
POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

TESI DI LAUREA MAGISTRALE IN COMPUTER SCIENCE AND

ENGINEERING

GATOR
A GAME THEORY APPROACH TO RESOURCE

ALLOCATION FOR HETEROGENEOUS CPUS

Author:

Dott.ssa Lara Premi
Student ID:

841714

Supervisor:

Prof. William Fornaciari

Co-Supervisor (Correlatore):

Dott. Federico Reghenzani

Co-Supervisor (Correlatore):

Ph.D. Giuseppe Massari

A.Y. 2019/2020

A Raffaella,
ovunque tu sia.

I

Contents

List of Figures XII

List of Tables XIII

Acknowledgements XV

Abstract XVII

Abstract (in italiano) XIX

1 Introduction 1
1.1 Heterogeneous computing 1

1.1.1 High Performance Computing 2
1.1.2 An example: the MANGO architecture 3

1.2 The Resource Management problem 5
1.2.1 Barbeque Run-Time Resource Manager 6

1.3 Introduction to Game Theory 7
1.3.1 Historical overview 8
1.3.2 The Prisoner’s Dilemma 9
1.3.3 Classification of games 10
1.3.4 Identification of possible algorithms for resource

management . 11
1.4 Thesis contributions and structure 12

III

Contents

1.4.1 Contributions . 12
1.4.2 Structure . 12

2 State of the Art 15
2.1 Available policies in BarbequeRTRM 15
2.2 Resource management based on games 17

2.2.1 Cooperative games 17
2.2.2 Non-cooperative games 17
2.2.3 Studies on the comparison of cooperative and non-

cooperative games 18
2.3 Our contribution with respect to the State of the Art . . . 19

3 Game Theory policies 21
3.1 Congestion games . 21

3.1.1 The allocation policy 22
3.1.2 Problem modelling 22
3.1.3 The algorithms and their complexity 23
3.1.4 Cost function design 25

3.2 Double auctions . 27
3.2.1 The allocation policy 28
3.2.2 Problem modelling 28
3.2.3 The algorithms and their complexity 29
3.2.4 How to choose the bid 31

4 Simulation of the policies 33
4.1 Simulation setup . 33
4.2 Congestion Games . 34

4.2.1 Modifications required for the experiments 36
4.3 Double auctions . 37
4.4 Discussion of the results 38

5 Implementation of the algorithms 41
5.1 Designing the BarbequeRTRM policies 41

5.1.1 The congestion game extensions 43
5.1.2 The double auctions extensions 45

5.2 The configuration parameters files 52

IV

Contents

6 Experimental evaluation 55
6.1 Experimental setup . 55
6.2 Estimation of power and energy coefficients 57
6.3 Congestion games . 60

6.3.1 Selecting the CPU share based on QoS 60
6.3.2 Results . 61

6.4 Double auctions games 62
6.4.1 Results . 63

6.5 Discussion . 80

7 Conclusions 83
7.1 Future works . 83
7.2 Conclusions . 84

Bibliography 87

V

List of Figures

1.1 The increasing trend of the use of heterogeneous resources
in HPC systems (the data have been retrieved from the
TOP500 list). 2

1.2 Overall architecture of the Horizon 2020 MANGO platform. 4
1.3 The architecture of one FPGA used in the Horizon 2020

MANGO platform. 5

4.1 The representation of the policy execution times by vary-
ing the number of tasks and the γ values, with a fixed
amount of resources, in the case of congestion games. . . 34

4.2 The representation of the policy execution times by vary-
ing the number of resources and the γ values, with a fixed
amount of tasks, in the case of congestion games. 35

4.3 The 3D representation of the policy execution times by
varying both the number of resources and the number of
tasks, in the case of congestion games. 36

4.4 The representation of the policy execution times by vary-
ing the number of tasks, with a fixed amount of resources,
in the case of McAfee algorithm. 38

4.5 The representation of the policy execution times by vary-
ing the number of tasks, with a fixed amount of resources,
in the case of VCG mechanism. 39

VII

List of Figures

5.1 The UML class diagram for a generic BarbequeRTRM
policy. 42

5.2 The skeleton of the UML class diagram for the policy
based on congestion games. 43

5.3 The skeleton of the UML class diagram of the congestion
game algorithm implementation. 45

5.4 The UML class diagram for Task (congestion game). . . 46

5.5 UML class diagram for Action (congestion game). . . . 46

5.6 UML class diagram for Resource (congestion game). . 47

5.7 UML class diagram for Game and CongestionGame

(congestion game). 48

5.8 The skeleton of the UML class diagram for the policy
based on double auctions games. 49

5.9 The skeleton of the UML class diagram of the double auc-
tions algorithm implementation. 50

5.10 The UML class diagram for Task (double auctions). . . 50

5.11 The UML class diagram for Resource (double auctions). 51

5.12 The UML class diagram for DoubleAuctions (double
auctions). 51

5.13 The skeleton of the XML file for congestion game policy. 52

5.14 The skeleton of the XML file for double auctions policy. . 53

6.1 The measured values of time, energy and power, accord-
ing to the variation of α̂ with γ̂ and β̂ equal to 1. 62

6.2 The measured values of time, energy and power, accord-
ing to the variation of γ̂ with α̂ and β̂ equal to 1. 63

6.3 The measured values of time, energy and power, accord-
ing to the variation of β̂ with α̂ and γ̂ equal to 1. 64

6.4 The comparison of the "with resource manager" situation
and the "without resource manager" situation according to
time, energy and power. The values of α̂, β̂ and γ̂ are 1.
The x-axis represents the number of tasks: (# facesim,
blackscholes). 65

VIII

List of Figures

6.5 The analysis of time, energy and power, by varying α̂ and
maintaining β̂ and γ̂ equal to 1. In this case, we run one
facesim task and one blackscholes task, using the
McAfee algorithm. 65

6.6 The analysis of time, energy and power, by varying α̂ and
maintaining β̂ and γ̂ equal to 1. In this case, we run one
facesim task and one blackscholes task, using the
VCG mechanism. 66

6.7 The analysis of time, energy and power, by varying α̂ and
maintaining β̂ and γ̂ equal to 1. In this case, we run two
facesim tasks and two blackscholes tasks, using
the McAfee algorithm. 66

6.8 The analysis of time, energy and power, by varying α̂ and
maintaining β̂ and γ̂ equal to 1. In this case, we run two
facesim tasks and two blackscholes tasks, using
the VCG mechanism. 67

6.9 The analysis of time, energy and power, by varying α̂ and
maintaining β̂ and γ̂ equal to 1. In this case, we run four
facesim tasks and four blackscholes tasks, using
the McAfee algorithm. 67

6.10 The analysis of time, energy and power, by varying α̂ and
maintaining β̂ and γ̂ equal to 1. In this case, we run four
facesim tasks and four blackscholes tasks, using
the VCG mechanism. 68

6.11 The analysis of time, energy and power, by varying β̂ and
maintaining α̂ and γ̂ equal to 1. In this case, we run one
facesim task and one blackscholes task, using the
McAfee algorithm. 68

6.12 The analysis of time, energy and power, by varying β̂ and
maintaining α̂ and γ̂ equal to 1. In this case, we run one
facesim task and one blackscholes task, using the
VCG mechanism. 69

6.13 The analysis of time, energy and power, by varying β̂ and
maintaining α̂ and γ̂ equal to 1. In this case, we run two
facesim tasks and two blackscholes tasks, using
the McAfee algorithm. 69

IX

List of Figures

6.14 The analysis of time, energy and power, by varying β̂ and
maintaining α̂ and γ̂ equal to 1. In this case, we run two
facesim tasks and two blackscholes tasks, using
the VCG mechanism. 70

6.15 The analysis of time, energy and power, by varying β̂ and
maintaining α̂ and γ̂ equal to 1. In this case, we run four
facesim tasks and four blackscholes tasks, using
the McAfee algorithm. 70

6.16 The analysis of time, energy and power, by varying β̂ and
maintaining α̂ and γ̂ equal to 1. In this case, we run four
facesim tasks and four blackscholes tasks, using
the VCG mechanism. 71

6.17 The analysis of time, energy and power, by varying γ̂ and
maintaining α̂ and β̂ equal to 1. In this case, we run one
facesim task and one blackscholes task, using the
McAfee algorithm. 71

6.18 The analysis of time, energy and power, by varying γ̂ and
maintaining α̂ and β̂ equal to 1. In this case, we run one
facesim task and one blackscholes task, using the
VCG mechanism. 72

6.19 The analysis of time, energy and power, by varying γ̂ and
maintaining α̂ and β̂ equal to 1. In this case, we run two
facesim tasks and two blackscholes tasks, using
the McAfee algorithm. 72

6.20 The analysis of time, energy and power, by varying γ̂ and
maintaining α̂ and β̂ equal to 1. In this case, we run two
facesim tasks and two blackscholes tasks, using
the VCG mechanism. 73

6.21 The analysis of time, energy and power, by varying γ̂ and
maintaining α̂ and β̂ equal to 1. In this case, we run four
facesim tasks and four blackscholes tasks, using
the McAfee algorithm. 73

6.22 The analysis of time, energy and power, by varying γ̂ and
maintaining α̂ and β̂ equal to 1. In this case, we run four
facesim tasks and four blackscholes tasks, using
the VCG mechanism. 74

X

List of Figures

6.23 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the McAfee algorithm and one blackscholes
task. 75

6.24 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the McAfee algorithm and two blackscholes
tasks. 76

6.25 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the McAfee algorithm and one facesim task. . . 76

6.26 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the McAfee algorithm and two facesim tasks. . 77

6.27 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the VCG mechanism and one blackscholes
task. 77

6.28 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the VCG mechanism and one facesim task. . . 78

6.29 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the VCG mechanism and two blackscholes

tasks. 78

6.30 The comparison of total energy, dynamic energy, time, av-
erage power and maximum power with and without Bar-
bequeRTRM, in both the AVG and MAX situations, in the
case of the VCG mechanism and two facesim tasks. . . 79

XI

List of Tables

1.1 The classical formulation of the Prisoner’s Dilemma. . . . 9

4.1 Improvement percentages of the costs by using the algo-
rithms, based on congestion games and compared to the
initial random solution. 37

4.2 The comparison of social welfare of the two algorithms
based on double auctions scenario: the larger, the better. . 40

6.1 The estimated dynamic power for the cores of the proces-
sor under analysis. 58

6.2 The estimated Power Delay Product (PDP) for the cores
of the processor under analysis. 58

6.3 The measured execution times and the computed percent-
ages for benchmark facesim. 60

6.4 The measured execution times and the computed percent-
ages for benchmark blackscholes. 60

XIII

Acknowledgements

T. S. Eliot ha detto Quello che conta è il percorso del viaggio e non
l’arrivo.

Se qualcuno me lo avesse fatto presente qualche anno fa, in corsa
verso la laurea ancora lontana, probabilmente avrei storto il naso per-
ché, diciamocelo, l’obiettivo di chi inizia ad andare all’università è il
fantomatico pezzo di carta per cui ogni giorno ci alziamo dal letto, im-
pazziamo sui libri, inseguiamo professori nel campus e cerchiamo di bar-
camenarci fra lezioni costantemente sovrapposte.

Eppure, a distanza di una vita intera da quando ho varcato la soglia
del Politecnico di Milano per la prima volta, sono convinta che, senza il
tragitto che ho effettuato, senza tutti gli scossoni che ho dovuto affrontare,
senza tutte le vittorie che ho potuto vivere, non sarei dove sono ora, una
ragazza diventata donna grazie, in particolar modo, all’appoggio delle
persone che mi hanno fatto compagnia in questa avventura.

I primi che cito in questi ringraziamenti sono i miei genitori che, oltre
ad avermi garantito le comodità di un tetto e l’accoglienza di una famiglia
durante il periodo di studi, sono riusciti a sopportarmi più di quanto avreb-
bero dovuto fare: grazie che ancora non mi avete cacciata di casa per
insofferenza.

A mio fratello Gabriele, per il silenzio che a volte condividiamo, per
le risate che non guastano mai e per i passaggi in auto verso la stazione:
se non fosse stato per te, manco avrei presieduto all’Open Day.

XV

Acknowledgements

A tutti i miei ex compagni di corso, quelli con cui ho legato partico-
larmente, quelli che non ho avuto l’occasione di conoscere bene, chi è
arrivato qualche anno più tardi, chi ha iniziato insieme a me, coloro con i
quali ho litigato e coloro che ancora tollerano la mia presenza: grazie, per
aver condiviso con me le esperienze in cui siamo inciampati all’ateneo.
Fortuna che, cadendo, non ci siamo fatti troppo male!

Alle amiche "poche ma buone" che il destino mi ha fatto incontrare
nei modi più disparati, Chiara P., Susy, Erica, Giulia e Chiara T.: mi siete
sempre state accanto, mi siete accanto ora e lo sarete anche domani, vi
adoro.

A Walter e Marta che accettano i miei isterismi nel pubblico e nel
privato senza dire mai niente: so che prima o poi mi tirerete il collo, ma
vi ringrazio anche di non averlo ancora fatto.

Al professor William Fornaciari, ai correlatori Giuseppe e Federico,
alla famiglia intera dell’HeapLab: mi avete adottata quando sono rimasta
orfana, a voi devo davvero tutto, grazie.

Da ultimo menziono la persona che sono solita bistrattare, l’unica che
critico sempre e in ogni modo possibile, io, che, nonostante tutto e dopo
tutto, ce l’ho fatta, da sola, fino alla fine. Grazie.

XVI

Abstract

In literature, several state-of-the-art works exploited Game Theory as an
approach to solve the resource allocation problem in distributed systems.
In this thesis, we propose to use this theory also for heterogeneous plat-
forms with different types of computational units. By creating two re-
source allocation policies based on congestion games and double auctions
games, and by integrating them on BarbequeRTRM software, we show
their benefits in terms of performance and other metrics, such as energy
and power. We check the above-mentioned policies with a simulation and
an experimental evaluation phases: in the former, we study their execu-
tion time and their solution optimality from a theoretical standpoint; in the
latter, a set of metrics, including power and energy, are measured directly
on a real system. We run well-known benchmarks to explore a large set
of scenarios. From the results of the experimental campaign, we discuss
how to tune the parameters of the two policies and their advantages.

Part of this work has been accepted for publication in the Embedded Sys-
tem Week 2020 proceedings [23].

XVII

Abstract (in italiano)

In letteratura, molti lavori dello stato dell’arte hanno sfruttato la teo-
ria dei giochi come approccio per risolvere il problema di allocazione
delle risorse nei sistemi distribuiti. In questa tesi, proponiamo l’utilizzo
di questa disciplina matematica anche nelle piattaforme eterogenee con
differenti tipologie di unità computazionali. Attraverso la creazione di
due politiche di allocazione delle risorse basate sui giochi di congestione
e sui giochi a doppia asta e grazie alla loro integrazione sul software
di BarbequeRTRM, mostriamo i loro vantaggi in termini di performance
e di altre metriche, come l’energia e la potenza. Testiamo le suddette
politiche con una fase di simulazione e una fase di valutazione sperimen-
tale: nella prima, studiamo il loro tempo d’esecuzione e l’ottimalità della
loro soluzione da un punto di vista teorico; nella seconda, un insieme di
metriche, tra cui potenza ed energia, vengono misurate direttamente su un
sistema reale. Abbiamo esplorato numerosi scenari, utilizzando bench-
marks ben conosciuti. Dai risultati della campagna sperimentale, abbi-
amo discusso della tecnica per regolare i parametri delle due politiche e
dei loro vantaggi.

Parte di questo lavoro è stata accettata per la pubblicazione nei proceed-
ings della conferenza Embedded System Week 2020 [23].

XIX

CHAPTER1
Introduction

1.1 Heterogeneous computing

Heterogeneous computing studies the systems that contain different types
of computational units, for example, multi-core CPUs, GPUs, and FPGAs.
The interest in this branch of computer science increased because the per-
formance of the single-core reached its limit due to the frequency barrier.
It is no more possible to increase the clock frequency while maintain-
ing the power consumption, and consequently, temperatures at accept-
able levels. This is also linked to the end of the Moore’s and Dennard’s
laws [9]. So, in the last fifteen years, the architecture moved towards a
multi-core structure to raise the performance with more computational
units involved, rather than focusing on the single-core performance.

During the most recent years, there was an explosion of heterogeneous
architectures (as shown in Figure 1.1). These machines contain proces-
sors or computational units of several typologies instead of the classical
multi-core that has homogeneous, i.e. identical, cores. With such archi-
tectures, diverse applications behave differently depending on the archi-

1

Chapter 1. Introduction

2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

60

80

100

120

140

He
te

ro
ge

ne
ou

s S
ys

te
m

s

Figure 1.1: The increasing trend of the use of heterogeneous resources in HPC
systems (the data have been retrieved from the TOP500 list).

tecture type they run on: for example, a highly parallel application can
be executed on a GPU to achieve better performance because the graphic
units have several computational units; instead, in case of an application
with a low number of threads, it is preferable the usage of a CPU which
guarantees high speed on the single-core.

In addition, to reach better performance, the utilization of heteroge-
neous architectures allows us to explore the trade-off according to non-
functional metrics, that are, for example, the power consumption, the en-
ergy consumption, and the reliability.

1.1.1 High Performance Computing

Given that the heterogeneous architectures enable efficient management
concerning power and energy, they are slowly gaining space also in su-
percomputing centers. Supercomputers belong to the so-called High-
Performance Computing that includes all the technologies used to create
systems that can provide very high performance, in the order of
petaFLOPS. For example, in the TOP500 list1, the current most powerful
supercomputer is Japanese Fugaku with a PEAK computational power of

1https://www.top500.org/

2

https://www.top500.org/

1.1. Heterogeneous computing

415.53 petaFLOPS.
During the last years, several scientific projects dealt with the per-

formance of the HPC systems and, in particular, the techniques used to
reduce the power and the energy consumption that currently represents
the obstacle to the growth of the computation capacities of these sys-
tems. One of the European projects is the Horizon 2020 MANGO that is
described in the following subsection as an example of a deeply hetero-
geneous architecture.

1.1.2 An example: the MANGO architecture

The Horizon 2020 MANGO project [3] [10] [11] [12] [26] focused on a
hardware architecture that tries to explore deeply heterogeneous accelera-
tors in HPC systems running multiple applications with different Quality
of Service (QoS) levels. The main objectives are related to improving the
power, the performance, and the predictability of the HPC system. With
these purposes underlined, the project analysed different and interrelated
mechanisms from the hardware architecture to the system software layers.

The infrastructure of Horizon 2020 MANGO is a distributed system,
featuring computational nodes composed of general-purpose processors,
GN, linked via PCI Express or Ethernet with a set of heterogeneous ac-
celerators, HN, interconnected through a Network-on-Chip, i.e. NoC. We
can see a simple graphic explanation in Figure 1.2 where a node of the
HPC is divided into two parts: the homogeneous and the heterogeneous
sections. On the left, there is the server (GN) in which one or more sock-
ets, i.e. physical processors, are composed of some identical cores, while
on the right we have one or more FPGAs that are connected to each other
with the PCI Express bus. The FPGAs synthesize different virtual pro-
cessors with one or more cores, linked, through the external PCI Express
bus, to the GN server. This scenario requires the management and allo-
cation of resources among different applications in a way that maximizes
resource usage, while preserving the predictable execution time of critical
applications, and the expected power budget [24]. The same architecture
is currently used in another Horizon 2020 project, RECIPE [2] [1] [13],
with the goal of reaching the exascale performance, i.e. a supercomputer
with at least one exaFLOPS of computational power.

To explore heterogeneity, MANGO project developed different com-

3

Chapter 1. Introduction

Server

CORE0 CORE1

CORE2 CORE3

Socket

FPGA
FPGA

FPGA
FPGA

PCI Express

Homogeneous part

Heterogeneous part

Node

Figure 1.2: Overall architecture of the Horizon 2020 MANGO platform.

puting units, referred to as UNIT. One of these UNITs is PEAK that stands
for Partitioned Enabled Architecture for Kilocores: it is a research many-
core prototype for generic computing. The term "many-core" refers to
processors with tens or hundreds of homogeneous cores, rather than the
few cores of the traditional multi-core. The main goal of PEAK is to of-
fer a configurable processor able to be adapted to different configurations
and capabilities, thus enabling exploration of adaptations to the different
target applications in the project. NU+, another processor architecture
used in MANGO, is a complex and configurable GPU-like accelerator
core, allowing flexible customization driven by application requirements.
It is designed to support the exploration of advanced architecture features
not available in current general-purpose heterogeneous architectures. To
clearly explain how the FPGA has been configured, the above-mentioned
specifications are depicted in Figure 1.3, where it is possible to observe
the structure of one FPGA in which we have, in addition to PEAK and
NU+, the custom accelerators (in green). These parts of the FPGA, dif-
ferently from the other two processors, are programmed for a specific
goal and they perform only a single non-programmable computation. It

4

1.2. The Resource Management problem

NU+ NU+ NU+

NU+PEAK
(2 core)

PEAK
(2 core)

PEAK
(4 core)

Accelerator

Accelerator

Memory

Memory

Memory

Memory

Figure 1.3: The architecture of one FPGA used in the Horizon 2020 MANGO
platform.

is possible to change it only by reprogramming the entire FPGA, but this
requires a non-negligible amount of time.

The presence of such heterogeneous and complex architecture raises
the following questions: where to allocate the tasks of a given application
and how to choose this specific processor. To perform this selection and
answer these questions, we need a resource manager, able to take such
decisions according to the aforementioned trade-off and to enforce the
operating system to schedule the applications on the correct resources.

1.2 The Resource Management problem

As illustrated in 2012, in the paper of Bellasi et al. [4], the growing com-
plexity of computing architectures (e.g. heterogeneous multi-core, sev-
eral layers of memories, Network-on-Chip, etc.) requires a system-wide
arbiter that manages all of these computing resources. For example, mo-
bile systems, e.g. smartphones and tablets, have become powerful enough
to run computationally-intensive applications like advanced multimedia,
augmented reality, and 3D gaming. On a completely different scale, i.e.
network and cloud computing, the availability of a large number of re-
sources poses the same problem of mobile platforms: how to manage

5

Chapter 1. Introduction

such resources. Furthermore, also specialized embedded systems are in-
creasing in complexity to allow the system designers to implement a sys-
tem feature as a software task instead of a hardware module, gaining in
this way flexibility, diminished costs, and reduced time-to-market. How-
ever, exploiting these features is non-trivial [25]: to get the maximum
performance from parallel architectures requires a substantial design ef-
fort. In these complex architectures, there are many objectives and, so,
the optimization problem becomes more difficult to manage.

In this whole scenario, the Run-Time Resource Manager (RTRM) ac-
quires a lot of relevance to reach the performance goal of the system. The
resources and the tasks can change, e.g. a node in HPC may become not
available or a new application requires to be executed; so, there is the
need for adaptivity and reconfigurability of the system. This suggests the
necessity of having a RTRM in modern computing platforms.

1.2.1 Barbeque Run-Time Resource Manager

The problem of allocating a certain number of applications on a certain
amount of resources, where both of them have different characteristics, is
an allocation problem which can be classified in the NP-Complete class
of computational complexity, i.e. it is not known if a simple solution
computable in polynomial time exists or not. Currently, any algorithm
that finds the optimal solution requires an exponential time concerning
the input size, making it, by nature, not executable in a short time.

As mentioned in [4], the BarbequeRTRM software is a framework
for run-time resource management that supports both homogeneous and
heterogeneous platforms. Implemented in C++, it contains a series of
mechanisms to interact with the Linux kernel, for example, the allocation
of resources is performed via the cgroup interface. The "smart" com-
ponent of BarbequeRTRM is the resource allocation policy that decides
which application is assigned to which resource. In this thesis, we pro-
pose an assignment procedure for resources and tasks implemented by
BarbequeRTRM and based on the Game Theory.

6

1.3. Introduction to Game Theory

1.3 Introduction to Game Theory

Game Theory is the branch of applied mathematics that studies the math-
ematical models concerning the interaction among entities considered as
rational decision-makers. In this way, we can represent situations of ev-
eryday life, called games, in which two or more persons:

• can interact by following some precise rules;

• reach at some point in time a final state that depends on the choices
of all the entities, after a finite number of steps;

• have preferences on all the possible outcomes of the given games,
i.e. each person usually prefers, for some reason, a set of outcomes
with respect to other sets.

The entities taking part in a game are called players and they must
have two main characteristics to be used in a Game Theory analysis:

• they must be rational in front of, for example, the rules understand-
ing of the expression of logical preferences about the outcomes, i.e.
no irrational choices are allowed;

• they must be egoist, i.e. they want to maximize her/his utility func-
tion and consider other players’ preferences only to analyze their
own choices.

The options that a player chooses in a setting where the outcome de-
pends not only on her/his actions but also on the actions of others rep-
resent the strategy of a player: it determines the action which the player
takes at a specific stage of the game. The strategy should not be confused
with the move the player performs at a given point during the play of the
game (called action). The strategy is, instead, the complete algorithm for
playing the game, composed of all the possible actions that a player can
perform for every possible situation throughout the game. The main goal
of the Game Theory is to find the so-called Nash Equilibrium, that is a
situation in which no one of the players has an incentive to play a differ-
ent strategy if the others are playing the equilibrium strategy. This is not
necessarily the global optimum solution, however, it is the solution that
does not allow a single player to unilaterally improve its position at the
expenses of the other players.

7

Chapter 1. Introduction

1.3.1 Historical overview

The first known discussion of Game Theory occurred in a letter in 1713
attributed to Charles Waldegrave, where he provides a minimax mixed
strategy solution (a classical Game Theory problem formulation) to a two-
person version of a card game: this problem later becomes known as
Waldegrave problem. However, it was only in the 20th century that the
Game Theory studies advance. Without the aim to carefully describe each
detail of the research, we summarize in the following paragraphs the main
discoveries and algorithms related to Game Theory. A complete history
can be found in [19]. The reader who wants to learn more on this topic
can read the related textbooks and the specific scientific works.

In 1913, Ernst Zermelo demonstrated that the optimal chess strategy
is strictly determined. In 1927, Émile Borel showed a minimax theo-
rem for two-person zero-sum matrix games that provides a solution to a
non-trivial infinite game and he conjectured the non-existence of mixed-
strategy equilibria in finite two-person zero-sum games. This conjecture
would have been later proved false. In fact, in 1928, John Von Neumann
published a paper [31] in which he used Brouwer’s fixed-point theorem
on continuous mappings to show the existence of the mixed-strategy in
finite two-person zero-sum games. The second edition of his book [32]
co-authored with Oskar Morgenstern provided methods for finding mu-
tually consistent solutions for two-person zero-sum games. These works
became the basis for the so-called mathematical economics.

Merrill M. Flood and Melvin Dresher proposed in 1950 the Pris-
oner’s Dilemma experiment that will have become the standard example
in Game Theory. In this thesis, it is described in the next Subsection 1.3.2.
The next year, in 1951, John Nash developed the concept of Nash Equi-
librium as previously defined. He proved that any non-cooperative, finite
n-player, non-zero-sum game has a Nash Equilibrium.

In the 1950s and 1960s, the Game Theory has been extensively de-
veloped and many theorems and results have been carried out by the sci-
entific community. From the 1970s on, the Game Theory has also been
applied to other fields, starting from biology and economics. Nowadays,
it is used in several fields, including sociology, military, law, computer,
and telecommunication sciences.

8

1.3. Introduction to Game Theory

Table 1.1: The classical formulation of the Prisoner’s Dilemma.

A/B B stays silent B deceives

A stays silent (-3,-3) (-5,0)

A deceives (0,-5) (-4,-4)

1.3.2 The Prisoner’s Dilemma

The Prisoner’s Dilemma is the traditional example used in Game Theory
to show why two players, when considered as completely rational indi-
viduals, do not necessarily decide to cooperate, even if it seems that it is
advantageous for them to find a shared solution. The schema of this game
is reported in Table 1.1.

Two criminals are arrested and imprisoned separately. They have no
way to communicate with each other to, for example, exchange any sort
of information. They can decide between two choices: testifying that
the other committed the crime or remaining silent. The effects are the
following:

• if both A and B decide to testify against the other, both of them
serve four years in prison;

• if A deceives B but B remains silent, A will be set free and B will
stay five years in prison (and vice versa);

• if both A and B remain silent, both of them will serve only three
years in prison.

Another necessary assumption is that the prisoners have no possibil-
ity to reward or punish the other player after they have been both set free.
Thus, their decision is considered as not affecting outside scenarios not
related to the game. Considering that deceiving a partner offers a greater
reward than cooperating with them, all purely rational self-interested pris-
oners would decide to testify that the other committed the crime. In this
way, we note that pursuing individual reward logically leads both of the
prisoners to deceive when they would get a better individual reward if
they both kept silent. This is a perfect example of a Nash Equilibrium:
it is not a globally optimal solution, but it does not allow any player to
unilaterally improve its position.

9

Chapter 1. Introduction

1.3.3 Classification of games

Several classifications and typologies of games exist. This section presents
the most famous ones:

• A cooperative game is a game in which players can form groups
and take part in it. Coalitions are consequently created. On the
other hand, the non-cooperative game is characterized by players
that play alone, one against the other, without any sort of group.

• In a game with perfect information, each player knows the pos-
sible moves of the others, before they play them, and (s)he has all
the information to compute the utility functions of the other play-
ers. However, most of the games have, on the contrary, imperfect
information.

• A symmetric game is a game in which, based on the payoffs for
playing a particular strategy, the focus is not on who plays the other
strategies, but the real crucial point is on the content of the other
strategies themselves.

• A synchronous game expects a global timing system which the
players follow together during their moves; on the other hand, in an
asynchronous game, the time does not play a role in the game and
the players can take arbitrary time to select the strategy.

• A repeated game consists of a fixed repetition of some stage game
that is a well-studied two-person game: in this case, the conse-
quences of the current action of one player impact on the future
moves of the other players.

• The Stackelberg Competition is a strategic game in which, firstly,
a leader chooses his/her move and, then, the followers, after watch-
ing the play of the leader, decide how to deal with it, choosing, so,
the better move for them.

• In combinatorial optimization, the knapsack problem o rucksack
problem considers a set of items, each characterized by a weight
and a value, in which the goal is to determine the number of each
item because it is necessary to include them in a collection where

10

1.3. Introduction to Game Theory

the total weight is less than or equal to a fixed limit and the total
value is as large as possible.

• A selfish routing game is represented by a directed connected graph
in which a lot of flows traverse it at the same time. In this case, we
have a source and a destination, two nodes where the flows begin
and finish respectively; between them, there are also other nodes
thanks to which we have some edges identified with a specific non-
negative value.

The problem of resource allocation can be both cooperative and non-
cooperative, based on the fact if the applications talk to each other or not,
or if there is a central entity. Furthermore, our issue is practically convert-
ible into a knapsack problem: this is the cause of its NP-completeness. It
is usually not perfect, because models of applications and resources are
not always perfect, thus making it impossible to accurately compute the
utility functions. In the resource management of networks (that is not a
subject of this thesis), the problem is easily modeled with the last pre-
sented class, i.e. the selfish routing game.

1.3.4 Identification of possible algorithms for resource management

In this thesis, we focused on two games that, in our opinion, best fit our
problem of resource assignment. Before presenting them, we describe the
subsequent four different games that we identified as possible candidates
for the application to our problem.

• Simultaneous-action games. As their name suggests, these games
imply that the involved players take their actions at the same time: a
famous example is the Rock-Paper-Scissors game. This is interest-
ing for the resource management problem because the applications
have to be allocated all at the same time, thus it is not a game that
"progress" in turns (like a card game).

• Coordination games. In these particular games, all the players
have the same utility function for a given strategy. This can be used
in our problem to give to the application a fair share of resources;
however, it is difficult to model heterogeneous platforms.

11

Chapter 1. Introduction

• Congestion games. In these games, each player selects one or more
resources to use, and his/her expected payoff depends on the re-
sources (s)he and the other players choose.

• Double auctions. They are seen as a process that involves some
users (buyers) which want to buy an item and some users (sellers)
which have the item and want to sell it.

Among them, in this thesis, we considered the last two game classes.
Their applicability to the resource management problem is explained later
in the relative sections.

1.4 Thesis contributions and structure

1.4.1 Contributions

Differently from the State of Art in Chapter 2 where the Game Theory
is applied to the allocation problem between resources and tasks in dis-
tributed systems, in this thesis we use it in a single and heterogeneous
system. During the simulation phase, we check the complexity of the
algorithms. We tested them on a real platform that simulates a heteroge-
neous system, focusing on their side effects on the metrics, i.e. energy,
power, and execution time.

1.4.2 Structure

After this chapter that is an overview of Game Theory and the Barbe-
queRTRM software, in Chapter 2 we present the State of Art related to the
scientific papers about the two main topics of this thesis: Game Theory
and resource management. Then, in Chapter 3, first of all, the conges-
tion game policy is described, beginning from a brief introduction of the
game, and by continuing with our model that maps the assignment prob-
lem as a congestion game. The algorithm is then presented and followed
by its complexity computation, the pseudo-code, and the cost function
description. The second part of this chapter is dedicated to the double
auctions scenario where, like the previous section, we can observe a little
introduction of this game, the description of the model with two proposed
algorithms, their comparison, and the mechanism thanks to which we
decided to calculate the bid of every player involved. In Chapter 4 we

12

1.4. Thesis contributions and structure

discuss the simulation of the two scenarios chosen, firstly the congestion
game and secondly the double auctions, to measure the execution times
and compared them. Hereafter, there is Chapter 5 in which we show the
implementation of the two scenarios from the Game Theory in the Bar-
bequeRTRM software. Finally, before Chapter 7 designated for the con-
clusions of the thesis, the experimental evaluation is presented in Chapter
6 to learn how to tune their parameters and to judge their effectiveness in
solving the resource management problem.

13

CHAPTER2
State of the Art

Resource management and Game Theory are not novel concepts, as we
have seen in the previous chapter. However, this thesis proposes a novel
use of game-theoretical algorithm to the problem of resource allocation.
Before presenting the novelty of our approach, we recap in the following
two sections the works available in literature regarding the current poli-
cies implemented in BarbequeRTRM, and the state-of-the-art works for
resource management based on Game Theory.

2.1 Available policies in BarbequeRTRM

Before the introduction of the new two policies presented in this the-
sis based on Game Theory, BarbequeRTRM already had several policies
implemented. During the years, researchers have implemented different
policies with different goals. In this section, we show only the policies
currently activable in the BarbequeRTRM configuration menu and not the
legacy ones. BarbequeRTRM implements a set of "toy" policies, i.e. that
are used only for testing purposes:

15

Chapter 2. State of the Art

• Random. In a random way, it assigns the CPU resources to the
several tasks.

• Test. It assigns a constant resource chosen at compile-time by the
developer.

• TempBalance. It simply assigns the tasks to the processor with the
lowest temperature.

Besides these trivial policies, other smart algorithms are available:

• Tempura. Some researchers showed that this policy sets an upper-
bound for the CPU usage based on the temperature, and partially on
the energy, of a BIG.little processor, i.e. an heterogeneous processor
that has only two typologies of cores [27].

• Contrex. This policy has the same name of the European project
in which has been developed [14]. It allocates the resources de-
pending on a subdivision already set up: some resources are dedi-
cated to critical applications and others to non-critical ones. Con-
trex has no optimizations relative to the energy, the power or other
non-functional metrics.

• Perdetemp. Massari et al. [20] showed that this policy allows to
follow the run-time variable performance requirements of the ap-
plications, saving power consumption and limiting the occurrence
of thermal hotspots: in this way, it reduces the aging effects of the
computing resources, firstly, by improving the overall system re-
liability and dependability, and, secondly, by saving also cooling
costs.

• Manga. Another work [21] shows that, in a heuristic-based way,
this policy predicts the best resource mapping solutions for each ap-
plication, such that the resource manager can quickly pick them at
run-time, by also limiting the additional overhead caused by Barbe-
queRTRM. As target, it has a deeply heterogeneous system, with in-
terconnected processors via Network-on-Chip, like in the MANGO
platforms.

16

2.2. Resource management based on games

2.2 Resource management based on games

In this section, we present the current available works that exploit Game
Theory for the resource allocation problem. Please note that is not our
goal to discuss the whole State of the Art of Game Theory, but just the
works similar to the problem we are trying to solve.

2.2.1 Cooperative games

Dong et al. [8] showed that energy accounting, i.e. how much a software
contributes to the total energy consumption of a system, can be formu-
lated as a cooperative game. Using a prototype based on, for example,
smartphone workload, the authors showed that their approximation, by
using the Shapley value, is better than the existing policies if the final ob-
jective is to manage the system energy. Furthermore, another work [22]
introduced a two-level hierarchical game to reduce the server load and to
enlarge not much the total computational time.

2.2.2 Non-cooperative games

Some researchers modelled with a Stackelberg game the problem of mini-
mizing energy consumption: if the system monitor, the leader, maximizes
profit, scheduler agents, the followers, select resources. It is used a non-
cooperative game among decentralized followers, considering that some
how they play against each other in the resource sharing: the target is to
minimize the average response time. In this way, besides the enhance-
ment of energy efficiency, we have the improvement of reliability and
robustness of the system [34].

Ye et al. [35] suggested the usage of non-cooperative games amongst
VMs on cloud computing environments. After the introduction of two dif-
ferent types of resource allocation games, the Nash Equilibrium is found:
through the calculation of the Price of Anarchy and the Price of Stability,
the authors studied its inefficiency.

Another work [29] introduced a new policy regarding the cost and
the allocation of the resources. Following and balancing the constraints
about budget and deadline, users can predict the price playing a game
with incomplete information. The experimental results showed that there
is an equilibrium state where the cost converges in a gradual way.

17

Chapter 2. State of the Art

Some researchers focused on the design of an allocation problem be-
tween users, modelled as a potential game. In the end, the authors proved
that there is at least one Nash Equilibrium and we are able to find it
through an allocation mechanism [17].

Vanderster et al. [30] used the knapsack problem as a model for re-
source allocation, introducing a group of such policies. After the analy-
ses, we can see that the performance of this approach results better.

Finally, concentrating on the selfish routing game, another work [6]
allocated tasks by changing the basic architecture and demonstrating the
obvious improvement in the response time and the server speed.

2.2.3 Studies on the comparison of cooperative and non-cooperative
games

Some researchers proposed a game-theoretic solution to the problem of
distributed resource allocation, especially in an emerging cloud platform,
by studying two resource allocation games, non cooperative and coopera-
tive games. The explored games include repeated and asynchronous ones.
The authors analysed the interaction among the entities in the cloud en-
vironment: the virtual machines are allocated according to the output of
the Game Theory algorithm. The authors discovered that non-cooperative
games are not optimal, for example in terms of total utility and cost ef-
fectiveness, compared to cooperative games [16].

Xu et al. [33] proposed a finite extensive game with perfect infor-
mation to distribute resources with two objectives, honesty among users
and employment of entities like CPU and memory. Comparing the cre-
ated algorithm with two existing ones, we can see that, with the proposed
method, there is a better and more efficient resource allocation.

In addition to suggest the usage of cooperative and non-cooperative
games to model resource allocation in cloud computing, for the same ob-
jective another work [18] proposed imperfect, symmetric and asymmetric
games: the authors showed that, in this case of study, the issues about se-
curity are ignored.

18

2.3. Our contribution with respect to the State of the Art

2.3 Our contribution with respect to the State of the Art

All the work previously described in Section 2.2 applied the Game Theory
to distributed systems, e.g cloud datacenters. To the best of our knowl-
edge, no works tried to use Game Theory algorithms to the problem of
managing heterogeneous resources in a single computing, by modelling
the applications as players of a game.

The selection of congestion games and double auctions games (al-
ready presented in Section 1.3.4) implies using non-cooperative
approaches. Applications are not necessarily ready at the same time,
making difficult the use of cooperative games where the players have to
take together a decision. Moreover, this would have required the integra-
tion of all the applications to a common framework, while a competitive
approach allows us to use any application, even not integrated with the
BarbequeRTRM framework. These are the reasons for the selection of
non-cooperative algorithms. The analysis of cooperative policies is left
as future work.

19

CHAPTER3
Game Theory policies

The goal of this chapter concerns, firstly, the description of the conges-
tion game scenario, the model that we used for the new policy based on
this Game Theory approach, and the cost function we purposely designed
for this optimization problem. On the other hand, in this chapter, our ob-
jective is to present the double auctions scenario, not only with a mere
description, but also by describing how we model the resource allocation
policy with this Game Theory strategy. Specific expressions for the "bid
mechanism" have been derived and discussed.

3.1 Congestion games

In the class of potential games where a single global function can express
the incentive of all players to change their strategy, there are the so called
congestion games, used to model a situation in which the users compete
for the use of some given resources.

In this game, the possible actions a player can choose are subsets of
resources that can include an arbitrary number of elements. The central

21

Chapter 3. Game Theory policies

component of this type of game is the congestion, a value which repre-
sents the number of users assigned to a specific resource.

In general, resources have a cost that depends on the congestion: in
fact, the cost function of a given resource has the congestion of the re-
source as input parameter and it returns the related cost. Since the con-
gestion may assume, in the original formulation, a finite set of discrete
values, the cost function can be represented as a vector where, in the first
position, we find the cost when the congestion is 1, in the second position,
we find the cost when the congestion is 2, and so on.

In the end, we can compute the potential function φ for the whole
game that is given by:

φ(a) =
∑m

j=1

∑congj(a)
k=1 cj(k)

where a is the strategy of the players, m is the number of resources,
congj(a) is the congestion of resource j given a, and cj(k) is the cost
of resource j for congestion k. The next section presents the model of
our problem as a congestion game, and we will formally specify all of
these variables.

3.1.1 The allocation policy

By considering our problem focused on the distribution of resources to
applications, i.e. the main purpose of the BarbequeRTRM software, we
now introduce a resource allocation policy implemented as a congestion
game. The objective of our study is to assign computational resources to
the applications, by taking into account the optimization of their perfor-
mance and the achievement of, e.g., the power, the frequency, the energy
and the temperature.

3.1.2 Problem modelling

Assuming that all the threads, belonging to the same application or dif-
ferent ones at a time, correspond to several tasks1, we recognize them
with the set T = {t1, t2, ..., tn} that identifies the players of a congestion

1By depending on the context, thread, task, and process are three terms often used with differ-
ent meaning. In this thesis we consider task the same concept of thread, i.e. a set of executable
instructions running sequentially on a single computational unit.

22

3.1. Congestion games

game. The set of resources, instead, R = {r1, r2, ..., rm}, represents the
computational units available in the system. The set of possible actions
is defined as:

A = {a1, a2, ...} = {(t1, r1, x1), (t2, r2, x2), ...} (3.1)

where xi is the percentage of usage of the i-th resource. Please note that
the presence of xi distinguishes our approach from a traditional conges-
tion game, where, usually, the resource is always used at 100% percent-
age. In our case, a strategy S = {a1, a2, ...} is composed of a subset of
actions that describes the final allocation solution, i.e. which resources
are assigned to which task and with what percentage associated. Bas-
ing on how many tasks use a precise resource with a specific percentage,
that is a number which, by assumption, coincides to an integer value of
the congestion related, the congestion will be updated during the devel-
opment of the game. The congestion function for a given strategy S is
formally defined as:

congi(S) =
∑
∀j

1S((ri, aj))

where 1S is the indicator function, i.e. 1S((ri, aj)) = 1 if (ri, aj) ∈ S or
1S((ri, aj)) = 0 if (ri, aj) 6∈ S . The cost that a task pays for the usage
of a resource, in addition to its dependency on the value of its congestion,
is related to the basic characteristics of the resource, e.g. the power, the
frequency, the energy and the temperature. The cost function will be later
described in Section 3.1.4 and we provide here only the formal abstract
function definition:

ci : congi(S)→ Q+ (3.2)

The cost function is then a function parametrized on the i-th resource,
with the congestion as domain (input) and a positive rational number as
codomain (output).

3.1.3 The algorithms and their complexity

The congestion game problem can be solved by using two different algo-
rithms, an exact and an approximated.

23

Chapter 3. Game Theory policies

Algorithm 1 The exact algorithm.
Require: Congestion Game G
Ensure: Nash Equilibrium s of G

1: s0 ∈ S
2: k ⇐ 0

3: while sk is not a Nash Equilibrium do
4: if ai of player ti ∈ S and πti(ti, s−ti) < πti(s) then
5: sk+1 ⇐ (ai, s−ti)
6: k ⇐ k + 1

7: end if
8: end while
9: return sk

The exact version mentioned is shown in Algorithm 1. In Line 1 a
strategy s0 is chosen in a randomized way to initialize the game. Then,
in Line 3, a while cycle starts if the considered s0 is not a Nash Equilib-
rium: in our code, to verify if the Nash Equilibrium has been reached,
we control the loop with a boolean variable that checks if the strategy has
been modified or not in the current cycle. If the strategy has not been
changed, then a Nash Equilibrium has been found and the algorithm ter-
minates. Please note that a game does not necessarily have only one Nash
Equilibrium: it may be possible to have more than one equilibrium, that
are equivalent with respect to the cost function of the congestion games.
For this reason, only the first encountered equilibrium is returned by our
algorithm.

The if condition at Line 4 checks the cost of the current game and the
one in which we take an action ai of the ti player and we put it in the
initial strategy, substituting the old one of that player and creating, in this
way, a new strategy. The cost of the newly created game is computed: if
the cost of the new game is smaller than the other, we change sk+1 with
the new game’s strategy and the while cycle is repeated.

Instead, the approximated version of the algorithm is different from
the exact one because of the presence of a variable, i.e. ε, that is sub-
tracted to the cost of the current game in the if condition: this is shown
in Algorithm 2. The ε coefficient is a positive value that represents how
much we move away from the exact solution: in fact, the larger it is, the

24

3.1. Congestion games

Algorithm 2 The approximated algorithm.
Require: Congestion game G
Ensure: Nash Equilibrium s of G

1: s0 ∈ S
2: k ⇐ 0

3: while sk is not a Nash Equilibrium do
4: if ai of player ti ∈ S and πti(ai, s−ti) < πi(s)− ε then
5: sk+1 ⇐ (ai, s−ti)
6: k ⇐ k + 1

7: end if
8: end while
9: return sk

more the solution is approximated.
By taking into account the exact procedure shown in Algorithm 1, we

calculate its complexity starting from the while cycle which, based on the
fact that we identified with n the amount of tasks and with m the number
of resources, costs O(mn). This is because, in the worst-case, it is the
same of exploring a tree with n levels and m branches.

Given that we expanded the block of code defined by the if lettering
with a lot of functions and methods used to simplify the structure of the
algorithm, we obtained as complexity a value of O(n3m3log(n)). Mul-
tiplying the above-mentioned amount with the cost of the external while
cycle, we had O(n3mnlog(n)), that is not different from the complexity
of the approximated Algorithm 2: in fact, this version is diverse from
the exact one only for the presence of ε. However, ε does not affect the
whole complexity because it only reduces the number of cycles by a con-
stant value. Consequently,O(n3mnlog(n)) is the complexity of the worst
cases in both scenarios. The study on the real amount of execution time
required to execute this algorithm will be presented in Chapter 4, where
a simulation of different scenarios is performed.

3.1.4 Cost function design

Taking care of Equation 3.2, we have designed a specific cost function
for our problem of assigning resources to tasks. Its expression for the i-th
resource is:

25

Chapter 3. Game Theory policies

ci(g) =

g∑
j=1

c̄i(j) · ηi,j

where g is the congestion, c̄i(j) is the cost vector subsequently defined,
and ηi,j is the percentage of the i-th resource used by the j-th task. By
using the same notation of Equation 3.1, we can write:

ηi,j = {xk|(tj, ri, xk) ∈ S}

where S is the current strategy. Each element of the cost vector c̄i is
defined as:

c̄i(g) =

αi + βi + γi
2 if g = 1

αi[n+ αi,0(g − 1)] + βi[1 + βi,0(g − 1)] if g > 1
(3.3)

where

• g is the position in the cost vector that corresponds to the usage
percentage of the relative task;

• αi is the term related to the performance of resource i and it is equal
to

αi = α̂i ·
1

fi
(3.4)

in which α̂i is a coefficient chosen by the user based on his/her
need related to the performance and fi is the frequency of the i-th
processor. The higher the frequency, the lower the cost because, in
this way, the task throughput improves;

• βi is the term related to the energy of resource i and it is equal to

βi = β̂i · PDPi (3.5)

in which β̂i is a coefficient chosen by the user based on his/her
need related to the energy. PDP is the Power Delay Product, also

26

3.2. Double auctions

called Energy Per Operation (EPO): this value represents the av-
erage amount of energy required to perform a single computation
[28]. The PDP of resource i is computed as follows [15]:

PDPi =
Pi

fi
(3.6)

where Pi is the power consumption of the i-th processor and fi is its
frequency;

• γi is the term related to the power referred to resource i:

γi = γ̂i · Pi (3.7)

in which γ̂i is a coefficient chosen by the user based on his/her needs
related to the power and Pi is the power consumption of the i-th
processor. This coefficient exists only when g = 1 (i.e. the cost for
the first task) because allocating one or more tasks does not affect
the power consumption: the processor is already running even with
just one task, thus the instantaneous power consumption is already
considered;

• αi,0 is the overhead correlated to αi: if we have more than one task,
in order that all of them work with the CPU, it is necessary that the
operating system executes some context switches (one at a time, a
task works a bit, before it is stopped and substituted by the succes-
sive task, and so on), which is an operation with its overhead that
increases with the number of tasks (in our cost function, it is repre-
sented exactly by αi,0). Otherwise, with just one task, we have no
context switches and, consequently, no overhead;

• βi,0, similarly to αi,0, is the overhead correlated to βi.

3.2 Double auctions

A double auction is a process in which we have a set of buyers and a set of
sellers with a potential different cardinality: the first ones are interested in
buying a single item that all the other buyers are interested in; the second
ones have to sell one item that all the other sellers want to sell.

27

Chapter 3. Game Theory policies

A single trader, the so called auctioneer, matches, if possible, every
buyer to every seller: a buyer can be matched with, at most, one seller
and vice versa because each buyer is interested to obtain a single item
and each seller is selling exactly one single item.

Once the auctioneer has matched the buyers and the sellers, the auc-
tioneer must define the amount of money to be transferred from the
matched buyer to the corresponding matched seller.

3.2.1 The allocation policy

Considering our problem focused on the allocation of resources to appli-
cations, we introduce an optimization policy which models the resource
management problem as a double auctions game. The objective of our
study is to assign computational resources to the applications, by consid-
ering the optimization of their performance and the achievement of, e.g.,
the power, the frequency, the energy and the temperature goals.

3.2.2 Problem modelling

The specific game studied in this section expects a set of buyers interested
to buy an item that is, in our case, a portion of the computational power.
We chose the tasks to fill the role of the buyers. On the other hand, as sell-
ers, which have to sell an item, we selected the resources that, someway,
sell their computational capabilities to the tasks. To informally summa-
rize, the resources sell their computational power capabilities to the tasks
that are looking for a resource to run on it, and, consequently, consume
its computational power. Finally, we assumed that the BarbequeRTRM
software is the auctioneer which matches every buyer to every seller. If
we have an initial situation in which the tasks number is greater than the
resources number, the existing resources will be doubled or tripled, and
so on, based on the amount of tasks (in the end, the resources will equal
or surpass the tasks). The duplicated resources will have:

• a second identifier that is an unique number;

• as bid, the result of the product between the bid of the copied re-
source and a multiplier calculated specifically each time.

28

3.2. Double auctions

Algorithm 3 The McAfee mechanism.
Require: Double auctions game DA
Ensure: Best Assignment ba of DA

1: Order the n bids of the buyers by decreasing order
2: Order the m bids of the sellers by increasing order
3: for k ∈ [N, 1] do
4: if bk ≥ sk then
5: break
6: end if
7: end for
8: Calculate p = (bk+1 + sk+1)/2

9: if bk ≥ p ≥ sk then
10: The first k buyers and sellers trade the good in price p
11: else
12: The first k− 1 sellers trade for sk and the first k− 1 buyers trade for bk
13: end if

3.2.3 The algorithms and their complexity

We can solve this problem by using two different procedures: the McAfee
algorithm and the VCG mechanism. The first method is shown in Algo-
rithm 3. After sorting the resources by increasing order regarding the bids
and the tasks by decreasing order regarding the bids, in Line 2 we find the
so called breakeven index. This value is the largest position in the vec-
tors buyer/seller such that the buyer bid in that k position is greater than
the seller bid in the same position. After the calculation of the price as the
average of the bids of the subsequent buyer/seller pair (Line 8), at Line
9 there is a simple check that this price is within the current buyer and
seller bids: if yes, the first k buyers and sellers buy and sell respectively
the item with a price of p. Otherwise (Line 12), the first k − 1 sellers sell
the item with a price of sk and the first k − 1 buyers buy the item with a
price of bk.

In Algorithm 4 the second method, i.e. the VCG mechanism, is de-
scribed and it is, in the first part, very similar to the McAfee algorithm.
At Line 7 there is a sequence of checks between the bids of buyers and
sellers, identifying, in this way, the new values defined for the trading: if
bk+1 < sk and sk+1 > bk, each buyer buys the item with a price of sk and

29

Chapter 3. Game Theory policies

Algorithm 4 The VCG mechanism.
Require: Double auctions game DA
Ensure: Best Assignment ba of DA

1: Order the n bids of the buyers by decreasing order
2: Order the m bids of the sellers by increasing order
3: for k ∈ [N, 1] do
4: if bk ≥ sk then
5: break
6: end if
7: end for
8: if bk+1 < sk and sk+1 > bk then
9: each buyer pays sk and each seller gets bk

10: end if
11: if bk+1 < sk and sk+1 ≤ bk then
12: each buyer pays sk and each seller gets sk+1

13: end if
14: if bk+1 ≥ sk and sk+1 > bk then
15: each buyer pays bk+1 and each seller gets bk
16: end if
17: if bk+1 ≥ sk and sk+1 ≤ bk then
18: each buyer pays bk+1 and each seller gets sk+1

19: end if

each seller sells the item with a price of bk; if bk+1 < sk and sk+1 ≤ bk,
each buyer buys the item with a price of sk and each seller sells the item
with a price of sk+1; if bk+1 ≥ sk and sk+1 > bk, each buyer buys the
item with a price of bk+1 and each seller sells the item with a price of bk;
and, if bk+1 ≥ sk and sk+1 ≤ bk, each buyer buys the item with a price of
bk+1 and each seller sells the item with a price of sk+1.

From a complexity point of view, both the McAfee algorithm and the
VCG mechanism cost O(n · log(n) + m · log(m)) that is caused espe-
cially by the two ordering involved, i.e. increasing (O(n · log(n))) and
decreasing (O(m · log(m))), and the worst case in which the number of
resources, that is m, is smaller than the amount of tasks, that is n. In-
stead, on the other hand, if n = m, the complexity of both the methods is
O(n·log(n)). Finally, if we want to calculate the social welfare (this is not
necessary for the finding of the optimal solution), their total complexities

30

3.2. Double auctions

become O(n2).

3.2.4 How to choose the bid

To determine the specific bid for the group of the sellers and the whole
buyers, we defined two different expressions, according to some metrics
strictly connected to the performance goals of our problem.

Sellers

From this point of view, the bid increases in three different cases inspired
by the economic model of supply and demand. First of all, it increases
when the execution time decreases because better performance is offered:
the more the performance, the more the buyers are willing to pay. Sec-
ondly, it increases when the power consumption increases because, con-
cerning the non-functional requirements, it is necessary to pay more to
use a resource that consumes more power. In the end, if the PDP value
decreases, we can have a better energy efficiency, so the amount of the bid
reduces for the same reason of the power. Then, our bid for the resources
is:

bSi
= αi + βi + γi (3.8)

where αi, βi and γi are the same parameters explained in Equations 3.4,
3.5 and 3.7. If we consider the case in which there are duplicated re-
sources thanks to the copyandpaste method of the double auctions
algorithm, we have to introduce a new calculus for the bid. In this case,
we have to multiply the 3.8 to two constants, k, that is the second ID of the
resource, and p, which is the penalty related to the fact that the resource
is already used:

bSi

k = (k + 1) · p · bS (3.9)

In this way, we introduced a penalty for selecting the duplicated resources.

Buyers

To calculate the buyers bid, we consider the quantity of work that the task
has to execute, by assigning a larger bid to those tasks which have less

31

Chapter 3. Game Theory policies

work to do. In this way, the tasks with less work will end sooner, by
freeing the resources for the other tasks:

bBi
=

1

WLi

(3.10)

where WLi is the amount of work related to the i-th task that varies by
depending on the user choices, e.g. in this thesis we considered the total
execution time by calculating it as the average of these execution times
measured multiple times for each task.

32

CHAPTER4
Simulation of the policies

To check the performance of costs and execution times of the policies
from a theoretical standpoint, in this chapter we study the two games.
We check how the above-mentioned metrics change for the four different
algorithms presented: the perfect and the approximated versions in the
congestion games, the McAfee procedure, and the VCG method in the
double auctions.

4.1 Simulation setup

To perform the required simulation we implemented a C++ program that
runs several times the algorithm, measures its execution times, and writes
them to a file. We explored for 40 times each couple (n,m) for n ∈ [2, 20]

and m ∈ [2, 20], where n is the number of tasks and m the resources
amount. Therefore, the total number of scenarios tested are 144401 for
each algorithm. Then, with a Python script, we calculated the average of
the execution times and plotted the graphs subsequently presented. The

1It is the result of: 19 · 19 · 40.

33

Chapter 4. Simulation of the policies

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tasks

0.0

0.5

1.0

1.5

2.0
Ex

ec
ut

io
n

Ti
m

e
 = 0, # Resources = 10
 = 0.005, # Resources = 10
 = 0.01, # Resources = 10
 = 0.02, # Resources = 10

 = 0, # Resources = 10
 = 0.005, # Resources = 10
 = 0.01, # Resources = 10
 = 0.02, # Resources = 10

Figure 4.1: The representation of the policy execution times by varying the num-
ber of tasks and the γ values, with a fixed amount of resources, in the case of
congestion games.

plot makes it possible to analyse the time evolution with respect to the
number of resources and tasks. From the point of view of the conges-
tion games, we tested the perfect and the approximated versions because
we wanted to understand how the execution time and the cost behave.
Accordingly, in the double auctions scenario we compared the McAfee
algorithm and the VCG mechanism to see the differences in execution
time and the social welfare.

4.2 Congestion Games

Figure 4.1 and Figure 4.2 depict how the execution time changes by vary-
ing, firstly, tasks and, secondly, resources. Given that the γ value is a
number that we multiply to the cost game of the initial random solution,
which is used to find the ε approximation factor, described in Subsec-
tion 3.1.3, independently from the problem data. The value of ε is then
computed as:

ε = costgame · γ

We tested four different cases, 0, 0.005, 0.01, and 0.02. The figures
show the case with (10, 10) as number of resources and tasks. The growth

34

4.2. Congestion Games

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Resources

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

 = 0, # Tasks = 10
 = 0.005, # Tasks = 10
 = 0.01, # Tasks = 10
 = 0.02, # Tasks = 10

 = 0, # Tasks = 10
 = 0.005, # Tasks = 10
 = 0.01, # Tasks = 10
 = 0.02, # Tasks = 10

Figure 4.2: The representation of the policy execution times by varying the num-
ber of resources and the γ values, with a fixed amount of tasks, in the case of
congestion games.

of the lines is clearly exponential, according to the tasks in the first image
and according to the resources in the second figure. Also in the approx-
imated version, the execution time trend of the congestion game policy
remains exponential anyway, but, even with small values of γ, the execu-
tion times decrease considerably.

The more γ is far from the 0 value, the more the corresponding line in
the graph is far from the one that characterizes the situation in which we
reach the perfect Nash Equilibrium.

If we look at the 3D plot (Figure 4.3), we can observe the evolution
with tasks, resources, and execution times involved together. By consid-
ering the approximated version of the algorithm, if the number of tasks,
the amount of resources, and the execution times grow at the same time,
the height of the columns increases: the above-mentioned picture explains
how they work. Regarding the results on the cost variations, we decided
to provide the data in tabular form. The following formula has been used
to fill Table 4.1:

costis−costfs
costis

· 100

where costis is the cost game considering the initial random situation and

35

Chapter 4. Simulation of the policies

Resources
2.5

5.0
7.5

10.0
12.5

15.0
17.5

20.0
Tasks

2.5
5.0

7.5
10.0

12.5
15.0

17.5
20.0

Ex
ec

ut
io

n
Ti

m
e

0

5

10

15

20

Figure 4.3: The 3D representation of the policy execution times by varying both
the number of resources and the number of tasks, in the case of congestion
games.

costfs is the cost game considering the new resource assignment given by
the policy. The table shows the average percentage calculated considering
the four different cases in which γ changes from 0 to 0.02: a part from
the couple with 5 resources and 5 tasks that can be considered a sort of
outlier, it is possible to observe that, the more γ grows, the less the cost
improves, with respect to the random solution, as expected. For example,
in the case of 20 resources and 5 tasks, the perfect solution improves the
random guess by 21.62%, while, when γ = 0.02, the improvement is just
6.81%.

4.2.1 Modifications required for the experiments

In order to run this simulation, we had to modify the implementation as
follows:

36

4.3. Double auctions

Resources # Tasks Cost with γ = 0 Cost with γ = 0.005 Cost with γ = 0.01 Cost with γ = 0.02

5 5 ≈ 15.24% ≈ 16.44% ≈ 16.32% ≈ 14.22%

5 10 ≈ 16.14% ≈ 15.55% ≈ 13.55% ≈ 10.55%

5 20 ≈ 14.92% ≈ 13.69% ≈ 9.95% ≈ 2.23%

10 5 ≈ 18.49% ≈ 18.48% ≈ 18.55% ≈ 15.03%

10 10 ≈ 19.13% ≈ 18.40% ≈ 15.23% ≈ 5.36%

10 20 ≈ 18.95% ≈ 14.77% ≈ 6.43% ≈ 0.16%

20 5 ≈ 21.62% ≈ 20.22% ≈ 17.59% ≈ 6.81%

20 10 ≈ 21.63% ≈ 17.94% ≈ 6.6% ≈ 0.16%

20 20 ≈ 21.70% ≈ 7.07% ≈ 0.11% 0.0%

Table 4.1: Improvement percentages of the costs by using the algorithms, based
on congestion games and compared to the initial random solution.

• We implemented the generation of initial strategies based on a de-
fined number of resources and tasks, that changes according to the
needs for all the simulations studied.

• The costs and the percentages are calculated in a random way by
using the rand method. For this reason, we adopted srand at the
beginning of the main: it extracts random numbers always different
for every simulation.

• To create a correct initial strategy, we randomly select the task-
resource assignments. We chose a probability of 0.3, so that a task
is assigned to a resource with this probability: in this way, we have
the guarantee that all the tasks are using at least one resource in the
initial strategy.

4.3 Double auctions

In Figure 4.4 we can observe the evolution of the execution times in rela-
tion to the growth of the tasks, by keeping the amount of resources fixed.
It is clear that, in case of the McAfee algorithm, when we have the same
number of resources and tasks or when the total amount of resources is
greater than the number of tasks, the execution time increment is linear.
Instead, every time we have less resources than tasks, considering that,
in this case, the double auctions algorithm duplicates the number of re-
sources to cover the gap with the tasks amount, we can notice a step in
the lines of the graph coloured by red, blue, and green.

By looking Figure 4.5, we can see the graph related to the VCG mech-

37

Chapter 4. Simulation of the policies

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tasks

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
ec

ut
io

n
Ti

m
e

1e 5
Resources = 5
Resources = 10
Resources = 15
Resources = 20

Resources = 5
Resources = 10
Resources = 15
Resources = 20

Figure 4.4: The representation of the policy execution times by varying the num-
ber of tasks, with a fixed amount of resources, in the case of McAfee algo-
rithm.

anism that is very similar to the plot of Figure 4.4, maybe a bit more
variable than the representation of McAfee algorithm. Regarding the sim-
ilarity between the execution times, none of the two methods is more
convenient than the other. In Table 4.2 we compared the two strategies
and highlighted the two social welfare values: it is clear that, with little
differences between their resulting values, the VCG procedure is slightly
better than the McAfee one, considering that, in theory, the first method is
more economically efficient than the second.

4.4 Discussion of the results

With the exploration of all the possible couples from (2, 2) to (20, 20) we
obtained the execution time of the four algorithms that we chose to study,
by representing their values on graphs in which it is possible to see their
trends with respect to the number of tasks and resources.

In the case of the congestion games, if the amount of resources or
the number of tasks increases, we can observe an exponential growth in

38

4.4. Discussion of the results

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tasks

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ex

ec
ut

io
n

Ti
m

e
1e 5

Resources = 5
Resources = 10
Resources = 15
Resources = 20

Resources = 5
Resources = 10
Resources = 15
Resources = 20

Figure 4.5: The representation of the policy execution times by varying the num-
ber of tasks, with a fixed amount of resources, in the case of VCG mechanism.

both the execution time and the cost. This is clearly expected because,
when we have more resources or tasks, we need more time to execute
the optimization algorithm. Instead, if we introduce an approximation
thanks to the γ parameter, the cost improvement is reduced more and
more, as well as the execution time. If the number of tasks and resources
involved increase, first of all the gaps between the lines in the graphs
are larger than the ones representing the exact method and, secondly, the
costs tend to reduce more when the γ variable is farther from 0 because
of the decreasing of the execution time. However, even if there is a big
and clear modification in the several shapes, with different values of the
above-mentioned metrics the lines in the graphs follow an exponential
trend in any case.

By considering the point of view of the double auctions scenario, in
particular the McAfee algorithm, when the tasks are more than the re-
sources, the lines follow a linear trend and grow according to the execu-
tion time and the increasing of the number of tasks themselves: in fact, if
we focus on the case with 20 resources and 20 tasks, we can see a linear
evolution in terms of execution time and tasks. Nevertheless, when we

39

Chapter 4. Simulation of the policies

Resources # Tasks Social Welfare with McAfee algorithm Social Welfare with VCG mechanism

5 5 1.6244019999999997 · 10−06 1.6292750000000004 · 10−06

5 10 4.7681130000000016 · 10−06 5.3102 · 10−06

5 20 1.3477735999999983 · 10−05 1.3805700000000002 · 10−05

10 5 3.2472720000000016 · 10−06 3.4242 · 10−06

10 10 4.9311070000000035 · 10−06 5.804974999999999 · 10−06

10 20 1.4043570000000019 · 10−05 1.4238974999999997 · 10−05

20 5 8.492335999999993 · 10−06 8.527600000000003 · 10−06

20 10 1.0761819000000008 · 10−05 1.1030125 · 10−05

20 20 1.6204474 · 10−05 1.6373324999999996 · 10−05

Table 4.2: The comparison of social welfare of the two algorithms based on
double auctions scenario: the larger, the better.

have the number of tasks that is smaller than the amount of the resources,
given that the algorithm fills this gap duplicating the resources, we can no-
tice a stepping-curve before maintaining the classical linear shape. On the
other hand, if we take in consideration the graph of VCG procedure, we
can see a slightly noisy evolution very similar to the one of the McAfee al-
gorithm. With the comparison of the two above-mentioned mechanisms,
it is clear that, like the theory suggested, VCG gains a larger value for
the social welfare2 than the McAfee because of its greater economic effi-
ciency.

To summarize, the simulation showed how the execution time is dif-
ferent in the two considered games, like we expected because of the dis-
similarity of the algorithm complexity: while the double auctions game
presents a more linear growth in the time spent to execute the policy, the
congestion situation has an exponential evolution and, so, requires more
time to carry out the resource allocation.

2The larger the social welfare, the better the result.

40

CHAPTER5
Implementation of the algorithms

In this chapter, we talk about the implementation of the two policies de-
scribed in the thesis, starting from the description of the implementation
of a generic policy on BarbequeRTRM software. Then, the implementa-
tion of the policies specific to this thesis is showed including the details
of the new classes methods inserted.

5.1 Designing the BarbequeRTRM policies

By default, when a new policy is created via the BarbequeRTRM scripts,
the resulting code structure is an empty skeleton that can be seen in the
UML scheme of Figure 5.1.

From SchedulerPolicyIF that is the parent class,
GenericSchedPol, i.e. its child, is characterized by three partic-
ular and private variables, a ConfigurationManager object (used
to retrieve the configuration values), a ResourceAccounter object
(that provides the access to the resource information) and, finally, a log-
ger that creates the system logger instance. From the point of view of

41

Chapter 5. Implementation of the algorithms

Extends

SchedulerPolicyIF

(...)

(...)

GenericSchedPol

- ConfigurationManager;
- ResourceAccounter;
- unique_ptr<bu::Logger>;

- GenericSchedPol();
- _Init(): ExitCode_t;
+ Create(PF_ObjectParams): void;
+ Destroy(void): int32_t;
+ ~GenericSchedPol();
+ Name(): char const;
+ Schedule(System, RViewToken_t): ExitCode_t;

Figure 5.1: The UML class diagram for a generic BarbequeRTRM policy.

the functions, we have a Create and a Destroy methods that, re-
spectively, generates and eliminates the plugin of the policy. Instead,
the ~GenericSchedPol method is the so called destructor that is the
counterpart of the constructor and is necessary to clean the memory when
the object is removed. The other methods are the Name function which
returns the name of the policy plugin and the Schedule function which
performs a new scheduling or a new resource allocation. In the end, the
_Init method is an optional initialization member function. Before the
examination of the two policies created, it is important to remark that the
policy is triggered by the resource manager when some specific events
occur, e.g. a new task starts to run or a task terminates its execution. Con-
sequently, our policies run every time a change in the game occurs, by
finding a new optimal solution when a new game situation appears.

42

5.1. Designing the BarbequeRTRM policies

Extends

game_congestion_schedpol

- ConfigurationManager;
- ResourceAccounter;
- unique_ptr<bu::Logger>;
- shared_ptr<CongestionGame> cgame;
- map<int, int> mapRefNum;
- map<int, AwmPtr_t> mapWorkingMode;

- Game_congestionSchedPol();
- _Init(): ExitCode_t;
- createGame(): void;
- checkGame(const vector <vector <Task> >, const vector<Task>): const boolean;
- getPercentage(AppCPtr_t, ResourcePtr_t): int;
- associateMaps(int, const vector<Task>, const vector< vector<int> >): const vector <map <int, int> >;
- create_strategyInit(const vector <vector <Task> >, const vector<Resource>, const vector<vector <int> >): const vector<Action>;
- AssignWorkingMode(const Task, const Resource, int): void;
- DoPEBinding(AppCPtr_t, AwmPtr_t, BBQUE_RID_TYPE): void;
+ Create(PF_ObjectParams): void;
+ Destroy(void): int32_t;
+ ~Game_congestionSchedPol();
+ Name(): char const;
+ Schedule(System, RViewToken_t): ExitCode_t;

SchedulerPolicyIF

(...)

(...)

Figure 5.2: The skeleton of the UML class diagram for the policy based on
congestion games.

5.1.1 The congestion game extensions

For the congestion game policy (its UML is shown in Figure 5.2), in the
Schedule method we introduced the function createGame thanks to
which we can initialize the game by taking the needed data from Barbe-
queRTRM itself. In fact, thanks to a pointer to the applications, we can
bring the names and the id of the tasks, firstly the ones in the Ready status
and, secondly, the ones that are already in execution, i.e. in the Running
status. After a cycle used to create the initial strategy, we build the vector
of resources by taking all the information from BarbequeRTRM and, in
particular, from the ResourceAccounter class.

We inserted the necessary parameters of the cost function in a XML
file that a parser, invoked by the policy, reads. Given that, we obtained the
exact usage percentages of the tasks and, so, we saved these relationships
by creating maps with the identifier of the tasks and the above-mentioned

43

Chapter 5. Implementation of the algorithms

usage percentages. By setting these maps to the corresponding resources,
we defined the initial strategy and, then, created the game. The ε coef-
ficient is selected to be greater or equal than 0, i.e. the default value, by
modifying the BBQUE_SCHEDPOL_GAME_CONGESTION_EPS con-
stant inserted in the Kconfig file.

To fill the cost vectors, we took the values of αi, βi and γi from
the XML file, calculated with the formulas explained in Section 3.1.4.
After the determination of the costs using the function defined in Sec-
tion 3.1.4, we launched the findNE method to locate the Nash Equi-
librium and we normalized the percentages thanks to some for cycles
to scale them. To assign the tasks to the resources that represent the
new relationships after the calculus of the Nash Equilibrium, we called
the AssignWorkingMode method by passing the task, the relative re-
source, and the respective usage percentage. Then, we informed Barbe-
queRTRM about the new allocations, by asking it to validate the schedule
request and apply the new resource allocations.

The algorithms implementation

Thanks to the UML scheme (Figure 5.3), we can describe the implemen-
tation of the algorithm in an easy way, by observing, once a time, each
C++ class that composes the algorithm and their related functions.

The class Task is depicted in Figure 5.4. The one and only variable
of a Task is an integer which has the objective of identifying: with the
getID method it is possible to obtain that unique number.

The class Action, showed in Figure 5.5, has two private variables
and, in addition to the constructor and the re-definition of the equal

operator, three distinct public functions: a getter for the task, a getter for
the resource, and a setter for the resource.

Figure 5.6 shows the class Resource where we can obtain its char
identifier, the list of tasks that use it and the std::map element in which
there are specified the percentages of usage. We can also get its conges-
tion thanks to the getCongestion method.

Finally, in Figure 5.7 there is the representation of the class
CongestionGame which inherits from the abstract one Game. It is
the core of the entire algorithm, so where the Nash Equilibrium is com-
puted and, if it exists, found. In addition to the constructor, the function

44

5.1. Designing the BarbequeRTRM policies

Extends

Game

See Figure 3.5

Task

See Figure 3.2

Action

See Figure 3.3

Resource

See Figure 3.4 1

1...*

1...*

1

1...*

1...*

1

1...*

1...*

1

1

1...*

CongestionGame

See Figure 3.5

Figure 5.3: The skeleton of the UML class diagram of the congestion game
algorithm implementation.

setBuffCosts sets the buffer of the costs related to the usage of a spe-
cific resource, and the addCostsToBuffer method adds the cost vec-
tors to the above-mentioned buffer. Finally, we have the public method
getCostGame that, by calculating the cost of the game, permits the
computation of the Nash Equilibrium in findNE. The other functions
are the private methods that the algorithm uses to check if there is, at
least, one equilibrium.

5.1.2 The double auctions extensions

For the double auctions policy (its UML is shown in Figure 5.8), in the
Schedule method we introduced the function createGame thanks to
which we can initialize the game by taking the needed data from Barbe-
queRTRM itself. In fact, with a pointer to the applications, we can bring
the names and the ids of the tasks, firstly the ones in the Ready status and,
secondly, the ones that are already in execution, i.e. in the Running status.
We inserted the necessary parameters of the cost function in a XML file

45

Chapter 5. Implementation of the algorithms

Task

- int identifier;

+ Task(int);
+ getID(): const int;
+ operator==(const Task): const bool;

Figure 5.4: The UML class diagram for Task (congestion game).

Action

- Task task;
- Resource resource;

+ Action(const Task, const Resource, int);
+ getTask(): const Task;
+ setResource(Resource): void;
+ getResource(): const Resource;
+ operator==(const Action): const bool;

Figure 5.5: UML class diagram for Action (congestion game).

that a parser, invoked by the policy, reads. Given that, we had the resource
bids used with their identifier to create the vector of the resources: in this
way, we defined the game.

According to the Kconfig file, given that the choice is between two
constants:

• CONFIG_BBQUE_SCHEDPOL_GAME_AUCTIONS_VCG

• CONFIG_BBQUE_SCHEDPOL_GAME_AUCTIONS_MCAFEE

respectively we called either the find_BA_VCG method or the
find_BA_McAfee function. To assign the tasks to the resources that
represent the new relationships after the end of the double auctions game,
we called the AssignWorkingMode method by passing the task and
the relative resource. Then, we informed BarbequeRTRM, via the
ScheduleRequest methods, to apply the modifications to the task al-
locations.

46

5.1. Designing the BarbequeRTRM policies

Resource

- char identifier;
- vector<Task> tasks;
- map<char, int> map;

- getPosition(const vector<Task>, int): const int;
+ Resource(char, vector<Task>);
+ setMap(map<char, int>): void;
+ getMap(): const map<char, int>;
+ getID(): const char;
+ getTasks(): vector<Task> const;
+ addTask(const Task): void;
+ eraseTask(const Task): void;
+ getCongestion(): const int;
+ operator==(const Resource): const bool;

Figure 5.6: UML class diagram for Resource (congestion game).

The algorithms implementation

Thanks to the UML scheme (Figure 5.9), we can easily describe these
algorithms by observing, once a time, the classes and, specifically, their
interactions and functions.

As private variables of the class Task (Figure 5.10), there are the
identifier, that is an integer with the purpose of identifying, and the bid,
i.e. a float value of how much the task is inclined to offer for having the
"item" from the resource.

The class Resource (Figure 5.11) has an identifier in the form of
integer that determines the object, a second identifier, another integer,
used to identify it only in the case if the resource is duplicated, a bid i.e.
a float value that specifies the offer of the resource with which sells the
"item" to the buyer, and, finally, the task to which the resource is going to
sell the "item".

In the end, in Figure 5.12, we have the DoubleAuctions class that
has a vector of tasks and a vector of resources as private variables. In
addition to the obvious getResources and the methods strictly related
to the McAfee algorithm and the VCG mechanism, we have to mention the
copyandpaste function thanks to which the resources are duplicated
if their amount is smaller than the tasks number.

47

Chapter 5. Implementation of the algorithms

Game

+ Game();
+ ~Game();
+ findNE() =0;

CongestionGame

- vector<Task> tasks;
- vector<Resource> resources;
- vector<Action> strategy;
- int;
- vector< vector<int> > buffCosts;

- is_res_in(const vector<Action>, const Resource): const bool;
- changeRes(const Action, const Resource, vector<Action>): void;
- fillActions(vector<Action>, const Task): void;
- bestForTask(vector<Action>, int): bool;
- tryNewGame(vector<Action>, int, int, int): bool;
- removeTaskFromRes(vector<Resource>, const Resource, const Task): void;
+ CongestionGame(vector<Task>, vector<Resource>, vector<Action>);
+ setBuffCosts(const vector< vector<int> >): void;
+ addCostsToBuffer(const vector<int>): void;
+ getCostGame(): const float;
+ findNE(): vector<Action>;

Extends

Figure 5.7: UML class diagram for Game and CongestionGame (congestion
game).

48

5.1. Designing the BarbequeRTRM policies

Extends

SchedulerPolicyIF

(...)

(...)

game_auctions_schedpol

- ConfigurationManager cm;
- ResourceAccounter ra;
- unique_ptr<bu::Logger> logger;
- shared_ptr<DoubleAuctions> dagame;
- map<int, int> mapRefNum;
- map<int, AwmPtr_t> mapWorkingMode;

- Game_auctionsSchedPol();
- _Init(): ExitCode_t;
- createGame(): void;
- AssignWorkingMode(const Task, const Resource): void;
- DoPEBinding(AppCPtr_t, AwmPtr_t, BBQUE_RID_TYPE): void;
+ Create(PF_ObjectParams): void;
+ Destroy(void): int32_t;
+ ~Game_auctionsSchedPol();
+ Name(): char const;
+ Schedule(System, RViewToken_t): ExitCode_t;

Figure 5.8: The skeleton of the UML class diagram for the policy based on
double auctions games.

49

Chapter 5. Implementation of the algorithms

Resource

See Figure 4.3

Task

See Figure 4.2

DoubleAuctions

See Figure 4.4

1

1

1

1...*

1...*

1

Figure 5.9: The skeleton of the UML class diagram of the double auctions algo-
rithm implementation.

Task

- int identifier;
- float bid;

+ Task(int, float);
+ Task();
+ setBid(float): void;
+ getID(): const int;
+ getBid(): const float;

Figure 5.10: The UML class diagram for Task (double auctions).

50

5.1. Designing the BarbequeRTRM policies

Resource

- char identifier;
- int secondIdentifier;
- float bid;
- Task task;

+ Resource(char, int, float);
+ getID(): const char;
+ setSecondID(int): void;
+ setBid(float): void;
+ getBid(): const float;
+ setTask(const Task): void;
+ getTask(): const Task;

Figure 5.11: The UML class diagram for Resource (double auctions).

DoubleAuctions

- vector<Task> tasks;
- vector<Resource> resources;

+ DoubleAuctions(const vector<Task>, const vector<Resource>);
+ getResources(): const vector<Resource>
+ copyAndPaste(vector<Resource>, int): void;
+ findDecreasingOrderForTasks(vector<Task>): void;
+ findIncreasingOrderForResources(vector<Resource>): void;
+ assignTasks(vector<Resource>, const vector<Task>): void;
+ findBreakevenIndex(const vector<Resource>, const vector<Task>): int;
+ findPrice(float, float): float;
+ tradingMcAfee(vector<Resource>, vector<Task>, int, int): void;
+ tradingVCG(vector<Resource>, vector<Task>, int): void;
+ findSocialWelfare(const vector<Resource>, const vector<Task>): int;
+ findBA_McAfee(): void;
+ findBA_VCG(): void;

Figure 5.12: The UML class diagram for DoubleAuctions (double auc-
tions).

51

Chapter 5. Implementation of the algorithms

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f −8" ?>
< e n t i t i e s >

< r e s o u r c e s >
< r e s o u r c e i d =" . . . ">

< a l p h a > . . . < / a l p h a >
< a l p h a 0 > . . . < / a l p h a 0 >
< b e t a > . . . < / b e t a >
< b e t a 0 > . . . < / b e t a 0 >
<gamma> . . . < / gamma>

< / r e s o u r c e >
(. . .)

< / r e s o u r c e s >
< t a s k s >

< t a s k name=" . . . ">
< p e r c e n t a g e i d =" . . . "> . . . < / p e r c e n t a g e >
(. . .)

< / t a s k >
(. . .)

< / t a s k s >
< / e n t i t i e s >

Figure 5.13: The skeleton of the XML file for congestion game policy.

5.2 The configuration parameters files

As explained in the previous sections, we created two XML files that con-
tain the parameters necessary to the calculus of the cost function. A cus-
tom parser based on the RapidXML library has been developed for both
the congestion games and the double auctions policies. In the following
subsections the content of these two files is briefly described and shown
in Figure 5.13 and Figure 5.14.

The congestion game case

In the tag entities, we can find the sub-tags resources and tasks. In our
experimental evaluation they respectively contain four resources, repre-
senting cpu0, cpu1, cpu2 and cpu3, and two tasks, i.e. facesim

and blackscholes. For each tag resource, we have an id attribute and
five different sub-tags, to define α, α0, β, β0 and γ. On the other hand,
in each tag task, in addition to the name attribute, we write the percent-
age sub-tag which has the id attribute that determines the resource and its

52

5.2. The configuration parameters files

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" u t f −8" ?>
< e n t i t i e s >

< r e s o u r c e s >
< r e s o u r c e i d =" . . . " b i d =" . . . " / >
(. . .)

< / r e s o u r c e s >
< t a s k s >

< t a s k name=" . . . " b i d =" . . . " / >
(. . .)

< / t a s k s >
< / e n t i t i e s >

Figure 5.14: The skeleton of the XML file for double auctions policy.

content that represents the usage percentage.

The double auctions case

As in the congestion game case, in the tag entities, we can find the sub-
tags resources and tasks. In our experimental evaluation they respectively,
contain four resources, by representing cpu0, cpu1, cpu2 and cpu3,
and two tasks, by identifying facesim and blackscholes. For each
tag resource, we have two attributes, the id and the bid. On the other hand,
in each tag task, we have the name and the bid attributes that determine
the task and the value that is offered to buy the "item".

53

CHAPTER6
Experimental evaluation

In this section, we aim to test the two proposed policies, the first related
to the congestion game scenario and the second associated to the double
auctions scenario, by evaluating their effectiveness compared to not only
each other but also the default Linux and BarbequeRTRM policies.

6.1 Experimental setup

To perform the above-mentioned experiments, we used an high-end work-
station that has an Intel i7-3770 quad-core processor and a x86_64 ar-
chitecture. With a RAM of 8 GB and a cache of 8 MB, its maximum
frequency is 3.4 GHz. Each core has the capability to run two hardware-
threads (for a total of 8 in the machine). The system runs a Linux operative
system with a kernel of version 4.15.0.

As workload we used some benchmarks to understand, in an experi-
mental way, the advantages and the disadvantages in using the new policy.
The benchmark suite has been developed to take into account the subse-
quent goals:

55

Chapter 6. Experimental evaluation

• the applications should stress the various classes of architectural
characteristics of the machine;

• it should depict the important applications on the target processors;

• its workloads should differentiate enough to exhibit the field of be-
haviours of the target applications;

• it should use state-of-the-art algorithms and techniques.

We selected PARSEC suite [5] (already integrated in BarbequeRTRM)
and, in particular, the blackscholes and facesim benchmarks. They
have been enabled in the BarbequeRTRM Kconfig system. From the PAR-
SEC’s original paper [5], we knew that one of the goals of this particular
suite of benchmarks, written in C and C++, is to select a set of programs
that is large and diverse enough to be sufficiently representative for scien-
tific studies. It consists, in total, of 9 applications and 3 kernels, chosen
from wide options of application domains with different combinations of
parallel models, machine requirements and runtime behaviours.

Although we had not a machine with heterogeneous architecture, that
is with different core architectures, we instead used a server machine with
one package (i.e. a single physical processor) configured as an homo-
geneous quad-cores. To simulate the heterogeneity, we assigned to each
core a different constant frequency, by using a module of the Linux kernel
that is called cpufreq. We set the governor (i.e. the cpufreq behavioural
policy) to userspace because, in this way, the user setting can not au-
tonomously be modified by Linux itself. We manually adjusted the core
frequencies to four different values, 3.4GHz for the cpu0, 2.9GHz for
the cpu1, 2.2GHz for the cpu2 and 1.6GHz for the cpu3.

To avoid the interference in the same core which would reduce perfor-
mance and experiment reproducibility, we disabled the hyperthreading.
This is usual in the HPC scenario: a logic core is deactivated in every
physical one, having, in this way, only one hardware thread for each core.
To measure the power and the energy, we used Intel RAPL, a driver of
Linux kernel called Running Average Power Limit, which allows us to
read the power and energy consumption data.

56

6.2. Estimation of power and energy coefficients

6.2 Estimation of power and energy coefficients

The Intel RAPL allowed us to measure the total energy consumed by the
whole processor (i.e. the socket). By considering that we modified the
frequencies of the four internal cores, to calculate the single energy con-
sumed by each core, it is necessary to switch off one core at a time, mea-
suring the energy consumed by the remaining three together, and, then,
calculate the difference. This procedure is repeated for the other three
cores.

IntelRAPL offers the possibility to read also the instantaneous power
consumption. However, the machine used for the tests do not support this
feature. Consequently, to find the power, we calculated the total energy
consumed by the processor at two different timing instants separated by
a small interval. After the calculation of the delta of these two values, the
difference is divided by the size of the time interval, by determining, in
this way, the derivative of the energy, i.e. the instantaneous power.

∆E = E(t1)− E(t0)

P = ∆E

∆T

Once P has been computed (the results are shown in Table 6.1), the
γi coefficient is found according to Equation 3.7.

Starting from cpu0 to cpu3, one at a time, we spawned only one
task pinned on the core under analysis, while the others remain in the
idle state (so, their power consumption is minimum). For each processor,
we measured the power 100 times: this was necessary because the Linux
kernel and system services introduce noises in the measurements, thus we
computed the average value. The total power measured from Intel RAPL
is composed of:

Ptot = k + P0 + P1 + P2 + P3

where k is the static energy and Pi is the energy of the i-th core.
When all the cores are turned on and no task is in execution (so, we

are calculating the constant k, that is the static power, i.e. the parasitic
power consumption present even if all the cores are in idle). The mea-
sured value is k = 0.487W . With cpu1, cpu2 and cpu3 in the idle

57

Chapter 6. Experimental evaluation

Core Dynamic Power

0 9.255 W

1 6.776 W

2 5.152 W

3 3.811 W

Table 6.1: The estimated dynamic power for the cores of the processor under
analysis.

Core PDP

0 9.255W
3.4·109GHz

= 2.722 · 10−9W · s

1 6.776W
2.9·109GHz

= 2.337 · 10−9W · s

2 5.152W
2.2·109GHz

= 2.342 · 10−9W · s

3 3.811W
1.6·109GHz

= 2.382 · 10−9W · s

Table 6.2: The estimated Power Delay Product (PDP) for the cores of the pro-
cessor under analysis.

state, we obtained k+P0 = 9.742W . Then, by maintaining processors 0,
2 and 3 in the idle state, we read k + P1 = 7.263W . After that, by keep-
ing cpu0, cpu1 and cpu3 in the idle state, we found k+P2 = 5.640W .
Finally, with the processors 0, 1 and 2 in the idle state, we measured
k + P3 = 4.298W . By subtracting the value of k from the four sums, we
calculated the values presented by Table 6.1.

Table 6.2 shows the four values of PDP as defined in Equation 3.6.
It is possible to notice that the PDP value is similar for all the cores,

especially the intermediate values, PDP1 and PDP2. Among the four
considered frequencies, on the basis of PDP , the most efficient proces-
sor1 is cpu1 which frequency is 2.9GHz. We can also notice that it
does not exist a linear relationship between the values as also noticed by
previous works [36].

To ease the selection of the user coefficients and to get rid of the dif-
ferent units of measurement, we decided to normalize Pi, PDPi, and fi
values, by mapping the larger of each coefficient to 1. By starting from

1If we increase the performance by maintaining the same power, we gain more efficiency.

58

6.2. Estimation of power and energy coefficients

this new value, for the other three cores, the numbers are proportionally
computed.

P̂DP 0 = 2.722/2.722 = 1

P̂DP 1 = 2.337/2.722 = 0.859

P̂DP 2 = 2.342/2.722 = 0.860

P̂DP 3 = 2.382/2.722 = 0.875

We followed the same procedure of normalization for the frequencies:
in this case, we set 1

f3
to 1 because it resulted as the biggest value.

f̂0 = 0.294/0.625 = 0.470

f̂1 = 0.345/0.625 = 0.552

f̂2 = 0.455/0.625 = 0.728

f̂3 = 0.625/0.625 = 1

Eventually, the new Pi values (identified by P̂i) are:

P̂0 = 9.255/9.255 = 1

P̂1 = 6.776/9.255 = 0.732

P̂2 = 5.152/9.255 = 0.557

P̂3 = 3.811/9.255 = 0.412

As expected, the highest power corresponds to the highest frequency.
Regarding αi,0 and βi,0, we employed the data of the scientific article

[7] where the authors calculated the context switch overhead in the range
[0.17%, 0.25%]. To be conservative, we chosen the worst case scenario:

αi,0 = βi,0 = 0.25%

All the coefficients presented in the previous paragraphs are used by
both the congestion game and the double auctions policies.

59

Chapter 6. Experimental evaluation

Core Percentage Average execution time in ms

0 47% 5896.294

1 58% 5909.547

2 77% 5647.083

3 100% 5929.859

Table 6.3: The measured execution times and the computed percentages for
benchmark facesim.

Core Percentage Average execution time in ms

0 41% 14.050

1 50% 13.961

2 70% 13.438

3 100% 13.702

Table 6.4: The measured execution times and the computed percentages for
benchmark blackscholes.

6.3 Congestion games

In this section, we explain how the task percentages needed for the con-
gestion games are computed, by presenting also the result of the experi-
mental evaluation for these games.

6.3.1 Selecting the CPU share based on QoS

The congestion games policy requires to pre-compute the cpu percentage
(share) needed to reach the performance goal (or Quality of Service - QoS)
of each task. Since we are using benchmarks as workload, we took into
account the core characterized by the lowest frequency and we assigned
to it the 100% percentage. Then, we tested the other CPUs with different
percentages (by varying the share of 1% at a time): when the similar2

performance of the core with 100% percentage of usage is reached, the
new percentage value is saved. The performance metrics considered is
the average execution time over 100 runs. The results are showed in Table
6.3 and Table 6.4 for, respectively, the facesim and blackscholes
benchmarks.

Due to an internal limitation of the BarbequeRTRM software, we have

2The percentage that leads to the minimum absolute difference has been chosen.

60

6.3. Congestion games

to limit the sum of the usage percentages linked to a resource that must be,
at most, 100% because, in this way, the tasks which use that resource are
scheduled simultaneously. This allows the Linux scheduler to decide the
task in real execution during a precise instant of time. This is critical if the
system is oversubscribed, i.e. there are more tasks than cpus. From the
percentages previously computed for the congestion game, we can pass
to the just described representation of BarbequeRTRM:

X̂i,j =
Xi,j · 100∑

kXk,j

where Xi,j is the i-th task usage percentage of the j-th resource and∑
kXk,j is the usage percentages sum of the j-th resource from all the

k tasks that use it.

6.3.2 Results

To study the evolution of the wall execution time3, energy and power in
the congestion games scenario, we chose to vary α̂, γ̂ and β̂, according to
a vector composed by following values: [0, 0.1, 0.25, 0.3, 0.5, 0.75, 1, 1.5,

3, 5, 7].
In this way, regarding α̂ which, in theory, affects the execution time,

with lower values of it, we discovered that there is a considerable incre-
ment of the time spent by the tasks to run. This is because, obviously,
α̂ is not too much influential in the cost function. On the other hand, if
it is larger, it is possible to obtain a better execution time which is much
shorter than in the previous situation. In Figure 6.1, by focusing on the
blue line, the above-mentioned behaviour is clearly visible.

With reference to γ̂, when low values are used, it is visible that the
power, i.e. the metrics influenced by this variable, increases considerably,
while, in the opposite case, that is the one in which γ̂ is large, as expected
by the theory, we obtain a lower value for the power consumption as
shown by Figure 6.2 (red line).

Then, by considering the β̂ variable, we noticed that this cost function
coefficient is not effective as expected as regard the energy evolution. By
observing the Figure 6.3 and, in particular, the green line, it is visible that,

3The wall execution time is the time interval between the moment in which all the benchmarks
are activated and the moment in which all of them terminate their execution.

61

Chapter 6. Experimental evaluation

0 1 2 3 4 5 6 7
′

150

200

250

300

350
Ti

m
e

(s
)

4000

4200

4400

4600

4800

En
er

gy
 (J

)

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Po
we

r (
W

)

Figure 6.1: The measured values of time, energy and power, according to the
variation of α̂ with γ̂ and β̂ equal to 1.

although we used bigger values for β̂, it did not cause an improvement of
the amount of energy. This is because, knowing that it depends a lot on the
execution time of the tasks, we must remember that the congestion game
scenario does not have any information about it. This analysis is really
problematic in our experiments because the chosen benchmarks have an
execution time very different among each other: indeed, facesim takes
500x more time than blackscholes.

Finally, in Figure 6.4, while the amount of tasks varies on the x-axis,
we can see the differences between the situation in which BarbequeRTRM
is used4, and the one where the resource manager is not employed. In the
first above-mentioned case, the execution time is, in general, higher than
in the second one, but, by omitting the situation concerning the energy,
we can see that the system consumed less power during the experiments
involving BarbequeRTRM.

6.4 Double auctions games

To study the evolution of the wall execution time5, energy and power in
the double auctions situation, we chose to vary α̂, γ̂ and β̂, according to a

4In this case, we considered: α̂ = 1, β̂ = 1, and γ̂ = 1.
5See Footnote 3 for the definition of wall execution time.

62

6.4. Double auctions games

0 1 2 3 4 5 6 7
′

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Po
we

r (
W

)

4050

4100

4150

4200

4250

4300

En
er

gy
 (J

)

150

160

170

180

190

200

210

220

Ti
m

e
(s

)

Figure 6.2: The measured values of time, energy and power, according to the
variation of γ̂ with α̂ and β̂ equal to 1.

vector composed of the values [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5].

6.4.1 Results

We proceed similarly to the previous section of the congestion games. In
this way, we discovered that, regarding α̂which, in theory, affects the evo-
lution time, with lower values of this cost function coefficient, we have
a considerable increment of the time spent by the resource manager to
run the tasks because, obviously, α̂ is not too much influential in the cost
function. On the other hand, the larger the α̂ value, the smaller the exe-
cution time which is considerably shorter than in the previous situation.
In Figure 6.5 and Figure 6.6, by observing, in particular, the blue lines,
we can see the above-mentioned behaviour with one facesim task and
one blackscholes task, when scheduled by, respectively, the McAfee
algorithm and the VCG mechanism.

Then, in Figure 6.7 and Figure 6.8, by observing, in particular, the
blue lines, we can see the above-mentioned behaviour with two facesim
tasks and two blackscholes tasks, when scheduled by, respectively,
the McAfee algorithm and the VCG mechanism.

Finally, in Figure 6.9 and Figure 6.10, by observing, in particular, the
blue lines, we can see the above-mentioned behaviour with four facesim
tasks and four blackscholes tasks, when scheduled by, respectively,

63

Chapter 6. Experimental evaluation

0 1 2 3 4 5 6 7
′

3950

4000

4050

4100

4150

4200
En

er
gy

 (J
)

20

22

24

26

28

30

Po
we

r (
W

)

150

160

170

180

190

200

210

Ti
m

e
(s

)

Figure 6.3: The measured values of time, energy and power, according to the
variation of β̂ with α̂ and γ̂ equal to 1.

the McAfee algorithm and the VCG mechanism: in these cases, the evolu-
tion of the time has larger variations compared to the previous examples.
This is the first symptom that the double auctions game does not perform
very well when the number of tasks is larger than the amount of resources.

By considering, instead, the β̂ variable, with the same setup of the α̂
variable, we noticed that this cost function coefficient is not effective as
expected regarding the energy evolution: by observing the green lines in
Figures 6.11, 6.12, 6.13, 6.14, 6.15 and 6.16, it is not possible to claim
a given trend or clear relation. We suspected that this is caused by the
lack of heterogeneity of the processors because we modified only the fre-
quency to differentiate the four cores in our experimental setup. In fact,
if we consider the β̂ variable singularly, i.e. with α̂ = 0 and γ̂ = 0, we
obtain a decreasing energy function when β̂ increases.

Regarding the γ̂ coefficient by using lower values, it is visible that the
power, i.e. the metrics influenced by this variable, increases larger, while,
in the opposite case, that is the one in which γ̂ is equal to bigger numbers,
as expected, we obtain a lower power consumption as depicted by Figures
6.17, 6.18, 6.19, 6.20, and 6.21 (red lines).

64

6.4. Double auctions games

Figure 6.4: The comparison of the "with resource manager" situation and the
"without resource manager" situation according to time, energy and power.
The values of α̂, β̂ and γ̂ are 1. The x-axis represents the number of tasks: (#
facesim, # blackscholes).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

35

40

45

50

55

60

Ti
m

e
(s

)

294

295

296

297

298

299

300

En
er

gy
 (J

)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Po
we

r (
W

)

Figure 6.5: The analysis of time, energy and power, by varying α̂ and main-
taining β̂ and γ̂ equal to 1. In this case, we run one facesim task and one
blackscholes task, using the McAfee algorithm.

65

Chapter 6. Experimental evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

35

40

45

50

55

60

Ti
m

e
(s

)

294

296

298

300

302

En
er

gy
 (J

)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Po
we

r (
W

)

Figure 6.6: The analysis of time, energy and power, by varying α̂ and main-
taining β̂ and γ̂ equal to 1. In this case, we run one facesim task and one
blackscholes task, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

36

38

40

42

44

46

48

Ti
m

e
(s

)

494

496

498

500

502

504

En
er

gy
 (J

)

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Po
we

r (
W

)

Figure 6.7: The analysis of time, energy and power, by varying α̂ and maintain-
ing β̂ and γ̂ equal to 1. In this case, we run two facesim tasks and two
blackscholes tasks, using the McAfee algorithm.

66

6.4. Double auctions games

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

36

38

40

42

44

46

48
Ti

m
e

(s
)

494

495

496

497

498

499

500

501

En
er

gy
 (J

)

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Po
we

r (
W

)

Figure 6.8: The analysis of time, energy and power, by varying α̂ and maintain-
ing β̂ and γ̂ equal to 1. In this case, we run two facesim tasks and two
blackscholes tasks, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

35.50

35.75

36.00

36.25

36.50

36.75

37.00

Ti
m

e
(s

)

1050

1055

1060

1065

1070

1075

1080

1085

En
er

gy
 (J

)

34.0

34.2

34.4

34.6

34.8
Po

we
r (

W
)

Figure 6.9: The analysis of time, energy and power, by varying α̂ and maintain-
ing β̂ and γ̂ equal to 1. In this case, we run four facesim tasks and four
blackscholes tasks, using the McAfee algorithm.

67

Chapter 6. Experimental evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

36.0

36.2

36.4

36.6

36.8

Ti
m

e
(s

)

1060

1065

1070

1075

1080

1085

1090

1095

En
er

gy
 (J

)

34.0

34.1

34.2

34.3

34.4

34.5

34.6

Po
we

r (
W

)

Figure 6.10: The analysis of time, energy and power, by varying α̂ and main-
taining β̂ and γ̂ equal to 1. In this case, we run four facesim tasks and
four blackscholes tasks, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

293.4

293.6

293.8

294.0

294.2

294.4

294.6

294.8

En
er

gy
 (J

)

8.6

8.7

8.8

8.9

9.0

Po
we

r (
W

)

35.0

35.5

36.0

36.5

37.0

Ti
m

e
(s

)

Figure 6.11: The analysis of time, energy and power, by varying β̂ and main-
taining α̂ and γ̂ equal to 1. In this case, we run one facesim task and one
blackscholes task, using the McAfee algorithm.

68

6.4. Double auctions games

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

294.0

294.5

295.0

295.5

296.0

296.5

En
er

gy
 (J

)

8.4

8.5

8.6

8.7

8.8

8.9

9.0

Po
we

r (
W

)

35.0

35.5

36.0

36.5

37.0

37.5

38.0

Ti
m

e
(s

)

Figure 6.12: The analysis of time, energy and power, by varying β̂ and main-
taining α̂ and γ̂ equal to 1. In this case, we run one facesim task and one
blackscholes task, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

498

499

500

501

502

503

En
er

gy
 (J

)

13.9

14.0

14.1

14.2

14.3

14.4

14.5

Po
we

r (
W

)

36.4

36.6

36.8

37.0

37.2

37.4

37.6

Ti
m

e
(s

)

Figure 6.13: The analysis of time, energy and power, by varying β̂ and main-
taining α̂ and γ̂ equal to 1. In this case, we run two facesim tasks and two
blackscholes tasks, using the McAfee algorithm.

69

Chapter 6. Experimental evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

494

496

498

500

502

504

En
er

gy
 (J

)

13.9

14.0

14.1

14.2

14.3

14.4

14.5

Po
we

r (
W

)

36.0

36.5

37.0

37.5

38.0

Ti
m

e
(s

)

Figure 6.14: The analysis of time, energy and power, by varying β̂ and main-
taining α̂ and γ̂ equal to 1. In this case, we run two facesim tasks and two
blackscholes tasks, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

1060

1065

1070

1075

1080

En
er

gy
 (J

)

34.45

34.50

34.55

34.60

34.65

Po
we

r (
W

)

35.7

35.8

35.9

36.0

36.1

36.2

Ti
m

e
(s

)

Figure 6.15: The analysis of time, energy and power, by varying β̂ and main-
taining α̂ and γ̂ equal to 1. In this case, we run four facesim tasks and
four blackscholes tasks, using the McAfee algorithm.

70

6.4. Double auctions games

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

1040

1050

1060

1070

1080

1090
En

er
gy

 (J
)

34.25

34.30

34.35

34.40

34.45

34.50

34.55

34.60

Po
we

r (
W

)

35.2

35.4

35.6

35.8

36.0

36.2

36.4

36.6

Ti
m

e
(s

)

Figure 6.16: The analysis of time, energy and power, by varying β̂ and main-
taining α̂ and γ̂ equal to 1. In this case, we run four facesim tasks and
four blackscholes tasks, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

Po
we

r (
W

)

294.0

294.5

295.0

295.5

296.0

296.5

En
er

gy
 (J

)

36

38

40

42

44

Ti
m

e
(s

)

Figure 6.17: The analysis of time, energy and power, by varying γ̂ and main-
taining α̂ and β̂ equal to 1. In this case, we run one facesim task and one
blackscholes task, using the McAfee algorithm.

71

Chapter 6. Experimental evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

7.0

7.5

8.0

8.5

9.0

Po
we

r (
W

)

294.0

294.5

295.0

295.5

296.0

296.5

297.0

297.5

En
er

gy
 (J

)

36

38

40

42

44

46

Ti
m

e
(s

)

Figure 6.18: The analysis of time, energy and power, by varying γ̂ and main-
taining α̂ and β̂ equal to 1. In this case, we run one facesim task and one
blackscholes task, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

11

12

13

14

15

16

17

18

19

Po
we

r (
W

)

500

510

520

530

540

550

560

570

580

En
er

gy
 (J

)

32

34

36

38

40

42

44

46

Ti
m

e
(s

)

Figure 6.19: The analysis of time, energy and power, by varying γ̂ and main-
taining α̂ and β̂ equal to 1. In this case, we run two facesim tasks and two
blackscholes tasks, using the McAfee algorithm.

72

6.4. Double auctions games

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

12

13

14

15

16

17

18

19
Po

we
r (

W
)

490

500

510

520

530

540

550

560

570

En
er

gy
 (J

)

32

34

36

38

40

42

44

Ti
m

e
(s

)

Figure 6.20: The analysis of time, energy and power, by varying γ̂ and main-
taining α̂ and β̂ equal to 1. In this case, we run two facesim tasks and two
blackscholes tasks, using the VCG mechanism.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

34.4

34.5

34.6

34.7

34.8

34.9

Po
we

r (
W

)

1065

1070

1075

1080

1085

En
er

gy
 (J

)

35.8

35.9

36.0

36.1

36.2

36.3

36.4

36.5

Ti
m

e
(s

)

Figure 6.21: The analysis of time, energy and power, by varying γ̂ and main-
taining α̂ and β̂ equal to 1. In this case, we run four facesim tasks and
four blackscholes tasks, using the McAfee algorithm.

73

Chapter 6. Experimental evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
′

34.40

34.45

34.50

34.55

34.60

Po
we

r (
W

)

1055

1060

1065

1070

1075

1080

1085

1090

En
er

gy
 (J

)

35.8

36.0

36.2

36.4

36.6

Ti
m

e
(s

)

Figure 6.22: The analysis of time, energy and power, by varying γ̂ and main-
taining α̂ and β̂ equal to 1. In this case, we run four facesim tasks and
four blackscholes tasks, using the VCG mechanism.

The only outlier is the scenario depicted in Figure 6.22, where we can
see a not expected evolution of the power, with remarkable variations and
no clear trends, which do not respond to our assumptions. Similar to the
other cost function coefficients, the cause is the too large number of tasks
compared to the amount of resources.

In Figures 6.23, 6.24, 6.25 and 6.26, we can see how the McAfee
algorithm works with and without BarbequeRTRM software. We stud-
ied the cases in which we have, as tasks, four different couples: one
blackscholes task with zero facesim task, one facesim task
with zero blackscholes task, two blackscholes tasks with zero
facesim task, and two facesim tasks with zero blackscholes

task. It is obvious that in general, as compared to the situation where the
resource manager is involved, both the cases without BarbequeRTRM,
i.e. the ones that in the graphs are represented by the green and red bars,
expect a worst behaviour in terms of total energy, dynamic energy, time,
average power and maximum power. In these figures, the case without
BarbequeRTRM is shown both with the metrics average (AVG) and with
the metrics maximum (MAX), because the Linux default allocation varies
each time we launched the benchmarks.

Eventually, like the previous results, in Figures 6.27, 6.28, 6.29, and

74

6.4. Double auctions games

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.23: The comparison of total energy, dynamic energy, time, average
power and maximum power with and without BarbequeRTRM, in both the
AVG and MAX situations, in the case of the McAfee algorithm and one
blackscholes task.

6.30, we can see how the VCG mechanism works with and without Bar-
bequeRTRM. We studied the cases in which we have, as tasks, four dif-
ferent couples: one blackscholes task with zero facesim task, one
facesim task with zero blackscholes task, two blackscholes
tasks with zero facesim task, and two facesim tasks with zero
blackscholes task. It is obvious that in general, as compared to the
situation where the resource manager is involved, both the cases without
the BarbequeRTRM, i.e. the ones that in the graphs are represented by the
light-green and light-red bars, expect a worst behaviour in terms of total
energy, dynamic energy, time, average power and maximum power.

75

Chapter 6. Experimental evaluation

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.24: The comparison of total energy, dynamic energy, time, average
power and maximum power with and without BarbequeRTRM, in both the
AVG and MAX situations, in the case of the McAfee algorithm and two
blackscholes tasks.

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.25: The comparison of total energy, dynamic energy, time, average
power and maximum power with and without BarbequeRTRM, in both the
AVG and MAX situations, in the case of the McAfee algorithm and one
facesim task.

76

6.4. Double auctions games

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.26: The comparison of total energy, dynamic energy, time, average
power and maximum power with and without BarbequeRTRM, in both the
AVG and MAX situations, in the case of the McAfee algorithm and two
facesim tasks.

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.27: The comparison of total energy, dynamic energy, time, aver-
age power and maximum power with and without BarbequeRTRM, in both
the AVG and MAX situations, in the case of the VCG mechanism and one
blackscholes task.

77

Chapter 6. Experimental evaluation

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.28: The comparison of total energy, dynamic energy, time, aver-
age power and maximum power with and without BarbequeRTRM, in both
the AVG and MAX situations, in the case of the VCG mechanism and one
facesim task.

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.29: The comparison of total energy, dynamic energy, time, aver-
age power and maximum power with and without BarbequeRTRM, in both
the AVG and MAX situations, in the case of the VCG mechanism and two
blackscholes tasks.

78

6.4. Double auctions games

Total
energy

Dynamic
energy

Time Average
power

Maximum
power

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ti
m

e
(s

)

Barbeque
No Barbeque AVG
No Barbeque MAX

Figure 6.30: The comparison of total energy, dynamic energy, time, aver-
age power and maximum power with and without BarbequeRTRM, in both
the AVG and MAX situations, in the case of the VCG mechanism and two
facesim tasks.

79

Chapter 6. Experimental evaluation

6.5 Discussion

We evaluated two policies that implement, respectively, the mechanism
behind a congestion game and the double auctions scenario, on a plat-
form which simulates a heterogeneous system with four different cpus
by running them at four different frequencies. After the calculation of
the parameters α̂, β̂, and γ̂, we studied their impact on time, energy, and
power, by considering several cases with a different workload, i.e. the
number of facesim tasks and blackscholes tasks: in this way, we
observed how the energy, the power, and the execution time react to those
different situations.

In the case of the congestion games, even though we put ε6 only equal
to 0, by introducing in this way a substantial overhead caused by the pol-
icy to be executed, it is clear that the BarbequeRTRM allocations are gen-
erally better than a random policy. After the analysis of the variations
regarding α̂, γ̂, and β̂, the first two parameters have an evident impact on,
respectively, execution time and power, while the third cost function coef-
ficient, instead, is not able to be effective on the energy, probably because
the policy does not have a per-task characterization.

On the other hand, according to the double auction scenario, α̂, β̂, and
γ̂ are more effective when the number of tasks is limited. Also in this
case, we studied how the variation of the three parameters influence the
result, by noticing that here β̂ has a better effect compared to the conges-
tion game case. By comparing this solution with the one of the default
scheduler Linux, we could analyse how the policy improves the data, i.e.
energy, execution time, and power, also simultaneously, once the tasks
number is less than the resources amount, that is the system is not over-
subscribed. Nevertheless, this limitation is not too much concerning be-
cause, in the case of HPC systems, the allocation of a tasks number equal
to the amount of available processors on every single server is frequent
and the nodes are never oversubscribed.

To summarize, the experimental facts show how the double auction
policy works better when the node is not oversubscribed, while the con-
gestion game policy, like expected from the theory, operates better when
the nodes are congested, i.e. oversubscribed. Both the solutions have

6This variable represents how much we move away from the exact solution.

80

6.5. Discussion

good or optimal results compared to the use of the default Linux sched-
uler allocation, in the execution time, the maximum power, the average
power, and, with regard to double auctions case, also on the energy, both
the dynamic and the total.

81

CHAPTER7
Conclusions

In this final chapter, we present the possible future works in the field of
the Game Theory applied to resource management and we take stock of
our work.

7.1 Future works

First of all, further experiments can be performed, not only to observe
how the congestion game’s approximated algorithm (i.e. the case ε > 0)
behaves on a real platform but also to measure the overhead introduced
by the new policy. The overhead aspect was not considered in this thesis
because in the used architecture it does not have a significant effect. In
other systems, e.g. little embedded systems, the overhead of the policy
could potentially represent a problem and, consequently, it may be worth
investigating it.

With a focus on the double auctions games, it would be an interesting
idea to use other state-of-the-art algorithms and comparing them to the
two methods proposed in this thesis: the McAfee procedure and the VCG

83

Chapter 7. Conclusions

mechanism.
Since we used a simulated heterogeneous platform, future experi-

ments could run on a real heterogeneous system, e.g. the MANGO plat-
form that is been described in Section 1.1.2, to increase the confidence on
the results. Moreover, the policies could also be tested on architectures
that are not HPC, e.g. mobile systems. Another aspect of this work that
could be improved is to test them with a larger number of benchmarks
and applications.

Other scenarios proposed by the Game Theory can be inspected to
verify if they adapt themselves to the resource management problem: for
example, if we will deal with a distributed version of BarbequeRTRM,
it may be useful to study the so-called Stackelberg Competition, or, by
referring to situations in which the tasks can decide autonomously the
actions, i.e. there is no a centralized actor, we can study the model of
simultaneous action games.

7.2 Conclusions

In this thesis, we presented the resource management problem in hetero-
geneous platforms and how it could be solved by using Game Theory
algorithms. In particular, we chose two classes of games, the conges-
tion games, and the double auctions games, and we applied them to the
resource allocation problem on heterogeneous platforms. The policies
designed in this work allocate the resources of a single node, differently
from previous works dealing with Game Theory. In fact, state-of-the-
art solution applied the resource management problem in a distributed
computing context, i.e. how to allocate distributed resources in large en-
vironments (e.g. cloud computing).

We described both these algorithms and the modifications we intro-
duced to use them as BarbequeRTRM policies. Then, these policies have
been implemented, integrated into the BarbequeRTRM framework and
tested through the state-of-the-art benchmarks. For each policy, we per-
formed two classes of experiments: one in simulation and one on a real
platform, which simulated a heterogeneous system. The simulation part
verified the execution time and the solution optimality, from a theoret-
ical standpoint. Instead, in the section devoted to the experiments on
the real system, we checked the performance parameters, i.e. execution

84

7.2. Conclusions

time, power, and energy, by measuring them directly on the real sys-
tem. The results showed that the double auctions games obtain better
performance than the normal allocation of Linux, when the system is not
oversubscribed, i.e. when the number of tasks does not exceed the num-
ber of computational units. On the other hand, the experimental results
exhibited how the congestion games are more effective in the trade-off
management of the above-mentioned metrics than the basic scheduler of
Linux which focuses only on the execution time. The congestion games
are more adequate also when the system is oversubscribed, that is when
the number of tasks exceeds the number of computational units. The in-
troduction of these policies opens new paths in HPC, which does not,
usually, manage the situations with high congestion and tends to do not
oversubscribe nodes.

85

Bibliography

[1] Giovanni Agosta, William Fornaciari, David Atienza, Ramon Canal, Alessandro
Cilardo, José Flich Cardo, Carles Hernandez Luz, Michal Kulczewski, Giuseppe
Massari, Rafael Tornero Gavilá, and Marina Zapater. The recipe approach to chal-
lenges in deeply heterogeneous high performance systems. Microprocessors and
Microsystems, page 103185, 2020. doi:https://doi.org/10.1016/j.

micpro.2020.103185.

[2] Giovanni Agosta, William Fornaciari, David Atienza, Ramon Canal, Alessandro
Cilardo, Carles Flich, José Hernandez, Michal Kulchewski, Giuseppe Massari,
Rafael Tornero, and Marina Zapater. Challenges in deeply heterogeneous high
performance systems. In 2019 22nd Euromicro Conference on Digital System De-
sign (DSD), pages 428–435, 2019.

[3] Giovanni Agosta, William Fornaciari, Giuseppe Massari, Anna Pupykina, Fed-
erico Reghenzani, and Michele Zanella. Managing heterogeneous resources in hpc
systems. In Proceedings of the 9th Workshop and 7th Workshop on Parallel Pro-
gramming and RunTime Management Techniques for Manycore Architectures and
Design Tools and Architectures for Multicore Embedded Computing Platforms,
pages 7–12, 2018.

[4] Patrick Bellasi, Giuseppe Massari, and William Fornaciari. A rtrm proposal for
multi/many-core platforms and reconfigurable applications. In 7th International
Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (Re-
CoSoC), pages 1–8. IEEE, 2012.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceed-
ings of the 17th international conference on Parallel architectures and compilation
techniques, pages 72–81, 2008.

87

http://dx.doi.org/https://doi.org/10.1016/j.micpro.2020.103185
http://dx.doi.org/https://doi.org/10.1016/j.micpro.2020.103185

Bibliography

[6] H-L Chen, Jason R Marden, and Adam Wierman. On the impact of heterogeneity
and back-end scheduling in load balancing designs. In IEEE INFOCOM 2009,
pages 2267–2275. IEEE, 2009.

[7] Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell. Context switch over-
heads for linux on arm platforms. In Proceedings of the 2007 Workshop on Exper-
imental Computer Science, ExpCS ’07, pages 3–es, New York, NY, USA, 2007.
Association for Computing Machinery. doi:10.1145/1281700.1281703.

[8] Mian Dong, Tian Lan, and Lin Zhong. Rethink energy accounting with cooperative
game theory. In Proceedings of the 20th annual international conference on Mobile
computing and networking, pages 531–542. ACM, 2014.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. IEEE Micro,
32(3):122–134, 2012.

[10] J. Flich, G. Agosta, P. Ampletzer, D. A. Alonso, C. Brandolese, A. Cilardo, W. For-
naciari, Y. Hoornenborg, M. Kovač, B. Maitre, G. Massari, H. Mlinarič, E. Pa-
pastefanakis, F. Roudet, R. Tornero, and D. Zoni. Enabling hpc for qos-sensitive
applications: The mango approach. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 702–707, 2016.

[11] José Flich, Giovanni Agosta, Philipp Ampletzer, David Atienza Alonso, Carlo
Brandolese, Etienne Cappe, Alessandro Cilardo, Leon Dragić, Alexandre Dray,
Alen Duspara, et al. Mango: Exploring manycore architectures for next-generation
hpc systems. In 2017 Euromicro Conference on Digital System Design (DSD),
pages 478–485. IEEE, 2017.

[12] José Flich, Giovanni Agosta, Philipp Ampletzer, David Atienza Alonso, Carlo
Brandolese, Etienne Cappe, Alessandro Cilardo, Leon Dragić, Alexandre Dray,
Alen Duspara, et al. Exploring manycore architectures for next-generation hpc sys-
tems through the mango approach. Microprocessors and Microsystems, 61:154–
170, 2018.

[13] William Fornaciari, Giovanni Agosta, David Atienza, Carlo Brandolese, Leila
Cammoun, Luca Cremona, Alessandro Cilardo, Albert Farres, José Flich, Carles
Hernandez, Michal Kulchewski, Simone Libutti, José Maria Martínez, Giuseppe
Massari, Ariel Oleksiak, Anna Pupykina, Federico Reghenzani, Rafael Tornero,
Michele Zanella, Marina Zapater, and Davide Zoni. Reliable power and time-
constraints-aware predictive management of heterogeneous exascale systems. In
Proceedings of the 18th International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, SAMOS ’18, pages 187–194, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/
3229631.3239368.

88

http://dx.doi.org/10.1145/1281700.1281703
http://dx.doi.org/10.1145/3229631.3239368
http://dx.doi.org/10.1145/3229631.3239368

Bibliography

[14] Kim Grüttner, Ralph Gürgen, Süren Schreiner, Fernando Herrera, Pablo Pe nil,
Julio Medina, Eugenio Villar, Gianluca Palermo, William Fornaciari, Carlo Bran-
dolese, Davide Gadioli, Emanuele Vitali, Davide Zoni, Sara Bocchio, Luca Ceva,
Paolo Azzoni, Massimo Poncino, Sara Vinco, Enrico Macii, Salvatore Cusenza,
John Favaro, Raúl Valencia, Ingo Sander, Kathrin Rosvall, Nima Khalilzad, and
Davide Quaglia. Contrex: Design of embedded mixed-criticality control systems
under consideration of extra-functional properties. In 2016 Euromicro Conference
on Digital System Design (DSD), pages 286–293, 2016.

[15] A. Guyot and S. Abou-Samra. Low power cmos digital design. In Proceedings of
the Tenth International Conference on Microelectronics (Cat. No.98EX186), pages
IP6–I13, 1998.

[16] Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh. Game-based dis-
tributed resource allocation in horizontal dynamic cloud federation platform. In
International Conference on Algorithms and Architectures for Parallel Process-
ing, pages 194–205. Springer, 2011.

[17] Qiang He, Guangming Cui, Xuyun Zhang, Feifei Chen, Shuiguang Deng, Hai Jin,
Yanhui Li, and Yun Yang. A game-theoretical approach for user allocation in edge
computing environment. IEEE Transactions on Parallel and Distributed Systems,
2019.

[18] Maha Jebalia, Asma Ben Letaifa, Mohamed Hamdi, and Sami Tabbane. A com-
parative study on game theoretic approaches for resource allocation in cloud com-
puting architectures. In 2013 Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 336–341. IEEE, 2013.

[19] S. Kim. Game Theory Applications in Network Design. Advances in Wireless
Technologies and Telecommunication (2327-3305). IGI Global, 2014.

[20] Giuseppe Massari, Simone Libutti, Antoni Portero, Radim Vavrik, Stepan Kuchar,
Vit Vondrak, Luca Borghese, and William Fornaciari. Harnessing performance
variability: A hpc-oriented application scenario. In 2015 Euromicro Conference
on Digital System Design, pages 111–116. IEEE, 2015.

[21] Giuseppe Massari, Anna Pupykina, Giovanni Agosta, and William Fornaciari.
Predictive resource management for next-generation high-performance computing
heterogeneous platforms. In International Conference on Embedded Computer
Systems, pages 470–483. Springer, 2019.

[22] Vladimir V Mazalov, Natalia N Nikitina, and Evgeny E Ivashko. Hierarchical
two-level game model for tasks scheduling in a desktop grid. In 2014 6th Interna-
tional Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), pages 541–545. IEEE, 2014.

[23] Lara Premi, Federico Reghenzani, Giuseppe Massari, and William Fornaciari. A
game theory approach to heterogeneous resource management. In Proceedings of

89

Bibliography

the International Conference on Embedded Software Companion, EMSOFT ’20.
Association for Computing Machinery, 2020.

[24] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. A probabilis-
tic approach to energy-constrained mixed-criticality systems. In 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), pages
1–6, 2019.

[25] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The Real-Time
Linux Kernel: A Survey on PREEMPT_RT. ACM Comput. Surv., 52(1), February
2019. doi:10.1145/3297714.

[26] Federico Reghenzani, Giuseppe Massari, Anna Pupykina, Giovanni Agosta, and
William Fornaciari. Resource and memory management in mango heterogeneous
system. 2017.

[27] Dimitrios Rodopoulos, Simone Corbetta, Giuseppe Massari, Simone Libutti,
Francky Catthoor, Yiannakis Sazeides, Chrysostomos Nicopoulos, Antoni Portero,
Etienne Cappe, Radim Vavrík, et al. Harpa: Solutions for dependable performance
under physically induced performance variability. In 2015 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pages 270–277. IEEE, 2015.

[28] Bernd Steinbach. Recent Progress in the Boolean Domain. Cambridge Scholars
Publishing, 2014.

[29] Fei Teng and Frederic Magoules. Resource pricing and equilibrium allocation pol-
icy in cloud computing. In 2010 10th IEEE International Conference on Computer
and Information Technology, pages 195–202. IEEE, 2010.

[30] Daniel C Vanderster, Nikitas J Dimopoulos, Rafael Parra-Hernandez, and Randall J
Sobie. Resource allocation on computational grids using a utility model and the
knapsack problem. Future Generation computer systems, 25(1):35–50, 2009.

[31] John Von Neumann. On the theory of games of strategy. Contributions to the
Theory of Games, 4:13–42, 1959.

[32] John Von Neumann, Oskar Morgenstern, and Harold William Kuhn. Theory of
games and economic behavior (commemorative edition). Princeton university
press, 2007.

[33] Xin Xu and Huiqun Yu. A game theory approach to fair and efficient resource al-
location in cloud computing. Mathematical Problems in Engineering, 2014, 2014.

[34] Bo Yang, Zhiyong Li, Shaomiao Chen, Tao Wang, and Keqin Li. Stackelberg game
approach for energy-aware resource allocation in data centers. IEEE Transactions
on Parallel and Distributed systems, 27(12):3646–3658, 2016.

[35] Deshi Ye and Jianhai Chen. Non-cooperative games on multidimensional resource
allocation. Future Generation Computer Systems, 29(6):1345–1352, 2013.

90

http://dx.doi.org/10.1145/3297714

Bibliography

[36] Michele Zanella, Giuseppe Massari, and William Fornaciari. Enabling run-time
managed distributed mobile computing. In Proceedings of the 9th Workshop and
7th Workshop on Parallel Programming and RunTime Management Techniques
for Manycore Architectures and Design Tools and Architectures for Multicore Em-
bedded Computing Platforms, PARMA-DITAM ’18, pages 39–44, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3183767.
3183778.

91

http://dx.doi.org/10.1145/3183767.3183778
http://dx.doi.org/10.1145/3183767.3183778

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Abstract (in italiano)
	Introduction
	Heterogeneous computing
	High Performance Computing
	An example: the MANGO architecture

	The Resource Management problem
	Barbeque Run-Time Resource Manager

	Introduction to Game Theory
	Historical overview
	The Prisoner's Dilemma
	Classification of games
	Identification of possible algorithms for resource management

	Thesis contributions and structure
	Contributions
	Structure

	State of the Art
	Available policies in BarbequeRTRM
	Resource management based on games
	Cooperative games
	Non-cooperative games
	Studies on the comparison of cooperative and non-cooperative games

	Our contribution with respect to the State of the Art

	Game Theory policies
	Congestion games
	The allocation policy
	Problem modelling
	The algorithms and their complexity
	Cost function design

	Double auctions
	The allocation policy
	Problem modelling
	The algorithms and their complexity
	How to choose the bid

	Simulation of the policies
	Simulation setup
	Congestion Games
	Modifications required for the experiments

	Double auctions
	Discussion of the results

	Implementation of the algorithms
	Designing the BarbequeRTRM policies
	The congestion game extensions
	The double auctions extensions

	The configuration parameters files

	Experimental evaluation
	Experimental setup
	Estimation of power and energy coefficients
	Congestion games
	Selecting the CPU share based on QoS
	Results

	Double auctions games
	Results

	Discussion

	Conclusions
	Future works
	Conclusions

	Bibliography

