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Abstract

Autonomy in spacecraft Guidance, Navigation & Control (GNC) is an
ever-growing topic in both academic and industrial research, due to the vast
possibilities that it can enable in terms of mission concepts and operational
costs. The work presented in this thesis explores different strategies to support
the enhancement of on-board autonomy in the GNC tasks in view of the
future challenges that the lunar environment will present, considering scenarios
without complete observability imposed by reduced sensor utilisation or by the
constraints of a small-sized navigation constellation. Three different scenarios
are investigated, studying, implementing and testing GNC architectures to
address the problem of spacecraft autonomy in various dynamical conditions
of proximity manoeuvring, natural motion and landing.

The objective of pushing towards spacecraft autonomy is indeed a key point
to unlock the exploitation of more intelligent and adaptive platforms, which,
related to the tendency to move more and more towards distributed and
smaller systems, needs to be deeply investigated. Such approach, entailing
small satellites in constellations or formation flying contexts, provide cheaper
and more versatile solutions in general, but not in the operational costs, unless
a higher level of autonomy is given to the systems. The GNC tasks are deeply
involved in this considerations, recalling that the state-of-the-art for most
of the spacecraft is to completely rely on ground intervention to run the
Flight Dynamics routines, i. e. performing the Orbit Determination (OD) and
scheduling and commanding the required orbital manoeuvres. The exploitation
of small platforms however is accompanied, in general, with reduced sensor
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suites and computational power, reason for which specific low-observability
navigation techniques are to be targetted, relevant also for larger platforms in
contingency scenarios.

The next decades of space exploration will also be deeply influenced by the
renewed interest in the Moon, target of many international programmes aiming
at providing the basis for a stable human presence in this environment. Such
activities will provide both scientific and technological advancements in the
understanding of our natural satellites and in our capability to survive and
remain on its surface. Two promising infrastructures that are currently being
studied with joint international efforts are the Lunar Orbital Platform - Gateway
(LOP-G) and a communication and navigation constellation around the Moon.

The former project will be a new orbital outpost to host astronauts in the
cislunar environment. In particular the chosen trajectory on a Near Rectilinear
Halo Orbit (NRHO) will represent an interesting playground for the validation
of some autonomous relative GNC algorithms needed by possible chasing
spacecraft looking to either reach the Gateway or fly in formation cooperatively
with it. A lunar constellation will instead be a great opportunity in particular
to increase the autonomy from ground-based navigation for both surface
and orbital users, resulting in a lunar-centric Global Navigation Satellite
System (GNSS) service.

The work presented in this thesis focuses on considering these two infrastruc-
ture as opportunities to study Earth-autonomous GNC strategies, which can
contribute to the exploitation of such potential. Two scenarios of spacecraft
flying in proximity to the LOP-G are presented first, where two missions of
autonomous rendezvous and manoeuvring in formation flying are considered.
The associated GNC schemes have been analysed considering a limited ob-
servability scenario where only relative angular measurements are retrieved to
perform navigation. The recorded performance is promising and showing the
boundaries of applicability of performing complex and mission critical tasks
with such estimation architecture. The third scenario instead provides first a
strategy to help the design of a small-sized lunar constellation, entailing differ-
ent objectives and users to assist. Then, various optimised constellations are
tested including the orbital and landing users’ filtering architectures, extracting
insights on the state estimation achievable and its capability to support critical
GNC tasks. The results obtained showed navigation capabilities good enough
to enable correct execution of missions in the low lunar orbital region including
the complex task of performing a controlled landing at the South Pole. To
provide a higher formulation robustness, the filters involved have been also
deployed and run on embedded hardware, validating their implementation
through Processor-In-the-Loop (PIL) testing.
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CHAPTER1
Introduction

Relieving the effort required by the Ground Segment in future space mis-
sions leads to the necessity of moving some tasks of the Guidance, Navigation
& Control chain, typically performed by Flight Dynamics operators, to the On-
Board Computers (OBCs) of the Space Segment. Indeed increasing spacecraft
on-board autonomy is a prominent step forward for the research community,
finding much room for improvement in particular for the navigation tasks, still
heavily relying on Earth support for OD. More specifically, the reduction of
Ground Segment dependence can provide increased flexibility and versatility to
space missions, improving both performance and responsiveness of the space-
craft while reducing the operational costs. Providing this level of autonomy
means integrating different factors together, comprising mathematical, algo-
rithmic and also hardware concepts, which represent a complex challenge to
be faced from multiple standpoints.

In particular this is accompanied by a strong interest in the exploitation of
distributed space systems, witnessed also by the more and more arising mission
concepts relying on proximity operations. Among these we find both multiple
cooperative spacecraft and single probes orbiting uncooperative objects, such



Chapter 1. Introduction

as a small solar system body or a space debris. Moreover, the opportunity to
exploit smaller, thus cheaper, platforms acting together as agents unleashes
multiple mission concepts possibility for constellations [1] or formations [2,
3, 4]. To benefit from such high versatility, the on-board avionics shall be
capable of handling the complexities that the harsh environment poses to
the system, reacting in coordination with the other agents involved. The
conditions of reduced observability is also another relevant aspect to consider,
when e. g. small satellites are involved or in contingency scenarios, where the
sensing capabilities may be limited.

Among the mission scenarios that have regained considerable attention in the
last decade by the international community the lunar environment is surely
one of the most promising and studied. The 20s and 30s of the 21st century
will be characterised by a huge quantity of missions involving the Moon, with
the goal of advancing both scientific and engineering understandings of this
environment. In particular, an international effort is being invested on the
Lunar Orbital Platform - Gateway [5], the future human outpost in the cislunar
space, which will have a critical role as a long-term modular infrastructure, to
support many different missions both around and on the Moon. The lunar
Gateway will fly a Near Rectilinear Halo Orbit, which is considered as the
most suitable orbital regime due to many different aspects, as reported in [6],
such as a high stability against perturbation, high accessibility from Earth and
towards Moon surface and continuous Earth visibility.

The foreseen activities involving the LOP-G will entail various space trans-
portation systems to deliver cargo, experiments, logistics and also humans. To
allow accomplishment of such assembly and re-supply missions, the capability
to perform autonomous rendezvous and docking/undocking manoeuvres in
the most safe manner is of primary importance. Particularly, a strong effort
in the development of the GNC subsystem is required, in order to transport
the knowledge and experience gained for similar missions in Low Earth Or-
bit (LEO), as heritage of the International Space Station (ISS) programme,
to the more complex dynamics of the cislunar space. The multi-body gravita-
tional regime provides indeed more complexities with respect to the simpler
two-body relative dynamics both dynamically and mathematically considering
the governing equations which, in general do not present closed form solutions
and presents also chaotic behaviours [7, 8, 9] for which small deviations in
the initial conditions of a spacecraft grow exponentially, leading to completely
different outcomes. Studies on relative GNC in such multi-body gravitational
environment have been started only recently (see e. g. [10, 11, 12]), and the
need to further extend this topic is paramount, investigating both rendezvous
and formation flying scenarios.
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1.1. Research objectives

A complementary scenario in the challenging roadmap of the Moon explo-
ration entails many different missions that will visit the lunar proximity, with
particular attentions to LLO spacecraft and surface assets such as landers,
rovers and even humans [13]. Moreover, due to some specific features of the
orography and mineralogy, the South Pole region will be for certain one of
the most targeted spots on the surface [14, 15]. In such perspective, another
interesting infrastructure that may rely on a joint international effort consists
in a constellation of lunar orbiters to provide communication and navigation
services to the just mentioned missions. Such constellation would be revolu-
tionary in enabling many concepts requiring either real-time communication
with Earth or continuous precise positioning on-board. In particular providing
good Earth-independent navigation functions to the orbital users or to landers
is one of the major challenges that may enhance the level of autonomy for such
class of missions, reducing also the associated costs. Previous studies in similar
topics evaluated the benefits of exploiting Earth based GNSS infrastructures
for lunar missions (see [16, 17, 18]), but the objective of designing a dedicated
lunar constellation is only recently emerging. Many studies in this context are
being funded by the space agencies, with the goal of validating this concept and
supporting its realisation, involving two different topics. First, the orbital de-
sign of the constellation to fulfil different constraints and different performance
associated to the various users involved (e. g. orbital and surface users) is a fun-
damental step. To this end, given the still early stage in which such studies are,
the overall requirements are not fully defined, meaning that this step requires
a high flexibility. Secondly, considering the navigation service required for the
autonomy enhancement, the associated technology both hardware and software
are to be designed, targetting specific performance for both servicers [19] and
users. As such, it is important to study the best navigation architecture to
consider on-board the potential users, fusing information coming from different
likely sensors to be found on-board.

1.1 Research objectives

In the presented context, this thesis’ work humbly tries to perform advance-
ments in the GNC strategies to move steps forward in the definition of the
required building blocks for the challenges posed by the Moon exploration
roadmap. In particular the following high-level question is posed.

Which are the navigation performance of autonomous GNC algorithms
in the lunar gravitational environment achievable relying on reduced
observability and computational demand?

3
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The research objective is thus the definition and integration of GNC architec-
tures that exploit limited observability and computational capabilities, to be
applied to different dynamically challenging scenarios.

• Rendezvous (Scenario A) and formation flying (Scenario B) with LOP-G
employing Line-of-Sight (LoS) only measurements.

• Moon Orbiter and Lander with a small-sized lunar GNSS constellation
(Scenario C).

The first two scenarios analysed involve the proximity dynamics with respect
to the LOP-G platform, considering two different missions to accomplish that
require complex understanding of the system under investigation. In both
cases a cooperative approach is forsaken, involving the lunar Gateway passing
its current state through a communication link between the two systems. To
accomplish the execution of the required manoeuvres, the navigation task of
the chaser is performed autonomously on-board involving only LoS angular
measurements obtained by a simple camera.

Exploiting only two scalar measurements, such as the angle- (or bearing-) only
does, the complete state of a spacecraft is not observable, thus the application
of a navigation filter in a completely free dynamics does not provide acceptable
results. Recent studies [20, 21] proved the concept of a BO guidance and
navigation scheme as applied for rendezvous in the LEO environment. Such
strategy rely on the concept that by introducing some thrusting actions it
is possible to modify the angular measurement history and thus to resolve
the state ambiguity. One of the first goal of this research, pursued through
Scenario A is to investigate the validity of such strategy in the more complex
dynamical regime of the cislunar space, entailing a rendezvous problem with
the LOP-G platform.

Scenario A

◦ How does the basic BO guidance and navigation formulation perform
in the LOP-G scenario?

◦ Is it possible to improve the basic scheme by enhancing the observ-
ability in a more effective and efficient way?

◦ Can the computational demand be reduced?
◦ Can this concept be extended also to heterogeneous orbits? Which is

the relevance of the relative geometry of the problem with respect to
the navigation performance?

The analysis of Scenario A tries to answer such questions, analysing different
mathematical formulations of the algorithms involved in the GNC scheme and
gaining relevant insights on the BO strategy.
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The second scenario, Scenario B, wants to expand the already obtained knowl-
edge to a more general case, where the relative dynamics does not impose a
reducing distance, but the two platforms remain in a bounded relative motion.
In particular, the first block of the analysis regards the definition of an optimal
autonomous guidance and control scheme, used to perform reconfiguration
manoeuvres in a formation flying scenario. The objective is to derive a strategy
that pushes farther the set of analysed cases in autonomous formation flying
strategy for GNC. The resulting controlled trajectory is relatively challenging
from the dynamical point of view, involving a higher complexity that requires
more stringent navigation performance. The step forward is thus to include
the BO guidance strategy also in this scenario, understanding if it may be
feasible to correctly finalise the manoeuvres. The associated research questions
are here summarised.

Scenario B

◦ Which set of guidance and control algorithms can be applied to perform
efficient rephasing manoeuvring in a formation flying scenario with
the LOP-G?

◦ Can this framework be expanded to be more versatile and adaptive
for a large set of transfers?

◦ Can it include also constraints involving platform related and safety
aspects?

◦ Can we use BO guidance to reach the targetted navigation require-
ments if employing only angular measurements?

The two previous scenarios analysed the problem of relative navigation, em-
ploying indeed relative measurements with respect to the leader spacecraft
identified as the LOP-G. The last analysed scenario tries to deal with the
complementary problem of absolute navigation in the lunar environment. The
employed technique of a GNSS constellation presented here wants to expand
the very well consolidated knowledge of the navigation algorithms used with
the Earth GNSS assets, a different setup, where not only the environment is
dynamically more complex, but also the constellation size in extremely reduced,
imposing an overall reduction of the continuous visibility that the Earth-based
constellation is capable of. The goal here is to explore the set of possibilities
within the search space of Keplerian orbiters to obtain good performance for
both surface and orbital users, presenting a optimisation strategy to perform
the constellation design, keeping in mind also operational constraints.

The additional complexity associated in computing the navigation performance
of orbital users is given by the fact that the typical Dilution of Precision (DOP)
indexes are not sufficient in this case to give a complete overview of the scenario.
Indeed orbital users, specifically landers, due to the dynamics their are subject
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to, in order to provide on-board state estimation rely on navigation filters.
The objective of this scenario is thus to develop the navigation scheme used by
generic potential orbital users to exploit robustly and at the most the GNSS
services provided by the lunar constellation. To this end, standard navigation
filters are here exploited in a GNSS/INS configuration, with the aim of gaining a
high sensitivity in their behaviour for the unexplored scenario under evaluation,
where long period windows without measurements are present. Such sensitivity
is forsaken for both orbital user in natural dynamics first, considering only the
N part of the GNC scheme and then increasing the complexity with a more
challenging landing mission, where the full GNC chain is excited.

An additional research objective is to compare different filter formulations in
order to understand how the performance is affected by the filter formulation
and how they compare from a computational standpoint. More in detail, the
latter consideration is performed by performing PIL tests, in order to compare
the filter on a relevant embedded computational environment, aiming also at
validating the proposed architecture and considering the feasibility to exploit
it on relevant space-representative hardware.

Scenario C

◦ How to design a Lunar GNSS constellations with reduced size and
with different users to assist?

◦ How can this be translated to final users on-board performance?
Which is the best formulation of an objective function to provide good
orbital users navigation?

◦ Can the user navigation benefit by including optical measurements of
the servicers’ LoS?

◦ How does this strategy perform for a landing spacecraft? Is the
navigation good enough to obtain a good controlled trajectory?

◦ Which is the best formulation in terms of filter and integration method
to be implemented on-board, considering the navigation performance
and the computational demands?

◦ Is this formulation viable for the embedded execution on relevant
hardware? Are there any limitations in the resources utilisation?

All these questions are addressed deeply with the analyses proposed in the
following chapters.

1.2 Thesis Overview

The roadmap with the different case studies involved is presented in Fig. 1.1,
where the three scenarios investigated are detailed in the different analysis
steps.
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Scenario C - Lunar constellation for Navigation services

Scenario B - Formation Flying with LOP-G

Scenario A - Rendezvous with LOP-G

Orbital Scenario 
Reference Orbit BO-Guidance

Orbital Scenario 
Relative Trajectories

MPC guidance for
rephasing

manoeuvres

Adaptive control law

Add BO-guidance

Collision Avoidance
Manoeuvres

Orbital Scenario: 
LLO user

Optimization Scheme
for orbital selection,
with performance

constraints

GNC V/V: 
PIL testing

Navigation
Performances

Orbital Scenario: 
Landing scenario

Navigation
Performances

Assess Navigation
requirements

G&C 
Performances

G&C 
Performances

Assess Performances 
adding of angles

observables

Comparison of
different filters

Monte Carlo
analysis

Figure 1.1: Analysed scenarios roadmap.

The presentation of the topics, the mathematical and algorithmic implementa-
tion they require and the results obtained are organised in this thesis with the
following structure.

Chapter 2 has as main objective the definition of the basic foundations that are
needed in the rest of the thesis. First of all, different dynamical representations
are presented, including gravitational models, perturbation terms and both
absolute and relative formulations. Then after providing a brief overview of
the basics of general GNC architectures, some background in the domains of
Navigation first and Guidance & Control after are given, with reference on
state-of-the-art techniques and with emphasis on the strategies that are the
employed in this work.

The basic problem of state estimation filtering is analysed in Chapter 3, where
after introducing the different alternatives available to design a navigation
filter, the formulation to derive filters of the Kalman family is presented,
together with the algorithmic representation of the most relevant ones. Then
the different measurement models employed over the analysed scenarios are
described.

The two following chapters represent the main core of the thesis’ work, pre-
senting the three scenarios analysed. Chapter 4 comprehends the two GNC
studies in the cislunar environment, i. e. the rendezvous case and the formation
flying one, where two similar strategies to include the BO GNC are highlighted.
The operational conditions are first presented and then, for both scenarios, the
implementation of the respective algorithms is detailed, providing the ratio-
nale behind the different choices. The results are then showed and critically
analysed, drawing relevant conclusion on the applicability of such strategies.
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Chapter 5 provides instead the details of the analysis proposed by the third
scenario concerning the GNSS constellation to support the navigation of LLO
users. The strategy of the constellation orbital design through an optimisation
procedure is presented and the results shown. The multiple resulting optima
are compared first in orbital geometry, and then in the performance able to
provide to different users, both orbiting and landing. After that, different
filter formulations are compared in navigation and computational performance
employing also PIL tests.

The final Chapter 6 tries to sum-up the relevant contributions that this work has
provided, recalling the research questions and objectives that this introductory
chapter posed. Additional insights on possible extensions of this research are
also discussed, in order to spread what could drive new interesting ideas to be
explored.
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CHAPTER2
Background & State of Art

The study of Guidance Navigation and Control algorithms for spacecraft
requires many different blocks to be designed, implemented and tested. Such
techniques rely indeed on a strong mathematical construct, covering different
physics and engineering topics.

First, given that the systems under study evolves in a specific dynamical
environment, it is necessary to gain the capability to model the orbital motion
of spacecraft. In particular it is fundamental to have reliable models for the
motion at different levels of complexity and accuracy. Indeed, high-fidelity
representations of the dynamical system are needed to simulate the trajectories
and other system-related parameters to act as the reference real world repre-
sentation or, as called in navigation jargon, the ground truth. These models
are however usually very complex and computationally demanding, reason
for which their implementation on the GNC algorithms may be prohibitive,
considering also the on-board capabilities. As such, it is necessary also to use
simpler models to this purpose, knowing solidly which are their accuracies and
limitations.
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Concerning the engineering aspects instead, a deep knowledge in Control
System Theory is also required for the design, evaluation and testing of the
techniques used in the GNC domain. The success of the overall implementation
rely profoundly on aspects such as effectiveness, stability and robustness of the
algorithms implemented.

The goal of this chapter is to provide the foundations onto which the three
analysed scenarios of the thesis are based, both in terms of mathematical
modelling and of the different GNC strategies used. The chapter is organized
as follows: Section 2.1 presents the dynamical models that are used in the
analysis of motion within the lunar environment. After that, Section 2.2
presents a background of the main GNC techniques used by lunar missions,
considering both standard and well investigated schemes and more advanced
and young technique, dividing the Navigation task in Subsection 2.2.1 from
the Guidance and Control tasks 2.2.1.2. Peculiar attention is posed to the
BO problem, the GNSS based navigation and the MPC algorithm, given the
strong utilisation of such techniques in the current work.

2.1 Dynamical Models

In the following the main physical formulations of the dynamical models used
throughout the thesis are presented.

2.1.1 Gravitational models
To describe the motion of a spacecraft with a negligible mass with respect
to some central body, Pk accounting for multiple gravitational sources, the
relative formulation of the Restricted N-Body Problem (RnBP) is expressed as

r̈ki = − µk

r3
ki

rki +
N∑

j=1
j ̸=i,k

µj

(
rij

r3
ij

− rkj

r3
kj

)
(2.1)

where the motion of the spacecraft Pi, with respect to the central body Pk,
under the gravitational influence of the point masses Pj is modelled.

If the relative position vector rkj , that represents the location of the j-th
perturbing body with respect to the central body is obtained from high fidelity
ephemerides, the RNBP is reduced to the Ephemeris Restricted N-Body Problem
(ERNBP). In this work, NAIF’s SPICE library [22] is exploited and DE440
ephemerides are used, whereas the relative position vector rij is computed by
vector subtraction as

rij = rkj − rki (2.2)
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2.1. Dynamical Models

and represents the location of the perturbing body Pj with respect to the
object of interest, Pi.

Particular scenarios arise from specific (low) values for the number of attractors.
For N = 2 we retrieve the simple Keplerian solution of the Restricted Two-
Body Problem (R2BP), with the classical closed form solution of the orbital
trajectories.

If the number of attractor increases, to gain more useful insights on the resulting
trajectories, the exploitation of a non-inertial reference frame comes to help.
The best choice is to use the Synodic Reference Frame co-rotating with the two

X

Y

Z ≡ ොz

x

y

m1

m2

CM

f

f
ො

ෝ

ෝ

ො

ሶ𝑓

Figure 2.1: Representation of the Inertial reference frame X̂Ŷ Ẑ and the
Synodic reference frame x̂ŷẑ.

bodies as shown in Fig. 2.1. In the figure, X̂Ŷ Ẑ is the inertial frame, while
x̂ŷẑ is the synodic frame. m1 and m2 are the masses of the two considered
attractors and CM is their centre of mass, origin of both reference frames.
The synodic frame is constructed with the x̂-axis aligned with the m1 to m2
direction, the ẑ-axis parallel to the angular velocity vector of the system and
the ŷ-axis to complete the right-hand frame.

Besides the most general case, the two bodies may be considered to follow a
Keplerian motion with a fixed angular velocity direction and f corresponding
to the true anomaly of the orbit.

Additional insights are obtained by performing the following adimensionalisa-
tion procedures.

• The unitary length is defined as the current distance between the two
bodies, L∗ = d12(t).

• The unitary mass as the total mass of the two bodies, m∗ = m1 + m2.
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• The unitary time as inverse of the mean motion, t∗ = 1/n12, such that
the period of the orbit is equal to 2π.

2.1.1.1 Circular Restricted Three-Body Problem

The most known formulation exploiting this setup is the CR3BP, where the two
bodies follow a circular motion about their barycentre. The angular velocity
of the synodic frame is constant, equal to n12, and the true anomaly f grows
linearly with time, whose adimensional quantity represents the independent
variable.

The geometry of the system in the x̂ŷ plane of the synodic frame is reported
in Fig. 2.2. Here r = [x y z]T , r1 and r2, are the position vectors from the
barycentre, the primary and the secondary respectively.

m1 m2CM
xො

yො

r1
r2

r

P

1-μμ

Figure 2.2: Geometric representation of the CR3BP in the x̂ŷ plane of the
synodic frame. The notation is trivially self-explained.

Following the work in [23], the equations of motion can be simply cast into
Eq. (2.3), where the dots represent derivatives with respect to the adimensional
time, r1 and r2 are the distances from the particles to the primary and secondary
attractors, as in Eq. 2.3, 

ẍ − 2ẏ = Ux

ÿ + 2ẋ = Uy

z̈ = Uz

(2.3)

with the definition of the gravitational potential function given in Eq. (2.4),
useful to define its partial derivatives.

U(x, y, z) = 1
2(x2 + y2) + 1 − µ

r1
+ µ

r2
+ 1

2µ(1 − µ) (2.4)
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The only parameter characterising the system is the mass parameter µ and
no explicit dependence on time is present in the equations of motion, thus
classifying the CR3BP as an autonomous system.

2.1.1.2 Irregular gravity fields

A relevant perturbation that may play a role in the dynamical system is
caused by the non-uniformity of the gravitational potential. This effect may
be fundamental in scenarios considering irregular bodies such as asteroids, but
also for low altitude orbits around larger planetary bodies, such as a Moon
scenario. Indeed, near the surface of the body, the point mass gravity model
introduces high and not negligible errors.

To include such effects, different approaches are possible for the modelling of, en-
tailing various levels of accuracy and consequently computational expensiveness.
The most relevant models are here recalled.

• Ellipsoid. This model presented in [24] assumes the attractor as a triaxial
ellipsoid with constant density. This method requires only the three axes
of the ellipsoid and the mean density of the body.

• Harmonic Expansion. The shape of the body, or directly the gravitational
potential function, is represented using spherical harmonic functions of
increasing order. The coefficients of the expansion and the mass are the
required parameters. Good references of the method are found in [25,
26]. The mathematical representation of the gravitational potential can
be expressed as per Eq. 2.5.

Ushe = µ

r
+ µ

r

N∑
n=2

n∑
m=0

(
R0
r

)n
[
Cnm cos(mλ) + Snm sin(mλ)

]
Pnm(cos θ)

(2.5)
where here µ is the gravitational parameter of the central body, r the
distance to the centre of mass of the body, λ the longitude, θ the co-
latitude, R0 a reference radius, Pnm(x) are Associated Legendre Functions,
while Cnm and Snm are Stokes coefficients.

• Polyhedron. In this method, the shape of the attractor is based on a
single, or a set of, constant density polyhedron, defined by an arbitrary
number of nodes and faces. The procedure can be seen in [27, 28], where
the presented algorithm needs the polyhedron shape model of the object
and the associated mass or density.

To include this effects in the equations of motion, the obtained gravitational
potential can be directly used in the right-hand side of the dynamics.
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Comparing the three methods it is important to state that the number of
faces/nodes and of orders included for the polyhedron and spherical harmonics
methods respectively are fundamental in the accuracy vs speed trade-off.

For the Moon scenario relevant for this thesis, the harmonic expansion model
provides good accuracy for a discretely high order (e. g. truncation errors
< 1 mm s−2 for a 30x30 model), requiring reasonably low computation times
to easily simulate the environment.

2.1.2 Solar Radiation Pressure

The only non-gravitational perturbation term that is considered in the work is
the Solar Radiation Pressure (SRP). Its acceleration, directed in the anti-Sun
direction, shows a magnitude that can be described as presented in [29], as in
Eq. 2.6.

aSRP =
S⊙
c

(1AU)2

d2
⊙

cR
A⊙
m

(2.6)

In this equation, S⊙ = 1367 W m−2 is the Sun mean flux at 1AU, c =
299 792 458 m s−1 the speed of light, d⊙ the Sun-point distance, cR the re-
flectivity and A⊙ the cross-sectional area of the body exposed to the SRP.
The reflectivity coefficient vary from 0 for a completely transparent object to 2
for a fully reflective one. Note that this acceleration depends on both the mass
and the geometrical extension of the body, differently from gravitational terms.

This simplified cannonball model for SRP is useful since it avoids the dependence
of orbital dynamics on the spacecraft attitude which would have coupled the
system in a full 6-DOF dynamical state. In this way, it is not necessary to
assume any peculiar pointing profile for the spacecraft and a detailed model for
all the reflective surfaces of the platform is not needed. Given the prototyping
and investigative analyses presented in this thesis, the loss of accuracy brought
by this model is not relevant since catching the correct order of magnitude for
this perturbation is the main goal.

2.1.3 Absolute and Relative cislunar dynamics

Specialising the above presented formulations in the environment under study,
we can define the following absolute and relative dynamics, to be exploited in
the upcoming analyses.

An object in the cislunar space domain is influenced by the gravitational
potential of both Moon and Earth and by the perturbing effects of the Sun’s
gravitational force and the Solar Radiation Pressure (SRP). Considering an
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inertial formulation, the absolute dynamics of the cislunar domain can be
approximated in the inertial frame as:

f (x) =



ẍ = −(1 − µ)(x + µ)
r3

1
− µ(x − 1 + µ)

r3
2

+ a4thx + aSRPx

ÿ = −(1 − µ)y
r3

1
− µy

r3
2

+ a4thy + aSRPy

z̈ = −(1 − µ)z
r3

1
− µz

r3
2

+ a4thz + aSRPz

(2.7)

The equations have been expressed in non-dimensional form through the mass
parameter of the Earth-Moon system. The terms r1 and r2 are the spacecraft
distances from Earth and Moon, respectively.

To obtain the relative translational dynamics, we can simply use the dynamics
of differentiation of the target to chaser relative state δr and using Eq. 2.7:

δ̈r = r̈c − r̈t (2.8)

where r̈c and r̈t represent absolute accelerations of chaser and target. To allow
the exploitation of traditional linear control theory techniques for the design
of the trajectory profile, the relative dynamics in Eq. (2.8) can be linearised
with a first-order Taylor expansion, assuming that the target-chaser relative
distance is negligible compared to the target-primaries distances, as shown
in [30]:[

δ̇r
δ̈r

]
≈
[

0 I3

Ξ(t) 0

] [
δr
δ̇r

]
+
[

0
I3

]
(u + δa) = A(t)

[
δr
δ̇r

]
+ B (u + δa) (2.9)

where I3 a 3 × 3 identity matrix, u and δa the acceleration of the control and
perturbations respectively. The matrix Ξ(t) is function of time through its
dependence on the target absolute position. It is defined as:

Ξ(t) = −
(

1 − µ

r3
t1

+ µ

r3
t2

)
I3 + 31 − µ

r3
t1

[
r̂t1 r̂⊤

t1

]
+ 3 µ

r3
t2

[
r̂t2 r̂⊤

t2

]
(2.10)

where r̂t1 and r̂t2 are the unit position vectors of the target with respect to
the primaries in the inertial frame. Such propagation requires the knowledge
of the position vectors in absolute frame and relative to the primaries of
either target or chaser. This implies a major difference with respect to the
single-attractor relative dynamics such as the Clohessy-Wiltshire Model (CW)
equations. Moreover, Eq. (2.10) does not assume any formulation for the
motion of the primaries and can thus be applied to either the CR3BP or
the ephemeris model just by considering a different model for the primaries
positions.
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2.2 GNC techniques for the lunar environment

The goal of designing a GNC system is to define a set of routines and tasks
able to estimate the spacecraft current state, compute an evolution of the
state to follow and the associated control actions in order to reach a certain
dynamical condition. Figure 2.3 depicts a generic GNC schematics with the
different bricks providing the logical block diagram of its interaction with the
external environment. This scheme represents also the logical breakdown of a
possible implementation of the overall system in a simulation environment.

On-Board Algorithms

Navigation

Real World

Guidance & Control

Spacecraft 
Dynamics

Target State

Actuators

_
Controller

Sensors

Environment Performance 
evaluation

Figure 2.3: General scheme of an autonomous GNC architecture and its
connections with the external environment.

The scheme is divided into two regions: one simulating the real world state
evolution and the other consisting of the algorithms to be implemented on the
spacecraft avionics. Starting from the former, the logical scheme follows the
lifecycle of the execution of a simple time-step from tk to tk+1. The spacecraft
dynamics is propagated for a single time step considering the high-fidelity
model, including also the control action computed by the controller at the
previous step and executed by the on-board actuators, providing the new state
of the spacecraft. On-board sensors acquire measurements which depends on
the surrounding environment and on the actual state. Sensor readings are
ingested by the OBC and used in the Navigation step to perform the state
estimation, employing also the previous control action. The state estimate is
passed to the Guidance which defines (or retrieves) the target state evolution,
i. e. the trajectory to follow. The difference among such trajectory and the
estimated state is used as error to feed a Control block, which is in charge of
defining the next control actions provided to the actuators.

To retrieve a deep understanding and explanation of the three different tasks of
a GNC system can be found in [31]. In the following subsections a background

18



2.2. GNC techniques for the lunar environment

of some relevant methods used for the different tasks are proposed, with more
advanced analyses for the techniques applied in this thesis.

2.2.1 Navigation

The most basic and exploited absolute Orbit Determination is based on using
radiometric tracking data from Earth-based antennae. With this approach,
range and Doppler measurement are acquired over scheduled communication
windows above the ground station. The observations are used, usually in a
single batch, to fit the evolution of the orbital state and possibly additional
nuisance parameters, such as SRP modelling coefficients, on-board clock biases,
but even orbital manoeuvres in case they are performed during the observation.
The radiometric data can in some cases be exploited together with angular
measurements as well. This approach is the standard for non-autonomous
OD used, independently on the platform size-class, in a very wide variety
of scenarios and, such as Earth, lunar and cislunar environment [32], deep
space[33, 34] and outer planets [35]. The navigation accuracies obtainable with
such technique vary widely, in the range from few metres up tens of kilometres,
depending strongly on the length of the tracking windows and the trajectory
geometry.

Regarding autonomous techniques, in the past years many different approaches
to achieve this result have been proposed, exploiting measurements coming from
sensors already exploited to perform attitude determination, such as Sun, Earth
horizon sensors or magnetometers (see [36, 37, 38]). Other studies focussed on
employing LoS measurements from different celestial or planetary objects, such
as detecting X-ray radiations from pulsars [39] or optical measurement from
either a single or multiple visible planets [40], reaching possibly accuracy orders
of magnitude in the range between 102 ÷ 104 km, which can be considered
acceptable for certain interplanetary phases.

Another interesting proposed technique to perform autonomous absolute navi-
gation is to exploit relative radiometric data of range and range-rate between
two cooperating satellites. This technique, named LiAISON, works in presence
of gravitational field asymmetry, such as that experienced in multi-body gravi-
tational regimes, since the symmetry of simpler 2-body environments presents
infinite possible OD solutions given a certain observables history. The first
applications [41] showed promising performance in the Earth-Moon system,
with values below 1 km. Other studies applied this approach also in the Martian
environment [42, 43] and for lunar surface assets [44].

Looking instead at the problem of relative navigation, there are many different
approaches exploiting optical sensors and extracting relevant observables, by
means of Image Processing (IP) techniques, through feature detection and
relative LoS exploitation [11]. Such techniques are able to provide metres-level

19



Chapter 2. Background & State of the Art

relative navigation errors, but need to keep a resolved target in the camera, in
order to have a resolution good enough to distinguish the different features.
Similar approaches can be exploited also for lunar landers, performing crater
detection on surface images and extracting thus the LoS observables to feed a
navigation filter [45, 46].

The three scenarios of these thesis investigates the problem of both relative
and absolute navigation, considering a wide range of relative distances, from
the close proximity (in the final steps of the rendezvous case) slightly above
the kilometre, to the larger distances of the initial conditions in the orders
of hundreds of kilometres for the formation flying scenario to the even larger
ones of the LLO scenario. The relative BO navigation is considered as a
suitable condition for far range approach in the rendezvous and formation flying
scenarios, while the GNSS approach for the LLO user could be an extremely
simple and effective approach to support that specific class of spacecraft users.

Excluding indeed all the interplanetary autonomous technique (for the different
environment and distances involved), and the vision-based relative navigation
relying on IP for feature detection (for the smaller ranges required), the possible
remaining technique among the former presented is the LiAISON one, but also
that showed not so promising results for spacecraft on the same orbit, such as
the first two scenario. For the third one instead it may represent a possible
alternative to evaluate, even though it collides partially due to the high ranges
involved if an LLO to halo orbit link is considered, given a possible goal of
keeping the user receiver terminal simple and without very high sensitivity.

The two navigation techniques chosen for the scenarios of this thesis are thus
presented in the next subsections.

2.2.1.1 Bearing-Only Navigation

The concept of BO navigation has been proved by recent studies on relative
motion in the simple 2-Body gravitational regime. In particular Woffinden [47]
and Grzymisch [48] defined a necessary and sufficient condition for the observ-
ability the alteration of the measurement history with respect to the natural
trajectory, which can be achieved by performing orbital manoeuvres. If such
perturbation of the motion provides a different evolution of LoS angles, the
trajectory becomes unique, and its observability, mathematically speaking, is
obtained.

Practically speaking, however, due to the uncertainty of the measurements and
of the dynamics the navigation filter may not be completely able to converge
to a solution simply. This fact requires the definition of an observability metric
which can be used to design proper trajectories that enhance the estimation
performance. In this direction in [20] a metric based on relative range and

20



2.2. GNC techniques for the lunar environment

observability angle was investigated, but provided analytical solution of very
simple scenarios only. In [49] instead the observability was found to be well
defined by the positive linear independence between the relative position vector
with and without the propulsive action. Then this observability metric was
combined by the same author to a fuel minimisation objective within an optimal
control problem [21] in a weighted sum approach. Further studies [50] tried
instead to exploit the Fisher Information Matrix to evaluate the observability
metric and use it in a closed-loop guidance scheme.

Figure 2.4 presents easily the geometry behind the BO strategy, focusing on
the range uncertainty δρ. The fixed target (grey dot) and the chaser (red dot)
are depicted, with the latter in its unperturbed r̂ and perturbed r relative
state. The observability angle θ is defined as the angular distance among the
two LoS vectors, while the perturbation angle γ is the one between the natural
LoS and the position perturbation provided by the manoeuvre. On the left an
ideal scenario is plotted, where no measurements error are considered. In this
case it is possible to directly obtain the relative distance r as in Eq. 2.11.

r = δr
sin(θ + γ)

sin θ
(2.11)

In real scenarios however, the bearing measurement is affected by a noise term
ε (due to sensors misreading or errors in the image processing), which provide
a certain uncertainty δρ also in the relative distance estimate.

δr
γ

𝒓

ത𝒓

θ

δr
γ

𝒓

ത𝒓

δρ

Figure 2.4: Range detectability geometry in the ideal (left) and real (right)
scenario. r is the position vector of the real trajectory whereas r̄ represents

the natural dynamics. Image readapted from [20].

Woffinden in [20] showed that under small measurement error assumptions, as
typically sensible, the relative range uncertainty δρ can be approximated as in
Eq. 2.12.

δρ

r
= ε

sin θ
(2.12)
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By looking at this expression we see that to improve the relative uncertainty we
can act only on the sensor accuracy ε or on the observability angle θ. Since the
former solution is not always applicable and has some technology limitations,
the only viable option is to design trajectories that maximise the observability
angle.

It is important also to highlight that if multiple manoeuvres are performed, the
observability angle is in any case defined with respect to the natural motion
when no manoeuvre at all is executed. Consequently we can employ this
concept to design rendezvous trajectories starting from initial conditions whose
unperturbed trajectory ends almost perpendicularly to the desired final state.
In such a way, the natural evolution maximises the angle θ if the rendezvous is
correctly executed and driven to the desired end condition.

The concept of BO guidance has however been used only in the Keplerian
2-Body gravitational regime. The goal of chapter 4 is to exploit these ideas
into two different proximity dynamics scenarios posed in the more complex
multi-body dynamical regime.

2.2.1.2 GNSS navigation

The concept of a GNSS constellations is based on the goal to provide navigation
accurate and continuous positioning and timing estimation to a set of users
equipped with receiving terminals. The Position Velocity Timing (PVT) deter-
mination of the user is performed exploiting range and range-rate observables
obtained from the satellites of the constellation (servicers) that are currently
in its visibility. Given the necessity of servicing an extremely wide number of
users, the latter shall be completely passive in the RF link, reason for which
they need only a receiver. The ranging strategy thus adopted is called One-Way
since it is based on the estimation of the range measuring the signal Time of
Arrival (ToA) from the servicer to the user. The signal sent by the servicer
entails both the time of transmission as measured from a precise atomic clock,
and the servicer ephemerides as reconstructed by its own navigation system.

The most relevant GNSS constellations currently present around the Earth are
four: the GPS (USA), GLONASS (Russia), GALILEO (Europe) and BeiDou
(China). The resulting navigation errors for Earth surface users can reach
accuracy from tens of metres to centimetres levels, when a number of around
10 servicers are visible. The exploitation of the GNSS navigation for LEO
users provide in general lower performance, but in any case in the order of
metres to tens of metres.

To provide navigation to the Moon users, different analyses are being carried
out in the recent years, considering the exploitation of Earth-based GNSS
constellations and also to study the design of a Moon-orbiting constellation of
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satellites. Regarding the former concept, different studies are being conducted,
with also planned missions to test this technology [16], showing navigation
errors generally below 10 km and reaching values even lower than 1 km. The
study of providing a lunar constellation on its own has started from both NASA,
ESA and JAXA projects, with the aim of providing an increasing performance
in the years, starting from a South Pole targetting and upscaling that also to
orbital users. The preliminary performance assessments started just recently
with works trying to assess the performance of lander and orbital missions with
simple kinematic estimation algorithms [51, 52].

In order to formalise the GNSS navigation simulation framework, the orbit-to-
orbit visibility needs to be presented, together also with the concept of DOP,
which will become useful for the optimisation problem setup.

Visibility Consider the relative geometry of a satellite constellation element
Si and a user Uj on a different orbit. For simplicity, let’s consider the planar
case to illustrate the concepts associated to the reciprocal visibility between
the satellites, whose geometry is illustrated in Fig. 2.5. First the point to point
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Figure 2.5: User-servicer relative geometry.
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visibility between the two elements can be computed considering that, given
the Moon-centric position of Si and Uj as rS , rU respectively, the relative
position vector may be computed as:

∆r = rS − rU (2.13)

Therefore, the point-to-point visibility is achieved if ∆r does not intersect the
Moon, i.e., based on the approach proposed in [53], analysing the values of the
following angles, where the the radius R% of the occulting spherical body is
used.

θij(t) = arccos
rU · rS

∥rU ∥ ∥rS∥
(2.14)

θi(t) = arccos R%/ ∥rS∥ (2.15)
θj(t) = arccos R%/ ∥rU ∥ (2.16)

Thus Vp
ij(t), the point-to-point (hence the superscript p) visibility function

from the i-th satellite to the j-th user, can be defined by:

Vp
ij(t) =

0 if θi(t) + θi(t) ≤ θij(t)

1 elsewhere
(2.17)

Then a FoV (FoV) is associated to both the user and the servicers. In general,
these could be oriented in any direction in the Local Vertical Local Horizon
frame. Then, it is assumed that the pointing direction is represented by means
of a direction vector nU and nS for the user and the servicer respectively, as
well as each spacecraft has a circular FoV with half-cone angle αU and αS .
Therefore the visibility between the servicer i and the user j could be computed
exploiting the condition:

fij(t) = Vp
ij(t) ·

(
arccos

nU (t) · ∆r(t)
∥∆r(t)∥ < αU

)
·

·
(

arccos
− nS(t) · ∆r(t)

∥∆r(t)∥ < αS

) (2.18)

so that the visibility function can be computed as:

Vij(t) =

1 fij(t) = 1

0 fij(t) = 0
(2.19)
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In case the coverage function of a j-th point is computed with respect to
the whole satellite constellation, the satellite visibility functions Vij(t) of the
constellation must be combined [54]. In particular, having defined the multi-sat
coverage function, Nj(t):

Nj(t) =
N∑
i

Vij(t) s.t. Nj : R → N (2.20)

the n-fold continuous coverage index can be defined as:

Fj(t, n) =

1 Nj(t) ≥ n

0 Nj(t) < n
(2.21)

Dilution of Precision The concept of DOP is the idea that the position error
that results from measurement errors depends on the user relative geometry.
The DOP figures therefore represents a key parameter for the evaluation of
satellite constellation’s navigation performance. The formal derivation of the
DOP relations begins with the linearisation of the pseudorange equation [55].
This linearisation provides the Jacobian Π, which relates changes in the user
position and time bias to changes in the pseudorange values. If this relationship
is inverted, it can be used to relate the covariance of the user position and
time bias to the covariance of the pseudorange errors.

∆x = Γ ∆ρ with


Γ = Π−1 if n = 4

Γ =
(
Π⊤Π

)−1
Π⊤ elsewhere

(2.22)

The DOP parameters are then defined as geometry factors that relate parame-
ters of the user position and time bias errors to those of the pseudorange errors.
The components of the matrix Θ =

(
Π⊤Π

)−1
quantify how pseudorange

errors translate into components of the covariance of ∆x. The different DOP
measures can be defined exploiting the different components of Θ, as per
Eq.s 2.23, 2.24, 2.25, 2.26 and 2.27 indicating geometric, position, horizontal,
vertical and time DOP respectively.

GDOP =
√

Θ11 + Θ22 + Θ33 + Θ44 (2.23)
PDOP =

√
Θ11 + Θ22 + Θ33 (2.24)

HDOP =
√

Θ11 + Θ22 (2.25)
VDOP =

√
Θ33 (2.26)

TDOP =
√

Θ44 (2.27)
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If only 3 satellites are in view, it is possible to assume that the vertical
component is known a-priori (e.g. for a surface user this is given by the local
topography) and compute the horizontal component of the DOP only, namely
the 2DHDOP. This is done by removing the third column (associated to the
z-direction) from the Π matrix.

Moreover, in this study are considered of interest also the following quantities:

• DOPAVj = Fj(t, 4) is used to identify the regions where the GDOP exists,
and then its value is computed with Eq. 2.23.

• 2DHDOPAVj = Fj(t, 3) is used to identify the regions where the 2DHDOP
exists, and then its value is computed with Eq. 2.25 on the Π matrix
eroded by the third column.

2.2.2 Guidance and Control

The guidance law main objective is to determine the necessary trajectory and
its potential correction to successfully arrive at the target position or orbit. The
control is instead in charge of computing the correct actions that drive the error
with respect to the targetted trajectory to zero. In some specific cases, when
the orbital transfer relies on ground optimization of impulsive manoeuvres, a
simple guidance algorithm with strong flight heritage is represented by the bi-
impulse guidance or Fixed Time of Arrival (FTOA), where the control action is
determined to target and reach a specific point in a given Time of Flight (ToF).
This approach has the advantage of being computationally light, as it does not
require any closed loop logic, and has also a high flight heritage; however, it
relies on linearised models and assumes impulsive manoeuvres, thus limiting
the range of possible applications. Since the resulting control action is trivial,
it does not necessitate any feedback control algorithm, other than the actual
execution of the thrusting action for the small time window envisioned by the
guidance.

In case of continuous or quasi-continuous control across the transfer arcs, a
different approach must be adopted. The typical approach is the on ground
computation of a reference trajectory, which is then targeted by the on-board
controller. A very common type of on-board scheme is represented by the
PID. This kind of strategy relies as well on linearised models, but possesses
also good reliability and versatility, additionally improved by the very high
understanding and legacy obtained in a wide range of industrial applications.
In turn, the scheme does not rely on an optimality-driven approach, hence the
overall cost tends to be higher than other more recent techniques.

Indeed, control techniques can embed the mathematical description of the
dynamical model, or parameters related to it, to approach a more optimal
solution. Among them, well known controllers are the Linear Quadratic Regu-
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lators (LQR) [56] and the Floquet-Based Controllers [57]. The aforementioned
controllers, although computationally light, rely on linear expression of the
dynamics, preventing their usage in cases where dynamics nonlinearities can be
relevant. A well-known scheme to deal with nonlinear dynamics is represented
by Sliding Mode Control, which demonstrated to be also a robust approach
if properly designed [58]. Nevertheless, it typically provides non-optimal so-
lutions, leading to overall higher costs. Recent studies explored the concept
of zero-effort-miss/zero-effort-velocity (ZEM/ZEV) controller which has been
successfully employed for optimal spacecraft formation control. The main
drawbacks are the loss of optimality in non uniform gravitational fields [59],
and the lack of parameters to tune (reducing the adaptation margins to different
scenarios). A good compromise is represented by the State Dependent Riccati
Equation (SDRE) controller [60], where a linearisation at each time step allows
to leverage the LQR formulation and approach its optimality, while limiting
the increase of computational cost. As a drawback, the scheme itself does not
allow a direct implementation of state nor control constraints.

2.2.2.1 Model Predictive Control

The MPC can, in general, entail both the guidance and control task of the
autonomous system, providing a model-informed adaptive strategy to reach
specific goals in terms of objectives and constraints.

A control action is computed, in such scheme, through the minimisation of
a specific cost function that is discretised within a time window and whose
solution is obtained via numerical optimisers. A detailed reference for the
model predictive schemes can be found in [61].

At each discrete time step, the time window is defined and the evolution of
the controlled state is predicted, searching for the optimal control sequence.
The basic idea of the scheme is to execute only part of the predicted control
actions (generally only the first term), and then in order to repeat the cycle
a new finite-horizon window is defined. In such a way the MPC is capable of
adapting its response to the possible deviations of the real world dynamics
from that used onboard in the prediction. Moreover, dealing with a numerical
optimisation, it is generally possible to include constraints on the state or on
the control, providing a much higher versatility with respect to other simpler
guidance and control scheme, such as an LQR. The MPC was demonstrated
to be effective in different applications within the autonomous GNC branch,
both for Unmanned Aerial Vehicles and spacecraft [62, 63, 64].

In order to design an MPC scheme it is necessary to deal with three aspects

1. Formulation of the time horizon window at each step

2. Definition of objective and constraint
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3. Calibration and tuning of the weights present in the optimisation problem

On the time horizon, there are mainly two alternatives to manage the prediction
window, i. e. the Receding Horizon and the Shrinking Horizon.

Employing the Receding Horizon scheme, the window is fixed in size and at
each step it shifts both the start and the end point by a number of samples
equal to the number of control actions that are executed [64], as represented in
Figure 2.6. Looking at the kth time step, the algorithm works in the following

Finite Horizon at    -th step

Finite Horizon at    -1-th step

Finite Horizon at    +1-th step

Figure 2.6: Receding horizon MPC guidance scheme.

way.

1. Consider the finite-horizon window with the prediction of np discrete
time-steps. The time step boundaries are thus [tk, tk+np ].

2. Predict the dynamics using the on-board model and the best estimate
available of the initial state x̂k. Using an estimate obtained after the
latest control action executed, instead of the prediction of x̂k obtained
in the previous step, ensures the feedback and adaptive behaviour of
the MPC, for which the new control actions are evaluated after having
observed the results of the actions in the real dynamics.

3. Define and solve the optimal control problem which minimises a cost
function J , exploiting the evolution predicted in the finite horizon. The
new control actions are obtained, which are uk, uk+1, . . . , uk+np−1.

4. Command the execution of the first control (or controls) only, discarding
the other computed terms.

5. Update the finite horizon, by receding the window by the one (or more)
time-step and restart the cycle from point 1, where the new time extrema
will be [tk+1, tk+np+1].

This loop is repeated for the required application time, which vary mission by
mission. A possibility is also to define some stopping criteria whose occurrence
cause the loop to be concluded, such as when reaching a specific state. With
the receding horizon approach we do not have a direct control on the ToF,
but there is a control on the accuracy and speed of the process, which can be
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achieved bt tuning the duration of the receding horizon and the number of
discretisation points in it.

Figure 2.7 presents instead the Shrinking–Horizon model, where the time
window has a variable dimension since the only time boundary that moves at
each step is the initial time (moving together with the on-board time), while
the final time of the window is kept fixed to a desired end epoch.

Finite Horizon at    -th step

Finite Horizon at    -1-th step

Finite Horizon at    +1-th step

Figure 2.7: Shrinking horizon MPC guidance scheme.

The ToF is thus imposed by design and the time window at each iteration
contains each time step from tk to the final time tf . The same steps followed
by the receding horizon are executed also in this case, with the only difference
that the time window’s final step is not shifting with the initial one and as
a consequence the horizon keeps shrinking at each iteration. This second
alternative has the advantage of dealing with much larger windows that cover
all the transfer. In such a way, generally, the resulting control actions are
more optimal with respect to a shorter and less foreseeing window (as for the
receding horizon). The drawback of this approach is clearly that the resulting
optimisation problems are large and heavier computationally speaking. In
addition to that, longer prediction times for a highly nonlinear system may
results in higher propagation errors, thus providing control sequences which
are less reliable.

The choice among the two schemes has to be done case by case, since any
scenario may have completely different requirements. In this thesis work both
approaches are used, one for the rendezvous scenario and the other for the
formation flying one.
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CHAPTER3

State Estimation Filtering

Providing navigation functionalities to a robotic system such as a spacecraft
means dealing with estimation techniques able reconstruct the dynamical state
of the system. Such problem has been treated deeply in the aerospace field
literature and requires both deep statistical understandings and algorithmic
implementation considerations. This chapter wants to provide hints on both
aspects, defining first a set of possible alternatives in the selection of the archi-
tecture, as in Section 3.1, and then providing the mathematical formulations of
the most common filters belonging to the Kalman family, in Section 3.2. Finally,
Section 3.3 provides an overview of the different measurement models needed
for the systems under study, regarding optical and radiometric observables but
also altimeters and accelerometers. The last Subsection 3.3.4 recalls also the
methodology used to propagate measurements uncertainty in nonlinear formu-
lations, a required feature for the applications under study, where different
stochastic variables contribute to the definition of the measurement.
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3.1 Estimator architecture alternatives

Before jumping into the mathematical definition of the different filters consid-
ered in this thesis, this section presents two specific trade-offs that need to
be sorted out when the design process of a spacecraft navigation algorithm is
started. The first one deals with the strategy to treat the measurements, the
second with the coupling of translational and rotational dynamics in the state
to be reconstructed. The algorithms implemented in this research consider
both trade-offs solved towards a specific alternative in both cases, as pointed
out during the treatment.

3.1.1 Batch vs Sequential Filters
The primary differentiation put in place in designing a navigation filter is
provided be the way the measurements are handled. It is possible indeed to
process each measure as soon as it is available or wait for a set of different
ones to be collected before executing the filtering algorithm. The algorithms
acting as in the former case are called Sequential Filters, while those in the
latter case are defined Batch Filters.

There are both intrinsic and indirect differences in the two formulations. First,
given that sequential filters process instantaneous measurements, they require
their execution at each time step but due to the processing of a single sensors
reading, the computational demand is lower. On the other side batch filter
have the advantage of being executed just once, or in any case with a much
lower frequency, and exploiting a much higher number of measurements they
are able to provide higher overall accuracies and generally less affected by the
a-priori state guess. Their downside, directly related to the higher number of
measurements, is the computational heaviness, which rises with the square of
the number of measurements.

Batch filters are generally used for applications where the state update frequency
is low, such as for OD performed on-ground, where the computational resources
are not constrained and the results are used for schedule prediction and
manoeuvres prediction. The sequential formulations are instead more suited
for autonomous operational scenarios, where an instantaneous and frequent
estimate of the state is needed to be included in the complete GNC loop for both
the orbital and attitude dynamics. For such reasons, sequential formulations
are taken into considerations in the rest of the work.

3.1.2 6-DOF coupled vs de-coupled estimation
A second choice to be performed in the definition of GNC architectures regards
how to deal with both attitude and orbital state estimation. If the complete
6-Degrees of Freedom (DOF) dynamics of the spacecraft needs to be retrieved,
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it is possible either to rely on the same estimator for both translational and
rotational motion or to separate the two dynamics.

It is relevant to consider that there are certain effects to be considered in
the orbital navigation that actually depends on the current attitude. Such
connection between the two domains is achieved e. g. when the complete
attitude-dependent SRP model is used within the orbital dynamics, or when
the information on an accelerometer are included.

Consequently the estimation of the attitude shall be generated either contempo-
raneously (through a 6-DOF coupled filter) or beforehand (through a separated
estimator). Choosing a fully coupled formulation, the statistical correlation
among the two dynamics is explicitly active in the state and covariance esti-
mation, providing generally a higher accuracy and robustness of the results.
However, considering Kalman-like filters, the computational cost in the order
of O(n3), with n is the dimension of the state vector. Thus, assuming the same
number of states for the two domains, a 6-DOF coupled filter requires four
times the computational burden of a decoupled solution.

This requires trading-off, as usual, computational costs with accuracy and
robustness of the solutions. In the rest of the present work however, the
attitude estimation problem is never tackled, since the research objectives are
heavily associated to the orbital state estimation only.

For the scope of the current thesis, the rotational dynamics is not objective
of the study, as such, the filters investigated consider only the translational
DOFs.

3.2 Kalman-based Filters

The most common class of navigation filters employed in the space domain
is represented by the family of Kalman Filters (KFs). The basic formulation
of the KF was presented in 1960 by the Hungarian mathematician Rudolf
Kalman [65], whence the name of the algorithm, which provided an estimator,
optimal in minimising the mean squared error (MMSE) and maximising the a-
posteriori probability (MAP). In the following a summary of the derivation of a
Bayesian tracking estimator are presented, reporting the steps presented in [66,
67, 68], considering the problem of providing an estimate of the state vector x
based on a certain observations vector y and the knowledge of the input action
vector u. In the following the estimated quantities will be identified by a hat
symbol (ˆ), while apexes symbols are used to indicate a-priori (− sign) and
a-posteriori (+ sign) estimates. Any normally distributed probability density
function (pdf) characterised by a mean µ and a covariance Σ is indicated as
N (µ, Σ).
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The basic approach of a recursive optimal estimator consists in defining the
estimation of the state as the conditional mean, considering all the measure-
ments gathered from the initial step 0 up to the current step k + 1, i. e. Yk+1

0 ,
as in Eq. 3.1.

x̂k+1 = E[xk+1|Yk+1
0 ] (3.1)

In order to compute this mean, following a Bayesian approach, the goal is to
get p(xk+1|Yk+1

0 ), i. e. the a-posteriori pdf, which can be expressed at each
step k + 1 with Bayes’ formula of Eq. 3.2.

p(xk+1|Yk+1
0 ) = p(xk+1|Yk

0)p(yk+1|xk+1)
p(yk+1|Yk

0)
(3.2)

The dynamics of the evolving process under study and the measurement function
(xk+1 = Fk+1

k (xk, uk, wk) and yk+1 = Hk+1(xk+1, vk+1), with process and
measurement noise vectors w ∼ N (0, Q) and v ∼ N (0, R)) provide additional
blocks needed to determine the pdfs of p(xk+1|xk) and p(yk+1|xk+1), from
which, given the initial conditions p(x0|y0), it is possible to initialise the
procedure.

The overall logic is thus based on recursively alternating the two stages of
prediction and update at each step k+1. In the prediction stage, the a-posteriori
pdf at step k is used, coupled with the state evolution process, to provide
the a-priori pdf at step k + 1, i. e. p(xk+1|Yk

0). The update is instead used to
include the the information on the new observation, by exploiting Eq. 3.2. In
general, the pdfs present in this equation do not have closed form solutions,
but under the assumptions of Gaussian pdfs only, it is possible to deal simply
with the estimate of the mean and covariance matrix of the state, i. e. x̂k+1
and P̂xk+1 . The prediction step thus proceeds by exploiting the dynamical and
measurements models and defines the a-priori state x̂−

k+1 and observation ŷ−
k+1

as in the following Eq.s 3.3 and 3.4, obtaining similarly also the associated
state covariance estimate, P̂−

xk+1 .

x̂−
k+1 = E[Fk+1

k (xk, uk, wk)] (3.3)
ŷ−

k+1 = E[Hk+1
k (x̂−

k+1, vk+1)] (3.4)

With these expression for the a-priori quantities, it is possible to perform
the update step defining the so-called Kalman Gain matrix, Kk+1 as in the
following,
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Kk+1 = PxyP−1
δyδy (3.5)

x̂+
k+1 = x̂−

k+1 + Kk+1(yk+1 − ŷk+1) (3.6)
P̂+

xk+1 = P̂−
xk+1 + Kk+1PδyδyK⊤

k+1 (3.7)

where reasonable expressions to evaluate the covariance matrices Pxy and
Pδyδy are needed, with δyk+1 = ỹk+1 − ŷk+1 called innovation vector, i. e. the
difference between the sensors observation and its a-priori estimate.
The formulations of the filters in the Kalman family differ in which assumptions
are made and thus how Eq.s 3.3 and 3.4 are treated and how the different
a-priori covariance matrices are estimated.

3.2.1 Kalman Filter

The simplest formulation within this framework is provided by the linear
Kalman Filter, which is used when that state space formulation can be consid-
ered as a fully linear system. The dynamics and measurement functions, in
discrete-time are expressed as in Eq.s 3.8 and 3.9, as used by the prediction
step to generate the a-priori mean quantities, together with the state covariance
in Eq. 3.10. Note the introduction of the different matrices used to describe
the linear dependence of the state evolution and the measurement from the
instantaneous state (Fk+1

k and Hk+1), the control action (Bu,k), and the noise
terms (Bk and Dk+1).

x̂−
k+1 = Fk+1

k x̂+
k + Bu,kuk + Bkwk (3.8)

ŷ−
k+1 = Hk+1x̂−

k+1 + Dk+1vk+1 (3.9)
P−

k+1 = Fk+1
k P+

k (Fk+1
k )⊤ + BkQB⊤

k (3.10)

The update step is then defined by the following set of equations.

Kk+1 = P−
k+1H⊤

k+1(Hk+1P−
k+1H⊤

k+1 + Dk+1RD⊤
k+1)−1 (3.11)

x̂+
k+1 = x̂−

k+1 + Kk+1(ỹk+1 − ŷ−
k+1) (3.12)

P+
k+1 = (I − Kk+1Hk+1)P−

k+1 (3.13)

In such a way the algorithm exploits the fact that the Gaussian random variables
are linearly mapped through the dynamics and measurement functions, thus
preserving their statistical nature. As a consequence, the KF results as the
optimal estimator for linear models and fully Gaussian processes. The KF has
a numerical complexity of O(n3), with n the size of the state.
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3.2.2 Extended Kalman Filter

Let’s consider now a nonlinear dynamical system, whose state and measurement
functions can be expressed as in the following Eq.s 3.14 and 3.15

ẋ = fcont(x, u, t) + w (3.14)
y = h(x, t) + v (3.15)

with vectorial forms of state dynamics and measurement function, fcont and
h. Assuming these two functions to be known and modelled up to a certain
confidence degree, additional unmodelled effects of stochastic components and
are here condensed into additive Gaussian random variables, namely w and
v. These two components follow normal distribution as w ∼ N (0, Q) and
v ∼ N (0, R). To bring the equations into the discrete-time domain, the
integration of the dynamics between the two samples k and k + 1 can be
performed either analytically or numerically, leading to Eq.s 3.16 and 3.17.

xk+1 = f(xk, uk, wk) (3.16)
yk+1 = h(xk+1, vk+1) (3.17)

The EKF assumes that the state is a Gaussian random variable and, in the
prediction step, adopt these equations to evaluate the a-priori of the state and
measurement. For all the covariances, instead the linearised version of these
equations is employed, defining the following Jacobian matrices for the state
dynamics, process noise, measurement and measurement noise.

Fk+1
k = ∂f

∂x

∣∣∣
x̂+

k

Bk = ∂f
∂w

∣∣∣
wk

(3.18)

Hk+1 = ∂h
∂x

∣∣∣
x̂−

k+1
Dk+1 = ∂h

∂v

∣∣∣
vk+1

(3.19)

The realisation of Eq.s 3.3 and 3.4 and the a-priori state covariance, for the
EKF, are then defined as in Eq.s 3.20, 3.21 and 3.22,

x̂−
k+1 = f(x̂+

k , uk, 0) (3.20)
ŷ−

k+1 = h(x̂−
k+1, 0) (3.21)

P−
k+1 = Fk+1

k P+
k (Fk+1

k )⊤ + BkQB⊤
k (3.22)
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Finally the Update Step can be executed, providing the a-posteriori state and
covariance matrix estimates.

Kk+1 = P−
k+1H⊤

k+1(Hk+1P−
k+1H⊤

k+1 + Dk+1RD⊤
k+1)−1 (3.23)

x̂+
k+1 = x̂−

k+1 + Kk+1(ỹk+1 − ŷ−
k+1) (3.24)

P+
k+1 = (I − Kk+1Hk+1)P−

k+1 (3.25)

Note, that Eq.s 3.23, 3.24 and 3.25 are exactly the same as Eq.s 3.11, 3.12
and 3.13 for the linear KF case, with the matrices obtained as first-order
linearisation of the nonlinear equations. In case the effects of the nonlinearities
are high, these linearisation can introduce relevant errors in the estimation,
leading even to divergence of the filter. Anyway, if the nonlinear dynamics is
not so sensitive, the EKF is an extremely powerful tool for the navigation task.

A numerical issue that could rise in the update of the state covariance performed
in Eq. 3.25 due to the approximations in the covariance expression is that
P+

k+1 may become non-positive definite. To reduce the likelihood of this issue,
the covariance update can be performed with the so-called Joseph Formula in
Eq. 3.26.

P+
k+1 = (I−Kk+1Hk+1)P−

k+1(I−Kk+1Hk+1)+Kk+1Dk+1RD⊤
k+1K⊤

k+1 (3.26)

This expression is algebraically identical to Eq. 3.25, but with this symmetric
additive form, the insurgence of this issue is less likely.

As pointed out previously, passing from Eq. 3.14 to Eq. 3.16 an integration step
is performed, and dealing with nonlinear equations of motion, it is likely that a
numerical solution is forsaken, particularly considering on-board embedded ap-
plication. Depending on the scenario, it is possible to rely on different methods
to perform this step, providing a trade-off between numerical efficiency and
accuracy. The same consideration can be found also in the representation of the
dynamics Jacobian matrix in Eq. 3.18. Extensive and detailed considerations
on this topic are found in [69, 70].

Moreover, recall also that, once defined the dynamics and measurement models,
two quantities remain to be provided, i. e. the process and measurement noise
covariances, namely Q and R. If the latter is practically constrained by the
sensor accuracy, the former is more complex to be estimated for a given dy-
namical system, remaining a tunable parameter. Similarly the initial condition
of the state covariance P0 is another parameter that can be slightly adjusted
to drive the filter to the convergence.

3.2.3 Unscented Kalman Filter
To overcome the possible problems encountered by the EKF in presence of
large nonlinearities, the Unscented Kalman Filter (UKF) provides a viable
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alternative. Also here the state is considered with a Gaussian distribution,
but instead of describing it only through the propagation of the mean and
covariance, the conditional means of Eq.s 3.3 and 3.4 are obtained on a set of
sampling points called sigma points. The propagation of the state distribution is
obtained through the Unscented Transformation, which is able to approximate
the a-posteriori mean and covariance up to the 3rd order, also in case of large
nonlinearities if the random inputs are Gaussian, up to the 2nd otherwise.

The Unscented Transformation (UT) is thus used in the filter to retrieve a
more accurate estimate of the a-priori state and measurement, x̂−

k+1 and ŷ−
k+1,

and all the associated covariance matrices, thus P−
k+1, P−

xy and P−
δyδy. Note

that in this formulation an additive noise model is considered for the process
and measurement noise terms.

A total of 2n + 1 sigma points is defined as in Eq. 3.27, 3.28 and 3.29.

x0 = x̂+
k (3.27)

xi = x̂+
k +

(√
(n + λ)P+

k

)
i

i = 1, . . . , n (3.28)

xi = x̂+
k −

(√
(n + λ)P+

k

)
i−n

i = n+1, . . . , 2n (3.29)

The notation (
√

A)i denotes the i-th column of the squared root of matrix
A. Some constants are introduced as well: two scaling parameters are used,
λ = α2(n + κ) and κ set to 3 − n or alternatively to 0. α influences how the
sigma points are spread on the state space and belongs to the [10−4, 1] range,
β is used to include information of the initial state distribution, with the best
value of β = 2 for Gaussian distribution.

To reconstruct the a-priori estimates of the quantities, a weighted sum approach
is followed employing different weights for the various sigma points, defined by
the following set of equations.

W
(m)
0 = λ/(n + λ) (3.30)

W
(c)
0 = λ/(n + λ) + 1 − α2 + β (3.31)

W
(m)
i = W

(c)
i = 1/(2n + 2λ) i = 1, . . . , 2n (3.32)

With this in mind we can formulate the prediction step as in the following.
First the sigma points are all propagated through the nonlinear processes of
the dynamics and measurement functions of Eq.s 3.16 and 3.17 expressing
them as per Eq.s 3.33 and 3.34.
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x−
i,k+1 = f(xi, uk, 0) (3.33)

y−
i,k+1 = h(x−

i,k+1, 0) (3.34)

The new two sets of sigma points are then used for the a-priori quantities
exploiting the following weighted sums.

x̂−
k+1 =

2n∑
i=0

W
(m)
i x−

i,k+1 (3.35)

ŷ−
k+1 =

2n∑
i=0

W
(m)
i y−

i,k+1 (3.36)

P−
k+1 =

2n∑
i=0

W
(c)
i (x−

i,k+1 − x̂−
k+1)(x−

i,k+1 − x̂−
k+1)⊤ + BQB⊤ (3.37)

Moreover, to compute the Kalman gain, the remaining a-priori covariance
matrices are computed also with the UT.

P−
xy =

2n∑
i=0

W
(c)
i (x−

i,k+1 − x̂−
k+1)(y−

i,k+1 − ŷ−
k+1)⊤ (3.38)

P−
δyδy =

2n∑
i=0

W
(c)
i (y−

i,k+1 − ŷ−
k+1)(y−

i,k+1 − ŷ−
k+1)⊤ + DRD⊤ (3.39)

Finally the update step is completed with the very same formulations of
Eq.s 3.5, 3.6 and 3.7, reported for sake of completeness also in the following.

Kk+1 = Px̂yP−1
δyδy (3.40)

x̂+
k+1 = x̂−

k+1 + Kk+1(yk+1 − ŷk+1) (3.41)
P+

k+1 = P−
k+1 + Kk+1PδyδyK⊤

k+1 (3.42)

The numerical complexity of the UKF is the same as that of the KF and the
EKF, i. e. O(n3), provided also in this case by the state a-priori covariance
generation. It shall be noted however, that here the prediction of 2n + 1 sigma
points is needed and if highly complex integration methods are used, the overall
computational demand increase.

3.3 Measurement Models

Dealing with a navigation filter, it is fundamental to analyse correctly the
measurements that are exploited by the estimation algorithm, in order to be
capable of simulating the behaviour of the sensors providing such observables
and to find proper ways to define the measurement function used within the
filter itself.
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3.3.1 Optical measurements
The optical observables are in general obtained by a camera which is able
to provide two angular measurements of the relative LoS u associated to
target object. Such measures are generally defined via the two homographic
coordinates, defining the projection of the LoS unit vector on the camera plane,
as represented by Eq. 3.43.

u =
[
ux

uy

]
= f/lC,z

[
lC,x

lC,y

]
(3.43)

with lC = AC/I l = AC/I
r − rtgt

∥r − rtgt∥
(3.44)

The introduced parameters are: the focal length f , the LoS vector expressed
both in camera and inertial frames lC and l, the matrix used to rotate vectors
between these to frames AC/I and rtgt which is the target inertial position
vector.

This just presented is a general formulation fundamental if a complete 6-DOF
navigation system is considered, since the matrix AC/I represent a coupling
between the centre of mass and attitude kinematics. If instead, as in the
scenarios under study here, the attitude is considered to be perfectly known,
it is possible to consider the two angular measurements as simply the two
angles that defines the LoS direction. These two are the Azimuth Az and the
Elevation El coordinates, respectively in- and out-of-plane angles with respect
to the inertial reference frame, and defined as in Eq.s 3.45 and 3.46.

Az = arctan (ly/lx) +

π if lx < 0

0 else
(3.45)

El = arctan
(
lz/
√

l2x + l2y

)
(3.46)

In order to include measurement errors in the retrieved signals, zero mean
additive white Gaussian noise is included in the simulated measurements, as
in Eq. 3.47

Ãz = Az + εAz

Ẽl = El + εEl

(3.47)

with the two noisy terms εAz and εEl defined by a standard deviation σAz and
σEl.
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3.3.2 RF-based measurements

Exploiting a GNSS constellation with a One-Way navigation strategy, the user
receiver terminal retrieves from any ith visible element of the constellation
the range ρ, the range-rate, ρ̇, and the servicer ephemeris under the form of
the state vector xs,i. When dealing with such measurements, it is usual to
define the observable data as pseudorange ρ̃ and pseudorange-rate ˜̇ρ, in order
to indicate that the two measurements are affected by errors. In particular,
looking at the range measurement, the geometric range obtained from the ith

servicer can be defined as per Eq. 3.48

ρi = c∆ti = ∥rs,i − r∥ (3.48)

where c is the speed of light and ∆ti the time required for the signal to travel
from the servicer position rs,i to the user one r. In a One-Way ranging, this
time difference is obtained by subtracting the servicer clock-time at signal
emission from the user clock-time at reception, i.e. ∆ti = tu − ts,i. The two
clocks are however not measuring the exact time, but they will present some
offsets, which will in general be different one to the other. As such the measured
time difference from the user terminal will bring to the pseudorange as per
Eq. 3.49.

ρ̃i = c (tu + δtu − ts,i − δts,i) = ρi + cδtu + εδts,i
(3.49)

From this equation, it is clear that a bias in the measurements is present. In
addition to that, there is a huge number of other possible sources of error in
the pseudorange, due to RF interference effects, distortions of the signals both
within the terminals or caused by interaction with the propagation medium,
multipath losses, and also relativistic effects, leading to a final pseudorange
formulation as per Eq. 3.50, where all the previous contributions (including
εδts,i

) are collapsed in a single component ερ.

ρ̃i = ρi + cδtu + ερ (3.50)

The same kind of reasoning can be done for the pseudorange-rate observable,
which can be derived directly from the observed frequency Doppler shift ∆fD,
but again is inherently affected by the same effects as in the previous case,
summed up in a ερ̇ term in addition to the time bias derivative.

˜̇ρi = c
∆fD

fs,i
+ cδ̇tu + ερ̇ (3.51)

To enter the details of GNSS systems a good reference can be found in [55].

For this work, in order to simulate these effects, we implemented the model in
Eq.s 3.52 and 3.53 to generate the measurements fed to the filter.
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ρ̃i = ∥r̃s,i − r∥ + bc + ερ (3.52)
˜̇ρi = (ṽs,i − v) · (r̃s,i − r)/ρ + dc + ερ̇ (3.53)

x̃s,i =
[
r̃⊤

s,i, ṽ⊤
s,i

]⊤
= xs,i +

[
ε1×3

r , ε1×3
v

]⊤
(3.54)

For both the observables, all the effects are directly collected in single noisy
Gaussian terms, except for the receiver clock bias bc and drift dc contributions,
which are treated as an additional parameter to be estimated. The standard
deviations associated to ερ and ερ̇ are σρ = 10 m and σρ̇ = 0.1 m s−1, values
assumed in accordance to the ongoing studies [51, 52].

The receiver clock bias and drift, which represent cδtu and cδ̇tu respectively,
are simulated with the dynamical model in Eq.s 3.55 and 3.56:

ḃc = dc + εbc (3.55)
ḋc = εdc (3.56)

where the stochastic components εbc and εdc are normally distributed with
null mean and assumed standard deviations of 100 m and 1 m s−1, also here
consistent with [51, 52].

The servicers’ ephemerides are affected by the related platforms navigation
errors, which are added with a simple additive white Gaussian noise model, as
in Eq. 3.54, where ε1×3

r and ε1×3
v represent the three-dimensional position and

velocity error vectors, defined by standard deviations of σr and σv.

3.3.3 Additional sensors

Additional sensors that are going to be exploited in the context of this work
are here presented. In particular accelerometers and altimeters are taken into
consideration.

Accelerometer Concerning the accelerometers contained in the Inertial
Measurement Unit (IMU) it is fundamental to recall that such sensors are
insensitive to volume-forces, such as all the gravitational effects included in
the environment of our simulation. They are however sensitive to SRP, which
in turn may be one of the most complex effects to correctly reproduce on
board, reason for which an accelerometer can be extremely useful in this
scenario. Another very important contribution that can be estimated via the
accelerometer is the control acceleration that the thrusters provide.
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It is also relevant to recall that the accelerations recorded by the IMU are
expressed in the spacecraft body frame B. Since in this framework the attitude
dynamics and kinematics are not taken into consideration, the spacecraft
attitude is always considered to be perfectly known, reason for which the
accelerations of the IMU are directly expressed in the inertial frame.

It is possible to provide high-fidelity models to simulate the noisy measure-
ments of the accelerometer. In general it is possible to include biases, drifts,
nonlinearities, misalignment and scale errors (see [71] as a good reference). For
the purpose of this work, it was decided to simplify the model, collecting all
such effects into a single term. As a consequence, the simulated sensor reading
is defined by the non-volume accelerations contribution affected by an additive
white Gaussian noise, as per Eq. 3.57.

ãIMU,B = aSRP,B + athr,B + εIMU (3.57)

A consolidated practice to exploit such sensor in the orbital filters is the
so-called Dynamic Compensation Mode [70]. The basic idea is not to use
the accelerometer readings among the measurement vector, but to use it
directly within the propagation step of the filter. This concept, exploited
also for angular rates with gyroscopes, is backed by the high accuracies that
such sensors show. Moreover, some computations savings is thus achievable,
avoiding the evaluation of the non-volume forces that IMUs sense which, in
general have quite complex mathematical formulations, e. g. a high-fidelity
SRP or propulsive acceleration.

Altimeter Another relevant sensor that may be considered in the lunar
environment is an altimeter, especially if the spacecraft under analysis is
performing a controlled landing. Also for this case, there is the possibility
to employ fancy models of the sensor, considering the exploited technology
and the considered topography of the Moon. Regarding this latter indeed,
there is a wide range of possibilities, from assuming a perfect sphere or using
detailed Digital Elevation Models (DEM). In the current work, using the
simpler spherical Moon model, the real altitude is obtained as in Eq. 3.58
employing Moon average radius R%.

ζ = ∥r∥ − R% (3.58)

The error effects introduced by the sensor is provided by a zero-mean additive
white Gaussian noise, which, to reflect the behaviour of laser altimeter technol-
ogy, considers a standard deviation of 1% of the current real height [72]. The
resulting measurement function is thus defined as in Eq. 3.59.
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ζ̃ = ζ + εζ(ζ) (3.59)

with εζ(ζ) = N (0, 1)ζ/100 defined as the noisy component.

3.3.4 Measurement uncertainty propagation

As described in section 3.2, the filtering procedure requires an estimation of
the covariance associated to the measurements through the matrix R. In order
to provide such estimate it is in general sufficient to include the expected
covariance of the sensors. However, in case the measurement noise cannot
be considered simply as additive white Gaussian noise, it is necessary to
analyse the propagation of the uncertainty from the noisy terms to the final
measurement functions.

To assess the extent of such propagation, the Root of the Sum of the Squares
(RSS) principle can be exploited, which states that the uncertainty of a certain
variable y which is function of a series of stochastic variables xi can be expressed
as in Eq. 3.60.

σy =

√√√√ n∑
i=1

(
∂y

∂xi

∣∣∣∣
x̄i

σxi

)2

(3.60)

This formulation is obtained as an approximation in the neighbourhood of
the operative conditions x̄i, around which the expression is linearised. As a
consequence, by evaluating the partial derivatives with respect to any stochastic
variable in the operative conditions x̄i, the uncertainty on the parameter y
can be retrieved. In the following, this principle is applied to two different
expressions that are going to be used for the navigation analyses.

3.3.4.1 Optical angles to Line-Of-Sight

In some scenarios it may be favourable to consider a different mathematical
expression to include the optical measurements in the filter, where instead of
the azimuth and elevation angles, the LoS unit vector l is used, as in Eq. 3.61.

l =
[
cos(Az) cos(El), sin(Az) cos(El), sin(El)

]⊤
(3.61)

Since the actual measured stochastic quantities considered here are the bearing
angles Az and El, the RSS is employed to define the uncertainty on each
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component of the LoS unit vector.

σlx,y =
(

∂lx
∂Az

∣∣∣∣2
(Āz,Ēl)

σ2
Az + ∂lx

∂El

∣∣∣∣2
(Āz,Ēl)

σ2
El

)1/2

=

(
sin(Āz)2 cos(Ēl)2 + cos(Āz)2 sin(Ēl)2

)1/2
σAz (3.62)

σly ,y =
(

∂ly
∂Az

∣∣∣∣2
(Āz,Ēl)

σ2
Az + ∂ly

∂El

∣∣∣∣2
(Āz,Ēl)

σ2
El

)1/2

=

(
cos(Āz)2 cos(Ēl)2 + sin(Āz)2 sin(Ēl)2

)1/2
σAz (3.63)

σlz ,y =
(

∂lz
∂Az

∣∣∣∣2
(Āz,Ēl)

σ2
Az + ∂lz

∂El

∣∣∣∣2
(Āz,Ēl)

σ2
El

)1/2

=

(
0 + cos(Ēl)2

)1/2
σAz (3.64)

In the second passage of each Eq.s 3.62, 3.63 and 3.64, the uncertainty on the
two bearing angles has been assumed to be the same, i. e. σAz = σEl.

In order to avoid giving preferences for a specific direction in the reference
frame, the trisectrix of the first octant has been taken as reference condition,
thus providing the the angle of π/4 for both Az and El. As a consequence, we
can evaluate the previous expressions as in the following elaboration.

σlx,y = (1/4 + 1/4)1/2σAz = σAz/
√

2 (3.65)
σly ,y = (1/4 + 1/4)1/2σAz = σAz/

√
2 (3.66)

σlz ,y = (1/2)1/2σAz = σAz/
√

2 (3.67)

The final expressions in Eq.s 3.65, 3.66 and 3.66 show that the uncertainty is
equally distributed to the three components, as expected given that the defined
equilibrium condition is the trisectrix. From these relationships it is possible
to define an uncertainty level for each component of the LoS unit vector and
thus to express the measurement covariance matrix R as a 3 × 3 matrix, as
needed by the modified measurement function.

3.3.4.2 GNSS servicers ephemerides to range and range-rate
Given that the pseudorange and pseudorange-rate expressions are generated
exploiting the servicers’ ephemerides components, the global measurement
uncertainty will be affected also by such noise. For this purpose the RSS
principle is applied, for which the errors in pseudorange and pseudorange-
rate derived from the ephemeris errors are given as per Eq.s 3.68 and 3.69
respectively.
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σρi,xs,i =

[(∂ρi

∂xi

)2
+
(

∂ρi

∂yi

)2
+
(

∂ρi

∂zi

)2]
σ2

r+

( ∂ρi

∂vxi

)2
+
(

∂ρi

∂vyi

)2

+
(

∂ρi

∂vzi

)2
σ2

v

1/2

(3.68)

σρ̇i,xs,i =

[(∂ρ̇i

∂xi

)2
+
(

∂ρ̇i

∂yi

)2
+
(

∂ρ̇i

∂zi

)2]
σ2

r

( ∂ρ̇i

∂vxi

)2
+
(

∂ρ̇i

∂vyi

)2

+
(

∂ρ̇i

∂vzi

)2
σ2

v

1/2

(3.69)

Developing all the partial derivatives of range and range-rate, expressed as
in Eq.s 3.52 and 3.53, the mathematical expressions remain simple for the
pseudorange, while they grow quite cumbersome for the pseudorange-rate. After
the simple and necessary algebraic manipulations, the resulting expressions
are the following Eq.s 3.70 and 3.71.

σρi,xs,i = σr (3.70)

σρ̇i,xs,i =

[(vx − vxi)2 + (vy − vyi)2 + (vz − vzi)2 − ρ̇2
i

]
σ2

r/ρ2
i + σ2

v

1/2

=
√

ασ2
r + σ2

v) (3.71)

It turns out that the position error is propagated exactly in the pseudorange
when the uncertainty on the servicer ephemerides position is uniform among
the three directions. Instead, for the pseudorange-rate, the effect of both
ephemerides position and velocity uncertainties is present. Moreover the latter,
due to the coefficient α = α(v, vs,i) showing dependence on the current values of
the velocity components for both user and servicers, cannot be used directly in
this formulation. To avoid having an adaptive formulation, the expression of the
coefficient α is evaluated a-priori as the mean value experienced on the simulated
trajectories of four different LLO users from 10 km to 250 km. The values
of the ephemeris error standard deviation are σr =15 m and σv =0.15 m s−1,
compatible with orbit determination performance studied for lunar constellation
elements (see [19]).
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CHAPTER4
Autonomous Navigation for Cislunar Proximity

Operations: the Rendezvous and Formation
Flying scenarios

The first two scenarios objective of this thesis are inserted in the framework
of the relative dynamics in the cislunar space. In particular in both scenarios
the target of the study is the proximity operations involving the Lunar Orbital
Platform - Gateway, thus involving the associated NRHO. The first case study
involves the completion of a rendezvous with the Gateway, while the second
one considers instead a formation flying mission, where the chaser needs to
perform reconfiguration manoeuvres. The details of the operative environment
in which the LOP-G will work are described in Section 4.1.

The rendezvous study presented in Section 4.2 focuses on assessing the appli-
cability of the already known approaches to perform proximity navigation on
Earth orbits, to the cislunar environment. In particular, the BO technique
presented in Chapter 2 is here selected as potentially available, from a sen-
sor suite perspective, on all spacecraft classes, from nano to large satellites.
Although this technique requires simple, cheap, and lightweight navigation
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sensors, its application in the space environment has been sparsely studied
because of inherent limitations in estimating the range.

Nevertheless, little to no literature exists regarding the applicability of bearing-
only navigation to perform proximity operations in non-Keplerian orbits. There-
fore the goal of this analysis is to develop a novel approach to favour the target
observability while respecting traditional rendezvous requirements in the cislu-
nar domain.

Following this goal, Subsection 4.2.1 provides a detailed description of the
mathematical formulation behind the proposed GNC architecture, while two
different set of rendezvous simulations are presented in Subsection 4.2.2. Sub-
section 4.2.3 exploits instead the very same architecture for heterogeneous
orbits scenarios.

The goal of the second scenario proposed in Section 4.3 of this chapter is to
provide a cost effective GNC strategy to perform reconfiguration manoeuvres,
or rephasing, of a chaser spacecraft around the LOP-G. First, a scheme is
built to target and move between natural relative trajectories around the
Gateway orbit, exploiting the peculiar features of quasi-periodic invariant tori
in Subsection 4.3.1. Then in Subsection 4.3.2, the design of the guidance
and control scheme is tackled, using a Model Predictive Control based on an
adaptive weights formulation and employing maximum thrust and collision
avoidance constraints. The resulting transfers assuming perfect state knowledge
are presented and discussed in Subsection 4.3.3. The problem of navigation is
introduced afterwards, starting by defining the state reconstruction require-
ments. The BO strategy is first applied to assess its validity and eventually
enhanced also with radiometric measurements to meet the found navigation
requirements.

4.1 The LOP-G Operative Scenario

The Lunar Orbital Platform - Gateway is located on a Near Rectilinear Halo
Orbit, with a resonant period with the Moon (9:2), a periselene and an aposelene
of 3200 km and 70 000 km approximately, and an orbital period of 6.5 d. The
orbit is reconstructed leveraging the initialisation, correction, and continuation
scheme of orbital families, starting from the bifurcation point between Lyapunov
and Halo orbits [73]. Figure 4.1 depicts the operative NRHO in the CR3BP
and in a high fidelity model, including Earth and Moon ephemerides, Sun
fourth-body gravity, and Solar radiation pressure. It can be observed how the
high-fidelity motion mildly deviates from the CR3BP solution (∼ 2300 km at
the apolune in a time range of 30 days), thus substantiating the validity of the
latter model for the preliminary analyses, to be then cross-validated against
the high fidelity model.
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Figure 4.1: NRHO in the CR3BP, and in high-fidelity dynamics

4.2 GNC for Rendezvous in cislunar space

This first scenario sees the design and testing of a GNC system to successfully
perform a rendezvous manoeuvre with the LOP-G, navigating with LoS angles
with respect to the target spacecraft only, exploiting the BO guidance and
control scheme to enhance the range observability. In addition to a rendezvous
scenario the same scheme is tested in bounded-distance heterogeneous orbits
scenarios.

4.2.1 Bearing-Only GNC

As seen in section 2.2.1.1, when dealing with a bearing-only architecture,
the navigation process is directly influenced by the shape of the trajectory,
therefore the main strategy proposed here is to include inside the guidance a
contribution that allows to improve the navigation performance. A Shrinking
Horizon MPC is selected to compute the manoeuvres required to bring the
spacecraft to a desired location. In this formulation, the trajectory is discretised
into a series of points, uniformly distributed in time. The course of action
for this kind of architecture is displayed in Fig. 4.2. Applying operational
and safety constraints related to the completion of the manoeuvre before
entering dynamically unfavourable regions, the time of flight is fixed to the
desired rendezvous time Trdv and the trajectory is discretised into n steps
tM = [tM1 , tM2 , ..., tMn ] at which manoeuvres are envisioned. At the same
time, a number of m re-optimisations of the control actions are scheduled for
tO = [tO1 , tO2 , ..., tOm ], such that tOi does not necessarily equal tMi . Once the
procedure is initialised, for each update time tj the need for a re-optimisation
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is checked and if that is the case, the guidance uses the estimated relative
state as the initial point to searches a solution for the remaining window,
eventually updating the manoeuvre scheme Uopt. Afterwards, it also controls
if a manoeuvre is planned; whenever that is the case, the chaser executes
the control action according to Uopt. Finally, the cycle is stopped when the
shrinking horizon window ends, i. e. at tk = Trdv.

REOPTIMISE

Solve for 𝑼𝒑𝒍𝒂𝒏

END

YES

NO

EXECUTE
According to 𝑼𝒑𝒍𝒂𝒏

𝑡 = 𝑡𝑀𝑡 = 𝑡𝑂 𝑡 = 𝑡𝑅𝐷𝑉
NO

YES

YES

NO

Figure 4.2: Guidance Flow-chart.

This kind of scheme represents a slight readaptation of the basic shrinking
horizon MPC, since in this case the re-optimisation of the manoeuvre sequence
within the finite horizon is not forced to occur at the same time instants of the
manoeuvres.

In the next subsections the formulations of the dynamical model and optimisa-
tion problem are reported.

4.2.1.1 Guidance and Control Dynamic Model

Given the specific goal of bringing to zero the relative distance to complete the
rendezvous, the MPC is here in charge of providing both a guidance, i. e. defining
the trajectory to follow, and the control. In this framework, considering the
environmental condition in which the LOP-G, the target spacecraft, is operative,
the relative CR3BP dynamics in its linearised formulation of Eq. 2.9 comes at
hand.

A closed form solution to these equations system does not exist since the
dynamics Jacobian A(t) is dependent on the absolute dynamics of the target,
which requires a numerical integration. Nevertheless, given the initial state xk

at a time tk and the control action uk the solution of any nonlinear similar
equation of motion can be separated into a free and forced contribution as in a
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discrete time formulation:

xk+1 = eAk(tk+1−tk)xk +
∫ tk+1

tk

eAk(tk+1−τ)Bkuk(t) dτ (4.1a)

Ak = ∂f(xk)
∂xk

(4.1b)

Bk = ∂g(uk)
∂uk

(4.1c)

where f(xk) and g(uk) are the collection of nonlinear terms, function of the
state and of the input respectively.

Approximating the exponential terms with a 2nd order Taylor series, the State-
Transition Matrix Ak+1

k is expressed as in Eq. 4.2b. The solution of the forced
response is instead more complicated and only in few cases the convolution
integral of the time-varying manoeuvre uk(t) can be written as the product
between a matrix and a vector. For impulsive controls at the beginning of
the time interval, however the solution of the integral Bk+1

k can be computed
simply with the input matrix Bk and the State-Transition Matrix (STM) Ak+1

k

as in Eq. 4.2c. The resulting expression of the discrete linearised dynamics
becomes simply as in Eq. 4.2a.

xk+1 = Ak+1
k xk + Bk+1

k uk (4.2a)
Ak+1

k = I + Ak(tk+1 − tk) + (A2
k + Ȧk)(tk+1 − tk)2/2 (4.2b)

Bk+1
k = Ak+1

k Bk (4.2c)

Then, a generic (k+j)th state can be expressed as function of the initial state
xk and the sequence of control actions from initial node to the (k+j-1)th node

xk+j = Ak+j
k+j−1xk+j−1 + Bk+j

k+j−1uk+j−1

= Ak+j
k+j−1

(
Ak+j−1

k+j−2xk+j−2 + Bk+j−1
k+j−2uk+j−2

)
+ Bk+j

k+j−1uk+j−1

...

=
0∏

i=j−1
Ak+i+1

k+i xk+ (4.3)

+

 1∏
i=j−1

Ak+i+1
k+i Bk+1

k ,
2∏

i=j−1
Ak+i+1

k+i Bk+2
k+1 , . . . , Bk+j

k+j−1




uk

...
uk+j−1


Note that the products involved are in reversed order, i. e. considering e. g. j = 5,
the product

∏0
i=j−1 starts with the index i = 4 and ends with i = 0. The

matrix products are intended as left-side multiplications.
This formulation provides a simple manner to express any states within the
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finite horizon of the MPC as function of the initial state xk of the window, and
the set of control actions U. In particular, we can compact the state at any
particular step k + j as in Eq. 4.4

xk+j = Ak+j
k xk + Bk+j

k Uk+j
k (4.4)

Ak+j
k =

0∏
i=j−1

Ak+i+1
k+i (4.5)

Bk+j
k =

 1∏
i=j−1

Ak+i+1
k+i Bk+1

k ,
2∏

i=j−1
Ak+i+1

k+i Bk+2
k+1 , . . . , Bk+j

k+j−1

 (4.6)

Uk+j
k =


uk

...
uk+j−1

 (4.7)

Applied to the final state of the finite horizon window at t = tn, Eq. 4.8

xn = An
kxk + Bn

kU (4.8)

where the complete set of computed control actions from step k to step n, has
been renamed as U, a 3(n − 1) × 1 vector.

This compact notation will be useful to simplify the optimisation problem
described in the following subsection.

4.2.1.2 Optimisation Problem

The optimisation problem solved at each re-optimisation epoch is written as:

min
y

JF (y) (4.9a)

subject to Aeqy = beq

Aiqy ≤ biq

lb ≤ y ≤ ub

c(y) ≤ 0

where y is the vector of optimisation variables, among which the controls and
other associated quantities can be present. Equality and inequality constraints
are imposed linearly with the matrices Aeq and Aiq or nonlinearly with c(y),
while the upper and lower bounds for the optimisation variables are defined
respectively by ub and lb.
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Fuel Objective Generally the fuel expenditure is quantified by the ∆v,
which however can be expressed only in a nonlinear fashion with respect to
the vector y, due to the squared root in its definition. To avoid dealing with a
nonlinear cost function in this study the cost function will be expressed both
as a quadratic JF,q or linear JF function.

Considering the quadratic formulation, we can write the cost function as in [74],
i. e. :

JFq = 1
2U

T QU (4.10)

where the diagonal matrix Q is exploited to favour the control actions at
certain time-steps within the window. In this cost function, the variable y is
represented by the stacked manoeuvres vector U. The quadratic formulation
in general provides smooth controls, resulting in a more robust dynamics with
respect to disturbances and off-nominalities. Nevertheless, its output may
result less optimal in terms of ∆v with respect to a linear formulation of the
control action as described in [75].

The linear representation of the fuel expenditure is instead provided by using
the 1-norm of the control action, which is the sum of of all the components of
U taken in absolute value:

JFs =
3(n−1)∑

k=1
|U(k)| (4.11)

This formulation provides smaller ∆v with respect to the quadratic objective.
Moreover the control action results also in sparser executions, which can be
an interesting feature when continuous thrust is not a viable option. The
disadvantage of this behaviour is that the strategy is less robust to thrust-
misses.

To efficiently solve the optimisation problem with a Sequential Quadratic
Programming (SQP) solver, it is advisable to remodulate the objective in
Eq. (4.11) since it is a piece-wise linear function. Additional optimisation
variables S = [s⊤

1 s⊤
2 ... s⊤

n−1]⊤, called slack variables as in [21], are thus
introduced. Additional inequality constraints are added, such that the elements
in S are forced to have the same absolute value of their related elements in U.

With Y = [U⊤ S⊤]⊤ the augmented optimisation variables, Eq. (4.11) is recast
as:

JFs = F⊤Y (4.12)
where the first 3(n − 1) elements of F are null and the remaining ones are unity.
The constraints on the slack variables are instead:

Uj − Sj ≤ 0 (4.13)
−Uj − Sj ≤ 0 (4.14)
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which can be expressed in matricial form to include all the control actions as:

AsY ≤ bs (4.15)

As =
[

Im×m −Im×m

−Im×m −Im×m

]
(4.16)

bs = 02m (4.17)

with m = 3(n − 1).

Recall that the introduction of slack variables can be avoided by using directly
a nonlinear solver, however the solver is much faster when the cost function is
continuous and smooth.

Boundary Conditions The completion of the rendezvous is enforced through
boundary conditions at the end of the horizon window, which is expressed
as function of the control vector U and the initial conditions, as in Eq. 4.8,
leading to:

ABCY = bBC (4.18)

ABC =


[
Bn

k 06×m

]
for JFs

Bn
k for JFq

(4.19)

bBC = x̂EC − An
kxk (4.20)

where the desired final point is x̂EC .

Upper and lower bounds are instead used to impose the maximum thrust
constraint, decoupling the three axes:

lb = −um

[
11×m 11×m

]⊤
ub = um

[
11×m 11×m

]⊤ (4.21)

Due to the discrete formulation of the original problem in Eq. 4.2a, um is
expressed as a velocity and equals the maximum ∆v available for each manoeu-
vre.

Observability cost function The approach of Grzymisch [21] is based on
an MPC guidance adding also an observability cost function, denoted as JO,
exploited to enforce the positive linear independence between the natural and
the perturbed relative position vectors, as in Eq. 4.22. Here, the sum of the
scalar products between the perturbed LoS vectors and the natural ones is
minimised for each time-step within the horizon window.

JO =
n−1∑
j=2

r̄⊤
j rj =

n−2∑
k=1

(Λk+1
k xk)⊤(Λk+1

k xk + Γk+1
k uk) (4.22)
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In the previous expression, the matrices Λk+1
k and Γk+1

k are defined as only the
first three rows of Ak+1

k and Bk+1
k respectively, thus with the same functionality

but providing only the position vector instead of the full state. By developing
the cumbersome algebra, with a process similar to the one that led to the Eq. 4.4,
the resulting objective function can be expressed as a quadratic formulation of
the U vector only, as in Eq. 4.23

JO = 1
2U

⊤HU + L⊤U + C (4.23)

H =


H11 H21 . . . H1(n−1)

H21 H22 . . . H2(n−1)
...

... . . . ...
H(n−1)1 H(n−1)2 . . . H(n−1)(n−1)

 (4.24)

L =
[
L⊤

1 L⊤
2 . . . L⊤

(n−1)

]⊤
(4.25)

with the different terms defined as in the following, where the Kronecker delta
δij is used.

Hij = Γi+1 ⊤
i Λi+1

i Ai
j+1B

j+1
j (1 − δij)+

+ 2

 n−2∑
k=j+1

Bi+1 ⊤
i Ak ⊤

i+1Λk+1 ⊤
k Λk+1

k Ak
j+1B

j+1
j

 fori ≥ j (4.26)

Lj = x⊤
1 A

j ⊤
1 Λj+1 ⊤

j Γj+1
j + 2x⊤

1

 n−2∑
k=j+1

Ak ⊤
1 Λk+1 ⊤

k Λk+1
k Ak

j+1B
j+1
j

 (4.27)

C = x⊤
1

 n−2∑
k=j+1

Ak ⊤
1 Λk+1 ⊤

k Λk+1
k Ak

j+1

x1 (4.28)

This cost function is quadratic in the optimisation variables and is combined
with the fuel objective through a weighted-sum approach. The resulting
problem can be solved with Quadratic Programming (QP) algorithms. An
important note is that JO can be minimised by either changing the angle
between the two vectors (i.e., θ) or reducing their magnitude (i.e., moving
closer to the target). This effect will be looked at particularly in the next
sections.

Non-linear Observability Constraint Another possibility to include the
observability angle inside the optimisation problem is to augment Eq. 4.9 with
a non-linear constraint, which acts to impose that θ is larger than a certain
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threshold after M steps, which can be used as a tuning parameter. Such
constraint can be expressed as:

c(U) = θthr − cos−1
(

x̄⊤
M xM (U)

∥x̄M ∥∥xM (U)∥

)
≤ 0 (4.29)

where x̄M depends only on the initial conditions. Using the compact formulation
we can express the two vectors as:

x̄M = AM
k xk

xM = x̄M + BM
k UM

k

(4.30)

This formulation gives rise to a Nonlinear Programming (NLP) problem, that
requires, unfortunately, iterative and more time-consuming procedure to be
solved. However, its advantages in the associated guidance and navigation
performance will be evident in the next sections.

4.2.2 Simulation Environment and results

To investigate the ability of the proposed architecture to perform an autonomous
bearing-only rendezvous, the Shrinking Horizon - MPC guidance is tested in a
closed-loop system along with a navigation filter. The target considered is the
LOP-G, and its operative orbit the southern NRHO introduced in Section 4.1.

The apolune region of the NRHO is considered as the reasonable area to
complete the rendezvous operations as also highlighted by previous studies [30,
76]. This region is dynamically very stable and due to the relatively low
velocity involved, as opposed to the perilune neighbourhood, where very small
perturbations are able to generate large trajectory deviations (see [77]).

Target Real 
Dynamics

Bearing-Only
Measurements

Navigation 
Filter

MPC 
Guidance

Ideal 
Thrusters

Chaser Real 
Dynamics

𝒙

𝒚

ෝ𝒙𝒖

𝒂

𝒙𝒕

Figure 4.3: Simulation architecture scheme.
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Figure 4.3 presents the architecture of the GNC scheme considered, imple-
menting the logic in Fig. 4.2. The ground-truth considers a full-ephemerides
high-fidelity propagation, including the perturbations of the Sun gravity and
the SRP. The target spacecraft mass is assumed as 400 000 kg with an SRP-
effective area of 12 000 m2, similar to an ISS-class structure. The chaser instead
is taken as automated transfer vehicle, with 20 000 kg of mass and 125 m2 of
total surface.

Given that the navigation filter requires the knowledge of the target absolute
state, it is assumed that at each re-optimisation step this information is obtained
through an RF link from the target to the chaser. This latter uses it as initial
condition and propagates it onboard within the horizon window, obtaining
thus a cooperative GNC strategy.

The navigation filter employed here is an Extended Kalman Filter, with the
dynamics based on Eq. 4.2a, the STM provided by Eq. 4.2b and the update
frequency set to 1 Hz. The re-optimisation time step is fixed to 1 h, while the
dynamics discretisation to 600 s. The selection of such parameters is relevant
for many aspects, both in terms of performance of the GNC scheme and of
operational and technical compliance, requiring thus a proper trade-off to be
sorted out. Indeed, it is possible to enhance the performance in both estimation
and propellant aspects by increasing the filter frequency or by decreasing the
re-optimisation and dynamics discretisation, respectively. Concerning the filter
frequency however, the value of 1 Hz can be considered as a maximum value,
limited by the capability of ingesting and processing optical images at higher
frequency. Regarding the re-optimisation time, reducing it even more would
counteract the benefits of employing the model predictive strategy, letting
the system evolve not so much to generate a deviation between the on-board
dynamics and the physical reality.

In order to obtain a more reliable propagation of the target position, it is
expressed in the inertial frame. Regarding the navigation performance the
threshold for good estimation is set to 0.5% of the range. Moreover a Monte-
Carlo analysis with a total of 300 simulations is considered, varying the
initialisation of the filter and the related noise effects.

Two Holding Points (HP) are used to identify the desired initial and final
relative states. In a practical rendezvous approach, these points are used as
checkpoints: they allow to account for operational constraints by enforcing few
desired relative positions throughout the approach. Both BO guidances are
tested in these two scenarios, namely the QP and the NLP case. The former
represents the approach with the observability added as an additional cost
function (combined with the fuel objective with a weighted sum), the latter
with the nonlinear constraint.

57



Chapter 4. Autonomous Navigation for Cislunar Proximity Operations

4.2.2.1 Case A: Center Manifold

Case A considers as initial holding point a state on the NRHO center manifold,
at a distance of 250 km from the target. The main feature of this point is that
it presents a periodic simply stable motion around the target, consequently
this can guarantee that in case of malfunctioning at the start of the approach,
the chaser does not drift from the target. The second holding point is instead
posed on the unstable manifold at the 1 km Keep-Out-Sphere, such that it
guarantees a passively safe trajectory in case of non-nominalities as described
in [76]. The time of flight is imposed to be 12 h.

Table 4.1: Center manifold navigation performance.

∆v [m/s] Em [km] Rcon [km] δrNAV [m] δrCT RL [m]

QP 25.06 1.22 29.16 0.84 17.76
NLP 21.58 1.04 124.42 0.91 23.20

The results of the simulations are summarised in Table 4.1. In the latter Em is
the average value of the Root Mean Square Error (RMSE) of the estimated
position and Rcon is the relative distance at which the filter reaches the desired
accuracy. δrNAV and δrCT RL are the final navigation and position mean errors
(1σ), respectively.

Results are also visually represented in Fig. 4.4, where from the left figure, it
is clear that the NLP formulation acting directly on the observability angle,
can suddenly reduce the relative navigation error. The observability of the
system greatly improves with the manoeuvring actions after 1 hour, which
makes the estimate error drop of ∼3000 m, keeping a higher target-distance
compared to the QP alternative. The evolution of the range shows some insight
on how this latter strategy based also on the range information behaves. At
the downside of higher initial fuel expenses, it favours a quick reduction of
the relative distance, which however does not provide convenience from the
operational point of view. Indeed the accuracy threshold in the navigation is
crossed at a quite advanced stage of the rendezvous.

From Table 4.1 we see that the strategy exploiting Jo present a very small
distance at which the accuracy threshold is crossed. This is due to a reduction
of the range accompanied by a very small value of θ.

As such, there is the possibility that such trajectories may not comply with
stringent requirements for a safe rendezvous with the LOP-G. The NLP
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approach instead provides a threshold crossing from ∼125 km of distance to
the target.
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Figure 4.4: Performance of the bearing-only guidance with the initial point on
a center manifold

4.2.2.2 Case B: Quasi-Periodic Orbit
In this second test, the starting holding point is placed on a periodic mode of the
NRHO, where the unperturbed dynamics provides an along-track formation due
to the spacecraft being on the same orbit with an arbitrary phase displacement.
The final holding point is the same of the previous case on the unstable manifold.
The rendezvous time imposed is of 8 h.
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Figure 4.5: Performance of the bearing-only guidance with the initial point on
a quasi-periodic mode

The performance in this case is quite different with respect to the previous one,
as Fig. 4.5 highlights. The QP strategy indeed provides initial manoeuvres
which are not able to improve the estimation until half of the rendezvous time.
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The navigation performance reaches adequate values only at very close distances
to the target, near to the Keep-out-sphere. If we look at the navigation error at
a 30 km distance from the target, we see almost 10 times the required threshold.

Table 4.2: Periodic mode navigation performance.

Method ∆v [m/s] Em [km] Rcon [km] δrNAV [m] δrCT RL [m]

QP 12.64 1.01 1.03 2.21 6.81
NLP 15.51 0.67 34.67 0.67 25.78

Figure 4.6 provides additional way to inspect this results. There we see the
natural nominal trajectory (the violet line, without propulsion) with an initial
motion perpendicular to the x-y plane, while the QP solution (blue line)
straightly reaches the target parallel to the y-axis. With such a geometry, the
difference in the bearing angle from an azimuth point of view is very reduced,
as the left plot shows. Thus, the capability to reduce the uncertainty in the
y-axis is very reduced, with an improvement in the estimation only after 3 h,
when the natural trajectory starts bending to the positive x-axis.
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Figure 4.6: Approaching trajectories characteristics. NOM stands for the
nominal trajectory without manoeuvring and the dots represent the

relative position of the chaser after 3 h.

What we see instead in the results of the NLP guidance is that the manoeuvre
after 1 h brings the chaser in an opposite direction with respect to the natural
trajectory. This change in the geometry provides an improvement of the
navigation performance, reducing the error by around 1000 m. Regarding the
final position error, the NLP formulation provides worse dispersion, due to its

60



4.2. GNC for Rendezvous in cislunar space

higher absolute state estimation error during its last re-optimisation window.
The QP formulation instead, remaining for longer time in close proximity of
the target, has already a good absolute state estimation at the time of the last
re-optimisation step.

In general the results show that enhancing the observability with the additional
term Jo in the cost function provides better results in terms of final control
error, with minimal dispersion (in the order of few metres). If however the
goal is to guarantee the maximum safety in terms of relative navigation error,
the approach with the QP is not feasible. Instead the NLP strategy performs
greatly under both points of view, providing much good relative estimation
error at much larger distances (thus much sooner), while keeping good scores
in the other metrics. Moreover it is possible also to improve even more the
final position dispersion by introducing more frequent re-optimisation steps
towards the final part of the rendezvous.

4.2.3 Heterogeneous orbits

A different set of scenario is tested instead in the following section. The basic
idea is to analyse the effectiveness and related performance of a navigation
system leveraging the BO guidance, in a different mission case, where instead
of a rendezvous mission, a bounded motion between two cooperative spacecraft
(here still named chaser and target) is forsaken. The test case is selected
remaining in the cislunar region, thus still targeting the environment of interest
for the next decades lunar exploration missions.

The selected scenarios involve two spacecraft flying on heterogeneous non-
Keplerian orbits, with distances in the order of thousands of kilometres. Being
the goal here to enhance the navigation without affecting the trajectory of the
chaser after the execution, a final boundary condition is imposed, to ensure
that the final state lies on the very same initial trajectory.

Two different orbital family couples are analysed here, with the target always
placed in a DRO and the chaser first on a planar Lyapunov, then on a Halo
orbit. The BO guidance in its NLP configuration is coupled with an UKF used
to re-construct the relative state, with an update frequency of 0.1 Hz. Finally,
to stress the architecture robustness and statistically evaluate the navigation
performance, 100 Monte Carlo simulations are run for each scenario, changing
the filter initialisation and the noise effects.

4.2.3.1 Lyapunov to DRO Navigation

For the first case, the chaser is settled on a L2 Lyapunov while the target is on
a DRO, with an initial distance between the two spacecraft of 5300 km. The
navigation filter is initialised with relative position and velocity uncertainties
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of 10% and 2.5%, respectively, in order to provide reasonable initial navigation
errors. The observability angle is imposed through the nonlinear constraint
approach to three different limited values, namely 2.5, 5 and 7.5◦, while the
two fuel cost functions JFs and JFq , linear (with slack variables) and quadratic
respectively, are tested and compared. Moreover, being the target final state
on the initial same orbit, the final value of θ is null. The time at which the
observability is constrained is half of the simulation, for which the resulting
symmetry ensures the lowest fuel expenditure. The total simulation time is
72 h, using a re-optimisation time step of 5 h and a discretisation time of 1800 s.

(a) Linear fuel objective. (b) Quadratic fuel objective.

Figure 4.7: Relative position error for the two cost functions considered.

The two cost function formulations provide similar state reconstruction perfor-
mance, even though the quadratic one presents an increment of 10 m s−1 in
∆v.

Looking at the relative position errors, we find a minimum around 0.4%
of the range, corresponding to 60 km of estimation error (associated to an
imposed angle of 7.5◦). Considering the initial range of ∼5300 km and the
filter initialisation with 10% of relative error, we see a total reduction of 10
times the initial value.

We can notice how the linear case presents a drop in the relative range error
after the initial manoeuvre, while remaining almost constant for very long up
to the time of θ enforcement. Anyway, due to the increasing distances (from
5300 km up to 16 500 km), we see an absolute navigation error that increases
accordingly, as viewable in Fig. 4.8a and 4.8b.

Figure 4.9b shows that by solving for the quadratic fuel objective, the impulsive
approximation of the forced response effectively approximates the behaviour
of a low-thrust continuous control. This result is extremely useful since the
convolution integral of a generic continuous thrust vector u(t), cannot be
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(a) Linear fuel objective. (b) Quadratic fuel objective.

Figure 4.8: Absolute position error for the two cost functions considered.

written in discrete form as the product between a matrix and a vector. Thus,
the quadratic objective makes possible to model a pseudo low-thrust control
within a discrete-time framework.

(a) Linear fuel objective. (b) Quadratic fuel objective.

Figure 4.9: ∆v for the two cost functions considered.

The resulting trajectories for the quadratic fuel objective case in both absolute
and relative conditions are reported in Fig. 4.10, distinguishing the natural
and propelled arcs in each representation.

From these results we can deduce that, if the objective is to reduce the absolute
navigation error below a certain value, there are multiple possibilities. First,
for a target with a fixed relative distance, Eq. 2.12 can be used to select the
value for θ. If that is not the case, it is favourable to have targets closer or
that naturally reduces the range during the time of interest.
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Figure 4.10: Absolute (left) and relative (right) trajectories resulting from the
optimisation with the quadratic fuel objective for the Lyapunov to DRO

scenario with θD = 5 deg.

4.2.3.2 Halo to DRO Navigation

In the previous scenario, a high relative distance was selected with the sole
purpose of proving the validity of the GNC architecture. However, it is always
desirable to work with smaller values because, given the angle θ, the ∆v
required to perturb the natural trajectory grows as function of the range
between the spacecraft. In the following simulation the chaser has been placed
on a L2 Halo orbit, whereas the location of the target has remained unchanged.
Thus, the resulting relative motion will include both in-plane and out-of-plane
components. Additionally, the initial positions have been selected to generate
a relative motion whose range gradually reduces in time (contrary to the
previous configuration). The optimal manoeuvre plan was computed assuming
a high-thrust engine, thus the linear fuel cost function, and a desired minimum
observability angle of 1◦. The time span of this analysis is reduced to 8 h.

Figure 4.11a shows that despite a small observability angle was selected, the
navigation filter is capable of improving the initial error down to 1% of the
range.

The resulting absolute and relative trajectories are presented in Fig. 4.12,
highlighting the natural and propelled evolutions.
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(a) Relative position error. (b) Absolute position error.

Figure 4.11: Relative and absolute position errors for the Halo to DRO
scenario.

Figure 4.12: Absolute (left) and relative (right) trajectories resulting from the
optimisation for the Halo to DRO scenario.

65



Chapter 4. Autonomous Navigation for Cislunar Proximity Operations

As visible in Fig. 4.13a the distance steadily decreases throughout the first
half of the simulation; thus from an absolute point of view, the position error
drops from more than 700 km to just 20 km. Then, as the satellites move away
from each other, the absolute error deteriorates accordingly. Interestingly,
in this scenario the filter convergence is almost exclusively due to the range
reduction: enforcing higher observability angles yields only minor navigation
improvements, which are not worth the extra-fuel consumption. Therefore, a
careful selection of the natural relative motion can provide potential trajectories
that enhance the filter observability with minimum fuel consumption. Indeed,
thanks to both the smaller distance and lower observability angle, the total ∆v
required is only of 4.58 m s−1, less than half the smallest value of the previous
case.

(a) Range evolution. (b) Linear model error index.

Figure 4.13: Evolution of the range and the approximation error index
(i. e. ratio between chaser-target and target-Moon distance) in the Halo to

DRO scenario.

Notice that towards the end of the simulation, Fig. 4.11a displays an increment
of the relative error, contrary to Fig. 4.7a and 4.7b which are characterised only
by constant or decreasing sections. This issue is associated with the quality
of the linear approximation adopted to predict the relative dynamics. Indeed,
the linearisation of the original nonlinear equations of motion was carried
out assuming the range between the satellites to be much smaller than the
target-Moon distance. The ratio between these two values, named here error
index, can be used as a reference for the quality of the linear approximation and
has been reported in Fig. 4.13b. By comparing these results with the relative
position error, the final performance reduction can be correlated with the linear
approximation deterioration. As the error index gets worse, the model accuracy
decreases and the relative error grow rate increases (i.e., the faster increment
at the end is caused by a worse relative model quality). As a reference, the
previous simulation scenario had an error index of 2.5%. Unfortunately, this
parameter drastically reduces the potential orbital combinations that can be
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exploited with the proposed architecture. For example, when selecting orbits
belonging to different non-Keplerian families, there are only few points where
the error index is small enough to guarantee the convergence of the navigation
filter. The results, also backed-up by a series of numerical simulations, prove
that an error index smaller than 10% is enough to provide an improvement of
the initial error, whereas a value below 5% is recommended to guarantee that
the relative error remains within a bounded interval.

4.3 Formation Flying reconfiguration manoeuvres

As explained at the beginning of this chapter, the other relevant mission
case where the autonomous GNC capabilities are interestingly forsaken is
a formation flying scenario. In the environment we are dealing with, the
multibody gravitational regime provides both an additional complexity and a
resource to exploit some interesting dynamical characteristics.

In particular, the goal of this second scenario is to present a strategy to
generate natural relative trajectories for formation flying mission to cooperate
with the lunar Gateway, exploiting the peculiar features of quasi-periodic
invariant tori, as discussed in section 4.3.1. Such natural evolution is also
supported by a GNC strategy used to perform reconfiguration manoeuvres
among different trajectories of the torus. To perform this rephasing, an MPC
is employed, as deeply discussed in section 4.3.2. The results of this approach
are presented in section 4.3.3, comparing a formulation with only platform
thrusting limitations with another one which includes also collision avoidance
capabilities. To prove the great performance of this approach with respect
also to robustness against unmodelled dynamics, the results obtained within a
high-fidelity dynamical model are collected and commented in section 4.3.3.3,
introducing some discrepancies between the on-board and real-world models.
Finally, section 4.3.4 presents the efforts put in place to introduce also the
Navigation task to the whole loop, trying to apply the insights obtained by the
analyses in the rendezvous scenario to include the BO guidance in the MPC.

4.3.1 Formation Design

This section introduces the models and methods for the design of the recon-
figurable formation. The study considers a leader-follower formation type in
the Earth-Moon binary system, taking the Lunar Gateway and the Orion
capsule as spacecraft. To build the formation, the approximated model of the
CR3BP (see Eq. 2.3) is adopted, such that periodic and quasi-periodic natural
motion can be easily identified. Then, it is assumed that the main spacecraft
(Gateway) is located on a periodic orbit, and that the chaser flies in formation
around it, on a quasi-periodic natural motion described in the CR3BP as Quasi
Periodic Torus (QPT) (Section 4.3.1.1).
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The design of trajectories to host the formation is based on the CR3BP, as
it provides an autonomous dynamics system, not explicitly dependent on
time. This allows one to easily define continuous families of periodic and
quasi periodic natural motion. When switching to more accurate models, such
trajectories are no more natural, but the deviations will be small enough to
require a limited station-keeping effort.

4.3.1.1 Quasi Periodic Tori
Quasi periodic invariant tori are closed surfaces that describe the bounded
subspace covered by specific quasi periodic and non resonant trajectories, i.e.,
a quasi periodic trajectory in the CR3BP would exactly describe a QPT if
propagated for an infinite time. Differently from their periodic counterpart,
they are associated with two angles (θ) and relative frequencies (ω):

• Longitude (θ0, ω0): direction of the main motion which follows the
reference trajectory

• Phase (θ1, ω1): secondary direction, describing the winding motion
around the main trajectory

The ratio of the two frequencies is an irrational number, causing the trajectory
to never close on itself. Also, a useful parameter to characterise the torus is the
rotation number, which measures the change in the phase angle at every orbital
turn (i.e., at 2π variation of the longitude). The development of QPT families
follows the typical Initialisation-Correction-Continuation scheme adopted for
generating periodic orbital families in the CR3BP [78, 79]. The family is
initialised by creating a grid of states around the reference periodic trajectory,
at a specified time, leveraging the center manifold of the latter. Such grid is
then corrected by enforcing the following equations:

D−1R(ρ)DXf − Xi = 0 (4.31)

< Xi − X̃i,
∂X̃i

∂θ0
> = 0 (4.32)

< Xi,
∂X̃i

∂θ1
> = 0 (4.33)

τ − τp = 0 (4.34)

which respectively ensure that the final states propagated for one orbital period
belong to the same stroboscopic map (Eq. 4.31), which is the locus of states with
same longitude and variable phase; that such map is fixed in space, avoiding
drifts along the two dimensions of the torus (Eq.s 4.32 and 4.33); that the
overall torus’ period matches the one of the periodic orbit, or, equivalently,
that the longitude frequency does not change (Eq. 4.34). Notice that the last
constraint is included to limit the search of QPT families to the ones suitable
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for formation flight, as having the same longitude frequency as the reference
periodic orbit ensures the absence of secular drifts between the agents of the
formation. In Eq. 4.31 D is the Direct Fourier Transform operator expressed as
a matrix, while R(ρ) is the diagonal rotation matrix for the Fourier coefficients.
Finally, the continuation is typically performed through perturbations of the
previous solution along tangent directions of the family. More details about
the development of QPT families can be found in [80, 81, 82, 83].

The selected QPT to locate the follower spacecraft (the Orion capsule) is
depicted in Figure 4.14 around the NRHO, and in a relative-state form with
respect to the Gateway. The operative torus is characterised by an excursion of

(a) Torus view from Moon-centered
frame

(b) Torus view from Gateway-centered
frame

Figure 4.14: Torus around the Gateway NRHO.

the relative distance between the formation’s agents from 102 km to 1824 km.
The orbital period is the same of the reference NRHO, coherently with the
constraint of Eq. 4.34, and has a rotation number of 46.9◦ per orbit.

To reconfigure the formation, transfer arcs are foreseen for the follower space-
craft, that depart from the torus surface and arrives at the same surface on a
different location. The final point is defined by the target phase angle, while
the longitude angle evolves linearly in time as both spacecraft move along their
respective orbits. Notice that, to avoid relative drifts during the transfer, it
must be ensured that the transfer time matches the natural longitude drift of
the leader spacecraft along the reference orbit, i.e.:

ToF = θ0
ω0

(4.35)

where ToF is the time of flight required to complete the transfer.

Given the known (and forecasted also in this scenario as it will be clearer)
issues deriving from the periselene of the NRHO, the longitude associated to
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the aposelene of the NRHO is set to a value of θ0 =0◦. In such a way, the
periselene is present at θ0 =180◦.

In the following sections we will refer to mainly three different trajectories:

• Reference Trajectory: the trajectory of the LOP-G, which act as reference
for the QPT.

• Target Trajectory: the final trajectory that we want to reach, i. e. the
goal of our rephasing manoeuvre.

• Chaser (or Follower) Trajectory: the trajectory that the studied spacecraft
is following.

It is important thus to recall that the term Target in the following does not
point to the LOP-G, but to the final relative trajectory on the QPT that the
chaser is targetting for the transfer.

4.3.2 On-Board Controller Design

Previous works [83] demonstrated the relatively low cost of impulsive reconfig-
uration manoeuvres leveraging phase targeting on the toroidal surface, thanks
also to the symmetry properties of QPT. Figure 4.15 depicts optimal impul-
sive reconfiguration costs to ensure a 180◦ phase shift, given a ToF of 48 h
(compatibly with manned operations for approaching the Lunar Gateway), on
the operative torus just described. Limited costs are observed across the whole

Figure 4.15: Cost map for a 180◦ phase shift as function of initial phase and
longitude angles. Time of flight of 48 h.

torus, with peaks below 15 m s−1. Nevertheless, such optimal transfers rely
on ground-based off-line optimisation and planning, and require systematic
refinements to accommodate the differences between the CR3BP model (on
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which the maps are based) and the actual real-world dynamics of the forma-
tion. Frequent contacts between ground and the formation may result in more
complex and expensive operations (especially if formations of several agents
are employed), therefore it is desirable to have a (computationally) light and
effective on-board control model, which allows a follower spacecraft to perform
a full reconfiguration transfer with minimal data exchange with ground.

The present section describes a closed loop scheme for formation reconfiguration
manoeuvres, with emphasis on the actual controller design, based on an MPC
strategy, showing its strengths and weaknesses. Furthermore, a classical and an
adaptive weights design is proposed, to highlight the benefits from the adaptive
approach to the studied scenario.

4.3.2.1 Closed loop scheme

The implemented loop consists of a main block comprising the Guidance and
the Control (G&C), an Inputs block which includes all the parameters needed
by the G&C, and a Plant describing the dynamics of the spacecraft. Figure 4.16
depicts the three blocks, hereafter described in detail.

INPUTS

Spacecraft
Parameters

Target
Configuration

Main S/C
State

ON-BOARD G&C

Guidance

Control
Pulse-Width
Modulation

(PWM)

PLANT

Controlled nonlinear
dynamics

+
-

Natural nonlinear
dynamics

Figure 4.16: Closed loop scheme

Inputs The inputs block collects the full set of parameter on which the G&C
loop is based. First, the platform technical characteristics are required to
provide the true control action. Some assumptions are made within this study:

• Manoeuvres are small enough not to cause a relevant variation in the
wet mass of the spacecraft

• Engines are able to provide a fixed thrust value

• A discrete control system is employed

Such assumptions allow one to initialise fixed values of mass m and thrust F
for the whole transfer time. In particular, a mass of 25 855 kg, corresponding
to the full wet mass of the spacecraft, is considered. Also, limited thrust
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capabilities are planned for the analysed scenario: it is assumed that only
auxiliary thrusters are available for the manoeuvres, and that only half of them
(four) are active, delivering a total thrust of 4 × 490 N [84]. The combination
of high mass and low thrust provides an overall acceleration of 0.076 m s−2,
and represents a worst-case scenario, to guarantee the effectiveness of the
developed control scheme in any spacecraft condition. Finally, a sampling time
of Ts = 600 s is here set for the update of the discrete control system. This
value is derived from tests at various frequencies, to minimise the effort of
the control system, while ensuring the capability of reaching the target state.
Table 4.3 summarises the platform parameters used for the transfer.

Table 4.3: Spacecraft parameters

Quantity Value

Mass [kg] 25855
Thrust [N] 4 × 490
Sampling Time [s] 600
Acceleration [m s−2] 0.076

Then, it is required to provide the information needed to reconstruct the time-
varying target state on the torus. To avoid the computational burden deriving
from numerical propagation, the torus surface and its angular parameters are
leveraged to define the motion of the target state over time; this corresponds
to a specific quasi-periodic orbit associated with the target phase value (θ1f ),
hence a single parameter is needed from the guidance. Notice that to identify
a specific state along the target trajectory, the longitude angle would be also
needed; however, the guidance works on the local stroboscopic map at each
time step (as will be explained in the next paragraphs), thus imposing the
same longitude as the one of the spacecraft itself.

Finally, the full state of the leader spacecraft (xref ) is needed as well. Indeed,
the parametrisation of the torus is done in the context of the CR3BP, and
its direct exploitation in a more realistic dynamics scenario would lead to a
drift between leader and follower spacecraft of the formation. To work around
the problem, the parametrisation is performed to the relative torus (where the
states are expressed relative to the leader spacecraft), then the true state of
the leader is added. This strategy anchors the torus’ states around the leader
regardless of the real dynamics, although it demands an a-priori knowledge of
the leader state evolution, which shall be provided to the follower spacecraft.

On-Board G&C The G&C block is mainly composed of three sub-blocks:

• A guidance sub-block
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• A control sub-block

• A pulse-width modulation sub-block

The guidance block takes the phase of the desired final trajectory as input,
and provides the target trajectory to be tracked during the transfer. To
always ensure the maintenance of the formation, regardless of the controller
architecture, the target point shall always belong to the same stroboscopic
map of the follower spacecraft. In this way, the transfer may take variable
time, and yet prevent relative drifts between spacecraft. For this reason, the
target point can be uniquely identified along the target trajectory (at phase
θ1f ) by setting the longitude as

θ0f = θ0i(0) + ω0t (4.36)

with θ0i being the longitude of follower and leader spacecraft at the beginning
of the transfer. Given the two angles, the target state can be extracted through
a proper parametrisation of the toroidal surface. In the present work, the
torus is parametrised using 2D cubic splines, from a pre-defined grid of phase
and longitude values. The resulting interpolating function, s(θ0, θ1), maps the
R2 space of the torus’ angular variables to the R6 state space in the CR3BP
rotating frame, and relatively to the leader spacecraft. The angles defining
the grid do not follow the natural evolution of trajectories on the torus. For
this reason, the correct reconstruction of the target phase over time can be
attained by including the winding frequency of the torus, i.e.:

θ1f (t) = θ1f (0) + ω1t (4.37)

with θ1f (0) being the initial target phase value. Considering the real state of
the leader spacecraft , the guidance block returns the final state to be targeted
by the controller as:

xT (t) = xref (t) + s(θ0i(0) + ω0t, θ1f (0) + ω1t) (4.38)

The controller block defines the law that computes the needed control action
from the current error (the difference between the target state and the current
state). Since the target state is not a constant quantity, the controller must
solve a reference tracking problem [56, 85, 86]. In the present work, a Model
Predictive Control scheme is employed (the details of the design are explained
in Section 4.3.2.2). It is here important to stress that the output control action
is an impulsive ∆v with a variable magnitude, which cannot be provided by
the spacecraft engines in the current form.

In this regard, the pulse-width modulation block is implemented to translate
the variable input into a fixed value, which matches the engine characteristics
(Table 4.3). At every sampled time the controller returns the required control
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in the form of an impulsive ∆v. The pulse-width modulation translates the
impulsive value into an equivalent finite-time manoeuvre by providing the
correct thrust time according to the achievable acceleration of the spacecraft,
namely:

∆Tu = ∆v

ũ
(4.39)

where ũ is the fixed acceleration of the platform. Consequently, at each interval
between consecutive sampled times (from t0 to t0 + Ts), the spacecraft will
perform a powered branch first (from t0 + ∆Tu), then a free drift through
natural dynamics until the next time sample (from t0 + ∆Tu to t0 + Ts).

Plant The plant block describes the ground-truth evolution of the chaser
spacecraft state in the binary system. The dynamics propagation is split in two
sub-blocks to take into account the alternate powered branches and coasting
branches at each sampling time. In the present work, two dynamics models
are employed:

• CR3BP

• High-Fidelity (ephemerides with perturbations)

The CR3BP is used to simulate a perfect accuracy of the on-board model with
respect to the real dynamics. This allows a direct evaluation and comparison
of the controller performance with respect to the optimised impulsive transfers
(Fig. 4.15), to address the feasibility of the proposed architecture. Then, high-
fidelity dynamics (with true positions of the attractors, and with perturbation
from Sun gravity and Solar radiation) is taken into account, to verify the
robustness of the scheme against dynamics model errors.

4.3.2.2 MPC Formulation
Given the greater flexibility of the Receding Horizon approach for the MPC,
this scheme has been selected for the controller design of this scenario, also due
to the fact that no particular constraints are requested in a formation flying
reconfiguration regarding the ToF, differently from the rendezvous one.

Objective and Constraints The nonlinear formulation of the reference
tracking optimal control problem (with discrete quantities) reads:

min
∆xk,∆uk

np−1∑
k=0

[
∆x⊤

k Qk∆xk + ∆u⊤
k Rk∆uk

]
+ ∆x⊤

np
Qnp∆xnp (4.40a)

s.t. ∆ẋk = f(∆xk) + g(∆uk), ∀k (4.40b)
hk(∆xk, ∆uk) = 0, ∀k (4.40c)
ck(∆xk, ∆uk) < 0, ∀k (4.40d)
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Equation 4.40a is the cost function to be optimised, in the Bolza Problem
form [87]. Here, ∆x and ∆u are the relative state and relative control between
the spacecraft (x, u) and the target point (xT , uT ) respectively, while Q and
R are the corresponding weight matrices.

Equation 4.40b describes the on-board implemented dynamics, where f(∆xk)
and g(∆uk) are the collection of nonlinear terms, function of the state and of
the input respectively. Equations 4.40c and 4.40d are the set of equality and
inequality constraints respectively.

Note that, according to the problem analysed in this paper, the target point is
defined for each time step as Eq. 4.38, and the corresponding control action
is null (uT = 0), being the target a natural trajectory in the dynamics model
of the controller (CR3BP). Also, the control actions within the MPC are
modelled as impulsive manoeuvres, therefore they can be expressed as

∆uk = ∆vkδ(tk) (4.41)

where δ(tk) is the Kronecker’s delta.

Problem 4.40 could be directly solved within a MPC scheme by using a
Nonlinear Programming methodology; however, this typically leads to high
computational burdens and makes the overall process less prone to on-board
implementation. To make the problem more tractable, modifications are
introduced to recast the problem in a Quadratic Programming form. The same
approach followed in the previous scenario to define the discretised dynamics is
exploited also here, recalling that given the receding horizon formalism, in this
scenario the window is much shorter and with a fixed number of np predicted
points. Given the shorter duration of the window, a first order approximation
of the STM can be used.

First, the nonlinear dynamics of Eq. 4.40b is recast as a sequence of local
linearisations, to avoid numerical integration of the state and of the STM. At
each time step, the linearised dynamics reads:

∆xk+1 = eAk(tk+1−tk)∆xk +
∫ tk+1

tk

eAk(tk+1−τ)Bk∆uk dτ (4.42a)

Ak = ∂f(∆xk)
∂∆xk

(4.42b)

Bk = ∂g(∆uk)
∂∆uk

(4.42c)

75



Chapter 4. Autonomous Navigation for Cislunar Proximity Operations

Approximating the exponential terms as I+Ak(tk+1−tk), and recalling Eq. 4.41,
the expression 4.42a becomes

∆xk+1 = Ak+1
k ∆xk + Bk+1

k ∆vk (4.43a)
Ak+1

k = I + Ak(tk+1 − tk) (4.43b)
Bk+1

k = Ak+1
k Bk (4.43c)

Again, the generic (k+j)th state is expressed as function of the initial state
∆xk and the set of control actions from initial node to the (k+j-1)th node

∆xk+j = Ak+j
k+j−1∆xk+j−1 + Bk+j

k+j−1∆vk+j−1

= Ak+j
k+j−1

(
Ak+j−1

k+j−2∆xk+j−2 + Bk+j−1
k+j−2∆vk+j−2

)
+ Bk+j

k+j−1∆vk+j−1

...

=
0∏

i=j−1
Ak+i+1

k+i ∆xk+ (4.44)

+

 1∏
i=j−1

Ak+i+1
k+i Bk+1

k ,
2∏

i=j−1
Ak+i+1

k+i Bk+2
k+1 , . . . , Bk+j

k+j−1




∆vk

...
∆vk+j−1


If the expression 4.44 is computed for all states of the prediction window (from
k + 1 to k + np) the full stack of the states X reads

X = Ak∆xk + BkU (4.45)

with

X =
[
∆xk+1, ∆xk+2, . . . , ∆xk+np

]⊤
(4.46)

U =
[
∆vk, ∆vk+1, . . . , ∆vk+np−1

]⊤
(4.47)

Ak =



Ak+1
k

Ak+2
k+1Ak+1

k
0∏

i=2
Ak+i+1

k+i

. . .
0∏

i=np−1
Ak+i+1

k+i


(4.48)

Bk =


Bk+1

k
0 ... 0

Ak+2
k+1Bk+1

k
Bk+2

k+1 ... 0
...

...
...(∏1

np−1 Ak+i+1
k+i

)
Bk+1

k

(∏2
np−1 Ak+i+1

k+i

)
Bk+2

k+1 ... B
k+np
k+np−1

 (4.49)
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Similarly, the cost function 4.40a can be expressed through the stack of states
and inputs as

min
X,U

= 1
2

(
X⊤Q̂X + U⊤R̂U

)
(4.50)

Q̂ =


Q 06×6 . . . 06×6

06×6 Q . . . 06×6
... . . .

06×6 06×6 . . . Q

 (4.51)

R̂ =


R 03×3 . . . 03×3

03×3 R . . . 03×3
... . . .

03×3 03×3 . . . R

 (4.52)

where all the weights have been set equal for all nodes (Qk = Qnp = Q,
Rk = R).

After substituting the stack of states from 4.45 in the cost 4.50, a quadratic
form as function of the control stack U is obtained, and reads1

min
U

1
2U

⊤HkU + l⊤k U (4.53)

with

Hk = B⊤
k Q̂Bk + R̂ (4.54)

l⊤k = ∆x⊤
k A⊤

k Q̂Bk. (4.55)

Regarding the constraints (Eq.s 4.40c and 4.40d), a linearisation is required to
fully define the QP Problem. In the present study, no equality constraint is
included, while two inequality constraints are considered:

• Maximum thrust

• Leader-Follower collision avoidance

The maximum thrust constraints ensures that every ∆vk does not exceed the
value that can be provided by the fixed thrust within a full sample time Ts,
namely:

∥∆vk+i∥2 < ũTs , i ∈ 0 : j (4.56)

The constraint is nonlinear as it involves the 2-norm of a vector. Hence, it
needs first to be linearised, according to the formulation of the QP Problem.

1The additional, constant term 1
2 ∆x⊤

k A⊤
k Q̂Ak∆xk would be present in the final cost

expression; however, it does not affect the minimisation process, hence it can be omitted.
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In particular, a simplification is introduced by imposing that the ∞-norm of
every ∆vk in the prediction window, i. e. every component of the control stack,
shall be lower than the right-hand side of Eq. 4.56 divided by the square root
of three, namely:

∥U∥∞ <
ũTs√

3
(4.57)

Notice that this formulation makes the constraint anisotropic. In fact, any
control action aligned with one of the Cartesian directions is required to be less
than the actual maximum control that the spacecraft can provide; nevertheless,
when the control vector is aligned with the trisectrix of any octant (defined by
the three Cartesian axes), it is ensured that its 2-norm stays below the max
value:

∥∆vk+i∥ =
√

∆v2
x + ∆v2

y + ∆v2
z <

√(
ũTs√

3

)2
+
(

ũTs√
3

)2
+
(

ũTs√
3

)2
= ũTs

(4.58)

The collision avoidance constraints imposes a minimum distance between the
leader and the follower of the formation for the whole transfer arc. In general,
the distance constraint is expressed in nonlinear form as follows:

∥C∆xk+i∥2
2 = ∆x⊤

k+iC
⊤C∆xk+i > R2

KOZ , i ∈ 0 : j (4.59)

where C :=[I3×3 03×3]⊤, while RKOZ is the radius of the Keep-Out Zone
(KOZ) sphere. To embed the constraint in the QP formulation, a linearisation
is again needed. In this regard, the paper exploits the methodology proposed
by Morgan et. al. [88]. The KOZ sphere is approximated into a plane tangent
to it, and normal to the ∆xk+i vector. In such a way, the constraint can be
expressed in a convex form as per Eq. 4.60, leveraging the known initial value
of the prediction window, ∆xk.

−∆x⊤
k C⊤C∆xk+i < −RKOZ ∥C∆xk∥2 (4.60)

Note that, to express the constraint as an upper boundary inequality, the sign
of both sides of the equation has been inverted.

Equation 4.60 is applied to each step of the time window, hence the constraint
can be formulated as function of the control stack, leading to the following
expressions:

ACAMU < bCAM (4.61)

with

ACAM = −Inp×np ⊗ ∆x⊤
k C⊤CBk (4.62)

bCAM = −RKOZ ∥C∆xk∥2 1np×1 + Inp×np ⊗ ∆x⊤
k C⊤CAk∆xk (4.63)
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where the symbol ⊗ denotes the Kronecker product.

Finally, the complete problem, with quadratic cost function and linear con-
straints, reads:

min
U

1
2U

⊤HkU + l⊤k U

s.t. ∥U∥∞ <
ũTs√

3
ACAMU < bCAM

(4.64)

The algorithm that solves Problem 4.64 returns the full stack of optimal control
Uopt; however, only the first control is applied before a new optimisation is
performed.

Weight Tuning The solution of Problem 4.64 is strongly dependent on the
selection of weights Q and R.

The common approach is to search for Fixed Weights which ensure the com-
pletion of the transfers with the desired performance. In this study, the main
objective is the minimisation of costs and the completion of the transfers within
a specified maximum ToF of 48 h. The transfers are considered completed
when the position error between follower spacecraft and target point falls below
2 km. The weights are obtained through an optimisation process as well. To
set up the optimisation, some simplifications are introduced. Considering that
state (Q) and control (R) weights act on a cost function to be minimised,
we can set R equal to identity matrix and tune Q relatively to it without
any loss of generality. Furthermore, no coupling between the state terms is
considered, therefore Q is a diagonal matrix. As an additional simplification, all
the diagonal terms associated with the position terms of the state are assumed
equal, and the same assumption is applied to velocity-related weights as well.
As a result, the weight arrays read:

Q =
[

qrI3 03

03 qvI3

]
R = I3

(4.65)

where qr and qv are the two scalars to be tuned and optimised. Then, the
optimisation problem reads

min
qr,qv

∆v s.t. ∆T ≤ ToF (4.66)

where ∆v is here the overall scalar cost of the transfer, and ∆T is the time
required to reach the target point within a specified tolerance.

Despite the simplicity of the approach, this strategy suffers from a lack of
robustness against deviations in the trajectory, for example due to errors in the
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dynamics model. Furthermore, the fixed values may not capture variations in
the controller behavior during each transfer, as a consequence of large relative
position displacements and changes in speed. For these reasons, this thesis also
implements a strategy to modify the weights on-board while performing the
transfer, leveraging an adaptation law developed in [89] for a State Dependent
Riccati Equation controller in the same scenario. This Adaptive Weights strategy
is designed to require a single initial tuning of some terms, and it provides
efficient transfers of the spacecraft anywhere along the quasi-periodic torus. In
particular, the position terms qr of the weight matrix Q are scaled through a
coefficient which is directly related to the spacecraft-target relative state, and
to the available time to complete the transfer within the ToF:

qr = γ(∆r, ∆ṙ, tk)qMAX (4.67)

with qMAX being a user-defined upper limit for the weight, and γ being the
adaptation coefficient, explicitly defined as:

γ = αβ (4.68)

α =
(∆rT

∆r

)
(4.69)

β = 1 + ∆ṙ

∆r
(ToF − tk) (4.70)

Here, ∆r and ∆ṙ respectively represent the relative distance and relative radial
velocity from spacecraft to target point, ∆rT is the distance threshold which
determines the end of the transfer, and tk is the discrete time instant passed
from the beginning of the transfer.

As a result, this scaling law makes the control action smaller and milder at
large distance from target and at recently begun transfers, to avoid large
initial control actions, while it brings the weight closer to its max value when
approaching the target and/or when the time left is short. In addition, the local
evaluation of relative radial velocity adapts the coefficient to avoid excessively
slow or excessively high approaching speeds. In addition, a reduction step
saturation ∆β from consecutive sample points is set to avoid large control cost
increments caused by local low approach speed of the target (see again [89] for
the complete rationale):

β = max
([

1 + ∆ṙ

∆r
(ToF − tk) , β0 − ∆β

])
(4.71)

where β0 denotes the β exponent from the previous step. The velocity-related
weights (qv) are instead tuned once and remain constant across the transfer.
Figure 4.17 depicts the update scheme of the weights according to the adap-
tation law. Overall, the initial parameters to be set are: qMAX , qv, β0 and
∆β.
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User-defined
parameters

Inputs 
(from G&C loop)

Figure 4.17: Adaptation law scheme.

The present study develops the transfers and maps the costs for both fixed and
adaptive weights strategies, highlighting the advantages of the latter technique.

4.3.3 Simulations and Results

This section reports on the performance of the formation reconfiguration
transfers with the closed-loop scheme described in Section 4.3.2.

The first part shows a performance comparison between a MPC with Fixed
Weights and with Adaptive Weights. Here, only the maximum thrust constraint
is considered in the MPC optimisation process, to decouple the effect of CAM
from the intrinsic differences of the weights management. Furthermore, the
CR3BP dynamics model is leveraged as both on-board and ground-truth
dynamics, to avoid cost variation from model errors.

Then, collision avoidance is included in the controller, to highlight the cost
variation and assess the validity of the weights tuning in the presence of large
trajectory detours.

As a final part of the study, high-fidelity dynamics are introduced to propagate
the spacecraft state, and the robustness of the controller is tested in the
presence of model errors.
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4.3.3.1 Fixed Weights vs Adaptive Weights

Before proceeding with the analysis, it is important to mention a particular
behaviour that characterises the on-board scheme with respect to the offline
optimisation of the transfer of Figure 4.15, regardless of how the weights of the
cost function are designed. Because of the local-optimising nature of the MPC,
the scheme is not able to locate the best points where to manoeuvre, and it
will provide a control action at every sampled point for the whole transfer.
This leads to unacceptably high costs when the spacecraft is flying across the
periselene of the NRHO, as the high speed and low distance from the Moon
make most of the manoeuvres very expensive. To work around the problem a
limiter in the ToF is here implemented, which always ensures the completion
of the transfer before crossing the periselene, for all transfers that foresee a
periselene passage within the default ToF of 48 h.

Weights Setup The first step of the analysis of the MPC scheme involves
the setup of the fixed and of the adaptive weights.

The fixed weights approach required a dedicated tuning for every transfer,
according to optimisation problem 4.66. The output is a map of position-
and velocity-related weights as a function of the initial angular coordinates of
the transfer along the torus, as depicted (in logarithmic scale) in Figure 4.18.
Ranges of approximately 100 − 103 are observed across the torus, with peaks
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Figure 4.18: Map of the position and velocity weights for the fixed weights
MPC (logarithmic scale)

nearby the periselene, and significantly lower values on the rest of the surface.
The velocity weights follow the same trend of the position weights, with values
scaled down to the 10−2.4 − 10−0.7 range. Their lower values ensure a prompter
transfer to achieve the target point within the time limit, but provide a minor
control over the relative speed, preventing overshooting issues. In general,
negligible to no influence of the initial phase was observed on the weights, and
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minor scattered variations can be attributed to the optimisation process and
to the tolerances associated with it. It is, however, important to stress how
such minor variations do not have macroscopic influence on the costs for the
transfer, as it will be shown later in this section.

The adaptive weights setup consists of a single tuning process, which is done for
the whole transfer map at once. First, the maximum position weight (qMAX)
and the velocity weight (qv) are tuned to ensure transfer times below the limit,
and minimise the ∆v over the entire torus as much as possible. This is done
repeatedly for different values of β0, to find the initial exponent value which
improves performance the most. The previous search is done with a total
freedom of the coefficient β to adapt to any value (i.e., without setting the
exponent limiter ∆β). This inevitably leads to local isolated peaks due to the
β overshoot problem described in Section 4.3.2.2. In the final step of the design,
the limiter is introduced and modified until the isolated cost peaks disappear.
Following the described procedure for the case under study, the parameters
reported in Table 4.4 are obtained: Notice that the maximum position weight

Table 4.4: Parameters for the adaptive weights MPC.

qMAX qv β0 ∆β
[−] [−] [−] [units/h]

106 10−2 2 2

is far higher than the fixed weights case. This is explained by the variability of
the actual weight along the transfers, which starts from very low values at the
beginning when large distance from target are experienced, and needs to be
very high at the end in order to complete the transfer before the time limit
when the spacecraft is very close to the target point.

Performance Comparison The costs to reconfigure the formation using a
fixed or adaptive weights approach are depicted in Fig. 4.19.

From a direct comparison of the costs from Fig. 4.19a with the optimised
impulsive manoeuvres of Fig. 4.15, the fixed weights approach shows an overall
increment in costs, which however is fairly contained in the most suitable
regions for performing the transfers, i. e. nearby the apolune and after passing
the periselene. In particular, lower costs of ∼ 13 m s−1 are observed in the
apolune surroundings, centred at phase values θ1i of 90◦ and 270◦. Here,
despite the relative uniformity in the weights maps, a sensitivity is observed
with respect to the phase, as the cost of manoeuvres begun at the apolune
raise above 20 m s−1 when crossing θ1i = 0◦ and θ1i = 180◦. This is directly
related to the larger initial distance from target point at such phases, which
leads to a higher control action when the weights are constant values (as it is
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(b) Adaptive weights approach

Figure 4.19: Cost maps for the MPC-based formation reconfiguration in the
CR3BP. Results in logarithmic scale to highlight differences in the low-cost

region.

for the fixed weights strategy). Cost rapidly ramps up to above 50 m s−1 when
approaching the periselene, with peaks at ∼ 450 m s−1. Such values suggest
how a constantly executed on-board control is not a viable option when close
to the Moon, and should be restricted to the rest of the orbit; nevertheless, it
is worth stressing that the high cost region occupies a small portion of time
(few hours) with respect to the orbital period of 6.5 d, and therefore does not
globally hinder the applicability of this control scheme.

The adoption of the adaptive weights mostly solves the initial distance-related
issues, by providing a milder control action at the beginning of the transfer.
This is directly observable in Fig. 4.19b: not only are the cost globally lowered
(far from periselene), but also a lower dependence on the phase is here measured.
More in detail, the vast majority of transfers costs less than 20 m s−1, with very
low-costs regions (< 10 m s−1) after the periselene passage, nearly approaching
the optimal impulsive manoeuvre cost. On the other hand, costs at the
periselene appears to be far higher than the ones displayed by the fixed weights
MPC, with peaks at > 800 m s−1. This is caused by the direct dependence of
the adaptation coefficient to the relative velocity from target, which achieves
high values in this orbital region.

Overall, the adaptive scheme demonstrated to be more effective than the
fixed weights approach. Firstly, it allows, from a first design perspective, a
faster tuning process which identifies a single group of parameters for all the
possible reconfigurations along the quasi periodic torus. Secondly, its capability
to reduce the control effort at larger distances from target, while ensuring
the success of the transfer in the given time, makes the MPC scheme less
sensitive to the follower spacecraft location around the leader, and globally
more convenient in terms of cost (with the only exception of the periselene
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region, where manoeuvres should be avoided). A result of a specific transfer
trajectory for the adaptive weight case, among others, is reported in Fig. 4.22,
together with the initial and final trajectory in the relative reference frame.

By comparing the MPC-based transfers with other transfers, such as in [89], it
is observed a mild increment of transfer costs, with smaller regions with costs
below 10 m s−1 and 20 m s−1 for the fixed and adaptive weight cases respectively.
These narrower areas for the MPC are justified by the finite nature of the
optimisation window employed, against the infinite-window formulation of the
State Dependent Riccati Equation employed in that analysis. The presence of
a final time of the prediction window, shorter than the real final time allowed
for the transfer, makes the MPC-computed control generally prompter than
the SDRE one. On the other hand, this ∆v drawback is compensated by the
possibility to deal with constraints that the MPC has, with respect to the
SDRE, where the maximum thrust value was not limited.

4.3.3.2 Collision avoidance

Another constraint that can be exploited in the MPC scheme is that of the
collision avoidance, very important for spacecraft formation flying. Given the
success of the adaptation of weights shown in Section 4.3.3.1, it is of interest
to assess the capability of the adaptation law to withstand the CAM and
the large deviation that the follower spacecraft may be subjected to when a
KOZ is placed around the leader spacecraft. For the problem under study,
a KOZ of 100 km has been selected, to enforce CAM to the majority of the
transfers, compatibly with the natural distances of the torus from the leader
(i. e. avoiding excessive and unjustified deviations). Figure 4.20 depicts the
changes in the minimum distance between leader and follower for transfer
with and without CAM. One can notice the large involvement of most of the
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(b) KOZ at 100 km

Figure 4.20: Minimum distance map between leader and follower spacecraft.

post-apolune regions (θ0i ∈ [0◦ 180◦]), and some zones after the periselene.
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Furthermore, the absence of values below 100 km from Fig. 4.20b demonstrates
the effectiveness of such constraint within the MPC scheme.

Despite the success in the CAM execution, it is of interest to address whether
it makes the completion of the transfers more difficult, and how the costs
are affected by it. Regarding the former aspect, the adaptive weights MPC
demonstrated its capability to complete the transfers in the vast majority
of locations along the torus. The only exception is given by the periselene,
where the difficulty of the transfer, due to large velocity differences between
spacecraft and target point, is exacerbated by the path changes imposed by the
CAM. Concerning the cost variation, Fig. 4.21 depicts the increment caused
by the introduction of the KOZ. Cost increments are observed in those regions
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Figure 4.21: Transfers cost increment due to CAM at 100 km.

affected by the presence of CAMs, going from 5 m s−1 nearby the apolune,
ramping up to 20 − 50 m s−1 as the spacecraft approach the periselene region.
While the former value indicates a realistic feasibility of such transfers, the
latter corresponds to an increment of 75% − 100% with respect to the no-KOZ
costs, thus further enforcing the necessity to avoid transfers when the chaser is
so close to the Moon. The two blue regions at the periselene (θ0i = 180◦), at
the phases of 90◦ and 180◦ indicate the aforementioned zones of failed transfers,
and shall not be confused with possible low cost solutions across the periselene.
These two regions together with the other ones with negative ∆v variations
are highlighted by green contours.

In general, the analysis of the formation transfers with distance constraint
highlighted the good capabilities of the adaptive weights controller to withstand
distance constraints between spacecraft. A specific sample in the map of possible
transfers on the torus is depicted in Fig. 4.22, where the different transfer
strategies are presented, considering the optimal tri-impulsive guidance of [83],
the MPC without and with CAM along the initial and final relative trajectories.
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The surface of the QPT in the relative-synodic reference frame is also depicted.
It can be observed how, despite large changes in the trajectory directions, the

Figure 4.22: Different rephasing transfers for the tri-impulsive guidance and
for the MPC with and without the CAM. Circles represent initial points,

while diamonds the end of the depicted trajectories.

arrival point almost coincides with that of the MPC without CAM. In fact,
the longer time taken to fly around the KOZ makes the adaptation law provide
larger weights in the second half of the transfer trajectory, thus allowing the
completion of the reconfiguration in nearly the same time.

4.3.3.3 High-Fidelity Dynamics

The previous sections proved that the proposed MPC scheme, with the adap-
tation of weights, is able to fulfil the requirements of the transfers, at feasible
costs, and with the additional advantage of dealing with collision avoidance.
Nevertheless, it is fundamental to address the feasibility of such a scheme
in the presence of discrepancies between the on-board dynamics model and
the ground-truth dynamics. In particular, the controller schemes keeps its
dynamical formulation with the CR3BP, while the spacecraft dynamics is
propagated in a higher fidelity model. This model comprehends the gravity
from Earth, Moon and Sun, with their ephemerides-based motion, and the
SRP.
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Then, the MPC setup proposed in previous sections is tested and its perfor-
mance is evaluated in terms of fulfilment of the position constraint at the
end of the transfer, considering a final displacement from target below 2 km.
By exploiting the same tuned parameters from the CR3BP case, the maps of
Figure 4.23 are obtained. It can be noticed how such control scheme behaves
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Figure 4.23: Position constraint violation with CR3BP-optimised MPC
tested in the high-fidelity ephemerides-based dynamics.

quite robustly against changes in the dynamical model, with limited failure
zones, all nearby the periselene region. Of particular interest is the fact that
negligible cost variation was observed, with respect to the CR3BP-based cost
map, and that the controller is still able to perform the CAM due to the KOZ
from the leader spacecraft

4.3.4 Closing the loop with navigation

In this section, the navigation task is added to the presented guidance and con-
trol strategy, starting from the requirement definition and providing solutions
exploiting different measurements.

4.3.4.1 Navigation requirement definition

To assess the robustness of the basic fixed weights guidance and control scheme
against state estimation uncertainties, in Fig. 4.24 a possible complete closed-
loop GNC scheme to be used is shown. The inclusion of a navigation filter in
the loop, which is fed by the various measurements yk provided by on-board
sensors, outputs the initial conditions x̂k of the spacecraft in the prediction
window to the MPC scheme. Note that these initial conditions are not the real
ones, as the navigation will introduce deviations from the real trajectory.
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Figure 4.24: GNC scheme with a dummy EKF to emulate the complete
system in closed loop.

To emulate such behaviour, the simulations of the transfer presented in the
previous section for a single (θ0i, θ1i) couple are performed a second time,
considering noisy states as initial conditions. These conditions have been
obtained by generating Gaussian random noise components for each of the six
elements of the state, with a null mean and different standard deviation values
(grouped into a value for the position σr and a value for the velocity σv). By
letting these value vary by orders of magnitude, final position error ∆rf and
total transfer cost ∆vtot have been mapped. Table 4.5 reports the results for a
specific transfer (θ0i = 45◦, θ1i = 135◦), including the case of a perfect state
knowledge as reference for comparison.

Table 4.5: Resulting trajectory position error and total transfer cost for
different levels of state estimation errors applied through a dummy EKF .

ID σr [km] σv [m/s] ∆rf [km] ∆vtot [m/s]
REF 0 0 2 20.4
A 10 100 190 2256
B 100 10 18 235
C 10 10 21.7 231
D 10 1 8.7 34.5
E 1 1 8.7 34.4
F 10 0.1 3.1 22.3
G 1 0.1 2.8 20.8
H 0.1 0.1 2.8 20.8
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Considering an increased threshold error for the final position in the closed
GNC loop of 3 km, the results highlight how the nominal outputs are reached
only with σr ≤ 10 km and σv ≤ 0.1 m s−1. This result was expected regarding
the position estimation error, due to the very strict requirement in terms
of final trajectory error, but these analyses provided a boundary value also
for the velocity, leading to quite demanding requirements for a navigation
system. From the table, other useful insights on the proposed G&C scheme
are deducted. By looking at the rows E and F, it can be noticed that a higher
accuracy in the velocity components (case F) is more beneficial than reducing
the position error (case E) with respect to the D configuration. Indeed, having
a better position reconstruction pushes the controller to activate thrusters for
longer periods, but without achieving good results due to the bad velocity
knowledge. The improvement in velocity estimation is the driving factor for
this GNC scheme, while position is in many conditions not fundamental. From
such analysis we can set as a target of a navigation scheme the couple of 10 km
and 0.1 m s−1 for σr and σv respectively.

4.3.4.2 Navigation analyses

Once defined such performance requirements, the goal is to assess the feasi-
bility of recovering such errors simulating a real filter working with reduced
observables.

A possibility worth being investigated is that of exploiting Line-of-Sight angles
only, coupled with the Bearing Only guidance scheme, to enhance the observ-
ability of the system. The same scheme of the navigation requirement analysis
is here modified employing an EKF fed by the angular measurement only. The
resulting scheme is reported in Fig. 4.25.

From the scheme we can highlight two different modifications with respect
to the scheme in Fig. 4.24. First, the measurement flowing to the EKF is
composed by the two angles Ãz and Ẽl (with the possibility of adding also
radiometric data, as we’ll see in the next steps). Secondly, the MPC block has
an additional sub-block that provides the BO guidance to the scheme. This is
obtained by accompanying the constraint of thrust magnitude with one of the
minimum observability angle θ, expressed as in Eq. 4.72.

c(U) = θ̂thr − arccos
x⊤

M,natxM (U)
∥xM,nat∥ ∥xM (U)∥ ≤ 0 (4.72)

Such enforcement of the observability angle θthr = 10◦ is required to be obtained
after 10 hours from the start of the transfer, in order to avoid huge control
actions requests at the start of the transfer. Note that, including such nonlinear
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Figure 4.25: GNC scheme with closed loop.

constraint, the computationally favourable quadratic programming problem of
the basic MPC scheme is transformed into a nonlinear programming one.

The results of the performed analysis are reported in the following, where an
angular measurement error of σAz = σEl = 0.1◦ has been considered. Given
the nonlinear formulation of the angular measurements, the LoS unit-vector’s
three components are directly passed as observables to the filter, leading to a
simpler measurement Jacobian matrix, reducing the nonlinearities and helping
the filter convergence. The measurement uncertainties of the angles are thus
propagated through the RSS principle, as derived in subsection 3.3.4.1.
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Figure 4.26: Distances to the target and reference trajectory (top) and
observability angle evolution (bottom) for the basic transfer with BO

guidance and angular measurement.
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Figure 4.26 reports in the top plot the evolution of the distances to both the
target trajectory and the reference one, i. e. the distance to the LOP-G, which
is associated to the LoS vector. The geometry of the transfer is displayed in
Fig. 4.27 in the synodic reference frame, with the chasing spacecraft performing
a sort of fly-around with respect to the reference orbit.

Figure 4.27: Comparison of the three trajectories involved in the synodic
reference frame: the target relative trajectory, the trajectory flown by the

chaser and the reference trajectory of the LOP-G. Note that for
visualisation purposes the three Cartesian axes are not in scale.

It is easy thus to understand the trend of the distance to the reference of
the LOP-G which shows a decreasing behaviour in the first 10 hours and
then reaches a minimum value before starting increasing again. The closest
approach point, marked by the green circle in Fig. 4.27, provides also the
best observability angle obtainable, i. e. θ = 90◦ as seen in the bottom plot of
Fig. 4.26, for which the range uncertainty tends to the minimum value. This
effect is indeed reflected in the navigation errors provided by Fig. 4.28, where
we see the best position estimation error are obtained exactly during the closest
approach, where the distance is minimum and the sine of θ is maximum (recall
Eq. 2.12).

By looking at the numbers, the simulations provide a final position and velocity
navigation errors of around 8 km and 0.1 m s−1 respectively. The navigation
requirements previously set seem to be satisfied but only at the end of the
simulation. Indeed high errors are reached (velocity in particular) in first half
of the simulation. The target position error at the end of the simulation is
8.5 km, above the threshold of 3 km.
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Figure 4.28: Navigation errors for position (top) and velocity (bottom) for
the basic transfer with BO guidance and angular measurement.

An important fact to analyse is that the observability angle is driven to its best
value of 90◦ and then to the maximum of 180◦ due to the transfer geometry,
and not due to an actual effectiveness of the BO guidance. This is also proven
by obtaining qualitatively the same results without the observability angle
constraint in the MPC optimisation part, as highlighted by Fig. 4.29.
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Figure 4.29: Navigation errors for position (top) and velocity (bottom) for
the basic transfer with angular measurement but without BO guidance.

It is possible to say that the scenario under test, as all the formation reconfig-
uration points reported in the previous maps, do not take advantage of the
Bearing Only guidance, since they inherently drive the observability angle to a
high value in the closest approach point.

Having assessed that, the goal is now to find a way to increase the navigation
performance in order to reach the goal of completing the transfer with the
final target error within the threshold and keeping the fuel expenditure in the
vicinity of the nominal scenario.
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To achieve this, radiometric measurements are added to the set of observables,
first including only the range to the LOP-G and then also the range-rate. The
results are collected in Figures 4.30 and 4.31.
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Figure 4.30: Navigation errors for position (top) and velocity (bottom) for
the basic transfer with angular and range measurements.

For the first case of Fig. 4.30 we notice that a convergence of the transfer is
reached with a final error 3 km and a total ∆v slightly higher than the nominal
20.4 m s−1. The position estimation shows an incipient divergence that is not
affecting the transfer strategy. Indeed the position error stays much lower than
the 10 km required for the whole transfer.
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Figure 4.31: Navigation errors for position (top) and velocity (bottom) for
the basic transfer with angular, range and range-rate measurements.

Adding also Doppler data, the situation improves even more, as in Fig. 4.31.
With this scenario it is possible to have a stable navigation with transfer errors
and costs comparable to the nominal scenario with perfect state knowledge.
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4.4 Closing Remarks

This chapter provided the study of two separate scenarios dealing with design of
proximity operations in the cislunar space with the LOP-G. In both analyses
the complete autonomous cooperative GNC design has been based on the
Model Predictive Control guidance and control scheme and on a condition with
reduced state observability.

The first scenario presented in Section 4.2 has studied the applicability of
BO guidance to improve the relative state estimation of a spacecraft in a
rendezvous mission. In particular, it was inferred that in the cislunar space the
minimisation of an objective which includes information on the range always
favours a reduction of the relative distance rather than an increment on the
observability angle. On the other hand, by directly targeting the angle, the
guidance scheme here proposed effectively reduced the navigation error whilst
remaining at relatively high distances from the target.

The effectiveness of the proposed shrinking horizon MPC architecture has
been explored also in two additional non-rendezvous case studies: a planar
case considering the DRO to L2 Lyapunov and an out-of-plane one , with a
DRO to Halo relative motion. In both cases, the GNC scheme has proven
capable of computing observable relative trajectories through the concept
of observability angle, reducing the relative error to a small fraction of the
initial value. Different strategies for the definition of the fuel cost function
have been proposed mimicking low-thrust and impulsive manoeuvring. The
outcomes of this study broaden the range of operations for which angle-only
measurements can successfully be exploited, from close-range rendezvous to
long-range scenario, opening the door to a variety of missions that entail solving
for the relative dynamics in multi-gravitational environments.

The second work presented in Section 4.3 aimed at the design of a control
scheme for formation flying reconfiguration manoeuvres. In particular, the
implemented receding horizon MPC enables a direct management of collision
avoidance and thrust constraints, and provides a scheme capable of withstanding
model uncertainties. To further improve autonomy, a self-adaptation of the
cost function weights already successfully adopted in previous studies, has
been included confirming its effectiveness also with an MPC scheme, given the
faster setup and the generally lower costs with respect to fixed-value weights.
Moreover, emphasis was also put on the robustness of the scheme, in presence of
discrepancies between the on-board and the true dynamics. The MPC proved
to be robust, succeeding at completing transfers in the new, high-fidelity
dynamics, with its parameters still tuned in the simpler CR3BP model.

The addition of the navigation task to this block was performed by considering
first the exploitation of the BO guidance also in this second scenario. The
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resulting navigation performance was not sufficient to complete the rephasing
transfers correctly and with a high enough accuracy. Moreover, this analysis
found that in this scenario the BO guidance was not needed to improve the ob-
servability of the system, since the transfer already was driving the observability
angle θ to its optimal value of 90◦. In order to provide a closed scheme with
a navigation compliant with the transfer requirements also radiometric data
have been added as observables. Just with the addition of the relative range,
the completion of the transfer was proven, while adding also the range-rate,
improved performance was achieved.

Overall, the proposed MPC design demonstrated to be a suitable scheme to
be embedded in future spacecraft flying in formation with the Lunar Gateway,
provided sufficient computational capabilities of the spacecraft, and, more
important, provided the combined measurements of optical and radiometric
data.
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CHAPTER5
Navigation through GNSS-like lunar

constellation

The third and last scenario that this thesis analyses involves the design of a
constellation of lunar GNSS satellites and the definition of the associated user
navigation algorithms. The dynamical environment of the main objective of
this study is quite different. Among the different orbital users that may be
considered for this assessment, those on LLOs have been selected, i.e. circular
orbits in the 50–150 km altitude range. In the context of the Moon exploration
roadmap, such orbits are foreseen to be used for many different reasons and by
many missions. In addition, connected to the importance of the South Pole
and the associated landing missions, polar LLOs are targeted in this work.
The constellation however shall also be able to provide communication and
navigation services to surface users, with a peculiar attention to the South
Pole, the current most interesting surface region for scientific and technological
purposes.

In this research work a complete framework for performing a multi-objective
optimisation is presented, whose outputs are used to help the constellation
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design process, and then to test and evaluate the navigation performance that
different orbital users can achieve. The strategy of using a multi-objective
optimisation is a key element, in order to maintain the flexibility and versatility
that early stage mission studies require. Indeed, during phase 0/A of mission
design, the requirements are usually under definition and consolidation, so it is
usually not so simple to provide clear and precise performance metrics to be
used in a single objective optimisation.

After this brief introduction, the chapter will go through the presentation of
the optimisation setup in Section 5.1, providing the definition of the orbital
search space for the constellation, the constraints and the various objectives.
All such elements are put together to form the optimisation problem whose
outputs are presented with the aid of Pareto plots. Among these solutions,
some are extracted for their specific features and characterised.

Then, Section 5.2 presents the complete navigation filter strategy and the related
simulation results. In particular, the characteristics of the EKF employed are
provided, detailing the state formulation, the propagation dynamics and the
different sensors and observables used. The performance of the filter is then
evaluated per each one of the constellations extracted from the optimisation
step, comparing the results and assessing the effectiveness of the different
cost functions. A test of enhancing the estimation with optical observables is
presented too.

In order to include a more dynamically challenging scenario, a propelled landing
trajectory is analysed with such navigation strategy as well, in Section 5.3.
The basic goal is to evaluate the behaviour of this architecture in a complete
GNC closed loop. The results in a nominal scenario are presented, not before
providing the description of the added guidance and control algorithms. After
that a Monte-Carlo analysis with dispersion in the initial state is performed
and the overall results collected.

Finally, Section 5.4, coming back to the simpler natural LLO user, performs a
comparison of different filter formulations, employing Extended Kalman Filters
and Unscented Kalman Filters with different propagation methods. They
are first compared from a performance perspective, by looking at the state
estimation errors. Then they are compared from a computational standpoint,
recording and analysing the execution times. In particular this last step is
performed with PIL tests performed on representative hardware, on which
the prototyped navigation algorithm are deployed. In such way, it is possible
also to validate the feasibility of the proposed algorithms to be successfully
employed on-board.
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5.1 Constellation Design

In order to perform an optimisation of the constellation with the goal of
maximising the performance of the provided service, simulating the servicer-
user interaction is a key element. In the following sub-sections we present
the key performance indices used to construct the cost function of the multi-
objective optimisation.

5.1.1 Genotype

To ensure that the performance of the constellation of satellites satisfies the
different requirements and provide thus a quality and reliable service, a multi-
objective optimisation procedure is set-up in line with what done in [54]. Its
genotype is built in such a way that a constellation with n Keplerian Orbits is
constructed. In particular, the design variables space has been defined by the
following considerations.

• n: number of constellation elements, fixed a-priori;

• Semi-major axis (sma), eccentricity (ecc), inclination (inc) and argu-
ment of pericenter (aop) are considered to be the same for the whole
constellation element.

• Considering the final service to provide to the surface user, where com-
munication and navigation capabilities are required, we can understand
that the associated operations can benefit so much by a periodicity of
these services windows that is aligned with the Earth day, by exploiting
a constellation period of multiples or sub-multiples of this time frame.
Considering thus two extrema we can say that, having a 12 h period the
resulting semi-major axis is quite low, reducing the visibility capability
of the servicers, while with 48 h the semi-major axis is instead too high,
where third body perturbations start adding some relevant perturbation.
The orbit semi-major axis is then fixed a-priori to 9750.7 km, in order to
ensure a period of 24 hours.

• The argument of pericenter is fixed to 90◦ such that the aposelene lies
above the South Pole, thus spending most of the orbital period in its
neighbourhood, being it the region of main interest for future missions.

• The orbits are constrained to be of the Elliptical Lunar Frozen Orbit
class (see the details in [90]), in order to ensure a more stable behaviour
and thus to reduce station keeping expenditure. As such the inclination
is no more a degree of freedom, but it is fully defined as function of the
other Keplerian elements, as inc = f(sma, ecc, aop).
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• The right ascension of the ascending node (ran) and the true anomaly
(tan) are optimised for every ith constellation element.

Hence, the design variables vector x is defined as:

x = (ecc, rani, tani)⊤ i = 1, . . . , n (5.1)
with a total number of 2n + 1 variables.

5.1.2 Objectives and cost function
In order to showcase the flexibility and versatility of the proposed constellation
design strategy, three different optimisation paths have been followed, i.e.
three different cost functions are used. In particular, it is assumed that the
interest is associated to the Lunar South Pole (SP, latitude < −75◦) as well as
the Low-Lunar Orbit (LLO, as polar circular orbiter in the range of altitudes
between 50 and 150 km). Regarding the SP, the objectives identified to be
minimised for the present study are:

• SP_COMM_CONT: percentage of South Pole users for which a 8 hours con-
tinuous window per day is not present for at least 99% of the time.

• SP_NAV_NCONT: percentage of South Pole users for which a daily 5 hours
non-continuous time window with 2DHDOPAV is not present for at least
99% of the time.

Instead, regarding the LLO region, the following minimisation objectives are
identified as of interest:

• 2DHDOP_NCONT: percentage of LLO users for which a daily 2 hours non-
continuous time window with 2DHDOP < 10 is not present for at least
99% of the time.

• LLO_mu: maximum among the different LLO users of the average 2-fold
blind windows duration, i.e. the duration of windows where less than 2
satellites are in view, expressed in minutes.

• LLO_sigma: maximum among the different LLO users of the standard
deviation of the 2-fold blind windows duration, expressed in minutes.

• LLO_musigma: Product of the previous two objectives, expressed in
squared minutes. This component is added to collapse the previous
two elements into a single one.

• LLO_cum: maximum among the different LLO users of the cumulative
sum of the 2-fold blind windows duration, expressed in minutes.

From the previous objectives three different cost functions are assembled, as in
the following.
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• full: cost function comprising both SP and LLO related objectives –
SP_COMM_CONT, SP_NAV_CONT, SP_NAV_NCONT,
2DHDOP_NCONT, LLO_mu, LLO_sigma.

• llo_sgl: cost function comprising only LLO related objectives –
2DHDOP_NCONT, LLO_musigma and LLO_cum, on a set of LLO users on a
single ran value equal to 0◦.

• llo_mlt: same cost function as before but on a set of LLO users on ran
values spanning the range 0–360◦.

The exploration of the design variable space and the generation of the Pareto
fronts for the optimisation runs are performed through the exploitation of
a Multi-Objective Hypervolume-Based Ant Colony Optimisation (MHACO)
algorithm [91]. The ESA pagmo [92] optimisation package has been exploited
for that purpose. MHACO is preferred over standard heuristic methods, such
as the Non-Dominated Sorting Particle Swarm Optimiser (NSPSO) [93] or the
Non-Dominated Sorting Genetic Algorithm (NSGA-II) [94], since it is shown to
be really competitive with those algorithms, exhibiting superior performance
in large search space exploration.

After a preliminary analysis, a population of 100 elements and a maximum
number of 150 generations are considered per each one of the three optimisation
runs.

5.1.3 Pareto front analysis

As described in the previous sections the optimisation scheme presented is
used to run three different objective functions, namely full accounting for
both South Pole and LLO users performance, llo_sgl and llo_mlt consider-
ing instead only LLO related performance, both considering mean, standard
deviation and cumulative sum of the 2-fold blind windows duration, the former
for a single class of LLO users and the latter for a wider selection. Moreover,
each optimisation has been run letting the fixed parameter of the constellation
size n vary between 4, 5 and 6, leading to a number of three optimisation runs
per each cost function. In the following we analyse the collection of the results
in the form of Pareto plots, showing the population of the three constellation
sizes in the cost function space per each objective function.

Figure 5.1 shows the results for the objective function full. The associated cost
function vector is six-dimensional, however in this plot only the solutions that
fully satisfy the South Pole related constraint per each user are presented, i.e.
those showing 0% for SP_COMM_CONT, SP_NAV_CONT and SP_NAV_NCONT. First
from the top left and bottom left plots we highlight that being the objective
2DHDOP_NCONT a percentage, it undergoes effects of saturation, reason for which
a full Pareto front is not visible in those graphs. It is instead visible as a
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Figure 5.1: Population optimised with the objective function full.

clearer front in the LLO_sigma vs LLO_mu plot. To extract the best solution, the
different objectives were favoured in the following manner. First the solutions
with the best values for 2DHDOP_NCONT are selected, and among those only two
Pareto optimal solutions are considered, minimising one of the two remaining
objectives at a time. For the run with n = 4 no solution with 2DHDOP_NCONT
completely satisfied (i. e. 0%) is present, reaching a minimum value of 50% of
the users. The best solutions taken from n = 5 and n = 6, satisfy instead this
requirement completely.

The Pareto plot in Fig. 5.2 for the objective function llo_sgl is easier to read,
since in this case only two objectives are displayed, comparing LLO_cum and
LLO_musigma.

Indeed, in this case for all three constellation sizes, there are solutions with the
2DHDOP_NCONT saturated to 0, so the extraction of the best candidate is simply
done by picking 2 Pareto points favouring one of the two remaining objectives.

Similar considerations apply also for the llo_mlt, whose solutions are presented
in Fig. 5.3. In this case there are 0% 2DHDOP_NCONT solutions only for n = 6,
so the best solutions for n = 4 are picked among the 33.3% solutions, while
those for n = 5 among the 16.7% solutions. Also here, two solutions optimal
for the two remaining objectives are taken per each constellation.
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Figure 5.2: Population optimised with the objective function llo_sgl.

Figure 5.3: Population optimised with the objective function llo_mlt.
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After having collected these results from the Pareto plots, we can analyse
the solutions, which are summarised in Table 5.1, where also the eccentricity
ecc and the inclination inc are displayed. Recall that having constrained the
orbit to be frozen, the latter is always a function of the former, providing no
additional degree of freedom.

Looking at the complete picture, it is possible to derive some relevant insights
on the characteristics of the solutions. One of the first things that pops up is
the evolution of the eccentricity value, that varies vastly from the first objective
function full, where the upper boundary of 0.7 is almost reached, to the
second one llo_sgl where the eccentricity reaches values lower than 0.5. This
can be justified by the presence of the South Pole within the user regions for
which performance shall be maximised. Having indeed higher eccentricities
(recalling the imposed anomaly of pericenter of 90◦) means spending more time
around the aposelene, i.e. closer to the South Pole for the inclinations between
0◦ and 180◦, enlarging the visibility duration. This value is generally decreasing
for larger constellation sizes, due to the higher performance obtainable when
increasing this parameter. In the third objective llo_mlt, instead, intermediate
values of eccentricity are obtained, with the maximum value of 0.649 for the
solution with n = 6.
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Table 5.1: Summary of the extracted results, per each objective function and per each constellation size. Column SP
comprehends all the objectives associated to South Pole users. For the full cost function solutions with the A label

favour the LLO_mu objective, while those with the B label favour the LLO_sigma one. For llo_sgl and llo_sgl instead,
A indicates favouring LLO_musigma, B LLO_cum.

ID ecc inc SP 2DHDOP_NCONT LLO_mu LLO_sigma LLO_musigma LLO_cum
Cost fcn [-] [◦] [%] [%] [min] [min] [min2] [min]
full 4A 0.668 54.81 0% 50% 32 35 – –

4B 0.664 54.59 0% 50% 42 16 – –
5A 0.608 52.06 0% 0% 32 26 – –
5B 0.678 55.29 0% 0% 30 16 – –
6A 0.654 54.13 0% 0% 19 16 – –
6B 0.550 49.70 0% 0% 19 9 – –

llo_sgl 4A 0.452 46.29 – 0% – – 430 3513
4B 0.441 45.95 – 0% – – 640 3412
5A 0.583 51.01 – 0% – – 456 3258
6A 0.489 47.50 – 0% – – 132 2812
6B 0.518 48.49 – 0% – – 256 2709

llo_mlt 4A 0.570 50.45 – 33.3% – – 1357 3643
4B 0.548 49.60 – 33.3% – – 1696 3489
5A 0.594 51.45 – 16.7% – – 1187 3392
6A 0.556 49.93 – 0% – – 493 2942
6B 0.649 53.90 – 0% – – 598 2879
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After that, we can see that the objectives of the different solutions are always
decreasing for increasing constellation size. This is expected as a general
remark. It is also quite reasonable that worse values are obtained in the third
objective llo_mlt with respect to what was obtained for the second one, which
is optimised for a specific set of LLO users on a single orbital plane.

Figure 5.4 displays the geometries of the obtained constellation for three
different cases. In particular, the first two plots show the selected solutions
of the optimisation with llo_sgl for case 5A (left) and 6A (center). From
the solution with n = 5 we see basically three orbiters clustered on similar
planes, while the remaining two are placed in separate planes covering the
remaining space. The 6A solution presents instead a clear clustered solution,
with only two planes considered, with their node axis aligned to the x-axis of
the LME2000 inertial frame. This is indeed clear if we recall that the LLO
users considered by the llo_sgl cost function are placed on orbital planes
with the ran equal to 0, thus being the symmetry plane of the two clusters of
servicers present in the central plot. This effect is partly present also in the 5A
constellation (left plot), where the three clustered servicers have a compatible
value of right ascension of their ascending nodes.

This clustering is instead completely destroyed in the right plot, where the
6A solution for the llo_mlt cost function is displayed. Here, we see instead a
different behaviour, where the 6 orbiters are displaced on almost 6 symmetric
planes. This effect is clearly determined by the targetting of different orbital
plane users, with ran spanning the whole 360◦ space.

5.2 Navigation filter formulation

As mentioned above, an orbital user exploiting a GNSS constellation is charac-
terised by an evolution that requires the exploitation of a dynamical tracking
problem, which can be handled with a bayesian filter. In particular, among
the different estimation algorithms, the most reliable and effective to work
within a complete Guidance, Navigation and Control (GNC) scheme is the
Kalman Filter, declined in all its different formulations. Given the limited
size of the constellation under study, the user will eventually lose visibility
with any of the servicers and consequently will need a way to continue with
a propagation of its own state. To do this, a reasonable dynamical model is
required on-board which, together with an accelerometer, can be beneficial in
providing an inertial navigation solution for the blind windows.

5.2.1 Ground truth dynamics

In order to validate the navigation strategy, a complete high-fidelity propagation
of the LLO users is required, for both simulating the dynamic evolution in the
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(a) llo_sgl 5A

(b) llo_sgl 6A (c) llo_mlt 6A

Figure 5.4: Representation of three solutions extracted from the optimisation
procedure for the cost functions llo_sgl and llo_mlt with the

constellation sizes n = 5 and n = 6.
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complexity of the cislunar environment and generating a trajectory to be used
as ground truth reference.

The dynamics in which the ground truth trajectory is generated comprises two
separated contributions:

• Gravitational effects

• Solar Radiation Pressure (SRP) perturbation

For the ground truth a detailed full ephemerides model is accounted for,
including Moon, Earth and Sun contributions. Terms from the other Solar
System bodies have been deemed negligible in the low lunar orbits environment.
What was instead applied as relevant is the contribution from the Moon
irregular gravitational field, expressed by spherical harmonics up to the 60th

order, with coefficients values derived from the LP165P model [95].

The SRP perturbation is accounted for as in Eq. 2.6. Generic values of cR = 0.7
and m/A = 150 kg m−2 have been assumed for this scenario.

5.2.2 Filter structure and implementation

Given the different nature of the measurements used, a suitable way to perform
sensor fusion is needed, exploiting both the accelerometer, pseudorange and
pseudorange-rate information. We faced this challenge through a tightly
coupled GNSS/INS formulation, as described by the scheme in Fig. 5.5.

Lunar GNSS
satellites

User RX
terminal

IMU

GNSS ephem

Dynamics Propagation

Kalman update

Sensors EKF

To GNC

Simplified  on-board
dynamical model

Figure 5.5: Description of the GNSS/INS Navigation formulation

The acceleration ãIMU measured by the IMU is exploited in dynamic compen-
sation mode, added to the on-board dynamical model, to perform the state
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prediction step in the filter, outputting the a-priori estimate x̂−
k at time step k.

The accelerometer noisy term is taken as a zero-mean Gaussian term with a
standard deviation of 3.5 × 10−4 m s−2, representative of standard high fidelity
accelerometers.

The GNSS observables of the pseudorange ρ̃i and pseudorange-rate ˜̇ρi together
with the ephemeris of each constellation satellite are instead passed as measure-
ments directly to the filter, which, by performing the update step, returns the
a-posteriori corrected state x̂+

k . The advantages of a tightly coupled GNSS/INS
formulation over a loosely coupled one [96] where the GNSS receiver is con-
sidered as a black-box outputting the complete state directly reside in the
possibility to exploit the GNSS signals also when less than 4 satellites are in
visibility, which - for the proposed scenario - can be a very likely condition due
to the limited number of constellation elements. Whenever no GNSS signal is
available, the proposed architecture continues propagating on board the user
position exploiting the information from the IMU only.

Given the choice to include also the clock bias bc and drift dc in the estimated
parameters, the spacecraft state xS/C is appended by these components, forming
an overall filter state x = [x⊤

S/C , bc, dc]⊤.

The implemented filter is an Extended Kalman Filter, defined by the following
simplified spacecraft dynamical model fS/C(xS/C , ãIMU ) and a clock dynamical
model for the propagation and measurement function h(x, x̃s,i), defined as in
Eq.s 5.2 and 5.3.

fS/C(xS/C , ãIMU ) = fS/C(xS/C)% + fS/C(xS/C)♁ + ãIMU (5.2)

h(x, x̃s,i) =
[
ρ1, ρ̇1, ρ2, ρ̇2, . . . , ρn, ρ̇n

]⊤
(5.3)

From Eq. 5.2 it is possible to see the dynamic model replacement strategy
to exploit the accelerometer in the navigation filter, including thus the SRP
acceleration measured contributions. Moreover, the only gravitational terms
inserted here are those associated to the Moon and Earth point mass gravita-
tional potential. The Moon irregular mass distribution and the Sun gravity
are not modelled here, in order to reduce the computational burden on the
on-board computer. We want also to recall that the measurement function
(Eq. 5.3) uses the estimated clock bias and drift to correct the pseudorange
and range-rate a-priori predictions, following Eq.s 3.52 and 3.53. Associated
to these parameters, their propagation model is instead given by fc defined by
Eq. 5.4.
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fc =

ḃc = dc

ḋc = 0
(5.4)

Stacking then Eq.s 5.2 and 5.4, we obtain the dynamical model to be used in
the filter f = [f⊤

S/C , f⊤
c ]⊤.

The filter is here initialised with initial conditions of the state x̂0 and the state
covariance matrix P0, which are both set at the beginning of the simulation.
We used σr,0 = 1 km and σv,0 = 1 m s−1 as values for P0 and as standard
deviation for x̂0. The process and measurement noise covariance matrices are
represented by Q and R respectively. The former can be considered as a tuning
parameter, the latter is instead defined by the sensors accuracy.

The evaluation of the innovation vector defined by ỹk+1 − h(x̂−
k+1, x̃s,i,k+1) is

affected by two independent errors, i.e. the pseudorange and range-rate errors
(introduced by the physics of the signals transmission and the RF terminals)
and the error introduced in the servicers’ ephemerides (given by the servicers’
own navigation budget). As such, in the definition of the covariance R, both
the radiometric and the propagated servicers ephemerides errors contributions
are considered, derived with the RSS in subsection 3.3.4.2.

5.2.3 Filter performance verification
In this additional step, a subset of the extracted solutions is analysed more
in depth, verifying the proposed on-board navigation scheme in terms of
performance, comparing the level of accuracy obtained in the state estimation
and the duration of the convergence losses due to the 2-fold blind windows.
The simulation is set up for a single polar LLO user with an altitude of 50
km, a ran of 0◦ (the same as the one of the users considered for the llo_sgl
optimisation) and a total simulation time of 48 hours.

Figure 5.6 reports the zoomed simulation outcomes for the specific case of n = 4
in the optimisation with the full cost function, ID 4A (favouring LLO_mu over
LLO_sigma), in the first 10 hours of simulation.

In the plot 4 different quantities are displayed over the simulated timespan.
The first row reports the dilution of precision parameters, in particular 2DHDOP
(red dots) and GDOP (blue dots), indicating thus also the 3- and 4-fold visibility
respectively. This is directly correlated with the second row of the plot, where
the total number of servicers actually connected to the user is plotted over
time. The third and the last rows indicate instead the estimation error on
position and velocity respectively, expressed on a logarithmic scale.

From these plots we can extract a clear trend, which is present in all the
performed simulations for the whole 48 hours. There is a continuous alternation
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Figure 5.6: Zoomed view of the first 10 hours of navigation simulation
outcomes for the n = 4 case of the full optimisation, ID 4A, minimising

LLO_mu.

of navigation availability and blind windows. During the former, the navigation
solution converges rapidly to extremely good results, with errors in the order
of 10 m, practically consisting in the pseudorange measurement error. When
the number of satellites in visibility is instead less than 3, the position error
starts rising reaching quickly ∼ 100 m and then drifting up to 1 km and even
higher in the worst cases.

We can see that optimising for good 2DHDOP values (< 10 in this case) results
in extremely good performance for position estimation. It is however still
limiting the presence of blind windows. In such regions, the performance of
state estimation is not always satisfactory, but remains bounded below 10 km,
after the starting convergence period.

In order to provide insights on the global navigation solutions, a recap of
integral figures of merit is provided by Table 5.2, providing information on a
subset of 8 solutions among the 16 extracted from the optimisations.

Among such indices we collected both δr_cum, δr_cum1km and δv_cum which
are the cumulative time in hours where the navigation errors overcome 100 m,
1 km and 10 m s−1. These last two values are considered as a possible threshold
to define a navigation divergence, while the former defines good navigation
performance. In addition to those we computed also µδr, σδr and max(δr),
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Table 5.2: Collection of navigation performance for a subset of the extracted
optimal solutions, representing the different analysed cases and an LLO

user with ran=0◦.

Cost function full llo_sgl llo_mlt
ID 4A 5A 5A 5A
δr_cum [h] 45.0 42.9 41.2 43.6
δr_cum1km [h] 6.2 5.3 3.6 10.5
δv_cum [h] 0.82 0.40 0.01 0.04
µδr [km] 0.856 0.635 0.425 0.955
σδr [km] 2.776 1.455 0.438 1.437
max(δr) [km] 41.2 34.9 9.1 7.6
Cost function llo_sgl
ID 4A 4B 6A 6B
δr_cum [h] 45.3 43.1 39.3 40.4
δr_cum1km [h] 12.0 11.7 1.0 4.3
δv_cum [h] 0.05 0.29 0.067 0.076
µδr [km] 0.825 0.814 0.296 0.458
σδr [km] 0.971 1.288 0.314 0.603
max(δr) [km] 9.6 18.2 10.8 13.2

which are mean, standard deviation and maximum value recorded by the
position error.

In the following, different side-by-side comparisons are proposed, in order to
assess the capability of the optimisation procedure to address some specific
points.

5.2.3.1 Cost function full vs llo_sgl

First of all, we compare what is obtained including or not the objectives
associated to the South Pole surface user, thus looking at the full and llo_-
sgl cost functions. In particular, the cases for constellation sizes of n = 4
and n = 5 are taken into consideration, relating the results of Pareto points A
in both cases. It is relevant to recall that for the full case (as in Fig. 5.6),
solution A favours the average value of the maximum 2-fold blind windows,
while for the llo_sgl one (as in Fig. 5.7), it is the product of mean and
standard deviation of the same quantity that is prioritised.

By looking at the scores in Table 5.2, we see that for the n = 4 case, there are
no major improvements from keeping only the LLO related objectives. Indeed
the values obtained for δr_cum and µδr do not differ so much, while for the
1 km threshold cumulative time, we have a practically doubled score. The only
improving scores are found in the cumulative velocity threshold overcome and
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Figure 5.7: Navigation simulation outcomes for the n = 5 case of the llo_sgl
optimisation, ID 5A, Pareto knee point minimising both LLO_musigma and

LLO_cum.

in the standard deviation of the position error, other than the maximum error
experienced.

If we analyse instead the results of the n = 5 case we see that a major
improvement overall is present. In particular, δv_cum is extremely reduced as
well as σδr and max(δr).

For both constellation sizes, the improvements are found principally in the
position error standard deviation and maximum value. The former is the direct
effect of choosing the Pareto solution comprising only the LLO_mu objective
minimisation in the full cost function and not LLO_sigma, while in the second
cost function the two objectives are already traded off, by minimising their
product directly.

5.2.3.2 Objective LLO_musigma vs LLO_cum

The next comparison is performed by looking at results for solutions with ID A
and those with ID B of the llo_sgl cost function. Recalling the Pareto points
selection procedure for that specific optimisation results, we picked solutions
minimising LLO_musigma (labelled with ID A) and others minimising LLO_cum
(labelled with ID B). In this comparison we look at both n = 4 and n = 6,
so IDs 4A, 4B, 6A (see Fig. 5.8) and 6B (see Fig. 5.9), corresponding to the
bottom part of Table 5.2.
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Figure 5.8: Navigation simulation outcomes for the n = 6 case of the llo_sgl
optimisation, ID 6A, Pareto optimal point minimising LLO_musigma.

Figure 5.9: Navigation simulation outcomes for the n = 6 case of the llo_sgl
optimisation, ID 6B, Pareto optimal point minimising LLO_cum.
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In both the n = 4 and n = 6 cases we observe comparable or slightly lower
performance choosing solutions B over A. For the n = 4 case, the solution
with LLO_cum presents slightly higher performance in the cumulative position
errors and the average value. This is instead not the case for n = 6, where
these parameters are worse in solution B. Deteriorations of the performance
are instead present in both sizes for the cumulative velocity error and for the
position error standard deviation σδr and maximum value max(δr).

Moreover, comparing the first row of Fig.s 5.8 and 5.9 we can also see worse
GDOP and 2DHDOP values in the 6B case, although a general higher 2DHDOPAV is
present, due to the specific objective favoured in its selection.

In general, the analysed cases show that no significant improvement can be
achieved in the overall performance, by favouring the minimisation of 2-fold
blind windows, with respect to the minimisation of the average and standard
deviation values.

5.2.3.3 Cost function llo_sgl vs llo_mlt

All the previous solutions were obtained targeting a single value of ran, so
specialised for a single class of polar LLOs. The cost function llo_mlt has
been set to provide performance to different orbital planes, with the goal of
providing more reliable and robust solutions. The comparison we perform here
is among the 5A solutions for the llo_sgl and llo_mlt cost functions, the
former presented in Fig. 5.7, the latter in Fig. 5.10.

From the plots in Fig. 5.10 we can spot 2-3 hours-long daily windows with a
maximum of a single servicer satellite in visibility of the user. Indeed, recall
that we are considering an LLO user with ran at 0◦, serviced by a constellation
optimised for a wider variety of users with ran ∈ [0, 120, 240◦]. As such it is
reasonable that some blind windows can be found.

This decrement in performance is also found by looking at Table 5.2, where the
last two columns of the upper row provide a side-by-side comparison. Excluding
max(δr), which is slightly better for the multi-plane optimised solution, we find
a persistent performance degradation. E.g., the cumulative time spent with a
position error higher than 1 km is practically tripled, as well as the standard
deviation of the error, indicating a more discontinuous and heterogeneous
behaviour. In any case, a good remark about the llo_mlt cost function is that
there are still parts of the day when good navigation performance is present,
reaching position errors below 100 m, giving the possibility to still perform
most of the critical GNC tasks overall.

By looking instead at a different LLO user, placed on a plane with ran=90◦,
we obtain the results in Table 5.3.
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Figure 5.10: Navigation simulation outcomes for the n = 5 case of the
llo_mlt optimisation, ID 5A, Pareto optimal point minimising

LLO_musigma.

We can see here that for a user case for which the constellation was not
optimised the two constellations perform similarly, with the multi-plane one,
scoring worse in δr_cum1km and in σδr. Looking at the comparison of these
data per cost function with respect to the results for the user at ran=0◦, we
see an important decrement of performance for the llo_sgl cost function,
while in the llo_mlt case we see a much more robust behaviour, keeping the
performance more similar, fulfilling the rationale behind such a constellation
optimisation choice.

5.2.3.4 Constellation size n = 4 vs n = 5 vs n = 6

The last analysis proposed here is to verify the improvements obtained in the
llo_sgl cost function increasing the constellation size from 4 to 5 and finally
to 6.

Overall we see a continuous improvement of the performance with the peak
values obtained in the 6A case. The only two parameters not following strictly
the increment are the cumulative time with velocity error above 10 m s−1 and
the maximum position error. In both situations the best score is obtained
with the 5A case. If the maximum value encountered in the position error is
something that levels out after the transient completion and thus not deemed
as a fundamental parameter, the worse score in the velocity error parameter
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Table 5.3: Comparison of navigation performance for the 5A solutions of both
the llo_sgl and llo_mlt coupled with an LLO user with ran=90◦.

Cost fcn llo_sgl llo_mlt
ID 5A 5A
δr_cum [h] 45.6 44.6
δr_cum1km [h] 6.0 7.2
δv_cum [h] 0.16 0.16
µδr [km] 0.602 0.790
σδr [km] 0.781 1.433
max(δr) [km] 11.7 11.8

can be explained likely by the higher eccentricity found in the 5A case, e=0.583,
with respect to the 6A case, e=0.489. The higher value provides larger servicer
velocity values excursions, thus a higher measured range-rate excursion, which
increases the observability of the velocity itself.

5.2.4 Enhancement with Optical measurements

An additional analysis is proposed here, where the constellation llo_sgl 6A is
taken as a basis to improve the associated navigation performance by including
optical observables to the filter.

Since the goal of such analyses is to provide an insight on the enhancement
of the state reconstruction capabilities, many peculiar assumptions are made
that in real operative conditions may require some complex architecture, both
in terms of optical sensors and/or in the related IP technique.

Indeed, dealing with the optical measurements of the LoS with respect to the
elements of a constellation there are different aspects to take into consideration.

1. Cameras FoV are generally narrower than those of the antennae, but the
exploitation of 180◦ may be very beneficial. There are some studies on the
prototyping and application of such hyper hemispheric optical sensors [97,
98] that are quite promising even though the related Technology Readiness
Level (TRL) is relatively low.

2. Specific on-board IP algorithms are needed to recognise a specific space-
craft in its field of view and discern it from other objects visible (e. g. stars,
bodies or other servicers). Such algorithms may be very complex from an
implementation point of view and their reliability shall also be assessed
properly.

3. The coupling of sensor and image processing provides specific LoS angular
errors that shall be particularly characterised.
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In the following analyses, the previous points are addressed starting with the
most favourable conditions and then removing the strong assumptions one by
one reaching finally a more realistic scenario.

Regarding point 1 three different values of half-FoV are tested, namely 90◦, 45◦

and 20◦, with an angle measurement error of either 0.01◦ and a more reasonable
value of 0.1◦. Concerning the point 2, in this work no assessment of the IP
complexity and the related application solution are presented. Six different
scenarios of observable and recognisable satellites are considered instead: all
6 satellites of the constellation (labelled A), just one (2 different scenarios
changing the one satellite, labelled B and C) or just two (three different couples
tested, labelled D, E and F).

Figure 5.11 reports the result of the analysis for a 10 h timespan, in terms
of relative navigation error reduction with respect to the RF-only strategy,
i. e. ∆(δrNAV )/δrNAV ). The labels in the legend indicate with a letter the the
6 different cases of number of servicers recognisable and with a number the
value of the half Field of View (h-FoV) in degrees. Moreover in the first row,
an additional "c" is added to indicate that the angular error is 0.01◦, while
the other scenarios consider 0.1◦. The results reported in the figure suggest

Figure 5.11: Relative navigation error reduction with respect to the RF-only
strategy of different test cases exploiting the optical measurements.

that even in the most optimistic case A90c, which is the most complex to be
realistically implemented, of 90◦ h-FoV and 0.01◦ of angular error with all the
six satellites exploitable, the increment in performance is limited to ∼10% of
the navigation error reduction. For the other analysed case, this reduction is
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completely negligible or non-existent, as e.g. for the case where the h-FoV is
20◦, where there are, in the analysed window no visibility periods at all.

From such results we can conclude that an enhancement of the navigation
performance with optical measurements is excluded in this scenario as a viable
option, given that the modest increment obtainable requires additional system
complexities that are not worth the small navigation error reduction.

5.3 South Pole Landing case study

In the two previous sections, a method to design a GNSS constellation has
been proposed and then a filtering architecture has been tested for LLO users
in a completely natural trajectory. In the previous analyses, thus, only the
navigation task was taken into consideration. The goal of this section is to
present a complete GNC chain in order to test the obtained performance with
the llo_sgl 6A constellation, for a more dynamically challenging scenario.
The case of a South Pole lander is analysed here considering only the main
braking phase of the landing. Starting from an elliptical orbit (100 × 15 km
altitude) the lander starts its thrusted arc at the periselene of 15 km and ends
at 1 km altitude, before relative navigation hand-over. The terminal landing
phase is not included in this analysis, since it cannot be separated from the
exploitation of a fully relative navigation strategy.

The considered GNC architecture is presented in Subsection 5.3.1, together
with the results of the nominal landing scenario. After that, the sensitivity of
the approach is tested through a Monte-Carlo analysis in Subsection 5.3.2.

5.3.1 GNC strategy

The strategy exploited in this landing scenario relies on the architecture shown
in Fig. 5.12.

From the real world simulation, the dynamics of the lander and of the servicers
is propagated in a high fidelity environment and the sensors readings are
generated. These are fed to the navigation block whose output is the absolute
state estimation. The guidance and control block employs this state together
with the targetted trajectory to generate a control action uk. This control action
is perturbed before entering the lander dynamics, by simulating both a pointing
and magnitude zero mean additive Gaussian errors. The former presents a
standard deviation of 1◦ on each of the two angles defining the thrusting
direction, while with standard deviation equal to 0.1% of the maximum thrust.

The guidance and control strategy employed in this case is to provide an offline
optimised landing trajectory that is interpolated on-board and then fed to a
reference tracking controller, based on a PID regulator.
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Figure 5.12: Architecture of the GNC scheme used for the landing analysis.

The trajectory used for the guidance is generated offline an indirect optimisation
procedure similar to the one presented in [4, 99], where the final altitude of
1 km above the south pole is imposed. Such trajectory is imported just as
a sequence of states, since the control action is recomputed using the PID
controller described by Fig. 5.13. The input of this block, ∆x̂k, is computed

 PID

   I

   P

   D

0

== 0

Figure 5.13: Details of the PID scheme used to follow the offline optimised
guidance, employing an anti-windup logic.

as the error between the setpoint trajectory state at time tk and the current
estimation of the state x̂k. This state error, is decomposed into its position
and velocity parts, ∆r̂k and ∆v̂k. The former is used for the proportional and
the integral parts of the control, while the latter for the derivative one. The
sum of the three components passes then through a saturation block, in order
to impose the maximum thrust constraints. To prevent uncontrollability due
to the control saturation caused by the integral term, a simple anti-windup
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logic [100] is introduced. The computed control action before passing the
saturation step is compared in absolute value to the output of the limiter. A
non-null difference means that the saturation is active, so to avoid controllability
issues, the integral term is driven to zero. In such a way the regulator is able
to avoid the windup condition, for which a saturated control action would
continue increasing the integral of the error. The anti-windup logic remains
active as long as the control acts to reduce the error and consequently re-enter
the saturation limit.

The navigation instead is performed through an EKF which employs as in the
previous cases of this chapter the GNSS/INS strategy, fusing these observables
with an altimeter readings. In a landing scenario the employment of such
instrument is fundamental for both state estimation enhancement and safety
reason. The presence of the IMU, used also here in dynamic model replacement,
provides the possibility to retrieve directly a measurement of control acceleration
ũk to be fed in the EKF prediction step, avoiding using the acceleration
predicted by the controller uk. Indeed, the measurement error introduced by
the accelerometer is much lower than that introduced by the real actuator
model.
Given the complex and more dynamically challenging scenario, the filter update
frequency has been set to 10 Hz.

The simulation of the nominal scenario considers a start at the apocentre of
the parking orbit and the lander begins its controlled phase after half of its
orbital period, i. e. after roughly 3400 s. The trajectory followed in can be
seen in Fig. 5.14, superposed to the landing guidance trajectory. A zoomed
trajectory of the propelled arc is instead present in Fig. 5.15, with the view
taken directly on the landing trajectory plane.

The results from a GNC point of view are instead displayed in Fig. 5.16, where
both the estimation and control errors are plotted over the simulated time
on a logarithmic scale. Note that the control error plot starts slightly before
t = 1 h, i. e. when the propulsive leg begins. An initial condition with a reduced
number of satellite in visibility is considered, in order to validate the system
concept also in a worst case reduced observability scenario.

The results are also in this case dependent on the number of satellites in
visibility. Indeed, for the first part of the trajectory the navigation error
remains quite high, until a new servicer enters the visibility of the lander, just
before t = 0.4 h. At that instant the navigation error drops to the order of
∼100 m, and reducing even more around t = 0.8 h. When the control action
starts, the initial oscillatory behaviour of the thrust acceleration is reflected on
both the navigation and control errors, which eventually stabilise to the final
values of ∼ 200 m and ∼ 400 m respectively.
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Figure 5.14: Representation of the trajectory in the IAU_MOON reference
frame. The trajectory followed by the spacecraft is plotted in blue,

overlapped on the guidance for the thrusted arc in red.

It is useful to remark that, the filter is in a stable and converged status just
before the start of the control phase, which is reflected by the low values in
the covariance matrix P. This effect gives a high stiffness to the filter, that
prevents its convergence to the new correct status at the beginning of the
thrusting phase. In order to overcome this issue, the covariance matrix is
re-initialised to 10% of its initial condition P0 at the beginning of the thrusted
arc. In such a way, the filter is made more flexible and driven at convergence
to the new state.

Overall we may say that the GNC performance is satisfactory for the scenario
under study, giving the possibility to follow the prescribed guidance, with
errors below 1 km. The navigation error of ∼ 200 m at the final instants after
the filter post control re-convergence is characterised by a Root Mean Squared
Error (RMSE) of around 120 m in the two horizontal components and of 15 m
on the vertical one. The associated control errors show for the horizontal
components a RMSE values of 330 m while a value of 90 m for the vertical
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Figure 5.15: Zoomed on the thrusted arc, viewed on the plane of the
trajectory.
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Figure 5.16: Navigation and control error of the landing trajectory, plotted in
logarithmic scale.

component. This difference between horizontal and vertical errors show how
fundamental is in any case the presence of an altimeter.

Moreover, testing the same landing scenario, but shifted in time in order to
track a window with an overall higher number of servicers in visibility, the
navigation errors drops below 100 m also during the thrusted phase, with final
control error slightly below 200 m.

5.3.2 Monte Carlo Analysis

In order to consolidate the landing scenario, the sensitivity of its performance
is analysed with a Monte-Carlo analysis, collecting the outcomes of a set of
500 sampling trajectories.

The parameters that are let vary to generate the samples dispersion are the
start time of the landing phase, and a state error in the associated initial
condition. The basic idea behind this choice is that by changing the start time
of the landing, the visibility condition of the GNSS constellation is shuffled as
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well, providing a distribution of different observability level per each sample.
The error in the initial condition is instead added to provide perturbation of
the nominal scenario, testing thus the robustness of the GNC chain.

Figure 5.17: Navigation (top) and control (bottom) errors of the successful
landing trajectories, with average and upper 3σ bound in logarithmic scale.

The landing starting time tS is sampled from a uniform distribution in the
range 3000÷5000 s, recalling that the nominal scenario had tS equal to 3400 s.
In practice, this is imposed by shifting the initial true anomaly of the orbit
backward in time, such that at the t = tS the lander is at the periselene at
15 km of altitude and the landing can start. The error dispersion in the initial
condition is instead introduced as additive zero-mean white Gaussian terms
with standard deviation of 500 m and 0.5 m s−1 in magnitude per each position
and velocity component respectively. The simulations are stopped when the
1 km altitude is reached and, considering a threshold of 3 km of horizontal
error, the samples are classified into successful and failed one.

Figures 5.17 and 5.18 provide the logarithmic evolution of navigation (upper
plot) and control (lower plot) position error for the successful and failed samples
during the thrusted arc only. The colour of the lines reflect the value of tS , from
the lowest in dark violet to the highest in yellow. The green lines represent the
average (solid) and the 3σ upper bound (dashed), considering the represented
lines.
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A success rate of 64.2% is reached with the proposed architecture. As we can
understand by looking at the line colour distribution, there is not a specific
correlation between the landing start time tS and the navigation and control
errors δrNAV and δrCTRL. The best results among the successful case, are
comparable to the nominal case, with few samples that even outperform it,
with control errors slightly below 200 m. Looking instead at the worst cases in
the failed samples, the upper 3σ bound is higher than 5 km.

Figure 5.18: Navigation (top) and control (bottom) errors of the failed
landing trajectories, with average and upper 3σ bound in logarithmic scale.

Additional insights are presented by Fig. 5.19, where cumulative distribution
of both the average number of satellite in view (top) and average navigation
error (bottom) evolutions are plotted for the two classes of samples.

Here we see a peculiar behaviour of the average number of GNSS servicers in
view. First of all, the relative number of samples that never see a lander during
the propelled leg are more than doubled in the failed class. This difference
in relative number is recovered by the successful class in the range from 0 to
∼0.4 of the abscissae, while in the rest of the range from 0.5 to 0.8 the two
evolutions are similar. This means that the average number of satellite in view
is not a sufficient nor a necessary condition to complete successfully the landing.
Looking instead ad the mean navigation error of the bottom plot, it is possible
to notice a more or less constant population of samples up to the abscissa
of 2.5 km for the successful samples, with no points at all above this value.
For the failed ones instead more than two thirds of the trajectories are above
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Figure 5.19: Cumulative distributions of the average number of satellites in
visibility.

2.5 km. There is a minor part of failed samples with average errors around
500 m, whose failure is likely caused by highly perturbed initial conditions due
to the imposed dispersion.

An interesting visualisation of the successful trajectory is obtained by looking
at the final points observed on the horizontal plane at 1 km altitude. This is
what the scatter plot in Fig. 5.20 represents together with two sets of covariance
ellipses.

The grey ellipse represent the 3σ covariance of the estimated trajectory in the
nominal scenario, while the remaining three ellipses represent the three sigma
levels of the successful Monte-Carlo samples. It is remarkable to see that the
nominal scenario covariance ellipse (the grey one) encloses the vast majority
of the samples, thus providing a sensible estimation of the landing mission
dispersion. The 3σ uncertainty ellipse of these sample is characterised by a
semi-major and semi-minor axes of 1.51 km and 0.57 km, the former mostly
aligned with the XIAU_MOON axis, the latter with the YIAU_MOON. The same
preponderance of the error on the XIAU_MOON axis is present also in the
nominal scenario covariance ellipse, which encloses practically all the obtained
samples. This elongation is caused by the geometry involving the user and the
only servicer that is visible in this specific time-frame. Its LoS with respect to
the South Pole (where the lander practically is placed) during the few minutes
of thrusted arc has a relatively large variation along the YIAU_MOON axis and
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Figure 5.20: Covariance ellipses of the successful Monte-Carlo sample, taken
on the 1 km altitude horizontal plane.

practically null one along the XIAU_MOON axis, causing the y component to
be much more observable, thus with a reduced error.

A last remark on the samples reported here is that there is a clear pattern
of points that deviate partially from the main ellipses, aligned in a different
direction with respect to the semi-major axes. To understand their nature, we
see that they all have negative error in the y component, δy.

Figure 5.21 reports different quantities recorded per each sample, as function
of the landing start time tS . The upper plot represents the final control error
on y, δy, the middle the final navigation error δrNAV and the lower the average
number of satellite in visibility during the thrusted arc. From the upper plot
we can see a clear correlation between tS and the final error on y, since all the
sample with δy < 0 are confined in the range of tS > 4800 s. Then, from the
lower plot, the cause of the different orientation of such reduced number of
samples can be found in the fact that all of them performed the whole landing
with no GNSS servicer visible. This means that their navigation solution
does not benefit from the radiometric data during the new filter convergence
procedure, leading thus to a different navigation solution, biased by the errors
before starting the controlled phase.

From the middle plot, instead it is possible to notice that the final value of the
estimation error δrNAV is not particularly correlated with tS . To validate also
numerically these effects, Pearson’s linear correlation coefficients are computed
to provide a simple estimate on the correlation that the start time tS has with
both the final δy and δrNAV. The resulting values are

• ρ(tS , δy) = −0.431
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Figure 5.21: Plots representing final control error on the y component (top),
the final overall navigation error (middle) and the average servicers in view
during the thrusted arc (bottom) as function of the landing start time tS .
The vertical line indicates the value of tS associated to the nominal scenario

• ρ(tS , δrNAV) = −0.045

which confirm that the starting time influences the extent of the y component
control error, but not the total position estimation error.

With such Monte-Carlo analysis, we gained clear insights on the statistical
behaviour of the landing GNC strategy, which provided an acceptable success
rate, but that may be increased with a precise start time scheduling, aiming at
precise higher visibility windows.

5.4 Filter comparison and PIL testing

The last analysis performed in this chapter is represented by the comparison
of different navigation filters exploited by a polar LLO user with the llo_sgl
6A constellation. Two different standpoints are focused here: the navigation
performance and the computational complexities.

The filters considered are a total of six, i. e. three EKFs and three UKFs,
differing in the integration method employed for the propagation step. The
three integration methods evaluated are:

• Forward Euler method: the simplest and less computationally demanding
one, requiring a single dynamical function evaluation.
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• Heun method: a slight modification of the Euler method, belonging to
the class of Runge-Kutta solvers with 2 steps, requiring two functions
evaluations.

• Runge-Kutta-Fehlberg 7(8) (RKF78): a 7/8th order solver of the Runge-
Kutta family with adaptive stepsize. Its implementation requires 13
functions evaluations.

The RKF78 method is considered as the high accuracy and reliable solver. It
is also the same method employed by the filters used in the previous analyses
of the chapter.

These six filters have been used to estimate the LLO state for a 48 h simula-
tion time starting from the same initial conditions and with the same filter
initialisation. Table 5.4 collects relevant statistics for all the six simulations,
while Fig. 5.22 reports the time evolution per each filter.

Table 5.4: Collection of navigation performance for the six different filter
formulations, considering maximum, minimum, average and
root-mean-squared error of the position estimation error δr.

ODE max(δr) min(δr) µδr RMSE(δr)
Filter solver [km] [km] [km] [km]
EKF Euler 19.03 0.015920 4.1010 5.1260

Heun 10.93 0.001115 0.2975 0.4363
RKF78 10.93 0.001151 0.2977 0.4367

UKF Euler 19.03 0.015940 4.1 5.1250
Heun 10.92 0.001112 0.2975 0.4363
RKF78 10.93 0.001148 0.2977 0.4367

The results show that the performance obtained with the Heun and the RKF78
methods is in practice the same, for both the EKF and the UKF, while
the performance of the forward Euler scheme is not acceptable, with errors
during blind windows after the filter convergence reaching values even higher
than 10 km. Moreover we see also that there is no noticeable difference in
performance among the EKFs and the UKFs. This fact highlights that for the
system under study, in its natural uncontrolled motion the state estimation
process does not present relevant non-linearities, whose role could have caused
the UKF to perform better.

5.4.1 Processor-In-the-Loop tests

To compare the computational demand of a flight-ready algorithm and to
validate the on-board implementation of the prototyped code, a PIL test
campaign has been put in place, considering a Raspberry Pi 4 single-board
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Figure 5.22: Evolution of the position navigation error for the six filters
under study for the simulation time-span of 48 h.

computer as reasonable target hardware. The most relevant characteristics of
such elements are reported in the following.

• Broadcom BCM2711 System on Chip (SoC)

• Quad-core Cortex-A72 ARM-based processor

• 64-bit architecture

• 1.5 GHz clock maximum frequency

• LPDDR4 SDRAM of 4 GB

With such features the Raspberry Pi 4 can be considered as a representative
piece of hardware considering general on-board computer for medium to high
size spacecraft, while they are quite high for CubeSat specific processors.

The porting procedure to embed the developed software on the Raspberry
Pi board takes advantage of the autocoding features provided by the MAT-
LAB/Simulink environment, following the general workflow exploited for the
GNC flight software generation [101]. The Simulink Embedded Coder applica-
tive provides a simple and reliable manner to generate ANSI C-code directly
runnable on the specific hardware under test, i. e. the Raspberry Pi in this
context.

Figure 5.23 represents the Simulink schematics employed to perform the valida-
tion and profiling of the auto-generated software. The filter under test, e. g. the
EKF with Heun integration in he figure, runs parallelly on the Simulink desktop
environment, representing the Model-In-the-Loop (MIL) simulation, and on
the target hardware in PIL mode. Both filter implementations receive the same
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Figure 5.23: Simulink schematics of the MIL-PIL parallel simulation for the
EKF filter with the Heun propagation.

inputs from the simulation of the real world dynamics, while the outputs of
the PIL filter only are fed back to the real world simulator. By running the
two models in parallel with the same inputs it is possible to correlate directly
the execution errors of the PIL implementation and validate the autocoding
procedure, while recording also the profiling statistics.

All the filters have been run singularly on the embedded environment for a
simulated time of 10h and the performance and execution times have been
recorded. Figure 5.24 represent the evolution of the position and velocity
x-components and the clock bias relative errors between the PIL and MIL
simulations, defined for a generic quantity w as εw = (wMIL −wPIL)/wMIL. The
relative errors are plotted alongside the total number of satellite in visibility.
From the plots it is possible to see that the relative errors are in general always
negligible, with values for the position and velocity errors in the order of 10−8

for most of the simulation time, except some isolated spikes in the order of
10−4 during the blind windows, where the filter is only propagating the state.
Values are slightly higher for the clock bias, but not providing any complexity
in the overall estimation procedure. The evolution of the navigation errors are
practically identical both in trend and statistics.

Looking at the profiling analysis, Fig. 5.25 reports the box-plot of the execution
times for a single filter step for the six compared cases. As expected, we can
see that each integration method in the EKF formulation compared to the
associated UKF one is faster, with a particular speed increment for the RKF78
case, where a factor of more than 5× is present among the two. Also, we can
see that a relevant time gain is obtained between the RKF78 and the Heun
case, which, provides the exact same performance. Additionally, we may see
that the cost increment passing from the Euler method to the Heun one is very
reduced.
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Figure 5.24: Time evolution of the relative errors between the PIL filter
outputs and the MIL ones, plotted along with the total number of satellite

in visibility. Position and velocity x-components and clock bias relative
errors are plotted.

By looking at the absolute values of the execution time for the filters, the
worst case of the UKF-RKF78 couple reports a single step time of 0.5 ms.
Considering also a worst case of the filter execution frequency of 10 Hz, the
associated duty-cycle is about 0.5%, which is perfectly compliant with the
execution of the task without incurring in computational time saturation, thus
validating the feasibility of employing these algorithms safely.

All these PIL analyses prove that the EKF-Heun filter-propagation couple is
the most suited one for such application, providing the second best speed perfor-
mance at equal navigation error with respect to the other more computationally
demanding counterparts.

5.5 Closing Remarks

This chapter presented a complete framework for supporting the preliminary
phase design of a satellite constellation to provide communication and naviga-
tion services to both South Pole and Low Lunar Orbit users. The developed
system is capable to provide the flexibility requested by such early stages
of the mission analysis, where the overall requirements are not completely
defining a specific performance index. In such cases, exploiting Multi Objective
Optimisation (MOO) is a good choice to combine different objectives which
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Figure 5.25: Box-plot indicating execution time of a single step for the
navigation filter in the different filter-propagation couples.

may be clashing among themselves or may be uninfluenced. Moreover, such
multi-objective scheme outputs a whole population of solutions, a subset of
which represents usually a Pareto front, from which we can understand the
boundaries of feasibility and then pick the solutions that fit our needs the most.

The optimisation has been exploited to cast together objectives associated to
either the surface users or the LLO ones. In particular three different cost
functions are taken into consideration with or without the South Pole related
objectives, each one run for three different constellation sizes. The resulting
populations of solutions have been inspected through various Pareto plots and a
total of 16 possible candidates are extracted with optimal related performance.

A subset of these candidates has been then analysed in terms of the navigation
performance, when simulated with an LLO polar user at an altitude of 50 km
at ran values of 0 and 90◦. The navigation filter employed here considers
a tightly coupled GNSS/INS formulation, where the servicers pseudorange
and pseudorange-rate measurements are fused to the ones of an accelerometer.
The presented architecture provided an alternating behaviour of regions with
extremely good performance in state reconstruction and regions of loss of GNSS
support, where the accelerometer inertial navigation starts loosing accuracy
leading in some cases to acceptable levels (< 1 km) and unacceptable in some
others ( > 10 km). The comparison of the obtained navigation filter results
correlated to cost function and constellation size provides some useful insights,
such as the increment in performance looking at the minimisation of the
combined position error average and standard deviation values, LLO_musigma,
against the minimisation of cumulative 2-fold blind windows. Moreover the
robustness of optimising for a wide variety of LLO users orbital plane has
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been proved, by comparing the llo_sgl with llo_mlt cost functions. In the
latter, even though lower performance are obtained in general for the optimised
orbital planes, a higher resilience of the results is present when looking at
non-optimised solutions for orbital planes.

The analyses highlighted also that the small benefits that the addition of optical
measurements from the servicers are not worth the complexities required by
such solution, providing practically a negligible estimation enhancement.

An additional scenario of a landing spacecraft has also been presented, whose
GNC chain comprises also an offline optimised guidance to be used as setpoint
for a reference tracking PID controller. The nominal results provide very good
performance, with final navigation and control errors around 200 m and 400 m
respectively. The following Monte-Carlo analysis provided a success rate of
64% considering a 3 km accuracy threshold in the horizontal plane at 1 km
altitude. Such rate is acceptable, but it may be even increased with a precise
start time scheduling, targetting precise high visibility windows.

The final analyses comparing the EKFs and UKFs with the different prop-
agation methods provided the following remarks. The errors obtained with
the simple Forward Euler method are not acceptable, while no difference was
noted between the Heun and Runge-Kutta-Fehlberg 7(8) one. Moreover the
EKFs and UKFs provided the same results, highlighting that the nonlinearities
do not have a major impact in this scenario. After that the PIL tests were
effective in validating the architecture from a hardware implementation point of
view and providing the computational time profiling to perform a comparison.
As expected the EKFs are faster than the UKFs, particularly for the RKF78
where the increment is higher than a factor of 5×. The Heun method was
found to be not much slower than Euler one, but much faster than RKF78,
resulting as a consequence the most suited implementation coupled with the
EKF: it is the second best in speed, with the same performance of the most
complex formulation.
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CHAPTER6
Conclusions

This final chapter tries to wrap up the results obtained through all the thesis
works. The goal is to provide an overview of the advancements that this work
made in the context of enhancing the autonomy of spacecraft to support the
great exploration of the Moon which will invest the next decades of the space
ecosystem. Such exploration roadmap entails, among others, two important
infrastructures, that will help the operations to be performed in the lunar
environment, supporting the both the scientific activities and the engineering
demonstrations to advance in the future human stable outposts. These two
infrastructures consist in the LOP-G and a GNSS constellation, the former
developed to become a stable space station to host astronauts and to assist
the future missions directed to the surface, the latter instead fundamental to
provide the two major services of communication and navigation with much
higher performance than those obtainable by un-aided users.

To exploit at their maximum these two huge projects, a deep understanding of
the GNC algorithms needed for spacecraft to interoperate with these systems
is necessary, in order to define the boundary of feasibility and of resource
optimisation in which such spacecraft will move. In particular the navigation
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task in scenarios of reduced observability is something that, if achieving good
performance, can unlock many different mission concepts considering also
smaller assets, which are generally equipped with limited sensor suites.

Recalling the questions that were posed in Chapter 1, after having presented
the relevant analyses, it is possible here to provide the associated answers per
each one of the three scenarios analysed.

In Scenario A, presented in Chapter 4, the problem of performing an au-
tonomous rendezvous with a cooperative agent representing the LOP-G has
been analysed. In this scenario the only sensor considered to be available to
the chaser is an optical camera, able to retrieve LoS bearing-angles only. The
concept of BO guidance and navigation that had been proposed and tested
only in the simpler two-body LEO scenario has been proved also for the more
dynamically complex non-Keplerian environment. The obtained navigation
accuracies are driven below 1% of the relative range to the target, which means
providing metres-level errors at the end of the rendezvous, perfectly compatible
with a safe execution of the mission. The already presented quadratic formula-
tion showed a behaviour that drives the spacecraft to force a range reduction,
which is a not so good feature, considering that the relative range error drops
below the threshold only near the end of the transfer. The proposed variation
of employing a nonlinear constraint directly on the observability angle provides
instead a much smoother relative distance reduction with a threshold crossing
occurring much sooner in the transfer, providing a more effective alternative.
The computational demand required by this modification is however increased
by the introduction of this nonlinear term.
The additional investigation performed was to prove the concept of BO guid-
ance in the scenario of heterogeneous orbits, where the imposition of performing
a thrusting action that overall does not change the final resulting trajectory was
posed to enhance the state observability. This scenario proved to be effective,
providing a relative range navigation error less than 1%, consisting to the
order of less than 100 km in the cases considered. A performance deterioration
is however caused by linearisation of the dynamics employed in the filter,
which is accurate for small ratios between the chaser-target distance and the
target-Moon distance. The test cases analysed showed that a ratio higher than
10% prevents a stable navigation error.

The second scenario investigated the best GNC strategy to accomplish rephasing
manoeuvres in the proximity of the LOP-G as well, but keeping a bounded
motion with respect to it. The analysis conducted, defined the guidance and
control strategy as a reference tracking problem, where the target trajectory
to be followed has been expressed as the interpolation of precomputed relative
trajectories defined as belonging to Quasi Periodic Tori. The most suitable
G&C formulation for this problem has been deemed the receding-horizon MPC
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strategy, which is able to foresee the dynamics evolution in a short enough
window to adapt correctly to the environment and yet remaining relatively
computationally light. A relevant addition of the overall algorithm has been
done by employing an updating weight tuning approach, in order to provide a
more flexible and adaptive scheme, that can be exploited for many different
transfers within this framework. Additionally, the capability of the MPC to
entail constraints in its optimisation step, increases its versatility, which has
been proved by the inclusion of maximum thrust value and collision avoidance.
After that the capability of the BO strategy to keep a navigation performance
within the identified requirements was investigated. Unfortunately, in this
scenario the BO guidance was found to be ineffective, since the required transfer
geometry already drove the observability angle to its optimal value in the middle
of the transfer. The BO guidance is not acting in this scenario and the exact
same results are obtained without including it in the MPC. Introducing instead
radiometric data, range first and also Doppler afterwards, the capability to
finalise the transfer is recovered, obtaining a navigation error down to around
1 km in the best condition.

Finally the last scenario was useful to prove the concept of employing MOO
procedure to design a GNSS constellation around the Moon, to serve both
surface and LLO users. Different constellation sizes and objective functions
have been considered and their results compared. In particular the test of
these navigation concept in the filter implemented for the orbital users showed
a common behaviour of the different optimisation solutions. The continuous
alternation of windows with visibility and blind ones, provided an oscillation
of the navigation errors even below 100 m to slightly above 1 km in the blind
windows where the propagation is performed assisted only by the IMU measure-
ments. Overall these performance is acceptable if stringent errors are needed
for reduced windows (e. g. roughly < 1 h). The investigation of adding optical
measurements proved instead that even in the most favourable condition (thus
more demanding from a platform implementation point of view) the increments
in the performance were not relevant to justify the added complexity.
The utilisation of these filtering and navigation strategy was proved also on
a landing scenario, where the full GNC chain is under test. In the analysed
case, considering a low visibility window, very good results are obtained with
final control errors around 400 m, reducing down to less than 200 m under
good visibility conditions. A Monte-Carlo in the reduced visibility conditions
highlighted that around 65% of the tested cases obtained a final control error
lower than 3 km, considered an acceptable rate, which may be increased with a
precise start time scheduling, targetting precise high visibility windows. When
comparing different filter algorithm–propagation couples, the EKF with a Heun
integration scheme stood-out as the most suitable formulation, second best in
speed and equivalent in performance to the more complex RKF78 propagation.
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Finally, the proposed navigation algorithms have been tested and validated in
embedded hardware, providing no relevant downsides in the execution time
also for more complex filtering techniques.

The initially posed research question can be considered to be only partially
answered. Indeed, first of all, the analysed techniques do not cover all the
scenarios where spacecraft may be operating autonomously from Earth in
reduced observability conditions. As such obviously the presented research
approaches only a small part of the global problem under investigation. Sec-
ondly, also within the proposed scenarios there are possible research extension
to consolidate even more the approaches.

In particular for the BO technique, the performed analysis considered directly
the availability of the optical angles Az and El. However, as also pointed out
in Chapter 3, the optical observable is obtained as output of a large processing
procedure, which has the role of identifying the target on the camera and
translate its pixel coordinates in the camera frame into the two angles. This
process includes thus both IP techniques and attitude estimation steps, which
are not included in this research work. An interesting future work may entail
a more advanced implementation of the whole processing chain, including a
complete 6DOF GNC loop and the inclusion of the IP techniques or at least a
performance model of its application.
In addition, this promising technique may be investigated also in different
conditions, in another environment or mission scenario, to enlarge even more
its application region.

In the GNSS scenario instead the number of possible study extension is even
larger. First of all, a formalisation of the MOO problem with a different set of
cost function can lead to even more performing constellations. Another inter-
esting aspect to analyse may consider an inter-operability of this constellation
with the LOP-G, adding it to the set of available servicers. It is possible that
its specific location in the cislunar space may serve as a sort of beacon which
remains visible to a very wide space volume for much longer periods as the
faster orbiting ELFO satellites.
From the filter implementation point of view, in order to provide an even
higher fidelity to the scenario, it could be possible to entail more accurate
accelerometer models in the simulation framework and adding also its bias and
drift in the filter state to be estimated. If then, also in this case the 6DOF
GNC is fully introduced, the same precise modelling may be used also for the
gyroscope. Concerning the attitude profile, it could be useful to consider a
specific attitude guidance for the user to maximise the visibility of the servicers,
and thus to increase the duration of the visibility windows, still keeping some
possible pointing constraints, such as nadir pointing of a certain face or Sun
pointing.
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Concerning the GNC validation through embedded PIL testing, the proposed
analyses considered just the navigation filter to be tested, in order to provide
a comparison medium for the different formulations investigated. However
validating the complete GNC loop could increase even more the reliability of
the proposed algorithms in all the three scenarios. Moreover, as already pointed
out in Chapter 5, the Raspberry Pi is quite a powerful Single Board Computer
related to the space domain, in particular if looking at the CubeSat family. As
such the execution of such validation tests on less performing hardware could
provide an additional solidity to the proposed GNC scheme also for small-sized
systems.
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