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Abstract

The research for green sources of power is pushing in every technological sector, and methane
is an attractive choice for space applications since it could be implemented as a fuel in couple
with LOx, substituting the actual use of LH2. Since pure methane would be extremely expen-
sive, methane-based mixtures have to be considered. In this work, some of the major challenges
regarding the use of these mixtures are faced, trying to understand how they behave at high tem-
peratures and pressures, and what are the potentially dangerous areas on a pressure-temperature
diagram. Firstly, a general background of knowledge about gases, liquids and mixtures is given.
Secondly, thermodynamic and transport properties for methane mixtures are evaluated in the
supercritical region, with a code that implements the recent GERG-2008 EoS, which can grant
the highest accuracy for hydrocarbons mixtures; here, ethane, propane, nitrogen, and hydrogen
are considered as impurities with a mole fraction up to the 5%. The results are analysed to find
the so-called Widom Lines, which are the locus of points in supercritical region, where many
properties show pronounced extrema. However, these peaks vanish at higher pressures, and then,
to visualize where these extrema are more pronounced, a “Widom Area” is depicted around each
Widom Line, and it is defined as a region where strong gradients, above a certain threshold, are
found. Many examples for different mixtures are given to underline how even a little amount of
impurities can have strong effects on the supercritical behaviour of a mixture.
Lastly, another kind of crossover, present in the supercritical state, is described. Viscosity co-
efficient and speed of sound are evaluated, to show the presence of a structural rather than a
thermodynamic change in fluid atoms that causes a variation in the behaviour of those prop-
erties. Transport properties and speed of sound present minima that can be traced up to very
high pressures, identifying what is called Frenkel Line, and this is done using a recent prediction
method for the evaluation of the viscosity coefficient.
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0 Motivation of the work and achievements

In recent years liquid methane is under investigation as a possible fuel for liquid rocket engines.
Oxygen/methane is a very attractive propellant combination for this application, as it provides an
increment of 50s specific impulse, with respect to the actually used storable propellants, namely
liquid oxygen and refined petroleum-1 (RP-1). But this would not be the only advantage; the
combination LOx/LCH4 may be said to be “space storable”, which means that once in space,
when temperatures are much lower, depending on the tank pressure, the methane can remain
in the liquid state and then be used in any moment, without the need of an expensive cooling
system. On this point, it is clear the difference between liquid methane and hydrogen: even
though LOx/LH2 is the most performing propellant couple actually available on the market, it
has many drawbacks; firstly the incredibly low energy density, due to the low atomic mass of the
hydrogen, that causes the need of large volume of fuel to get a certain energy budget. But this
is not enough, because hydrogen is also extremely difficult to be handled from a thermal point of
view since it requires operating temperatures near 20 K that are difficult to reach and keep on
the ground and impossible in space.
Then, even if methane has a significantly lower specific impulse than hydrogen, it has the key ad-
vantages of an approximately 2.6 times higher energy density, which allows smaller tank volume,
and needs less powerful turbopumps thanks to the significantly higher fluid density. Moreover, for
methane only passive thermal protection is required, and its boiling rates are significantly lower
than for hydrogen. At the same time, if methane is compared with RP-1, they are both space
storable, with a comparable fluid density but methane has a higher specific impulse.
Another significant advantage is the absence of risks to human health, in both the production
and transportation chain. For this reason, they are often considered “green propellants”. This
promotes the use of methane also from an environmental point of view, in a period in which
every technological sector must adapt its products to sustain the worldwide challenge of a cleaner
ecosystem.

Then, what is the actual state of the art of liquid methane in space applications? What are its
drawbacks?

Liquid methane and liquid oxygen seem to be the favourite couple for the next generation of
engines for all the principal space companies all over the world.
The most advanced example of this technology can be found in the USA, with the Raptor engine.
It is a family of full-flow staged combustion cycle rocket engines developed by SpaceX, that uses
LOx and LCH4 and that will power "the super-heavy-lift Starship system", overcoming the ac-
tual Merlin, since the Raptor has twice its thrust. Also, Blue Origin has developed its own LNG
fueled rocket engine, the BE-4 that has still to be qualified for flight, and is planned to launch
the Vulcan Centaur vehicle, the successor of the AtlasV.
In Europe, LOx and LCH4 are going to be employed in future space applications, with the
Prometheus engine that is under development by ESA to prepare the next generation of engines
to be used with the Ariane-6 (or its successor) and the MIRA-LM10 on which Avio is working for
use on the smaller Vega-E.
Also in China, the LNG engine named TQ-12 is being designed by Landscape.

0.1 Objectives

One of the main complications in the design of a LOx-LCH4 engine is the fact that the critical
parameters of the methane are close to the usual operating conditions of the cooling channels
and the injectors of a rocket engine. Since the operating conditions are near to the critical point
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of methane, the irregularities in the behaviour of thermodynamic properties (like density, heat
capacity, thermal expansion etc.) in the supercritical region can be strong and should be ac-
counted during the heat transfer evaluations. With hydrogen instead, the usual operations occur
at temperature and pressure which are always supercritical but much higher than the critical
point, and those irregularities are avoided. The irregular behaviour is also avoided if the chamber
pressure is kept very high; in this way the critical point and all the irregularities are far away
from the operating conditions, as it is done in the Raptor engine (up to 300 bar), the only one
fully qualified and operational.

In this work, we are more interested in lower pressure values, that are required in expander cycle
engines, where the pressures are limited to values below 80 bar, and in booster engines such the
Prometheus which will use pressure up to 100 bar. For this reason, complete knowledge of the
behaviour of the methane properties in the interested near-critical and supercritical region is re-
quired and will be investigated in this work; in this way more accurate values for thermodynamic
properties and transport properties would be accessible for the various analysis that are necessary
to prepare the mission: CFD analysis for heat transfer evaluation, FEM for structural design etc.

The interesting intervals of temperature and pressure, where properties show a maximum (or min-
imum) are defined with the so-called Widom-line (or pseudoboiling-line) [8],[32], and by crossing
this line, the properties gradient changes its sign, like it can be observed in subcritical condi-
tions; however these extrema vanish at reduced pressure higher than 3. These lines, the mixture
properties and the identification of the area where strong gradients are found will be the primary
objective of this work, in order to have a precise knowledge of thermodynamic parameters of
methane near the critical area.
Besides, it has to be taken into account that the use of chemical pure methane would lead to
extremely high costs for real operations and that the use of already operating liquefied natural
gas (LNG) would be significantly more cost-efficient. The analyzed propellant will then include
different impurities, which can influence the thermodynamic properties of fuel; in particular light
hydrocarbons, nitrogen and hydrogen. No carbon dioxide is taken into account since its triple
point parameters are much higher than the triple point values of methane; this means that solid
carbon dioxide can be present within liquid or vapour methane depending on the pressure. Car-
bon dioxide was then excluded from the analysis because, to keep safe the rocket engine, CO2

should be avoided completely from the fuel, especially for conditions below the carbon dioxide
triple point. The GERG-2008 model has been chosen as Equation of State since it is the most
suitable to describe hydrocarbons mixtures even beyond the critical point. The whole description
is taken from [25].

Another important achievement of this thesis is the evaluation of viscosity, and the use of its
behaviour to identify another kind of supercritical crossover, the Frenkel Line. This line describes
a structural rather than thermodynamic change in the fluid atoms. It was first described by
Frenkel, [14] and then by several other authors. A more recent description is found in [42] by
Brazhkin et al.. The relaxation time is introduced to explain how this change affects the fluid
properties and how this crossover creates minima in the behaviour of transport properties and
speed of sound. If the irregularities in thermodynamic properties that can be found after the
critical point disappear at higher pressure, the Frenkel line and its structural transformation can
be traced up to indefinitely high pressure values, resulting essential for those applications that
work at very high pressure, like the Raptor engine of SpaceX.
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0.2 Presentation plan

In general, very limited information can be found in open literature related to the thermodynamic
and transport properties of mixtures in supercritical states determining behaviour of propellant
and heat transport processes under rocket engine operation conditions.
The present work begins with a wide introduction on the fundamental methods to describe liquids,
gases and mixtures and their peculiar features. Subsequently, starting from the chosen EoS,
it shows the calculations of several thermodynamic properties for methane-based mixtures in
supercritical region, the identification of the extrema’s coordinates of those properties, and then
the definition of an area, called "Widom Area", where strong gradients are found.
The work is concluded with the evaluation of the viscosity coefficient through a recent prediction
method, and both viscosity and speed of sound are used to give the first hint on the localization
of the Frenkel line, for methane-based mixtures.
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Abstract - Italiano

La ricerca di sorgenti di energia ecosostenibili sta accelerando in ogni settore tecnologico, e il
metano è una scelta molto attraente per applicazioni spaziali, in quanto può essere impiegato in
coppia con l’ossigeno liquido (LOx), sostituendo l’idrogeno liquido (LH2). Poiché l’utilizzo del
metano puro sarebbe estremamente costoso, bisogna considerare miscele a base di metano, che
contengano altre impurità. In questo lavoro, vengono affrontate alcune delle più grandi
problematiche riguardanti l’utilizzo di queste miscele, provando a capire il loro comportamento ad
alte temperature e pressioni, e ad individuare le aree potenzialmente pericolose su un diagramma
pressione-temperatura. Nella fase iniziale del lavoro, vengono presentati i principi fondamentali
per la descrizione di gas, liquidi e miscele. Successivamente, diverse proprietà termodinamiche
vengono valutate in stato supercritico per miscele di metano, con frazioni molari fino al 5% di
etano, propano, azoto e idrogeno. A tale scopo, è stata scelta la recente equazione di stato GERG-
2008 [25], la quale garantisce un’elevata accuratezza per miscele di idrocarburi, anche oltre il punto
critico. I risultati sono poi analizzati per trovare le “Widom Lines”, ovvero il luogo dei punti nella
regione supercritica, in cui alcune proprietà termodinamiche presentano dei massimi o dei
minimi. Queste linee indicano una transizione nello stato supercritico del fluido, passando da una
struttura simile a quella di un liquido, ad una simile a quella di un gas. Questi picchi tuttavia,
anche se ancora individuabili, si affievoliscono a pressioni più elevate, e per definire la regione in
cui tali estremi sono associati a forti gradienti, una “Widom Area” è stata individuata attorno
a ogni Widom Line, definendola come la regione di piano in cui la variazione di una particolare
funzione termodinamica supera una certa soglia.
Infine, viene descritta un’ulteriore transizione nella struttura del fluido, questa volta di carattere
dinamico, e non termodinamico, che può essere identificata fino a pressioni molto alte. Questa
linea, chiamata "Frenkel line", è associata al comportamento delle proprietà di trasporto, e per-
tanto, il coefficiente di viscosità è stato calcolato, utilizzando un recente modello di previsione che
utilizza la stessa equazione di stato di questo lavoro. I minimi del coefficiente di viscosità e della
velocità del suono vengono poi utilizzati per tracciare la Frenkel Line.
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Motivazione del lavoro e risultati attesi - Italiano

Negli ultimi anni il metano liquido è oggetto di studio come possibile combustibile liquido per
motori a razzo. Ossigeno/metano è una combinazione di propellenti molto interessante per questa
applicazione, in quanto fornisce un incremento di impulso specifico di 50s, rispetto ai propellenti
immagazzinabili attualmente utilizzati, ovvero ossigeno liquido e petrolio raffinato-1 (RP-1). Ma
questo non sarebbe l’unico vantaggio; la combinazione LOx/LCH4 può dirsi “space-storable”, il
che significa che una volta nello spazio, quando le temperature sono molto più basse, a seconda
della pressione del serbatoio il metano può rimanere allo stato liquido e quindi essere utilizzato in
qualsiasi momento, senza la necessità di un dispendioso sistema di raffreddamento. È quindi evi-
dente la differenza tra il metano e l’idrogeno liquido: sebbene LOx/LH2 sia la coppia propellente
più performante attualmente disponibile sul mercato, presenta molti inconvenienti; in primo luogo
la densità energetica incredibilmente bassa, dovuta alla bassa massa atomica dell’idrogeno, che
determina la necessità di grandi volumi di combustibile per ottenere un certo budget energetico.
Ma questo non basta, perché l’idrogeno è anche estremamente difficile da gestire dal punto di
vista termico, poiché richiede temperature di esercizio prossime ai 20 K, difficili da raggiungere e
mantenere a terra e impossibili nello spazio.
Quindi, anche se il metano ha un impulso specifico significativamente inferiore rispetto all’idrogeno,
ha come vantaggi chiave, una densità di energia circa 2.6 volte superiore all’idrogeno, che con-
sente un volume del serbatoio più piccolo e richiede una potenza inferiore della turbopompa,
grazie alla densità del fluido significativamente più elevata. Inoltre, per il metano è necessaria
solo una protezione termica passiva e i suoi tassi di ebollizione sono notevolmente inferiori a quelle
dell’idrogeno. Allo stesso tempo, se il metano viene confrontato con l’RP-1, questi sono entrambi
space-storable, con una densità di fluido comparabile, ma il metano ha un impulso specifico mag-
giore.
Un altro vantaggio significativo è l’assenza di rischi per la salute umana, sia nella catena di pro-
duzione che di trasporto. Per questo motivo viene considerato un propellente "green”. Questo
fattore sprona all’utilizzo del metano anche da un punto di vista ambientale, in un periodo in
cui ogni settore tecnologico deve adattare i propri prodotti per sostenere la sfida mondiale di un
ecosistema più pulito.

Quindi qual è l’attuale stato dell’arte del metano liquido in applicazioni spaziali? Quali sono i
suoi svantaggi?

Metano liquido e ossigeno liquido sembrano essere la coppia preferita per la prossima generazione
di motori per tutte le principali compagnie spaziali di tutto il mondo.
L’esempio più avanzato di questa tecnologia si trova negli USA, con il motore Raptor. Si tratta
di una famiglia di motori a razzo con ciclo di combustione a stadi a flusso pieno, sviluppati da
SpaceX, che utilizza LOx e LCH4 e che alimenterà la nuova "super-heavy-lift Starship system",
soprassedendo l’attuale Merlin, rispetto al quale può generare più del doppio della spinta. Anche
Blue Origin ha sviluppato un proprio motore a razzo alimentato a GNL, il BE-4 che deve ancora
essere qualificato per il volo, e che prevede di lanciare il Vulcan Centaur, il successore dell’AtlasV.
In Europa, LOx e LCH4 saranno impiegati nelle future applicazioni spaziali, con il motore
Prometheus che è in fase di sviluppo da parte dell’ESA per preparare la prossima generazione di
motori da utilizzare con l’Ariane-6 (o il suo successore ) e il MIRA-LM10 su cui Avio sta lavorando
per l’utilizzo sul più piccolo Vega-E.
Anche in Cina, il motore a GNL denominato TQ-12 è in fase di progettazione ad opera di Land-
scape.
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Obiettivi

Una delle principali complicazioni nella progettazione di un motore LOx-LCH4 è il fatto che i
parametri critici del metano siano vicini alle normali condizioni operative dei canali di raffredda-
mento e degli iniettori di un motore a razzo. Poiché le condizioni operative sono vicine al punto
critico del metano, le irregolarità nel comportamento delle proprietà termodinamiche (come den-
sità, capacità termica, espansione termica ecc.) nella regione supercritica possono essere forti e
dovrebbero essere considerate durante le valutazioni del trasferimento di calore. Con l’idrogeno
invece, le normali operazioni avvengono a temperatura e pressione sempre supercritiche ma molto
superiori al punto critico, e si evitano quelle irregolarità. Il comportamento irregolare viene evi-
tato anche se la pressione della camera viene mantenuta molto alta; in questo modo il punto
critico e tutte le irregolarità sono lontani dalle condizioni di esercizio, come avviene nel motore
Raptor (fino a 300 bar), l’unico pienamente qualificato ed operativo.

In questo lavoro si è più interessati a valori di pressione inferiori, che sono richiesti nei motori a
ciclo espansore, dove le pressioni sono limitate a valori inferiori a 80 bar, e nei motori booster
come il Prometheus che utilizzerà pressioni fino a 100 bar. Per questo motivo è richiesta una
conoscenza completa del comportamento delle proprietà del metano nella regione quasi critica e
supercritica interessata; in questo modo sarebbero accessibili valori più accurati per le proprietà
termodinamiche e le proprietà di trasporto per le varie analisi necessarie per preparare la missione:
analisi CFD per la valutazione del trasferimento di calore, FEM per la progettazione strutturale
ecc.

Gli intervalli di temperatura e pressione interessati, dove le proprietà mostrano un massimo (o un
minimo) sono definiti dalla cosiddetta Widom-line (o pseudoboiling-line) [8],[32], e attraversando
tale linea, il gradiente delle proprietà cambia di segno, come osserviamo anche che in condizioni
subcritiche; tuttavia questi estremi svaniscono a pressioni ridotte maggiori di 3. Tali linee, le pro-
prietà della miscela e l’identificazione dell’area dove si trovano forti gradienti, saranno l’obiettivo
primario di questo lavoro, al fine di avere una conoscenza precisa dei parametri termodinamici
delle miscele di metano vicino all’area critica.
Inoltre, si deve tener conto del fatto che l’uso del metano puro comporterebbe costi estremamente
elevati per le operazioni reali e che l’uso di gas naturali liquefatti (LNG) già operativi sarebbe
significativamente più efficiente in termini di costi. Il propellente analizzato includerà quindi
diverse impurità, che possono influenzare le proprietà termodinamiche del combustibile; in par-
ticolare idrocarburi leggeri, azoto e idrogeno. Non si tiene conto dell’anidride carbonica poiché i
valori del suo punto triplo sono molto più alti dei valori del punto triplo del metano; ciò significa
che anidride carbonica solida potrebbe essere presente all’interno del metano liquido o gassoso a
seconda della pressione. L’anidride carbonica è stata quindi esclusa dall’analisi perché, per man-
tenere al sicuro il motore del razzo, la CO2 dovrebbe essere evitata completamente dal carburante,
soprattutto per condizioni al di sotto del punto triplo dell’anidride carbonica.

L’ultimo punto che verrà trattato in questo lavoro è la valutazione della viscosità, e l’analisi del
suo andamento per identificare un altro tipo di crossover supercritico, la Frenkel Line. Questa
linea descrive un cambiamento strutturale piuttosto che termodinamico negli atomi del fluido. È
stato descritto prima da Frenkel, [14] e poi da diversi altri autori; una più recente descrizione del
fenomeno può essere trovata nel lavoro di Brazhkin et al. [42] . Il "tempo di rilassamento" viene
introdotto per spiegare come questo cambiamento influenzi le proprietà del fluido, e che questo
crossover crei minimi nel comportamento delle proprietà di trasporto e nella velocità del suono.
Se le irregolarità nelle proprietà termodinamiche che si possono trovare dopo il punto critico scom-
paiono a pressioni più elevate, la linea di Frenkel e la trasformazione strutturale che la caratterizza
possono essere rintracciate fino a valori di pressione indefinitamente alti, risultando essenziale per
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quelle applicazioni che lavorano ad altissima pressione, come il motore Raptor di SpaceX.

Piano di presentazione

In generale, in open-literature si possono trovare informazioni molto limitate relative alle proprietà
termodinamiche e di trasporto della miscela in stati supercritici, e queste proprietà determinano
l’andamento degli scambi di calore e il comportamento generale del propellente in condizioni di
funzionamento del motore a razzo. Questo lavoro comincia presentando i metodi fondamentali
per descrivere liquidi, gas e miscele, e le loro caratteristiche peculiari. Successivamente, dopo aver
scelto l’equazione di stato più adatta, vengono presentati i calcoli di diverse proprietà
termodinamiche per miscele a base di metano in regione supercritica, l’identificazione delle coor-
dinate degli estremi di tali proprietà e la definizione di un’area, chiamata "Widom Area", dove si
trovano forti gradienti, vengono presentati.
Il lavoro si conclude con la valutazione del coefficiente di viscosità attraverso un recente metodo
di previsione; successivamente la viscosità e la velocità del suono vengono utilizzate per dare un
primo indizio sulla localizzazione della Frenkel line, per miscele a base di metano.
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1 Background knowledge

1.1 Equation of state

The equation of state and the transport properties of fluids are strongly related to the intermolec-
ular attraction and repulsion of molecules. Those theories that related the macroscopic properties
of the fluid to these intermolecular forces are highly developed for dilute gases and less for dense
gases or liquids.

For a gas, made up of particles without volume and between which no intermolecular force is
considered, the equation of state (EoS) is the well-known perfect gas EoS, presented in Eq. (1).

pṼ = RT (1)

However, a highly diluted gas shows deviation from Eq. (1) even at atmospheric pressure. Then,
this equation is not accurate to describe a real fluid, since it is based on a too simplified model.

Van Der Waals tried to modify the equation in order to obtain a more realistic representation
of a real fluid; his model, in Eq. (2), achieves a quite good description of the gas phase and a
qualitative one for the liquid phase.(

p+
a

Ṽ 2

)
(Ṽ − b) = RT (2)

His equation presents two parameters, a accounts for the attractive forces between molecules and
b takes into account the volume of the particles. Clearly, this model is only an approximation
and gives reasonable results only in a limited range of temperatures and pressures. To extend
the validity range up to higher temperatures or to the liquid phase, several modifications or new
empirical equations of state have been proposed, some of which will be presented in this discussion
in the following sections.

Very often, to measure how much the fluid’s behaviour is far from the perfect gas model, the
compressibility factor is used. It is defined as the ratio pṼ /RT and is indicated as Z; Z = 1
means that there is no interaction between molecules, and the gas is behaving like a perfect
gas. Instead, a compressibility factor different from 1 means that the interaction forces between
molecules are not negligible and play an important role in the behaviour of the fluid; these forces
can be attractive or repulsive and will be better described later on. More realistic equations of
state are capable of measuring the compressibility factor, namely, the deviation from ideality.

One of the most known relations to describe the EoS of a real fluid is the so-called Virial
Equation of State, presented in Eq. (3).

pṼ

RT
= 1 +B(T )/Ṽ + C(T )/Ṽ 2 +D(T )/Ṽ 3... (3)

where the functions B(T),C(T), D(T)... are called second, third.. Virial Coefficients and have
to be evaluated for different fluids and different conditions. This kind of representation has been
widely used in the past decades and the second and third virial coefficients have been tabulated
for many components in many temperature conditions.

1.2 Transport Coefficients

Primary importance is given to the capacity of transporting some physical properties through the
gas or liquid, and this capability is measured by "Transport Coefficients". The main parameters
that describe this kind of transfer are:

- Ordinary Diffusion: the transfer of mass, due to a gradient in concentration;

A.Y. 2020-21 – Tiziano Santese 9



- Viscosity: the transfer of momentum, due to a gradient of velocity;

- Thermal Diffusion: transfer of thermal energy, due to a gradient of temperature.

It has to be noticed that in rigorous models these effects are related to each other; for example,
diffusion may also result from a temperature gradient (known as Soret effect), or transfer of en-
ergy could result from concentration gradient (Dufour effect). The evaluation of these properties
is usually very difficult and a variety of methods has been proposed to predict or calculate their
value. However, in an ultra-simplified and completely unrealistic theory, very simple relations can
be retrieved, that show a surprisingly good estimation of the transport coefficients.
Let’s consider all the molecules as rigid non-attracting spheres with a certain diameter, σ; more-
over, it is supposed that all the molecules move with the same speed (it was decided to use the
arithmetic mean speed, calculated from the velocity distribution function), Ω = (8kT/mπ)1/2,
where k is the Boltzmann constant, T the temperature and m is the molecule mass. As a further
hypothesis, it is considered that all the molecules travel only along with the directions which are
parallel to the coordinate axis.

Now in these conditions, it is very easy to evaluate the collision rate Γ of a molecule, namely
the number of collisions suffered per unit time.

Γ =

(
1

3
+

2

3

√
2

)
nπσ2Ω

where n is the total number of molecules considered per unit volume. From the collision rate
and the assumption of rigid molecules, the mean free path l can be retrieved, namely the average
distance that a molecule travels between one collision and the following one.

l =
Ω

Γ

Starting from these relations and with few other considerations, reported in [4], the transport
coefficient can be expressed as in Eq. (4),Eq. (5) and Eq. (6).

D =
1

3
Ωl =

λm

ρcv
(4)

η =
1

3
nmΩl = ρD (5)

λ =
1

3
ncvΩl =

cvη

m
(6)

The development of the rigorous kinetic theory to the rigid sphere model brings to this exact
same results with slightly different coefficients. Using those values and rewriting some terms,
more practical definitions of the three quantities can be given as follows.

D = 2.6280 · 10−3
√
T 3/M

pσ2
(7)

η = 2.6693 · 10−5
√
TM

σ2
(8)

λ = 1.9891 · 10−4
√
T/M

σ2
(9)

From the above results, some preliminary interdependencies can be understood: diffusion
varies as the three-halves power of the temperature and is inversely proportional to the pressure;
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viscosity and thermal conductivity are independent of the pressure and increase with the square
root of the temperature. All the coefficients are inversely proportional to σ2, which is linked to
the collision diameter of the molecule. As it will be shown in the frame of the Chapman-Enskog
theory, these are only approximate pressure and temperature dependence for real gases, since no
interaction between molecules is considered.

1.3 Intermolecular Potential

Up to this point no interaction has been considered, however it is well known that two molecules
attract each other when sufficiently far away and repel each other when close enough.
Then, to leave the simplified model in which molecules have no volume, the description of the
interaction of the molecules is required. This is a hard task, and the knowledge of intermolecular
forces is obtained from both experimental observation and theoretical considerations. The theory
gives the functional form, while experimental data are used to determine the adjustable parame-
ters.
It is clear that the force of interaction, F , is a function of the distance between molecules, r;
however, it is usually more convenient to use the interaction potential ϕ(r) rather than the force.
These two quantities are linked as follow:

ϕ(r) =

∫ ∞
r

F (r)dr

Different intermolecular potential energy functions have been defined, and each of them presents
some peculiar features and a different accuracy and complexity. Some of them have to be used
for polar molecules, namely those molecules that present a partial positive charge on a side of the
molecule and a negative partial charge on the other, and some of them instead can be used for
non-polar molecules, and so molecules without partial charges.

The most used potential for polar molecules is the Stockmayer Potential, while for non polar
molecules it is widely used the Lennard-Jones 6-12 potential ; many properties have been evaluated
in terms of these two models. In this treatment, since methane is a non-polar molecule, only a
couple of potentials suitable for this type of molecules will be presented. It has to be pointed
out that all the different potentials that will be discussed, are suitable for simple molecules; long
molecules or excited molecules cannot be described by those potentials.

Let’s give now a brief description of the types of forces involved; there could be an arbitrary
division between short and long range forces. Short range forces (or Valence forces) arise when the
molecules come close enough to have their electron cloud overlapping. These are repulsive forces
that are not very accurately described due to the lack of knowledge, and are usually approximated
with an oversimplified form, like the following,[4]:

ϕshort = be−a(r/a0)

whose parameters depend on the ionization potentials of the two molecules.
A more detailed description is available for long range forces; these forces are generally divided
into three contributions:

- Electrostatic Contributions; due to the interaction of the various multipole moments in
the molecules; inside the molecule, there could be charges, dipole moments or quadrupole
moments, and all these effects are angular dependent (i.e. depend on the orientation of the
molecules).

- Induction contribution; when only one of the two molecules have a net charge, this creates
an induced dipole (polar/non-polar interaction).
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- Dispersion Contributions; Interaction between two non-polar molecules. The random config-
uration of electrons can generate a temporary (or instantaneous) dipole, that would generate
another instantaneous dipole on the other molecule.

1.4 Equation of State - Low and moderate density

The interest moves now on how the virial equation of state, presented in Eq. (3), can be obtained.
Moreover, it has to be pointed out that the virial expansion is limited by the convergence of the
series, which diverges at about the density of the liquid phase; hence, the primary application of
the virial equation is the study of gases at low and moderate density.
There are mainly two ways to obtain the virial equation of state,[4]: one starts from the definition
of the partition function and the other is based on the classical mechanics virial theorem; here
only the second method is quickly presented.

The Virial Theorem states that, for a system of N molecules with mass m, and ignoring
internal degrees of freedom of the molecules, the average total kinetic energy of the molecules K
is equal to the virial Ξ, defined as follow:

K =
1

2

∑
i

mv2i = Ξ = −1

2

∑
i

ri · Fi

where for each molecule, ri is the position vector and Fi is the force vector; the latter has to
account for the force exerted from all the other molecules and for the restraining force of the
vessel.
By dividing these two contributions into the virial of intermolecular forces, Ξi, and the virial of
external forces, Ξe, the virial theorem can be rewritten as K = Ξi+Ξe; exploiting those terms and
rearranging, [4], the product pV can be obtained in terms of the total kinetic and intermolecular
potential energy of molecules, as follows:

pV =
2

3

N∑
i=1

p2i
2m
− 1

3

N∑
i=1

(
ri ·

∂ϕ(rN)

∂ri

)
Since the bar indicates time averages, they can be replaced by averages over an ensemble1, and
by making use of classical probability density, it can be obtained:

pV = NkT − 1

3(N − 1)!λ3NZN

∫
WN (rN)

(
ri ·

∂ϕ(rN)

∂ri

)
drN (10)

where λ2 = h2/2πmkT , ZN is the partition function2, andWN (rN) = e−ϕ(r
N)/kT is the Boltzmann

factor.
Note that If ϕ = 0, it goes to the ideal-gas law.
If it is assumed that the potential energy of the system is the sum of the potential energy of pairs
of molecules, ϕ(rN) = 1

2

∑
i

∑
j ϕ(rij), then the Eq. (10) can be rearranged as:

pV = NkT − 2πN(N − 1)

3V

∫
g(r)

(dϕ
dr

)
r3dr

where g(r) is a pair distribution function; the absence of higher order functions is the result
coming from the assumption just made.

1Microcanonical ensemble. It is a close group of N molecules, in a fixed volume V, where the energy is related
to kinetic motion and intermolecular forces; the energy is conserved.

2look at [4] for its definition.
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1.4.1 Virial Coefficients

Here, only angle independent potentials are considered. The following discussion is based on the
assumption of additivity of forces, already done in the last previous passage; this assumption is
generally valid except for molecules that tend to associate and molecules capable of hydrogen
bonding.
The virial coefficients can also be evaluated with both the two methods cited previously, but also
in this case, only the results coming from the virial theorem are presented, [4], in Eq. (11) and
Eq. (12).

B(T ) = −2πÑ

3kT

∫ ∞
0

r3
dϕ

dr
e−ϕ(r)/kTdr (11)

C(T ) = −4π2Ñ2

3kT

∫ ∫ ∫
(1 + f12)f23f13r

2
12r23r13

dϕ12

dr12
dr12dr23dr13 (12)

where, from the work of J.E.Mayer, [18], the force can be considered the one in Eq. (13).

fij(rij) = [e−ϕij/kT − 1] (13)

It can be found that the equation of state for a mixture of ν components is described by
Eq. (3) where the virial coefficients are given by:

B(T )mix =

ν∑
α=1

ν∑
β=1

Bαβ(T )xαxβ (14)

C(T ) =
ν∑

α=1

ν∑
β=1

ν∑
γ=1

Cαβγ(T )xαxβxγ (15)

where x1 is the mole fraction of the species 1 in the mixture; the function B11 is the second
virial coefficient for the pure substance 1; the function B12 is the virial coefficient evaluated for a
potential function ϕ12 which describe the interaction between the two different species.

1.5 Lennard Jones 6-12 potential

In its simplicity, the Lennard-Jones 6-12 poten-

Figure 1: Lennard Jones 6-12 potential

tial is a good description of repulsive and attractive
forces as function of the intermolecular distance r.
However, it has no physical basis and the exponen-
tial values are chosen for mathematical convenience.
Its mathematical representation is in Eq. (16).

ϕ(r) = 4εmax[(σ/r)12 − (σ/r)6] (16)

The parameters σ and ε have respectively the dimen-
sion unit of length and energy and they characterize
the chemical species of the molecules involved in the
collision. For two distant molecules (σ << r) the inverse sixth power is dominant and simulate
the attraction component; at small distances, (σ >> r), the inverse twelfth power is more im-
portant and simulates the repulsion. This kind of potential describes well the interaction induced
dipole - induced dipole between two non-polar molecules. σ is the distance at which the potential
becomes zero, while ε is the maximum energy of attraction of the two molecules. The trend of
the Lennard Jones 6-12 potential is shown in Fig. 1.
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As already stated, LJ potential has been used for a wide variety of calculations for both gases
and liquids. It is here reported the evaluation of the virial coefficients and some other properties
employing this potential.

In the following discussion (taken from [4]), the definition of the following reduced quantities
helps in simplifying the problem.

r∗ = r/σ

T ∗ = kT/ε

B∗ = B/(2/3πNaσ
3) = B/b0

C∗ = C/b20
B∗k = (T ∗)k(dkB∗/d(T ∗)k)

C∗k = (T ∗)k(dkC∗/d(T ∗)k)

where temperature and molecular distances are adimensionalized with respect to LJ parame-
ters, B and C are second and third virial coefficients and are adimensionalized with respect to
b0 = 2/3πNaσ

3, with Na being the Avogadro’s number, and B∗k and C∗k are the k-th derivatives
of the virial coefficients with respect to T ∗.

1.5.1 Second Virial Coefficient

Substituting the LJ potential into the Eq. (11), and rearranging with the reduced quantities yields:

B∗(T ∗) = − 4

T ∗

∫ ∞
0

r∗2
(
− 12

r∗12
+

6

r∗6
)
e−

4
T∗

(
1

r∗12
− 1

r∗6

)
where the exponential term can be expanded as infinite series to integrate the term analytically.
The integration has already been done and the solution is presented as infinite series in the
following relation:

B(T ) = b0 ∗B∗(T ∗) ; B∗(T ∗) =

∞∑
j=0

b(j)(T ∗)−(2j+1)/4

where the coefficients b(j) depend only on j.
It can be shown that the series converges

Figure 2: B∗(T ∗) evaluated with LJ potential, taken
from [4].

rapidly for reduced temperatures greater than
4 and instead requires more than 30 terms to
converge when T ∗ is lower than 1. In [4], all
the values of bj , the reduced second virial co-
efficient B∗ and its derivatives B∗k are reported
for a range of reduced temperature from 0.3 to
400. In Fig. 2, it is shown the behaviour of B∗:
it is negative for reduced temperatures which
are lower than the Boyle temperature, that is
the temperature for which repulsive and attrac-
tive forces balance, so B(T) = 0, which occurs
approximately at T ∗ = 3.42. This happens
because for low temperature, molecules spend
longer time in the attractive region of the po-
tential, and this results in a decrease of the

pressure, thus a second virial coefficient lower than 0. The opposite occurs for higher tempera-
tures.
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Furthermore, it is appreciable the high accuracy of the method when compared with experimental
results, shown as dots in Fig. 2.

The derivatives of the second virial coefficient are useful in the evaluation of the deviation
from ideality of thermodynamics properties, for example for the evaluation of internal energy,
entropy, enthalpy, heat capacity and Joule-Thomson coefficient.

To sum up, in order to evaluate the second virial coefficient, the only information needed is
the values of parameters σ and ε. These are called force constants and are obtained through
experimental analysis. They can be found in literature as results of different analyses.
To evaluate the second virial coefficient for mixture, it is only necessary the information about the
force constant of the single components and the force constants of the pair of unlike molecules.
To do this, if experimental data are unavailable, empirical combining laws are used, for example:

σαβ =
1

2
(σα + σβ) εαβ = (εαεβ)1/2 (17)

1.5.2 Third Virial Coefficient

Now, substituting the LJ potential into the Eq. (12), and rearranging with the reduced quantities
yields:

C(T ) = b20C
∗(T ∗)

C∗(T ∗) =
∞∑
j=0

c(j)T ∗−(j+1)/2 (18)

but now, c(j) are no more simple functions but complex integrals which have been evaluated in
[4] through Kihara’s expansion.

Once again all the values for C∗ and

Figure 3: C∗(T ∗) evaluated with LJ potential, taken from
[4].

C∗k are tabulated, [4]. In Fig. 3 the be-
haviour of C∗(T ∗) is shown along with
some experimental results. In general
the agreement is not outstanding, in par-
ticular for H2 and He, where quantum
effects become important and extremely
poor results are observed for elongated
molecules. However, it should give quite
good result for non-polar spherical molecules,
at high temperature and at density such
that the correction to the compressibility
due to the third virial coefficient is small
compared with the one given by the sec-
ond.
No calculations have been made of the
third virial coefficient for mixtures, but it can be estimated by making use of the third virial
coefficient evaluated with the Square Well potential3.

3Its formulation is reported in [4] Section 3.5 paragraph d
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1.5.3 Joule-Thomson coefficient

The Joule-Thomson coefficient is the rate of change of temperature with pressure during an
isenthalpic expansion, and it can be related to the EoS as follows:

µ =

(
∂T

∂p

)
H

= C−1p

[
T

(
∂V

∂T

)
p

− V
]

This definition can be expanded in

Figure 4: µ0 evaluated with LJ potential, taken from [4].

powers of 1/V and rewritten in terms
of B∗ and C∗, as in Eq. (19) from [4],
where C̃0

p is the zero-pressure molar heat
capacity; The first term of the expres-
sion is the Joule-Thomson coefficient at
zero pressure, µ0; its behaviour is shown
in Fig. 4. It is evident that experimen-
tal values perfectly match the theoretical
curve.
Values of B∗1 − B∗ are tabulated, [4], in
order to retrieve the Joule Thomson coef-
ficient at zero pressure; it is also possible
to evaluate this quantity for mixtures.

µ =
b0

C̃0
p

[
B∗1 −B∗

]
+

b20

Ṽ C̃0
p

[
C∗1 − 2C∗ + 2B∗2 − 2B∗B∗1 + µ0B∗2R/b0

]
... (19)

For a binary mixture, given µ0 for each pure component and b0, B∗ and B∗1 for the unlike pair
of molecules, the following relation holds:

µ0mix =
x21(C̃

0
p)1µ

0
1 + x22(C̃

0
p)2µ

0
2 + 2x1x2(b0)12[(B

∗
1)12 − (B∗)12]

x1 ˜(C0
p)1 + x2 ˜(C0

p)2

1.5.4 Thermodynamic properties

It has been shown up to now, how the virial coefficients can be retrieved starting from the selected
intermolecular potential, in this case, the Lennard Jones 6-12. From the evaluation of those
coefficients, the deviation from ideality of several thermodynamic properties can be evaluated in
terms of reduced virial coefficients, their derivatives and the reduced molar volume V ∗ = Ṽ /b0.
The analytic procedure is shown in Appendix B of chapter 3 in [4]; here only the final relation for
some properties that will be used later in this work are presented.

1. Heat Capacity at constant pressure

C̃p − C̃p
0

R
= −B

∗
2

V ∗
+

(B∗ −B∗1)2 − C∗ + C∗1 − 0.5C∗2
V ∗2

+ ...

2. Heat Capacity at constant volume

C̃v − C̃v
0

R
= −2B∗1 +B∗2

V ∗
− 2C∗1 + C∗2

2V ∗2
+ ...

3. Speed of Sound

c20 =
γ0RT

M

[
1 +

1

V ∗

(
2B∗ + 2(γ0 − 1)B∗1 +

(γ0 − 1)2

γ0
B∗2

)
+ ...

]
with γ = C̃p/C̃v
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1.6 More complex spherically symmetric potentials

Much more realistic and accurate is the "Modified Buckingham 6-exp potential", defined in
Eq. (20).

ϕ(r) =
ε

1− (6/α)

[
6

α
exp

[
α

(
1− r

rm

)]
−
(
rm
r

)6]
if r >> rmax (20)

ϕ(r) =∞ if r < rmax

where α is the steepness of the exponential repulsion, rm is is the value of r at the potential
minimum and ε is the depth of potential well. rmax is the value of r for which ϕ(r) has a spurious
maximum. The ratio rmax/rm is given by the smallest root of the trascendental equation:(

rmax
rm

)7

exp

[
α

(
1− rmax

rm

)]
= 1

For this potential, the second virial coefficient can be evaluated as:

B(T ) = bmB
∗(α, T ∗)

in which bm = 2/3πÑr3m, and B∗(α, T ∗) is tabulated, along with the three parameters ε, rm and
α in [4].
Even if this potential is more accurate, it is also more complex, and no other virial coefficients
have been evaluated yet, leading to a less accurate prediction of thermodynamic properties.

1.7 Chapman-Enskog Theory

What has been said up to now gives a good background of molecular dynamics, explains what
are the main parameters to describe the molecule behaviour and what are the different models
and capabilities developed in the last century. This knowledge is necessary to introduce one of
the most known theories in the field of molecular theory, the Chapman-Enskog Theory.
This model, taken from [4], gives scientific bases to the otherwise phenomenological relations
appearing in hydrodynamics, like the Navier–Stokes equations. From it, a relation for each trans-
port coefficient is obtained in terms of molecular properties. The Chapman–Enskog theory is an
important step to go from a particle-based description to a continuum hydrodynamical one. The
theory is named for Sydney Chapman and David Enskog, who introduced it independently in
1916 and 1917.

They were the first to make modifications to Boltzmann’s equation in order to develop a
kinetic theory that was valid also for dense gases. Indeed the Boltzmann equation is based on
the assumptions that no three-body collisions occur and that the molecules diameter σ is small
compared to the average distance between molecules. These assumptions are valid in dilute gases,
but not for dense gases.

Enskog and Chapman were able to keep these considerations, based on dilute gases, and
expand the theory to dense gases. They stated that, when a gas is compressed, two effects are
mainly important:

- "Collisional Transfer of momentum and energy" : which is the exchange of momentum and
energy that two molecules feel when they undergo a collision.

- "Change in the number of collision per second" : since σ is no more negligible with respect
to the average distance between molecules, the frequency of collisions increases.

By reorganizing Boltzmann’s equation to take into account these two contributions, some
simple formulations of viscosity and thermal conductivity are found. A detailed treatment of the
theory can be found in [4]; here only a few results are reported. The rigorous kinetic theory
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relations for the transport properties of a pure substance are presented in Eq. (21),Eq. (22) and
Eq. (23).

D =
3

16

√
2πk3T 3/µ

pπσ2Ω(1,1)∗ (21)

η =
5

16

√
MkT/(Naπ)

σ2Ω(2,2)∗ (22)

λ =
25

32

√
MkT/(Naπ)

σ2Ω(2,2)∗
cv

M/Na
(23)

Where µ is the reduced mass of two colliding particles, [4], while M is the molar mass. In
these relations, transport properties have been expressed in terms of the reduced collision integrals,
Ω(l,m), which have the physical significance of "deviation of a molecule from the idealized rigid-
sphere model". The value of these parameters is the result of complex integrals, and finding the
solution is quite long and complex; one of the first calculations was made in [4] where results were
summed up in tables as a function of a reduced temperature T ∗ = kT/ε. Several authors have
made corrections or modifications to those results, thanks to more recent experimental proofs. In
this work the empirical correlation from Neufeld et al. [40] is used, and presented in Eq. (24);
here, the collision integrals are evaluated using the Lennard Jones 6-12 potential.

Ω(l,s)∗(T ∗) =(A/T ∗B) + [C/ exp(DT ∗)] + [E/ exp(FT ∗)] + ...

...+ [G/ exp(HT ∗)] +RT ∗B sin(ST ∗W − P )
(24)

This relation contains 12 parameters, but not every collision integral requires all of them. All the
parameters are tabulated in [40], as a function of l and n.

Among the relevant results, the Chapman-Enskog theory predicts that the viscosity is inde-
pendent of density while it does depend on temperature (the predicted behaviour is η ∝ T 1/2); it
also proposes that η and λ are linked by the isochoric heat capacity, cv.

Eq. (21),Eq. (22) and Eq. (23) should be compared with the results coming from the simple
kinetic theory, presented in Eq. (4),Eq. (5) and Eq. (6).

1.7.1 Limitations of Chapman-Enskog theory

However, the assumptions on which the just presented Chapman-Enskog theory is built limit the
applicability of its results.
Firstly, even if some more effects are added to the Boltzmann equation, only binary collisions
are taken into account; this means that the theory could have good results for dense gases, but
not for liquids, where the density increases a lot, and then the three-body collisions are no more
negligible.
Secondly, classical mechanics does not include quantum effects, then low temperature phenomena
cannot be described with this model. In [4], 200 K is identified as the threshold temperature
above which quantum effects becomes negligible (less than 1% even for hydrogen or helium).
Furthermore, strictly speaking, Chapman-Enskog theory applies only to monoatomic gases (molecules
with no internal degrees of freedom, having an interaction potential spherically symmetric) be-
cause inelastic collisions occur between molecules with internal degrees of freedom. This means
that kinetic energy is no more conserved, although mass and momentum are conserved. Inelastic
collisions will cause some deviations in the estimation of the thermal conductivity.

These, and other deviations from reality, create the need for a more precise model, capable of
accounting for all the different neglected effects, and many models have been proposed starting
from the Chapman-Enskog theory. In this work, one of the most recent prediction methods will
be presented for the evaluation of viscosity.
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2 Equation of state - Dense gases and Liquids

In the previous section, some basic concepts have been described for a fundamental knowledge of
the gaseous state, the evaluation of the compressibility factor and the thermodynamic properties.
As stated, the virial expression diverges for densities that are near the density of the liquid state.
Here, some theories and empirical models are presented to extend the knowledge for dense gases
and liquids.

2.1 The Principle of corresponding states

Originally presented by Van der Waals, this principle is useful to describe the behaviour of dense
gases and liquids, reducing the variables utilizing critical constants (or by means of molecular
constants in another formulation).
The critical point is defined as the point in which the first and the second derivative of the pressure
with respect to the volume are zero. The values of pressure, temperature and volume at this point
are defined critical constants and indicated with a subscript c. The behaviour of a fluid in the
proximity of the critical point will be the subject of the next sections. Here, only some definitions
are introduced.
With respect to the critical constants, a set of reduced variables can be defined in the following
way:

pr = p/pc Tr = T/Tc Vr = V/Vc ρr = ρ/ρc

The empirical "principle of corresponding states" is announced in [4] as: "All substances obey the
same equation of state in term of reduced variables". Since the state of a system can be defined
with any two out of the three variables (pressure, temperature and volume), any dimensionless
group should be a universal function of any two of the three reduced variables (reduced pressure,
temperature or volume). So the compressibility factor could be written as a function of two
reduced variables; usually, pr and Tr are used, since the reduced volume is extremely difficult to
be evaluated:

pṼ /RT = F (Vr, Tr) = Z(pr, Tr) (25)

According to the principle, both F and Z should be universal functions; moreover, if the critical
point is considered (reduced quantities are equal to 1), it should be true that the critical ratio
pcṼc/RTc, so the critical compressibility factor, is equal to F(1,1), and it should be a universal
constant.

Anyway, this is only a rough approximation since it has been noticed from experimental
values that the critical ratio is effectively very similar only for similarly-shaped molecules. In
[4], the critical ratio is shown for several elements; for spherical non-polar molecules, the critical
ratio is approximately equal to 0.292 (methane has it equals to 0.290), hydrocarbons’ ratio is
approximately 0.267 while polar molecules have a more varying value for the critical ratio.
Hence, it could be expected that the hydrocarbons satisfy a single reduced equation of state, which
is different from the reduced EoS for other kinds of molecules. Kamerlingh Onnes realized quite
early that substances containing molecules of the same shape should have similar bulk properties,
this was named "principle of mechanical equivalence".

From Eq. (25), by multiplying for the critical ratio, it can be obtained that also the reduced
pressure should be a universal function of reduced quantities, as in Eq. (26).

pr =
RTc

pcṼc

Tr
Vr
F (Vr, Tr) (26)

The practical utilization of the principle of corresponding states has been enhanced by the
publication of Hougen and Watson’s charts of the generalized compressibility and thermodynamic
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(a) Compressibility factor

(b) Isobaric heat capacity

Figure 5: Hougen and Watson generalized charts. These graphs are taken from [4]
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properties of gases and liquids, [44]. These graphs are plotted as a function of reduced pressure
and for different reduced temperatures.
A couple of examples is presented in Fig. 5. Note that all the charts prepared by Hougen and Wat-
son are extrapolated by averaging the data coming from seven gases: H2, N2, CO2, NH3, CH4,
C3H8, C5H12; since this group is made of many types of molecules, the resulting set of curves
cannot be expected to reproduce accurately any of the listed gases. However, those charts remain
highly useful in making approximate calculations.
These graphs are often used with mixtures. It is a fair approximation to consider that a mixture
behaves as a single component with critical constants equal to the molar averages.

(Tc)mix =
∑
i

xi(Tc)i (pc)mix =
∑
i

xi(pc)i

This treatment of mixtures is rough and applies only to the vapor phase.

2.2 Theoretical development of the principle

Explaining the theoretical nature of the principle of corresponding states is easier with spherical
non-polar molecules. In this case, a two parameters potential can be considered, like the Lennard
Jones 6-12, which is defined by knowing only ε and σ. Treating the motion of molecule with
classical mechanics, according to [4], the equation of state of gases may be written as follows:

p = kT
∂

∂V
ln

∫
e−ϕ(rN)/kTdrN (27)

where rN contains the position coordinates of all the N molecules. So the pressure depends only
on temperature, volume and the two constant parameters. The ε and σ can be used to define the
following reduced quantities:

p∗ = pσ3/ε V ∗ = Ṽ /Naσ
3 T ∗ = kT/ε

From these considerations, it follows that it is possible to write the reduced pressure as a universal
function of the reduced volume and temperature:

p∗ = p∗(T ∗, V ∗)

where the function depends only on the nature of the potential function. It follows that also the
critical quantities reduced by means of molecular parameters are universal constants. Anyway,
experimental values show that there is a quite spread between them.
The approximation that reduced critical values are universal constants allows to simply estimate
the values of the potential function parameters. For spherical non-polar molecules, obeying the
Lennard-Jones potential, approximate relations are found,[4]:

ε/k = 0.77Tc

b0 = 0.75Ṽc = 18.4Tc/pc

Several correlations of this kind have been developed, and one of them has been used in the last
part of this work.

The simple theory just explained, can be reproduced for elongated molecules or for polar ones.
The first case leads to a reduced pressure which is a function of reduced states and l∗ (which is
the l∗ = l/σ where l is the length of the molecule); instead in the second case the resulting
reduced pressure would be dependent on the reduced states and on µ∗ (a parameter defined in
the Stockmayer potential for polar molecules and reduced as µ∗ = µ/

√
εσ3). Both cases are not

of interest in this treatment.
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2.3 Empirical equation of state

Many empirical relations have been developed to describe the p-V-T behaviour of gases and liquids
and each one of them is specific for particular applications.
For a semi-quantitative understanding of the principal characteristics of the EoS, three models
with two adjustable parameters have been defined, namely the Van Der Waals, Berthelot and
Dieterici models. Critical properties and virial coefficients are summarized in tables, in [4].
Only the Van der Waals model has been reported here, in Eq. (2), since it will be useful later on.

They are the handiest methods and have quite good results; especially, the critical constant
is evaluated by Dieterici surprisingly good, while the second virial coefficient is more accurate in
the Berthelot model.
These three two-constants equations can be used for mixtures with the following relations that
can be used to define the mixture parameters:

a = a11x
2
1 + 2a12x1x2 + a22x

2
2

b = b11x
2
1 + 2b12x1x2 + b22x

2
2

where aii and bii are the pure component parameters, while aij and bij can be evaluated with
mixing rules, like for example:

b
1/3
12 = 0.5(b

1/3
11 + b

1/3
22 )

a12 = (a11a22)
1/2

Even if these models are quite useful for fast calculations, more detailed models have to be used
for working applications.

2.3.1 Benedict-Webb-Rubin

Benedict, Webb and Rubin generalized the Beattie-Bridgeman model, [4], for both pure substances
and mixture. In order to fit the experimentally observed p-V-T data for hydrocarbons up to
densities of twice the critical density, eight parameters are necessary to completely define the
EoS, as in Eq. (28).

p =
RT

Ṽ
+

1

Ṽ 2

[
RT

(
B0 +

b

Ṽ

)
−
(
A0 +

a

Ṽ
− aα

Ṽ 4

)
− 1

T 2

(
C0 −

c

Ṽ

(
1 +

γ

Ṽ 2

)
e−γ/Ṽ

2

)]
(28)

where the eight constants are tabulated in [4] for nitrogen and some hydrocarbons. Moreover,
relations are given for the evaluation of those constants for mixtures, using only the mole fraction
and the constant for the i-th species.

For mixtures, the eight parameters are assumed to have the form:

A0 =

[∑
i

xi(A0)
1/2
i

]2
a =

[∑
xia

1/3
i

]3

B0 =
1

8

∑
ij

xixj

[
(B0)

1/3
i + (B0)

1/3
j

]3
b =

[∑
xib

1/3
i

]3

C0 =

[∑
i

xi(C0)
1/2
i

]2
c =

[∑
xic

1/3
i

]3

α =

[∑
xiα

1/3
i

]3
γ =

[∑
xiγ

1/2
i

]2
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where subscripts i and j stand for pure component parameters.
From these eight constants, some thermodynamic properties can be directly retrieved, like en-
thalpy, entropy or fugacity. The relations for these quantities are presented in [4]. These relations
for the BWR equation of state are valid over the whole range from gas to liquid including the
critical region for some hydrocarbons mixtures. Several modifications have been made to this EoS
and some of them account for 16 or 32 parameters.

2.3.2 Peng-Robinson

Particular attention is given in this treatment to hydrocarbons for which the Peng-Robinson has
been one of the most used, useful also for liquid hydrocarbons. Its formulation is presented in
Eq. (29) and taken from [39].

P =
RT

V − b
− a

V (V + b) + b(V − b)
(29)

where a and b depend on the intermolecular forces of each species. They are defined as follows.

bi = 0.077796
RTc,i
Pc,i

ac,ic = 0.457235
R2T 2

c,i

Pc,i

α(Tr) = [1 + F (1− T 0.5
r )]2

a = acα(Tr)

where F depends on the acentric factor ω and is defined as F = 0.37464 + 1.54226ω− 0.26992ω2,
while the acentric factor is tabulated for several fluids, [12]. The equation can be also used for
mixtures by using the following mixing rules.

amix =
∑
i

∑
j

xixjaij

aij = (1− kij)a1/2i a
1/2
j

bmix =
∑
i

xibi

where kij is the interaction coefficient and depends on each couple of substances involved. It is still
object of investigation in many studies, but several data for very numerous couples of substances
(including hydrocarbons) are reported in [11].
Also, other more complex mixing rules can be used, as the Wong-Sandler mixing rule, used and
explained in [12].

2.3.3 Soave Redlich Kwong

The Soave modification to the Redlich Kwong equation of state is still a cubic equation with a
structure very similar to the Peng-Robinson. It is here introduced because it has been partially
used in this work.
Its form is presented in Eq. (30).

P =
RT

V − b
− a

V (V + b)
(30)
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This EoS has very accurate results up to the critical region; it has been widely used for liquid, gases
and vapor-liquid equilibrium. The two parameters can be directly evaluated for each component
from its critical constants and acentric factor.

bi = 0.08664
RTc,i
Pc,i

ai = 0.42727αi
R2T 2

c,i

P 2
c,i

αi =

[
1 +

(
1− ki

√
T

Tc,i

)]2
ki = 0.48508 + 1.5571ωi − 0.15613ω2

i

Mixing rules can be applied, as in Peng Robinson EoS.

2.4 Simple Cell Method

An incredibly good simple theory can be derived starting from the already presented relation from
classical mechanics, Eq. (27), and making rough approximations about the "free-volume" and the
"lattice energy". The free-volume is the volume in which a molecule is free to move, while the
lattice energy is a measure of the cohesive forces that bind ions.
Let’s consider molecules as rigid spheres with a diameter equal to σ, and consider all the molecules
but one (’the wanderer ’) ’fixed in their equilibrium positions on a regular cubic lattice. With some
approximation, and introducing the Van Der Waals coefficient b = 2πNaσ

3/3, the simplified free
volume can be defined as:

vf = 8[(Ṽ Na)
1/3 − 0.7816(b/Na)

1/3]3

The lattice energy instead, may be supposed to be the negative of the internal energy of vaporiza-
tion per mole, which could be expressed, following Hildebrand’s theory, as a function of a(T )/Ṽ n;
for many substances, n=1 is a good choice.

0.5NaE(0) = −∆Ũvap = −a(T )/Ṽ

the function a(T ) can be shown to be the coefficient a of Van der Waals.
It should be considered that both the lattice free energy and the free volume depend on both
attractive and repulsive forces. In this simplified model, the free volume depends primarily on
the repulsive force and lattice energy primarily on the attractive force.
When substituting these simplified expressions into the molecular partition function, rearranging
Eq. (27), the Eyring equation of state could be derived, as in Eq. (31).

(
p+

a(T )

Ṽ 2

)
(Ṽ − 0.7816b1/3Ṽ 2/3) = RT (31)

It could be demonstrated that Eyring relation is just a more precise form of Van Der Waals
equation of state, accounting for overlapping of rigid spheres. The constant 0.7816 is appropriate
for a simple cubic lattice; for a body-centered cubic lattice the constant should be 0.7163, while
for face-centered 0.6962.
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3 Vapor-Liquid Equilibria and Critical Region

In the previous sections, the equilibrium properties of gaseous and liquid systems have been
described. Now, attention is paid to the interaction between liquid and gas, namely the interface
between the two states. It will be noticed that, when the temperature is increased up to the
critical temperature, a density gradient is generated throughout the vessel, and the distinction
between liquid and vapor becomes meaningless.
This behaviour will give the starting point to analyze the two completely homogeneous phases,
which exist up to the critical point. In addition, some notions about "retrograde condensation"
are introduced.

3.1 Surface Tension

A theoretical treatment of two phases systems must consider the interfacial region and the nature
of surface tension. Let’s consider a tall box containing liquid and vapor of the same species. From
a macroscopic point of view, the density jumps from the liquid value to the vapor value across
the interface between the two phases. From a microscopic point of view instead, it must be taken
into account that such discontinuity does not exist.
Considering the tall box aligned with the z-axis, and defining properly a dividing surface called
equimolecular dividing surface, [4], and using the pressure tensor, the surface tension can be
defined as in Eq. (32).

γ =

∫
(p0 − pxx(z))dz (32)

So the surface tension is the stress acting in the x-direction on a strip of unit area in the yz-plane
in addition to the uniform normal pressure, p0.
Another point of view is to consider the contribution of the surface layer to the thermodynamics
functions in a two phases system; in this way, surface tension becomes the one in Eq. (33).

γ =

(
∂As

∂α

)
T

=

(
∂Gs

∂α

)
T

(33)

where A and G are the Helmholtz free energy and the Gibbs free energy, which are equal in the
hypothesis of equimolecular dividing surface. The superscript s stands for surface and indicates
the molecules inside the region of transition between solid and gaseous phase. α is the area of the
film between the phases.
A more detailed process is carried out in [4], using both the free volume method and the radial
distribution function method and comparing analytical and experimental results. Here, a simpli-
fied model is presented, that is the Mcleods’s equation and the Parachor. Mcleod proposed an
empirical equation for the surface tension that includes the actual densities of liquid and vapor
phases.

γ = constant · (ρl − ρv)4

Sudgen has then reformulated this result as in Eq. (34).

P =
Mγ1/4

ρl − ρv
(34)

where P is called the parachor, and it remains nearly independent of temperature over a wide
temperature range; it is tabulated for few substances,[4].Lennard Jones and Corner showed that
for simple molecules the parachor is given within the 3.6 per cent of accuracy by the following
equation:

P = (7.1 · 1023)ε1/4σ5/2

where ε and σ are the Lennard-Jones parameters. This suggests that the parachor may provide a
sensitive method to obtain the molecular collision diameter.
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3.2 Phase-Behaviour of One-Component Systems

The equation of state of a one-component

Figure 6: Surface of generic EoS, taken from [4].

system is a 3-variables equation and can
be presented by the surface p = p(Ṽ , T ),
as in Fig. 6. In this figure, the be-
haviour of the fluid in both liquid and
gaseous states is shown. The curve AD-
CEB is the so-called coexistence line;
the point C on the tongue-shaped curve
is the critical point and it represents
the highest pressure and temperature
at which two phases can exist and the
point for which liquid and vapor phases
become indistinguishable. Inside the tongue-
shaped region, the system breaks up into
a liquid and a vapor phase, which co-
exist in equilibrium. One side of the
curve, the ADC, is called liquidus, while
the other branch, CEB, is called va-
porus. What happens in the vicinity of
the critical point is the argument of the

next subsection.
From this three dimensional view of the EoS, much information is not easily retrieved. Generally,
it is split into three 2D representations, as the projections that are shown in Fig. 6. The upper
right plot can be obtained by slicing the surface with planes perpendicular to the T-axis. It shows
the isotherms on a p− Ṽ diagram and the one passing through C is the critical isotherm. Slicing
the surface with a plane perpendicular to Ṽ -axis, the upper left projection can be obtained. It
shows the isochores on a p-T diagram; here, the curve (AB)(DE)C is the projection of the tongue-
shaped region and is the familiar vapour pressure curve. The last projection is the T − Ṽ plane
which shows the isobars of the system. Each of the three projections is sufficient to reconstruct
the whole surface.

From each of these diagrams, the critical point can be found, for example, the critical temper-
ature could be estimated by the analysis of the geometry of the isotherms. From loading a bomb
of constant volume instead, it can be shown that the isochores behave differently depending upon
whether the overall (gas+liquid) density of loading, ρ, is less, equal or greater than the critical
density; different cases are reported in [4]. Another way is defining a "rectilinear diameter" as the
arithmetic average of the liquid and vapor densities, and plot all the three densities with varying
temperature; the point of intersection of the rectilinear diameter with the coexistence curve gives
the critical density and temperature. It has to be pointed out that the equilibrium condition
described by the graphs is not always the one obtained from experiments.

Let’s consider a vapor that is being compressed; a state of supersaturation may occur, namely,
the vapor phase is still present even if it should condense, this happens because in order to
condense, nuclei should be formed, but for pure substances this process can take a while; this is
a metastable state. Another example could be the overexpansion of a liquid: if a liquid is kept at
high pressure and then the pressure is decreased, the liquid would be expected to vaporize but
this does not happen immediately and the liquid phase can persist for a considerable length of
time. Similarly to condensation, vaporization occurs with the formation of cavities that can form
spontaneously or with another gas dissolved in the liquid, and again, this process takes time.
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Let us move now to the isotherms that de-

Figure 7: Isotherms of simple analytic EoS, taken
from [4].

scribe these metastable states, even using a
very simple EoS like the Van der Waals equa-
tion, Eq. (2). This is shown in Fig. 7.
Isotherms below the critical isotherm do not
have a horizontal section, as it could be ex-
pected for the vapor-liquid equilibrium, but they
are S-shaped. For example at temperature T2
the EoS gives the curved path named with let-
ters DQRSE, instead, the expected equilibrium
is represented by the dotted line DE (which
indicates the vapor pressure value for T2). Maxwell
suggested that to find the vapor pressure, the
dotted line must be chosen such that the area
bounded by the line DR and the curve DQR is
equal to the area bounded by RE and RSE, in
order to have the Gibbs free energy of the liq-
uid phase equals to the one of the vapor phase,
when the two phases are in equilibrium.
It is possible to read the portions DQ and SE of the S-shaped analytical curve as representing the
metastable states of the fluid, which are experimentally realizable. The segment SE represents
the state of supersaturation while DQ corresponds to the overexpansion. The segment QRS has
no physical significance.

3.3 Thermodynamic properties in the critical region

Figure 8: c̃v behaviour for CO2, [4].

It has been noticed that isotherms below the crit-
ical point show very different behaviour with re-
spect to isotherms above it. More generally, when
a fluid approaches the critical point, significant
changes in its properties occur; this is commonly
defined as "transcritical fluid". When instead,
critical temperature and pressure are overcome,
the system dynamics is even more complex, and
a more detailed treatment will be given later on;
in these conditions, fluids are usually referred to
as "supercritical fluid".
Let us focus now on the transcritical region.

The heat capacity at constant volume can be
calculated as the sum of the ideal gas heat ca-
pacity, C̃0

v , and an integral representing the resid-
ual part, that can be evaluated from experimental
compressibility, Eq. (35).

Cv = C̃0
v + T

∫ Ṽ

Ṽ=∞

(
∂2p

∂T 2

)
Ṽ

dṼ (35)

The results for CO2 are shown in Fig. 8; it is very interesting to see a very pronounced maximum
in the neighbourhood of the critical point: the heat capacity tends to increase near the critical
point and decrease immediately after. These peaks are less pronounced with temperatures much
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(a) Sound velocity and absorption for SF6, [4]. (b) Sound velocity for CO2, [4].

Figure 9: Sound velocity and absorption coefficient in the critical region.

higher than the critical temperature. For what concerns the evaluation of the heat capacity at
constant pressure, the case of a liquid system kept at constant pressure is considered. Addition
of heat will cause an increment in temperature and volume; by increasing the temperature, at a
certain point the vapor pressure becomes equal to the actual pressure of the system, and a vapor
phase is generated. Further addition of heat will cause no increment in temperature because it
would be absorbed as latent heat of vaporization; so heat capacity is infinite and remains so during
the whole phase transition. Then, for any pressure lower than the critical pressure, a range of
densities over which cp is infinite exists. Thus, as a system approaches the critical point from the
single phase region, the value of cp approaches infinite.

A relation for the evaluation of the

Figure 10: Joule Thomson coefficient for CO2 in critical
region, [4].

velocity of sound at zero frequency is re-
ported in [4], but no experimental data
are available at frequencies sufficiently
low to validate that equation. The re-
sults for the experimental evaluations of
the velocity of sound in transcritical con-
ditions are reported in Fig. 9; in particu-
lar, in Fig. 9a a minimum for the sound
velocity, and a maximum for the sound
absorption are shown in the proximity of
the critical point for Sulfur hexafluoride,
SF6. Instead in Fig. 9b, only the speed
of sound is shown but at different tem-
peratures for CO2; the speed of sound
evaluated for temperatures nearer to the

critical temperature show a deeper minimum. The Joule-Thomson coefficient at the critical point
can be evaluated as, [4]:

µcrit = 1/(∂p/∂T )Ṽ

So it is the reciprocal of the slope of the vapour pressure curve at the critical point. Experiments
show a maximum in the critical region, Fig. 10.

A.Y. 2020-21 – Tiziano Santese 28



Moreover, microscopically, density fluctuations become very large in the vicinity of the critical
point and this is demonstrated to lead to a scattering of light. In the critical point, this scattering
is greater and is referred to as "critical opalescence".

Figure 11: Density gradient of ethane in
the critical region, [4].

Up to now, the characteristics of liquid and vapor
phases were analyzed, and each phase was described by
well-defined properties. The properties of a fluid in the
neighbourhood of the critical point instead suffer strong
variations across a certain transition region, that be-
comes progressively broader as the fluid approach and
overcome the critical point and at the same time the den-
sity difference between the two phases becomes smaller.
The lack of a distinct boundary between the liquid and
the vapor phases is then augmented by the effect of grav-
ity and the fact that (∂p/∂V )T is small. These two ef-
fects, called respectively diffuseness of the surface and
importance of gravity, [4], are experimentally indistin-
guishable and cause macroscopic density gradients; this
gradient has been measured for ethane, with an optical
technique, whose results are presented in Fig. 11.

3.4 Phase Behaviour of Two-Component
Systems

If, in one-component systems, condensation is directly
associated with lowering the temperature and increasing the pressure, and vaporization is the
complete opposite process, two-components systems are even more complex due to the possibility
of retrograde condensation. The complete state behaviour of a binary system is now represented
by the four-dimensional surface p = p(Ṽ , T, x), where x is the mole fraction of one of the two
elements. The 4D surface is studied through different three-dimensional projections; for example,
by fixing the molar volume, the vapor pressure surface is obtained, pvap = p(T, x), and is presented
in Fig. 12a for a mixture of ethane and epthane.
With Fig. 12a as a reference, some general features of binary mixture can be identified. The
curves K1C1 and K2C2 are the pure components vapor pressure curves of epthane and ethane,
respectively. C1 and C2 are the pure component critical points, and the line that joins C1C0C2 is
the locus of critical points. This locus of points divides the surface into two parts: the liquid and
the vapor side; any line parallel to the x-axis pierces the surface in two points; these points give
the composition of the liquid and the vapor phase at the temperature and pressure at which the
line is drawn.
To facilitate the understanding of the three-dimensional surface, three two dimensional projections
can be prepared (as it was shown in Fig. 6). Firstly the projection of the isobars on the T-x plane
is reported in Fig. 12b. Isobars are created by slicing the 3D surface with planes perpendicular
to the pressure axis and obtaining the common liquid-vapor equilibrium curves, used for binary
systems. This plot can help us in understanding the phenomenon of retrograde condensation,
[4]. Consider a liquid system at 200psi in point A heated up to point B; here a vapor phase,
represented by B’, appears. A further increase in temperature results in a greater amount of
vapor phase and a smaller amount of liquid phase, represented respectively by D and D’.
At higher pressures, the boundaries between liquid and vapor phase occur at higher temperatures.
The boiling point of pure components varies with pressure; it increases with increasing pressure,
until the boiling temperature of one component reaches the critical temperature of one of them.
For the mixture of ethane-epthane, shown in Fig. 12a, this occurs at approximately 400psi and the
corresponding critical temperature is about 250°C; at or above this temperature the composition

A.Y. 2020-21 – Tiziano Santese 29



(a) Binary systems at fixed molar volume, [4] (b) T-x projection of surface shown in Fig. 12a, [4]

Figure 12: Surface of binary Equation of State

becomes important for the existence of two fluid phases, namely there cannot be two fluid phases
beyond some limiting composition.
For example, at pressure of 600psi the heterogeneous area does not extend to the left of x = 0.18.
So the liquid part of the isobar goes through the lowest ethane mole fraction before joining the
vapor part of the curve, in the point named c, which is the critical point of the mixture. This
limitation gives rise to one type of retrograde condensation.

Consider a mixture at 600psi whose state is represented by point a, in Fig. 12b; as the
temperature is increased the fluid reaches point b, with vapour phase represented by b’. With a
further increase of temperature, the system goes from b to d; in doing so, the amount of liquid
phase firstly decreases up to a minimum and then increases again until point d is reached, where
the last trace of vapor in d’ vanishes and the system returns to all liquid state. The initial
vaporization is followed by condensation; this is the phenomenon called retrograde condensation,
and in this case it is of second kind, since it is due to a temperature variation. This phenomenon
can occur whenever the temperature variation follows a vertical line that lies between the critical
point c and the minimum (or in some cases the maximum) mole fraction of one component.

Analogously, the other kind of retrograde condensation can be shown on the p-x plane, where
isotherms are shown, and it is caused by a variation of pressure. Consider a system whose state
is represented by point α in Fig. 13a, and increase the pressure, until reaching first β and then
δ. Initially, condensation can be observed, up to a maximum amount of liquid; then that liquid
vaporizes back until in δ all the liquid phase is disappeared. This case is usually referred to as
retrograde condensation of first kind. Generally, retrograde behaviour are shown whenever the
representative path of the system in the three dimensional representation enters and leaves the
volume through the same phase boundary surface, which could be either liquid or gaseous. The
path does not need to be parallel to the pressure or temperature axis but can mix changes in both
the two variables.

The last projection, the p-T plane for constant mole fraction, is also the most common repre-
sentation of the vapor-liquid equilibria of binary mixture; for this reason, the figure is not taken
from the ethane-epthane example of [4] but it is generalized to show all the peculiar characteristics
of mixtures phase diagrams, shown in Fig. 13b.
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(a) p-x projection of surface shown in Fig. 12a, [4] (b) General Vapor-Liquid equilibria of a given binary
mixture, taken from [5]

Figure 13: Binary Equation of State

Generally, the portion of the curve which is in contact with the liquidus surface is referred to as
"bubble-point line" and the portion in contact with the vapor surface is the "dew-point line".The
critical point of the mixture is the point of juncture of these two lines.

In Fig. 13b, the two types of retrograde phenomena could be presented. As it was pointed
out in Fig. 12b, a limiting composition exists for the coexistence of liquid and vapor phases; in
the same way, from Fig. 13b, it can be noticed that also a limiting temperature and a limiting
pressure exist, beyond which, the coexistence of the two phases is no more possible. These two
limiting values are called respectively "cricondentherm"(M) and "cricondenbar"(N). The position
of the critical point with respect to M and N, defines three different cases: cricondentherm and
cricondenbar could be both on the bubble line, both on the dew point line, or one on the bubble
point line and one on the dew point line. It is important to know their relative position in
order to know what will be the behaviour of the mixture when subjected to heating/cooling and
compression/expansion processes. Note that in mixtures the critical point no more represents the
maximum pressure and temperature at which the two phases coexist. In the last decades, the
petroleum industry has given much attention to these problems of retrograde phenomena, since
they are of importance in the high-pressure treatment of hydrocarbons.

Let us apply all these considerations to a real case study.
In Fig. 14, the two phase-diagram of a binary mixture composed of methane and propane is

shown, with varying compositions.
The representation is made on a p-T diagram; each curve shows the two phases boundary for a
different mixture, with varying mole fractions of the same two components. A black geometric
symbol is used to identify the position of the mixture critical point, which divides bubble line
and dew point line. This mixture is used as example since it will be further studied in this work,
because of its pronounced retrograde region.

Firstly it can be noticed the strong variation of the diagram with respect to the composition;
secondly the exact position of the critical point is fundamental to properly predict the retrograde
condensation behaviour of the mixture. Some coloured lines have been sketched to help in this
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analysis.

Starting from the lowest curve, the

Figure 14: Methane-Propane phase diagram with varying
composition. Credits to personal communica-
tion with Jaroslaw Shvab.

95% methane - 5% propane mixture, the
critical point is shifted in the bottom part
of the curve, making the bubble point
line longer than the dew point line. In
a case like that (or in the opposite one,
with the critical point in the upper part,
and a dew point line longer than the bub-
ble line), both the kinds of retrograde
condensations could easily be represented.
The red line A-B represents a retrograde
condensation of second kind, obtained through
variation of temperature; it can occur on
the right of the mixture critical point (at
pressures higher than the critical pres-
sure of the mixture). The green line C-D
represents a retrograde condensation of
first kind, that occurs with varying pres-
sure and at temperatures higher than the critical temperature (above the critical point). This
mixture, in which only a 5% mole fraction of propane is present, shows a wide region where ret-
rograde condensation can occur.
Moving towards other curves, in which the critical point is approximately equal to the criconden-
bar (namely, the critical pressure of the mixture is equal to the maximum pressure of coexistence
of the two phases), like the curve of the 70% methane - 30% propane mixture, retrograde conden-
sation of second kind cannot occur, but still, there is the possibility to have retrograde behaviour
of first kind (caused by pressure variations). For this reason only the green line G-H has been
drawn on that curve.
The opposite case occurs when critical point is approximately equal to the cricondentherm; only
retrograde condensation of second kind can exist (due to variations of temperature). This does
not exactly happen in the 50%methane -50% propane mixture, but it can be used as example, so
only the red line has been drawn.
In industrial applications, the working conditions have to be identified and attention must be paid
to these phenomena to avoid the formation of the other phase caused by a decrease of pressure
or temperature. In our case, especially the cooling channels for space rocket applications, but
also the injection process, can give rise to deep change in the fuel temperature or pressure; then,
an accurate evaluation of the vapor liquid boundary is of paramount importance to avoid, or to
model, this not intuitive behaviour.
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4 The Widom Line

4.1 Phenomenological description

Up to now the development of this discussion has been concentrated in the critical and subcritical
domains of the system. In the last few decades, continuously growing attention is paid to the region
located after the critical point. In this treatment, the fluid with a pressure and a temperature
higher than the critical conditions is called a supercritical fluid.
According to many relevant books of the previous century, there exists no physical observable
boundary that allows distinguishing a liquid from a gas beyond the critical point, and hence
only a single fluid phase exists. However, even if a great effort was made to completely describe
fluids behaviour and properties below the critical point, experimental studies in the supercritical
region have been limited due to technical difficulties. In 2010 Simeoni et al., [32], were able to
demonstrate that some thermophysical quantities have maxima in the critical region, such that a
line starting from the critical point and joining these maxima can be drawn. The evidence of these
extrema in thermodynamic quantities has been analysed by several authors, [8],[30], [20], [6], [21]
in the last decades to give a better understanding of the physical meaning of those peaks. Thanks
to many molecular dynamics simulations, a deeper meaning of that behaviour was found; indeed
MD allows the evaluation of thermodynamic properties and of the radial distribution function. In
statistical mechanics, the radial distribution function, usually indicated as g(r), describes "how
the density of a fluid varies as a function of the distance between particles, or with respect to
a reference particle", [4]. The analysis of this function has shown a quite strong variation in
the density when crossing the line of thermodynamic extrema; this strong variation in density
resembles the subcritical boiling and was named "pseudo-boiling", originally by Kafengauz and
Fedorov [22], and later by Oschwald et al. [3], and Okamato et al. [23].

The constant pressure heat capacity is the most frequently chosen response function to find the
locus of extrema; depending on the thermophysical property chosen, the obtained line is slightly
different. The first definition of this line was given by Sciortino et al. [13], as "the set of states
with a maximum correlation length of the fluid", but is almost always approximated as "the locus
of maximum thermodynamic response functions", since they can be more rapidly calculated from
thermodynamic properties. The resulting line is named "Widom line", [13].

More precisely in [32] it is carried out an accurate analysis on the sound waves and on the
positive dispersion coefficient of fluids; the positive dispersion is an increase of the speed of sound
with the wavelength ranging from the continuum limit, with very high wavelengths, to short
wavelength limit, reaching interparticle distances. This effect, it is explained in [32], can be
generated by the presence of one or more relaxation mechanism that interacts with the dynamics
of density fluctuations. Simeoni et al. discovered a different behaviour on the two sides of the
Widom line: a liquid-like and a gas-like fluid, with differences very similar to liquid and gases in
the subcritical domain (from here, the previous definition of pseudo-boiling).
A first draft of the complete behaviour of a fluid in the different thermodynamic conditions, before
and after the definition of the Widom line, is shown in Fig. 15. In particular, in quadrant I, the
vapor pressure curve divides the vapor and the liquid state; higher temperatures in II identify
gases that cannot be compressed to the liquid state. Fluids in quadrant IV instead, are referred to
as compressed liquids, compressible liquids, transcritical liquids or liquids; The last quadrant, III,
is the one that identifies supercritical states and in which there is the division between liquid-like
(LL) and gas-like (GL). The dotted line is the Widom line.
So far, no quantitative discussion has been given on what happens when crossing the line; it will
be the topic of the next sections.
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Figure 15: Trans-critical fluid states, taken from [29]

4.2 Widom line equation

As already stated, the original definition of the Widom line was "the set of states with a maximum
correlation length of the fluid" [13]. However, this property is very hard to evaluate practically.
As an approximation, response functions are used by several authors. The most common used
thermodynamic functions are the isobaric heat capacity, the isothermal compressibility, and the
thermal expansion coefficient.

Banuti et al. found the cp based Widom line to be well represented by the following equation,
[8]:

P

Pc
= exp

[
Tc
θpb

(
T

Tc
− 1

)]
= exp

[
A

(
T

Tc
− 1

)]
where the subscripts c and pb stand for critical and pseudoboiling respectively. Dimensionally,
the integration constant 1/θpb can be interpreted as the inverse of a temperature. In [8], by
elaborating the Clapeyron equation near the critical point, it is found that
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thus, the equation of the Widom line can be rearranged as in Eq. (36).
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(36)

The parameter A = Tc/θpb in the previous version of the equation was introduced and tabulated
in [7] because it is a species dependent constant and has comparable values for simple components.

Eq. (36) tells us where to expect some sort of transition phenomenon, but what to expect
when passing through the Widom line has still to be investigated. This was done in [8]. Let T−
and T+ be the initial and final temperature of an isobaric transition, such that T− is smaller than
the temperature at which the maximum cp occurs, and T+ is larger. In order to overcome the
Widom Line, going from a liquid-like to a gas-like fluid, some energy will be required. This energy
is quantified as ∆hpb.

∆hpb =

∫ T+

T−

cp(T )dT = h(T+)− h(T−)

The most important finding is that in supercritical conditions, the provided energy is spent to
both break molecular bondings and, unlikely what happens in subcritical vaporization, raise the
temperature of the fluid,[1]. These two contributions are called in [8], structural (st) and thermal
(th) contributions.
∆hpb represents the whole area under the cP (T ) curve from T− to T+ and so the whole amount
of energy required to go from one temperature to the other. The cp assumes two values: a
liquid heat capacity cp,L at low temperatures, while an ideal gas value cp,iG can be used at higher
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temperatures. Since no theoretical development can be used for the first, it is assumed to be equal
to cp,max; for the second, the relation for calorically perfect gas is adopted, cp,iG = γR/(γ − 1).
Now that all the parameters are defined, it can be considered that the amount of energy needed
to heat up the fluid isobarically is ∆hth = cp,L∆Tpb. The difference between the total amount
of energy and the thermal contribution gives the amount of energy needed for the structural
contribution, ∆hst = ∆hpb −∆hth.

This is done in [8]. Moreover, Banuti et al. defined two parameters to better visualize the
contribution of structural phenomena, and they are presented in Eq. (37) and Eq. (38).

B1 =
∆hpb
∆hL

− 1 (37)

B2 =
cP,pb
cP,L

− 1 (38)

The second one is more practical to be used and follows the behaviour of the B1 with an offset.
It has been shown that the values of the parameters can be compared over a range of fluids,
especially for the simple fluid. Up to a reduced pressure of 1.5, the structural contribution is
higher than the thermal one; this means that the pseudoboiling process raises the amount of
energy required to heat the fluid by a factor of two. At pr = 3 there is a 10% of excess energy
over liquid heating alone. Towards the critical point, the two parameters diverge since the heating
contribution vanishes.
Pseudoboiling is then demonstrated to be a continuous, nonlinear, transcritical process resembling
subcritical boiling and that occurs when crossing the Widom line, which has been identified for
pure components in Eq. (36). The significant reduction in density that comes during the process
strongly resembles classical subcritical vaporization.

4.3 Supercritical transition lines and range of existence

The properties of several fluids have been analyzed during the years with the goal of understand-
ing how the physical transition in supercritical fluids from liquid-like to gas-like can be justified,
and which features are shared with the subcritical transition from liquid to vapor.
For supercritical fluids, many transition lines have been suggested; the first was by Fisher and
Widom [36], who stated that a transition must exist to explain the difference between the oscilla-
tory decay of the radial distribution function (caused by the predominantly repulsive potential in
liquids), and a monotonous decay that characterizes the attractive potential in gases. However,
also another treatment based on thermodynamic properties has been carried out. Indeed, it was
considered that the subcritical phase transition that occurs across the coexistence line is a first
order phase transition; from a thermodynamic point of view, this implies a discontinuity in the
slope of the Gibbs free energy, defined as G = h − Ts. At supercritical pressures, this jump in
the slope has vanished but, it is interesting to see how the Widom line is still strongly related to
the Gibbs free energy.
Using the Maxwell relations of classical thermodynamics, several properties can be expressed as
a function of the Gibbs free energy, as follows.
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)
p
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Here, cp, αP and kT are respectively, the isobaric specific heat, the isobaric thermal expansion
and the isothermal compressibility. It is evident how all these response functions, that can be
used to trace a supercritical transition line, are related to the second derivative of the Gibbs free
energy. Thus, Banuti et al. thought that even if the discontinuity in the slope is no more present,
a shadow of this transition can be found as a maximum in the curvature of the Gibbs free energy,
[29].

Figure 16: Comparison of Widom lines based on Gibbs free energy, [29].

For this reason, in [29], different functions are evaluated to track their maxima and compare
the obtained Widom lines. The selected functions were: cP , cP /T (which is equal to the second
derivative of the Gibbs free energy) and χg, which is the magnitude of the curvature of the Gibbs
free energy, defined in Eq. (42).

χg =

∣∣∣∣ cp/Tr

(1 + (−s)2)3/2

∣∣∣∣ where s = −∂G
∂T

(42)

Fig. 16 shows their results. It is possible to see that the transition temperature does not rise
monotonously, but at a certain pressure it curves back to lower temperatures. Up to pr ≈ 1.5 all
three lines coincide. At higher pressures, first the curvature and then the second derivative of the
Gibbs free energy deviate from the cp-curve. It has been actually shown that even if there is no
discontinuity in the slope, there are still pronounced maxima in the curvature. Fig. 16 shows that
the loci of maxima deviate from Eq. (36) when they start to curve back; this occurs at reduced
pressures of 2, 3, and 4, in the three cases.
The analysis of the curvature is then useful to give a preliminary idea of the endpoint of the
Widom line since at higher pressure the peaks of all the thermodynamic properties flatten till
losing their physical significance.

Therefore, there is strong evidence for an upper limiting pressure to the thermodynamic
Widom line. There is no precise value for it, but a universal flattening in the thermodynamic prop-
erties is observed, to the point that any change is negligible, at pr ≈ 3, and vanish for pr > 10, [29].

A further complication in the analysis of the supercritical region and identification of the
transitional area, is the absence of any reason to justify the choice of the response function that
has to be used. For this reason several response functions have been evaluated together, and the
resulting Widom Lines were compared with transition lines coming from experimental measures
of density or with results coming from MD simulations, [6],[21],[20],[26].
The most relevant feature coming from these works is that all the extrema of the different ther-
modynamic properties agree over a limited range of temperature and pressure, but for reduced
pressure higher than 1.5, the Widom Lines coming from different response functions slightly di-
verge from the each other. This can be seen for example in Fig. 17, where Banuti et al. presented
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Figure 17: Different Widom Lines for Argon, [29]

the transition lines for pure Argon, [29]. All the lines clearly sketch a transition area, more than
a precise boundary between the two states. However, as it is already explained, this region is
limited; no more peaks are distinguishable for reduced pressure higher than 3, and moreover, the
fluid behaves almost like an ideal gas when heated up to reduced temperature of 2.

4.4 Unified Criterion

As it has been shown, the extrema of the response functions have weakened at a reduced pressure
of 3 and completely vanished at 10. However, a more accurate criterion on the endpoint of the
Widom Line has been proposed, finding a much smaller transition region.

In [20], Zeròn et al. evaluated the extrema

Figure 18: Widom Lines for water, [21].

of several response functions and used the coinci-
dence of these curves to determine the end-point
of the Widom line. Since the coincidence of the
lines can be influenced by the scale used to show
the coordinates of the maxima, in their work they
chose to present the data in the T ∗ − p∗ plane.
Using analytical equations of state, the Widom
lines for both a Square-Well and a Hard-Core Lennard-
Jones potentials were obtained. In both cases the
most separated lines were always those coming
from the isobaric specific heat and the isothermal
compressibility, and for this reason, the following
criterion was adopted: the Widom Line exists till
the point in which the condition in Eq. (43) is no
more satisfied.

|TkT ,max − Tcp,max| ≈ 0.001Tc (43)

Note that it depends on the critical temperature of the substance considered.
In [21], De Jesus et al. adopted the Zeròn criterion for several calculations. In Fig. 18 their results
are shown. The two dashed lines represent the maxima of the two response functions, isobaric
specific heat and isothermal compressibility, while the black line is drawn taking as end-point the
one suggested by Zeròn in Eq. (43) (note that the black line always lies between the two dashed
lines). Instead, the blue one is presented with a ’more-relaxed’ criterion:

|TkT ,max − Tcp,max| ≈ 0.005Tc
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With this assumption, the Widom line can not be considered a straight line anymore because in
that case, it exits the region defined by the two response functions, so it is surely less accurate.
Note that this relaxed criterion makes the Widom line following more the curve of the isothermal
compressibility.

In this work, little attention will be paid to the criterion to find the end-point of the Widom
Line, since the main goal is to define that region in which strong gradients are found, independently
from the exact definition of the end-point of the WL.

4.5 Widom line in binary mixture

How does this description change when talking about mixtures? A good description is given for
binary mixture in the work of Raju et al., [30].
A first theoretical differentiation of the different mixing behaviour was given by van Konynenburg
and Scott, [24]; starting from the van-der-Waals equation of state, they defined six types of phase
behaviour for binary mixtures. In [30], types I and III are considered. The first type includes
those mixtures with a continuous gas-liquid critical line connecting the critical points of the pure
components and that exhibit complete miscibility; in this category substances of similar species
and/or with comparable critical properties are placed (ex. methane/ethane). Type-III mixtures
are those mixtures for which the region of liquid-liquid immiscibility goes up to the gas-liquid
critical line generating a discontinuity. The difference in intermolecular forces is particularly rel-
evant for the two constituents in this class (ex. nitrogen/heavy hydrocarbons).

Figure 19: Widom lines for a binary mixture of Argon-Krypton, [30].

Raju et al. [30] conducted experiments and calculations for mixtures of type I using argon
and krypton; simulations were performed at temperatures between T=115K and T=275K, at
increments of 5K, and for various pressures between p=65atm and p=140atm. The Widom lines
for the same three response functions previously used are evaluated and shown in Fig. 19, where
also the Peng-Robinson equation for the mixture is presented (dotted line), to show how good it
can describe the behaviour of the system, even in supercritical conditions.
The Ar/Kr mixture exhibits a single set of Widom lines that emanate from the critical point of the
mixture. This behaviour is extremely similar to the one of a pure component, and to understand
this similarity, Raju et al. investigated the structure of the mixture. The argon/krypton radial
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Figure 20: Widom lines for a binary mixture of Argon-Krypton, [30].

distribution functions have perfectly similar behaviour across the phase transition; this suggests
that the mixture is homogeneous and that both the components turn from a liquid-like to gas-like
phase together. The homogeneity and the miscibility of the mixture generate a pure fluid-like
behaviour.

Then, simulations were carried out for a neon/krypton mixture, which has type-III behaviour.
Because of the difference in critical properties between the two components, these kinds of mix-
tures are characterized by a discontinuous gas-liquid critical curve and liquid-liquid immiscibility.
To examine the behaviour and the resulting Widom lines, simulations of an equimolar mixture
were performed. Fig. 20 shows the results.
A drastically different phase-transition behaviour is observed for this type-III mixture. In par-
ticular, it can be noticed that thermodynamic properties like enthalpy or isobaric specific heat
show the presence of two distinct phase transitions, namely two distinct peaks at two distinct
temperatures. The presence of two different transitions creates two sets of Widom Lines at two
distinct locations in the projected p-T state diagram. Therefore, it demonstrates separately the
phase transition of each component.

It is important to appreciate that the two distinct phase transitions in this mixture are not
identical to the Widom lines of pure components. This shows that there is an interaction between
molecules even though the mixture components are immiscible and this affects the transition point
of the mixture.
In comparison, the Widom Line obtained from Peng Robinson EoS predicts (and not very well)
only the Widom Line that occurs at higher temperature and completely misses the other.

Raju et al. [30] showed that in the second case the mixture is not homogeneous because
the radial distribution functions for the pure components are significantly different, showing a
transition to a gas-like regime at appreciably different temperatures.
Therefore, the supercritical region in mixtures can no longer be considered as a uniform and
homogeneous fluid phase, but it has to be referred to as a complex state space where components
transition, from a liquid-like to a gas-like state, can occur simultaneously or separately.
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5 Evaluation of thermo-physical properties and Widom Lines

5.1 Starting Point

Since the use of chemical pure methane would lead to extremely high costs, real operations are
supposed to implement liquefied natural gas (LNG) which is significantly more cost-efficient. This
propellant will include different impurities, as shown for example in common mixtures used in
DLR in Tab. 1; these impurities can significantly influence the thermodynamic properties of the
fuel. Actually, the little understanding in the field of thermodynamic and transport properties of
mixtures in supercritical states limits their application because those properties are fundamental
to determine the behaviour of the propellant and heat transport processes under rocket engine
operation conditions, like during cooling or injection.

Chem. Name Mol.% Mol.% Mol.%
CH4 95.6320 99.5481 99.4985
C2H6 3.9922 0.1279 0.0477
C3H8 0.2232 - 0.0067

i− C4H10 0.0396 - -
n− C4H10 0.0347 - -
i− C5H12 0.0014 - -
n− C5H12 0.0005 - -

N2 0.0764 0.3077 0.429
CO2 - 0.0163 0.0181

Table 1: Three typical mixtures of LNG in conventional storage facilities and used for tests at Institute
of Space Propulsion, German Aerospace Center.

In this work, many aspects of methane-based mixtures are covered; starting from the evaluation
of the critical point and the vapor-liquid equilibrium curve, and then moving to the supercritical
environment.
It has to be noticed that this work is just a part of a bigger project whose results will be submitted
to be published, [15]. The authors of this project are: Dr. N. Slavinskaya, J. Shvab, D. Suslov,
Prof. Dr.-Ing. O.J. Haidn, and the author of this thesis, T. Santese.

This is important because some of the results obtained from other co-authors will be intro-
duced before the results obtained in the frame of this specific thesis.

In Tab. 2 some major properties of substances available in relevant quantities in LNG are
collected. The clear differences in the Lennard Jones parameters and in the critical and triple
point properties, underline a possible problem in the EoS of mixtures since it can cause appreciable
deviations of the mixture critical properties from the methane ones. It can be a root for possible
retrograde condensation, but also can cause the critical region to be nearer to the prescribed
operating space conditions.

In particular for carbon dioxide, the triple point connecting the three phases has much higher
values than methane’s triple point; therefore, solid carbon dioxide could exist within the liquid
or gaseous methane. Also, its critical point is higher in pressure and temperature than the one
of methane and could affect the boiling line of the mixtures. Thus, for safety reasons, the CO2

should be avoided completely.

In this work then, mixtures of methane, ethane, propane, nitrogen and hydrogen have been
considered. The three hydrocarbons have critical properties comparable in magnitude, nitrogen-
methane is a type-I binary mixture [30], and exhibit complete miscibility at all temperatures.
Hydrogen instead, has critical parameters much lower than methane; therefore it cannot influence
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Chem. Name Tc[K] Pc[MPa] Ttr [K] Ptr [MPa] Ac. factor ω ε/k[K] σ[A]

Methane 190.56 4.6 90.69 11.7 0.011 141.40 3.746
Ethane 305.32 4.9 90.37 0.001 0.099 252.30 4.302
Propane 369.83 4.2 85.52 1.7 · 10−7 0.152 266.90 4.982
Nitrogen 126.19 3.4 63.15 12.6 0.037 38.00 2.290
Hydrogen 33.18 1.3 13.80 7.04 -0.22 244.00 3.763

Carb. Dioxide 304.18 7.4 216.59 15.37 0.225 97.53 3.621

Table 2: Critical point, triple point and LJ parameters for investigated components, taken from [10], [4],
[41],[48],[2].

vapor-liquid equilibria of mixtures, but its impact on the critical point and supercritical behaviour
of mixtures should be analyzed.

All the possible combination of mixture were considered among these 5 components, with a
concentration of each impurity that was varied in 0.5% steps until the maximum proportion of
5% of mole fraction was reached.

5.1.1 Results from Co-Authors

In [15], the Soave modification of Redlich-Kwong cubic EoS has been used, together with the
algorithm described in detail in the work of Zizin and Slavinskaya, [37], for the evaluation of the
critical point of mixtures. This algorithm was based on the work of Heidemann and Khalil [16]
and Michelsen and Heidemann [31]; since the critical point is placed on the stability curve of the
stable phase, it was found by expanding in Taylor series the Helmholtz free energy around a test
point. Based on these works, the critical point was achieved if both the quadratic and cubic terms
in Taylor series were equal to zero. All the information are given in [37].

Figure 21: Critical pressure and temperature of a mixture of methane containing variable mole fractions
of Propane (C3H8), Ethane (C2H6), Nitrogen (N2) or Hydrogen (H2), taken from [15].

The results show drastic changes in the coordinates of the critical point as the composition
is varied. Particularly interesting are the charts showed in Fig. 21. In this figure, the variation
of the critical pressure (on the left) and temperature (on the right) is presented , for a binary
mixture containing methane and a second component whose mole fraction goes from 0 to 0.05.
Propane is the component that has a maximal impact on critical parameters; a 0.05 mole fraction
of propane leads to an increase in critical pressure of 39% and of the critical temperature of 10%
with respect to the methane critical constants. Also, the other elements have a non-negligible
influence on the critical point mixture, in particular hydrogen and ethane.
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From all the gathered data about the influence of impurities on the critical point of the mixture,
in [15], a very accurate linear approximation has been extrapolated to evaluate the critical point of
methane-based mixtures containing the other four components under investigation. In particular
critical temperature and pressure can be evaluated as in Eq. (44).{

Tc = at0 + at1xCH4 + at2xC2H6 + at3xC3H8 + at4xN2 + at5xH2

Pc = ap0 + ap1xCH4 + ap2xC2H6 + ap3xC3H8 + ap4xN2 + ap5xH2

(44)

where xi is the mole fraction of the i-th component, while the coefficients ai can be found in
Tab. 3.

a0 aCH4 aC2H6 aC3H8 aN2 aH2

Tc 91.76334 99.27925 305.31115 514.01379 53.02326 65.95531
Pc 22.21207 23.84545 158.4874 410.07809 50.37995 170.27066

Table 3: Coefficients for Eq. (44), taken from [15].

The accuracy of this linear approximation was measured taking as the exact result the one
given by the long mathematical process explained in [37]. It has a mean error of 0.126% for the
critical temperature and 0.422% for the critical pressure.

Using the algorithm described in [37], it was possible to construct the vapor-liquid diagrams from
low pressure to critical point for mixtures composed of up to 20 compounds.
As for the critical properties, also the vapor-liquid diagram presents strong variations with re-
spect to the composition. The mixtures of hydrocarbons present the phenomenon of retrograde
condensation, which was previously explained. This phenomenon can be more or less pronounced,
depending on the components and their mole fraction.

Figure 22: Vapor-liquid equilibria for different mixture; a) methane 95% - propane 5% b) methane 95% -
ethane 5% and methane 95% - nitrogen 5%, taken from [15].

Some results are here reported, in Fig. 22. In the left part, it can be seen the vapor pressure curve
of pure methane, compared with the vapor liquid equilibria for the binary mixture with a 0.05
mole fraction of propane. Making a comparison with the right part, where the second element is
ethane or nitrogen, it is clear the presence of a much more pronounced region where retrograde
condensation can occur, highlighted with oblique grey lines.
The blend with propane is again the mixture whose properties are the most influenced, and for
this reason, it will be better treated in the following.
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5.2 Supercritical Region - The Equation of State

When moving to the supercritical domain, some problems with the validity of Redlich-Kwong
EoS and with the applied mixing rules may arise. For this reason, it has been chosen to use a
much more complex and recent model, the GERG-2008, proposed by Kunz and Wagner in [19]
and updated in [25], where all the problems are comprehensively solved.

GERG-2008 is a wide-range model mainly for mixtures of natural gases or similar gases but
that involves some other elements. It is based on pure components EoS of each element present
in the mixture (with 21 natural gases available) and correlations developed for binary blends of
these components, up to a total of 210 binary mixtures.

Thus, applying modern optimization methods and using experimental data covering the whole
fluid region, namely the homogeneous gas, liquid and supercritical region, the fitting parameters
were evaluated and an empirical equation of state was formulated. This model can predict the
properties of several natural gases and multicomponent mixtures in a prescribed range of validity
with the declared accuracy, [25]. The fitting of GERG-2008 parameters was based on a database
composed of more than 125 000 experimental data for many thermodynamic properties in differ-
ent fluid regions.
The normal range of validity of GERG-2008 includes temperatures from 90 to 450K and pressures
up to 35MPa where the most accurate experimental data are represented within their accuracy.
For this model, it has been also defined an extended validity range in which the accuracy is slightly
lower, but allows to make calculation up to temperatures of 700K and pressure of 70MPa.

GERG-2008 is explicit in the Helmholtz free energy which is treated as a function of density,
temperature and composition vector. Let a(ρ, T, x̄) be the Helmholtz free energy; it is split into
"ideal gas" contribution (indicated with superscript o) and "residual" contribution (superscript
r). It is then used in its dimensionless form, α = a/RT , obtaining Eq. (45).

α(δ, τ, x̄) = αo(ρ, T, x̄) + αr(δ, τ, x̄) (45)

where δ and τ are respectively the reduced mixture density and the inverse reduced mixture
temperature according to:

δ = ρ/ρr τ = Tr/T (46)

Here, ρr and Tr are composition-dependent parameters, and are defined as follows:

1

ρr(x̄)
=

N∑
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x2i
1
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+
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2xixjβT,ijγT,ij
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The binary parameters βv,ij ,γv,ij , βT,ij and γT,ij are given in [25]; ρc,i and Tc,i are the critical
density and temperature of the i-th component according to [25] and N is the number of compo-
nents.
Now, for what concerns the ideal-gas contribution it is expressed as:

αo(ρ, T, x̄) =

N∑
i=1

xi

[
αooi(ρ, T ) + lnxi

]
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where

αooi(ρ, T ) = ln

(
ρ

ρc,i

)
+
R∗

R

[
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Here, nooi,k and θooi,k depend on the i-th component and are tabulated in [25]. the ratio R∗/R is
necessary to correct some old data; R∗ = 8.314510, while R is the universally accepted value of
8.314472.
The residual part of the dimensionless Helmholtz free energy is instead developed in the following
way:

αr(δ, τ, x̄) =

N∑
i=1

xiα
r
oi(δ, τ) +

N−1∑
i=1

N∑
j=i+1

xixjFijα
r
ij(δ, τ) (47)

The first sum in this equation is the "linear contribution", instead the second term is the so-
called "Departure Function" and it is evaluated only for those couple of components for which a
departure function was available. For other couples, Fij is taken as zero (Fij values can be found
in [25]). The second term is evaluated as the sum of all binary specific departure functions of the
involved binary subsystems; these departure functions are based on quadratic mixing rules, which
are reasonably connected to physically well-founded mixing rules. To define the two terms of the
residual Helmholtz free energy, the following relations are necessary.

αroi(δ, τ) =

Kpol,i∑
k=1

noi,kδ
doi,kτ toi,k +

Kpol,i+Kexp,i∑
k=Kpol,i+1

noi,kδ
doi,kτ toi,ke−δ

coi,k

All the parameters noi,k,doi,k,toi,k,coi,k,Kpol,i and Kexp,i are given in [25] for each i-th component.
Moreover:

αrij(δ, τ) =

Kpol,ij∑
k=1

nij,kδ
dij,kτ tij,k +

Kpol,ij+Kexp,ij∑
k=Kpol,ij+1

nij,kδ
dij,kτ tij,k

· exp

[
− ηij,k(δ − εij,k)2 − βij,k(δ − γij,k)

]
Also in this case all the parameters noi,k,doi,k,toi,k,ηoi,k,εij,k,βij,k,γij,k, Kpol,ij and Kexp,ij are given
in [25] for each couple of components for which the departure function is known ( and so Fij is
different from zero, otherwise the term αrij is not even evaluated).

αrij was developed in [25] for either a specific binary mixture (specific departure function) or
a certain group of binary mixtures (generalized departure function).
Once all these relations are implemented, the dimensionless Helmholtz free energy is completely
defined by Eq. (45). In the homogeneous gas, liquid and supercritical region, a more common
pressure explicit equation of state can be retrieved from the Helmholtz free energy with a simple
relation.

P (δ, τ, x̄) = ρRTZ = ρRT (1 + δαrδ) (48)

Where a simplified notation, that will be used also in the next sections, is implemented:

αrδ =
∂αr

∂δ
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5.3 The code

The model is implemented in MATLAB, [35].
The code allows the evaluation of mixtures of eight components, even if in this work only 5 of
them are considered. The input is then an 8-numbers vector, containing the mole fraction of the
8 allowed components. It is important to give this vector respecting the order of the elements;
in particular, the positions are: 1-Methane, 2-Ethane, 3-Propane, 4-i-Butane, 5-n-Butane, 6-
Nitrogen, 7-Hydrogen and 8-Carbon Dioxide. So for example, if the mixture is a 95% Methane
and 5% Propane, the right input vector would be:

x = [0.95, 0, 0.05, 0, 0, 0, 0, 0]

As it was said, all the evaluations in this work are done considering only mixtures of methane,
ethane, propane, nitrogen and hydrogen, which are the most common components that would be
found in LNG for space applications. Butane and Carbon Dioxide were excluded from the work
after the implementation of the EoS.

The first step to build the code has been writing some functions in which all the data coming from
tables, [25] are stored. In this way, calling a function, giving the right indexes, all the parameters
are retrieved. This is the reason for which the mixture has to be given in a precise order, because
the position in the composition vector is used to identify which component is that and to pick
the right parameters from tables.
Having now all the parameters, the relations in the previous section can be used to define the
Helmholtz free energy. A very peculiar MATLAB feature is the symbolic toolbox that allows the
user to define some variables, use them to create functions and derive them with respect to those
variables.
At the beginning of the code, twelve variables are defined: T, ρ, τ , δ, x1, x2, x3, x4, x5, x6, x7 and
x8. Even if a mixture composition is defined as an input, all the calculations are done keeping
the composition as a variable and substituting the composition only at the end; this because
some thermodynamic properties require the derivation with respect to the mole number (ex. for
fugacity coefficient).
Once the Helmholtz free energy and pressure are retrieved by means of Eq. (45) and Eq. (48), all
the needed thermodynamic properties can be evaluated. The isobaric heat capacity is linked to
α through Eq. (49), which comes from [25].

cp(δ, τ, x̄) = R

[
− τ2(αoττ + αrττ ) +

(1 + δαrδ − δταrδτ )2

1 + 2δαrδ + δ2αrδδ

]
(49)

It can be noticed from Eq. (45), that αr is actually a function of δ and τ so all its derivatives are
easy to be developed in MATLAB thanks to the symbolic toolbox; instead, αo is a function of ρ and
T so it cannot be directly derivated with respect to τ . The right procedure to take this derivative
is reported in [25] and accounts for the following passages.
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]
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A similar formulation is given in [25] for the evaluation of the isochoric heat capacity, presented
in Eq. (50).

cv(δ, τ, x̄) = R

[
− τ2(αoττ + αrττ )

]
(50)

For what concerns the thermal expansion coefficient, αp, and the isothermal compressibility, kT ,
they can be expressed as a function of ρ and T through the following relations found on [9].

αp =
1

ρ

∂P/∂T

∂P/∂ρ
(51)

kT =
1

ρ

1

∂P/∂ρ
(52)

These derivatives of the pressure are evaluated after the evaluation of P through Eq. (48) and the
substitution of the reduced variables δ and τ with T and ρ according to the relation Eq. (46).
The last property that will be used in this work is the speed of sound, whose evaluation is
performed in Eq. (53), according to [25].

w2(δ, τ, x̄) =
RT

M

[
1 + 2δαrδ + δ2αrδδ −

(1 + δαrδ − δταrδτ )2

τ2(αrττ + αoττ )

]
(53)

Other thermodynamic properties like Joule-Thomson coefficient or isentropic exponent could be
easily evaluated just by implementing the relations explained in [25]; here only the process required
to evaluate the fugacity coefficient ϕi of the i-th component is reported since it explains the choice
of leaving the composition as a variable of the process.

lnϕi =

(
∂nαr

∂ni

)
− ln(1 + δαrδ) (54)

The process to evaluate the derivative with respect to the mole number ni of the i-th component
is explained in [25] and it is the following:(
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The derivatives αrτ ,αrδ and αrxi are of easy evaluation in MATLAB if the composition is kept as
variable, since αr is actually a function of δ, τ and x̄. Instead, to get the derivatives with respect
to the mole number the following relations are needed.
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5.4 Validation of Pure Components

In this paragraph, not all the details of the computations will be given, but the logic of the process
and the method are explained. More details will be given later on, during the presentation of the
final results.
After the implementation of all the component specific parameters and all the relations explained
in the previous paragraph, the thermodynamic quantities result to be expressed in the code as
a function of δ,τ , ρ, T and the vector x̄ of the composition. At this point, δ and τ can be sub-
stituted, following Eq. (46), and also the vector x̄ is replaced by the actual mixture. The result
gives all the thermodynamic properties as a function of ρ and T only.

The final goal of this analysis is to evaluate the behaviour of the selected response functions at
given reduced pressure values, in order to identify the coordinates of the extrema, and then fitting
these points to get Widom Lines.
In order to compare the results with the already existent literature regarding the Widom Line, our
results should be expressed in Pressure-Temperature diagrams and, as anticipated, the evaluation
of the thermodynamic properties should be performed at fixed pressure values. Since all the
thermodynamic properties implemented up to now are functions of ρ and T only, in order to fix
the pressure, the corresponding density has to be found.
For each reduced pressure, a temperature vector is created started from the critical point of the
mixture and a loop is implemented: at each value of the temperature vector, the equation of state
shown in Eq. (48) is solved to find the density at that temperature and that fixed pressure. To
solve the equation of state, given the pressure and the temperature, the implicit equation solver
"fsolve" is used, which is a built-in function of MATLAB, [35].
so to sum up: for a given pressure value, at each step of the loop, the temperature is taken from
the vector, the density is retrieved, and the value of the thermodynamic property is evaluated at
those T and ρ.

NOTE: Solving the implicit equation in the

Figure 23: Pressure - Density behavior near critical
point. The image is taken from [34].

density is possible for reduced pressure starting
from approximately 1.1; this happens because
if the same procedure was applied too near the
critical point, the result would be unreliable,
because of the extremely high density fluctua-
tion occurring at the critical point. To better
understand this, Fig. 23 is used; as it can be
seen there, even a small error in the evaluation
of critical pressure and/or temperature would
lead to a big error in the calculation of the
critical density because of the meniscus shown
near the critical point. Starting with reduced
pressure of 1.1 allows to avoid the region where
the results could be extremely altered by small
errors in the evaluation of the critical point.

The procedure of evaluating thermodynamic quantities at constant pressure, is implemented
in a double-loop (on pressure and temperature), and a draft of it is here reported:

for each Pr (1.1, 1.2, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5)
for each T (from T_crit to T_crit+150)
% given the temperature and the pressure at each step, find rho
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rho = fsolve ( EoS )
% evaluate TD properties @(T,rho)
cp(T,rho) =
cv(T,rho) = ...
then store the values of TD properties in a vector, at fixed P and varying T
end

end

As it has already been shown, the implementation of the GERG-2008 EoS is not trivial and
involves hundreds of parameters for each component of the mixture. Moreover, starting from a
dimensionless Helmholtz free energy, several mathematical rearrangements are needed to get the
results in pressure-temperature diagrams. In order to verify that the implementation of the EoS
and the evaluation of the properties has been successful, the results for pure components coming
from the code are compared with the most important database for thermo-physical properties, the
NIST database, [45]. In particular, the NIST-Webbook, [10], allows downloading many data for
pure components, selecting the range of temperature and pressure of interest. In this validation
process, data for methane and propane have been used to verify the correctness of the code.

Figure 24: Comparison of isobaric heat capacity, cp and speed of sound w in supercritical methane between
this work (coloured lines) and NIST database (black dashed lines).

Figure 25: Comparison of isobaric heat capacity, cp and speed of sound w in supercritical propane between
this work (coloured lines) and NIST database (black dashed lines).

Here the comparison is reported only for pure methane and pure propane; this is because
methane is the basic constituent of the analysed mixtures, and propane is the only element that
shows a slight deviation from NIST data. Fig. 24 and Fig. 25 show the comparison for two differ-

A.Y. 2020-21 – Tiziano Santese 48



ent properties; on the left the isobaric heat capacity and on the right the speed of sound.

The results are outstanding. The data from NIST are taken with a temperature step of 0.2 K,
which means with very high accuracy; nevertheless, the results of this work follow them perfectly
at every pressure value, especially for methane. As anticipated, only a slight deviation for propane
occurs, in the case of the peak for reduced pressure equal to 1.1. However, the temperature at
which the peak occurs is well predicted, and it will be used later in our calculations. For all
the other elements, the thermodynamic properties are predicted extremely good, when compared
with NIST data.

5.5 Results for Pure Components

All the results presented from this section, will be submitted for publication; hence, a different
software for plotting has been used, which is ORIGIN, [38].

Once the thermodynamic functions are evaluated, the vector containing all the values will be
manipulated to obtain the position of the extrema that will be used to draw the Widom Line.
As it has been shown in Section 4, the isobaric heat capacity is the most used quantity to indi-
viduate the first Widom Line, in order to find the region in which the phenomenon presented as
"pseudo-boiling" occurs, that separates a liquid-like from a gas-like region.
In literature, different results can be found for pure component Widom Line; for this reason, it has
been chosen to compare our results with previously presented Widom Lines for pure components.
One of the most relevant studies about these lines has been carried out by D.Banuti; starting
from the Clayperon equation, he found that the Widom Line can be drawn for pure components
using a simple exponential relation, here presented in Eq. (55), [7].

Pr = exp[As(Tr − 1)] (55)

where As is defined as Tc
Pc

(
dP
dT

)
c

, and it has been tabulated for pure components, as it can be

seen in Fig. 26.

Figure 26: Tabulated coefficients for Banuti equation in Eq. (55), taken from [7].

Again, the validation has been conducted for methane and propane, using the peak of the cp;
the resulting Widom Lines are shown in Fig. 27.

A.Y. 2020-21 – Tiziano Santese 49



Figure 27: Widom Line comparison between this work and analytical extrapolation from Banuti equation
Eq. (55), for methane on the left and propane on the right.

It is evident the extremely good agreement also in this case; for a more complex molecule
like the propane there is a slight deviation between the two results for higher reduced pressure,
but since the isobaric heat capacity has been computed correctly, obtaining the same values of
the NIST database, this result may reveal a more accurate prediction than the mathematical
extrapolation of D.Banuti, which can suffer the complexity of heavier molecules.

It is still missing how those Widom Lines, presented in Fig. 27, are evaluated.
It has been said that they come from the extrema of the corresponding response functions, the
cp in that case. But it is needed to be more precise on the method of evaluation of the extrema’s
coordinates.
Everything starts with the evaluation of the critical point of the mixture, which is done with
the linear approximation described earlier in Eq. (44), taken from Shvab’s work. Once critical
temperature and pressure have been determined, all the thermodynamic properties can be eval-
uated for several reduced pressure values, over a prescribed temperature range. The considered
pressures are, as already stated: Pr = 1.1, 1.2, 1.5, 1.75, 2, 2.25, 2.5, 3 and 3.5. These values have
been chosen properly to satisfy some conditions: firstly, the highest reduced pressure is chosen
to be 3.5 since at that value, the properties of methane, which is the main constituent, do not
show anymore any relevant extremum. This is also in good agreement with previous works, [8],
[29], where it is shown that peaks in thermodynamic properties exist up to reduced pressure of
3. Secondly, great attention is given to low reduced pressures values (1.1, 1.2 and 1.5) because
in that region retrograde condensation could occur, and more detailed monitoring of properties is
desirable.
For what concerns the temperature range it starts from the critical temperature and extends for
150 degrees, with a step of 0.001Tc; it will be clear shortly why such a small step is needed.
All the thermo-physical properties of pure methane are here presented in Fig. 28; these properties
are used to track the Widom Line corresponding to each property, as it has been done for the cp
in Fig. 27. Note that the properties are not plotted at every reduced pressure considered in the
code just to have clearer images. Later on, a comparison with the same properties for a mixture
will be done.
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(a) Helmholtz free energy. (b) Thermal expansion coefficient.

(c) Isobaric heat capacity. (d) Isochoric heat capacity. (e) Speed of sound.

(f) Isothermal compressibility. (g) Speed of sound.

Figure 28: Thermo-physical properties for pure methane.
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5.6 Results for Mixtures

Since pure methane would be extremely expensive for space applications, the evaluation of thermo-
physical properties for pure components is not of great interest in this work. It is essential
to understand how the properties of methane are changed when little portions of other light
hydrocarbons, nitrogen or hydrogen are present in the mixture.

The great advantage of the developed code is that all the process shown in the previous section,
validated for pure substances, is implemented to be repeated for any methane-based mixture, and
not only for the Widom Line coming from the isobaric heat capacity, but for 5 Widom Lines com-
ing from different response functions. As anticipated during the explanation of the GERG-2008
EoS, the chosen response functions for this work are: isobaric heat capacity cp, isochoric heat
capacity cv, thermal expansion coefficient αp, isothermal compressibility kt, and speed of sound
w, respectively evaluated with Eq. (49), Eq. (50), Eq. (51), Eq. (52), and Eq. (53).

Of course, not all the results coming from any of the combinations of the interesting elements
will be shown, but the attention is given to those blends that can result as the most dangerous
for practical applications. Indeed, from Fig. 22 it has been noticed that a 5% mole fraction of
propane will cause a significant area of retrograde condensation, that lies at temperature and
pressure slightly higher than the critical point of the mixture.
Hence, the 95% methane - 5% propane mixture is taken as a case-study.

After the evaluation of the critical point for the given mixture with the linear approximation
expressed in Eq. (44), from [15], the only missing detail in the algorithm that has been implied in
this work is how the coordinates of the extrema are found. This can be explained by looking at
Fig. 29, where all the response functions, plus the Helmholtz free energy, are plotted at different
reduced pressure values for the mixture under investigation.
As in Fig. 28, where the same properties for pure methane were plotted, all the response functions
in Fig. 29 show, as expected, pronounced maxima, or minima, right after the critical point, that
move at a higher temperature when the pressure is increased.

The coordinates of the extremum point, for each reduced pressure value, are found by taking
the derivative of the property and looking at the temperature at which it changes sign. For
example, when a maximum is present, the derivative of the considered property will be initially
positive and then it will become negative right after the maximum.
The opposite will happen for a minimum.

This is done because solving the derivative to find the point in which it is zero would be much
more time consuming from a computational point of view; moreover, a very good accuracy in the
location of the maxima is obtained by taking the temperature step very small. This is the reason
for which the temperature range is divided into steps of 0.001Tc, which is approximately equal to
steps of 0.2 degrees for the considered mixtures.
Once that all the coordinates of the extrema are found and saved, those points are fitted with a
third-order polynomial to sketch the line.
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(a) Helmholtz free energy. (b) Thermal expansion coefficient.

(c) Isobaric heat capacity. (d) Isochoric heat capacity.

(e) Isothermal compressibility. (f) Speed of sound.

Figure 29: Thermo-physical properties for the 95% methane - 5% propane mixture.
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Now that both the evaluation of the thermo-physical properties and the definition of the
coordinates of the extrema are explained, all these data can be used to draw the Widom Lines
corresponding to those response functions. The cp Widom Line was already presented in Fig. 27
for pure components; now in Fig. 30 the picture is completed with Widom Lines coming from the
other response functions.

(a) Widom Lines for pure methane. (b) Widom Lines for a mixture of 95% methane and 5%
propane.

Figure 30: Widom Lines coming from the five selected response functions plus saturation curves of pure
components [45], and Banuti et al. cp Widom Line, [7]. The coordinates of the extrema of
each function are evaluated and fitted with a third-order polynomial.

In Fig. 30a all the five Widom Lines for pure methane can be appreciated. It will be a common
pattern that: the Widom lines coming from the isobaric heat capacity, isochoric heat capacity
and thermal expansion coefficient will be very similar with each other. A different path is taken
from the other two lines, for the isothermal compressibility and the speed of sound. As already
stated when presenting the Widom Line, there is no precise reason to chose one line over the other
as the boundary between liquid-like and gas-like; hence, all the five lines are always evaluated in
this work, and the distinction between these two paths is always confirmed. The same happens in
Fig. 30b, where a 5% mole fraction of propane is mixed with 95% of methane. Here, the critical
point of the mixture is characterized by much higher pressure and slightly higher temperature.
This causes that a reduced pressure of 3.5 is equal to a much higher absolute pressure, and
then longer Widom Lines are present because the extrema are still detectable above 20MPa. In
Fig. 30, and more generally in all the following figures presenting mixtures, also the saturation
curve of the pure components is presented; its values are taken directly from NIST database, [45].
Lastly, the saturation of curve each pure component is continued with a dashed blue line that
represents the cp Widom Line taken from the work of Banuti et al., [7]. This will be done for
every representation of Widom Lines for mixtures. Following the same procedure, just changing
the initial composition, the Widom Lines for other mixtures can be found; in Fig. 31 a couple of
binary mixtures, a three-components mixture and a four-components mixture are shown, to give
some examples of results that can be obtained with the developed algorithm.
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(a) Widom Lines for a mixture of 95% methane and 5%
hydrogen.

(b) Widom Lines for a mixture of 95% methane and 5%
nitrogen.

(c) Widom Lines for a mixture of 95% methane, 3%
ethane and 2% propane.

(d) Widom Lines for a mixture of 95% methane, 2%
ethane, 2% propane and 1% nitrogen.

Figure 31: Widom Lines for other mixtures coming from the five selected response functions plus satura-
tion curves of pure components [45], and Banuti et al. cp Widom Line, [7]. The coordinates
of the extrema of each function are evaluated and fitted with a third-order polynomial.

5.7 Widom Area

As it was stated at the beginning, the goal of this work is to evaluate the thermo-physical proper-
ties of methane mixtures in order to understand where strong gradients can occur; this goal aims
at describing the dangerous region, that can be crossed during the operative conditions of space
applications. For example, when the fuel, namely the methane mixture itself, is used to cool down
the nozzle, its temperature and pressure decrease, moving its status from an initial condition to
a different final state on a Temperature-Pressure diagram.
It is clear now that crossing a Widom Line means crossing this potentially dangerous area. How-
ever, this description is not accurate, since it has been demonstrated that the extrema of each
thermodynamic response function flatten with increasing reduced pressure; this decrease in the
extrema causes then a lower gradient in the properties.
To make it clear, crossing the Widom Lines at a reduced pressure of 1.1 involves a much stronger
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gradient than crossing the same Widom Line at a reduced pressure of 3.
To determine the region in which strong gradients in properties should be expected, the rate of
change ε, for the response functions was calculated. The threshold for this rate, εf , was assumed
equal to 0.05 times the average value of the property f , along with the studied temperature
interval.

εf = 0.05f where f = average value of cp, cv, αp, kT , or w. (56)

In this contest, the "Widom Area" is defined as a surface, of parameters p and T , in which
the threshold defined in Eq. (56) is exceeded.

ε > εf (57)

The rate of change of the property f is evaluated across a temperature interval of 5K, for
all the evaluated temperatures, given by the step of 0.001Tc previously described. All the tem-
peratures at which the threshold rate of change is exceeded are saved in a vector until the next
point in which the gradient is lower than εf is found. Doing so, a map of the region in which the
gradient ε of each property f is higher than the threshold rate of change εf was obtained. The
Widom Area defines the temperature and pressure range in which a strong gradient for thermo-
dynamic properties should be accounted during applications. As expected, the region nearer to
the critical point shows changes in properties very high, with respect to the changes that occur
at higher pressure, even if peaks are still detectable. The process is repeated for each Widom Line.

(a) Widom Area for pure methane. (b) Widom Area for a mixture of 95% methane and 5%
propane.

Figure 32: Widom Area for the mixtures in Fig. 30. Also, saturation curves [45], and Banuti et al. cp
Widom Line, [7], are shown. The surface is composed of those points characterized by a rate
of change that exceeds the threshold defined in Eq. (56).

As in Fig. 30, the first results presented in Fig. 32 are those for pure methane and a mixture
of 95% methane and 5% propane. In Fig. 32a, it can be seen that the Widom Area is found as the
superposition of the dangerous surfaces coming from each Widom Line. Almost every property
shows a region near the critical point in which the threshold rate of change is exceeded. The
Widom Area stops at reduced pressure well below the 3.5; this confirms that even if peaks are
still detectable, the actual change in properties is limited, as it could be appreciated in Fig. 29.
Again, the same procedure is applied to other compositions, which are shown in Fig. 33.
Now that both the Widom Lines and the Widom Area are obtained, an interesting comparison
can be made. In Fig. 32b, the Widom Area seems to be bigger.
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(a) Widom Area for a mixture of 95% methane and 5%
hydrogen.

(b) Widom Area for a mixture of 95% methane and 5%
nitrogen.

(c) Widom Area for a mixture of 95% methane, 3%
ethane and 2% propane.

(d) Widom Area for a mixture of 95% methane, 2%
ethane, 2% propane and 1% nitrogen.

Figure 33: Widom Area for the mixtures shown in Fig. 31, coming from the five selected response func-
tions. Also, saturation curves of pure components [45], and Banuti et al. cp Widom Line, [7],
are shown. The surface is composed of those points characterized by a rate of change that
exceeds the threshold defined in Eq. (56).

This happens for two reasons: firstly the mixture has higher critical properties, but, it has also
to be considered that pure methane has more pronounced peaks that are felt in a narrower range
of temperatures; in mixtures instead, the extrema are usually lower and the variations occur in a
wider temperature range. This can be appreciated in Fig. 34, where the isobaric heat capacity is
reported at different reduced pressure for pure methane and the usual mixture of 95% methane
and 5% propane. These two images were already presented previously, but putting them next to
the other, the difference is obvious.

For pure methane an incredibly pronounced maximum is present for a reduced pressure of 1.1;
at the same pressure, the mixture with propane shows a maximum but with an absolute value
which is much lower and with the whole variation occurring in a wider temperature range. The
steady-state value, at higher temperatures is instead almost the same.
Due to this difference, if the threshold had been chosen much higher, the Widom Area of pure
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Figure 34: Comparison of the isobaric heat capacity between pure methane (on the left) and 95% methane
- 5% propane (on the right).

methane would have been still visible, due to the extremely high gradient, while probably the
Widom Area of the mixture would have resulted smaller or not appearing at all, since the average
gradient is lower.
These variations in thermo-physical properties when going from pure components to mixture
occur even for a very small mole fraction of impurities and are different for every compound that
is added. The effect of 5% of propane can be seen comparing Fig. 28 with Fig. 29.
Besides, also the representation given in this work called "Widom Area" cannot present all the
changes that occur when dealing with mixtures instead of pure components, because if a different
threshold rate of change had been chosen, a different Widom Area would have been obtained.
However a preliminary idea of the location where to expect stronger gradients is given in these
figures and furthermore, the threshold can be changed in the code in order to show the dangerous
area for a certain application.
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6 The Frenkel Line

The chemical interpretation of the extrema of thermodynamic properties that has been shown
and their localization did not have any relevant theoretical explanation and nowadays are the
subject of many investigations due to their large impact on engineering process, especially for the
large heat transfer that is caused.
The phenomenological explanation for this strange behaviour of properties near the critical point
starts from the analogy with the local structure transformation that occurs across the vapor-liquid
coexistence line in the subcritical region: in the liquid phase, the reason is the destruction of fluid
structure as the temperature is increased or as pressure is decreased; in the gas phase, molecule
clusters are built, leading to density change. Following this description, in the vicinity of the
critical point, peaks in the thermodynamic functions may be explained with this structure trans-
formation, which disappears far from the critical point. The lines of the set of extrema (“ridges”)
of properties were referred to as extensions of the vapor-liquid coexistence line, called pseudo-
boiling line and, as it has already been presented, divided two states of the fluid, a liquid-like and
a gas-like. Later the definition of Widom Line was introduced.

Two main roads are now under investigation regarding the demarcation line between liquid-like
and gas-like supercritical states. The first has already been described in Section 5 and assumes
the Widom Line as the locus of ridges, evaluated from thermodynamic quantities.
The question here to be answered is, where is the end-point of this WL?
Many authors agree with the assumption that the Widom line exists up to the point where the
locations of all extrema coincide. Depending on the EoS and calculated properties this point can
be between 1.05Tr and 2Tr, and 1.2pr and 3pr.
The other approach, suggested by Brazhkin et al. [42], is based on the microscopic description of
the viscoelastic theory provided by Frenkel [14].
In this new section, the second road is shortly presented.

6.1 Frenkel’s theory

This description is carried out by introduc-

Figure 35: New proposed state diagram.

ing the liquid relaxation time, τrt, a fundamen-
tal flow property of a liquid that Brazhkin et al.
define as "the average time between two consec-
utive atomic jumps in a liquid at one point in
space; each jump can approximately be viewed
as a jump of an atom from its neighbouring
cage into a new equilibrium position with sub-
sequent cage relaxation", [42]. Moreover, it de-
fines liquid viscosity η and diffusion coefficient
D.
Brazhkin et al. in [42] proposed that, for the
liquid phase, an equally important change in
the system behaviour exists, and that it is re-
lated to the change in its dynamics rather than
thermodynamics, as it is described for WL.
In this frame, all liquids have two qualitatively
different states and a new additional crossover
line (or narrow zone) should be added to the phase diagram which separates the two liquid states,
as shown in Fig. 35.
This line does not correspond to any thermodynamic phase transition, namely it is a crossover
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and not a discontinuity of any physical properties. Brazhkin et al. [42] called it the “Frenkel line”.
Fig. 35 presents the actual state of the art in the fundamental thermodynamic phase structure

diagram. The fundamental difference between the Widom and the Frenkel line is that while the
Widom line in the phase diagram is defined by the locus of the extrema of the thermodynamic
functions, the Frenkel line is associated with a transition of microscopic structural and dynamical
features in supercritical fluids.
The above description of dynamical/structural crossover is seen by Brazhkin et al. [42] in terms of
the motion of an atom: they distinguished between a quasiharmonic vibrational motion around an
equilibrium position for a rigid-liquid and a diffusive motion between two neighbouring positions
for non-rigid liquids and searched for the point in which the oscillatory motion ceases, leaving
only non-rigid liquid motion.

Lastly, Brazhkin et al. were able to understand the link between the dynamic transition and the
transport properties of the fluid: diffusion coefficient D, viscosity η and thermal conductivity λ.
They noticed that the transition occurs when the relaxation time τrt is comparable to the minimal
(Debye) vibrational period τ0 (τ0 ≈ 0.1− 1ps).

τrt ≈ τ0 (58)

In [42] it is shown that the condition in Eq. (58) gives the transition of D from exponential to
power-law temperature dependence. Looking at the viscosity instead, the crossover is even easier
to recognize because the condition in Eq. (58) brings to an evident change in the temperature
behaviour of viscosity since it goes from the exponential decrease, when τrt > τ0 (solid-like
vibration character), to the power-law increase when τrt < τ0 (non-rigid diffusive character).
It has been shown previously, in the Chapman-Enskog theory that the thermal conductivity
behaves very similar to the viscosity coefficient.
Lastly, in [42], it is shown that also the speed of sound decreases before the Frenkel line, and starts
increasing right after. Then, three important properties have been shown to have their minima
on the Frenkel crossover line: viscosity coefficient, thermal conductivity and speed of sound.
From here, the importance of an accurate evaluation of these properties comes.

6.2 Evaluation of viscosity

The evaluation of transport properties is of paramount importance for any engineering application,
in order to model and measure the exchange of mass, momentum, and heat in the system due to
gradients in concentration, velocity and temperature, respectively.
In Sec.1.2, the evaluation of these three transport properties is presented, using an ultra simplified
theory, with rigid non-attracting spherical molecules that travel all with the same speed in few
directions. In Sec. 1.7 the results from a more accurate theory are presented in the Chapman-
Enskog theory.

However, for real components and mixtures, these quantities are extremely difficult to evaluate
theoretically and several ways have been proposed, [9]. It would be also extremely expensive to
evaluate the transport properties experimentally.
Here a simple model for the evaluation of the viscosity of mixtures is presented; the model is
based on the work of Lötgering-Lin, [17], [27] in which a third-order polynomial function of the
residual entropy was used to predict a dimensionless viscosity. This work was performed using a
PCP-SAFT equation of state, using then characteristic parameters of that model; however, this
model has been very recently adapted to the EoS that has been used in this work, namely the
GERG-2008. In [33], Jonas Mairhofer uses the same approach but with adjusted coefficients in
order to fit the method to the new EoS.
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Adapting this prediction method to GERG-2008, excellent results are achieved for natural gas
mixtures. The averaged deviation is evaluated in [33] to be as low as 3.09%. For its simplicity and
good results, this merely predictive approach is one of the best models for natural gas mixtures.
The proposed approach is not limited to natural gas viscosity, but accurate predictions are also
obtained for multicomponent mixtures over a wide temperature and pressure intervals.

The following explanation of the prediction method makes reference to [33], so it can be con-
sulted for further information.
The entropy scaling approach that will be used here, goes back to Rosenfield, [47], who demon-
strated that for simple monoatomic molecules, dimensionless transport properties can be expressed
as a function of the residual entropy alone. In their work, Lötgering-Lin et al. [17][27] used this
methodology, compared their results for pure components with experimental values and proposed
a predictive model for mixtures, using PCP-SAFT EoS. Lastly, Jonas Mairhofer fitted the method
for a different EoS, the GERG-2008.

Within this method, a dimensionless viscosity is defined in Eq. (59), and to do so, the
Chapman-Enskog viscosity of the pure component is used, from Eq. (22).

η∗i =
ηi

ηCE,i
where ηCE,i =

5

16

√
MikT/(Naπ)

σ2Ω(2,2)∗ (59)

where to evaluate Ω(2,2) the Neufeld correlation has been used, Eq. (24), while to evaluate the
Lennard-Jones parameters the correlations from Chung et al. [43] is adopted, where critical
constants are employed to evaluate the coefficients:

σ = 0.809V 1/3
c

ε/k = Tc/1.2593

Then, in Eq. (60), the residual entropy is defined. It is particularly easy to retrieve this
quantity due to the nature of GERG-2008 that is built on the ideal and residual part of the
Helmholtz free energy, as it can be recalled in Eq. (45).

sri (ρ, T, x̄) = −∂a
r

∂T
(60)

In Eq. (60), ar is the residual Helmholtz free energy, that can be recovered from the dimen-
sionless residual Helmholtz free energy in Eq. (47). Lastly, the dimensionless viscosity can be
evaluated with a third-order polynomial, like in Eq. (61).

ln η∗i = Ai +Bis
r
i /R+ Ci(s

r
i /R)2 +Di(s

r
i /R)3 (61)

where Ai to Di are pure substance viscosity parameters.
In our work, each component parameter has been taken from the ’Supporting Information’ doc-
ument, attached to [33].

Furthermore, this prediction model is expanded for mixtures, [33]. Based on the work of
Lötgering-Lin et al., the coefficient A to D are evaluated by making a simply mole fraction
average of the pure component specific parameters, like in the following:

ψmix =
N∑
i=1

xiψi

where N is the number of components of the mixture, xi the i-th mole fraction and psii is any
parameter from A to D of the i-th component.
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For a mixture of N components, it yields Eq. (62).

ln η∗i =

N∑
i=1

xiAi +

N∑
i=1

xiBi(s
r/R) +

N∑
i=1

xiCi(s
r/R)2 +

N∑
i=1

xiDi(s
r/R)3 (62)

Therefore, no adjustable interaction parameter is introduced, since the objective is purely predic-
tive.

Moreover, J. Mairhofer does not adimensionalize the residual entropy sr,[33] , as it has been
done in the work of Lötgering-Lin et al. [17], where the sr is divided by the segment number (a
PCP-SAFT parameter); but Mairhofer did not apply this technique because no improvements are
found with it.

Lastly, when dealing with mixtures, the viscosity has to be adimensionalized with respect to
a Chapman Enskog viscosity for mixtures, for which the approximation of Wilke is used, [46].

ηCE,mix =
N∑
i=1

xiηCE,i∑N
j=1 xjφij

where φij =

(
1 + (ηCE,i/ηCE,j)

1/2(Mj/Mi)
1/4

)2

(8(1 +Mi/Mj))1/2

For what concerns the validity of the process, it has been taken into account the fact that the
GERG-2008 EoS has two different validity ranges, normal and extended; then results will be less
accurate when pressures of 35MPa or temperatures of 450K are overcome; as it will be shown
later on.

6.3 Pure Components Results and Validation

As it was already done previously to validate the correct implementation of the EoS, here, the
prediction method for viscosity is validated for pure methane, taking as reference the viscosity
data coming from the NIST database, [10].
The algorithm just presented has been used for pure methane on a temperature interval that
spans from the critical temperature to 625K, which is the maximum temperature available on the
NIST database. The pressure is varied starting from a value of 1.2pr up to 15pr. The results are
presented in Fig. 36.

The prediction of the viscosity for pure methane shown in Fig. 36 is outstanding. Up to a
reduced pressure of 8, results follow almost exactly the NIST data. A little deviation from the
reference curve is present for a reduced pressure of 10, and only for a reduced pressure of 15, the
method starts failing.
Moreover, along a single curve, it can be noticed that for temperatures higher than 450K, the
curve starts deviating from the reference but still keeping a very good accuracy.
These two kinds of deviations are due to the validity range of the EoS itself. The GERG-2008 has
indeed two different validity ranges, how it was stated when the model has been presented. For
temperatures higher than 450K and/or pressures higher than 35MPa (in this case approximately
pr = 8) the normal validity range is overcome, entering the extended validity range, characterized
by slightly lower accuracy.

Since the aim of this work is only a prediction of where to expect a structural/dynamical change,
the accuracy obtained with the simple method explained above is more than enough to start
searching for the Frenkel Line. As explained in [42], the coordinates of the minima of the viscosity
can be used to identify the line where this crossover is likely to happen.
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Figure 36: Comparison between the viscosity values of this work and the NIST database, [10], for pure
methane.

6.4 Evaluation of Frenkel Line

As it has been explained previously, the structural change in the fluid that occurs across the
Frenkel Line can be identified by looking at the behaviour of transport properties and speed of
sound. In particular, the viscosity coefficient, the thermal conductivity and the speed of sound
present a minimum along with their temperature variation. In this work, only two of these
properties have been used: the speed of sound because of its simple evaluation, with Eq. (53);
and the viscosity coefficient that can be evaluated with the predictive method explained in Sec.6.2,
[33]. Thermal conductivity has not been evaluated due to its complex evaluation, but also because
it was proposed by Chapman-Enskog theory that the thermal conductivity can approximately be
linked to the viscosity through the isochoric heat capacity, having then a similar behaviour (refer
to Eq. (22) and Eq. (23)).
Viscosity and speed of sound are evaluated at the same reduced pressure shown in Fig. 36, namely:
pr = 1.2, 2.5, 4, 6, 8, 10, 15.

Figure 37: The Frenkel Lines coming from speed of sound and viscosity coefficient for pure methane, on
the left, and a mixture of 95% methane and 5% propane, on the right.
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Their minima are found with the same code that is used to find extrema for Widom Lines; this
means that the derivative of the function is taken, and the point in which the derivative changes
its sign is saved as the position of the extremum; since it is looked for a minimum, the derivative
has to change its sign from negative to positive.
Again a good accuracy is achieved in the individuation of the coordinates of the extrema thanks
to a small temperature step, 0.001Tc. Following the same procedure used for Widom Lines, the
point of extrema are fitted using a third-order polynomial to obtain the Frenkel Line. Results for
pure methane and the usual mixture of methane and propane are shown in Fig. 37. Also in this
case, different demarcation lines are obtained for different properties. In Fig. 37 the two obtained
Frenekel Line are plotted together with Widom Lines and Widom Area of the corresponding
mixture to give a better understanding of the magnitude of these transitions.
However, if in the case of Widom Lines the calculations were performed in the best validity range of
the implemented EoS, now the accuracy could be lower, especially at very high pressures. Then the
evaluation of the Frenkel Line coming from the diffusion coefficient and the thermal conductivity
would be of great help in identifying the transition region, and simulation of molecular dynamics
could be used to confirm the results.
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7 Further Improvement and Conclusion

The goal of this work was to provide a complete view of the behaviour of commercially available
methane mixtures, that includes several impurities, like light hydrocarbons, nitrogen or hydrogen.
The supercritical state of fluids is nowadays a hot topic of research, even more for hydrocarbons,
due to their huge commercial impact and use in several fields.
The GERG-2008 EoS is the most recent and updated equation of state for hydrocarbons and was
developed with the same aim, namely to provide a unified model to describe their behaviour during
engineering technical applications. In space application the supercritical part of the state diagram
has paramount importance, and the localization of strong gradients in properties is fundamental
for the safe and correct use of fuels. For this reason, drawing the Widom Lines and highlighting
the Widom Area, which is identified as a dangerous area, has been the greatest achievement of
the present work, and it was also its primary goal.

However, the picture is not complete, and for an accurate description of the supercritical transi-
tions that occur in a fluid, a more accurate description of the Frenkel Line will be needed. This
is required for some applications that work at very high pressure, like the Raptor engine from
SpaceX, whose combustion chamber works at almost 30MPa, a value well beyond the extension
of Widom Lines.
To do so, the last essential tile is the knowledge of transport properties.
Those properties are extremely difficult to be evaluated experimentally and the theoretical ap-
proach is equally hard. Some simpler prediction methods exist and one of them has been used
in the present work. However, the lower accuracy of the extended validity range of GERG-2008
plus the approximations made with a simple prediction method, make our calculations unreliable
above a reduced pressure of 10.

A good way to overcome these problems would be running molecular dynamics simulations.
MD simulations have been widely employed in the last decades, thanks to the increase of the
available power of computers and software developed with the aim of simulating chemical reac-
tions and thermodynamic properties. In MD simulations, a box containing N molecules of the
prescribed fluid can be simulated under whatever thermodynamic condition, in a costless and
quick way.
The drawback of this road is that to simulate such a box of molecules, clear instruction on the
shape, bonds, angles and interatomic forces has to be given. Of course, there is plenty of libraries
with models that can be used, but the setting of the different coefficients needed by each model
has to be performed based on literature, and experience.
Of course, even if it is hard and expensive, but the other way to get more information is running
experimental tests; this would give this project some values to compare, in order to have an idea
of the mean deviation of the obtained results.

All that has been said up to now would be useful to reach a much better understanding of the
thermodynamic and transport properties of the methane mixtures. Even once this point will be
reached, other work will be requested before a complete knowledge of these mixtures could be
reached. In fact, for each application that aims at using liquid methane mixtures, specific tests
or simulations will be required. For example, for space applications, methane mixtures present
problems during the cooling and injection phases.
Due to the huge amounts of heat transferred, steep temperature and speed gradients occur in the
cooling channels of rocket engines. The result is that all thermo-physical material properties are
subject to changes. If the fluid is characterized by both near-critical temperature and pressure,
the so-called "Heat Deterioration" could occur, that is a phenomenon capable of endangering the
integrity of the whole structure, [28].
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In a case like this one, further analysis is needed and can be carried on with CFD analysis, ac-
counting for all the characteristic dimensions, materials and conditions of the specific application.

Methane is a valuable and green resource, that still presents some unknowns that have to be
solved. Nowadays, many technology fields aim at using new green sources of power to pursue the
worldwide challenge of a cleaner ecosystem, and methane could be the answer for future space
propellants. An engine working with LOx and CH4 is totally green, and this feature would also
be joined to the extremely good technical properties, as storability and good performance. In
these years the space market is continuously growing, and the number of missions will increase
exponentially in the following decades. In 2021 the first touristic-space flight has been launched,
and if the will of having up to 3 touristic-space flights per day will become true, environmental
issues could emerge, forcing the industries to go for green and safe propellants, where this has to
be intended not only for the launch phase, but also for the production and transport processes.
To conclude, the study of supercritical methane mixtures does not provide only an environmental
challenge, but a real technological inquiry that pushes further the limits of engineering. It is
a question that can be answered with cooperative work between companies and universities, in
order to provide new solutions and new technologies for future space missions, but also to leave
our planet a better place than we found it.
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