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1. Introduction 

Brain-Computer Interfaces (BCIs) provide an 

alternative method for users to interact with the 

world by translating brain activity into commands 

for external devices. BCIs can significantly benefit 

individuals with severe motor disabilities, 

enhancing their communication and 

independence.  

Verbal communication loss due to conditions like 

stroke or amyotrophic lateral sclerosis (ALS) has 

motivated research in speech BCIs, aiming to 

restore communication for individuals with 

preserved cognitive abilities. Different speech-

related modalities have been explored, including 

attempted speech, silent speech, inner speech and 

imagined speech. The latter – imagined speech (IS) 

– is a cognitive task where individuals mentally 

simulate speaking without any actual articulatory 

movement, akin to first-person motor imagery. IS 

is particularly interesting as it can be executed 

similarly by both healthy subjects and paralyzed 

patients, facilitating the transfer of information for 

restorative applications. Due to the lack of 

voluntary movement, in IS the main challenges 

arise from the absence of a ground truth signal. 

While invasive methods like ECoG [1] and 

microelectrode array implants [2] offer better 

performances for decoding IS, EEG is commonly 

employed due to its cost-effectiveness, safety and 

usability for investigation on healthy subjects. At 

the state-of-the-art [3]–[6], most of the studies use 

clinical-grade EEG systems featuring 64 electrodes 

montages.  

In this thesis, we introduce the use of a research-

grade portable EEG system only featuring 8 

channels to implement a BCI for detecting IS. The 

primary objective is to assess the feasibility of this 

novel approach.  

The study includes an initial comprehensive 

analysis aimed at disentangling IS mechanisms 

employing two different paradigms. Deepening 

into the BCI implementation details, the aim is 

twofold: firstly, we want to perform a fair 

comparison with the other studies in the state-of-

the-art, enabling the evaluation of our model’s 

offline detectability performance on six healthy 

subjects. Secondly, we aim at transferring the 

system to online settings providing neurofeedback 
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to improve BCI performance. The model is trained 

to detect IS in real-time, providing visual feedback 

to users. The goal is to determine if the system can 

provide trustworthy feedback and how it helps 

users to adapt their imagination strategy in 

response to the predictive capabilities of the model. 

2. Materials 
2.1. Data acquisition 
Brain signals are recorded with Mentalab Explore+, 

an 8-channel research-grade EEG recording device. 

It is composed of 9 electrodes: the ground electrode 

is affixed to hair-free forehead with a wet sticker 

electrode. The remaining 8 channels employ 

conductive polymeric electrodes with a minimal 

amount of conductive gel to enhance signal 

quality. Overall, the setup time is remarkably brief, 

taking just 5-10 minutes, and the device 

lightweight and portable design significantly 

improves the comfort for users.  

After a comprehensive analysis of the state-of-the-

art, optimal locations for the 8 channels are chosen, 

covering both auditory cortices (3 electrodes per 

hemisphere) and addressing speech areas 

asymmetry with two additional channels on the 

left hemisphere. The final montage comprises the 

ground at Fpz and the other 8 channels at locations 

TP8, C6, FT10, TP7, C6, FT9, FC5 and F5. Sample 

frequency was set to 500Hz. 

2.2. Paradigms 
In this study, the focus is to detect IS, i.e. whether 

the subjects are imaging to say a word or not. For 

these experiments, the vocabulary of words to be 

imagined is limited to the English words “LEFT” 

and “RIGHT”. In addition, a control resting class 

denoted as “NONE” is included to maintain 

consistent sensorial stimulation: subjects receive 

the same go-cue as in the imagination tasks, but no 

specific mental task is required. This prevents the 

detection of IS from being influenced by evoked 

reactions to visual stimuli rather than the actual 

processes of speech imagination. The two classes 

comprising the task to imagine a word will be 

addressed together as “IMAGINE” class, to be 

distinguished from the “NONE” class. 

Two paradigms were implemented. In both of 

them, the “IMAGINE” classes are instructed with 

oriented triangles, while the “NONE” class is 

associated with the absence of any instruction. The 

core difference between the two lies in how the go-

cue is presented. In the sliding cues paradigm 

(Figure 1), the go-cues are represented by a stream 

of crosses – surrounded by triangles or not – 

sliding horizontally at a constant speed. The 

“IMAGINE” or “NONE” task should commence 

when the corresponding sliding cross aligns with 

the central fixation cross. In the color-changing cues 

paradigm (Figure 2), subjects are required to start 

imagining saying the word (or not imagining 

anything specific) when the fixation cross turns 

from white to green. To optimize the duration of 

the acquisition, each instruction is followed by 

three consecutive repetitions of the go-cue. Hence, 

each trial is composed of three repetitions.  

All the participants were recruited on voluntary 

basis and provided written consent. Experiments 

were pre-approved by the Ethical Committee of 

UZLeuven, Belgium.  

2.3. Pilot study experiment 
In the pilot study, a single subject (male; age: 23; 

right-handed; without neurological complaints) 

underwent two experimental sessions. The first 

a) 

 

b) 

 
 

Figure 1: Sliding cues paradigm. In a) the experiment has just started and the subjects is waiting for the first cue (“RIGHT”) to slide 

over the fixation white central cross. In b) a “LEFT” task has just passed and the next one will be a “NONE” cue. The time between 

two consecutive cues is 4s. 

 
Figure 2: Color-changing cues paradigm. One trial is composed of 3 consequent repetitions of the same word. The subject should 

imagine saying the word when the fixation cross turns green (as depicted by the thought bubbles). All the phases have a specific 

duration. 
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employed color-changing cues paradigm. 210 

repetitions for each of the three classes were 

recorded in 55 minutes. However, only 195 

repetitions were deemed usable due to problems 

during the acquisition. The second session used the 

sliding cues paradigm. In 55 minutes, 210 

repetitions per class were acquired. Some of them 

were excluded due to eye blink artifacts and, after 

a balancing process, 189 trials per class were 

available.  

To create a balanced dataset for the detection 

problem, the “IMAGINE” class dataset was 

formed by merging half of the trials for “RIGHT” 

and “LEFT” through random down-sampling in a 

stratified manner. 

2.4. Offline experiments 
For the whole corpus offline experiment, six 

subjects (2 females; aged between 23 and 30; 

without neurological complaints) were recruited 

for two sessions of 50 minutes at least one week 

apart. Both sessions employed the color-changing 

cues paradigm and were divided into 12 blocks 

interleaved by a 30s pause. In each block six trials 

belonged to “NONE” class and six trials to 

“IMAGINE” class (3 “RIGHT” and 3 “LEFT”). The 

trials were randomly sorted. Each session resulted 

into 216 repetitions for “NONE” and “IMAGINE” 

classes. 

2.5. Online experiments 
Three out of the six subjects also participated in an 

online session. It was based on the color-changing 

cues paradigm and was composed of 12 blocks. 

The six initial blocks, forming the offline training 

set, mirrored the structure of offline sessions. Then, 

a predictive model was trained and used to detect 

IS in real-time. After each trial visual feedback 

about each of the three consecutive repetitions was 

provided as “OK” if the model correctly classified 

the corresponding single repetition or “X” if it did 

not. The model underwent initial training after the 

first six blocks without feedback. Subsequently, it 

was retrained at the conclusion of each block, 

cumulatively incorporating all previous trials of 

the session into the training set. 

3. Methods 
3.1. TF representations 
To address high non-stationarity of the EEG 

signals, time-frequency (TF) analysis is essential 

for capturing and comprehending dynamic 

changes in brain signals. At first, Morlet Wavelet 

transform was applied to “IMAGINE” epochs to 

visualize the neural activation induced by IS. The 

Gaussian window of the wavelet is adapted to the 

analysed frequency: its variance σ is the time 

needed for 10 complete periods of the analysed 

frequency. Then, to cope with the absence of a 

ground truth signal, the most discriminant time 

instants and spectral components usable for 

classification were identified. Classification of 

epochs into the two classes “IMAGINE” and 

“NONE” is performed by a simple model on 

consecutive narrow time windows, using only 

specific frequency bands to identify the most 

relevant TF features. For each couple time instant-

spectral component, a 5-fold cross validated 

accuracy score is computed. Finally, each score is 

used to plot an accuracy map in the TF 

bidimensional domain. 

3.2. Classifier and metrics 
The binary classification model employed for IS 

detection is depicted in Figure 3. Epochs featuring 

8-channel EEG signal, of 2s length, are extracted 

around the go-cue time. They are processed in two 

separated branches: the first extracting 660 features 

through the use of a Filter-Bank Common Spatial 

Pattern (FB-CSP) algorithm, the second computing 

16 ratios between functional frequency-band 

powers. Then, a supervised feature selection 

 

Figure 3: IS detection model. The hyperparameters to tune are shown with an asterisk. 
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method – based on an ANOVA F-value ranking – 

reduces the size of the input to a Support Vector 

Classifier (SVC). The hyperparameters to be tuned 

in this model are the starting point of the 2s epochs 

(𝑇𝑠𝑡𝑎𝑟𝑡), the number of features to be selected (𝐾) 

and the regularization term of the SVC (𝐶).  

To prevent data leakage, hyperparameters for the 

evaluation of offline detection accuracy in all 6 

subjects are tuned using a grid-search procedure 

on the pilot study data (resulting in 𝑇𝑠𝑡𝑎𝑟𝑡 = 0.25; 

𝐾 = 200; 𝐶 = 1). Then, for the online model, the 

same grid-search procedure is applied on the best 

offline session of the tested subject to obtain 

subject-specific optimal hyperparameters. 

3.3. Evaluation metrics 
As often employed in BCI studies, to ensure the 

robustness of the performance estimates used to 

evaluate the system, a 10-fold cross-validation 

(CV) procedure is employed. The metric used to 

evaluate the prediction performance on each split 

is the classification accuracy. The final accuracy is 

obtained as an average of the 10 CV scores. It is 

essential to evaluate the achieved accuracy in 

comparison with the chance level for the specific 

problem, i.e. the accuracy that a random classifier 

would achieve. In this case, being a balanced 

binary classification problem, it is 50%, with 1% 

confidence upper boundary of 56.1% (given by the 

number of repetitions per class). 

For the evaluation of offline sessions, two splitting 

strategies – i.e. the way each epoch is assigned to 

the train or test set to create CV folds – are 

implemented and compared: 

▪ random split: all the repetitions of each task are 

divided in a pseudo-random way between the 

two sets, allowing for example the presence of 

two consecutive repetitions in the train split 

and the third in the test.  

▪ trial-wise split: the three consecutive repetitions 

following the same instruction are kept 

together either in the train or in the test set. It 

is used to avoid the model to base the 

prediction about the test set on the shared 

temporal features which are not related to IS. 

The influence of the employed splitting strategy on 

the obtained accuracy is analysed via the Wilcoxon 

signed-rank test for paired samples, by comparing 

the accuracies achieved with the two strategies on 

each session.  

4. Results 
4.1. Pilot study 
In Figure 4 the TF representation of “IMAGINE” 

epochs are visualized and the two paradigms are 

compared. A 0.75s negative inflection of the power 

levels associated to γ band (30-70Hz) indicates an 

Event Related Desynchronization (ERD) 

happening when the subject imagines saying a 

word. However, this ERD is shifted by 1s when 

comparing the two paradigms: while it starts about 

synchronously with the go-cue in the sliding cues 

paradigm, it starts 1s after the go-cue for color-

changing paradigm. Figure 5 depicts the same 1s 

shift between the two paradigms in terms of 

discriminability. The most differentiable regions of 

the TF 2D map lie within the γ range (30-70Hz) and 

β range (14-35Hz) for both the paradigms. 

However, they are delayed when color-changing 

cues are employed. Quantitatively, a 1s mismatch 

 
Figure 4: TF wavelet representation of “IMAGINE” class for 

channels F5 and FC5. In a) trials of the color-changing cues 

paradigm session are presented; in b) sliding cues paradigm. 

Time 0s refers to the moment when the go-cue is given. The 

power values (always positive) obtained by the Wavelet 

transform, are normalized with respect to a baseline (-0.5s-0s) 

period using a z-score scaler. Blue intensity encodes for 

negative values (hence power reduction), red intensity for 

positive values (hence power increase). Dashed boxes encircle 

the identified ERD (reduction of the signal power) happening 

in γ band at different timing in the two paradigms. 

 
Figure 5: TF classification maps for the two paradigms. Time 

0s refers to the moment when the go-cue is given. Red 

intensity encodes the accuracy level achieved by using epochs 

cutted around the specific time instant and considering the 

relative frequency. 
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is also found in the optimal time windows 

identified for each paradigm through CV. The 

optimal time windows are reported with dashed 

lines in the figure. 

4.2. IS offline detection 
The Wilcoxon signed-rank test found a statistically 

significant difference (22 paired samples, p<0.001) 

in the classification accuracy achieved by the 

model when it is evaluated with a CV procedure 

employing the random splitting strategy 

(69.6±11.6%) or using the trial-wise strategy 

(63.8±13.2%). So, when the paradigm employs 

multiple consecutive repetitions related to the 

same instruction, using a random splitting strategy 

inflates the reported accuracy. 

The trial-wise splitting strategy was employed to 

evaluate the accuracy in different sessions. In Table 

1 for each subject it is reported the accuracy 

achieved in their best session (it was the second for 

all except subject 5, but not significative difference 

was found). All the subjects except subject 3 

surpassed the chance level (50%) and the 1% 

confidence upper boundary (56.1%). 

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Avg 

67.2% 74.0% 47.2% 62.1% 60.6% 86.6% 66.3% 
 

 

Table 1: IS detection accuracy. Best session for each subject. 

4.3. IS online detection 
Subjects 1, 4 and 6 participated in online 

experiments. Table 2 reports the accuracy of the 

online predictions which were provided as visual 

feedback to subject in real-time during the last six 

blocks of the session. For subject 1, the initial block 

starts at chance level and exhibits a gradual 

improvement, eventually reaching peak accuracies 

of 83.3% and 77.8% in blocks 10 and 12. For subject 

6, in the first four online blocks the real-time 

feedback was not properly working; instead in the 

last two blocks, the real-time feedback was given 

correctly 88.9% of the times. Finally, for subject 4, 

the model never performed much better than 

chance level, reaching a peak at the last block of 

63.9%. For subjects 1 and 6, the model learnt how 

to provide real-time feedback significantly better 

than random and with usable and trustable 

outcomes for the user. They both display a 

common pattern: the feedback provided in the 

initial blocks appears to be meaningless, but later, 

after a different number of blocks, it begins to 

deliver correct real-time predictions. 

Sub Block 7 Block 8 Block 9 Block 10 Block 11 Block 12 

1 50% 55.5% 69.4% *83.3% 61.1% *77.8% 

4 52.8% 47.2% 55.6% 61.1% 55.6% 63.9% 

6 50% 61.0% 50% 50% *88.9% *88.9% 
 

 

Table 2: Online detection accuracy per block. In each blocks 

the support is 18 epochs per class. 1% confidence upper 

boundary for the random classifier is 70%: the blocks with 

performances significantly better than random are indicated 

with an asterisk. 

5. Discussion 
5.1. Time shift in IS with different 

paradigms 
Aligned with other EEG studies, we observed an 

ERD in the γ band related to IS task. Also from the 

analysis of TF classification maps, the TF couples 

related to that γ band ERD were most effective in 

discriminating “IMAGINE” from “NONE” trials. 

The consistent 1s time shift, evident in both TF 

representations and in time window optimization, 

shows that the chosen paradigm influences the 

timing of the IS task. This time shift was expected: 

in the sliding cues paradigm, participants could 

anticipate the task's initiation by observing the cue 

gradually approaching the fixation cross, leading 

to precise timing (optimal window starts before the 

go-cue time). Conversely, in the color-changing 

cues paradigm, the subject faced challenges in 

instantly performing the task due to the reaction 

time required to perceive the cue changing color, 

resulting in delayed imagination processes. 

Despite this delay, subjects exhibited consistency 

in the color-changing cues paradigm too. Indeed, 

the similar intensity of observed phenomena 

suggests that a proper tuning of the time window 

might lead to equivalent results. For the whole 

corpus experiments, the color-changing paradigm 

was preferred for its similarity to studies present in 

literature allowing an unbiased comparison with 

state-of-the-art benchmarks. 

5.2. Relevance of the splitting strategy 
In the evaluation of model performances through 

k-fold CV, the statistical test has shown that the 

splitting strategy employed to create the splits 

influences the model accuracy. A wise choice is 

essential to prevent the model from achieving 

inflated performances based on the non-

stationarity of EEG signals. Specifically, the three 

repetitions associated with the same instruction 

share certain features unrelated to the imagination 

process but arising from their temporal proximity. 

Hence, for the purpose of IS detection these time-
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related features are unsuitable for online 

classification. Therefore, their impact should be 

minimized in offline analysis to ensure a valid 

assessment of the model's ability to detect IS. A 

trial-wise splitting procedure coupled with a 

random sorting of instruction within blocks – as 

employed in this study – removes the influence of 

these proximity features on model’s predictions. 

Conversely, employing a random splitting 

procedure has been demonstrated to inflate model 

accuracy by exploiting this effect. It is reasonable 

to presume that this inflationary effect may 

escalate with an increasing number of consecutive 

repetitions.  

Similar conclusions were drawn in [4] where the 

impact of the EEG non-stationarity was also 

investigated and demonstrated. They employed a 

dataset with epochs related to word imagination or 

silence tasks. Data were acquired from distinct 

time intervals. Their model achieved a detection 

accuracy ranging from 97% when inter- and intra-

class time distances are different (indicating trials 

of different classes coming from distinct recording 

sections) to 58% when they were the same 

(indicating trials of different classes coming from 

the same time interval) hence removing the 

temporal proximity effect on classification. 

5.3. Offline IS detection: a fair 

comparison with literature 
These considerations about the exploitation of time 

proximity more than IS related features force a 

critical analysis of the state-of-the-art performance 

report. For example, they challenge the 80% 

detection accuracy reported in [3], where four 

repetitions were associated to each instruction and 

a random split strategy was employed to create the 

10 folds used for CV. In our analysis, 69.6% average 

detection accuracy was achieved with random 

splitting strategy, but we employed one repetition 

less and only 8 EEG channels. Hence in comparison 

with [3] we achieved competitive perfomances, but 

being based on random splitting strategy we 

cannot ensure how much these models relate to IS 

or to temporal proximity features for classification. 

When considering [4] (where 64 EEG channels are 

employed too), to get rid of the temporal features 

effect, it should be taken into consideration the 

modality where intra- and inter-class time 

differences are the same which led to a detection 

accuracy of 58%. This modality can be compared to 

our trial-wise splitting procedure, where we 

achieved much higher accuracy, 66.3%. 

All participants except one surpassed chance level, 

and its confidence upper boundary. Considering 

the achieved performances in a fair comparison 

with the literature for IS detection, a considerable 

advancement was proposed in this study by the 

use of a portable, 8-channel EEG device. 

5.4. Online IS detection feasibility 
Processing data in real-time and providing user 

with neurofeedback is crucial for practical BCI 

applications. Closing the BCI loop through 

neurofeedback facilitates mutual learning of the 

user and the system, potentially enhancing BCI 

performance over time. For two of the three 

subjects online feedback was finally properly 

provided surpassing random prediction level with 

a similar improving trend. In average, we achieved 

lower performance compared to the two other 

studies present in literature which implemented an 

online IS BCI with 64-channel EEG systems [5], [6] 

attaining respectively 76% and 75% mean online 

accuracy. However, the observed trends suggest 

that sustained higher accuracy levels could be 

achieved with additional blocks. Peak detection 

accuracies of 83.3% and 89.9% in the final blocks 

show the potential of Mentalab Explore+ for future 

implementations of IS detection BCI with online 

feedback, enabling the two adaptive controllers – 

the model and the user – to improve together in a 

synergic learning process. 

6. Conclusion 

In this thesis we have highlighted the importance 

of identifying the best time window for the 

employed experimental protocol to cope with the 

lack of a ground truth signal in the IS paradigm. 

Mentalab Explore+, an 8-channel research-grade 

EEG portable amplifier, was successfully used to 

implement an offline BCI pipeline for detecting IS 

in healthy subjects, achieving 66.3% accuracy over 

six participant (with peaks of 74% and 87% in best 

sessions). Finally, the system was applied in a real-

time framework, revealing its potential by 

reaching online detection accuracies up to 89% in 

the final stages of the sessions.  

Future developments should focus on enlarging 

the pool of participants in online sessions and 

extending the problem to multi-class IS decoding, 

through the essential employment of 

neurofeedback to enable mutual learning of both 

the system and the user. 
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