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Abstract

Nowadays, unnamed aerial vehicles (UAV) are more and more exploited in many
field of applications. The term UAV, generally called drone, usually refers to a cat-
egory of multi-rotor Vertical Take-Off and Landing (VTOL) platforms equipped
with four or more motors characterized by the absence of the pilot aboard the air-
craft. Currently, the most used and famous UAVs are the well known co-planar
drones, which were the first ones to be developed. Therefore, there is an extensive
documentation regarding methods and control systems that can improve their
performance; however, they are physically limited because of their thrust produc-
tion along a single direction only. This work will focus on a new kind of drone
and in particular on quadrotors UAVs with tiltable propellers. These platforms
have an over-actuated structure that ideally allows to independently control the
six Degrees Of Freedom (DOFs) of a rigid body in space. This is possible thanks
to the use of eight actuators: four brush-less motors, at which the propellers are
fixed and that generate the thrust; four servo-actuators, which tilt the motors
and that change the direction of the thrust vector in the aircraft frame. Today,
the control algorithms for this type of applications are still under study and they
present some important limitations mainly related to the complex and uncertain
dynamics of tiltable propellers UAVs.

For this reason, the purpose of this thesis is to design, analyse and apply
model reference adaptive control algorithms to a mathematical model of tiltable
propellers UAVs. This work will try to place emphasis on the quadrotor tracking
capabilities together with the control system ease of tuning and implementation.
In order to comprehend the possible improvements of these new architectures, the
system response will be also compared to the one of a tiltable propellers UAV in
which the last state of the art controller runs.

More in detail, after a short presentation of the object under study, first of all
the present thesis will illustrate the main limitations of the current control strate-
gies and it will present the most advanced tilt-arm simulator adopted. Secondly,
it will follow a recap of the most recent model reference adaptive control archi-
tectures, focusing on their mathematical background, their limitations and their
possible strategy of implementation for the problem of controlling a tiltable pro-
pellers UAV. More specifically, the Model Reference Adaptive Controller (MRAC)
and Closed-loop Model Reference Adaptive Controller (CMRAC) will be analysed.
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We will consider a decoupled control design for the attitude and the position dy-
namic, since it is easier, more intuitive, and we will demonstrate to be sufficient
to obtain satisfactory results. In this context, the UAV uncertain model will be
derived, given that it is required to correctly implement an adaptive control ar-
chitecture. Focusing on the attitude, a first simplified tiltrotor simulator will be
developed to test the above cited control strategies, in order to understand which
one is more suitable and performing for this precise application. Afterwards, the
controller chosen will be tuned and proven separately on the attitude and on the
position trough the high fidelity simulator, where many uncertain effects and non-
linear dynamics will be taken into account. The results will be compared with
the ones computed with the same simulator, but in which the last state of the art
PID controller will be implemented. Then, the adaptation will be activated on
both the UAV dynamics and the simulator outcomes obtained will be analysed.
Finally, once the improvements will be verified with respect to an existing PID-
based controller, a Monte Carlo simulation will be conducted to figure out the
robustness of the proposed control algorithm to some uncertain model variables
not included in the uncertain model used in the adaptive controller.



Sommario

Al giorno d’oggi, gli aeromobili a pilotaggio remoto (APR) sono sempre più sfrut-
tati in molti campi di applicazione. Il termine APR, generalmente chiamato drone,
di solito si riferisce ad una categoria di piattaforme multi-rotore a decollo ed at-
terraggio verticale dotate di quattro o più motori caratterizzati dall’assenza del
pilota a bordo dell’aeromobile. Attualmente, i più usati e famosi APR sono i ben
noti droni co-planari, che sono stati i primi ad essere sviluppati. Pertanto, esiste
una vasta documentazione riguardante metodi e sistemi di controllo che hanno
l’obiettivo di migliorare le loro prestazioni; tuttavia, sono fisicamente limitati a
causa della loro produzione di spinta lungo una sola direzione. Questo lavoro si
concentrerà su un nuovo tipo di drone ed in particolare sui quadrirotori con eliche
inclinabili. Queste piattaforme hanno una struttura sovra-attuata che idealmente
permette di controllare indipendentemente i sei gradi di libertà di un corpo rigido
nello spazio. Questo è possibile grazie all’utilizzo di otto attuatori: quattro mo-
tori brush-less, a cui sono fissate le eliche e che generano la spinta; e quattro
servo-attuatori, che inclinano i motori e che cambiano la direzione del vettore di
spinta nel sistema di riferimento dell’aeromobile. Oggi, gli algoritmi di controllo
per questo tipo di applicazioni sono ancora in fase di studio e presentano alcune
importanti limitazioni legate principalmente alla complessa e incerta dinamica che
caratterizza gli APR ad eliche inclinabili.

Per questo motivo, lo scopo di questa tesi è di progettare, analizzare e applicare
algoritmi di controllo adattivo a modello di riferimento ad un modello matematico
del drone ad eliche inclinabili. Questo lavoro cercherà di porre l’accento sulle
capacità di tracking del quadrirotore insieme alla facilità di taratura del sistema
di controllo e alla sua implementazione. Per comprendere i possibili miglioramenti
di queste nuove architetture, la risposta del sistema sarà anche comparata a quella
di un APR ad eliche inclinabili in cui gira l’ultimo controllore all’attuale stato
dell’arte.

Più in dettaglio, dopo una breve presentazione dell’oggetto in esame, prima di
tutto la presente tesi illustrerà i principali limiti delle attuali strategie di controllo e
presenterà il simulatore adottato più avanzato. In secondo luogo, seguirà un riepi-
logo delle più recenti architetture di controllo adattivo a modello di riferimento,
concentrandosi sul loro background matematico, sui loro limiti e sulla loro possibile
strategia di implementazione per il problema di controllo di un drone ad eliche
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inclinabili. Più specificamente, saranno analizzati il Model Reference Adaptive
Controller (MRAC) e il Closed-loop Model Reference Adaptive Controller (CM-
RAC). Prenderemo in considerazione un design di controllo disaccoppiato per la
dinamica di assetto e di posizione, dal momento che è più facile, più intuitivo, e
dimostreremo di essere sufficiente per ottenere risultati soddisfacenti. In questo
contesto, il modello incerto dell’APR verrà derivato, dato che è necessario per
implementare correttamente un’architettura di controllo adattivo. Concentran-
dosi sull’assetto, verrà sviluppato un primo simulatore semplificato per testare
le strategie di controllo sopra citate, al fine di capire quale sia la più adatta e
performante per questa precisa applicazione. Successivamente, il controller scelto
verrà tarato e collaudato separatamente sull’assetto e sulla posizione attraverso
il simulatore ad alta fedeltà, dove verranno presi in considerazione molti effetti
incerti e dinamiche non lineari. I risultati saranno confrontati con quelli calco-
lati con lo stesso simulatore, ma in cui sarà implementato l’ultimo controller PID
all’attuale stato dell’arte. Quindi, l’adattamento sarà attivato sia sulla dinamica
di assetto che di posizione e i risultati ottenuti dal simulatore verranno analizzati.
Infine, una volta verificati i miglioramenti rispetto ad un controller PID, verrà
condotta una simulazione di Monte Carlo per capire la robustezza dell’algoritmo
di controllo proposto ad alcune variabili di modello incerto non incluse nel modello
incerto utilizzato per il controllore adattivo.
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Introduction

In recent years, the interest for the multirotor Unmanned Aerial Vehicles (UAVs)
has grown due to their flexibility, the wide range cost, which can span from few to
some thousands euros, and the fact that they are environmental friendly. Thanks
to their dimensions and their autonomous capabilities, they can be used in many
fields of applications such as: surveillance, inspections, scientific research, agri-
culture, military and much more. Today, fixed co-planar multirotors are the
most used ones, mainly because of their construction simplicity and the easiness
of the control algorithms that allow them to fly. However, like any other ma-
chine, they present some limitations. One of the most constrictive is that they
are under-actuated platforms: in other words, they cannot independently control
the attitude with respect to the position. In this scenario, the UAVs with thrust
vectoring capabilities are really interesting because they offer the possibility of
increasing the vehicle performances.

This work will focus on a particular platform, named tilt-arm UAV, in which
the UAV propellers are installed on their respective brackets that are, in turn,
attached to servo actuators. These latter have the ability to rotate the brackets
making the propellers tiltable, hence the name “tilt-arm” for this kind of systems.
From a physical point of view, this leads to a fully actuated aerial vehicle with,
theoretically, the capability to reach a certain position in a completely indepen-
dent way with respect to its attitude. Moreover, they are also efficient in terms
of power consumption and they do not lead to the generation of internal forces in
hovering conditions. Although, these kinds of multirotors are mechanically and
electronically more complex than the co-planar UAVs. Since the tiltrotor is an
unstable system, it needs a control algorithm capable to stabilize and control it.
The state of the art of such controllers refers to different attempts such as the
approach of Ryll et al. (FDBL), a quaternion based P/PID controller (CPID), the
approach of Kamel et al. and the approach of Invernizzi et al. (IQTO), which are
typically more suitable for co-planar multirotors. They have been compared in the
literature, for more details one should see [2], where it has been shown that they
offer similar results, since they are based on simplified dynamic models that limit
the achievable performances. Therefore, the purpose of this thesis is to find a con-
trol algorithm with good tracking capabilities and simplicity of tuning, in order to
improve the actual research in the field of control systems for tiltable propellers
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UAVs. A possible solution has been found in adaptive controllers. Differently
from the previous cited architectures, an adaptive control system is character-
ized by the ability to “learn” from the state measurements, and to autonomously
“adapt” itself against uncertainties in the system or non-predictable events. More
specifically, in this work two different adaptive approaches will be analysed: the
Model Reference Adaptive Controller (MRAC) and the Closed-loop Model Refer-
ence Adaptive Controller (CMRAC). The words “Model Reference” refer to the
working principle of these particular architectures. In fact, the idea is to build
up a dynamic mathematical model, the so called reference model, which describes
the tiltrotor ideal behaviour generating the desired state. Then, this information
will be used by the controller to estimate some uncertain model parameters, to
automatically produce the correct control input capable to bring the UAV dy-
namic as close as possible to the ideal one. The two cited adaptive approaches
are very similar and differ for the reference model form only. In fact, the MRAC
is made by a reference model that simulates exactly the UAV dynamic, while the
CMRAC has an additional term that takes into account for the difference between
the plant and the reference model state (closed-loop). All the results will be veri-
fied trough the use of different numerical simulations with increasing complexity.
Since the tiltable propellers UAV is able to independently control the position and
the attitude, a decoupled approach will be chosen to design the control system.
More specifically, the first simulations and the tuning process will be carried out
separately on the attitude and on the position, then the complete adaptive system
will be proven on the full model.

This thesis will be structured in:

� Chapter 1. Mathematical modelling and control of tiltable propellers UAVs.
This chapter will firstly present the tiltable propellers UAV mathematical
model and an its simplified version more suitable for the control problem.
Then, an overview of the current state of the art control systems will be il-
lustrated highlighting their limitations. Finally, the most complex numerical
simulator used in this work will be described.

� Chapter 2. Adaptive controllers introduction. In this chapter, a brief
overview of the MRAC and CMRAC approaches will be shown, focusing
on their peculiarities. Then, more specifically, we will describe the con-
trol architecture chosen and the instability phenomena that usually affect
these kinds of control systems. Possible solutions to these problems will be
analysed considering different adaptive laws.

� Chapter 3. Uncertain Model. This chapter will begin with the derivation
of the UAV linear plant. After that, considering a decoupled approach for
the attitude and the position dynamic, the uncertain model parameters will
be identified and the reasons of their choice will be analysed. Finally, the
complete uncertain model will be computed.
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� Chapter 4. Attitude adaptive control system. This chapter will focus on
the design of the control system for the UAV attitude dynamic. Firstly,
the details regarding the baseline controller, the reference model and the
adaptive laws will be showed. Secondly, a simplified numerical simulator
will be presented, and it will be used to understand the sensitivity of the
gains characterizing the MRAC and CMRAC architectures. After the most
suitable adaptive architecture has been chosen, the chapter will end up with
the presentation of the results obtained with the complete tilt-arm simulator.

� Chapter 5. Position adaptive control system. This chapter will follow the
same structure of chapter 4, but referring on the position dynamic. Also in
this case, the details regarding the baseline controller, the reference model
and the adaptive laws will be illustrated. Finally, the results computed with
the tilt-arm simulator, considering the adaptation active on the position
only, will be showed.

� Chapter 6. Attitude and position adaptive controllers. This last chapter will
analyse the outcomes obtained by the tilt-arm simulator with the adaptation
working on both the attitude and the position dynamic. The discussion will
end up with the implementation of a Monte Carlo simulation, with the
purpose of figuring out the system robustness to uncertainties in the mixer
matrix.
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Chapter 1

Mathematical modelling and
control of tiltable propellers
UAVs

In this chapter, after a short presentation of the platform, the complete mathe-
matical model of UAVs with tiltable propellers will be presented. Then, under
appropriate assumptions a simplified model will be derived in order to develop a
sufficiently accurate simulator of the UAV dynamics. Moreover, the most recent
control designs that have been proposed in the literature will be shown together
with their advantages and disadvantages. Afterwards, considering an existing con-
trol law, its current limitations will be highlighted. Finally, the architecture of
the most complex simulator developed will be illustrated with the help of a block
diagram for an easier comprehension.

1.1 Mathematical model

The tiltable propellers quadrotor shown in 1.1 is a new type of Unmanned Aerial
Vehicle that differs from the common fixed coplanar propellers drones by the
capability to rotate its rotors. There exist two different configurations: tilt-arm,
in which the arms and consequently the motors rotate, or tilt-rotor, in which the
propellers only tilt. In both of them each rotor can rotate independently. In this
work, we will always refer to these two configurations as tiltable propellers UAVs.
The increased mechanical complexity of such UAV is repaid by the fact that the
tiltable propellers structure is, in theory, able to completely decouple its attitude
from its position. In other words, these kinds of UAV should be able to maintain a
certain attitude independently from the position that they have to reach. On the
contrary, it is common to see a coplanar propeller UAV that changes its attitude,
in order to reach a certain position. Instead, the tiltable propeller UAV is a fully
actuated platform that allows to perform complex full-pose manoeuvres, which
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Figure 1.1: Tiltable propellers quadrotor UAV prototype

can be very helpful, for example, in inspection-like applications or in constrained
environments. Assuming that the servo-actuators can perform a full rotation,
these platforms have the ability to deliver both force and torque in any direction
enhancing the aircraft interaction capabilities with the environment. On the other
hand, they are characterized by an increased overall complexity of the drone.
Since the focus of this thesis is on the design of suitable controls algorithm for
tiltable propellers quadrotors, the set of equations that describe the UAV complete
dynamic will not be derived: they will be simply taken from previous works on
the same kind of system [1].

Before presenting the mathematical model, the following notation will be
used throughout this work. Rn denotes the n-dimensional Euclidean space and
consequently Rm×n is the set of m × n real matrices. Given x ∈ Rn, ‖x‖ :=
(x2

1 + · · ·+ x2
n)1/2 is the Euclidean norm. Given A ∈ Rm×n, the compact notation

A ∈ Rn×n
>0 is used to represent a positive-definite matrix. The ith vector of the

canonical basis of Rn is denoted as ei (1 in the ith position and zeros elsewhere),
therefore the identity matrix is defined as In ∈ Rn×n := [e1 · · · ei · · · en]. For com-
pactness, 0n and 0nm is used to identify a matrix of zeroes with dimension Rn×n

and Rn×m respectively. The set SO(3) := {R ∈ R3×3 : RTR = I3, det(R) = 1}
denotes the third-order special orthogonal group and S1 := R mod 2π denotes the
unit circle manifold. Then, the map S(·) : R3 → SO(3) given by:

ω →

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (1.1)

defines an isomorphism between R3 and the vector space of third order skew-
symmetric matrices, i.e. SO(3) := {W ∈ R3×3 : W = −W T}, such that one
has S(ω)y = ω × y, ∀ω, y ∈ R3, where × is the cross product. Note that the
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corresponding inverse is S−1(·) : SO(3)→ R3.
As reported in [2], the dynamics of this kind of platforms evolve on the product

manifold SO(3) × R3 × (S1 × S1)n, for which one refers to SO(3) × R3 as the
base space whereas to (S1 × S1)n as the shape space. As shown in figure 1.2,
the base space is described by the configuration of a body-fixed reference frame
FB = (OB, {b1, b2, b3}) with respect to an inertial frame FI = (OI , {i1, i2, i3}). In
this context, R ∈ SO(3) := [b1, b2, b3] is the attitude matrix that describes the
orientation of FB with respect to FI . b1, b2 and b3 ∈ S3 are the body reference
frame unit vectors written with respect to FI . i1, i2 and i3 ∈ S3 are the inertial
reference frame unit vectors, and OI , OB are respectively the inertial and body
reference frame origins.

Figure 1.2: UAV reference frames and axis [1]

Then, referring to figure 1.3, the relative configuration of the ith tilt arm
with respect to the main body belongs to the shape space. It is parametrized
by the angles (βai, θri) ∈ S1 × S1, where βai and θri describe respectively the
inclination of the ith arm axis and the angular position of the propellers, both
with respect to a fixed direction in the body frame. Moreover, introducing the
relative angular velocity of the tiltrotor ith arm as: β̇ai := ωai ∈ R and of the
rotor as: θ̇ri := ωri ∈ R>0, and assuming linear dynamics for the servo actuators
and the motors’ closed loop system, the actuator dynamics is described by:

βai = Gs(s)β
d
ai (1.2)

ωri = Gm(s)ωdri (1.3)
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Figure 1.3: Propeller frame [1]

where βdai and ωdri are the desired tilt angle and rotor velocity, which are the
control inputs of the system. Collecting the introduced angles and angular ve-
locities in two different single vectors as: θs := (βa1, · · · , βan, θr1, · · · , θrn) and
ωs := (ωai, · · · , ωan, ωri, · · · , ωrn), it is possible to write the tiltrotor complete
mathematical model [2], which derivation can be found in [1]:

ẋ = v

Ṙ = RS(ω)

θ̇r = ωr
mv̇ −mRS(xc)ω̇ = −mge3 −mRS(ω)2xc +R(fc + fe) + dF
J(θs)ω̇ +mS(xc)R

T v̇ = −S(ω)J(θs)ω −mgS(xc)R
T e3 + dT + τc + τe

(1.4)

where x ∈ R3 is the position of Ob with respect to OI , v ∈ R3 is the inertial
translational velocity, ω ∈ R3 is the body angular velocity, J(θs) = J(θs)

T ∈
R3×3
>0 is the UAV inertia tensor as a function of the propellers position, m ∈

R>0 is the tiltrotor overall mass, g = 9.81m
s2

is the gravity acceleration, fe :=
fe(R, x, ω, v, ω̇, v̇, θs, ωs, ω̇s, t) and τe := τe(R, x, ω, v, ω̇, v̇, θs, ωs, ω̇s, t) are respec-
tively the external body force and torque, fc ∈ R3 is the control force, τc ∈ R3 is
the control torque, dF ∈ R3 and dT ∈ R3 are the disturbance terms, xc ∈ R3 is
the center of mass position with respect to Ob.

1.1.1 Allocation algorithm

Referring to the dynamic system showed in the previous section, it is possible
to see that the UAV plant can be controlled by generating a certain force and
torque through fc and τc. However, the real physical inputs to the system are the
rotor angular velocities and the servo actuators angles, namely βa and ωr. For
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this reason, the standard approach splits the control design in two parts. A first
one, usually put into action by specific controllers that compute the necessary
force and torque, then a second one that is performed by an allocation algorithm,
which transforms the control force and torque into physical inputs. As shown
below, the allocation is based on the inversion of a non-linear static map which
depends on some basic information about the UAV and has to deal with kinematic
singularities, limited actuators bandwidth and a controller fast enough to track
any desired set point, see [2]. In this thesis, we only concentrate on the first part
of the control design; therefore the allocation algorithm is briefly recalled from
previously works such as the one reported in [1].

Referring to a tiltable propellers quadrotor, the idea is to build up a mixer
matrix M that relates the forces and torques coming from the controllers θa and
ωr as: [

fc
τc

]
= M6×8 fu 8×1(βa, ωr) (1.5)

where fu is a vector where the first four elements correspond to the horizontal
components of the thrust generated by the four propellers and the last four to
the vertical components, for example as the one showed in equation (1.6). While
M = M(σ, b) is a function of the arm length b ∈ R>0, and of the actuators
properties σ = Kq

Kt
where Kq ∈ R>0 and Kt ∈ R>0 are respectively the torque

and thrust coefficients that can be computed after a proper identification of the
propellers.

fu =



fp1 cos(βa1)
fp2 cos(βa2)
fp3 cos(βa3)
fp4 cos(βa4)
fp1 sin(βa1)
fp2 sin(βa2)
fp3 sin(βa3)
fp4 sin(βa4)


(1.6)

In the above expression, fpi = fpi(ωri) represents the thrust of the i-th propeller,
which is typically written using a quadratic law for multi-rotor UAVs control,
namely fpi = Ktω

2
ri. By inverting equation (1.5) it is possible to obtain the map

that gives the physical inputs from the control force and torque:

fu = M+

[
fc
τc

]
(1.7)

where M+ is the Moore-Penrose pseudo-inverse of matrix M . Once the fu vector
is recovered from equation (1.7), one can compute ωr and βa from the following
relations:

fpi =
√
f 2
u(i) + f 2

u(i+ 4) (1.8)
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ωri =
fpi
Kt

(1.9)

βai = arctan 2(fu(i+ 4), fu(i)). (1.10)

It is important to note that the mixer matrix M is constant and only depends
on physical quantities and coefficients of the UAV: thanks to this property, its
pseudo-inverse needs to be computed just once and it can be stored on-board as
part of the controller implementation.

1.2 Model for control

In order to make the model suitable for the derivation of the control algorithms,
some assumptions have to be made to derive a simplified version of the above
dynamic system. In particular, we can consider the following assumptions:

1. The UAV is rigid: material flexibility is not considered.

2. The UAV inertia tensor is constant.

3. The control wrench wc := (fc, τc) delivered by the actuators spans R3 ×R3,
the system is fully actuated.

4. The actuator dynamics are sufficiently faster than the expected system dy-
namics.

5. Full-state measurements are available.

The first assumption lies on the idea that the UAV and the rotors are sufficiently
rigid so that flexibility does not affect the dynamics in the frequency range of
interest. Instead, the second assumption is the result of several minor ones. In
fact, also considering the system as rigid, the inertial tensor is a function of the
angular position βai of each ith propeller: J(θs). However, the shape changes
due to the actuation mechanism do not significantly affect the geometrical and
dynamical properties of the system, so: J(θs) = J = constant. The third and the
forth allow to apply the allocation algorithm since we are considering manoeuvres
that the actuators can easily perform taking into account their dynamic response
and physical limitations. Finally, the last assumption is to say that, on board,
there are some sensors and an estimation algorithm that provide real-time full-
state measurements. Therefore, the set of equations describing the simplified
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tilt-arm dynamic is shown in equation (1.11):
ẋ = v

Ṙ = RS(ω)

θ̇r = ωr
mv̇ −mRS(xc)ω̇ = −mge3 −mRS(ω)2xc +Rfc + dF
Jω̇ +mS(xc)R

T v̇ = −S(ω)Jω −mgS(xc)R
T e3 + dT + τc.

(1.11)

1.3 Overview of existing control designs

Regarding the control systems for tiltable propellers quadrotor, a brief recap of
the current existing control strategies will be done.

The first that it is considered is a modification of the Approach of Ryll et al.
(FDBL) showed in [2]. The idea is to consider a simplified feedback linearization
controller that exploits fc and τc as physical inputs and the invertibility of the
allocation map. The main problem of this approach is that the angular accel-
erations and velocities of the tilting propellers are used as variables for control
design. Indeed, these latter do not appear in the dynamic system and conse-
quently a dynamic extension procedure has to be used. Moreover, the control
law requires high computational power due to the presence of many integrators.
Optimization strategies have to be employed for reducing the power loss and for
avoiding the UAV to reach the hovering condition with inclined propellers, which
produces internal forces and wastes power. Any suitable tuning method can be
applied to obtain the desired performances.

The second control strategy is the Approach of Kamel et al. [7] that was
applied to an hexacopter tilt-rotor UAV. This approach is based on a proportional
integral stabilizer with feed-forward action for position tracking and on a cascade
architecture for attitude tracking. The main limitations come from the fact that
the controller needs the known of the center of mass position and there are not
clear methods to estimate it. Furthermore, there are no integral actions in the
attitude controller, and this can lead to problems when the propellers are not
perfectly balanced.

The third is the Approach of Invernizzi et al. (IQTO) [2], which is based
on conditional integrators and non linear stabilizers for position tracking and a
geometric PID for attitude tracking. The main limitation in this case was found
in the tuning phase. In particular, the large number of parameters and their
non straightforward contribution to the system response makes the tuning very
complex. In position tracking the controller provides worse results with respect
to the other ones but it was showed to be quite good in attitude.

Finally, the last approach is the Quaternion-Based P/PID Controller (CPID)
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[2] that relies on a proportional action in the outer loop and PID controller in the
inner loop for both attitude and position as illustrated in figure 1.4. Referring

Figure 1.4: Nested attitude and position control loops [2]

to equation (1.12), the idea is the one used in many multirotor platforms such as
the PX4 autopilot [8]. The outer attitude loop, which is based on the quaternion
error and a switching strategy to avoid the unwinding phenomenon, computes the
desired angular velocity, and in turn this is sent as a reference to the inner loop.

ωv = −KA
posign(qe)qe

τc = KA
ffωv + (KA

pi +KA
i

1
s
)(ωV − ω)−KA

d
s

1+ s
N
ω

vv = −KP
poex

fc = RT (KP
ffvv − (KP

pi +KP
i

1
s
)(v − vV )−KP

d
s

1+ s
N
v +mge3)

(1.12)

Where ex = x − xd is the position tracking error in which xd ∈ R3 is the desired
position, qe ∈ R3 and qe ∈ R are respectively the vectorial and the scalar part
of the quaternion error q̂e ∈ S3. This latter is computed as the Hamiltonian
product between the desired quaternion qd ∈ S3 and the conjugate of the measured
quaternion q ∈ S3, for example q̂e := qd ⊗ q∗ [9]. Furthermore, KA

po ∈ R3×3 is the
proportional gain of the outer loop, and KA

ff ∈ R3×3, KA
pi ∈ R3×3, KA

i ∈ R3×3 and
KA
d ∈ R3×3 are respectively the feedforward, the proportional, the integral, and

the derivative gains of the inner loop. Since in the next sections a linear model
will be derived and it will not work with quaternions but instead with roll, pitch
and yaw angles, as showed in figure 1.5, it should be noted that the first equation
in (1.12) can be also linearised to retrieve the Euler angles:

ωv = −KA
posign(qe)qe ≈ −

1

2
KA
poαx (1.13)

where αx = α−αd is the attitude tracking error in which αd ∈ R3 is the vector of
the desired Euler angles.
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Figure 1.5: UAV Euler angles [1]

1.4 Tilt-arm quadrotor simulator

Starting from the dynamic model described in equation (1.11), the numerical
implementation for simulation purposes of the tilt-arm model is presented. This
model is an update version of the one presented in [1]. The simulation environment
used is Simulink and Matlab [10] by MathWorks. All the physical data and the
modelling of the actuators dynamic have been taken with the goal to reconstruct
in a numerical environment an existent tiltrotor prototype built in the ASCL
laboratory of the Politecnico of Milan.

� Tiltrotor: this block contains all the dynamic equations presented in (1.11).
It receives as input the thrusts requested to the four motors in %, and the
tilting angles of the four arms βai for i = 1, 2, 3, 4. The outputs of this block
are the position, the velocity, the attitude and the angular rates vectors.

� Controller: it is the key block of this thesis. Different non linear control
strategies have been implemented, all receive as inputs the measurements
and the set points, and produce as outputs the eight control variables. As
it will be showed in the next sections, this block contains other two blocks
representing respectively the baseline and the adaptive controller.

� State Filter: this block reads the output of the tilt-rotor block and trans-
forms the signals by discretizing them. This is a way to take into account
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Figure 1.6: Main blocks composing the numerical model

the sampling time of an hypothetical hardware on which the control system
should be implemented. The considered working frequency is 250Hz.

� Setpoint Generator: this block generates the trajectory that the tilt-rotor
is supposed to follow. The set-point specifies not only the required position
and the attitude in function of time, but also velocity, acceleration, angular
rates and angular accelerations. Fortunately, the control strategies adopted
require only the first twos. The trajectories are approximated with a fifth
order polynomial in the position as variable.

Figure 1.7: Tilt-arm Simulink dynamic model

Figure 1.6 shows the implementation in Matlab Simulink of the dynamic model
described in equation (1.11). The actuators block contains the dynamic equations
of motors and servo-motors whose parameters have been identified in laboratory.
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It computes the inverse of the allocation procedure (mixing) showed in section
1.1.1. The left rectangle contains forces and moments acting on the system in
body frame: gravity force, propellers forces, propellers moments and aerodynamic
damping. The central section contains the integrators of the non linear dynamic
equations counting for gyroscope effect, UAV inertia, center of mass position and
disturbances. In the right upper rectangle the frames transformations are exe-
cuted and then the kinematic equations are integrated. Finally, in the right lower
rectangle, the output of the model simulation is produced.

This numerical simulator has been used in this work to validate the designed
control architecture under study. Other simplified simulators, which will be de-
scribed later, have been developed in order to make a first selection of the most
suitable control strategy for this particular system.

1.5 Limitations of existing control designs

In this section, the CPID controller will be analysed more in detail. In fact,
since it has shown results comparable with others currently solutions [2] and it
is demonstrated a simple and intuitive approach, the CPID has been chosen as
the architecture with respect to which the adaptive systems implemented in this
thesis will be compared. Moreover, as can be seen in the next chapters, an its
slight modification will be chosen as baseline controller for the adaptive structure.

Concerning the controller limitations, an important aspect is that [2] and [1]
do not consider the fact that the center of mass position is unknown and not
coincident with the body reference frame origin. In fact, it is almost impossible
to place all the UAV components in such a way that xc = [0, 0, 0]. To better
understand this concept, in this section some numerical results will be showed.
More specifically, the outcomes computed with the Simulink plant showed in figure
1.7 will be illustrated with the CPID approach and with neglected dT and dF . As
illustrated in figure 1.8, the desired set points for the simulations have been chosen
as a simple step on the first and third position component while maintaining null
Euler angles for all the manoeuvre.

Figure 1.9, 1.10, 1.11, 1.12, 1.13 and 1.14 show respectively the attitude, the
angular velocity, the position and the translational velocity error, along with the
control input forces and torques. The results obtained can be compared with
xc = [0, 0, 0]T , reported on top of each figure, and xc = [0.01, 0.01, 0.01]T , revealed
at the bottom.

It is possible to notice that in general the error given from the simulations
with xc = [0.01, 0.01, 0.01] m is bigger than the ones with xc = [0, 0, 0], especially
at the beginning and during the step changes. This effect is particularly relevant
in the attitude where the angular velocity and the Euler angles show the biggest
errors. Instead, the position and the translational velocity present some differences
only in the first 5 seconds. A similar analysis can be carried out for the control
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Figure 1.8: Desired position (on top) and attitude angles (bottom)

Figure 1.9: Attitude error with respect to the desired Euler angles for the simulator
with xc = [0, 0, 0]T (on top) and xc = [0.01, 0.01, 0.01]T (bottom)
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Figure 1.10: Angular velocity error with respect to the outer loop ωv for the
simulator with xc = [0, 0, 0]T (on top) and xc = [0.01, 0.01, 0.01]T (bottom)

Figure 1.11: Position error with respect to the desired set points for the simulator
with xc = [0, 0, 0]T (on top) and xc = [0.01, 0.01, 0.01]T (bottom)
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Figure 1.12: Velocity error with respect to the outer loop vv for the simulator
with xc = [0, 0, 0]T (on top) and xc = [0.01, 0.01, 0.01]T (bottom)

Figure 1.13: Input control force fc for the simulator with xc = [0, 0, 0]T (on top)
and xc = [0.01, 0.01, 0.01]T (bottom)
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Figure 1.14: Input control torque τc

inputs. The control force, which affects the position dynamic, does not show large
discrepancies, while the control toque, which influences the attitude dynamic,
presents very different behaviours. Moreover, one should keep in mind that the
center of mass position is only one of the uncertainties that are present on a
tiltable propellers quadrotor. In addition, if we also consider the fact that, for
example, it is very difficult to have an exact estimation of the inertia tensor and
the UAV can be subjected to unknown external disturbances or not predictable
events, it is evident that a CPID controller should not be satisfactory. Therefore,
it should be clear that an adaptive controller is needed in order to counteract all
these uncertain actions.

Continuing with the CPID limitations, by looking at equation (1.12) one can
notice that the use of the sign function to avoid unwinding may result in chattering
due to noise. In the paper [2], the controller is mainly designed for stabilization
rather than a tracking task, so the performances for time varying set points can-
not be satisfactory. As the previously seen control architectures, also the CPID
depends heavily on the tuning. Techniques such as the structured H∞ can be
used but they are complex due to the large amount of parameters. Moreover, its
design relies on the assumption of negligible gyroscopic effect and other stringent
assumptions which seriously affect the performance especially in aggressive tasks.

1.6 Conclusion

In this chapter, the complete non linear mathematical model of the tiltable pro-
peller UAV has been presented. A full non linear simulator, accounting for ac-
tuator dynamics and disturbances, has been implemented in Simulink and tested
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using a quaternion-based PID controller, which is a good compromise between
simplicity of implementation and performance. A simplified dynamical model
capturing all the relevant complexities of the considered plant has been developed
for control design purposes and it will be exploited in the forthcoming chapters.

As shown in a numerical example, one of the major limitation of current state-
of-the-art control designs lies in the fact that cross-couplings between attitude
and position are neglected. In the next chapters, a solution to the main problems
associated with existing designs will be provided by exploiting the tools of adaptive
control.



Chapter 2

Adaptive Controllers
Introduction

In this chapter, after a general background on adaptive control, different strategies
will be discussed together with their advantages and limitations. In particular, this
chapter is focused on model reference adaptive control (MRAC) and on closed-
loop model reference adaptive control (CMRAC). A more broad review about
adaptive control theory can be found in [11]. Each of them will be analysed and
discussed trying to give an overall idea of their working principle and presenting
the respective strategies used in this thesis.

2.1 Brief introduction to adaptive control

The tiltable propeller UAV dynamic is affected by both parametric uncertainties
and unmodelled dynamics. Classical controllers similar to the ones previously
analysed cannot be very suitable for this particular problem. Due to the high non
linearity of the system, the lack of knowledge of certain variables makes the prob-
lem of controlling the tiltrotor difficult. According to Cambridge Dictionary, the
verb “to adapt” means “to change something to fit a different use or situation”.
The first researches on adaptive control started in the early 1950s focusing on the
design of autopilots for high-performance aircraft. In general, the idea behind
the adaptive controller lies on the intuition that the output response y(t) of the
system carries information about the model state and parameters. In theory, one
can process the input u(t) and the output y(t) in order to learn about parameter
changes that can be exploited for tuning certain controller gains. As an example,
a robust controller such as the classical Proportional Integral Derivative (PID)
is generally designed to operate under the worst-case conditions, consequently it
may use excessive actions to regulate the process. On the contrary, an adaptive
controller primarily tries to estimate the process uncertainties on-line and then to
produce a control input to anticipate, overcome or minimize the undesirable de-
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viations from the prescribed closed-loop plant behaviour. Needless to say nothing
is free: due to their more complex structure, an adaptive controller needs a more
powerful and faster hardware to overcome the increased computational effort.

Figure 2.1: General structure of an adaptive controller [3]

To be more precise, referring to figure 2.1, as an example one can think to take
a plant model in the form of equation (2.1):{

ẋ = Aix+Biu
y = Cix+Diu

(2.1)

where in this case Ai, Bi, Ci and Di are functions of some operating conditions
i. Therefore, while the system is operating, it can end up to different settings
that change the above matrices. An adaptive controller should be able, in theory,
to adjust its gains by simply extrapolating the necessary information from the
input and output of the plant. In this way, it can accommodate itself even in
the case of a non perfectly modelled dynamic system. In reality, recent results
in adaptive control have shown that good performances can be achieved by com-
bining a robust controller with an adaptive one maintaining closed-loop stability,
enforcing robustness to uncertainties, and delivering the desired performance in
the presence of unanticipated events.

2.1.1 Model Reference Adaptive Control (MRAC)

Referring to figure 2.2, it is possible to see that the main difference with figure
2.1 is the addition of an another block named reference model. This latter is
a new dynamic system, which takes the same reference inputs of the plant that
describes the desired behaviour that we want the plant to follow. In other words,
it is simply a set of differential equations that are integrated on-line, in order to
recover the ideal response with respect to which the output of the actual plant
has to be compared. The resulted error is finally used to adjust the controller
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gains through an adaptive law. In general, the adaptive controller also takes the
set point for a better estimation of the uncertain parameters.

Figure 2.2: Structure of an MRAC control system [3]

More in detail, as showed in [4], it is possible to consider for example the
following dynamical model representing the mathematical translation of a real
physical system:

ẋ = Ax+BΛ(u(t) + f(x)) (2.2)

where x ∈ Rn is the system state vector, A ∈ Rn×n is a known Hurwitz
matrix specifying the desired closed-loop dynamic, u ∈ Rnu is the control input,
B ∈ Rn×nu is the known control matrix and Λ ∈ Rnu×nu is an unknown invertible
matrix representing the uncertainty in the system. The uncertainty is introduced
to model control failures or modelling errors, in the sense that there may exist
uncertain control gains or the designer may have incorrectly estimated the system
control effectiveness. The result is that, in contrast to the usual state space
models, also the modelling of the uncertain parameters have been introduced
directly in the dynamic system. Finally, f(x) : Rn → Rnu represents the system
matched uncertainty. It is assumed that each individual component fi(x) can
be written as a linear combination of N known locally Lipschitz-continuous basis
functions ψi(x), i = 1, · · · , N with unknown constant coefficients, as showed in
the following equation:

f(x) = θTψ(x), θ ∈ Rn×N where ψ(x) =

ψ1(x)
...

ψN(x)

 . (2.3)

Therefore, assuming that the pair (A,BΛ) is controllable, equation (2.2) together
with (2.3) represent the common form of many dynamic systems in which an
adaptive algorithm is implemented. The control objective is to design u such that
the output of the system y = Cx ∈ Rny tracks any bounded possibly time-varying
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command r(t) ∈ Rny with the presence of system uncertainties. In particular,
the state should converge to the state generated by the reference model that
represents the desired system behaviour. A MRAC generic reference model is
usually described as equation (2.4):

ẋm = Amxm +BKrr(t) (2.4)

where Am ∈ Rn×n represents the desired closed-loop behaviour and Kr ∈ Rnu×n

is a constant feed-forward gain. In order to have the plant following the reference
model, the control input has to be chosen such that it ensures the convergence of
e = ‖x(t) − xm(t)‖∞ and that this latter is sufficiently small in order to satisfy
the tracking problem.

The MRAC architecture has the advantage to be easy to implement and, with
a suitable choice of the control input, it ensures closed-loop stability. At the same
time, in the literature there is a lack of guidelines to select an adequate tuning
that represents the MRAC major challenge. For this reason, the tuning phase
is usually done by simply trial and error procedures or expensive Monte Carlo
simulations. Moreover, this approach does not give the possibility to the designer
to adjust the controller in order to have a desired transient behaviour which, in
turn, typically shows an oscillatory behaviour.

2.1.2 Closed-Loop Model Reference Adaptive Control (CM-
RAC)

As previously mentioned, one of the major problems of the MRAC architecture
is the tuning phase. Also in the literature [12], it is clear that the designer has
to find a trade-off between the speed of convergence and the presence of very
fast oscillations in the transients. In general, we want that the system tracks
the reference model fast so that the transient dynamics extinguish as soon as
possible. This involves high adaptation gains that in turn generate high frequency
oscillations during the transients. Therefore, one should find the right compromise
because a too fast controller can lead to dangerous chattering phenomena.

Historically, the Model Reference Adaptive Controller has been the one that
was developed first and has been open-loop in nature. More precisely, the reference
model is not influenced by the plant itself but it simply takes as input only the set
point, as shown in figure 2.2. Therefore, an idea to solve the oscillations problem
can be the one of finding a way to tell to the reference model how much it is
deviating from the plant. The concept is very similar to a classical state observer,
where a term equivalent to the output innovation feedback in a state observer is
added to the reference model, as shown in equation (2.5) and illustrated in 2.3:

ẋm = Amxm +BKrr(t) +Kee. (2.5)

In the above equation, Ke ∈ Rn×n is the reference model feedback gain and
e = x − xm. This improved architecture, as showed in [12], has demonstrated to
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Figure 2.3: Structure of an CMRAC control system [4]

offer a decreased tracking error L2 norm that is strictly related to the frequency
characteristics of the signal and consequently to the number of oscillations. By
tuning Ke, the MRAC transient dynamic can be forced to decay as fast as needed.
It is an additional degree of freedom that, together with the adaptation gain, can
be used to ensure fast tracking convergence and good transient performances.

Finally, as can be seen, the overall CMRAC architecture is equal to the one
of the MRAC but with the exception of the new innovation term entering in the
reference model. For this reason, as the MRAC, the limitation of how tuning the
gains is still present, even if some guidelines exist [12]. The performance of this
adaptive scheme is strongly dependent on the adaptation gain that cannot be too
large for robustness reasons and furthermore, it is not so easy to understand what
too large means.

2.2 Control architecture chosen

The previous twos architectures are two general approaches largely used in the
adaptive control theory that have been presented only to show the specific back-
ground and their main peculiarities. In fact, it was mentioned in section 2.1 that
the best performances can be achieved by integrating a baseline controller to-
gether with the adaptive one. In figure 2.4, the MRAC structure of the control
system used in this work is reported. The same structure can be also used for the
implementation of the CMRAC by simply adding the error term as input to the
reference model as showed in figure 2.5. In particular, it is possible to notice that
there are a total of three controller blocks. Two baselines and one adaptive. By
definition, the reference model is made by a baseline controller plus the reference
plant that generates the ideal output. The two baseline controllers take as input
the reference signal and the plant state, and compute the baseline control input
ub, respectively for the reference dynamic system and for the plant. It should be



26 Adaptive Controllers Introduction

Figure 2.4: MRAC Control system architecture used in this work

noted that these two controllers are identical. Then, the error between the sim-
ulated reference model and the plant, along with the set points, are used by the
adaptive controller to compute the adaptive control input ua. In this architecture,
ub brings the system to the correct desired point and in the meanwhile, ua tries to
anticipate, overcome or minimize all the non predictable actions. For this reason,
considering the plant presented in (1.11), the control input force and torque fc
and τc have been split in two different contributions to highlight the decoupling
between the baseline controller and the adaptive one. More precisely:{

τc = τ bc + τac
fc = f bc + fac

(2.6)

where τ bc ∈ R3 and τac ∈ R3 are respectively the baseline and the adaptive control
torque inputs, while f bc ∈ R3 and fac ∈ R3 are respectively the baseline and
adaptive control force inputs. In fact, in general in a PID architecture the integral
term accelerates the movement of the process towards set point and it eliminates
the residual steady-state error that occurs with a pure proportional controller.
Instead, the derivative action predicts system behaviour and thus improves settling
time and stability of the system. In few words, both of them ensure that the
system tracks the desired set point also in presence of disturbances. Therefore,
the idea is to use an adaptive controller in place of the integral and derivative
terms and to maintain the proportional action only for getting the system close
to the desired signal. In fact, as previously discussed a proportional controller is
capable to converge to zero steady error only in the ideal case with a perfectly
modelled system and without disturbances, but in reality it needs additional terms
able to reject all the uncertainties and helping the proportional term to annul the
tracking error.
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Figure 2.5: CMRAC Control system architecture used in this work

As we will see more in detail in the next sections, the adaptive control input
has to be designed in such a way that it annuls the plant uncertain terms. For
example, referring to the plant in equation (2.2), one can choose u(t) = −θ̂Tψ(x)
where θ̂ is the estimated value of θ which has to be computed on-line through
an adaptive law. This latter is simply an estimation algorithm that exploits the
information contained in the error between the reference model and the plant
together with the tracking set point, to compute an estimation of the uncertain
parameters. Therefore, it should be clear that the choice of the adaptive law is
very important. In fact, as additional remark, since the adaptive controllers suffer
of some instability phenomena that can be potentially dangerous for the system,
a suitable choice of the adaptive law can solve or, at least, minimize them.

2.3 Instability phenomena and robustness mod-

ifications

In general, the adaptive controllers are characterized by different robustness prob-
lems that are well known in the literature and that they can be solved by a suitable
choice of the adaptive law which, in turn, has to ensures the correct estimation
of the uncertain parameters and robustness of the system. The main instability
phenomena describing this kind of controllers are five, as well explained in [3]:

1. Parameters drift

2. High-Gain instability

3. Instability resulting from fast adaptation

4. High-Frequency instability
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5. Effect of parameter variations

The first twos are in some way correlated, in the sense that they both depend on
the fact that, for a wrong choice of the adaptive law, the uncertain parameters can
drift to infinite in order to completely counteract the disturbances and bringing the
tracking error to zero. Furthermore, this drift can create a very high feedback gain
which excites the unmodelled dynamics and leads to instability and unbounded
solutions.

These phenomena are usually present when the only objective is the regulation
of the system. Instead, if we want also to track a certain reference trajectory, it is
possible to incur in fast adaptation and high frequency instability. More precisely,
in theory some adaptive laws can contrast the disturbances without drifting but
with very slow transients. This naturally leads to large adaptation gains for
increasing the speed of convergence which, however, excites unmodelled dynamics
causing instability.

Instead, the forth phenomena usually happens when the reference input signal
has frequencies in the parasitic range that can excite the not modelled dynam-
ics, cause the signal-to-noise ratio to be small and, therefore, lead to the wrong
adjustment of the parameters and eventually to instability.

Finally, the last point concerns the fact that, historically, many adaptive con-
trollers were designed for LTI systems since they demonstrated to perform well
also for plants with parameters varying slowing with time. Conversely, for com-
plete linear time varying plants this could not be completely true and therefore,
the adaptive law has to be modified to meet the control objective in the case of
parameter variations, typically encountered in high non linear plants.

2.3.1 Dead-zone modification

In order to enforce robustness one possible strategy could be the one of considering
an adaptive law with the so called dead-zone modification showed in equation (2.7)
and reported in [13]:

˙̂
θ =

{
−Γψ(x)eTPB if‖e‖ > e0

0 otherwise
(2.7)

Where Γ ∈ Rnθ×nθ is the adaptation gain and P is the solution of the Lyapanov
equation ATP + PA = −Q for some Q = QT > 0. The idea is to stop the
adaptation process when the norm of the tracking error becomes smaller than a
prescribed value e0 avoiding the parameters to drift and resetting the controller.
e0 can be determined with different methods, usually based on the known of the
maximum disturbance amplitude, which are not reported here. Nonetheless, the
main point is that the dead-zone modification alone is not able to ensure asymp-
tomatically stability of the tracking error since in certain moments is switched
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off. Moreover, this modification is not Lipschitz and therefore it can cause chat-
tering and other undesirable effects when ‖e‖ ≈ e0. On the contrary, it has the
advantage to prevent the uncertain parameters from drifting to infinite.

2.3.2 σ - modification

The dead-zone modification previously presented needs the knowledge of the dis-
turbance upper bound that is not so easy to identify. A possible solution to this
problem is the σ-modification developed by Ioannou and Kokotovic in [14]. In
this case the adaptive law has been modified as follow:

˙̂
θ = −Γ

(
ψ(x)eTPB + σθ̂

)
, σ > 0 (2.8)

where σ is a strictly positive constant. In few words, this modification adds
damping to the ideal adaptive law and forces all the signals to remain uniformly
bounded. The drawback is that the parameter error will not converge to zero even
in case of null disturbances. Furthermore, the modification works like a forgetting
factor when ‖e‖ ≈ 0. In fact, in that case the adaptive law becomes:

˙̂
θ ≈ −Γσθ̂

in which the adaptive parameter unlearns all the previously information and con-
verges to zero, although this is not the ideal value. Finally, the choice of σ is not
easy and if not chosen correctly may worsens the tracking performances.

2.3.3 e - modification

In order to overcome the drawback of σ-modification, Narendra and Annaswamy
in [15] developed the e-modification. The idea is to replace the constant damping
gain σ in (2.8) with a term proportional to a linear combination of the system
tracking errors, such as ‖eTPB‖. The rational for using an error-dependent damp-
ing is that it tends to zero as the regulated output error diminishes. The adaptive
law becomes:

˙̂
θ = −Γ

(
ψ(x)eTPB + σ‖eTPB‖θ̂

)
, σ > 0 (2.9)

where σ is again a design parameter. With this modification, when the distur-
bances are zero, the origin becomes an equilibrium of the system. Consequently,
unlike the σ-modification, the error e(t) can converge to and remain zero. More-
over, the parameters can converge to their ideal values. As before, a limitation is
that the choice of the design parameter σ is not trivial.
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2.3.4 The projection operator

All the strategies presented until now show that many adaptive laws cannot be
robust to bounded disturbances, no matter how small they are. Therefore, the
adaptive law has to be chosen carefully in such a way that it can enforce robustness
in the presence of unmatched disturbances as, for example, a bounded process
noise. A well known solution to this problem can be found by the use of the
Projection Operator. Before introducing it and following [5], some definitions are
needed in order to understand the mathematical background.

Definition 1: A set E ⊂ Rk is convex if

λx+ (1− λ)y ∈ E

whenever x ∈ E, y ∈ E, and 0 ≤ λ ≤ 1.

Definition 2: A function f : Rk → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) with 0 ≤ λ ≤ 1

Lemma 3: Let f(θ) : Rk → R be a convex function. then for any constant δ > 0

the subset Ωδ = {θ ∈ Rk|f(θ) ≤ δ}

Lemma 4: Let f(θ) : Rk → R be a continuously differentiable convex function.
Choose a constant δ > 0 and consider Ωδ = {θ ∈ Rk|f(θ) ≤ δ} ⊂ R. Let θ∗ be
an interior point of Ωδ, i.e. f(θ∗) < δ. Choose θb as a boundary point so that
f(θb) = δ. Then the following holds:

(θ∗ − θ)T∇f(θb) ≤ 0

where ∇f(θb) =
(
∂f(θ)
∂θ1
· · · ∂f(θ)

∂θk

)
evaluated at θb

The Projection Operator for two vectors θ, y ∈ Rk can now be introduced as:
Definition 5:

Proj(θ, y, f) =

{
y − ∇f(θ)(∇f(θ))T

‖∇f(θ)‖2 yf(θ) if f(θ) > 0 ∧ yT∇f(θ) > 0

y otherwise
(2.10)

Where f : Rk → R is a convex function and ∇f(θ) =
(
∂f(θ)
∂θ1
· · · ∂f(θ)

∂θk

)
In order to better understand how the Projection Operator works, it is reported

below an its geometrical interpretation. In fact, it is possible to define a convex
set Ω0 and Ω1 as:

Ω0 := {θ ∈ Rk|f(θ) ≤ 0} Ω1 := {θ ∈ Rk|f(θ) ≤ 1}
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From the definition of equation (2.10), θ is not modified when θ ∈ Ω0. So, we can
now introduce the annulus region:

ΩA := Ω1 \ Ω0 = {θ | 0 < f(θ) ≤ 1}
Inside ΩA the projection algorithm subtracts a scaled component of y that is
normal to the boundary {θ | f(θ) = λ}. When λ = 0, the scaled normal
component is 0, and when λ = 1, the component of y that is normal to the
boundary Ω1 is entirely subtracted from y, so that Proj(θ, t, f) is tangent to the
boundary {θ | f(θ) = 1}. This discussion can be visualized in figure 2.6.

Figure 2.6: Geometrical interpretation of the Projection Operator in R2 [5]

Finally, after all the derivations, the Projection Operator can be now applied
on the adaptive controller exploiting its properties in a suitable adaptive law. In
particular, the uncertain parameters can be estimated as:

˙̂
θ = Proj(θ̂, y, f) (2.11)

Taking θ(t = 0) = θ0 ∈ Ω1 = {θ ∈ Rk|f(θ) ≤ 1} and f(θ) : Rk → R as a convex
function. In this way we can be sure that θ(t) ∈ Ω1, ∀t > 0.

Since an adaptive system is also characterized by the presence of non-linear
integrators, such as the one showed in equation (2.11) which output constitutes
the adaptive parameters, it can happen that the integrators saturate or give a too
big response when a large change in the set point occurs. This phenomenon is
known as integral windup and it can be prevented with special control techniques
such as the Projection Operator which is, precisely, an anti-windup method.

2.4 Conclusion

Many different control architectures have been developed for the tiltrotor but with-
out obtaining very satisfactory results. For this reason, a more complex controller
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capable to adapt itself can give good hopes in the performances improvement.
Referring to the literature, it seems that the MRAC architecture offers more dis-
advantages than the CMRAC that suggests to be an its improved version. In
reality, as shown in the previous section, in this thesis a modification of the latter
twos approaches will be adopted. Therefore, since it is difficult to say a priori
which architecture performs better, it has been chosen to test both the MRAC
and CMRAC with the above architecture, which results will be showed in the next
sections.

In conclusion, for this thesis it has been chosen to use the projection operator
as the most suitable and advanced adaptive law. In fact, it avoids the uncertain
parameters from drifting away, it has the capability to bound the overall adaptive
process, and it prevents the integrators against undesirable windup problems. All
this ensures the convergence of the tracking error.



Chapter 3

Uncertain Model

In this chapter, starting from the dynamic system showed in equation (1.11),
a linearised plant will be derived, based on motivated simplifying assumptions.
This linearised plant is used to retrieve the formulation presented in equation (2.2)
and, since it will be discovered that the uncertainties appear only in the dynamic
equations of the system, this allows the implementation of a suitable adaptive
controller on the inner loop only.

3.1 Plant linear model

As previously discussed, an adaptive controller is something capable to contrast
all the non predictable events that usually affect the UAV platforms. This can be
achieved by telling to the system what are the uncertain variables and how they
are modelled. In other words, the adaptive controller has to know which uncertain
parameters it has to estimate and how they enter in the plant. In this way, by
having an idea of how the uncertainties behave, the controller better counteracts
them and the performances improve. For this reason, the first step to design an
adaptive controller regards the derivation of the uncertain plant.

As it is possible to see in equation (1.11), the non linear dynamic of the tiltable
UAV is very complex, consequently also the derivation of the non linear uncertain
plant would be particularly complicated and maybe unnecessary. Therefore, it
has been chosen to linearise the model in order to simplify all the computations.
The non linear terms neglected should not affect too much the performances in
the operative conditions of interest. Of course there is no assurance that a linear
uncertain model will work in our case, but if it works and the performances will
be as expected, the advantages will be many:

� Simpler model from a computation point of view

� Faster and easier to implement

� The linear word is always better because more predictable
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� Linear algebra theorems work

It is a sort of engineering compromise, obviously it is possible to derive the com-
plete non linear uncertain model but, before doing it, it is necessary to understand
if it is worth. A very complex model maybe does not lead to very big improve-
ments and consequently also a simplified version can do its job excellently saving
time.

Before going on, some assumptions have to be made to allow the derivation of
the linearised model. In particular, we assume:

� J = Constant as anticipated in section 1.2

� ‖xc‖ << 1. The distance between the center of mass and Ob is close to zero.

� S(ω)Jω ≈ 0. The gyroscopic term is negligible.

The last two assumptions are valid for small scale UAVs, which are the ones
under study in this work. Now, assuming that x, v, R and ω are infinitesimally
small, it is possible to write: 

x ∼ δx
v ∼ δv
R ∼ I3 + S(δα)
ω ∼ δω

(3.1)

where the symbol δ indicates an infinitesimal variation of the variable under in-
terest and α ∈ R3 is the vector containing the roll, pitch and yaw angles. So,
making the above substitution inside equation (1.11), one can write:

δẋ = δv
S(δα̇) = (I + S(δα))S(δω)
mδv̇ −m(I + S(δα))S(xc)δω̇ = −mge3 −m(I + S(δα))S(δω)2xc + dF +Rfc
Jδω̇ +mS(xc)(I + S(δα))T δv̇ = −mgS(xc)(I + S(δα))T e3 + dT + τc

(3.2)
Therefore, neglecting the second order terms and reminding that xc is assumed to
be small, it is possible to obtain the linearised tiltrotor model showed in equation
(3.3). 

δẋ = δv
δα̇ = δω
mδv̇ = −mge3 + dF +Rfc
Jδω̇ = −mgS(xc)e3 + dT + τc

(3.3)

It is very important to note that, in the above retrieved linear model, the atti-
tude dynamic is completely independent from the position one. This is totally in
agreement with what we said in section 1.2: the tiltrotors are special platforms
capable to independently control their attitude with respect to the position that
they have to reach.
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3.2 The uncertain model

3.2.1 Uncertain parameters

The first step to derive the uncertain model regards the choice of the uncertain
parameters. Referring to equation (1.11), in general for small scale UAVs the four
variables that are the most difficult to estimate and that affect more the dynamic
of the system are:

� The tensor inertia J

� The center of mass xc

� The disturbances dF and dT

Referring to the linear system just derived and considering the above uncertain
variables, an important remark that has to be highlighted lies in the fact that
the only two equations affected by uncertainties are the position and the attitude
dynamic equations, more precisely the third one and the last one. As it will
be shown later, this will be very useful for the implementation of the adaptive
controller.

Going on, as previously mentioned, the idea of an adaptive controller is to tell
it what we know about the physical system and let the algorithm correct all the
remaining uncertainties. Under this perspective, since a very rough estimation of
J and xc is known, it is viable to write:{

J̃ = J − J̄
x̃c = xc − x̄c

(3.4)

where J̃ ∈ R3×3 and x̃c ∈ R3 are respectively the gap between the physical tensor
inertia J and the estimated or baseline J̄ ∈ R3×3, and the gap between the real
center of mass xc and the estimated or baseline x̄c ∈ R3. More precisely, the
variables with the tilde above them represent their uncertain part.

In order to be able to apply an adaptive controller to the system, it is nec-
essary to rearrange the tiltrotor plant in a form similar to the one showed in
equation (2.2), which splits the nominal contributions from the uncertain ones.
In particular, since we are augmenting the system with the baseline controller and
some disturbances, the uncertain model has to include them. Therefore, the final
uncertain state space model will take the following structure:

Ẋ = AX +Brr︸ ︷︷ ︸
Nominal

+BΛ(Wθ + uad + d)︸ ︷︷ ︸
Uncertain

(3.5)

where in the case of our problem, X ∈ R12 is the state vector containing the
UAV position, velocity, attitude angles and angular velocities, A ∈ R12×12 and
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Br ∈ R12×12 describe the desired closed-loop dynamics, r ∈ R12 is desired set
point vector, B ∈ R12×3 is a known constant matrix, Λ ∈ R12×3 is unknown,
uad ∈ R12 is the adaptive control input, d ∈ R12 is the vector of the disturbance
terms, W ∈ R3×nθ represents the modelling of the uncertain parameters collected
in the θ ∈ Rnθ vector. It should be noted that the latter state space model
is particularly useful for adaptive controller applications because of its ease of
understanding. In fact, in this kind of systems, the adaptive control input uad
can be simply designed in such a way that it can be opposed to the uncertain
terms. For example: uad = −Wθ̂ − d̂, where the hat symbol indicates that the
parameters have to be estimated with suitable adaptive laws.

It is also possible to see that the disturbance vector is completely separated
from the other uncertain variables that need some sort of mathematical modelling,
for example the ones showed in equation (3.8). Indeed, the design of xc and J will
be decoupled from the design of the disturbance terms that are independent from
the state. In other words, all the state dependent variables are used to derive
the form of the B and W matrices, which represent the uncertainty in the model,
while the state independent term of d will be modelled separately and treated as
a constant offset.

3.2.2 Uncertain model derivation

Referring to equation (3.3), it should be clear that the moment of inertia and
the center of mass enter in the attitude dynamic equation only. For this reason
only the 4th equation needs to be rearranged to recover the uncertain model.
Instead, the other threes do not depend on J and xc. Consequently, from the
adaptive control point of view, if we do not consider the disturbances, they are
considered as exact. Moreover, as mentioned in section 3.1, the attitude and
translation dynamics in the linear plant are independent and therefore, it has
sense to split the control design. Of course, in reality, as can be seen in the non
linear system (1.11), there exist some couplings in the system and a complete
separated approach should not be satisfied. At this stage, since splitting the
attitude and the position design is simpler, more intuitive and avoids the use of
non linear dynamics, the hope is that, at the end, this way of work will give good
results demonstrating the avoidance of a coupled design.

Attitude dynamic

Considering only the attitude dynamic in the system (3.3), since the major un-
certain contribution comes from xc and J , the disturbance dT can be assumed
independent on the state. Consequently, it can be seen as a simple offset or
step function added to the dynamic avoiding the need of further mathematical
computations.
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So, substituting equation (3.4) and equation (2.6) in the linear plant and taking
dT as a separated component, one can write:

Jδω̇ = −mgS(x̃c+ x̄c)e3 + τ bc + τac +dT = −mgS(x̃c)e3−mgS(x̄c)e3 + τ bc + τac +dT

Reminding that the overall idea is to split the nominal contribution from the
uncertain one, it is convenient to bring J on the right hand of the above equation
and to add and to subtract the nominal terms for trying to recover J̃ .

δω̇ = J−1(−mgS(x̄c)e3 + τ bc ) + J−1(−mgS(x̃c)e3 + τac + dT )

= J̄−1(−mgS(x̄c)e3 + τ bc )− J̄−1(−mgS(x̄c)e3 + τ bc ) + J−1(−mgS(x̄c)e3 + τ bc )+

+ J−1(−mgS(x̃c)e3 + τac + dT )

= J̄−1(−mgS(x̄c)e3 + τ bc ) + (J−1 − J̄−1)(−mgS(x̄c)e3 + τ bc )+

+ J−1(−mgS(x̃c)e3 + τac + dT )

.

(3.6)

But the inertia term inside the round brackets can be rearranged as:

J−1− J̄−1 = J−1(I−JJ̄−1) = J−1(I−(J̃+ J̄)J̄−1) = J−1(I−I− J̃ J̄) = J−1(−J̃ J̄)

That substituting inside equation (3.6) leads to:

δω̇ = J̄−1
(
−mgS(x̄c)e3 + τ bc

)
+J−1

[
(−J̃ J̄−1)(−mgS(x̄c)e3 + τ bc )−mgS(x̃c)e3 + τac + dT

]
Since the estimated center of mass x̄c is assumed to be very small, it can be
neglected:

δω̇ ≈ J̄−1τ bc︸ ︷︷ ︸
Nominal

+ J−1
[
(−J̃ J̄−1)τ bc −mgS(x̃c)e3 + τac + dT

]
︸ ︷︷ ︸

Uncertain

. (3.7)

Equation (3.7) represents the uncertain model of the linearised attitude dynamic
of the tiltrotor. As it is possible to note, the nominal contribution, in which the
estimated variables such as J̄ appear, is now completely split from the uncertain
ones where, on the other hand, uncertain unknowns such as J̃ , x̃c and dT are
present.

As previously said, since dT is assumed to be a constant unknown variable
added to the model, it is possible to define the vector of the uncertain parameters
θa as a function of the uncertain center of mass and moment of inertia:

θa =
[
J̃11, J̃12, J̃13, J̃22, J̃23, J̃33, x̃c1, x̃c2, x̃c3

]T
∈ R9. (3.8)

In order to recover the model showed in equation (3.5), the first two terms
inside the square brackets of equation (3.7), which are the ones that depend on
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the state and on the uncertain parameters J̃ and x̃c, can be finally rewritten as
the product Waθa, where Wa ∈ R3×9 is computed as:

Wa = jacobian
[
(−J̃ J̄−1)τc −mgS(x̃c)e3

]
(3.9)

where the jacobian is calculated with respect to θa as showed in equation (3.10):

jacobian =


∂f1

∂θ1

· · · ∂f1

∂θn
...

. . .
...

∂fm
∂θ1

· · · ∂fm
∂θn

 . (3.10)

Position dynamic

Always referring to equation (3.3) and as mentioned in the last section, the only
uncertain variable that enters in the position dynamic is the disturbance. Dif-
fering from the attitude, since there are no other uncertain model parameters,
dF has been modelled in a more complex way with respect to the attitude case.
In particular, the disturbances have been treated as a second order polynomial
function of the translational velocity, as shown in equation (3.11):

dF =

d1

d2

d3

+ d4

v1

v2

v3

+ d5

v1|v|
v2|v|
v3|v|

 (3.11)

where d1 ∈ R, d2 ∈ R, d3 ∈ R, d4 ∈ R and d5 ∈ R are the polynomial coefficients,
which are unknown and consequently treated as uncertain variables. Then, it is
possible to define the vector:

θp = [d1, d2, d3, d4, d5]T ∈ R5 (3.12)

which collects, as in the attitude case, all the uncertain variables, and the vector:

θp4,5 = [d4, d5]T ∈ R2 (3.13)

that is given by the last two components of θp. One should also note that the
first component of equation (3.11) is constant, while the last twos depend on the
state, in particular on the translational velocity. Therefore, in order to apply a
suitable adaptive controller, the equation can be better rewritten as a sum of an
offset plus a state dependent term:

dF = doff − f(X)θp4,5 (3.14)

where:

doff =

d1

d2

d3

 ∈ R3 f(X) =

v1 v1|v|
v2 v2|v|
v3 v3|v|

 ∈ R3×2.
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As it will be showed in the next section, this subdivision of the disturbance terms
is useful to write the final uncertain state space model. In fact, the offset term
is the corresponding of dT in the attitude dynamic, while f(x)θp4,5 is the corre-
sponding of the state dependent term Waθa. Moreover, f(x)θp4,5 represents the
aerodynamic resistance that has been taken with the minus sign, since it opposes
to the translational velocity.

3.2.3 Complete uncertain model

Considering all the derivations done until now, by selecting equation (3.7) and
(3.14) and taking into account equation (3.9) and (2.6), it is possible to write the
tilt-arm final uncertain model:

ẋ = v
α̇ = ω
mv̇ = −mge3 + doff + f(X)θp4,5 +R(f bc + fac )
ω̇ = J̄−1τ bc + J−1(Waθa + τac + dT ).

(3.15)

From the uncertain model just derived and from equation (3.3), it should be clear
that the first two equations, which refer to the kinematic of the system, are in
cascade with respect to the last twos, which instead refer to the dynamic. In other
words, the translational and angular velocity, output of the dynamic equations,
are respectively an input for the position and the attitude kinematic equations.
This allows the implementation of a cascade baseline controller, like the CPID
illustrated in figure 1.4, with a similar structure to the dynamic system. Further-
more, keeping in mind this aspect and considering the fact that, as cited in section
3.2.1, the dynamic equations are the only ones affected by system uncertainties
and disturbances, this allows the implementation of an adaptive controller refer-
ring on the attitude and position dynamic only. In fact, as it will be shown in the
next chapters, the adaptive law will take the translational and angular velocity to
compute the adaptive error, but not the position or the attitude.

Moreover, as previously highlighted and as demonstrated by the linearised
model derived in equation (3.3), the position and attitude dynamics of the tiltable
propellers UAV are decoupled. This allows to design each block of the adaptive
architecture separately. Therefore, in the next two chapters the following elements
will be designed independently for both the position and the attitude:

� The baseline controller

� The reference model

� The adaptive law.



40 Uncertain Model

3.3 Conclusion

In conclusion, it is possible to note that the derived uncertain model and control
architecture is the one that is actually implemented in the simulators. The idea
of splitting the baseline control input from the adaptive one allows the imple-
mentation of different adaptive control strategies without changing the baseline
controller. Some simplifications such as the linearisation of the system have been
made to calculate the final state space model. In the next chapters, since in
the linearised model the position dynamic is decoupled from the attitude one, a
separated design approach will be carried on. More precisely, we will try to un-
derstand if an adaptive law based on a linearised dynamic gives sufficiently good
performances and which is the effort for its tuning.



Chapter 4

Attitude Adaptive Control
System

As previously mentioned, thanks to the linearised decoupled UAV model, the con-
troller acting on the attitude will be designed separately from the position. In
particular, in this chapter we refer specifically to the attitude dynamic. Firstly
the baseline controller and the reference model will be shown. Secondly, the de-
tails about the uncertain state space model and the attitude control strategy will
be illustrated together with some numerical results computed by the simplified
simulator. More specifically, an analysis on the sensitivity of the most important
parameters will be carried on. Then, the first results for the MRAC and CM-
RAC architectures will be showed, clarifying the peculiarities encountered and
highlighting all the possible drawbacks. Finally, the results coming from the non
linear simplified simulator and later from the non linear complete one will be
presented, in order to verify the chosen control strategy in increasingly complex
numerical environments.

4.1 Baseline controller

For all the reasons explained in section 1.5 the CPID and, more precisely, an
its simplified version, has been chosen as the baseline controller for the adaptive
architecture explained in 2.2. In this latter, the baseline controller is the one
responsible of bringing the system close to the desired trajectory. Given that the
reference model represents the ideal dynamic that we want the UAV to have, it
should be clear that the same baseline controller has also to be implemented inside
the reference system. In this way we are able to simulate the system behaviour
in case of null disturbances and uncertainties. Therefore, the attitude baseline
controller becomes: {

ωv = −KA
posign(qe)qe ≈ −1

2
KA
poαx

τ bc = KA
ffωv +KA

pi(ωV − ω).
(4.1)



42 Attitude Adaptive Control System

As can be seen, the controller takes the same exact architecture presented in
equation (1.12) but considering the attitude portion of the system and without
the integrative and derivative terms, since their tasks are moved to the adaptive
controller.

4.2 Uncertain state space model

Once the baseline controller and the linear uncertain plant have been derived, it is
possible to write the complete uncertain state space model in a form equivalent to
the one showed in equation (3.5). Indeed, considering only the attitude equations
presented in (3.15), one should obtain:[

α̇
ω̇

]
=

[
03 03 03 I3

03 03 03 −J̄−1KA
pi

]
︸ ︷︷ ︸

A

[
α
ω

]
︸ ︷︷ ︸

X

+

+

[
03 03 03 03

03 03 03 J̄−1(KA
ff +KA

pi)

]
︸ ︷︷ ︸

Br

[
031

ωv

]
︸ ︷︷ ︸

r

+

+

[
03

J̄−1

]
︸ ︷︷ ︸

B

[
03

J̄J−1

]T
︸ ︷︷ ︸

Λ

([
031

Waθa

]
+

[
031

τac

]
+

[
031

dT

])
︸ ︷︷ ︸

Uncertain

(4.2)

where as mentioned in section 3.2.1, the baseline controller appears inside the A
and Br matrix, the r vector collects the desired angular velocity generated by
the controller and, the last row collects the uncertain portion of the model. In
particular, since the nominal J̄ is known, B is known, on the other hand Λ is
unknown given that J = J̃ + J̄ is unknown. Finally, it is possible to see that the
uncertain contribution is split in three different terms: a first one that depends on
the state and on the desired dynamic, a second term that represents the adaptive
control input and finally a third one that collects all the constant disturbances
that are independent on the state.

4.3 Reference model

Referring to section 2.2, we have seen that the control system chosen is made by a
reference model that generates the desired state on-line. This latter is responsible
of the main difference between the MRAC and the CMRAC approach. In fact,
in the first one it is simply computed by integrating a simplified version of the
linear dynamic equations showed in (3.3), while in the second, as illustrated in
equation (2.5), an error dependent term has to be added. Since the idea is to have
an “ideal” state, more precisely a reference model output which is as perfect as
possible, referring to the attitude dynamic only, it has been decided to assume:
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� Negligible disturbance: dT = 0

� xc ≈ [0, 0, 0]

� Exact inertia tensor: J = J̄ with J̄ equals to equation (4.10).

Therefore, the MRAC differential reference model equation describing the be-
haviour of the quadrotor angular velocities ωm ∈ R3 becomes simply:

Jωm = τ bc = KA
ffωv +KA

pi(ωV − ωm) (4.3)

while in the case of the CMRAC:

Jωm = τ bc + λaea. (4.4)

Where λa ∈ R3×3 is the attitude closed-loop gain and ea = ω − ωm is the adapta-
tion error. It is possible to notice that equation (4.1) has been substituted inside
equation (4.3), but changing ω with ωm. As can be seen in figure 2.4, this has been
done to highlight the fact that the adaptation acts on the inner loop only. Con-
sequently the angular velocity has to be taken directly from the reference model
itself. Instead, since ωv is computed from the quaternion or the attitude angles,
it refers to the outer loop of the system where there is no type of adaptation.
Therefore, even for the reference model, q or α are given by the plant.

As it will be showed in the next sections, in order to better understand the
behaviour of the system under study, some simulations will be computed with the
complete tilt-arm simulator. In this context, the results obtained with the model
with the CPID controller will be compared to the ones with the adaptive archi-
tecture. Therefore, since the reference model represents the desired performances
that we want the plant to have, it has been decided to tune the reference model
gains in such a way that its behaviour gets as close as possible to the CPID one.
This will be achieved by looking directly to the plots, but also with the help of
special tables in which the maximum absolute error and root mean square error
will be reported for all the state variables under study. In this optic, considering
the error ∆z between the values predicted by a model or an estimator and the
values observed, the maximum absolute error is defined as:

eabs = max(‖∆z(t)‖) (4.5)

while the root mean square error is generally defined as:

erms =

√(∑
∆z2

i

Ntot

)
(4.6)

where Ntot is the total number of the ith samples. The values of the tuned gains
can be found in appendix A table A.2. Concerning the set points, the desired
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Euler angles and position are showed in figure 4.1. The trajectory chosen is the
so called Paoll trajectory, which can be performed only by a tiltrotor. After a
first step in position, the UAV has to perform two opposite 90 degrees rotations
around itself while changing its roll and pitch angles and maintaining the position
reached. At the end, it will perform another final position change along x1.

Figure 4.1: Paol1 trajectory: desired position (on top) and Euler angles (bottom)

Figure 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and table 4.1, 4.2 show the results obtained.
They refer to the attitude angles, the angular velocities, the control input torques
and the brackets β angles, since in this chapter we analyse the attitude dynamic
only.

eabs U.M. CPID Ref. Model

αx1 [deg] 3.1809 3.0994
αx2 [deg] 5.0513 4.9113
αx3 [deg] 17.4469 15.8781
ωx1 [deg/s] 5.9910 5.9277
ωx2 [deg/s] 11.9238 11.9520
ωx3 [deg/s] 10.9417 9.5080

Table 4.1: Comparison of the maximum absolute error eabs between the system
with the CPID and the reference model for the attitude dynamic.

As it is possible to see, the behaviour of the two simulations and the errors
reported in the tables are very similar.
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Figure 4.2: Plant and desired Euler angles for the reference model (on top) and
for the system with the CPID controller (bottom).

0 10 20 30 40 50 60 70
-20

-10

0

10

20

[d
e

g
]

x1

x2

x3

0 10 20 30 40 50 60 70
Time [s]

-20

-10

0

10

20

[d
e

g
]

x1

x2

x3

Figure 4.3: Euler angles error αx for the reference model (on top) and for the
system with the CPID controller (bottom).
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Figure 4.4: Plant and desired angular velocities for the reference model (on top)
and for the system with the CPID controller (bottom).
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Figure 4.5: Angular velocity error with respect to the outer-loop ωv for the refer-
ence model (on top) and for the system with the CPID controller (bottom).
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Figure 4.6: Torque control input τc = τ bc + τac for the reference model (on top)
and for the system with the CPID controller (bottom).
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Figure 4.7: Servo-actuators angular position βa requested by the four UAV’s pro-
pellers for the reference model (on top) and for the system with the CPID con-
troller (bottom).
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erms U.M. CPID Ref. Model

αx1 [deg] 0.8024 0.9753
αx2 [deg] 1.1525 1.4469
αx3 [deg] 5.4493 6.3896
ωx1 [deg/s] 0.0118 0.0061
ωx2 [deg/s] 0.0187 0.0100
ωx3 [deg/s] 0.0202 0.0094

Table 4.2: Comparison of the root mean square error erms between the system
with the CPID and the reference model for the attitude dynamic.

4.4 Attitude adaptive laws

As mentioned before, since it has been discovered that the position and the at-
titude dynamic in the linear plant of (3.3) are decoupled, the idea is to design
separately the two contributions, given that this approach is simpler and more
intuitive. The hope is that this way of work will give, however, good results. For
this reason, since in this chapter we are studying the attitude dynamic only, the
position has been taken as ideal. More precisely, referring to the position dynamic,
it has been assumed:

� Null disturbances: dF = 0

� Null center of mass position in the third equation of (1.11)

As previously said, the idea behind an adaptive controller is to estimate the uncer-
tain variables through the information contained in the plant state, the reference
model and the desired set point. This estimation is usually achieved thanks to
adaptive control laws, which will be derived in such a way that they are valid for
both the MRAC and the CMRAC, so that they ensure robustness, good estima-
tion of the uncertain parameters and tracking. Referring to the attitude dynamic
only, as discussed in the previous chapter, this can be accomplished by taking
the control input such that it eliminates the uncertain contributions Waθa and dT
showed in equation (4.2). Therefore, one can write:

τac = −Waθ̂a − d̂T (4.7)

where θ̂a and d̂T are the estimated values of θa and dT . This estimation will
be done on-line exploiting the Projection Operator. The reason of this choice
lies in the fact that, as illustrated in section 2.2, the Projection Operator avoids
drifting of the uncertain parameters, wind up problems for the integrators and,
more important, bounds the overall adaptive process. Therefore, as showed in
equation (4.8), the attitude adaptive law becomes:

˙̂
θa = γa · Proj

(
θ̂a,W

T
a B

T
a Paea

)
˙̂
dT = γa · Proj

(
d̂T , B

T
a Paea

)
(4.8)
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where ea = ω − ωm ∈ R3 is the angular velocity error between the plant and the
reference model, Pa is the solution of:

ATaPa + PaAa = −Q

γa ∈ R is the attitude adaptation gain, Aa, Q and Ba are chosen for simplicity by
looking at the last component of the state space model showed in equation (4.2),
given that in this section we are focusing on the adaptive controller acting on the
attitude dynamic only. Therefore:

Ba = J̄−1

Aa = −KA
piJ̄
−1

Q = I3.

The attitude reference model used to compute the above cited errors has been
implemented respectively for the MRAC and the CMRAC architecture as the one
showed in equation (4.3) and (4.4).

4.5 Tilt-arm simplified simulators

The simulator presented in the first chapter has not been the only one developed.
Other two less complicated versions of it have been built from scratch. They
have been used for the validation of the attitude control system only, since it is
the dynamic more affected by uncertainties. Conversely, the position has been
validated through the complex non linear simulator alone. In particular, there
have been developed:

� A Linear Simplified Simulator

� A Non Linear Simplified Simulator

Their architecture can be seen in figure 4.8. The plant generates the tiltrotor
state, which is used by the W Generator and reference model block to compute
respectively the Wa matrix and the error vector e. Then, these data are used
by the adaptive controller block to calculate τac that, together with the baseline
control inputs τ bc and f bc re-enter in the plant. Referring to the above item list,
the simulators are characterized by the word “simplified”, which means the UAV
plant only has been integrated without any sort of modelling for the propellers
and the servo actuators. In other words, the controllers generate the force and
the torque that directly enter in the dynamic system previously discussed. This
means that in these two simulators the allocation algorithm that transforms fc
and τc to θa and ωr is not present, and with it all the saturations and actuators
dynamics. Furthermore, the physical data given to the simulators are in agreement
with common small UAVs but they do not respect any real prototype. The two
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Figure 4.8: Simplified numerical model of the tiltrotor

cited simulators differ only by the fact that, inside the plant block, in the first
the linear dynamic equations are implemented, while in the second the non linear
ones. These two software plus the one showed in section 1.4 should be seen as a
way to find the right controller for the tiltrotor. Due to its simplicity, the first
one can be used to address all the major limitations and possible problems for
each approach, giving the possibility to select the best control system between
the MRAC and the CMRAC. Being completely linear, it can be also used to
verify that the results of the theory and of the literature are respected. Then, the
second one and later the simulator showed in the first chapter are used to verify
the complete performances of the system in each time more and more complex
numerical environment.

4.6 Adaptive gains tuning

As previously said, the two control architectures that have been implemented in
this work are a modification of the MRAC and CMRAC system, as presented in
section 2.2. In this section, the first numerical results for both the MRAC and
the CMRAC controllers will be showed highlighting how the different adaptive
controller parameters affect the behaviour of the system. For this first approach,
the simplified linear simulator has been used with some physical data that do not
respect real values of a real prototype, as reported in table 4.3. Moreover, always
referring to the same table, it has been assumed that the tiltrotor is affected by
a constant disturbance torque. As a reminder, the position for now is not taken
into account since, in this section, only the attitude is under study. Instead, the
plant J , which represents the actual tiltrotor inertia that is unknown in the real
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Mass 1 Kg
xc [0.01 0.01 0.01]T m
dT [0.01 0.01 0.01]T · step(t) Nm

Table 4.3: Physical variables used in the first simulations

world, for simulation reasons it has been taken as:

J =

3× 10−3 1× 10−5 1× 10−5

1× 10−5 3× 10−3 1× 10−5

1× 10−5 1× 10−5 3× 10−3

 (4.9)

while the nominal inertia, which is the one that is estimated and used in the ref-
erence model, it has been taken as a diagonal matrix with values slightly different
from J , in order to simulate the fact that a rough inertia estimation can be usually
obtained:

J̄ =

3.1× 10−3 0 0
0 3.2× 10−3 0
0 0 2.8× 10−3

 . (4.10)

The simulator initial conditions for all the states is reported in table 4.4. Instead,

x0 [0.3 0.3 0.3]T m
α0 [0.1 0.1 0.1]T rad
v0 [0.1 0.1 0.1]T m/s
ω0 [0.2 0.2 0.2]T rad/s

Table 4.4: Initial conditions used in the first simulations

the baseline controller gains have been chosen, as reported in table 4.5, big enough
in such a way that the transients are as fast as needed, in order to allow the
tracking in a sufficiently small time interval. On the contrary, small enough to
not generate instability phenomena or a too much stiff system. Finally, as showed

Attitude Position

KA
ff 0.02 KP

ff 2.5
KA
pi 0.02 KP

pi 2.5
KA
po 0.5 KP

po 0.4

Table 4.5: Baseline controller gains used in the first simulations

in equation (4.11), the desired set point has been chosen as a piecewise constant
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function constituted by a sequence of steps with a duration of 10 seconds both on
the position and attitude. In particular: x1d = x2d = x3d = F (t) and α1d = α2d =
α3d = F (t). This permits to evaluate the transients behaviour of the system and
its response in different conditions. It is possible to notice that, different from the
fixed propeller UAV, in a tiltrotor the desired attitude can be set independently
from the position.

F (t) =



1 if 0 6 t < 10

0.8 if 10 6 t < 20

0.2 if 20 6 t < 30

0.5 if 30 6 t < 40

0.9 if 40 6 t < 50

1.4 if 50 6 t < 60

1 if 60 6 t < 70

0.2 if 70 6 t < 80

−0.1 if 80 6 t < 90

0 if 90 6 t < 100

(4.11)

4.6.1 MRAC approach - Adaptation gain sensitivity

With the data previously presented, we now consider the MRAC architecture
illustrated in figure 2.4 and we try to understand if this architecture is suitable
for a tiltrotor and how, the only tuning parameter γa affects the performances of
the system. For all the different attempts, since only the attitude is under study,
the αx, ω and τac plots will be used as reference for all the different analysis. The
overall idea is to show how the UAV dynamic behaves when the tuning parameter
has a very low or high value, in order to correctly end up to what we think is the
correct γa number for this particular application.

γa = 0.001

We start from setting γa = 0.001, which represents a quite low value. In figures
4.9, 4.10 and 4.11 are respectively reported the αx, ω and τac plots.

As highlighted in the previous chapters and showed in the τac1 zoom in figure
4.12, the MRAC architecture, even with a very low adaptation rate, presents some
oscillations during the transients. These vibrations usually increase incrementing
the adaptation gain and they are present also on the angular velocity. Referring
to 4.9, since γa is very small, it is possible to see that the tiltrotor takes more or
less 20 seconds to annul the error, which is obviously too much for any kind of
UAV applications. The adaptive torque does not show very big transients during
the step change, but it seems that it converges to a certain offset and then, with
a small torque changes, it tries to make the tracking. This latter effect is maybe
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Figure 4.9: αx = α− αd error for the MRAC architecture with γa = 0.001
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Figure 4.10: ω for the MRAC architecture with γa = 0.001
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Figure 4.11: τac for the MRAC architecture with γa = 0.001
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Figure 4.12: τac1 Zoom for the MRAC architecture with γa = 0.001 to highlight
oscillations
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due to two different reasons: the small adaptation gain makes the system affected
by a very smooth behaviour and the simplified linear simulator has been used,
therefore all the non linearities are not taken into account.

γa = 10

Now, we set an adaptation gain value four orders bigger than the previous one:
γa = 10. As before, the αx, ω and τac plots are respectively reported in figures
4.13, 4.14 and 4.15.
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Figure 4.13: αx = α− αd error for the MRAC architecture with γa = 10

The first different thing that one can note from the previous case is the in-
creased number of oscillations in the adaptive torque. The high value of γa gen-
erates very high frequency vibrations that can be dangerous for resonance phe-
nomena, mechanical stiffness and computational power. In fact, the numerical
simulator, in order to track this very fast dynamic, has to increase the number of
points that translates in a bigger CPU effort. Nevertheless, it is possible to see
that the αx error converges very fast. The transients have a duration of a maxi-
mum of two seconds. It should be clear now that a compromise is needed. One
would like to have the fastest convergence possible but with the fewest number of
oscillations.

γa = 0.05

Finally, after several attempts it has been decided to set γa = 0.05. This latter
comes from the trade off explained before. Since it is not possible to have a fast
error convergence without vibrations with a MRAC architecture, it has been tried
to maintain a sufficiently high speed during the transients in order to allow the
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Figure 4.14: ω for the MRAC architecture with γa = 10
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Figure 4.15: τac for the MRAC architecture with γa = 10
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Figure 4.16: τac1 Zoom for the MRAC architecture with γa = 10 to highlight
oscillations

tracking in a suitable amount of time and, in the meanwhile, to decrease the high
frequency oscillations as much as possible.

Different from the above two cases, here all the results obtained are showed in
order to permit a complete overview of the outcomes achieved. As it is possible
to see from figures 4.17, 4.18, 4.19 and 4.20, the UAV demonstrates very good
tracking capabilities with no overshoots both in position and attitude. The con-
vergence time is fast enough to track all the reference steps: on the attitude we
have transients of about 3 seconds, while on the position of about 4/5 seconds,
since the requested set point is quite large. Moreover, the translational and an-
gular velocity showed in 4.21 and 4.22, like all the other variables, are inside the
typical range of small scale UAVs. The torque control inputs, both the baseline
in 4.23 and the adaptive in 4.24, still present high frequency oscillations, as high-
lighted in 4.25, but less intense with respect to the previous case. Also the angular
velocity exhibits high frequency vibrations, specially at the beginning. Instead,
since all the uncertainties and disturbances are only implemented on the attitude
dynamic and, in the linear case, it is completely decoupled from the position, the
baseline force control input in figure 4.26 does not display any kind of oscillations.
In fact, it has also to be reminded that, in this case, the adaptation acts only on
the attitude. The behaviours of the variables that are estimated by the adaptive
law are instead reported in figures 4.27 and 4.28. The θa plot is made by two
different scales. One on the left, representing the components of the moments
of inertia in kg · m2 and one on the right, which represents the center of mass
position with respect to Ob in meters. It is possible to see that, after a short os-
cillatory transient at the beginning, d̂T and θ̂a both converges to a certain stable
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Figure 4.17: Attitude angles α for the MRAC architecture with γa = 0.05
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Figure 4.18: αx = α− αd error for the MRAC architecture with γa = 0.05
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Figure 4.19: Position vector x for the MRAC architecture with γa = 0.05
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Figure 4.20: Position error ex = x−xd for the MRAC architecture with γa = 0.05
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Figure 4.21: Velocity vector v for the MRAC architecture with γa = 0.05
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Figure 4.22: Angular velocity vector ω for the MRAC architecture with γa = 0.05
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Figure 4.23: Baseline control torque τ bc for the MRAC architecture with γa = 0.05
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Figure 4.24: Adaptive control torque τac for the MRAC architecture with γa = 0.05
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Figure 4.25: τac1 Zoom for the MRAC architecture with γa = 0.05
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Figure 4.26: Baseline control force f bc for the MRAC architecture with γa = 0.05
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Figure 4.27: Estimation of the attitude disturbance vector dT for the MRAC
architecture with γa = 0.05

Figure 4.28: Estimation of the uncertain parameters contained in the θa vector
for the MRAC architecture with γa = 0.05
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Figure 4.29: Error between the plant and reference model angular velocity ω and
ωm for the MRAC architecture with γa = 0.05

value without feeling too much the step changes. Finally, as explained before, the
purpose of the adaptive controller is to generate a control input capable to ensure
that the UAV follows the reference model performances. As illustrated in figure
4.29, this is easily achieved by the system after the first 5 seconds, and can be
also appreciated after every step change.

4.6.2 CMRAC approach - Closed-loop gain sensitivity

In literature, one possible well known solution to the MRAC fast oscillations
problem is the CMRAC approach. Unlike the other, in this case we have an
additional degree of freedom: the closed-loop gain λa, which has to be studied in
order to understand how it affects the tiltrotor performances. The approach is the
same as before: since the attitude is under study, only the αx, ω and the τac plots
will be shown as reference for the analysis. In this case, given that there are two
degrees of freedom: γa and λa, three different attempts will be shown before ending
up to a good compromise for this system. Each test has been particularly useful
to understand how the different parameters combinations influence the dynamic.

γa = 1 , λa = 10 · I3

We begin from setting γa = 1 and λa = 10 · I3 as initial guess to understand how
the system behaves. In figures 4.30, 4.31 and 4.32, the αx, ω and τac plots are
respectively reported.

From this first test, it is possible to see that, since the adaptation gain is an
high value, the convergence of the attitude angles is very fast. However, some high
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Figure 4.30: αx = α − αd error for the CMRAC architecture with γa = 1 and
λa = 10 · I3

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

[r
a

d
/s

]

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

[r
a

d
/s

]

0 10 20 30 40 50 60 70 80 90 100

Time [s]

0

0.1

0.2

[r
a

d
/s

]

Figure 4.31: ω for the CMRAC architecture with γa = 1 and λa = 10 · I3
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Figure 4.32: τac for the CMRAC architecture with γa = 1 and λa = 10 · I3
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Figure 4.33: τac1 Zoom for the CMRAC architecture with γa = 1 and λa = 10 · I3

to highlight oscillations
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frequency oscillations are still present in the control input but with an important
difference with respect to the previous case: considering the fact that γa is large,
the vibrations are not as fast as in the MRAC architecture. This to say that the
new degree of freedom λa seems to have the expected effect. Therefore, in general,
it is possible to say that an high adaptation rate decreases the convergence time
but the system becomes stiffer and the oscillations increase. In order to reduce
them, we have to choose an higher λa. From the simulations, as will be better
shown in the next attempts, it has been noticed that the closed-loop gain has to
be chosen a couple of order of magnitude bigger than γa. Of course there is a limit.
In fact, increasing too much γa and therefore λa, the system response becomes too
fast for the actuators generating instability. In this optic, it is possible to see that
the first initial transient of τac showed in figure 4.33 has a duration of some cents
of seconds, which is a quite fast dynamic for the propellers. Moreover, the CPU
effort has been discovered to be quite high since the presence of the oscillations
requires an increased number of points to be simulated.

γa = 1000 , λa = 9× 104 · I3

In this case, γa = 1000 and λa = 9×104 ·I3. These values are chosen in such a way
to show one possible extreme case that can be achieved. As mentioned before, the
difference between the two coefficients is little less than two orders of magnitude.
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Figure 4.34: αx = α− αd error for the CMRAC architecture with γa = 1000 and
λa = 9× 104 · I3

Referring to figure 4.34, one should note that the convergence error does not
improve very much with respect to the other case and the CPU effort becomes
very high, since the simulator has to deal with a very fast dynamic. Therefore,
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Figure 4.35: ω for the CMRAC architecture with γa = 1000 and λa = 9× 104 · I3
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Figure 4.36: τac for the CMRAC architecture with γa = 1000 and λa = 9× 104 · I3
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Figure 4.37: τac1 Zoom for the CMRAC architecture with γa = 1000 and λa =
9× 104 · I3 to highlight oscillations

it does not make sense to increase too much the adaptation gain. On the other
hand, considering that λa is very large, the oscillations in τac illustrated in figures
4.36 and 4.37 are completely vanished. The only problem is that the transient has
a duration in the order of 10−3 seconds, which is really too fast for the actuators.
This can be solved by taking a smaller adaptation gain that, as we have seen up
to now, is related to the dynamic speed. As final remark, it is also possible to
notice that both the angular velocity and the adaptive control input do not feel
too much the step changes. They show a small and fast transient every 10 seconds
but they are in the correct ranges for small scale UAVs.

γa = 0.001 , λa = 0.001 · I3

As opposite case, we study what happens if we take the two gains under study
with a small value: γa = 0.001 and λa = 0.001 · I3. As before figures 4.38, 4.39
and 4.40 show respectively the αx, ω and τac plots.

Since the adaptation gain is small, it was discovered that λa has not to be
two orders of magnitude bigger to cancel out all the oscillations. In fact, as also
seen in the previous sections, a smaller γa generates less vibrations and therefore,
a reduced closed-loop gain is enough. However, it is possible to see that the
convergence of the attitude angles is very slow. It takes at least 20 seconds to
bring the tracking error to zero. This to say that, different from the previous case
in which the gains were too large, also too small values do not give satisfactory
performances. Even if the CPU effort is low since the system dynamic is slow.
Instead, the controller input shows a very smooth behaviour. It presents some
oscillations but the transient has a duration of 1 second. It has a dynamic three
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Figure 4.38: αx = α− αd error for the CMRAC architecture with γa = 0.001 and
λa = 0.001 · I3
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Figure 4.39: ω for the CMRAC architecture with γa = 0.001 and λa = 0.001 · I3
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Figure 4.40: τac for the CMRAC architecture with γa = 0.001 and λa = 0.001 · I3
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Figure 4.41: τac1 Zoom for the CMRAC architecture with γa = 0.001 and λa =
0.001 · I3 to highlight oscillations
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order of magnitude slower than the previous case. The same can be said regarding
the angular velocity.

γa = 10 , λa = 9000 · I3

In this section, the final results obtained with the CMRAC approach will be
analysed. In particular, it has been chosen to set γa = 10 ·I3 and λa = 9000 ·I3. It
should be noted that the latter is nearly three order of magnitude bigger than the
adaptation gain. This choice comes from a trade off between speed of adaptation
and consequently of convergence, number of high frequency oscillations in the
control variables, duration of the transients and CPU effort.
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Figure 4.42: Attitude angles α for the CMRAC architecture with γa = 10 and
λa = 9000 · I3

As it is possible to notice from figures 4.42 and 4.43, the attitude error shows
a very good tracking performances. Also in the first step response, the transient
has a duration of a maximum of 4 seconds. The roll, the pitch and the yaw
angles present a smooth behaviour without overshoots. The same can be said
about the angular velocity illustrated in 4.47. Regarding the position showed in
figures 4.44 and 4.45, one can see that the behaviour is equivalent to the one
illustrated in the MRAC approach. This is mainly due to the fact that, in all
these tests, the position and consequently the velocity in figure 4.46 is set as ideal
without any sort of uncertainties or disturbances. Furthermore, the adaptation
acts only on the attitude dynamic and, since in the linear plant the position is
decoupled from the attitude, it makes sense that the CMRAC shows the same
results of the MRAC. Instead, concerning the baseline and the adaptive control
inputs respectively showed in figures 4.48, 4.51 and 4.49, the transient oscillations
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Figure 4.43: αx = α − αd error for the CMRAC architecture with γa = 10 and
λa = 9000 · I3
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Figure 4.44: Position vector x for the CMRAC architecture with γa = 10 and
λa = 9000 · I3



74 Attitude Adaptive Control System

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

Figure 4.45: Position error ex = x−xd for the CMRAC architecture with γa = 10
and λa = 9000 · I3
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Figure 4.46: Velocity vector v for the CMRAC architecture with γa = 10 and
λa = 9000 · I3
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Figure 4.47: Angular velocity vector ω for the CMRAC architecture with γa = 10
and λa = 9000 · I3
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Figure 4.48: Baseline control torque τ bc for the CMRAC architecture with γa = 10
and λa = 9000 · I3
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Figure 4.49: Adaptive control torque τac for the CMRAC architecture with γa = 10
and λa = 9000 · I3
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Figure 4.50: τac1 Zoom for the CMRAC architecture with γa = 10 and λa = 9000·I3
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Figure 4.51: Baseline control force f bc for the CMRAC architecture with γa = 10
and λa = 9000 · I3
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Figure 4.52: Estimation of the attitude disturbance vector dT for the CMRAC
architecture with γa = 10 and λa = 9000 · I3
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Figure 4.53: Estimation of the uncertain parameters contained in the θa vector
for the CMRAC architecture with γa = 10 and λa = 9000 · I3
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Figure 4.54: Error between the plant and reference model angular velocity ω and
ωm for the CMRAC architecture with γa = 10 and λa = 9000 · I3
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are completely vanished, as better highlighted in 4.50, and they have a duration
in the order of magnitude of 10−2 seconds, which is suitable for small scale UAV.
Moreover, also the amplitudes are in the correct ranges. Regarding the estimation
of dT and θa respectively showed in figures 4.52 and 4.53, it is possible to notice
that unlike the MRAC case, the variables converge very fast without showing
any oscillatory behaviour. This helps the algorithm to better control the system
without the presence of fast dynamics. In general, all the variables do not show
very high picks during the step changes: they converge to a certain offset value
and then they correct it a bit to permit the tracking. Finally, as in the MRAC
case, in figure 4.54 the error between the angular velocity of the plant and the
reference model is showed. As it is possible to see, after an initial transient, the
tiltrotor follows very closely the reference system.

4.7 CMRAC: Verification considering non-linear

dynamic effects

From the previous analysis, it should be clear that the most suitable controller
for the tiltrotor is the CMRAC architecture, since it allows the designer to have
an additional degree of freedom that can be exploited to reduce the possible
presence of high frequency oscillations and to regulate the transient behaviours.
As explained before, once the most satisfactory controller has been selected, it
has to be proven on each time more complex numerical environment. For this
reason, the CMRAC architecture has been implemented in the simplified simulator
showed in section 4.5 but with the non linear plant reported in equation (1.11).
In particular, in this section a comparison between the results obtained with the
linear and the non-linear dynamic will be showed. For simplicity, unlike the other
cases, the desired set point has been chosen as an elementary single step:{

xdes = [0.1 0.05 0.2]T · step(t− 10) m
αdes = [5 4 − 3]T · step(t− 10) degrees

(4.12)

It has also to be noted that, in order to ensure the equality between the linear and
the non-linear model, in this latter τ bc of the plant and of the reference model has
been multiplied by a factor of 2. This is due to the fact that, in the linearisation,
q ≈ 1

2
α. Instead, all the other parameters have been left identical to the previous

attempt.
Only in this section, in order to allow the reader to better understand to which

model we are referring to, the variables will be enhanced with the superscript “L”
or “N” if they are identified respectively by the linear or the non-linear simulation.

Referring to the attitude tracking error and the Euler angles step response
showed respectively in figures 4.55 and 4.56, one should note that the behaviour
of the linear and the non-linear model is very similar. This is very important
because it means that the CMRAC adaptive controller is working well. It is able
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Figure 4.55: Attitude tracking error αx for the linear (on top) and the non-linear
(bottom) model
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Figure 4.56: Euler angles αi for the linear (on top) and the non-linear (bottom)
model
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Figure 4.57: Position tracking error ex for the non-linear (on top) and the linear
(bottom) model
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Figure 4.58: Position vector x for the linear (on top) and the non-linear (bottom)
model
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Figure 4.59: Translational velocity vector v for the linear (on top) and the non-
linear (bottom) model
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Figure 4.60: Angular velocity ω for the linear (on top) and the non-linear (bottom)
model
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Figure 4.61: Baseline force control input f bc for the linear (on top) and the non-
linear (bottom) model
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Figure 4.62: Baseline torque control input τ bc for the linear (on top) and the
non-linear (bottom) model
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Figure 4.63: Adaptive torque control input τac for the linear (on top) and the
non-linear (bottom) model
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Figure 4.64: On-line estimation of the disturbance vector dT for the linear (on
top) and the non-linear (bottom) model
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Figure 4.65: On-line estimation of the uncertain parameters contained in θa for
the linear model

Figure 4.66: On-line estimation of the uncertain parameters contained in θa for
the non-linear model
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Figure 4.67: Error between the plant and the reference model angular velocity for
the linear (on top) and the non-linear (bottom) model

to reject all the model non-linearities and bring the response very close to the
linear case. In particular, the pitch and the yaw angles are equivalent, instead of
the roll that presents a small overshoot in the non-linear plant. As regards to the
position illustrated in figures 4.57 and 4.58, the response is more or less equivalent.
The same goes for the translational and the angular velocities in 4.59 and 4.60.
Regarding the control inputs, as in all the previous cases, the control force main
contribution comes from the third component, as showed in 4.61, since it has
to compensate the gravity force. Instead, the torque control inputs illustrated
in 4.62 and 4.63, both in the linear and non linear-case, do not present high
frequency oscillations. Therefore, also maintaining the same gains and increasing
the complexity of the simulator, the adaptive controller is still able to control
the system with good transient performances. Concerning the estimation of the
uncertain parameters such that dT showed in 4.64, and θa showed in 4.65 and 4.66,
it is possible to notice that some of the variables converge to different values. For
example d̂T3, which in the linear case converges to 0.001 and in the non-linear
one, after that the step occurs, it converges to -0.005. A similar behaviour can be
also seen in the estimation of the inertia tensor and center of mass components.
Finally, in figure 4.67, as in the previous sections, the angular velocity error with
respect to the reference model is reported. Even in the presence of the non-
linearities, the CMRAC has showed to be very good in following the ideal ωm.
The only difference is the presence of intenser transients.
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4.8 Tilt-arm simulator

In this section, the selected CMRAC approach will be verified on the attitude
dynamic trough the use of the complete simulator presented in chapter 1. As
before the position dynamic has been left ideal, while opposite to all the other
cases, the data used in these simulations respect an existing tiltrotor prototype.
As previously said, the CPID architecture has been chosen as the reference system
with respect to which all the results have to be compared. In fact, its performances
respects many currently state of the art approaches for the problem of controlling
a tiltrotor. Therefore, the idea is to try to choose λa and γa such that the results
will be better or at least comparable with the ones given from the CPID, taking
into consideration of possible high frequency oscillations that can arise. In fact,
for this simulation the adaptive laws have been rewritten as:

˙̂
θa = γθaProj

(
θ̂a,W

T
a B

T
a Paea

)
˙̂
dT = γdistProj

(
d̂T , B

T
a Paea

)
(4.13)

where γθa = [γinertia, γCoM ] in which γinertia ∈ R6 and γCoM ∈ R3 are the adap-
tation gains that respectively refer to the inertia and center of mass components
of the uncertain vector θa. Instead, γdist ∈ R3 is the adaptation gain that acts on
the estimation of the disturbance dT . For simplicity, all these contributions can
be collected in a single vector as:

γA = [γinertia, γCoM , γdist] ∈ R12. (4.14)

For these particular simulations it has been chosen to set:
γinertia = [0.03, 0.03, 0.03, 0.03, 0.03, 0.03]
γCoM = [0.09, 0.09, 0.09]
γdist = [12, 12, 6]

(4.15)

Instead, the closed-loop gain has been chosen as follow:

λa =

35 0 0
0 35 0
0 0 40

 (4.16)

The initial conditions used to integrate (4.13) are reported in A.3. Concerning
the desired trajectory, the Paoll trajectory showed in 4.1 has been selected to
evaluate the attitude performances. Moreover, the values of the center of mass
position has been left equal to the one showed in table 4.3, while J̄ has been
taken as a diagonal matrix which components differ by 20% from the J diagonal
elements. As a reminder, for a complete overview of the simulator data one should
refer to appendix A. Unlike the previous cases, the performances will not be only
evaluated by looking directly at the plots, but also by looking at similar tables
to the ones presented in 4.3, in which the maximum absolute error (4.5) and
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root mean square error (4.6) will be reported for both the CPID and the CMRAC
adaptive architectures. This is to permit the comparison between the two different
approaches.

For a better evaluation of the tiltrotor behaviour, the simulations will be split
in two different cases:

� A simulation without disturbances: dT = [0, 0, 0]

� A simulation with a step disturbance: dT1 = dT2 = dT3 = 0.1 · step(t− 7)

The first case can help to understand the UAV tracking performances. In fact,
since we are looking at the absolute and root mean square errors, a sudden distur-
bance would rapidly increase the error amplitudes giving distorted results, more
precisely a bigger eabs and erms, which do not reflect the actual tracking perfor-
mances. Instead in this context, the second case permits to separate the evaluation
of the disturbance rejection capability of the system. Indeed, since the root mean
square error is a sort of average of the error in time, it is not the most correct
parameter to assess the disturbance rejection capacity. For this reason, in this
second simulation, only the absolute error will be computed. The sudden dT step
will increase the maximum absolute error and it will be bigger the less the two
approaches under study are able to oppose to the disturbance.

4.8.1 Simulation without disturbances

As previously anticipated, in order to have a better understanding of the UAV
tracking performances, the simulations have to be carried out considering null
disturbances. Figures 4.68, 4.69, 4.70, 4.71, 4.72, 4.73, 4.74, 4.75, 4.76, 4.77, 4.78,
4.79, 4.80, 4.81, 4.82 and 4.83 show the results obtained.

Tables 4.6 and 4.7 report respectively the maximum absolute and root mean
square errors defined in (4.5) and (4.6) for all the state components. In contrast
to the errors illustrated in the figures, where they are calculated with respect to
the outer-loop variables ωv and vv, in the tables they have been computed as
the difference between the plant state and the one computed by the trajectory
generator mentioned in section 1.4. In this way, the reference is always the same for
all the simulations and this permits a better comprehension of the data. Therefore,
it is possible to define vx = v − vd ∈ R3 and ωx = ω − ωd ∈ R3 where vd and ωd
are respectively the desired translational and angular velocity computed by the
trajectory generator. These new variables are the ones that are actually used in
the tables.

Referring to the outcomes of the numerical simulation, the adaptive archi-
tecture shows better performances both for the maximum absolute and the root
mean square error. It should be reminded that the adaptation is acting only on
the attitude dynamic but, since the plant implemented is non-linear and it is af-
fected by some couplings between attitude and position, this latter also presents
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Figure 4.68: Plant and desired Euler angles for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
without disturbance.
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Figure 4.69: Euler angles error αx for the model with the CMRAC adaptive
controller (on top) and with the CPID controller (bottom). Simulation without
disturbance.
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Figure 4.70: Plant and desired angular velocities for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
without disturbance.
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Figure 4.71: Angular velocity error with respect to the outer-loop ωv for the model
with the CMRAC adaptive controller (on top) and with the CPID controller
(bottom). Simulation without disturbance.
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Figure 4.72: Plant and desired position for the model with the CMRAC adaptive
controller (on top) and with the CPID controller (bottom). Simulation without
disturbance.
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Figure 4.73: Position error ex for the model with the CMRAC adaptive controller
(on top) and with the CPID controller (bottom). Simulation without disturbance.
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Figure 4.74: Plant and desired translational velocity for the model with the CM-
RAC adaptive controller (on top) and with the CPID controller (bottom). Simu-
lation without disturbance.
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Figure 4.75: Translational velocity error with respect to the outer-loop vv for the
model with the CMRAC adaptive controller (on top) and with the CPID controller
(bottom). Simulation without disturbance.
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Figure 4.76: Force control input fc = f bc + fac for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
without disturbance.
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Figure 4.77: Torque control input τc = τ bc + τac for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
without disturbance.
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Figure 4.78: Th% requested by the four UAV’s propellers for the model with the
CMRAC adaptive controller (on top) and with the CPID controller (bottom).
Simulation without disturbance.
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Figure 4.79: Servo-actuators angular position βa requested by the four UAV’s
propellers for the model with the CMRAC adaptive controller (on top) and with
the CPID controller (bottom). Simulation without disturbance.
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Figure 4.80: Baseline (on top) and adaptive (bottom) control input torque for the
model with the CMRAC adaptive controller. Simulation without disturbance.
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Figure 4.81: On-line estimation of the disturbance d̂T for the model with the
CMRAC adaptive controller. Simulation without disturbance.
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Figure 4.82: On-line estimation of the uncertain parameters contained in θa for
the model with the CMRAC adaptive controller. Simulation without disturbance.
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Figure 4.83: Error between the plant and the reference model angular velocity for
the model with the CMRAC adaptive controller. Simulation without disturbance.
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eabs U.M. CPID Adaptive

ex1 [m] 0.1923 0.1650
ex2 [m] 0.0676 0.0256
ex3 [m] 0.4713 0.4114
vx1 [m/s] 0.0704 0.0493
vx2 [m/s] 0.1332 0.0312
vx3 [m/s] 0.2487 0.2230
αx1 [deg] 6.3290 3.1721
αx2 [deg] 5.1242 4.1324
αx3 [deg] 17.4496 14.1660
ωx1 [deg/s] 43.6134 36.9546
ωx2 [deg/s] 38.4120 36.2783
ωx3 [deg/s] 10.9505 9.0946

Table 4.6: Comparison of the maximum absolute error eabs between the model with
the CPID and the CMRAC adaptive controller acting on the attitude. Simulation
without disturbance.

erms U.M. CPID Adaptive

ex1 [m] 0.0476 0.0231
ex2 [m] 0.0086 0.0084
ex3 [m] 0.0847 0.0307
vx1 [m/s] 0.0176 0.0085
vx2 [m/s] 0.0153 0.0056
vx3 [m/s] 0.0495 0.0229
αx1 [deg] 0.9386 0.9179
αx2 [deg] 1.2295 1.2006
αx3 [deg] 5.4514 5.5089
ωx1 [deg/s] 0.0187 0.0069
ωx2 [deg/s] 0.0214 0.0086
ωx3 [deg/s] 0.0203 0.0073

Table 4.7: Comparison of the root mean square error erms between the model with
the CPID and the CMRAC adaptive controller acting on the attitude. Simulation
without disturbance.
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some improvements. The adaptive controller is able to enhance also the position
performances even if only a proportional baseline controller is acting on it. In
general the variables do not show important high frequency oscillations meaning
that, considering the good tracking performances, the CMRAC architecture is
working well. The estimated parameters d̂T and θ̂a converge to some stable values
after a short initial transient and the angular velocity error, with respect to the
reference model, is very small for all the simulation.

4.8.2 Simulation with a step disturbance

As mentioned before, in order to better understand the UAV disturbance rejection
capability, one should evaluate how the tiltrotor performs when a sudden step
disturbance is applied to the system. For this purpose, it is possible to look to
figures 4.84, 4.85, 4.86, 4.87, 4.88, 4.89, 4.90, 4.91, 4.92, 4.93, 4.94, 4.95, 4.96,
4.97, 4.98, 4.99 and table 4.8, which show the comparison between the model
with the CPID and the adaptive CMRAC controller. In this case, for the reasons
explained before, only the absolute error will be reported.

Figure 4.84: Plant and desired Euler angles for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
with disturbance.

As it is possible to notice from the results obtained, the adaptive controller
shows better performances with respect to the CPID approach. In particular, the
maximum absolute error demonstrates lower values for the CMRAC. As before,
even if the adaptation is acting on the attitude dynamic only, some improvements
in the position are also present. The reaction of the system against the step
disturbance is quite good since the transient vanishes fast and there are not so
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Figure 4.85: Euler angles error αx for the model with the CMRAC adaptive
controller (on top) and with the CPID controller (bottom). Simulation with
disturbance.

Figure 4.86: Plant and desired angular velocities for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
with disturbance.
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Figure 4.87: Angular velocity error with respect to the outer-loop ωv for the model
with the CMRAC adaptive controller (on top) and with the CPID controller
(bottom). Simulation with disturbance.

Figure 4.88: Plant and desired position for the model with the CMRAC adaptive
controller (on top) and with the CPID controller (bottom). Simulation with
disturbance.
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Figure 4.89: Position error ex for the model with the CMRAC adaptive controller
(on top) and with the CPID controller (bottom). Simulation with disturbance.

Figure 4.90: Plant and desired translational velocity for the model with the CM-
RAC adaptive controller (on top) and with the CPID controller (bottom). Simu-
lation with disturbance.
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Figure 4.91: Translational velocity error with respect to the outer-loop vv for the
model with the CMRAC adaptive controller (on top) and with the CPID controller
(bottom). Simulation with disturbance.

Figure 4.92: Force control input fc = f bc + fac for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
with disturbance.
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Figure 4.93: Torque control input τc = τ bc + τac for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom). Simulation
with disturbance.
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Figure 4.94: Th% requested by the four UAV’s propellers for the model with the
CMRAC adaptive controller (on top) and with the CPID controller (bottom).
Simulation with disturbance.
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Figure 4.95: Servo-actuators angular position βa requested by the four UAV’s
propellers for the model with the CMRAC adaptive controller (on top) and with
the CPID controller (bottom). Simulation with disturbance.
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Figure 4.96: Baseline (on top) and adaptive (bottom) control input torque for the
model with the CMRAC adaptive controller. Simulation with disturbance.
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Figure 4.97: On-line estimation of the disturbance d̂T for the model with the
CMRAC adaptive controller. Simulation with disturbance.
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Figure 4.98: On-line estimation of the uncertain parameters contained in θa for
the model with the CMRAC adaptive controller. Simulation with disturbance.
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Figure 4.99: Error between the plant and the reference model angular velocity for
the model with the CMRAC adaptive controller. Simulation with disturbance.

eabs U.M. CPID Adaptive

ex1 [m] 0.1923 0.1650
ex2 [m] 0.0676 0.0256
ex3 [m] 0.4714 0.4115
vx1 [m/s] 0.0704 0.0493
vx2 [m/s] 0.1332 0.0462
vx3 [m/s] 0.2487 0.2230
αx1 [deg] 6.3290 3.1721
αx2 [deg] 5.0428 4.1072
αx3 [deg] 24.8948 14.1721
ωx1 [deg/s] 43.6134 36.9546
ωx2 [deg/s] 38.4120 36.2783
ωx3 [deg/s] 47.9761 46.3772

Table 4.8: Comparison of the maximum absolute error eabs between the model with
the CPID and the CMRAC adaptive controller acting on the attitude. Simulation
with disturbance.
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many high frequency oscillations. The estimation of the uncertain parameters
shows a slight different behaviour with respect to the previous case. In fact, at
the beginning they converge to a certain value and then, after the step occurrence,
they converge to a different value. The dynamic of the tiltrotor has shown to be
very close to the one generated by the reference model. The biggest error is
present only at the very beginning of the simulation, when the controller has to
adapt itself to the system, and when the disturbance has been activated.

4.9 Conclusion

The analysis developed until now refer to the attitude dynamic only, since as
first approach, it has been chosen to see how the adaptive laws, defined by the
Projection Operator, work on the main uncertainties of the system. From the
first results computed by the simplified simulator, it is possible to conclude that a
very simple adaptive architecture like the MRAC one ensures the convergence of
the tracking error even if a linear uncertain model and a very simple proportional
baseline controller have been considered. As expected, many control variables
show very fast oscillations and they increase incrementing the adaptation gain.
Since, in general we want to guarantee fast response and good tracking, this
drawback cannot be completely avoided. A possible solution has been discovered
in the CMRAC controller, which is able to maintain good performances without
the presence of vibrations thanks to the new innovation term. Therefore, this last
approach has been chosen as the most suitable architecture for our problem and,
for this reason, it has been proven on non-linear plant models, on the tilt-arm
simulator and finally compared with the CPID controller. The results have shown
that the adaptive CMRAC controller ensures better performances with respect to
the CPID one and good tracking and disturbance rejection capabilities. Moreover,
since the CMRAC has the ability to adapt itself against the uncertainties of the
system, it has been discovered that the tuning effort of the adaptive controller
parameters has been less intense with respect to the classical PID. As drawback,
the computational power is increased together with the overall complexity of the
algorithm, meaning that a better hardware is needed.
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Chapter 5

Position Adaptive Control
System

This chapter will focus on adaptive controllers applied to the position dynamic.
The structure is very similar to the one presented before. Firstly, the details
about the baseline controller chosen and the derived uncertain state space model
for the position dynamic will be shown. Secondly, the reference model selected
will be illustrated together with the adaptive control law adopted highlighting
the reasons of its choice. Finally, the results obtained with the tilt-arm simulator
will be presented, in order to understand if an adaptive controller acting on the
position dynamic actually improves the performances of the system.

5.1 Baseline controller

As previously done in the last chapter and as discussed in section 1.5, it has been
chosen to design the baseline controller as the CPID architecture but without the
derivative and integral terms, since in theory, the adaptive controller should be
able to replace the features of these components. Therefore, considering only the
last two equations of (1.12), it is possible to write the position baseline controller
as: {

vv = −KP
poex

f bc = RT (KP
ffvv −KP

pi(v − vV ) +mge3)
(5.1)

in which only the proportional term has been taken from the complete CPID
controller.

5.2 Uncertain state space model

As previously done for the attitude dynamic, also for the position one it is possible
to derive a complete uncertain state space model similar to the one presented in
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equation (3.5). Referring to the position dynamic of (3.15) only, one should write:

[
ẋ
v̇

]
=

[
03 03 I3 03

03 03 −
KP
pi

m
I3 03

]
︸ ︷︷ ︸

A

[
x
v

]
︸ ︷︷ ︸
X

+

+

[
03 03 03 03

03 03
KP
ff+KP

pi

m
I3 03

]
︸ ︷︷ ︸

Br

[
031

vv

]
︸ ︷︷ ︸

r

+

+

[
03
1
m
I3

]
︸ ︷︷ ︸

B

[
03

I3

]T
︸ ︷︷ ︸

Λ

([
031

f(X)θv4,5

]
+

[
031

fac

]
+

[
031

doff

])
︸ ︷︷ ︸

Uncertain

(5.2)

where, as mentioned in section 3.2.1 and as done in the previous chapter, the
position baseline controller (5.1) appears inside the A and the Br matrix, the r
vector collects the desired translational velocity generated by the controller vv,
and the last row collects the uncertain portion of the model. In this case, B is
known since the mass is known, and Λ is the identity. Instead, the uncertain
contribution is split in a first term that depends on the state, in a second term
that represents the adaptive force control input and finally in a third one that
collects all the constant disturbances that are independent from the state.

5.3 Reference model

In contrast to the previous chapter, the position dynamic will be directly analysed
with the complete tilt-arm simulator, implementing the model with the CMRAC
controller. In fact, the previous simulations have shown that the MRAC approach
is not a suitable architecture for this problem. With that in mind, the reference
model has been derived by taking the ideal version of the third equation of system
(3.3). Therefore, we can assume:

� Negligible disturbance: dF = 0

� xc ≈ [0, 0, 0].

So, the CMRAC differential reference model equation describing the behaviour of
the quadrotor translational velocities vm ∈ R3 becomes simply:

mv̇m = −mge3 +Rf bc + λpep (5.3)

Where λp ∈ R3×3 is the position closed-loop gain and ep = v−vm is the adaptation
error. As in the attitude case, the above expression takes as input the baseline
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control force showed in equation (5.1), but in which vm has been used in place of
v.

Following the same idea of the previous chapter, the results obtained with the
model with the CPID controller will be compared to the ones with the adaptive
architecture. For the same reasons explained before, also in this case it has been
decided to tune the reference model gains in such a way that its behaviour gets as
close as possible to the CPID one. This will be accomplished by looking directly
to the plots and to the tables, where the maximum absolute error 4.5 and root
mean square error 4.6 will be reported for all the state variables that refer to
the position dynamic. Also here, the trajectory chosen is the Paoll trajectory
illustrated in 4.1 and the values of the tuned gains can be found in appendix A
table A.2.

Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and tables 5.1, 5.2 show the results ob-
tained. Since in this chapter we analyse the position dynamic only, they refer to
the position, the translational velocities, the control input forces and the thrust
percentage Th%.

Figure 5.1: Plant and desired position for the reference model (on top) and for
the system with the CPID controller (bottom).

5.4 Position adaptive laws

As previously said, the idea followed until now is to decouple the design of the
attitude dynamic from the position one. Pursuing the same goal, in this chapter
we will assume that the attitude dynamic will not be affected by any sort of
uncertainties and, consequently, we will consider it as ideal. This means that for
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Figure 5.2: Position error ex for the reference model (on top) and for the system
with the CPID controller (bottom).

Figure 5.3: Plant and desired translational velocity for the reference model (on
top) and for the system with the CPID controller (bottom).
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Figure 5.4: Translational velocity error with respect to the outer-loop vv for the
reference model (on top) and for the system with the CPID controller (bottom).

Figure 5.5: Force control input fc = f bc + fac for the reference model (on top) and
for the system with the CPID controller (bottom).
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Figure 5.6: Th% requested by the four UAV’s propellers for the reference model
(on top) and for the system with the CPID controller (bottom).

eabs U.M. CPID Ref. Model

ex1 [m] 0.1923 0.1650
ex2 [m] 0.0676 0.0256
ex3 [m] 0.4713 0.4114
vx1 [m/s] 0.0704 0.0493
vx2 [m/s] 0.1332 0.0312
vx3 [m/s] 0.2487 0.2230

Table 5.1: Comparison of the maximum absolute error eabs between the system
with the CPID and the reference model for the position dynamic.

erms U.M. CPID Ref. Model

ex1 [m] 0.0476 0.0231
ex2 [m] 0.0086 0.0084
ex3 [m] 0.0847 0.0307
vx1 [m/s] 0.0176 0.0085
vx2 [m/s] 0.0153 0.0056
vx3 [m/s] 0.0495 0.0229

Table 5.2: Comparison of the root mean square error erms between the system
with the CPID and the reference model for the position dynamic.
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all the results that will be illustrated and referring to the attitude dynamic only,
it has been assumed:

� No disturbances: dT = 0

� Null center of mass position in the fourth equation of (1.11)

� Exact inertia tensor: J = J̄ with J̄ equals to equation (4.10).

On the other hand, referring to the third equation of (1.11), since the position
dynamic is the one under study in this chapter, all its uncertainties have been
taken into account. In particular, given that the main uncertain contribution
comes only from the disturbance vector dF , unlike the previous case, it has been
modelled in a more complicated way, as showed in section 3.2.2.

As mentioned in section 2.2, in general the adaptive control input has to be
chosen in such a way that it eliminates all the uncertain contributions. Regarding
our problem they are earlier modelled as in equation (3.14), therefore fac can be
written as:

fac = −d̂off + f(X)θ̂p4,5 (5.4)

where, as always, the hat symbol indicates that the variable under interest has to
be estimated.

As in the previous chapter, the estimation has been carried out by an adaptive
law that has been chosen as the Projection Operator: it allows to bound all the
processes, to avoid wind up problems and to prevent the parameters from drifting
away. Therefore, the adaptive law takes the form of equation (5.5).

˙̂
doff = γoffProj

(
d̂off , B

T
p Ppep

)
˙̂
θp4,5 = γθpProj

(
θ̂p4,5, f(X)TBT

p Ppep

)
(5.5)

where γoff ∈ R3 and γθp ∈ R2 are the adaptation gains acting respectively on
the offset and state dependent term of the dT estimation. These latter can be
collected in a single vector as:

γP =
[
γoff , γθp

]T ∈ R5. (5.6)

The initial conditions used to integrate (5.5) are reported in A.3. Furthermore,
ep = v − vm ∈ R3 is the translational velocity error between the plant and the
reference model, Pp is the solution of the Lyapunov equation:

ATp Pp + PpAp = −Q

Ap, Q and Bp are chosen for simplicity by looking at the second component of the
state space model showed in equation (5.2), since in this chapter we are looking
at the position dynamic only. Therefore:

Bp = 1
m
I3

Ap = −KP
pi

m
I3

Q = I3



116 Position Adaptive Control System

In this case, the position reference model used to compute the above cited errors
has been implemented for the CMRAC architecture only as the one showed in
equation (5.3).

5.5 Tilt-arm simulator

In the previous chapter, we have seen that, before using the complete tilt-arm
simulator, a simplified numerical software has been realized. This was done in
order to understand how the adaptive controller behaves on this particular system
and to highlight its possible drawbacks. Since from the previous simulations we
have already understood the main peculiarities of the control architectures under
study, and given that the position dynamic is less affected by uncertainties and
consequently it is simpler from the adaptation point of view, it has been choose
to implement the position adaptive controller directly on the tilt-arm simulator.
As before, the performances will be evaluated against the CPID ones.

The adaptation and the closed-loop gains have been chosen with the same
idea of the previous case. We want the performances to be better or at least equal
to the ones given by the CPID approach, but taking into account of CPU effort
and the possible presence of fast oscillations. For these reasons, the adaptation
gain, which affects the speed of adaptation and therefore of the tracking, has been
selected as:

γP = [400, 400, 150, 100, 100]T (5.7)

while the closed loop gain, which instead affects the number of oscillations present
and how much the reference system is influenced by the innovation error ep, has
been taken as:

λp =

30 0 0
0 30 0
0 0 8

 . (5.8)

Since we are evaluating the position performances, the trajectory chosen is an “8
shape” trajectory as the one showed in figure 5.7. Instead, the values of the center
of mass position and inertia tensor have been left equal to the ones reported in
chapter 4. Regarding the dF coefficients that appear in equation (3.11), it has
to be reminded that dF is composed by an offset plus a term that represents the
aerodynamic resistance. In this context, the offset term has been exploited to
simulate a sudden gust of wind that the UAV can encounter during an outdoor
flight. Therefore, doff in equation 3.14 has been selected as:

doff =

d1

d2

d3

 =


031 if 0 6 t < 10

[0.3, 0.3, 0.1]T if 10 6 t < 50
031 elsewhere.

(5.9)
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Figure 5.7: 8 Shape trajectory: desired position (on top) and Euler angles (bot-
tom)

Instead, θp4,5 that refers to the aerodynamic resistance has been chosen as follow:

θp4,5 = [0.1, 0.01]T . (5.10)

As a reminder, for a complete overview of the simulator data one should refer to
appendix A. Figures 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18,
5.19, 5.20, 5.21, 5.22 and 5.23 show the results achieved. As before, tables 5.3 and
5.4 report respectively the absolute and the root mean square error between the
plant state and the desired dynamic computed by the trajectory generator. Since
the disturbance is a quadratic function of the translational velocity, the tracking
performances and the disturbance rejection capabilities can be evaluated through
the same simulation.

As it is possible to see, given that the attitude is not affected by uncertainties,
variables such as the Euler angles and the angular velocities present a behaviour
very similar to the ideal one. The simple proportional controller is enough to
obtain good performances. Regarding the position dynamic, one should note
that the position error with respect to the desired one is lower for the CMRAC
approach, especially in the interval of time in which the disturbance magnitude
increases. Moreover, the position and the translational velocity show slight faster
transients with respect to the CPID, even if they are still inside the correct ranges
for small scale UAV. The same can be said for the force and torque control inputs.
In particular, fc is made by the sum of the baseline plus the adaptive control
force. The main contribution comes from the first one, which tries to counteract
the gravitational force and to make the tracking, while the second one, with
minor adjustments, compensates the uncertainties of the UAV dynamic. This
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Figure 5.8: Plant and desired Euler angles for the model with the CMRAC adap-
tive controller (on top) and with the CPID controller (bottom).
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Figure 5.9: Euler angles error αx for the model with the CMRAC adaptive con-
troller (on top) and with the CPID controller (bottom).
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Figure 5.10: Plant and desired angular velocities for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom).
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Figure 5.11: Angular velocity error with respect to the outer-loop ωv for the model
with the CMRAC adaptive controller (on top) and with the CPID controller
(bottom).
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Figure 5.12: Plant and desired position for the model with the CMRAC adaptive
controller (on top) and with the CPID controller (bottom).

0 10 20 30 40 50 60 70

-1

-0.5

0

0.5

1

[m
]

e
x1

e
x2

e
x3

0 10 20 30 40 50 60 70

Time [s]

-1

-0.5

0

0.5

1

[m
]

e
x1

e
x2

e
x3

Figure 5.13: Position error ex for the model with the CMRAC adaptive controller
(on top) and with the CPID controller (bottom).
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Figure 5.14: Plant and desired translational velocity for the model with the CM-
RAC adaptive controller (on top) and with the CPID controller (bottom).
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Figure 5.15: Translational velocity error with respect to the outer-loop vv for the
model with the CMRAC adaptive controller (on top) and with the CPID controller
(bottom).
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Figure 5.16: Force control input fc = f bc + fac for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom).

Figure 5.17: Torque control input τc = τ bc + τac for the model with the CMRAC
adaptive controller (on top) and with the CPID controller (bottom).
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Figure 5.18: Th% requested by the four UAV’s propellers for the model with the
CMRAC adaptive controller (on top) and with the CPID controller (bottom).
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Figure 5.19: Servo-actuators angular position βa requested by the four UAV’s
propellers for the model with the CMRAC adaptive controller (on top) and with
the CPID controller (bottom).
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Figure 5.20: Baseline (on top) and adaptive (bottom) control input force for the
model with the CMRAC adaptive controller.
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Figure 5.21: On-line estimation of the uncertain components of θp in equation
(3.12) for the model with the CMRAC adaptive controller.
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Figure 5.22: Trend of the disturbance vector dF acting on the plant for the model
with the CMRAC adaptive controller.
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Figure 5.23: Error between the plant and the reference model translational veloc-
ity for the model with the CMRAC adaptive controller.
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eabs U.M. CPID Adaptive

ex1 [m] 1.0738 1.0117
ex2 [m] 1.2305 0.9203
ex3 [m] 0.2693 0.2281
vx1 [m/s] 0.8620 0.8114
vx2 [m/s] 0.8996 0.7000
vx3 [m/s] 0.1305 0.1265
αx1 [deg] 1.9978 1.9167
αx2 [deg] 4.8906 4.5828
αx3 [deg] 35.5575 31.7488
ωx1 [deg/s] 4.9769 4.8572
ωx2 [deg/s] 17.7730 17.4547
ωx3 [deg/s] 30.4698 28.0924

Table 5.3: Comparison of the maximum absolute error eabs between the model
with the CPID and the CMRAC adaptive controller acting on the position.

erms U.M. CPID Adaptive

ex1 [m] 0.5731 0.5581
ex2 [m] 0.6217 0.5912
ex3 [m] 0.0661 0.0495
vx1 [m/s] 0.5205 0.4966
vx2 [m/s] 0.2921 0.2685
vx3 [m/s] 0.0224 0.0109
αx1 [deg] 1.1310 1.0935
αx2 [deg] 2.5486 2.0335
αx3 [deg] 15.7642 15.5016
ωx1 [deg/s] 0.0098 0.0049
ωx2 [deg/s] 0.0436 0.0223
ωx3 [deg/s] 0.0895 0.0407

Table 5.4: Comparison of the root mean square error erms between the model with
the CPID and the CMRAC adaptive controller acting on the position.
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allows the system to correctly converge to the desired set points. Furthermore,
the estimated variables contained in θp seem to converge to a constant value only
when the quadrotor is in hovering conditions. When some tracking tasks are
requested, the adaptive law does not seem able to find the θp ideal values. For
what concern the error between the plant and the reference model translational
velocity, it is clear that it is very small. After an initial fast transient at the
beginning, where the error is bigger since the adaptive controller has to take some
time to learn about the model uncertainties, it becomes very limited, meaning
that the UAV behaviour is similar to the ideal one of the reference model. In
general, all the variables do not present high frequency oscillations. This confirms
the fact that a correct selection of the closed-loop gain can lead to the elimination
of the oscillations while maintaining good tracking performances. As final remark,
referring to tables 5.3 and 5.4, both the absolute and the root mean square errors
for all the components of the state vector show lower values for the model where
the CMRAC controller is implemented.

5.6 Conclusion

The analysis carried out until now show that an adaptive controller acting on the
position dynamic can improve the performances of the system even if the only
source of uncertainty is the disturbance. An adaptive architecture can learn from
the measurements how to counteract them and, with a proper tuning, return good
performances. In fact, it has also to be highlighted that when the designer has
understood how the adaptive and closed-loop gains work, the tuning phase of such
controllers has discovered to be easier than the CPID. Indeed, since the baseline
controller is a simple proportional controller, the number of tuning gains is lower
and consequently less complicated to tune.
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Chapter 6

Attitude and Position Adaptive
Controllers

Firstly, in this chapter we will focus on the results obtained by the tilt-arm sim-
ulator with the adaptive controller active on both the attitude and the position
dynamic. In particular, the trends of each variable will be analysed, in order to
understand if a complete adaptive architecture can be more suitable and more
performing than other current solutions for the problem of controlling a tiltable
propellers UAV. Finally, a Monte Carlo simulation will be carried out to high-
light the system robustness to uncertainties that can be also present in the mixer
matrix.

6.1 Tilt-Arm simulator

In the previous two chapters, the design of the adaptive controller has been split in
the attitude and the position dynamic. As previously said, the reason of this choice
lies in the fact that the linearised system has shown to be completely decoupled.
In reality, the tiltable propellers UAV is a platform affected by important non
linearities and perhaps a complete decoupled approach could not be satisfactory.
On the contrary, the analysis showed before illustrates that the position dynamic
does not affect too much the attitude one and vice-versa, especially when one of the
twos is left ideal and the other with all the characteristic uncertainties. Therefore,
it is correct to hope that if we activate the adaptive controller on both the attitude
and the position dynamic, the results will not show very big discrepancies with
respect to the previous ones. For these reasons, the goal of this section will be
precisely to analyse the UAV performances, and to try to understand if a complete
adaptive architecture will be suitable for futures real world applications.

Going into more detail regarding the numerical simulation, the trajectory cho-
sen is the one illustrated in figure 6.1. More precisely, it is a trajectory where the
UAV has to perform an “infinity shape” in the space, while changing its attitude.
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This allows to evaluate both the posisition and the attitude dynamic. Given that

Figure 6.1: Infinity shape trajectory: desired position (on top) and Euler angles
(bottom)

the two previous analyses on the attitude and on the position have been made also
to correctly tune all the controllers, for this simulation all the adaptation and the
closed-loop gains are left equal to the ones chosen before. Consequently, γa, γp, λa
and λp have been taken respectively as equations (4.15), (5.7), (4.16) and (5.8).
Like the gains, also all the other variables have been selected as the ones showed
in the previous chapters. In particular, also in this case the disturbance acting
on the position dynamic has been modelled as an offset term, which simulates a
sudden gust of wind, plus an aerodynamic resistance term as in equation (5.9) and
(5.10), while dT acting on the attitude dynamic has been picked as a step function
beginning at t = 7 seconds as done in section 4.8.2. For a complete overview of
the simulator data, one should refer to appendix A. Figures 6.2, 6.3, 6.4, 6.5, 6.6,
6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14 show the results obtained.

As it is possible to see, in general the UAV performances seem to be satisfac-
tory. More specifically, both the position and the attitude show good tracking and
disturbance rejection capabilities. As expected, the errors increase each time some
tasks are requested by the trajectory generator, but after a short transient they
become very small. Under this perspective and considering the presence of system
uncertainties and disturbances, the convergence time is fast enough to allow the
tracking. Indeed, for what concerns the disturbance, it should be noted that when
the dT step occurs, all the variables present a pick, including the position and the
translational velocity, demonstrating the fact that some couplings are present in
the system. The sudden step is seen by the controller as an unexpected event that
has to be counteracted. From this point of view, the adaptation seems to perform
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Figure 6.2: Plant and desired Euler angles (on top), and plant and desired angular
velocities (bottom).
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Figure 6.3: Euler angles error αx (on top) and angular velocity error with respect
to the outer-loop ωv (bottom).
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Figure 6.4: Plant and desired position (on top), and plant and desired translational
velocity (bottom).
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Figure 6.5: Position error ex (on top) and translational velocity error with respect
to the outer-loop vv (bottom).
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Figure 6.6: Baseline (on top) and adaptive (bottom) control input torque.
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Figure 6.7: Baseline (on top) and adaptive (bottom) control input force.
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Figure 6.8: Force control input fc = f bc + fac (on top) and torque control input
τc = τ bc + τac (bottom).
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Figure 6.10: On-line estimation of the uncertain parameters contained in θa
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Figure 6.11: On-line estimation of the disturbance d̂T
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Figure 6.12: On-line estimation of the uncertain components of θp in equation
(3.12)
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Figure 6.13: Trend of the disturbance vector dF acting on the plant
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Figure 6.14: Error between the plant and the reference model angular velocity
(on top) and the translational velocity (bottom)

very well since after a very short interval of time the pick vanishes. Regarding the
control inputs, an analysis very similar to the one illustrated in chapters 4 and 5
can be carried out. The baseline control input tries to bring the system as close
as possible to the requested trajectory, while the adaptive one counteracts all the
uncertainties and disturbances in the dynamic. This allows the UAV to closely
follow the desired set points. Moreover, all the control inputs are in the correct
ranges of typical small scale quadrotors. The thrust and the servo actuators an-
gular position requested by the four propellers do not exceed respectively the 40%
and the ±35 degrees. Concerning the estimation of the uncertain variables, as
explained before this is done by an adaptive law, and more precisely by the Pro-
jection Operator. Similarly to what we have seen in the previous two chapters,
both θ̂a and d̂T seem to converge to a constant value, but different from the ideal
one. The only exception are dT1 and dT2 that in reality seem to converge to the
correct ideal value: 0.1 Nm. Instead, as before the estimation of θp shows greater
difficulties. Furthermore, some words have to be spent on the error between the
plant and the reference model. As can be seen, also in this simulation the system
appears to have a behaviour very similar to the ideal one. After a very short
initial transient where the adaptive controller has to “learn” and to “adapt” itself
to the system uncertainties, the error shows a value very close to zero. Finally, it
has to be highlighted that the activation of the adaptive controllers on both the
attitude and position dynamic has increased the computational effort needed for
the simulations. This to remind that the more complex the adaptive architecture,
the faster and more expensive hardware required.
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6.2 Monte Carlo simulation

6.2.1 Overview

Today, the Monte Carlo Simulation technique is used extensively for modelling
uncertain situations. Although we have a profusion of information at our disposal,
it is difficult to predict the future with absolute precision and accuracy. This can
be attributed to the dynamic factors that can impact the outcome of a course
of action. Monte Carlo Simulation enables us to see the possible outcomes of a
decision, which can thereby help us make better decisions under uncertainty. It
is a mathematical technique that generates random variables for modelling risk
or uncertainty of a certain system. As can be seen in figure 6.15, the random
variables or inputs are generated from probability distributions such as normal,
logarithmic, uniform etc. Then, after their implementation in the model, different
iterations or simulations are run for generating the outcomes. Monte Carlo Sim-
ulation is the most tenable method used when a model has uncertain parameters
or a dynamic complex system needs to be analysed. It is a probabilistic method
for modelling risk in a system and it provides a probabilistic estimate of the un-
certainty in a model. As a drawback, this kind of method is very expensive from
the computational power point of view, since it requires the simulation of the
same model for a large number of times. Moreover, the results fidelity is strongly
influenced by the number of iterations. The higher are the number of simulations,
the better will be the precision of the outcomes.

Figure 6.15: Schematic of Monte Carlo simulation [6]
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6.2.2 Uncertain allocation algorithm

All the simulations computed until now assume as uncertain parameters only some
variables that are directly involved in the system dynamic: for instance the inertia
tensor, the center of mass position and the disturbances. In reality, we have seen
in section 1.1.1 that an allocation algorithm is also needed to compute the actual
physical inputs ωri and βai from the control force and torque. The logic of this
algorithm is based on the knowledge of the mixer matrix M(σ, b), which is a func-
tion of the arm length b and of the actuators properties σ. These latter variables
are difficult to estimate with high precision, especially σ. Therefore, in real world
applications some uncertainties can also enter in the allocation algorithm. As can
be seen in figures 1.6 and 1.7, the pseudo-inverse of the mixer matrix is used a
first time to compute ωri and βai from fc and τc computed by the controllers to
simulate the presence of the actuators. Then, M is directly exploited a second
time in the plant to make the opposite process: the control input force and torque
are again computed from ωri and βai since the quadrotor dynamic system accepts
only fc and τc as control inputs. To be more precise, in mathematical terms,
the first time we compute fu as seen in equation (1.7), then the second one we
calculate fc and τc as showed in equation (1.5). With regards to our problem, the
mixer matrix M takes the following form:

M =
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while its pseudo-inverse becomes:

M+ =
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(6.2)

Usually, if we imagine a real world application and if we follow the same idea of
the adaptation theory discussed before, the uncertainties are particularly present
in the tiltrotor block of figure 1.6, given that the controllers block is the one that
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would be actually implemented in a real prototype. In fact, the tiltrotor block
tries simply to simulate as close as possible the real UAV dynamic. For these
reasons, in the simulation that we are going to implement, we will assume that
the first transformation that computes ωri and βai is exact, while the second one
that computes fc and τc is affected by uncertainties.

6.2.3 Simulation set-up

In order to understand the UAV robustness to this new source of uncertainty, a
Monte Carlo simulation will be carried out. This choice comes from the fact that
the simulator and the dynamic system is very complex. The Monte Carlo method
is the only way to introduce uncertainty in the system and to understand how
much these uncertainties affect the performance of the quadrotor.

The first thing to do to set up the simulation is to generate the necessary
samples. Since we have seen that the second transformation, which computes the
control input force and torque, is the one affected by uncertainty, it has been
decided to produce a set of 20 samples for both the b and the σ variables that
appear in equation (6.2). Since we have 20 elements for each variable, the total
number of iterations needed to complete the simulation is 202 = 400. The samples
have been generated trough two Gauss distributions with a mean value η equals
to the ones adopted in the tilt-arm simulations of chapters 4 and 5, and with a
standard deviation µ such that the 99.7% or 3µ of all the created samples do not
deviate more than 20% from the b and σ mean values. This has been accomplished
by taking:

µ =
20

100

1

3
η. (6.3)

Reminding that for a better overview of the all used data one should refer to ap-
pendix A, table 6.1 shows the parameters used to generate the Gauss distributions
illustrated in figure 6.16, where g(b) and g(σ) are respectively the probability den-
sity of b and σ. Instead, as previously said, given that equation (6.1) has been

Mean η Std. µ

b 0.45
2

0.0150
σ 0.0076 5.06× 10−4

Table 6.1: Mean and standard deviation used to create the Gauss distributions
for the b and σ variables

used to compute fu, the parameters inside equation (6.1) have been left equal to
the b and σ mean values reported in table 6.1. Finally, the desired trajectory for
the Monte Carlo simulation has been chosen as the trajectory showed in figure
4.1.
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Figure 6.16: Gauss distribution of the variable b (left) and σ (right) from which
the sets of samples have been generated

6.2.4 Results

In order to have a better comprehension of the outcomes, similarly to what we
have done in chapters 4 and 5, the Monte Carlo method just explained has been
applied to both the models with the CPID and CMRAC adaptive controller. More
specifically, for comparison reasons, the same σ and b samples created from the
Gauss distributions have been used to simulate the model showed in section 1.5
and the model presented in section 6.1.

Figures 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23 and 6.24 show the results ob-
tained as a function of the number of iterations, while figures 6.25, 6.26, 6.27,
6.28, 6.29, 6.30, 6.31 and 6.32 illustrate the same outcomes but as a function of
the generated b and σ samples.

As it is possible to see, in general the CPID architecture shows a flatter be-
haviour than the CMRAC one, where the plots present a more varying trend.
However, the errors computed by the model with the adaptive controller show
a value that on average is smaller with respect to the other model. Therefore,
this means that overall the CMRAC approach is more robust with respect to the
variation of b and σ inside the mixer matrix. Moreover, as can be appreciated
from the 3D plots, since along the b axis we have a flatter behaviour compared to
the σ one, both the controller architectures have been showed to be more robust
with respect to the variation of b than with respect to the variation of σ. The only
exceptions are the position and translational velocity root mean square tracking
errors of the CMRAC architecture that have been demonstrated to be particularly
sensible also along the b axis.
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Figure 6.17: Euler angles absolute tracking error as a function of the number of
iterations for the model with the CMRAC adaptive controller (on top) and with
the CPID controller (bottom).
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Figure 6.18: Euler angles root mean square tracking error as a function of the
number of iterations for the model with the CMRAC adaptive controller (on top)
and with the CPID controller (bottom).



6.2 Monte Carlo simulation 143

0 50 100 150 200 250 300 350 400

N° of Iterations

35

40

45

50

55

0 50 100 150 200 250 300 350 400

35

40

45

50

55

Figure 6.19: Angular velocity absolute tracking error as a function of the number
of iterations for the model with the CMRAC adaptive controller (on top) and
with the CPID controller (bottom).
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Figure 6.20: Angular velocity root mean square tracking error as a function of the
number of iterations for the model with the CMRAC adaptive controller (on top)
and with the CPID controller (bottom).
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Figure 6.21: Position absolute tracking error as a function of the number of iter-
ations for the model with the CMRAC adaptive controller (on top) and with the
CPID controller (bottom).
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Figure 6.22: Position root mean square tracking error as a function of the number
of iterations for the model with the CMRAC adaptive controller (on top) and
with the CPID controller (bottom).
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Figure 6.23: Translational velocity absolute tracking error as a function of the
number of iterations for the model with the CMRAC adaptive controller (on top)
and with the CPID controller (bottom).
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Figure 6.24: Translational velocity root mean square tracking error as a function
of the number of iterations for the model with the CMRAC adaptive controller
(on top) and with the CPID controller (bottom).
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Figure 6.25: Euler angles absolute tracking error as a function of the generated b
and σ samples for the model with the CMRAC adaptive controller (left) and with
the CPID controller (right).

Figure 6.26: Euler angles root mean square tracking error as a function of the
generated b and σ samples for the model with the CMRAC adaptive controller
(left) and with the CPID controller (right).
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Figure 6.27: Angular velocity absolute tracking error as a function of the generated
b and σ samples for the model with the CMRAC adaptive controller (left) and
with the CPID controller (right).

Figure 6.28: Angular velocity root mean square tracking error as a function of the
generated b and σ samples for the model with the CMRAC adaptive controller
(left) and with the CPID controller (right).
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Figure 6.29: Position absolute tracking error as a function of the generated b and
σ samples for the model with the CMRAC adaptive controller (left) and with the
CPID controller (right).

Figure 6.30: Position root mean square tracking error as a function of the gener-
ated b and σ samples for the model with the CMRAC adaptive controller (left)
and with the CPID controller (right).
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Figure 6.31: Velocity absolute tracking error as a function of the generated b and
σ samples for the model with the CMRAC adaptive controller (left) and with the
CPID controller (right).

Figure 6.32: Velocity root mean square tracking error as a function of the gener-
ated b and σ samples for the model with the CMRAC adaptive controller (left)
and with the CPID controller (right).
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6.3 Conclusion

The simulations carried out with the adaptive controllers active on both the po-
sition and attitude dynamic have highlighted very good tracking and disturbance
rejection capability performances. The CMRAC approach chosen has proved to
be the correct choice, since it allows the designer to set the speed of convergence
and the behaviour of the transients. Finally, a Monte Carlo simulation has been
set up to analyse the system robustness to uncertainties that can be present in
the mixer matrix. More specifically, the method has been used to transform two
deterministic variables to random ones. Since in real world applications there
is the possibility that these kinds of uncertainties are present, the results have
demonstrated that the CMRAC architecture is more robust and more efficient
than the well proven CPID one.
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The purpose of this thesis has been to improve the current research in the field
of control systems for tiltable propellers UAV. It has been demonstrated that this
latter is affected by high non-linear dynamics, making the problem of control-
ling difficult. Many non linear control algorithms have been implemented, such
as the ones reported in [1] and [2], but they have shown some limitations: they
have been derived from simplified dynamical models that limit the UAV perfor-
mance. In this context, a possible solution has been found in adaptive algorithms,
where the word “adaptive” refers to their ability to learn from the state measure-
ments and to adapt their-self against the uncertainties of the system. In this
work, two different adaptive architectures have been designed and then have been
numerically simulated: a Model Reference Adaptive Controller (MRAC) and a
Closed-loop Reference Adaptive Controller (CMRAC).

The activities conducted started with an introductory first chapter in which
the complete mathematical dynamical model of the quadrotor under study has
been shown and analysed, along with an its simplified version more suitable for
the control problem. Then, after a brief overview of the current state of the art
control systems for tiltable propellers UAV, the most complex numerical simulator,
which takes into account for the actuators dynamics and saturations, system non-
linearities, external disturbances and not null center of mass position, has been
presented. Since the CPID architecture has shown results comparable with other
current solutions [2], it has been selected as the reference control architecture with
respect to which all the results have been compared. Afterwards, the simulator
has been exploited to highlight the limitations of some control designs.

In the second chapter, after a brief introduction about the MRAC and the
CMRAC approaches, the control architecture chosen has been described. More
specifically, it has been found that the best performances can be obtained by
integrating an adaptive controller with a baseline one. For this reason, a simple
proportional controller has been coupled with an adaptive controller. The first one
has the purpose of bringing the system as close as possible to the desired trajectory,
while the second one has been used to counteract the disturbances, uncertainties
and non-linearities of the system. Moreover, the instability phenomena that usu-
ally affect these kinds of adaptive architectures and their possible solutions have
been shown. In particular, the Projection Operator has the capability to increase
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the system robustness, to avoid the drifting of the uncertain parameters and to
bound the overall process.

Taking the complete UAV dynamical model presented in chapter 1, the third
chapter began with the derivation of the plant linear model. This latter has been
discovered to be completely decoupled, in the sense that all the equations are
independent. For this reason, it has been chosen to adopt a decoupled design
approach: the control adaptive system has been designed separately for the atti-
tude and for the position. Then, the computed linearised model along with the
identified uncertain parameters has been used to derive the complete uncertain
model. This latter has the characteristic of separating the uncertain portion of the
model and it has been particularly useful for the implementation of the adaptive
controllers.

Following a decoupled approach, in the fourth chapter the details regarding
the baseline controller, the reference model and the chosen adaptive law have been
illustrated. Afterwards, a simplified linear simulator, which differ from the more
complex one by the absence of the actuators modelling, has been presented and
exploited to analyse the first results obtained using a model in which the MRAC
and CMRAC has been implemented. In this way, we have been able to understand
the main peculiarities of the two approaches and to select the most suitable control
architecture for the problem under study. The simulations have been carried out
also to understand how the adaptation and the closed-loop gains affect the UAV
performances. Then, the CMRAC has been selected as the most satisfactory
control system and its performances have been further proven on more complex
numerical simulators such as the non-linear simplified one and the complete tilt-
arm one showed in Chapter 1. The outcomes obtained have shown very good
tracking performances and disturbance rejection capabilities, comparable or even
better than the ones obtained with the classical CPID. Moreover, due to the
adaptive nature of the control algorithm, the tuning process has been discovered
to be more straightforward than the CPID.

The fifth chapter has a structure very similar to chapter 4, but it refers to
the UAV position dynamic. As before, the details about the baseline controller,
the reference model and the adaptive law have been analysed. Given that the
position has been demonstrated to be less affected by the system uncertainties, the
CMRAC controller has been verified directly on the tilt-arm simulator. The results
obtained show that an adaptive controller on the position can actually improve
the UAV performance, especially if we consider that in real world applications the
external disturbances can be very unpredictable. As in the previous case, also for
the position the tuning process has not been too much complicated.

In the last chapter the adaptation has been activated on both the attitude and
the position dynamics. The outcomes obtained by the tilt-arm simulator have
been analysed and discussed. It has been shown that, in simulation environment,
the adaptive controller has not been able to bring the estimation of the uncertain
parameters to their respective ideal values. This has not avoided the UAV from
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performing the requested task with satisfactory tracking performances and dis-
turbance rejection capabilities, demonstrating that a decoupled design approach
and the use of a linearised uncertain model have been the correct engineering
compromise. Moreover, as additional verification, a Monte Carlo simulation has
been carried out to assess the quadrotor robustness against the possible presence
of uncertainties in the mixer matrix. More specifically, the results have shown
that the model with the CMRAC has been more robust with respect to the one
with the CPID.

In conclusion, some indications of future developments and improvements for
the present thesis work are reported below:

� Prove the results experimentally on a real prototype.

� Evaluate the possibility to improve the adaptive controller implementing an
L1 architecture.
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Appendix A

Tilt-arm simulator data

In table A.1 the main physical parameters used in the tilt-arm simulator are re-
ported. It has to be noted that the aerodynamic damping is a negative torque,
which enters in the attitude dynamic, modelled as cω where c ∈ R3 is the damp-
ing coefficient [1]. Moreover, table A.4 reports the values of the nominal inertia
components compared to the plant ones. Instead, table A.3 and A.2 show respec-
tively the initial conditions and the baseline controller gains used in the tilt-arm
simulator.

Variable U.M. Value

Gravity [ m
s2

] 9.81

Air Density [ kg
m3 ] 1.225

Bracket length [m] 0.225
UAV mass [kg] 1.523
Propeller diameter [m] 0.3048
Thrust coefficient Kt 2.9× 10−6
Torque coefficient Kq 2.2× 10−8

σ = Kq
Kt

0.0076

Minimum βai [deg] 63.7
Maximum βai [deg] -63.7
Minimum Th% 23
Maximum Th% 100
Roll damping c1 -0.0463
Pitch damping c2 -0.0463
Yaw damping c3 -0.0185
xc1 [m] 0.01
xc2 [m] 0.01
xc3 [m] 0.01

Table A.1: Main physical parameters used in the tilt-arm simulator
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Gain Value

Attitude dynamic

KA
po

5 0 0
0 6 0
0 0 2.5


KA
pi

0.18 0 0
0 0.27 0
0 0 0.09


KA
ff 03

Position dynamic

KP
po

1.1 0 0
0 1.3 0
0 0 1.2


KP
pi

6 0 0
0 7 0
0 0 15


KP
ff 03

Table A.2: Baseline controller gains used in the tilt-arm simulator

The four servo-actuators have been modelled trough a generic state space
model as the one given below:

ẋb = Abxb +Bbub yb = Cbxb +Dbub (A.1)

where Ab and Bb are equals to:

Ab =

 0 1 0
0 0 1

−4650.23 −598.46 −28.36

 Bb =

 0
0

4670.25

 (A.2)

while Cb = I3 and Db = 031. ub ∈ R and yb ∈ R are respectively the system
input and output that, in our case, correspond to the bracket angles βai. Finally,
the four brush-less motors have been modelled as a linear transfer function in the
form of equation (A.3):

G(s) =
1

Tbs+ 1
(A.3)

where Tb = 0.04 is the motor time constant.
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Variable U.M. Value

Position x0 [m] [0, 0, 0]T

Velocity v0 [m/s] [0, 0, 0]T

Angular rates ω0 [deg/s] [0, 0, 0]T

Attitude x0 [deg] [0, 0, 0]T

θ̂a0 091

d̂T0 [Nm] [0, 0, 0]T

θ̂p0 051

Table A.3: Initial conditions used in the tilt-arm numerical integrators

Nominal J̄ Value [kg m2] Plant J Value [kg m2]

J̄11 0.0114 J11 0.0098
J̄12 0 J12 −1.523× 10−4

J̄13 0 J13 −1.523× 10−4

J̄21 0 J21 −1.523× 10−4

J̄22 0.0104 J22 0.0090
J̄23 0 J23 −1.523× 10−4

J̄31 0 J31 −1.523× 10−4

J̄32 0 J32 −1.523× 10−4

J̄33 0.0198 J33 0.0168

Table A.4: Nominal and plant inertia components used in the tilt-arm simulator
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