of advantages, and tries to solve part of the problems of the previous
generations. Being a recent topic, there are not a lot of works about it, and sometimes are
confusing because have shortcomings and unclear aspects. One of the aspects, of great
interest, that we want to investigate and explain better, concerns how to securely access
the data products in the federated context of the Data Mesh. In particular we want to
explore how to manage and define, in a sufficient expressive way, policies that control the
access to the data products.

In this work, we want to propose an approach to access data in the Data Mesh, and to do
this, we will provide the correspondent architecture and models, to clarify all the entities
and components, involved in the access of the data, with their relationships. We will
adopt the ABAC paradigm to perform access control because it let us to define a great
variety of rules for policies, that suits our goals. Finally we will provide and test some
examples of policies, written in Rego, using OPA as the PDP.

3

2| State of the art

In this chapter, we investigate among works that could be useful to better understand
and know the arrival point of the researches dealing with the problems presented in
chapter 1. We focus on works concerning access control, the development of frameworks
for security policies, both, in general, in the business sector and specifically, in the Data
Mesh architecture and other publications about declarative languages for policies.

2.1. Access control

NIST, in a document published in 2006 [22], discusses the capabilities, limitations, and
qualities of the access control mechanisms that are embedded for access control policy.
From this paper we can learn some basic notions about access control systems; the con-
cepts of: subject, object, operation, permission are explained. They are introduced,
among the others, three main kind of access control policies with their limitations.

• Discretionary access control (DAC) leaves a certain amount of access control to the
object’s owner or anyone else who is authorized to control the object’s access. DAC
policy tends to be very flexible and is widely used in the commercial and government
sectors. However, DAC is known to be weak for two reasons. First, granting read
access is transitive and the user who is granted can in an easily way grants any other
user access to the copy of the file of the owner. Second, DAC policy is vulnerable
to Trojan horse attacks.

• Mandatory access control (MAC) means that access control policy decisions are
made by a central authority, not by the individual owner of an object, and the
owner cannot change access rights. It is very limited and often used in the military
field.

• Role-based access control (RBAC) means that access decisions are based on the roles
that individual users have as part of an organization. The use of roles to control
access can be an effective means for developing and enforcing enterprise-specific
security policies. The challenge of RBAC is the contention between strong security

4 2| State of the art

and easier administration. For stronger security, it is better for each role to be more
granular, but this, is contrast with an easier administration.

At this point we can state, that RBAC is not enough to define policy in the context
of the Data Mesh architecture that is based on the concept of the data as a product;
basing access only to the roles of the subjects is not sufficient; there is the necessity of a
mechanism that consider also the metadata associated to the resources, and maybe other
possible attributes that the subject can have, e.g. the name of the company where he/she
works, so we need to use another paradigm such as the attribute-based access control
(ABAC).

In [23], NIST provides a paper which focuses on attribute-based access control (ABAC). It
is stated that ABAC is a logical access control methodology where authorization performs
a set of operations that is determined by evaluating attributes associated with the subject,
object, requested operations, and, in some cases, environment conditions against policy.
ABAC controls access to objects by evaluating rules against the attributes and allows an
unrestricted number of attributes to be combined to satisfy a rich set of policies. ABAC
is well suited for large enterprises. An ABAC system can implement existing role-based
access control policies and can support a migration from role-based to access control
policies based on many different characteristics of the individual requester. However, the
final considerations state that ABAC system is more complicated, and therefore more
costly to implement and maintain, than other access control systems. This paper is only
a discussion about ABAC, without providing examples that apply specifically in the Data
Mesh architecture. We deduce by the information provided, that ABAC can be suitable
to reach our goals.

To better understand the differences of the RBAC and ABAC, we examined the paper [6].
Different aspects are compared and we take in consideration only the more relevant. In
terms of global agreement, RBAC does not have a global agreement, ABAC has a global
agreement because of shareable user database and domain to domain connection. In
terms of flexibility, RBAC is not flexible, while ABAC is very flexible because of dynamic
nature in the distributed and open system. Concerning easiness, RBAC is a user-friendly
access control model and rights are assigned to roles statically on the basis of static and
predefined policies, ABAC is more complicated because of its global agreement, flexibil-
ity, sharing and heterogeneity of user attributes. About dynamicity, it is not supported
in RBAC because in RBAC roles and permissions are given to user’s domain statically;
ABAC supports dynamicity because access is granted on the basis of attributes and deci-
sion is taken runtime. Concerning authorization decision, the assignment of permissions
to roles are given in local domain in RBAC; in ABAC, authorization decision is performed

2| State of the art 5

globally as per user’s credentials are given dynamically. Concerning manageability, ABAC
is more difficult to manage rather than RBAC but in ABAC with respect to RBAC is
simpler to change the privileges because it is not necessary to change the identity of the
user or the policy terms. Finally in ABAC there is not the problem of role explosion.

It is possible to combine the two paradigms [1], making an hybrid approach, combining
RBAC and ABAC can provide some of the advantages of both models. RBAC, being
aligned so closely to business logic, is simpler to implement than ABAC while to provide
an additional layer of granularity when making authorization decisions, ABAC is more
suitable. This hybrid approach determines access by combining a user’s role (and its
assigned permissions) with additional attributes to make access decisions. In doing this,
there are also two disadvantages, this hybrid approach does not reach the same granularity
as ABAC and it does not have the same simplicity as ABAC, due to those disadvantages
we decide to consider only the ABAC approach in developing our policies to have more
granularity. Another problem is that there are no guarantees that a policy decision point
supports policies formulated with the hybrid approach.

2.2. Security patterns

Our focus now is to investigate about security patterns proposed by other researchers, we
start by security patterns for the business sector in general and then we move to security
patterns in the Data Mesh.

Concerning security, in the context of business environments, this article [34] provides an
high level policy enforcement pattern that is supposed to satisfy the following require-
ments: the flexibility of scripted policy rules, the need for adaptability which is addressed
by using a policy repository and the creation of plug-in modules of policy elements. It
is stated that for the deployment of a security pattern, is necessary to address to the
following aspects: integrating pre-built policy libraries, provide a flexible configuration,
the client should be able to implement and customise business rules easily, policies should
be stored in a repository and managed by a central instance. In Figure 2.1, the aforemen-
tioned security pattern.

6 2| State of the art

Figure 2.1: Policy enforcement pattern [34].

• The Client may request an execution on a targeted object.

• The Policy Factory creates runtime policy instances and puts them into the Policy
Pool.

• The Policy Pool provides efficient runtime storage for the policy instances. If a
policy that a client requests is already in the pool, it can be used directly without
instantiating it again.

• The Parser parses the plain text format of policies, and then queries the Policy
Registry.

• The Policy Registry is a lightweight storage for specifications of policy element
interface.

• Pre-Defined Policies are rules that can be applied to the clients’ request.

• Policy Elements are implemented modules used in policies, including Privilege, Con-
dition and Action.

• The Policy Decision decides whether or not a certain request is allowed.

• The Policy Enforcement evaluates the required policy conditions and invokes the
corresponding policy actions.

• The Policy Repository provides storage for the pre-defined policies, and policy ele-
ments.

• The Target Object is the object that the client requests.

The benefits of this pattern are: flexibility, customizability, adaptability and universality;
it can be applied to a wide range of environments and new functions can be added. There

2| State of the art 7

are also some drawbacks: performance, allowing the plain text as a policy description,
needs to be parsed and interpreted at runtime. This will slow down the policy execution.
Other drawbacks are the higher complexity and difficulties to understand the pattern.

In this paper [30] concerning Web services platforms, is discussed a way to overcome the
lack of products that support non-functional features such as security, transactionality and
reliability, in a service-oriented environment. WS-Policy is a possible future standard way
to specify these features and associate them with services; this paper presents a working
prototype that demonstrates how the quality features can be expressed as service policies
using WS-Policy. These policies are enforced by a policy framework that allows dynamic
association of such non-functional features with applications on a per-interaction basis, as
well as modification of these features. The focus is on two main issues: representing non-
functional service behavior (granularity of policy attachment, multiple sources of policy
documents, combining policies to create effective policy, negotiating runtime policy) and
issues in designing the policy framework. A policy document represents constraints over
the service to which such a document is attached. The aim is that at runtime the service
must never violate the behavior specified via the policy assertions. It is formulated both
a policy model and a policy framework design, which have a main module called Policy4J
which is in charge to parse and store the policy document. In this way, every policy doc-
ument is transformed in a tree form representing the correspondent boolean expression.
Then, the Policy combination module is invoked during the service deployment and the
service invocation to combine the supported policy and the requested policy obtaining
the effective policy. Once the effective policy is computed the Policy enforcement module
is in charge to process all the incoming and outgoing messages in order to verify if all of
them are compliant to what the effective policy expresses. At the end of the paper the
problems that emerge are: the matchmaking between services is complex since it is diffi-
cult to reach an agreement when the vocabularies used in describing policies are different,
the interpretation of extraneous or missing information in the policies is unclear. These
considerations will be useful for our goal, they let us understand the possible difficulties
in developing a security framework.

Changing side and coming in detail of works about the Data Mesh, this article, by IBM
[9], states that the concept of Data Mesh lacks empirical insights. Specifically, an un-
derstanding of the motivational factors for introducing Data Mesh, the best practices,
its business impact, and potential archetypes. To address this gap, the members of IBM
conducted 15 interviews with industry experts and the results show that organizations
have difficulties with the transition toward federated governance associated with the data
mesh concept, the shift of responsibility for the development, provision, and maintenance

8 2| State of the art

of data products, and the comprehension of the overall concept. Among those challenges,
what is relevant for our case is the one about federated data governance; according to
the interviewees, the federated approach creates a number of problems for activities and
responsibilities that were previously centrally owned and enforced. While they stress the
importance of federated data governance to establish rules according to domain needs, in-
terviewees highlight limitations regarding the automated execution; especially concerning
security, regulatory, and privacy-related topics, the employees within the domain are un-
aware of which data are protected and regulated. The only solution given is that to address
this challenge, is argued that organizations companies should introduce a cross-domain
steering unit responsible for the enforcement of specific governance rules, especially con-
cerning security, regulatory, and privacy-related topics. But does not provide an example
or a detailed method to achieve security.

In a blog by Starburst [29] is discussed in general about the Data Mesh architecture; the
relevant part is the final part where there is a comparison between pre-Mesh and the Data
Mesh architecture, concerning security. What happened is a shift from centralized Data
policies, to the possibility for domain teams to create policies for their products; from
a centralized privacy to a federate privacy discussed and agreed between the domains;
from RBAC to ABAC. In particular it is stated that RBAC fails in Data Mesh because,
especially in a large organizations, for example, the domain owner of the marketing domain
won’t know all of the roles of employees in the operations domain. Using ABAC instead
means that the domain defining the policies do not need to know about roles, groups and
users in other domains, but rely on those other domains to maintain the correct mapping
from roles, groups and users to the correct tags. In ABAC the role is one of the many
possible attributes. This blog does not come into the details of policy formulation for
Data Mesh, offers only a general view and useful tips.

The concepts stated in the previous blog [29], are better clarified by some members [21]
of the universities of Tilburg (Netherlands) and Salerno (Italy), that, as stated by them,
due to the scarcity of academic researches, wanted to better clarify about Data Mesh
design principles, architectural components, capabilities, and organizational roles. They
analyzed, and synthesized 114 industrial gray literature articles. What emerged from
the researches is that the metadata of a data product may describe its owners, schemas,
quality metrics, and access policies. The product can also include code to enforce various
data governance policies. A data product needs to use appropriate measures to ensure
data confidentiality, integrity, and availability. The measures include but are not limited
to data access control, data encryption at rest and data in transit, and data access audit
logs. In the Data Mesh architecture, while the security policies are primarily managed

2| State of the art 9

centrally, their enforcement happens in a decentralized fashion. The federated governance
defines rules or guidelines that enforce consistent and correct collection, storage, access,
usage, and management of data assets in an organization. For example, the governance
policies at the Data Mesh level can enforce a minimum level of data security or enforce
access control based on central identity management. For the Policy Enforcement, the
platform should offer tools that allow local and global federated governance teams to
define, store, attach, observe, and enforce governance policies. The gray literature rec-
ommends using the policy-as-code approach, where policies are defined, evaluated, and
managed programmatically. Moreover, the platform also needs to provide services to
support policy implementation, e.g., data anonymization service and data quality metrics
calculation service. Those are useful guidelines but in practice, do not go into deep details
about the languages to formulate those policies.

The next paper analysed, [26] aims to propose a domain model and a conceptual ar-
chitecture towards the achievement of decentralized data architectures. It is proposed a
domain model for the Data Mesh, in this model the security aspect is managed by a secu-
rity mechanism divided into two parts, Authentication and Authorization. This security
mechanism acts on all nodes in the Data Mesh and all nodes make use of the self-serve
Data Platform, where they make use of storage, processing, data integration system, data
visualization, software development, and machine learning tools. Data Mesh can be im-
plemented in just one cluster, or in several, depending on existing resources and needs. To
implement this are used, Apache Ranger as security mechanism, Apache Atlas for data
catalog components, Apache HDFS and HIVE for node creation and storage, Apache
Spark for processing, Apache Ignite for machine learning models, and Tableau for data
visualization. Also including Jenkins as a testing component, Confluence for documenta-
tion, Docker as a container registry. No references about declarative languages to use in
the design of the security policies.

Then, we found another interesting article [10], where the author describes a privacy
policy framework for Data Mesh, that can represent and reason about complex privacy
policies. It is presented a policy decision engine that supports two main uses: interfacing
with user interfaces for the creation, validation, and management of privacy policies; and
interfacing with systems that manage data requests and replies by coordinating privacy
policy engine decisions and access to encrypted databases using various privacy enhancing
technologies. Here in the figure below the aforementioned security pattern.

10 2| State of the art

Figure 2.2: Data Mesh security pattern [10].

The pattern in Figure 2.2 recognizes at the perimeter of Data Products, the following
security policies:

• Run-time Environment Security: these policies are heavily dependent upon the
runtime environment for the Data Product.

• API Access Control: OpenAPI specifications, allows security schemas and “scopes”
(use with OAUTH2) to be defined which dictate credentials to access a Data Prod-
uct.

Within Data Products, this pattern recognizes:

• RBAC: access to Data Products may be limited to those that have a particular role
or group.

• Row-Based Access Control: security policies allow individual rows to be protected.

• ABAC: access based on the attributes of the entities involved.

• Data Encryption and Tokenization: based upon the sensitivity of the data within a
Data Product.

There are several supporting capabilities for this pattern:

• An Enterprise Identity Book of Record: the master repository for identity and
maintains relationships to assigned groups and roles.

2| State of the art 11

• A Schema / Specification Registry: maintains “scopes” and data / event structures
required to support flexible security policies for APIs and events.

• Governance Controls: policies define regulatory and privacy constraints for a data
product

This article is quite accurate but does not provide a formulation of a policy or a language
for policies to be used in Data Mesh.

Sometimes Data Mesh can be harmful for organizations, especially for the small ones;
researches led by some members of the IEEE, proposed a mask-mediator-wrapper archi-
tecture that cover the most relevant features of the Data Mesh architecture [19] without
damaging the organization. The concept of the Data Mesh is still in the early stages of
development and many efforts to implement and use it are expected to have negative con-
sequences for organizations due to a lack of technological guidelines and best practices.
So to mitigate the risk of negative outcomes this paper proposes the use of the mask-
mediator-wrapper architecture as a Data Mesh driver, providing the basic functionalities
that a Data Mesh requires. The advantages of using this wrapper are: low-risk adoption
trial, without loss of money and a rapid prototyping of the Data Mesh in an organization.
In this paper there is also a small section that stated that the wrapper guarantees: se-
curity related to authentication, authorization, confidentiality and data integrity. While
security in terms of logical operations (e.g. sharing confidential system information or
sending unsafe data) can be assured through a common library for each component type
as well as defining a standard set of inter-component exchanges. But the problem is that
this paper does not give a clear methodology or examples to achieve this.

2.3. Declarative languages for policies

In the last part of this chapter, we investigate about possible declarative languages that
have been already used to define policies.

A first example is Ponder [13] which provides a common means of specifying security poli-
cies that map onto various access control implementation mechanisms, firewalls, operating
systems and databases. Ponder can also be used for security management activities such
as registration of users or logging and auditing events for dealing with access to critical re-
sources or security violations. Key concepts of the language include roles to group policies
relating to a position in an organisation, relationships to define interactions between roles
and management structures to define a configuration of roles and relationships pertaining
to an organisational unit such as a department. The language is flexible, extensible and

12 2| State of the art

adaptable to a wide range of management requirements. Ponder is very powerful but we
want to have more expressiveness, so we do not use it, but other languages in our work.

In the paper [31] is presented a language for policies based on RuleML, this can be defined
as a declarative specification of guidelines, rules of conduct, organization, and behaviour of
entities in a given environment. In the paper is presented an extended version of RuleML
to handle various policy descriptions embedding rules and constraints marked-up in the
RuleML language for Web Services. The proposal goes beyond the description of policies
and their execution, but also defines a framework for policy interchange. This language
offers great expressiveness but its level of description is too much high for our objectives,
it has an expressive power, similar to the natural language, and we want to stay to a more
technical level of description.

The researches of the next paper [20] have defined the notion of security policy in terms of
rewrite systems. The authors provided a formal definition of declared interference. With
these declared interference it is possible to take into account more real-life situations like
password verification and communication of encrypted data through a public channel.
The paper provides a tool to define very subtle security policies and presents an analysis
algorithm for the notion of declared interference. I only consider this paper to better
understand the methodology to follow to choose and develop a declarative language and
suit it for the case of the Data Mesh.

Despite the next paper [25], is not properly linked to security in Data Mesh, can be relevant
to understand the importance of having a sufficiently expressive language for policies. In
this case, are policies for web privacy protection. The problems that the authors exposed
in the field of web privacy protection are quite similar to the problems of the enforcement
of policies in the Data Mesh. Here the Platform for Privacy Preferences (P3P) is a W3C
framework for web privacy management. It provides a standard vocabulary that websites
can use to describe their privacy practices, but this is rarely used because the languages
available to describe user privacy preferences are not sufficiently expressive, P3P policies
published by websites are not trusted by users and finally P3P framework does not provide
a coherent view of available privacy protection mechanisms to the user. To overcome these
problems, the authors use a more expressive policy language based on deontic concepts
to describe users privacy-related policies, constraints and preferences. It is introduced a
new trust model for websites and its use in user privacy preferences. Finally they are
presented sample policies to demonstrate the relevance of their work.

Paper [18] offers an overview of capability-safe languages; components can access a re-
source only if they possess a capability for that resource. As a result, this can prevent an

2| State of the art 13

untrusted component from accessing a sensitive resource by ensuring that the component
never acquires the corresponding capability. In order to reason about which components
may use a sensitive resource it is necessary to reason about how capabilities propagate
through a system. So they are introduced two independently useful semantic security poli-
cies to regulate capabilities and describe language-based mechanisms that enforce them.
Access control policies restrict which components may use a capability and are enforced
using higher-order contracts. Integrity policies restrict which components may influence
(directly or indirectly) the use of a capability and are enforced using an information-flow
type system. Finally, it is described how programmers can dynamically and soundly com-
bine components that enforce access control or integrity policies with components that
enforce different policies or even no policy at all.

The last relevant article [28] describes a privacy policy framework that can represent and
reason about complex privacy policies. By using a Common Data Model together with
a formal shareability theory, this framework enables the specification of expressive poli-
cies in a concise way without burdening the user with technical details of the underlying
formalism. There is a policy decision engine which supports two main uses: interfac-
ing with user interfaces for the creation, validation, and management of privacy policies;
and interfacing with systems that manage data requests and replies by coordinating pri-
vacy policy engine decisions and access to (encrypted) databases using various privacy
enhancing technologies.

We have done this analysis of works, to understand the arrival point of the researches
in the Data Mesh and formulation of security policies. We can state that basing on our
knowledge, till now, the documentation about security in Data Mesh is poor, because the
topic is of recent appearance; some aspects are unclear, there are not suitable models to
provide a security pattern and a language to define policy in Data Mesh must be provided
or chosen among the languages that exists.

15

3| Baseline

In this chapter are presented concepts, components and tools that have been useful, in
the next chapters, to achieve the goals of this work. In particular, here, we present
what is involved in the mechanism of the access of the resources and consequently in the
definition of policies to access the data. First, we introduce the XACML architecture, with
its components: PEP, PDP, PIP and PAP, that defines a framework to manage access
control on a resource. Then is presented OPA, that simplifies the previous architecture
and will be used as the PDP. Finally we present Datalog and Rego, the second is an
extension of the first and is used to define the policies that OPA applies in order to grant
or deny the request sent by the PEP.

3.1. XACML architecture

We do not go in details of the XACML architecture, we only provide a description of
its components, that is interesting for us. Figure 3.1 shows these components and their
interactions.

• PEP : policy enforcement point, which protects a resource and allows access to it
only if the evaluation of the request sent to the PDP is positive.

• PDP : policy decision point, which takes inside various parameters such as policies
and information (users, resources, attributes, metadata), then allows or denies the
request from the PEP, and communicates the response to the PEP.

• PIP : policy information point, which provides to the PDP useful information to
authorize or not the requests.

• PAP : policy administration point, which manages policies and provides the relevant
policies regarding the access required by the PEP.

16 3| Baseline

Figure 3.1: XACML architecture [8].

The typical XACML schema behavior is as follows [33]:

• A user wants to access a resource; to do this, he must communicate to the PEP his
identity, the resource he wants to access and the operation he wants to do.

• The PEP, having received the request, temporarily freezes it and consults the PDP.
The request is contextualized with the information coming from the PIP.

• The PDP, in turn, requests the corresponding security policy from the PAP.

• The PDP, now having all the elements available (the request, the context and the
security policy) will decide whether or not to allow access and will communicate the
result to the PEP.

• The PEP, having received the decision of the PDP, will authorize (or block) the
user’s access to the resource.

3.2. Open Policy Agent

The Open Policy Agent (OPA) [5] is an open source, general-purpose policy engine that
unifies policy enforcement across the stack. OPA can be used to enforce policies in mi-

3| Baseline 17

croservices, Kubernetes, CI/CD pipelines, API gateways, and more. OPA decouples
policy decision-making from policy enforcement. When a software needs to make policy
decisions it queries OPA and supplies structured data (e.g., JSON) as input. OPA gener-
ates policy decisions by evaluating the query input against policies and data. The policies
in OPA are written in Rego, they are domain-agnostic so it is possible to describe almost
any kind of invariant in the policies.

Without OPA, it is needed to implement policy management for a software from scratch;
required components such as the policy language (syntax and semantics) and the evalu-
ation engine need to be carefully designed, implemented, tested, documented, and then
maintained to ensure correct behaviour and a positive user experience for customers. On
top of that it is necessary to consider security, tooling, management, and more.

OPA policies make decisions based on hierarchical structured data. Sometimes we refer
to this data as a document, set of attributes, piece of context, or even just “JSON”. Data
can be loaded into OPA from outside world in various ways: JSON web tokens, overload
input, bundle API, push or pull of the data. All data loaded into OPA from the outside
world are called base documents while the values generated by rules are called virtual
documents. In Figure 3.2 we have a graphical representation of how OPA works.

SERVICE

OPA

DATA
(JSON)

Policy
(REGO)

Query
(any JSON value)

Decision
(any JSON value)

Request

Figure 3.2: Policy decoupling in OPA [5].

18 3| Baseline

With Cloud Native, XACML has become less used, and OPA represents a valid simpli-
fication of the XACML schema of Figure 3.1. The concepts of PEP and PDP remain
with OPA [1], OPA can be used as a PDP. Our policies, that are the Rego rules in OPA,
represent the PAP component. The PEP requests an authorization decision from the
PDP. The easiest and most accessible method for requesting an authorization decision is
to send an authorization request (or query) to the PDP. This is the suggested method of
integrating PEPs with a PDP, because it is a familiar pattern for exposing functionality
to multiple services in an application. The only function of the PEP in this pattern is to
forward the information that the authorization request needs and then, effectively giving
access to the resource in case of positive response from the PDP. Concerning the PIP,
if OPA is used as a PDP, it can accept arbitrary JSON data as overload input that is
passed as part of the request. The data inside of the organization, can be managed by an
S3 storage such as MinIO [4].

3.3. Datalog

Datalog is a declarative logic programming language, introduced in 1984 [11] [7]; it is
syntactically a subset of Prolog, but generally uses a bottom-up rather than a top-down
evaluation model. In Datalog with respect to Prolog, there are no symbols of function
and there is a non-procedural model of evaluation. Datalog is a series of rules, each rule
is composed by a head (LHS) on the left of ":-" and a body (RHS) on the right of ":-" ;
a rule has the following structure:

P :- P1, P2, P3, P4, . . . , Pn.

Each Pi is called a fact and it is an instance of a predicate composed by:

• Its name.

• A list of arguments between round brackets () :

– Constants.

– Variables.

– Symbol do not care (_) which cannot appear in the head.

To guarantee safety, all the variables in the LHS must appear in the RHS. LHS is true if
RHS is true.

In a rule, the notation: P1, P2, . . . , Pn means intersection ∩.

The union of rules P = R ∪ S is expressed by the following notation:

3| Baseline 19

P(X,Y) :- R(X,Y).

P(X,Y) :- S(X,Y).

The difference of rules P = R - S, is expressed by the following notation:

P(X,Y) :- R(X,Y), ¬ S(X,Y).

Recursive queries are expressed by the following notation:

P(X,Y) :- R(X,Y).

P(X,Y) :- S(X,Z), R(Z,Y).

3.4. Rego

From the official documentation [5], is stated that Rego was inspired by Datalog. It
extends Datalog to support structured document models such as JSON.

Rego queries are assertions on data stored in OPA, these queries can be used to define
policies that enumerate instances of data that violate the expected state of the system.
The policies written in Rego are easy to read and write. Rego focuses on providing
powerful support for referencing nested documents and ensuring that queries are correct
and unambiguous. Rego is declarative so policy authors can focus on what queries should
return rather than how queries should be executed. These queries are simpler and more
concise than the equivalent in an imperative language.

We resume in Table 3.1 the commands useful to define some examples of policies in the
next chapters.

Command Description

future.keywords.if True if the condition is satisfied
input. Values taken from input.json
data. Values taken from data.json
default Default value of a rule
true/false/null Pre-defined values

Table 3.1: Useful Rego commands.

Here below a simple example where Rego is used to make access decisions about which
users are allowed to access information in a fictional payroll microservice. The correspond-
ing policy in natural language is: Employees can read their own salary and the salary of

20 3| Baseline

anyone who reports to them [1].

1 default allow = false
2

3 allow = true {
4 input.method == "GET"
5 input.path = [" getSalary", user]
6 input.user == user}
7

8 allow = true {
9 input.method == "GET"

10 input.path = [" getSalary", user]
11 managers := data.managers[input.user][_]
12 contains(managers , user) }

Listing 3.1: Example of policy in Rego [1].

21

4| Proposed approach

In this chapter we propose an approach, giving definitions and graphical models with the
related explanations, with the aim of defining a framework to access the data in federated
Data Mesh; by doing this, we try to solve the problems presented in chapter 1. First, we
introduce the components of the Data Mesh taken by the existing literature, then we can
proceed by defining the interactions between the domain teams and the data products,
giving the possible scenarios, and finally we provide the models to define the policies.

4.1. Data Mesh components and design patterns

Recalling this topic from chapter 1, and adding some other details, we can state that the
Data Mesh architecture is a decentralized data architecture where the data is a product
and the data producers act as data product owners. Historically, a centralized infrastruc-
ture team would maintain data ownership across domains; now there is still a centralized
data governance team but only to enforce common standards and procedures around the
data. Domain teams become responsible for their ETL data pipelines under the Data
Mesh architecture [24].

The following components are defined [12]:

• The data product is a published dataset that can be accessed by other domains,
similar to an API. It is described with metadata and the domain team is responsible
for the operations on the data product during its entire lifecycle.

• The data contract is a formal agreement between two parties to use a data product.
It specifies the guarantees about a provided dataset and expectations concerning
data product usage.

• The data platform, which needs functions to ingest, store, query, and visualize data
as a self-service. An advanced data platform for Data Mesh provides additional
domain-agnostic data product capabilities for creating, monitoring, discovering, and
accessing data products, for example, by using a data catalog. The platform can
also support policy automation.

22 4| Proposed approach

• The federated governance group is a guild consisting of the representatives of all
teams taking part in the Data Mesh. They agree on global policies, defining the
rules on how the domain teams must build their data products.

• The enabling team consists of specialists with extensive knowledge on data analytics,
data engineering, and the self-serve data platform. They help other domain teams.

• The mesh emerges when domain teams use other team’s data products. Data from
multiple domain teams can be aggregated to build comprehensive reports and new
data products.

Data Mesh can have different design patterns, the original proposed by Dehghani is the
fine-grained fully federated mesh [32]. Data in this topology is owned, managed and shared
by each individual domain. Each data product is approached as an architectural quantum,
this means that you may instantiate many and different small data product architectures
for serving and pulling data across domains. Organization could have difficulties in the
adoption of this design pattern, so alternative patterns were proposed. Fine-grained and
fully governed mesh: domains distribute and route data via a central logic entity. Hybrid
federated mesh: federation on the consuming side with a bit of centralization on the
source-system aligned side. Value chain-aligned mesh: aligning domains around a full
chain of business’s activities. Coarse grained aligned mesh: alignment around business
units, regions and capabilities. Coarse grained and governed mesh: the same as before
while governing cross boundary distribution of data.

4.2. The three levels to access the data

After providing the components of the Data Mesh, we define three levels for the manage-
ment of the access of the data:

• The Business level is the level where the policies to access and transforming the
data are defined in natural language, such as English. These policies have not
a technical form and are general and valid for all the domain teams, they can be
formulated by the federated governance group. On the contrary, the other two levels
are implemented inside each domain team.

• The Technical level is the level where the policies, formulated before, are defined in
Rego. The rules for the policies are formulated basing on the directives expressed in
the previous level and on relevant facts, e.g., attributes and metadata, transmitted
to OPA that acts as the PDP; this component receives a request in JSON by the
PEP and, by applying the policies, returns to it a decision in JSON on whether a

4| Proposed approach 23

particular access is permitted or not. We assume that the PDP trusts the PEP, for
the validation of the identity of the data consumer, who can be internal or external
to the organization.

• The Enforcement level is the level where the deployment effectively happens. In-
formation about what are the various PEPs are provided. A PEP is responsible for
granting the effective access to the resource basing on the evaluation of the PDP.
The PEP only needs to have inside a logic to interpret the request of a user and for-
mulate the corresponding request in JSON to query the PDP, then it will interpret
the decision in JSON provided by the PDP. Depending on the outcome of the PDP,
the PEP grants or denies access to the resource. It is possible that an organization
could require to another organization other information that does not have and are
necessary to perform operations on the data product e.g., the attributes of an ex-
ternal user that makes the request. At this level it is necessary to define how and
where the PEPs of the organization require the previous information. We suppose
that the data of an external organization are passed in input as part of the query
of the PEP to the PDP.

4.2.1. Location of PDP and PEP

The two main components involved in the access of a data product are the PDP and the
PEP. As we can see in Figure 4.1, we suppose that each organization is served by a central
PDP, and each data product, provided by a domain team in the organization, has its own
PEP inside the organization.

PDP PDP

DATA
PRODUCT

DATA
PRODUCT

PEP

PEP

DATA
PRODUCT

PEP

ORGANIZATION 1 ORGANIZATION 2

DATA
PRODUCT

PEP

DATA
PRODUCT

PEP

Figure 4.1: Location of PDP and PEP.

24 4| Proposed approach

4.3. Scenarios

The simplest scenario is when the required data product is not an aggregation of other
data products. Otherwise, if the requested data product is an aggregation of other sec-
ondary data products, we can have three additional scenarios. The first is when the data
product is an aggregation of other secondary data products and they are all inside the
same organization, the second is when the secondary data products are all outside the
organization, the third is when a data product aggregates other data products both inside
and outside the organization.

4.3.1. Simple data product

In this case, the PEP of the data product communicates with the central PDP of the
organization, querying it when a data consumer requires the data product. The request
can be done by an internal or external member to the organization.

The model in Figure 4.2, regards a request coming from a data consumer who works inside
the organization; if the data is encrypted, in addition of having the necessary requisites,
the data consumer must also own the correct public key, as part of his attributes, to
access it. Being the data consumer inside the organization, all the necessary attributes
and metadata to make the evaluation are easy to retrieve and pass to OPA because are
inside the organization.

4| Proposed approach 25

PEP

OPA
PDP

DATA internal
(JSON)

Policy
(REGO)

Query
(JSON)

Decision
(JSON)

Policy
(English)

Business
Level

Technical Level

Data Consumer: ID

GET
POST
PUT

DELETE

/URI_of_the_data_product Data Product
if allowed

Enforcement Level

ORGANIZATION

Figure 4.2: Data consumer inside the organization.

The model, in Figure 4.3, regards a request of a data consumer outside the organization.
In addition to what said before, the PEP will pass to OPA some external data inside the
query, specifically the attributes of the data consumer which are outside the organization,
then OPA, combining internal and external data with the policies in Rego, provides the
decision. In general, being the data consumer external to the organization, the data
product could be anonymized or pseudoanonymized before granting access to it, to avoid
the data consumer to retrieve sensitive information about it.

26 4| Proposed approach

PEP

OPA
PDP

DATA internal
(JSON)

Policy
(REGO)

Query + DATA external
(JSON)

Decision
(JSON)

Policy
(English)

Business
Level

Technical Level

Data Consumer: ID

GET
POST
PUT

DELETE

/URI_of_the_data_product Data Product
if allowed

Enforcement Level

DATA external
(attributes of the data consumer)

data anonymized

ORGANIZATION 1ORGANIZATION 2

Figure 4.3: Data consumer outside the organization.

4.3.2. Aggregation of data products

In case of a data product which is an aggregation of secondary data products, the consid-
erations about the data consumer internal/external are still valid but now, the primary,
queried, data product becomes itself a sort of data consumer of the secondary data prod-
ucts.

In Figure 4.4 the secondary data products are inside the organization. The PEP of the
primary, requested, data product interacts with the central PDP of the organization and
the PEPs of the other two secondary data products. The PEP receives the decisions to
access the secondary data products from the central PDP, if the PDP grants access only
to one of the two secondary data products, then the PEP of such data product allows to
access it even if the other PEP cannot give access to its data product. In this way, the
data consumer can obtain a partial reconstruction of the primary data product.

4| Proposed approach 27

PDP

DATA
PRODUCT

DATA
PRODUCT

PEP

PEP

ORGANIZATION 1

DATA
PRODUCT

PEP

Figure 4.4: Aggregated data products inside the organization.

In Figure 4.5 we have a data product which is an aggregation of data products outside
the organization, so the access to the secondary data products is provided not only by the
PDP of the organization but by the interaction of this with the PDP of the organization
that contains the two secondary data products. If the access to one of these two data
products is forbidden to the data consumer of the primary data product, he cannot be
able to access both the two secondary data products even if he has the requisites to access
one of it.

PDP PDP

DATA
PRODUCT

DATA
PRODUCT

PEP

PEP

DATA
PRODUCT

PEP

ORGANIZATION 2 ORGANIZATION 1

Figure 4.5: Aggregated data products outside the organization.

In case of secondary data products both inside and outside the organization, Figure 4.6,
there could be the possibility that the data consumer can access only some of it. We
took the case of two secondary data products, if the data consumer can access only the
secondary data product inside the organization but not the external one, he can however
retrieve this secondary data product inside the organization. On the contrary, if he can

28 4| Proposed approach

access the secondary data product external to the organization but not the one inside the
organization, he cannot be able to access anything even if he has the requisites to access
the external one.

PDP PDP

DATA
PRODUCT

PEP

DATA
PRODUCT

PEP

ORGANIZATION 2 ORGANIZATION 1

DATA
PRODUCT

PEP

Figure 4.6: Aggregated data products inside and outside the organization.

4.4. Definition of the policies

The following E-R models give us an overview on the relationships of the policies with
the members and the resources of a Data Mesh architecture.

In Figure 4.7, we design the Consumer/Provider model that shows the entities involved
in the access of a data product. A data provider provides one or more data products; the
data product can be accessed according to the directives imposed by the policy agreement
that the data consumer makes with the data provider. As said in the previous chapters,
the policies adopt the ABAC paradigm, where the constraints to access the data product
are made according to the value of the metadata of the data product and the attributes
of the data consumer and the data provider.

4| Proposed approach 29

USER

ID

Name
Surname

DATA PROVIDER DATA CONSUMER

POLICY

Name

POLICY CONSTRAINT POLICY AGREEMENT POLICY REQUIREMENT

DATA PRODUCT
URI

Name

PROVIDE

(1:N)

(1:1)

METADATA
Name
ValueHAVE

(1:N)

(1:1)

HAVE

(0:N)

INCLUDE

(1:N)

(1:1)

COMPONENT

ENTIRE DATASET

(ex: a specific Table)

ATTRIBUTE
Name
ValueHAVE

(1:1)(1:N)BELONG

(1:N)

(0:N)

GROUP

INDIVIDUAL

HAVE

(1:1)

HAVE HAVE

(0:N)

(1:1)

(1:N) (1:N)(0:N) (0:N)

Figure 4.7: Consumer/Provider model.

In detail, the entities are the following:

• The general entity of USER with two child entities: the DATA CONSUMER and
the DATA PROVIDER; a user can belong to a group or be an individual person.

• The ATTRIBUTE that is an attribute associated to a user, each user can have one
or more attributes, each attribute has a corresponding value.

• The DATA PRODUCT, whose definition was given before in this chapter, it is
queried by the data consumer, who wants to access it to compute some operations,
and is provided by the data provider.

• The METADATA of the data product are features of the data product and they
have a value.

• The POLICY which have three child entities:

– POLICY CONSTRAINT, the constraints on the data product.

– POLICY REQUIREMENT, the requirements on the data product.

30 4| Proposed approach

– POLICY AGREEMENT that is the policy resulting by the match making
between the previous two.

The E-R model showed in Figure 4.8, is the model of the definition of the policy at the
technical level, that provides the entities involved in the definition of the policies, written
in Rego, that grant or deny the access to the data product. We can say that this model
is a representation of the entity POLICY AGREEMENT of the previous model. Some of
these entities are the same as the previous model but, the difference is that here refer to
theoretical entities that appears in the definition of policies and not to concrete physical
entities as before.

DATA PRODUCT

INCLUDE

(1:N)

(1:1)

ENTIRE DATASET

COMPONENT

HAVE

(0:N)

AUTHORIZATION(1:1)

HAVE
(1:N)

METADATA
Name
Value

(1:1)

HAVE
(1:1)

DATA CONSUMER

ID

(0:N)

BELONG

(1:N)

(0:N)

INDIVIDUAL

GROUP

ATTRIBUTE
Name
Value(1:1)

HAVE
(1:N)

HAVE
(1:1)

METHOD

ID(0:N)

CONSTRAINT

Expression

ON

ON

(0:1)(0:N)

(0:N)

(0:1)

HAVE

(0:N)

URI

(0:N)

Figure 4.8: Model of the definition of the policy at the technical level.

To define a policy, we need the following entities:

• The DATA PRODUCT that is the resource to which the actions applied, it can
have more than one metadata.

• The METADATA is the entity that define a feature of the data product with the
corresponding value.

• The DATA CONSUMER is the entity who wants to do an action, he can have more
than one attributes.

• The ATTRIBUTE is the entity that define an attribute of the consumer with the
corresponding value.

• The CONSTRAINT entity is a constraint on the value of a metadata or of an

4| Proposed approach 31

attribute, the values are compared to each other or to fixed literal or numerical
values.

• The METHOD refers to both an access mode or an operation that is done on a data
product.

• The AUTHORIZATION which is a weak entity and does not exist without a method,
a data product and a data consumer. Basing on the constraints (zero or more), lets
a certain user or group of users to perform some actions on a certain data product.

33

5| Examples and tests

In this chapter we provide examples of policies of the business level that are transformed
in the correspondent policies of the technical level. For simplicity, we consider only not
aggregated data products. The policies are formulated following the entities and rela-
tionships of the E-R model of Figure 4.8 and consequently, with respect of the ABAC
paradigm. They will be tested by running OPA as the PDP.

5.1. Policies at the business level

We start by defining policies at the business level written in English. The policies regard
authorizations in hospital organizations. Here are some examples:

• The doctors can read and write their data.

• The research doctors can read every data even if it is external to the hospital where
they work.

• The data generated by a research doctor can be read by other workers in the hospital
where the research doctor works.

• The data provided by a research doctor is encrypted.

• The data is anonymized if the request is done by an external member of the orga-
nization.

5.2. Policies at the technical level

We reformulate the previous policies, at the technical level, in Rego. The file rules.rego
defines the rules for the constraints and the authorizations by taking inside the values
contained in the data.json file and in the input.json file.

1 package rules
2 import future.keywords.if
3

4 import input.data_consumer

34 5| Examples and tests

5 import input.method
6 import input.data_product
7

8 #import the attributes of the data_consumer if is external
9 import input.attributes

10

11 #constraints
12

13 user_is_doctor if data.attributes[input.data_consumer].role == "doctor"
14 user_is_doctor if input.attributes[input.data_consumer].role == "doctor"
15

16 user_is_researcher if data.attributes[input.data_consumer]. researcher ==
true

17 user_is_researcher if input.attributes[input.data_consumer]. researcher
== true

18

19 user_is_owner if input.data_consumer == data.metadata[input.data_product
].owner

20

21 resource_provided_by_researcher if data.attributes[data.metadata[input.
data_product]. owner]. researcher == true

22

23 same_company if data.attributes[input.data_consumer]. company == data.
metadata[input.data_product]. company

24

25 #authorizations
26

27 default allow := false
28 default encrypted := false
29 default anonymized := false
30

31 #The doctors can read and write their data.
32 allow if {
33 user_is_doctor
34 user_is_owner
35 input.method == "GET"
36 }
37

38 allow if {
39 user_is_doctor
40 user_is_owner
41 input.method == "POST"
42 }
43

5| Examples and tests 35

44 #The research doctors can read every data.
45 allow if {
46 user_is_doctor
47 user_is_researcher
48 input.method == "GET"
49 }
50

51 #The data generated by a research doctor can be read by other workers in
the hospital where the research doctor works.

52 allow if {
53 resource_provided_by_researcher
54 same_company
55 input.method == "GET"
56 }
57

58 #The data provided by a research doctor is encrypted.
59 encrypted if {
60 data.attributes[data.metadata[input.data_product].owner].role == "

doctor"
61 data.attributes[data.metadata[input.data_product].owner]. researcher ==

true
62 }
63

64 #The data is anonymized if the request is done by an external member of
the organization.

65 anonymized if {
66 not same_company
67 }

Listing 5.1: rules.rego

In the data.json file are defined some facts that can be useful to formulate the policies.
The information contained in this file are internal to the organization. The facts are the
list of the workers, identified by their ID, with their attributes and the list of the data
products, identified by their URI, with their metadata; we give them some values. It is
possible to define additional attributes and metadata. Among the attributes that a user
could have, there are: his years of experience and the years working for the organization.
Among the metadata of a data product, there could be: the format of the data, the type
of the data, the original URI of the data, the date of the last edit and the source of that
data.

1 {
2 "attributes ": {
3 "a2b67": {" company ": "c1", "role": "doctor", "researcher ": true ,

36 5| Examples and tests

"public key": "p.key_a2b67"},
4 "98 uio": {" company ": "c1", "role": "doctor", "researcher ": false

, "public key": "p.key_98uio "}
5 },
6 "metadata ": {
7 "https :// www.db1.com/resource1 /": {"name": "resource1", "db": "

db1", "owner ": "a2b67", "company ": "c1"},
8 "https :// www.db1.com/resource2 /": {"name": "resource2" , "db": "

db1", "owner ": "98uio", "company ": "c1"},
9 "https :// www.db1.com/resource3 /": {"name": "resource3", "db": "db1

", "owner": "98uio", "company ": "c1"},
10 "https :// www.db3.com/resource6 /": {"name": "resource6", "db": "db3

", "owner": "a2b67", "company ": "c1"}
11 }
12 }

Listing 5.2: data.json

In our framework, the query is made by the PEP to the OPA-PDP, then the PEP waits for
the answer. The query sent to OPA is in JSON format and contains: the data consumer
who makes the request, the method to access the data product and the data product that
is required, if the data consumer is external, he must also provide his attributes and the
PEP, will transmit them in the query formulation. Changing the values of the query, the
allow, defined in the rules.rego file, becomes true or remains false, if remains false the
user cannot access the resource with that method. If an external user for some reasons
does not provide his attributes, the PEP cannot be able to pass them to the PDP and
allow remains false even if the user would have the right requisites to access the data.
Changing the input modifies also the values of encrypted and anonymized. If encrypted is
true, the data consumer must have the right public key in order to make the operation on
the data. If anonymized is true, the data is stripped of any identifiable information, this
is an additional security measure against data consumers external to the organization.

1 {
2 "input ":{
3 "data_consumer ": id_of_the_data_consumer ,
4 "attributes ": { (attributes) },
5 "method ": the_method (GET/POST/PUT/DELETE),
6 "data_product ": uri_of_the_data_product
7 }
8 }

Listing 5.3: input.json

5| Examples and tests 37

5.3. Tests

Here, OPA is run as a server with the information contained in the file data.json that are
the data inside the organization. We use the following command: ./opa run data.json
rules.rego -s. Then we can provide some queries in JSON to test the rules defined before.

5.3.1. Example 1

A doctor internal in the organization, makes the request of GET or POST to a data of
which he is the owner and allow becomes true. anonymized remains false because the
request is internal in the organization while encrypted becomes true because, in that case,
the owner is a research doctor otherwise would remain false.

Query:

1 {
2 "input": {
3 "data_consumer ": "a2b67",
4 "method ": "GET",
5 "data_product ": "https ://www.db1.com/resource1 /"
6 }
7 }

Listing 5.4: Query 1.

Decision:

1 {
2 "result ": {
3 "allow": true ,
4 "anonymized ": false ,
5 "encrypted ": true ,
6 "resource_provided_by_researcher ": true ,
7 "same_company ": true ,
8 "user_is_doctor ": true ,
9 "user_is_owner ": true ,

10 "user_is_researcher ": true
11 }
12 }

Listing 5.5: Decision 1.

38 5| Examples and tests

5.3.2. Example 2

A doctor, who is not the owner of a resource, cannot do the POST of another resource
even if is a research doctor and is internal to the organization. So in this case, allow
remains false.

Query:

1 {
2 "input": {
3 "data_consumer ": "a2b67",
4 "method ": "POST",
5 "data_product ": "https ://www.db1.com/resource2 /"
6 }
7 }

Listing 5.6: Query 2.

Decision:

1 {
2 "result ": {
3 "allow": false ,
4 "anonymized ": false ,
5 "encrypted ": false ,
6 "same_company ": true ,
7 "user_is_doctor ": true ,
8 "user_is_researcher ": true
9 }

10 }

Listing 5.7: Decision 2.

5.3.3. Example 3

A data consumer, external to the organization, who is not a research doctor, cannot do
the GET of a resource of the organization and consequently, allow remains false.

Query:

1 {
2 "input": {
3 "data_consumer ": "56 tywe",
4 "attributes ": {
5 "56 tywe": {
6 "company ": "c2",

5| Examples and tests 39

7 "role": "nurse",
8 "researcher ": null ,
9 "public key": "p.key_56tywe"

10 }
11 },
12 "method ": "GET",
13 "data_product ": "https ://www.db1.com/resource1 /"
14 }
15 }

Listing 5.8: Query 3.

Decision:

1 {
2 "result ": {
3 "allow": false ,
4 "anonymized ": true ,
5 "encrypted ": true ,
6 "resource_provided_by_researcher ": true
7 }
8 }

Listing 5.9: Decision 3.

5.3.4. Example 4

A research doctor, external to the organization, providing his attributes, can do the GET
of a resource. The resource will be anonymized because the request comes from outside.
Here encrypted is true because, in this case, the resource belongs to a research doctor. If
the data consumer wants to do a POST, allow remains false.

Query:

1 {
2 "input": {
3 "data_consumer ": "24hj9",
4 "attributes ": {
5 "24 hj9": {
6 "company ": "c2",
7 "role": "doctor",
8 "researcher ": true ,
9 "public key": "p.key_24hj9"

10 }
11 },
12 "method ": "GET",

40 5| Examples and tests

13 "data_product ": "https ://www.db1.com/resource1 /"
14 }
15 }

Listing 5.10: Query 4.

Decision:

1 {
2 "result ": {
3 "allow": true ,
4 "anonymized ": true ,
5 "encrypted ": true ,
6 "resource_provided_by_researcher ": true ,
7 "user_is_doctor ": true ,
8 "user_is_researcher ": true
9 }

10 }

Listing 5.11: Decision 4.

If for some reasons, an external data consumer, or his organization, does not provide his
attributes, allow remains always false and he cannot access the resource even if, he would
have the right requisites to access it.

41

6| Conclusions

Given the results obtained, we conclude our investigation. In this work, we have provided a
framework that manages the interactions of domain teams, organizations, data consumers
and data products. We have defined the structure of the security policies used in the Data
Mesh architecture to regulate the access to the data, choosing a declarative language like
Rego to define it, and using OPA as the policy engine; we have provided some examples
and carry out some tests.

The future development of this work, could be the possibility to extend the investigation
to a wider context, the data sovereignty, in particular whether the presented framework
must be modified to be conformed to data sovereignty. Data sovereignty refers to the
idea that a country or jurisdiction has the authority and right to govern and control
the data generated within its borders. This means that the government has the power
to regulate the collection, storage, processing, and distribution of data that originates
within its territory. In 2016, the EU Parliament, already approved some data sovereignty
measures within a General Data Protection Regulation (GDPR) [3]. This regulatory
package homogenizes data protection policies for all European Union members. Nowa-
days there are still some key challenges of data sovereignty. The cross-border data flows:
data sovereignty can make it more difficult to transfer data across borders; this can re-
sult in increased costs and complexity for businesses that operate globally with flows of
data across different jurisdictions. The data localization requirements: some countries
may require that certain types of data be stored and processed within their jurisdiction,
which can be challenging for businesses that operate in multiple regions. The possibility
of cybersecurity risks: data sovereignty can increase cybersecurity risks, particularly if
data is stored in a single location or jurisdiction. Finally, data sovereignty can create
challenges for international data sharing agreements, particularly if countries have differ-
ent requirements for data protection and storage. To overcome these problems, there is a
recent project called Gaia-X [2], the goal of this project is to provide a secure and feder-
ated data infrastructure that stands for European values, digital sovereignty of the data
owners, interoperability of different platforms. Within this ecosystem, it will be possible
to provide, share, and use data within a trustworthy environment. At the European level,

42 6| Conclusions

Gaia-X invests money to create data spaces. A data space is a virtual and interoperable
system between different cloud service providers, which allows its users to exchange data
when needed. Data spaces can be organized by supply chain, sector or scope.

43

Bibliography

[1] Aws prescriptive guidance multi-tenant saas authorization and api access con-
trol. URL https://docs.aws.amazon.com/prescriptive-guidance/latest/

saas-multitenant-api-access-authorization/welcome.html.

[2] What is gaia-x. URL https://gaia-x.eu/what-is-gaia-x/.

[3] Gdpr - regolamento 2016/679 - garante privacy. URL https://www.

garanteprivacy.it/regolamentoue.

[4] Minio. URL https://min.io/.

[5] Open policy agent. URL https://www.openpolicyagent.org/docs/latest/

#overview.

[6] M. U. Aftab, Z. Qin, Zakria, S. Ali, Pirah, and J. Khan. The evaluation and com-
parative analysis of role based access control and attribute based access control
model. In 2018 15th International Computer Conference on Wavelet Active Me-
dia Technology and Information Processing (ICCWAMTIP), pages 35–39, 2018. doi:
10.1109/ICCWAMTIP.2018.8632578.

[7] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems concepts, lan-
guages & architectures, pages 77–80. The McGraw-Hill Companies, 1999.

[8] A. Berben. Enterprise-level policy enforcement with opa (open policy agent) and gloo
edge. URL https://www.solo.io/blog/opa-open-policy-agent-gloo-edge/.

[9] J. Bode, N. Kühl, D. Kreuzberger, and S. Hirschl. Data mesh: Motivational factors,
challenges, and best practices. arXiv preprint arXiv:2302.01713, 2023.

[10] E. Broda. Data mesh/data product security pat-
tern, 8 2022. URL https://towardsdatascience.com/

data-mesh-data-product-security-pattern-c5b93a27e82e.

[11] S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases, pages 1–14.
Springer Science & Business Media, 2012.

https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/welcome.html
https://gaia-x.eu/what-is-gaia-x/
https://www.garanteprivacy.it/regolamentoue
https://www.garanteprivacy.it/regolamentoue
https://min.io/
https://www.openpolicyagent.org/docs/latest/#overview
https://www.openpolicyagent.org/docs/latest/#overview
https://www.solo.io/blog/opa-open-policy-agent-gloo-edge/
https://towardsdatascience.com/data-mesh-data-product-security-pattern-c5b93a27e82e
https://towardsdatascience.com/data-mesh-data-product-security-pattern-c5b93a27e82e

44 | Bibliography

[12] J. Christ, L. Visengeriyeva, and S. Harrer. Data mesh from an engineering perspec-
tive. URL https://www.datamesh-architecture.com/#why.

[13] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification
language. In Policies for Distributed Systems and Networks: International Workshop,
POLICY 2001 Bristol, UK, January 29–31, 2001 Proceedings, pages 18–38. Springer,
2001.

[14] Z. Dehghani. How to move beyond a monolithic data lake to a distributed data mesh,
2019. URL https://martinfowler.com/articles/data-monolith-to-mesh.

html.

[15] Z. Dehghani. Data mesh paradigm shift in data platform architecture., 2020. URL
https://www.youtube.com/watch?v=52MCFe4v0UU.

[16] Z. Dehghani. Data mesh principles and logical architecture, 2020. URL https:

//martinfowler.com/articles/data-mesh-principles.html.

[17] Z. Dehghani. Data Mesh. O’Reilly Media, Inc., 2022. ISBN 9781492092391.

[18] C. Dimoulas, S. Moore, A. Askarov, and S. Chong. Declarative policies for capability
control. In 2014 IEEE 27th Computer Security Foundations Symposium, pages 3–17.
IEEE, 2014.

[19] J. Dončević, K. Fertalj, M. Brčić, and M. Kovač. Mask-mediator-wrapper architecture
as a data mesh driver. arXiv preprint arXiv:2209.04661, 2022.

[20] R. Echahed and F. Prost. Security policy in a declarative style. In Proceedings
of the 7th ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 153–163, 2005.

[21] A. Goedegebuure, I. Kumara, S. Driessen, D. Di Nucci, G. Monsieur, W.-j. v. d.
Heuvel, and D. A. Tamburri. Data mesh: a systematic gray literature review. arXiv
preprint arXiv:2304.01062, 2023.

[22] V. C. Hu, D. Ferraiolo, D. R. Kuhn, et al. Assessment of access control systems.
US Department of Commerce, National Institute of Standards and Technology . . . ,
2006.

[23] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell,
A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone, et al. Guide to attribute based
access control (abac) definition and considerations (draft). NIST special publication,
800(162):1–54, 2013.

https://www.datamesh-architecture.com/#why
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://www.youtube.com/watch?v=52MCFe4v0UU
https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/articles/data-mesh-principles.html

6| BIBLIOGRAPHY 45

[24] IBM. What is a data mesh? URL https://www.ibm.com/topics/data-mesh.

[25] P. Kolari, L. Ding, G. Shashidhara, A. Joshi, T. Finin, and L. Kagal. Enhancing
web privacy protection through declarative policies. In Sixth IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY’05), pages
57–66. IEEE, 2005.

[26] I. A. Machado, C. Costa, and M. Y. Santos. Data mesh: concepts and principles of a
paradigm shift in data architectures. Procedia Computer Science, 196:263–271, 2022.

[27] I. A. Machado, C. Costa, and M. Y. Santos. Data mesh: concepts and principles of a
paradigm shift in data architectures. Procedia Computer Science, 196:263–271, 2022.

[28] K. Martiny, D. Elenius, and G. Denker. Protecting privacy with a declarative policy
framework. In 2018 IEEE 12th International Conference on Semantic Computing
(ICSC), pages 227–234. IEEE, 2018.

[29] A. Mott and C. Ng. Practical security and policy-based gover-
nance in a data mesh, 2022. URL https://www.starburst.io/blog/

practical-security-and-policy-based-governance-in-a-data-mesh/.

[30] N. K. Mukhi and P. Plebani. Supporting policy-driven behaviors in web services:
experiences and issues. In Proceedings of the 2nd international conference on Service
oriented computing, pages 322–328, 2004.

[31] S. Ross-Talbot, S. Tabet, S. Chakravarthy, and G. Brown. A generalized ruleml-
based declarative policy specification language for web services. In W3C Workshop
on Constraints and Capabilities for Web Services, 2004.

[32] P. Strengholt. Data mesh: Topologies and domain gran-
ularity, 5 2022. URL https://towardsdatascience.com/

data-mesh-topologies-and-domain-granularity-65290a4ebb90.

[33] Wikipedia. Xacml, 2022. URL https://it.wikipedia.org/wiki/XACML.

[34] Y. Zhou, Q. Zhao, and M. Perry. Policy enforcement pattern. In Proceedings of the
Conference on Pattern Languages of Programs, pages 1–14. Citeseer, 2002.

https://www.ibm.com/topics/data-mesh
https://www.starburst.io/blog/practical-security-and-policy-based-governance-in-a-data-mesh/
https://www.starburst.io/blog/practical-security-and-policy-based-governance-in-a-data-mesh/
https://towardsdatascience.com/data-mesh-topologies-and-domain-granularity-65290a4ebb90
https://towardsdatascience.com/data-mesh-topologies-and-domain-granularity-65290a4ebb90
https://it.wikipedia.org/wiki/XACML

47

List of Figures

2.1 Policy enforcement pattern [34]. 6
2.2 Data Mesh security pattern [10]. 10

3.1 XACML architecture [8]. 16
3.2 Policy decoupling in OPA [5]. 17

4.1 Location of PDP and PEP. 23
4.2 Data consumer inside the organization. 25
4.3 Data consumer outside the organization. 26
4.4 Aggregated data products inside the organization. 27
4.5 Aggregated data products outside the organization. 27
4.6 Aggregated data products inside and outside the organization. 28
4.7 Consumer/Provider model. 29
4.8 Model of the definition of the policy at the technical level. 30

49

List of Tables

3.1 Useful Rego commands. 19

51

Listings
3.1 Example of policy in Rego [1]. 20
5.1 rules.rego . 33
5.2 data.json . 35
5.3 input.json . 36
5.4 Query 1. 37
5.5 Decision 1. 37
5.6 Query 2. 38
5.7 Decision 2. 38
5.8 Query 3. 38
5.9 Decision 3. 39
5.10 Query 4. 39
5.11 Decision 4. 40

53

Acknowledgements

In primo luogo, vorrei ringraziare il mio relatore, Pierluigi Plebani e il mio correlatore,
Mattia Salnitri, per la grande disponibilità e competenza oltre al prezioso aiuto nella
redazione di questa tesi.

Il più grande ringraziamento va ai miei genitori, che mi hanno dato la possibilità di
studiare e raggiungere questo traguardo sostenendomi e incoraggiandomi sempre; mi sento
fortunato ad avere genitori come loro.

Un ringraziamento speciale va a Giulia, per il suo sostegno morale e per tutti i momenti
felici trascorsi insieme e che hanno reso meno pesante la conclusione del mio percorso
universitario.

Infine, ringrazio tutti i miei amici, sia quelli di vecchia data che quelli più recenti, per i
momenti spensierati passati insieme.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the art
	Access control
	Security patterns
	Declarative languages for policies

	Baseline
	XACML architecture
	Open Policy Agent
	Datalog
	Rego

	Proposed approach
	Data Mesh components and design patterns
	The three levels to access the data
	Location of PDP and PEP

	Scenarios
	Simple data product
	Aggregation of data products

	Definition of the policies

	Examples and tests
	Policies at the business level
	Policies at the technical level
	Tests
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Listings
	Acknowledgements

