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Abstract

In recent years, techniques for synthetic media generation have seen huge
advancements. With the powerful tools provided by state-of-the-art ar-
tificial intelligence approaches, it is now possible to generate audio and
visual content so accurately as to be able to deceive human sight and
hearing.

These new machine-generated media are known as deepfakes. Al-
though benign and harmless applications can not be overlooked, they
immediately raised ethical and legal concerns. As they allow to alter both
voice and visual identities of portrayed subjects, some of their malevo-
lent uses may lead to severe consequences such as fake news spreading,
falsifying legal proofs, or new forms of blackmail and fraud. Therefore,
developing robust and reliable deepfake detection systems is compelling
and essential for both the individual and society.

In this thesis, we propose a method for deepfake detection using both
audio and video signals. The underlying assumption of the present work
is that machines can not recreate emotions in altered or generated sub-
jects as real humans genuinely convey them. For this reason, we adapted
neural network-based techniques from the emotion recognition field to
this task.

Results show that audio-based techniques detect altered media more
accurately than video-based approaches. However, we obtain the best
classification results when we adopt a multimodal approach, considering
the audio and video modalities together.



Sommario

Negli ultimi anni le tecniche per generare contenuti multimediali sintetici
hanno avuto un notevole miglioramento. Con i potenti strumenti forniti
da applicazioni di intelligenza artificiale, è ora possibile generare materiali
audiovisivi in modo così accurato da poter ingannare i sensi umani di
vista e udito.

Questi nuovi media generati da macchine vengono chiamati deepfake.
Nonostante i deepfake possano dare vita a nuovi stimolanti scenari fu-
turi, questi media hanno da subito suscitato preoccupazioni sia etiche
che legali. Permettendo di alterare le identità vocali e visive delle per-
sone ritratte, alcuni dei utilizzi potrebbero avere gravi conseguenze come
la diffusione di fake news, falsificazione di prove legali, nuove forme di
frode e ricatto. È quindi indispensabile e urgente sviluppare sistemi di
rilevamento dei deepfake che siano attendibili e robusti, per l’individuo
e la società.

In questa tesi, proponiamo un metodo multimodale per il rilevamento
dei deepfake, basato sull’analisi simultanea di audio e video. L’ipotesi
su cui si basa questo lavoro è che l’intelligenza artificiale sia in grado di
ricreare nei soggetti rappresentati aspetti di basso livello, ma non riesca a
riprodurre aspetti più complessi come le emozioni. Per fare ciò abbiamo
adattato a questo obiettivo tecniche di riconoscimento automatico delle
emozioni basate su reti neurali.

I risultati mostrano che le tecniche basate sull’audio individuano i me-
dia alterati più accuratamente delle tecniche basate sul video. Tuttavia,
i migliori risultati nella classificazione vengono ottenuti con un approccio
mulimodale, quando consideriamo le modalità audio e video assieme.
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1
Introduction

In recent years, a new kind of Artificial Intelligence (AI)-generated media
have attracted widespread attention. These are called deepfakes. The
term comes from a crasis between “deep learning” and “fake” since this
fake contents are created by deep learning algorithms, a class of machine
learning techniques that relies on Artificial Neural Networks (ANNs).
We can use these networks to perform highly realistic audio and video
manipulations, altering the visual and speech identities of portrayed sub-
jects. So far, the most targeted categories are celebrities and politicians.
This is because deep learning techniques require a large amount of data
to perform accurately, and these two are categories with vast visibility.
Therefore, content with their representations is easily collectible both for
accessibility and quantity. Although deepfake algorithms themselves, like
all technologies, have no good or evil attributes, these have been widely
used for harmful purposes that can have severe consequences. Some ex-
amples concern the spreading of fake news [18], creation of revenge porn
videos [19], and fraud cases [20]. This technology is closely related to
the ethical, philosophical in a broader sense, comprehensive discussion
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on the uses of artificial intelligence. To prevent it from threatening both
the individual and society, the research community developed a series of
detection methods along with large-scale benchmarks [21].

The visual manipulations of these technologies are typically achieved
in two ways. The technique called face-swapping consists in swapping
person identities in two videos. The first proposed method was generated
by a Reddit user in December of 2017. It is now the most common
identity manipulation form, especially for entertainment purposes. The
second is referred to as face reenactment. This category of algorithms
attempts to control people’s expressions in videos, allowing fake creators
to generate clips in which someone does something that never happened.
On the other hand, synthetic audio is nearer to everyday situations and
may be easier to understand both as a tool or a threat. We often overlook
the pervasiveness of machine-generated speech. Still, we can find it in
audiobooks, in virtual assistants like Siri, Alexa and Google Home. We
can hear synthetic announcements in cars, bus stops, train stations, or
typical call centers. The outcomes of nowadays techniques can be utterly
realistic as to be able to pose evident threats to biometric authentication
systems based on voice. In 2019 it was highlighted in [22] how this kind
of fake media occasionally contains spatio-temporal glitches. However, it
was already clear that these glitches could not be a reliable cue to detect
fake media, as new and more accurate deepfake generators were (and are)
continuously being developed.

In the past few years, state-of-the-art detection approaches moved to-
ward deep learning to address these problems. As Convolutional Neural
Networks (CNNs) are among the best architectures to deal with image
data, many approaches to visual manipulation leverage this technique.
The authors of [23] implement a CNN model aiming to generalize the
semantic content of learned features used by the network to discrimi-
nate between real and fake images. To perform the same discrimination
in [24] the authors feed their convolutional model with pairs of genuine
and altered photos to learn comparison features between the two classes.
Recently [25] proposed an ensemble of different trained CNN models to
perform face manipulation detection. Some approaches, like the one used
by the [26] authors, use semantic features obtained from both audio and
video signals to perform the classification. However, current detection
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methods are still insufficient to be applied in real scenarios. Further
research is needed to increase the generalization and robustness of the
developed techniques.

In this work, we propose a method to identify whether a video is
genuine or has been altered or generated with a synthetic approach. To
perform this classification, we leverage the assumption that synthesis
algorithms can reconstruct low-level characteristics of voice and face ap-
pearances, but fail to recreate more complex aspects, such as emotions.
This approach already proved successful [26]. Therefore, we adapt Emo-
tion Recognition (ER) neural network approaches both for video and
audio signals to deepfake detection. Firstly, we train our models on
predicting emotions. Then, from the internal layers of the networks,
we extract representations of time evolution characteristics of emotions
from videos of which we want to infer the nature. These features are
then classified as derived by real or fake emotion displays.

The experiments aim to verify the performances of the proposed
model. The obtained results show promising performances with a bal-
anced accuracy for detecting genuine or altered content reaching up to a
value of 0.9532.

This thesis is organized as follows. In Chapter 2 we provide the reader
with the basic knowledge on techniques and methods used to better un-
derstand what will be discussed in the following chapters. In Chapter 3
we give an overview of the main state-of-the-art approaches related to this
work. We describe some remarkable studies related to Speech Emotion
Recognition (SER), video emotion recognition, and deepfake detection.
In Chapter 4 we give a formal definition of the problem we tackle in this
thesis. We describe the architecture we propose to solve it and provide
all its details. In Chapter 5 we describe the metrics used to evaluate
our experiments, we provide a detailed description of the experiments
we conducted and their results, along with the metrics used to evaluate
them. Finally, in Chapter 6 we summarize the work done and suggest
possible future improvements.



2
Theoretical Background

This chapter describes the theoretical background of the techniques used
in the work and the key ideas behind it, providing the reader the basic
knowledge to better understand what we will discuss in the following
chapters.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) or simply Neural Networks (NNs)
are computational systems used for problem-solving, planning, learning
and many more artificial intelligence applications. They consist of a
structure of computational blocks called hidden layers, where each of
them is composed of a set of so-called artificial neurons we also call
perceptrons.

As biological brains, structures which they are remotely inspired on,
NNs can learn representations of data, passed to the first net layer, the
input layer, as vectors shaped accordingly to the input layer’s required
shape. In the machine learning field with representation learning, we
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Figure 2.1: A Multi-layer Perceptron (MLP) with two hidden layers and a
single perceptron as output layer. Every layer in this scheme is fully connected.

intend a set of techniques that automatically model the representation
needed for a given task, classification in our case, from raw data. The
inputs of the network travel through the first layer, whose output is
the input of the second, and so on until the last one, called the output
layer. Every layer performs operations or transformations on the vectors
it receives as input depending on its structure and nature. Depending
on the needs of the current task, we can process the signal in several
manners, exploiting different kinds of layers in the network. In principle,
the more the number of layers increases, the more the network learns
more abstract features from data.

The most basic network configuration is called a Multi-layer Percep-
tron (MLP). A Multi-layer Perceptron (MLP) consists of:

• an input layer, which receives data as input vectors;

• an arbitrary number of hidden layers which model the needed data
representation as a function between input and output;

• an output layer, which gives the final prediction outcomes. Fig-
ure 2.1 shows the scheme of a MLP.

Formally, the output signal yj of a perceptron with n inputs is defined
as

yj = gj

(︄
n∑︂

i=1

wij · xi

)︄
, (2.1)
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as it is the weighted sum of all the input signals to the perceptron. gj is
the activation function of the j neuron, which typically is a non-linearity.
xi are the inputs to the neuron and wij is the weight used by the j-th
neuron to scale the i-th input.

All the artificial neurons have updatable weights wij constituting the
parameters of the NNs. The net weights are updated in what is called
a learning or training phase. Here, by learning, we intend the ability of
a network to progressively improve its efficiency in a given task, such as
image recognition or data classification. During the training phase, the
input flows through the interconnected layers, and the net weights are
updated. The update is the key factor of a NN system. Starting from a
random set of weights values, we compute the update by minimizing the
error between the desired output of the network and the predicted one.
We do so through a specific algorithm called back-propagation [27]. This
computes the gradient of a defined cost (or loss) function with respect to
the weights and propagates the error from the outputs to the inputs.

NNs have become a standard technique in many fields due to their
versatility and efficiency, such as vehicle control, medical diagnosis, cy-
bersecurity, physics, finance, geomorphology, and pattern recognition. In
the latter discipline, we can highlight signal classification where the scope
of this work fall. We now present some deeper description of the NNs we
adopted.

2.1.1 Recurrent neural networks

RNNs [28] are a class of artificial neural networks specialized in deal-
ing with sequential data [29]. Sequential data is everything that we can
represent as a sequence. A typical input of such networks can therefore
be denoted as (x1, x2, ..., xT ) where each data point xt is a real-valued
vector. As sequential data we can refer to both time-dependent and
not time-based sequences, such as words in a written text. Thus, RNNs
applications are various: natural language processing [30], speech recog-
nition [31], text classification [32] and generation [33]. Figure 2.2 gives
an intuitive sense of the recursive nature of the net, where its compressed
representation on the left is time-unfolded on the right. In this figure, the
network A outputs ht given the Xt inputs and passes information from
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Figure 2.2: Intuitive recursive scheme of RNNs.

one time step to the next. This structure allows the network to model
a function based both on present and past. Using an internal memory,
RNNs represent information from an arbitrarily long context window.
Figure 2.2 also shows the peculiarity of RNNs where the output of a unit
is forwarded to the next one, which also loops its output back on itself.
Despite this recursive nature, the temporal component is lost after few it-
erations. We thus say that RNNs have a short memory, and they cannot
be used efficiently with long data sequences. The reasons for the long-
term dependencies problem were presented in [34]. Error signals flowing
backward in time tend to either blow up or vanish [35]. Researchers pro-
posed many different network structures to solve this problem. Above
them, we highlight the Long Short-Term Memory Recurrent Neural Net-
work (LSTM) as it is the structure used for the speech classification task
in the present work.

2.1.2 Long short-term memory networks

The introduction of Long Short-Term Memory Recurrent Neural Network
(LSTM) aimed to solve the vanishing gradient problem, which emerges in
the RNNs training phase. Whenever the gradient of the error function of
the neural network is back-propagated through a unit of a neural network,
it gets scaled by a factor that can be less or greater than one. RNNs in
particular, suffer from this behavior when dealing with long-term time
series, as many training steps become needed. To avoid the excessive
dominance of the gradient or its negligence LSTM units were designed
to implement a scaling factor of one [36].

The central ideas behind the LSTM architecture are: to use a mem-
ory cell that can maintain its state over time; to use nonlinear gating
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Figure 2.3: Representation of a LSTM cell [1].

units, which regulate the information flow into and out of the cell [31].
Figure 2.3 show the typical structure of a LSTM cell with the following
notation: hl

t−1 is the input, hl−1
t−1 is the previous cell output, f l

t is the for-
get gate, ilt is the input gate, olt is the output gate, C l

t is the state of the
cell, C̃ l

t is the update state of the cell, C l
t−1 is the previous cell memory,

hl
t is the output. By maintaining a unit state unchanged, the cell output

becomes independent from its state, allowing the gradient of the error
function to flow back to previous units unchanged. The name of this kind
of NN follows from the net property of maintaining for longer sequences
the short memory of a normal RNN. This long short-term memory makes
the LSTM architecture the preferred choice when dealing with long-term
time-dependent series [37]. The architecture details can be rather com-
plex. This is also due to the many variants designed in literature [38].
We will now provide some formal definitions of the key LSTM concepts
in order to define the critical concept of memory, providing a better un-
derstanding of the work we are presenting. In the following equations
we have lighten the previous notation. We will describe variables and
parameters for each definition separately

The hidden state of a RNN is computed as:

st = tanh(Uxt +Wst−1) (2.2)

where xt is the input to the unit, t the current time step, st−1 the previous
hidden state. U and W being parameters. A LSTM does the same but
in a different way as it uses gates to compute its peculiar cell memory.



Chapter 2. Theoretical Background 9

From now on xt will represent the unit input, t the current time step,
st−1 the previous hidden state and U , W will represent parameters of the
cell.

The input gate defines how much of the newly computed state, at the
current time step t, we want to let through by computing

i = σ(U ixt +W ist−1) (2.3)

with σ being the sigmoid function implemented in the LSTM cell as
shown in Figure 2.3. The forget gate defines how much of the previous
state we need to let through by computing

f = σ(U fxt +W fst−1). (2.4)

The output gate defines how much of the internal state we need the
external network to get by computing

o = σ(U oxt +W ost−1) (2.5)

We can finally give a formal definition of the cell new state Ct:

Ct = Ct−1 ◦ f + g ◦ i. (2.6)

Ct is a combination of the previously computed memory Ct−1 multiplied
element-wise (◦) by the forget gate f and the newly computed hidden
state g, multiplied by the input gate i giving the idea of a cell memory.
The so called “candidate” hidden state g is defined as

g = tanh(U gxt +W gst−1) (2.7)

and depends on the current input and previous hidden state. It has the
same equation of the vanilla RNN hidden state. However in LSTM, we
use the previously defined input gate to get just a part of this g state,
controlling the cell state.

2.1.3 Convolutional neural networks

CNNs are a common NN architecture that was inspired by the visual
cortex of animals [39]. They excel in machine learning problems, espe-
cially those requiring image data, computer vision, and natural language
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Figure 2.4: Visual sequence of operations in 2D convolution performed with a
3x3 kernel [2].

processing. They normally have multiple layers, including convolutional
layers, non-linearity layers like pooling layers and fully-connected lay-
ers [40]. As pooling and non-linearity layers do not have parameters, one
of the main advantages of the architecture is that the total amount of
parameters to train is reduced, decreasing computational complexity in
the training phase. We will now present those layers in more detail.

2.1.3.1 Convolutional layer

The convolutional layer is where most of the computation is done. It
takes this name from the linear mathematical operation between func-
tions, matrices in the NN case, called convolution. The parameters of the
layer are a set of learnable filters or kernels [41]. In image processing, a
kernel or convolution matrix, is a small matrix with fixed values used to
apply filters to images. The idea behind the process is to let the kernel
slide on the image computing the new values following bi-dimensional
convolution rules. An intuitive idea of the process is given in Figure 2.4.
The input represent the matrix containing pixel color values of an image.
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The kernel slides on the input so that its center correspond to the pixel
of the input matrix to be processed. Each output value is computed as
the weighted sum of the product of each element of the kernel matrix
with the corresponding pixel of the underlying input matrix

It is possible to extend convolution to 3 dimensions. In this case, the
kernel is a 3D matrix that slides on 3-dimensional data. A video is an
example of 3D data. We use two dimensions to define its frames and
another one for their temporal evolution. This means that the first two
dimensions are spatial, while the latter is temporal. Neural networks that
implement this kind of computation are called 3-Dimensional Convolu-
tional Neural Network (3DCNN). This work bases its video pipeline on
this kind of network. When dealing with this kind of layer, the hyperpa-
rameters, the variables which determine the structure of the architecture
that we can control are:

• depth, i.e., the number of filters in a layer

• filter size

• stride, i.e., the amount of filter movement

• zero-padding, to adjust the image size to the net requirements.

Here is also where the parameters reduction takes place. It is a well-
established method to connect to the following layer regions of the picture
and not the entire image pixel-wise [40, 42, 43, 44, 45].

2.1.3.2 Pooling layer

Pooling is a form of down sampling for images. It consists of dividing the
original image in pixel regions, or sectors, and operate on each of those
through a mathematical operation.

We can name different kinds of pooling depending on the operation we
perform in each region. Max-pooling is the most common form. For each
sector, the maximum pixel value is chosen and returned. Figure 2.5 shows
an example of this. Another pooling operation is average pooling, which
consists of outputting the average values from a given sector instead of
the maximum. This method allows to smooth out the loss of information
between layers. In the present work, we adopt this technique instead of
the max-pooling one.
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Figure 2.5: An example of a 2x2 max-pooling operation [3].

2.1.3.3 Fully connected layer

In this architecture, all the neurons of a layer are linked with all the
neurons of the previous and the following (if present) layers. Here is
where the high-level reasoning is done [41], where abstract data features
are learned. The structure of the connections resembles the MLP one, as
previously shown in Figure 2.1. For many inputs, its formal formulation
is the same of (2.1). Typically this is also implemented as the output
layer of networks designed for classification tasks. For example, our CNN
model used for the emotion recognition and classification task has a 5-
unit fully connected layer as the output layer.

2.2 Deepfakes

With the technical progress of recent years, fake multimedia can now
provide a very advanced level of realism [46]. The boundary between
real and synthetic content is rapidly narrowing as media manipulation
techniques and tools are now powerful and easy to use.

When talking about media manipulation tools, we do not simply refer
to well-known image and video editing software suites. We also refer to
deep learning tools like autoencoders [47] or generative adversarial net-
works Generative Adversarial Networks (GANs) [48]. Autoencoders are
neural networks designed and trained to encode data by learning abstract
representations of the inputs efficiently. GANs are a recently proposed
method to allow an artificial neural network to generate new data having
the same statistical distribution of a given dataset. When considering
a large amount of data as input, these tools can output very realistic
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Figure 2.6: Examples of fake contents. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

synthetic outcomes. A staggering example can be found in thisperson-
doesnotexist.com [10]. It is a recent site created by the software engineer
Phillip Wang which highlights the AI ever-increasing power to present as
real completely artificial images. Each time the site’s page is refreshed,
it returns a new GAN generated human face. The project results are
impressive and completely believable. Figure 2.6(g) gives an example.

Deepfakes, a crasis between deep learning and fakes, are manipu-
lated or generated visual and audio content with a high potential to
deceive [49]. On the one hand, this opens new possibilities in creative
arts, advertising, film production, and video games [46]. On the other
hand, it poses threats to democracy by manipulating public opinion dur-
ing elections [46], discredits politicians [50], creating believable fake news;
and to the individual, allowing new forms of fraud or blackmail [49]. The
need for automatic tools for deepfake detection is therefore compelling.
In a sense, deepfakes are for videos what image editing was for photog-
raphy. Figure 2.6 portrays some examples. We already have a sensibility
to catch fake pictures, that can be manipulated or falsified in many ways.
Images like 2.6(a), (b) are created by juxtaposing a photo over the back-
ground of another one. Images like 2.6(d), (e) are obtained by inserting
in a picture just one external element. Others, like the famous example
in 2.6(c) are completely crafted to portray fake or deceptive subjects.
Nevertheless, as we tend to place even more trust in the voices we know
and the videos we watch [51], the impact of malicious fake videos could
be much more profound. Video frames like 2.6(f), (j) and images like
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2.6(g) result deeply believable, even if completely synthetic. Other ex-
amples reported in the figure come from benign applications of deepfake
techniques. In 2.6(h) we find an actor playing in a film he never did and
in 2.6(i) we find an animated version of the Mona Lisa. Our trust and
perception about video and audio recordings could change, and probably
will, as it already was for photography.

Of course, we can not overlook benign opportunities. One leading ex-
ample is the movie industry, which relies on computer-generated images
Computer Generated Images (CGI) for special effects. CGI requires ex-
pertise, extensive training, expensive hardware, and special software [49].
With deep learning generated videos, movie production can become more
efficient and accessible, and foreign movies may be enjoyed without the
need for subtitles [52]. On the other hand, we must detect the illegal
use of deepfake videos, and detection policies must be implemented to
identify the truth better.

2.3 Emotion Recognition

Emotion Recognition (ER) is the ability to identify human emotions [53].
Precisely, when machines perform identification, we call it automatic
emotion recognition. From now on, we are referring to this particular
field.

The growing interest in this multidisciplinary area of research is just
partly justified by the growing ubiquity of electronic devices. Making
human-computer interactions more harmonious is only one of the scopes
of this research field but is probably the most natural as we naturally
communicate and interact through emotions in the real world and devices
in the virtual one. It is interesting to notice that computer games [54],
robotics [55] and psychology research [56] benefits from emotion recog-
nition findings and evolution.

The ER task is a challenging one. To implement a solid ER system,
we need a solid model to define emotions. However, the consensus on the
definition of emotion is far to be found [57]. The beautiful work from
Plutchik [57] listed more than ninety definitions of emotion proposed in
the last century. So they do not have a clear definition and humans
tend to be in mixed emotional states. Even when some of them are
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predominant, we are known to misinterpret them at times.

2.3.1 Emotions and their models

Emotions are convoluted states of an individual psyche. They are com-
posed of several elements such as personal experience, physiological state,
or present contingencies and can rapidly vary in time [58]. We can use
the two models for emotion classification, one is continuous, and one is
discrete. Dimensional, or continuous, emotional model uses several quan-
titative features of emotions such as valence, arousal, control, power to
describe them. Those characteristics are treated as dimensions, making
emotions dependent on each other in this newly defined space. The most
used aspects in the field are three: valence, arousal, and power, also
called dominance [58]. Valence describes whether an emotion is positive
or negative. Arousal measures the strength of the felt emotion. Dom-
inance refers to the seeming strength of the person that is feeling that
particular emotion. Between the disadvantages of the model, the main
one could be that it is not intuitive enough and special training may be
needed to label each utterance [59]. Other issues may be that in this
description of emotions, some become identical, easy examples are fear
and anger. Others like surprise cannot be categorized without context
as it can be positive or negative depending on the circumstances.

The discrete emotional model is based on a more intuitive under-
standing of emotions. It treats them as definite and independent cate-
gories. As shown by Ekman et al. in [60] and in [61] some emotions like
happiness, sadness, anger, fear, disgust and surprise can be identified in
many different cultures. Following this research, it is possible to obtain
the rest of the emotional spectrum as a combination of these inborn and
culturally independent.

In the present work, we use ER techniques to discriminate between
real and fake videos. We do so via emotion consistency detected in audio
and images coming from considered clips. If portrayed sentiments are de-
tected as consistent, we suppose the audiovisual content to be real. It is
supposed fake otherwise. We can divide emotion recognition from video
into two research areas. Speech Emotion Recognition (SER) and im-
age emotion recognition. We define Speech Emotion Recognition (SER)
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as the collection of techniques and processes that classify speech signals
via their emotional content [58]. Hearing is one of our most advanced
senses, and it is especially fine-tuned for human speech [62]. Speech is a
distinctive trait of humans. It is so important to us to convey emotions
through language that we developed tools like emojis to express ourselves
better in written text. Moreover, we can somewhat easily infer emotions
just by hearing the voice of a speaker, even if it is not from our mother
tongue [63]. We are already prone to it as a species and we are exception-
ally trained in it by everyday life. It is not a surprising fact that we are
trying to extend this understanding to computers [58]. Similar analogies
can be done with images and faces.

From an image, we can estimate a lot about the emotional state
of the subjects in it. We are very experienced in detecting important
cues from visual stimuli as a species. We can intuitively identify the
context, the actions, gestures and facial expressions. This is not as easy
for a computer. Video emotion recognition is the branch of computer
vision that tries to make machines deal with visual stimuli correctly or at
least as a human would. Face, head and hands movements give precious
informative content. The discipline aims to extract and process those
features that come from video frames. It is interesting to notice De
Silva et al. results [64]. Under the study conditions, subjects recognized
happiness, disgust, anger and surprise better from video information,
while sadness and fear were better recognized from audio information.
In the present work, we focus on facial expressions rather than body
movements or hand gestures.

2.3.2 Emotion datasets

Data collection is the very first step of every classification problem. The
classification relies on labeled data, that must be correctly collected and
must satisfy the needs of the considered problem. Basing our claim on
how emotions are collected we can divide emotion databases into three
main categories: simulated, induced, natural. In a simulated environ-
ment, emotions are performed by semi-professional or professional actors
in some cases even with a direction. Performances are collected and la-
beled according to the performance script. This is the easiest emotion
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collection method but also the furthest from a real-world environment.
Acted emotions are interpreted and not naturally occurring. The con-
veying of real-life feelings is not guaranteed and they may even be exag-
gerated. On the other hand, a controlled environment allows to obtain
more features from subjects. While video and audio are present in almost
every emotion dataset, body data like heart rate or temperature are im-
possible to obtain in different scenarios. Elicited or induced emotions are
obtained by placing subjects in simulated emotional situations. Films,
music, stories commonly elicit subjects’ emotional responses. They can
be seen as improvised acting performances, narrowing the difference with
spontaneous emotions. For these reasons, in recent years, the study of
emotion recognition on the expressed stances has gradually moved from
posed or induced expressions to more spontaneous expressions [53]. Nat-
ural emotion databases are obtained from TV talk shows, radio talks,
call-center recordings and similar sources [53]. Emotion labeling crite-
ria are another fundamental aspect of emotion classification and dataset
generation. We in fact can define emotions using different models, dis-
crete and continuous as described in 2.3.1. Because of this, emotional
datasets are generally provided with exhaustive explanations of their la-
beling process.

2.4 Conclusive Remarks

This chapter has provided the reader with the main background concepts
needed to understand the rest of the work. These range from the set of
the used machine learning tools, to the definition of deepfakes, to the
problem of emotion recognition from images, audio or video. In the
next chapter, we will overview state-of-the-art methods related to both
emotion recognition and deepfake detection, the main topics considered
in this work.



3
State of the Art

This chapter introduces the state of the art related to this work. We
describe some remarkable studies related to SER, video emotion recogni-
tion, and deepfake detection, along with some of the fundamental tech-
nical aspects we employ in our system.

3.1 Speech Emotion Recognition

Speech is thought to be evolved from early hominids’ communication
system when they acquired intentionality and cooperation [65, 66]. As
humans, we find it to be the most natural way to express ourselves. What
separates human language from other animals communicating systems is
that human language is open-ended. That means that we can produce a
vast range of utterances, create new words and sentences starting from
a finite set of elements.

From the audio point of view, speech is a continuous signal of varying
length that carries information, and SER aims at detecting the emotional
content it expresses automatically. The smallest unit of speech is called
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an utterance, generally defined as a brief part of continuous speech ending
with a clear pause. Utterances are also the basis of speech emotion anal-
ysis techniques. From the literature, we can provide a standard pipeline
that is adopted by most of the SER systems [53, 67, 58]. This consists
of a pre-processing step, followed by feature extraction, selection, and
feature classification.

Pre-processing is the very first step after data collection, used as
preparation for feature extraction. It typically starts with signal fram-
ing, which is the process of fragmenting the input signal into short par-
titions. Thanks to this operation it is possible to treat every segment as
a quasi-stationary signal and compute audio features from it. After the
fragmentation step, windowing functions can be applied to each segment.
Window functions are useful to smooth the information loss caused by
the Fast Fourier Transform (FFT) of data at the edge of the signals. In
fact, framing a signal leads to abrupt edges in the time domain, which
results in spectral leakage in the frequency domain. One of the most
used window functions is the Hamming window. Formally, a M -sample
Hamming window is defined as

w(n) = 0.54− 0.46 cos

(︃
2πn

M − 1

)︃
, 0 ≤ n ≤ M. (3.1)

SER systems often rely also on speech detection. We can detect
fragments of voiced speech by exploiting its periodic nature using tech-
niques such as zero-crossing rate [68] and auto-correlation [69]. Another
operation that we can perform is noise reduction, which deletes or atten-
uates the background noise captured with the speech signal. As shown
by Pohjalainen et al. in [70], Minimum Mean Square Error (MMSE)
and log-spectral Amplitude MMSE (logMMSE) are the most success-
fully methods to perform this operations. Minimum Mean Square Error
(MMSE) in particular, estimates the clean signal from a given sample
function of the noisy one and minimizes the distortions between the two.

Once we have performed the preprocessing step, a set of features is
extracted starting from the signal. Audio features, also called Low Level
Descriptor (LLD), are one of the crucial aspects of speech emotion recog-
nition. We can divide them into two categories: global and local. Global
features are long-term characteristics of the signal like mean, standard
deviation, minimum and maximum values. Local features are those that
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we can extract by signal fragments assuming the quasi-stationary hy-
pothesis. As emotional features are not uniformly distributed along with
speech signals, we can use local features to capture temporal informa-
tion. This is fundamental in SER systems because, as shown by Rao
et al. [71], emotions like anger are predominant at the beginning of ut-
terances, while emotions as surprise lie at the end of it. The LLDs we
can extract starting of an audio signal are many. We now present some
of the most significant ones, along with those used in the present work
following Akçay and Oğuz nomenclature [58].

• Prosodic features

Intonation, stress, and rhythm are features that humans can per-
ceive that convey the most emotional content [59]. Some studies
even show that SER systems get similar results or perform better
compared to human judges when prosodic features are used [72, 73].
The fundamental frequency of the vocal cords f0 and its changes
over time describe the tone and the rhythm of the voice speaking.
Statistics such as the mean, maximum and minimum values and
the range of the f0 are the most salient aspects of f0 contour. f0

contour decreases when anger or sadness is expressed and increases
while the sentiment expressed is joy. Sadness is also associated
with lower f0 values [74]. The volume or intensity of the voice sig-
nal V , correlated with signal energy E with E ∝ V 2, is associated
with different emotions. Research shows that anger, happiness, or
surprise yield increased energy while disgust and sadness result in
decreasing energy [75].

• Spectral features

Using the Fourier Transform, it is possible to obtain spectral char-
acteristics of the voice signal. There are many of them that we can
use. Above all, spectral centroid, spectral roll-off, mean, variance,
and other statistical momenta can be extracted and used as fea-
tures, as we did in the present work. The most widely used spectral-
based features are some coming from cepstral analysis. Cepstrum
is obtained by applying the Inverse Fourier Transform to the log-
arithm of the spectrum. We can use it to find periodicities in the
frequency domain.
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Furthermore, Mel Frequency Cepstral Coefficients (MFCC), which
collectively make up a mel-frequency cepstrum, allow good classi-
fication results and can be used to surpass or enhance the classi-
fication performances based on utterance or prosodic-based fea-
tures [76, 77, 78]. The mel spectrogram is a representation of
the frequency content of a signal as it varies with time, in which
the frequencies are converted to the mel scale. The mel scale is
a perceptual scale of pitches perceived by listeners to be equal
in distance from one another, derived by psychoacoustic studies.
Other successful cepstral features are the Linear Prediction Cep-
stral Coefficients (LPCC), obtained from Linear Prediction Coeffi-
cients (LPC), which is a smoothed envelope of the spectrum. They
are decisive in speech classification as they yield the distinctive
characteristics of the speaker’s vocal tract.

• Voice quality features

Voice quality is dependent on the physical conformation of the vocal
tract, which can be modified during speech. Involuntary and volun-
tary changes may produce differentiation in the emotional content
of the speech. In [79] Cowie et al. showed a strong correlation
between voice quality and emotional content of the speech.

We define as jitter the measure of the fundamental frequency insta-
bility. It measures the changes of f0 between successive vibratory
cycles of the vocal cords. Shimmer is the counterpart of jitter for
amplitude as it measures the amplitude variations. Harmonics to
Noise Ratio (HNR) is the ratio between periodic and aperiodic
components in voice speech signals. It gives the relative level of
noise in the frequency spectrum of vowels. These last three fea-
tures have been shown to improve classification performances when
mixed with prosodic features [80, 81].

There are other feature typologies that we do not mention as they were
not used in this work. The biggest category we do not describe is Teager
Energy Operator [82] based feature, specifically designed to recognize
stress and anger.

After features are extracted, it is possible to detect emotion. This can
be done in two different ways: following a categorical approach; following
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a continuous approach. In the first approach, emotions are considered
categories or classes within a list (e.g., happiness, sadness, etc.). Emo-
tion recognition consists in attributing one of these categories to the
speech under analysis. In the second approach, emotions are modeled
in a continuous space. In this context, it is customary to consider the
valence-arousal space, where each emotion is mapped into a point. Va-
lence dimension describing whether an emotion is positive or negative.
Arousal dimension defining the strength of the felt emotion.

SER has been around for more than two decades. In the early stages
of the field, classifications work was based mainly on classical machine
learning techniques. Recently, with the advance of computational power,
the community switched its interest to deep learning-based techniques
due to their better performances. One of the first significant neural
network-based works was [83], performances of recognition were about
50% on eight emotions: joy, teasing, fear, sadness, disgust, anger, sur-
prise, neutral. The data they used was collected for the work from a
total of 100 speakers, 50 male and 50 female native Japanese speakers,
where each subject uttered a list of 100 Japanese words eight times, one
time for each of the eight emotions. On Berlin EmoDB [84] Harár et al.
in [85] achieved excellent results describing an architecture made with
convolutional, pooling, and fully connected layers with a voice activity
detection algorithm to eliminate silent fragments. They achieve excel-
lent classification results on anger, neutrality and sadness. Zhao et al.
in [86] applied two CNNs and a LSTM to IEMOCAP [87] speech signals.
Raw signals are given to the CNNs that learn local features. Those local
features are then fed to the LSTM which learns their long-term depen-
dencies. The data used in this work come from the audio part of Berlin
EmoDB and IEMOCAP databases. Using different sets of emotions for
different experiments outperforms all traditional approaches proposed for
emotion recognition on the databases.

As in [86] many deep learning-based approaches to SER rely on CNNs
and at least a LSTM to deal with temporal dependencies and spectral
variations [58]. However, this structure increases the complexity of the
system. Using 3DCNNs Kim et al. in [88] proposed a modeling of
spectral-temporal dynamics based only on the CNN. They focused on
seven significative databases: LDC Emotional Prosody [89], eNTER-
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FACE [90], Emo-DB, FAU-aibo emotion corpus [91], IEMOCAP, SE-
MAINE [92], and RECOLA [93]. The emotions considered in this case
are four: neutrality, happiness, sadness, and anger. It is interesting to no-
tice that SEMAINE and RECOLA provide only continuous labels such as
arousal and valence for emotions. So they mapped continuous labels into
the four classes mentioned above using landmarks of valence and arousal
dimensions provided by FeelTrace [94]. The latter is an instrument de-
veloped to track the emotional content of a stimulus used in the article to
switch from the continuous emotional model to the discrete. They claim
to have therefore designed the largest corpora for SER experiments with
the largest number of speakers and samples. What they obtained is that
with the high variance of their data resembling realistically “in-the-wild”
scenarios, the 3DCNN approach is simpler and outperforms CNN-LSTM
methods.

3.2 Video Emotion Recognition

Human emotions detection has not only been studied at speech level. In-
deed, many applications build upon the possibility of detecting emotions
from video analysis. The possibility of detecting emotions from video
has been made clear in 1974 Ekman’s extensive studies on facial ex-
pressions [95], which provided two essential results: universal and cross-
cultural facial expressions convey some emotions that provide sufficient
clues to detect them automatically. This was done by following a typical
video processing chain that is still used in most of the researches, and
that is shown in Figure 3.1.

Nowadays, most of the video emotion recognition systems exploit the
use of convolutional networks. As CNNs are one of the highest per-
forming NNs for computer vision tasks, they are one of the preferred
approaches for video and image analysis. Like in the SER field, they are
often combined with LSTMs to capture temporal cues. In [96] Khor-
rami et al. show this procedure to be superior to other approaches on
AudioVisual+Emotion Challenge (AV+EC2015) dataset [97]. However,
this is not always the case as Hu et al. in [98] show how their two stages
spatio-temporal attention CNN model gives better results on RECOLA
and AFEW-VA [99] datasets than previously proposed methods. Using
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Figure 3.1: Typical pipeline used to perform video emotion recognition [14].

the attention mechanism, they focus their CNN training on informa-
tive spatial-temporal features for continuous emotions. The first stage
produces a first recognition result that is fed into the second for correc-
tion. Both stages implement attention layers to catch the most relevant
spatial-temporal features. They also propose a loss function for the two
stages combined to improve the overall prediction results.

For the 2015 Emotion Recognition in the Wild (EmotiW) Challenge
dataset [100] Kahou et al. propose in [101] a CNN-LSTM architecture for
facial expression analysis. Their experiments with three different CNN
architectures show that the spatio-temporal evolution of facial features
is one of the strongest cues for emotion recognition. The convolutional
networks are trained to classify the static images and the LSTM is fed
with the features coming from internal layers of the CNN to model the
temporal evolution of frames and predict a single emotion for the entire
video.

Recently, Li et al. in [102] proposed a neural network with a video
frame weight vector approach. They highlight that video sentiment anal-
ysis methods only obtain features from the spatial and temporal compo-
nents of videos. This means they lack of a deeper understanding of
emotions from typical video emotion recognition systems. Emotions are
not expressed constantly, and it is not easy to understand which of the
showed emotions contributes the most to the overall sentiment analysis
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of the video. To solve this problem, they extract features from video
frames, weighting them accordingly to their CNN emotion detection on
the frame itself. These weighted features are then passed to a LSTM to
obtain a video sentiment analysis model. On BAUM-1 [103] this model
performs better than existing methods. Kahou et al. in [104] conclude
that assigning one label for video length introduces noise to the training
set. Therefore they tried to correct their CNN classification predictions
by training them with still images. Their results are promising and we
assume that this could be a good direction to follow.

3.3 Deepfake Detection

Deepfakes are manipulated or generated visual and audio content. Their
creation can follow benign or malevolent intentions. Because of their
high potential to deceive automatic detection techniques to recognize
illegal uses of these synthetic media,must be put in place. Deepfake de-
tection is a binary classification problem. It consists of determining if an
audio-visual representation of a subject is genuine or synthetically mod-
ified or generated. Both classical machine learning classifiers and deep
learning-based ones discriminate between authentic videos and syntheti-
cally generated ones. These methods require a large amount of real and
fake videos to train models. As this kind of synthetic media is still rela-
tively recent, the number of fake videos available is still rapidly growing,
and new approaches to the issue are still being proposed.

According to [15], we can group deepfake detection techniques into
methods that perform image analysis and video analysis (see Figure 3.2)

With tools such as CNNs and GANs, image deepfake detection task
is challenging as it is possible to preserve the pose, the facial expression,
and the lightning of the original photo when creating a deepfake [105].

In [106] Zhang et al. extract a set of features with the bag-of-words
method and fed them to different classifiers: SVM, random forest and
MLP to discriminate between altered faces and genuine ones obtaining
good results. However, image synthesis with GAN models is still chal-
lenging to detect. GANs are in fact, very efficient in learning and repro-
ducing the input data distribution. Their development is still ongoing
and many new extensions are frequently introduced [15, 23] hardening
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Figure 3.2: Overview of the main categories of deepfake detection tech-
niques [15].

the detection task.
In [23] Xuan et al. removed low-level high-frequency clues of GAN

generated images to increase the pixel-level statistical similarity between
authentic images and fake ones. This is based on requiring the CNN
classifier to learn more meaningful and generalized features than im-
age distortions in order to create a more robust against GANs forensic
model. Their experimental results prove the effectiveness of the proposed
method.

Hsu et al. in [24] proposed an above state of the art performing system
for GAN generated images detection. Firstly they generate a large corpus
of fake images using five different GAN networks. These images are
then used paired with real ones to make a CNN based architecture learn
discriminative features, which are then extracted from internal layers
of the network through the training process. These features are then
fed to another small CNN to distinguish deceptive images from genuine.
Their method significantly outperforms other state of the art fake image
detectors. As shown in Figure 3.2 other deepfake detection techniques
can be grouped in the fake video category. The latter is the category in
which this work falls for the deepfake recognition part. More precisely,
we apply techniques that look for temporal features across video frames.

We can also notice from the literature that early works based their dis-
crimination methods on identifying unnatural physical behavior patterns
while recently deepfake detection is trending towards deep learning-based
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techniques and automatic feature extraction [15].
Yang et al. [107] exposed some 3-dimensional inconsistencies of fake

videos. Considered deepfakes are created by merging the synthesized
central face region into the original image. This introduces errors that
can be revealed when estimating 3-dimensional head poses from the face
images. They base their technique on supposing the synthesis algorithm
not to guarantee that the original face and the synthesized face have
consistent facial landmarks. Those are locations on human faces corre-
sponding to essential structures such as eyes, nose, and mouth tips. The
work compares head poses estimated using all facial landmarks and those
estimated using only the central region of the face. For real faces, the two
estimated head positions will be close. For deepfakes, since the central
region is from the synthesized face, the mismatch of landmark locations
between original and generated images will lead to more significant dif-
ferences between the two estimated head poses. The proposed classifier
is a Support-Vector Machine (SVM), a supervised classifier. Those cal-
culated differences in estimated head poses are used as a feature vector
to feed the model providing successful results.

In 2018, Li et al. [108] revealed unnatural eye blinking patterns in
synthetically generated videos and exploited these findings to propose
a discriminative method. Landmarks were used in this work as well
to identify and align faces during data preprocessing. Faces alignment
allows extracting rectangular portions from the images containing the
eyes without distortions. These framed image sequences are fed to a
CNN based on VGG pre-trained model to extract image features. The
proposed system also learns the temporal features of the sequences with
an LSTM layer. A fully connected MLP closes the classification pipeline
providing the final binary classification with good results.

In a 2019 work funded by Google, Microsoft, and the Defense Ad-
vanced Research Projects Agency, Agarwal and Farid [22] highlighted
that this kind of fake media occasionally contains spatio-temporal glitches.
However, these glitches are not a reliable method to detect fake media as
they are continually being reduced, and it is reasonable to expect that
with the methods and technique evolution, those glitches will be elim-
inated. They base their work on politicians’ images as they were one
of the first categories to suffer from malicious deepfake forgery due to
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their exposition and accessible collectible video data. This simplified the
training accuracy of deep learning tools and thus creating believable fake
videos. Their work uses handcrafted facial-head features extracted with
OpenFace [109, 110, 111] a well-known computer vision tool. They ex-
tract 190 features every 10 seconds of video for each subject, real or fake,
and use them as vectors to feed an SVM classifier. The results are inter-
esting for multiple reasons. They showed how correlations between facial
expressions and head movements could distinguish a person from other
people and deepfake videos of the person itself. They showed robustness
to video compression compared to pixel-based detection methods. They
found their low-level descriptors approach is vulnerable to contexts in
which the person is speaking. Their dataset is prepared, with speak-
ers filmed in formal environments with the subject looking directly into
the camera. Live interviews are much more difficult to generalize on as
subjects can look off-camera, they move more, and lightning changes fast.

Recently, Bonettini et al., in [25] studied the ensembling of different
trained CNNs to detect facial manipulations. They train four CNN mod-
els to detect manipulated videos over Faceforensics++[112] and Deepfake
Detection Challenge dataset (DFDC) datasets and compare results with
a baseline network. The article show that the ensemble of networks which
make use of attention layers and siamese training leads to promising de-
tection results. They report superior average scores compared to the
baseline on test sets of both dataset. The performances of the four en-
sembled nets led the work results to top 3% on the leaderboard computed
against the public test set of the DFDC challenge.

We find in [26] by Hosler et al. a similar to our work approach to
deepfake detection. They use emotion predictions to detect inconsisten-
cies in emotion conveyance on both speech and faces of the DFDC [113]
dataset. While we use the discrete model to define emotions, the work
is bases its definitions on valence and arousal dimensions. Using LSTM
networks they predict emotions from audio and video LLDs of the SE-
MAINE [92] dataset. Predicted emotion in time is used to classify videos
as authentic or deepfakes. They show experimentally that the proposed
system is able to discriminate between real and deepfake videos with
accuracy values of up to 99.5%.

Another way to correctly spot deepfakes is watermarking. The cur-
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rent ideas are to integrate watermarking and hashing tools into devices
that people use to make digital content. This way, multimedia content
could contain immutable metadata like time and location of creation.
This integration is difficult to implement, but one of the most exciting
ways could be blockchain technology. In [114] Hasan et al. provided some
promising results for this direction exploiting the technology property of
creating unchangeable blocks of metadata.

3.4 Conclusive Remarks

In this chapter we provided an overview of state-of-the-art methods re-
lated to the problems of emotion recognition from speech and video, and
deepfake detection. In the next chapter we will formally define the prob-
lem tackled in this work, and we will provide all the technical details
behind the proposed solution.



4
Method

In this chapter, we formulate the problem we tackle in this work. This
consists of a deepfake detection system based on well-established concepts
inherited from the automatic emotion recognition field adapted to the
problem at hand. Here we describe the proposed architecture and provide
all the details about it.

4.1 Problem Formulation

Given a target video signal y our goal is to estimate whether it is real or
fake. Therefore, we want to assign y a class C with

C ∈ {Real,Fake}. (4.1)

We consider as Real those videos that recorded real humans acting or
speaking and have not been altered to change the identity of the de-
picted person in terms of visual appearance or voice. We consider as
Fake the videos that have been generated or altered with some synthesis
technique. As explained in Section 3.3, the main methods used for syn-
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Figure 4.1: The architecture of the proposed system.

thesis are GANs and Deepfake Autoencoders (DFAEs). In this work, we
consider fake videos generated with both techniques. In fact, our method
estimates the class to which y belongs based on semantic characteristics
of both its acoustic and visual components, which have to be intrinsically
different between the two classes. Therefore, our approach aims to be
sufficiently general to provide a correct class estimation for each type of
deepfake synthesis algorithm.

4.2 Proposed System

Figure 4.1 shows the architecture of the proposed system. It is composed
of two pipelines, one for each of the signal components, namely the audio
track and the visual component. Both pipelines exploit findings from the
automatic emotion recognition field. In particular, the system is based
on the idea that emotional features can be extracted from both the audio
and visual components of an input video. Then, we can use these features
alone or combined together to detect whether a video is fake or not. The
whole system is based on the idea that deepfake techniques can hardly
synthesize high-level aspects such as human emotions in a natural way.

In the following, we provide more details about each block of the
proposed method. Whenever some empirical choices have been made to
select some proposed pipeline parameters, these are justified by a series
of tests, as shall be clear from the forthcoming experimental chapter.



Chapter 4. Method 32

4.3 Audio Pipeline Description

Regarding the audio analysis, we consider short time windows of the in-
put speech signal s(t). From each window, we extract a set of acoustic
LLDs (details about the specifically used ones shall be described in Sec-
tion 4.7.1). Given a time window swin(t) of the speech signal s(t), we call
SMILE(·) the feature extraction process and we define the LLD speech
features vector as

LLD = SMILE(swin(t)). (4.2)

Considering multiple time windows extracted from the speech time-series
s(t), we obtain the time-series LLDs(t) by stacking single LLD vectors,
whose length depends on how many windows are selected. Formally,

LLDs ∈ RM×K (4.3)

with M being the number of LLD vectors for each time segment and K

being the number of extracted features. For speech emotion recognition,
we implement an LSTM-based model. The LSTM architecture we found
having the best performances on the emotion recognition task is made
of two stacked long short-term memory layers with dropouts connected
to two stacked dense layers. We call it LSTMI. We feed the LSTMI

with labeled LLDs matrices and we train it on five emotion classes. We
discuss the labeling problem more in detail in Section 4.9.

From the trained network we extract vectors that we call speech emo-
tional features, EMOs, from the videos of which we want to infer the class
C. The dimensions of each emotional vector are

EMOs ∈ RM×N , (4.4)

where N is a parameter that depends on the shape of the neural network
we want to use, as described in Section 4.6, and M is defined as previously
in equation 4.3. More formally, we can define EMOs vectors as

EMOs(t) = LSTMI(LLDs(t)) (4.5)

where LSTMI(·) is the trained speech emotion recognition model. Each
video is labeled according to the class from which it came from. Finally,
they are passed to the deepfake classifier, that is the last stage of the
system described in Section 4.5.
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Figure 4.2: 3DCNN model implemented in [16].

4.4 Video Pipeline Description

The first steps of the video pipeline are frame acquisition and processing.
For every input utterance (refer to Section 4.9 for a deeper explanation
of the method) we extract the video frames and perform preprocessing to
make them fit the dimensions requested by the network. Depending on
the dataset we are working on, this procedure could be slightly different,
as we will see in Section 4.6. Now we present the network architecture
we implemented to let the reader understand the further steps of the
pipeline. We implemented the same 3-Dimensional Convolutional Neu-
ral Network (3DCNN) structure presented by Ji et al. in [16] and we
optimized it for our task parameters. This model extracts features from
both the spatial and the temporal dimensions by performing 3D convo-
lutions, thereby capturing the motion information encoded in adjacent
frames. The structure of the original system can be seen in Figure 4.2.

As they propose, we pass from three color Red, Green, Blue (RGB)
channels to one Black and White (BW) and we reduce the dimensions
of each frame. Following the paper, for all the frames we compute the
gradients along x and y dimensions, and x and y optical flows. Then, we
create the map vectors we feed the 3DCNN with the frames concatenated
to their gradients and opt-flows. We refer to these as MAP vectors. A
formal description of their shape is

MAP ∈ RH×W×N , (4.6)

where H and W are the height and width of each map respectively and
N is the number of feature maps per vector. We feed our 3DCNN model
with MAP vectors and we train it on five emotion classes.
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From the trained video emotion recognition model, called 3DCNN(·),
we extract vectors of what we call video emotional features, EMOv, from
videos of which we want to infer the class C. Formally

EMOv(t) = 3DCNN(MAP(t)). (4.7)

where EMOv(t) is the images-derived time-series and

EMOv ∈ RM×N , (4.8)

where M and N are defined as in equation 4.5. We label these video
emotion features accordingly to the class of the video they were taken
from and pass them to the last stage of the system.

4.5 Deepfake Detection Stage

Following the problem formulation we gave in Section 4.1 we need our last
classifier to discriminate correctly between two classes. In this section, we
present the two different classification models we experimented with and
the two different modality fusion methods we used for deepfake detection.

4.5.1 Classification models

The first classification model we present is a LSTM neural network we
refer to as LSTMII. From both pipeline in fact we receive time-series
describing emotion evolution in a considered video, being its speech
part EMOs(t) or the visual part EMOv(t). For reasons we gave in Sec-
tion 2.1.1, this kind of RNN is the preferred architecture when dealing
with this kind of data. Therefore, we receive vectors in the correct format
and there is no need for further processing. We feed them to the LSTMII

and train it to discriminate between the two labels in C: Real and Fake,
on both modalities separately.

The second model we present consists of several classifiers. As we
will later describe in Sections 4.6 and 4.7 and, we train multiple classi-
fiers simultaneously on data received from pipelines. Then, for a later
fusion stage, we consider the one that performed better in the classi-
fication task. As exhaustively described in Section 4.7 for this second
approach, we are required to reduce the dimensionality of our data. For
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each emotion time-series we receive, being it EMOs or EMOv, we com-
pute 3 statistical moments: mean, variance, kurtosis and combine them
in a one-dimensional vector we refer to as EMOstat, with

EMOstat ∈ RQ (4.9)

where Q = M · 3 and M is the same of equation 4.5.

4.5.2 Types of fusion

We can unify the two pipelines with two different criteria. One method is
to combine EMOs(t) and EMOv(t) time-series corresponding to the same
video. Starting from these data, we label the new vector accordingly to
the time-series label and feed it to our final classifier, which predicts the
class C. We call this feature-level fusion.

The second strategy is to predict the class for each EMOs(t) and
EMOv(t) separately and then combine the prediction results. Predictions
are probability values returned by the last stage classifier, of a video y

being Real or Fake. The final score associated with each video is simply
computed as the average between the scores given by models on the two
modalities separately. We call this decision-level fusion.

4.6 Method Implementation

In this section we provide the implementation details and used parame-
ters of the techniques described in Sections 4.3, 4.4 and 4.5. For the sake
of clarity, we will exhaustively describe the tools and datasets used for
the work in separate sections later in this chapter.

4.6.1 Audio pipeline setup

We now refer to the setup we used to implement the methodology de-
scribed in Section 4.3.

The first step is to acquire audio descriptors from the considered
speech signal s(t). To do this, we use OpenSmile extraction toolkit (see
Section 4.7.1) [115]. We extract 130 audio descriptors for each time win-
dow swin(t) = 10ms of the s(t) signal, thus generating (100, 130) vectors
per second. For our experiments, we considered a time context of 3
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Figure 4.3: A typical IEMOCAP frame.

seconds. Therefore, our LLDs matrices have dimensions (300, 130). To
enable the feature-level fusion in the last stage of our system, we select
the 300 LLD vectors from time regions individuated by timestamps re-
turned by the video pipeline frame extraction. OpenSmile time resolution
is higher than the frames per second rates of clips on which we performed
emotion recognition and deepfake detection. This sub-sampling allows
a consistent extraction of emotional features between modalities. The
sampled LLDs matrices are passed to the LSTMI network. As described
in detail in the experiment chapter, we find that the best architecture
comprises 6 layers. The first LSTM layer is made of 64 units and is fol-
lowed by a dropout layer. The second has 32 units and is followed by a
dropout layer as well. 32 is also the dimensional input space of the first
fully connected layer. The final one is a 5 neurons dense layer, allow-
ing the 5 class discrete emotion classification. Speech emotion features
defined in equation 4.5 are extracted by the first fully connected layer,
thus generating (300, 32) dimensional EMOs vectors, which we pass to
the last stage of the system.

4.6.2 Video pipeline setup

We are now referring to Section 4.4 implementation setup.
The two used datasets (see Section 4.8 for further details) contain

videos with different frame dimensions. IEMOCAP [87], the dataset
used to perform emotion recognition, has frames which dimensions are
480x720, width and height respectively, and display both actors speaking
in black-contoured windows. An unprocessed IEMOCAP frame can be
seen in Figure 4.3. The first step we need to implement is to acquire
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Figure 4.4: A typical DFDC frame.

video information just from the most relevant frame section. By dataset
design the subject on the left is considered as the main speaker and the
one monitored by IEMOCAP’s instrumentation setup [87]. Therefore,
we crop the frame to consider just the visual information from the left
window. Then, we extract the subject’s face from this cropped frame us-
ing BlazeFace [116], a tool for face detection we describe in Section 4.7.2.
From our experimental campaign we found the optimal frame reduction
dimensions to be 80x60. On the other hand, DFDC clips, the dataset
we used for deepfake detection [113], display one actor per frame facing
the camera in a 512x512 window. A typical DFDC frame can be seen in
Figure 4.4. We directly apply BlazeFace to these frames and perform the
aforementioned dimensional reduction on bounding boxes that BlazeFace
selects for each face.

We now proceed to describe the operations performed by the 3DCNN
model we implemented. It is based on the one proposed by Ji et al.
in [16]. For the sake of clarity, we advise to refer to Figure 4.2 as it helps
to understand the architecture we will now describe. They propose 7 as
the optimal number of the frame to consider per input vector. Our exper-
imentation found 7 to be the best performance, allowing the number of
adjacent frames to consider for our emotion recognition task. Therefore,
every 7 frames, we compute their gradients along x and y dimensions
obtaining 14 additional feature maps, and their x and y dimensions op-
tical flows obtaining 12 more. Thus, independently of the dataset, MAP
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vectors defined in equation 4.6 in Section 4.4 have dimension (80, 60, 33).
For each MAP vector, we apply 3D convolutions with a kernel size of

7x7x3. 7x7 in the spatial dimensions and 3 in the temporal dimension on
each channel separately: frames, x-gradients, y-gradients, x-optflows, y-
optflows. Two sets of different convolutions are applied at each location,
obtaining two 23 feature maps vectors as in the considered article. Our
spatial dimensions are now 74x54. In the following layer, we apply 2x2
average 3D pooling on each feature map, leading to the same number of
feature maps with a reduced spatial resolution of 37x27. Next, we apply
another 3D convolution layer with a kernel size of 7x6x3 on each of the five
channels in the two sets of feature maps separately. We apply six different
filters, leading to six distinct sets of feature maps, each containing 13
feature maps. The next layer is a 3x3 average pooling. We apply it
on each feature map, from which we obtain the same number of feature
maps with a reduced spatial resolution of 10x7. We perform convolution
only in the spatial dimensions at this point. The convolution kernel size
used is 10x7, so that the sizes of the output feature maps are reduced to
1x1. Then, we apply 32 filters to obtain the same output dimensional
space of the feature extraction layer of the LSTMI architecture described
in Section 4.6.1.

Video emotional features are extracted from this convolutional layer,
obtaining (300, 32) dimensional EMOv vectors. The architecture is closed
with a 5 neuron dense layer for the discrete emotional recognition task
on IEMOCAP dataset.

4.6.3 Fusion stage setup

The first model we presented in Section 4.5.2 is LSTMII. The architecture
that provides the best classification results on our input data is composed
of four layers. The first is a 32-units LSTM one, as we want the model
to learn temporal cues from the time evolution of features EMOs(t) and
EMOv(t) we are passing to it. After dropout, we applied two fully con-
nected layers. The first is composed of 8 units and the second has 2,
because of the binary nature of the deepfake detection task. The second
approach is based on classical machine learning models, built and trained
with Lazypredict [117]. A powerful tool was chosen for its ease of use
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and versatility. See Section 4.7.3 for further details. As mentioned in
Section 4.5.1, we need to reduce the dimensionality of our data to work
with this tool. We perform this by computing mean, variance and kurto-
sis for each of the 32 columns of emotional features matrices, obtaining
96-dimensional EMOstat vectors. On our data, we found the best per-
forming model being LGBM classifiers (details about the model shall be
described in Section 4.7.3). When we fuse modalities feature-level, we
combine EMOs and EMOv matrices horizontally, passing from (300, 32)
to (300, 64) vectors. This way, each row contains both acoustic and vi-
sual emotional information extracted from the same signal time-segment.
We can now directly feed these (300, 64) vectors to our LSTMII deepfake
classifier, or process them as explained and feed Lazypredict’s models.
When fusing the two pipelines decision-level, we compute the average
between the scores returned by models on the two modalities separately.
This way, we can combine LSTMII predictions with Lazypredict’s and
choose the best performing combination of the two, as we will describe
in detail in the forthcoming experimental chapter.

4.7 Used Toolkits

In this section, we give a description of tools we used for the implemen-
tation of our method, and the motivations for their usage. First, we de-
scribe the toolkit we used in the audio preprocessing step of the pipeline.
Later, we describe the tool we used in last stages of our video experi-
mental campaign, we analyze this experiment in Section 5.4.4. Finally,
we illustrate a tool we implemented for the last stage of our system.

4.7.1 OpenSmile

Frequency domain information, which is very important for human per-
ception of sound and speech, is not readily available from raw, time-
domain audio signals. Consequently, the signal processing community
has crafted many low-level features useful for speech processing. We de-
scribe these in detail in Section 3.1. We remind we refer to these as Low
Level Descriptors (LLDs). In this work, for audio analysis, we extract
LLDs using OpenSmile [115]. It is an open-source, C++ implemented
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software, developed by audEERING [118], for automatic extraction of
features from audio signals. "SMILE" stands for "Speech and Music In-
terpretation by Large-space Extraction". OpenSmile gathers a vast pool
of feature extraction algorithms from the speech processing and music
information retrieval communities. Because of this, it is one of the most
used toolkits in both sectors. The software can extract different fea-
tures with a time resolution of 10 milliseconds, allowing real-time and
commercial applications. We exploited this capability as we described in
Section 4.6.1.

Table 4.1: List of features extracted by OpenSmile with the Com-
ParE2016 configuration [17].

4 energy related LLD Group
Sum of auditory spectrum (loudness)
Sum of RASTA-filtered auditory spectrum
RMS Energy, Zero-Crossing Rate

prosodic
prosodic
prosodic

55 spectral LLD Group
RASTA-filt. aud. spect. bds. 1-26 (0-8 kHz)
MFCC 1-14
Spectral energy 250-650Hz, 1k-4kHz
Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9
Spectral Flux, Centroid, Entropy, Slope
Psychoacoustic Sharpness, Harmonicity
Spectral Variance, Skewness, Kurtosis

spectral
spectral
spectral
spectral
spectral
spectral
spectral

6 voicing related LLD Group
F0 (SHS & Viterbi smoothing)
Prob. of voicing
log. HNR, Jitter (local & δ, Shimmer (local)

prosodic
voice qual.
voice qual

In this work, we use the set of descriptors provided by the so-called
ComParE2016 configuration [119]. OpenSmile can operate in different
configurations, developed for the many research competitions where the
toolkit serves as a benchmark. This configuration in particular, was
developed for the Interspeech 2016 Computational Paralinguistics Chal-
lenge, an open challenge dealing with states and traits of speakers as
manifested in their speech signal’s properties. We extract features from
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three different LLD categories, described in Section 3.1, for a total of
130 descriptors: 65 descriptor and their 65 first temporal derivatives.
Table 4.1 shows the complete feature list in detail.

4.7.2 BlazeFace

Since we focused on facial features for both our video emotion recognition
architecture and deepfake detection task, we needed to cancel out as
much environmental noise as possible from frame images. Namely, we
had to process every frame to extract faces. A first attempt was made
to implement a hand-crafted, static crop on the considered images. This
technique was prone to misalignments and noise-capture as subjects in
frames move concerning the camera shot, exposing the background of the
environment in which the recording took place. Therefore, we needed
to accurately and dynamically focus our feature extraction process on
faces contained in frames. To do this, we used BlazeFace [116]. It is a
face detector recently developed by Google. It was designed for efficient
face detection via smartphone cameras. Because of this, it is fast and
computationally light. The tool is based on a Single Shot Detector (SSD)
architecture, specifically modified and optimized to exploit small GPUs
capabilities. BlazeFace is at the present moment the best performing tool
for real-world applications, namely between the frameworks that run on
everyday devices [120]. It predicts the face bounding box from camera
shots with an average accuracy of 98.61% and runs very fast: up to 1000+
frames per second on flagship devices [116]. We applied the tool to every
IEMOCAP and DFDC clip, extracting and saving bounded face images
detected in frames, before processing them as described in Section 4.6.2.
Two bounding box predicted by BlazeFace can be seen in Figure 4.5.

4.7.3 Lazypredict

As previously mentioned in Section 4.5.1, one of the approaches we used
for the last stage of our system comes from classical machine learning.
We exploit Lazypredict [117] capabilities. This python package allows
building many classical machine learning models at once. From its re-
sults, it is possible to understand which model works better for the input
data it is fed with. The data vectors we receive from both pipelines need
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(a) An interpolated bounding
box from IEMOCAP.

(b) An interpolated bounding
box from DFDC.

Figure 4.5: Bounding boxes predicted by BlazeFace.

another step of processing to work rightly with it. Now we are going to
describe it. In both pipelines we generate a (300, 32) vector for every
audio and video frame as previously mentioned in Section 4.6.3. To cor-
rectly pass data to Lazypredict, we need a dimensionality reduction. To
do this without loss of data information, we exploit our vectors’ statisti-
cal characteristics. For every column of EMOs (defined in equation 4.5)
or EMOv (defined in equation 4.7) matrices we receive, we compute three
statistical moments: mean, variance and kurtosis. Obtaining for every
emotion feature matrix a 96-dimensional vector we can feed to Lazypre-
dict coupled with the corresponding label. The best performing model
Lazypredict returns for EMOs matrices classification is a Light Gradient
Boosting Machine (LGBM) classifier. We will use its predictions in the
decision-level fusion approach. It was created by Guolin Ke at Microsoft
in 2016 [121]. It is designed to be light, to use low memory resources
and to be capable of handling large-scala data. As all gradient boosting
techniques, it produces a prediction model in the form of an ensemble of
weak prediction models, typically decision trees. Firstly, builds a model
with the boosting method, i.e. generates models consecutively giving
more and more weight to the errors made in previous models. Then, it
generalizes them by allowing optimization of an arbitrary differentiable
loss function. It is now one the most successful Machine Learning (ML)
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algorithms.

4.8 Used Datasets

This section presents the datasets that we used for the training and
evaluation stages of both the discrete model emotion recognition and
deepfake detection tasks.

4.8.1 IEMOCAP

In this work, we trained emotion classification models on IEMOCAP, "in-
teractive emotional dyadic motion capture database" [87]. Dyadic stands
for the characteristic of the dataset of being recorded with couples dia-
logues. The database contains performances of ten actors: 5 males and
5 females. Age and genders are significant aspects of databases, as the
quality of data affects the recognition performances. The actors were
asked to perform selected scripts with explicit emotional content. Sub-
jects were also asked to improvise dialogues in hypothetical scenarios for
a total of approximately 12 hours of content. We focused on the impro-
vised dialogues. We considered them to elicit more genuine emotions,
allowing a better generalization capability of our video and audio mod-
els, although making the emotion recognition task more difficult. This
leverages the underlying idea of this thesis that emotion inconsistencies
in videos are correlated with synthetic manipulations. We planned to
apply trained emotional models to DFDC dataset.

IEMOCAP performances, both scripted and spontaneous, were recorded
with cameras, microphones and markers on face, head and hands. Ini-
tially designed to target anger, sadness, happiness, frustration and neu-
tral state, IEMOCAP labels also include disgust, fear and surprise. Dur-
ing the dataset creation, it became clear that those 5 initial classes were
too poorly descriptive of the sentimental states elicited by the actors from
a human point of view. The most present emotions are, however: happi-
ness, sadness, neutrality, anger and frustration. In the present work, we
trained the system on the following classes: neutrality, anger, happiness,
sadness and a fifth category grouping all other emotions in the dataset.
This is because the first four emotions are among the most common emo-
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tional descriptors found in literature [122]. We also followed previous
works of IEMOCAP’s designers, Busso and Narayan [123, 124, 125, 126],
and remained consistent with prior IEMOCAP research [127]. The latter-
is the article from which we started building our speech emotion recog-
nition models.

IEMOCAP, along with audiovisual and gesture content for each per-
formance, contains labeled dialogues transcriptions. These are divided
in utterances, which were evaluated in their emotional content by six
selected evaluators [87]. Its content is divided into five folders, one for
a dyadic session. For our experiments, we used improvised content from
every folder.

4.8.2 DFDC

For our deepfake detection work, we used a subset of the Deepfake De-
tection Challenge dataset (DFDC) [113]. The full dataset contains ap-
proximately 120, 000 clips, of which, 100, 000 are labeled as Fake, and
the rest as Real. Videos are sourced from 3, 426 paid actors and actresses
speaking in various settings and lightning for roughly 15 minutes each.

Fake videos in the dataset were created with different approaches,
most of them with DFAE and three different GANs. The set of mod-
els selected was chosen to cover some of the most popular video faking
systems when the dataset was created. In addition, some approaches
with less realistic outcomes were included in order to represent low-effort
deepfakes. These refer to techniques that compute facial landmarks on
the source and target images, then morph pixels from the source image to
match the landmarks in the target one. However, the number of videos
per faking method is not equal. The majority of face-swapped videos
were created with the DFAE architecture. This choice was made when
creating the dataset to reflect the distribution of public deepfake videos.
Several of these varieties, on genuine and synthetic clips, were designed
explicitly by the database builders. They aimed to make it possible for a
detection model trained only on DFDC to generalize on real “in-the-wild”
deepfakes.

Coming to DFDC structure, clips are divided into 50 folders, num-
bered from 0 to 49. Each comprehends a set of Real videos, along with
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all derivative Fakes. While videos are largely visual-based fakes, some of
them in divisions 45 to 49 contain falsified audio in addition to possible
falsified video frames. To create a dataset for our experiments, we con-
sidered the 10 seconds-long clips within folders 45 to 49 that contained
both faked video and audio, for a total of 6, 848 videos.

4.9 Signal Segmentation and Labeling

This section describes the labeling and segmentation criteria we have
mentioned in this chapter during the explanation of the implemented
method.

We remind that we performed emotion recognition and deepfake de-
tection on two different dataset: IEMOCAP and DFDC respectively.
IEMOCAP’s video and utterance lengths vary widely in the time range,
while our DFDC subset has fixed signals durations of 10 seconds. In
order to allow consistent applications of our models to both dataset, we
have to set labeling criteria valid for the two different data formats. We
implemented two ways of extracting 10 seconds long time fragments from
IEMOCAP and two ways to label these. We found one of the combina-
tions to give better classification results as described in Section 5.4

IEMOCAP is provided with dialogues transcriptions indexed by ut-
terance names and timestamps. Each utterance is associated with eval-
uating its emotional content under the hypothesis that the expressed
emotion is stable for the length of the utterance itself. The labeling is
done by six different evaluators who operated independently. Each utter-
ance emotional content is estimated by three of them to add consistency
to the dataset. To extract audio and video frameset from each video
segment, we require a match between at least two of these evaluations.
We extract the correspondent labels well. A visual representation of the
process is given in Figure 4.6.

The first proposed audiovisual vectors extraction is to only consider
those utterances that are at least 10 seconds long. This led to a scarcity
of data, as these required utterances occur rarely in IEMOCAP, which
has an average utterance duration of only 4, 5 seconds. The classification
trials with these inputs give in fact poor perfomance for every proposed
model both video and audio as shown by the experiments in Section5.3.1
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Figure 4.6: Visual representation of IEMOCAP labeling process.

and 5.4.1. We then relaxed the time constraint to one second. Shorter
utterances in IEMOCAP contain single words or exclamations. We con-
sider these occurrences as non-optimal and noise-inducing for our chosen
emotional classes. We propose to: extract vectors with this new time con-
straint from every utterance labeled as we currently require, per video;
subsequently, for every actor, aggregate all extracted vectors with the
same label to 10 seconds long clusters of audiovisual samples. Our goal
is to extract emotional information from signals. Basing ourselves on an
intuitive understanding of emotions and supporting our claim with Ek-
man’s et al. studies [60, 128, 95, 61], Frick’s [74] and other recent findings
resumed by Vankudre et al. in [14] and by Sidorov et al. in [129], we
can sustain that the same cross-cultural emotions are characterized by
and are detectable with the same audio features and visual cues. On
the other hand, DFDC contains real and face-swapped clips labeled as
Real or Fake respectively. There are no multiple evaluations, so there is
no need to check if the labeling is consistent. Extracted acoustics and
visual vectors are labeled consequently. There is also no need to process
its clips further, as all the signal segmentation we previously described
for IEMOCAP was designed to respect our DFDC’s subset data format.
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4.10 Conclusive Remarks

In this chapter, we have formally addressed the problem tackled in this
thesis and reported the proposed scheme for its solution. Then, we gave
the implementation details of the system we adopted and provided de-
scriptions of the tools we utilized. In the following chapter, we define
metrics we used for our experiments evaluations then we show their re-
sults.



5
Metrics, Experiments and Results

In this chapter, we provide all the details related to our experiments. We
present metrics and training parameters we used for experimental valida-
tion. We introduce all the performed experiments, describing each setup
in detail, dividing between emotion recognition and deepfake detection
tasks.

5.1 Metrics

To evaluate the performances of our experiments, we adopt different met-
rics. The emotion recognition task is a multiclass classification problem,
while deepfake detection has a binary nature. They differ conceptually
as binary classification problems refer to those situations where just two
classes are present: True and False. On the other hand, multiclass classi-
fication problems describe situations with more than two labels. In both
cases, the task is to classify data labels correctly. Balanced accuracy is
a metric valid for both problems, as we will describe, there is no con-
ceptual difference for the two balanced accuracy definitions apart from



Chapter 5. Metrics, Experiments and Results 49

a slightly difference in the formal formulation. We now introduce the
concepts of True Positive Rate (TPR) and True Negative Rate (TNR)
to define it. TPR, commonly called recall or sensitivity, is defined as the
ratio between the true positive and the total amount of positive samples,
i.e.

TPR =
TP

TP + FN , (5.1)

where TP are the true positives and FN are the false negatives (i.e., pos-
itive samples detected as negatives). The TNR, or specificity, is defined
as the ratio between the true negatives and the total amount of negative
samples, i.e.

TNR =
TN

TN + FP , (5.2)

where TN are the true negatives and FP are the false positives (i.e., neg-
ative samples detected as positives). For a binary classification problem
we can now define Balanced Accuracy (BA) as the average between the
TPR and TNR, namely

BA =
TPR + TNR

2
. (5.3)

To give a simple multiclass BA definition, we can call mn the num-
ber of samples belonging to the class n and rn the number of correctly
predicted samples belonging to the same n class. Having this, with N

number of classes, we can write

BA =
1

N

N∑︂
i=1

(︃
rn
mn

)︃
, (5.4)

giving this metric a sort of generalized formulation. In our experiments,
N = 5 for the emotion recognition task and N = 2 for deepfake detection.
In the last case the two BA definitions coincide. The balanced accuracy
metric is helpful for concisely evaluating the system’s performance with
a single scalar value. The definitions of TPR and TNR rates can also
be visualized and described with another metric we use, the confusion
matrix. For N classes, the confusion matrix is a table with N rows and N

columns. Binary and multiclass classifications confusion matrix structure
differ as multiclass is a generalized form of the binary one. For the sake
of clarity here we describe both structures. In the binary classification
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context, for deepfake detection, the structure we adopt is[︄
TN FP
FN TP

]︄
, (5.5)

where we consider as negatives, clips that are labeled as Real and posi-
tives those labeled as Fake. In a multiclass context, the confusion matrix
structure we adopt is more complex. The table is a square matrix where
the correct predictions are shown on the main diagonal. All the errors
are outside it. We compute each class’s TP, TN, FP and FP values sep-
arately, following the main diagonal. A visual example is given below,
considering N = 3 classes, where each TP value indicates the considered
class. ⎛⎜⎜⎝

TP FN FN
FP TN //
FP // TN

⎞⎟⎟⎠
⎛⎜⎜⎝

TN FN //
FP TP FP
// FN TN

⎞⎟⎟⎠
⎛⎜⎜⎝

TN // FN
// TN FN
FP FP TP

⎞⎟⎟⎠ (5.6)

We compute the TN, FP and FN values of each class by summing
the corresponding TN, FP and FP values related to the other classes.

Another metric we adopt for binary classification performance eval-
uation is the Receiver Operating Characteristic (ROC) curve [130]. The
ROC curve is created by plotting the TPR against the False Positive Rate
(FPR) at various probability threshold settings. The FPR is defined as
the ratio between the false positive and the total amount of negative
samples, having

FPR =
FP

TN + FP . (5.7)

Or, in a more immediate formulation

FPR = 1− TNR. (5.8)

ROC curves allow visualizing relevant characteristics for classification
tasks, being the comparison of the two aforementioned important oper-
ating characteristics. A key scalar parameter to correctly read a ROC
curve is the Area Under the Curve (AUC). It is equal to the probability
that a classifier will label a randomly chosen positive instance higher than
a randomly chosen negative one [131]. An AUC equal to 0.5 corresponds
to random guesses, whereas an AUC equal to one corresponds to the per-
fect classification model. The ROC curve is a standard metric in machine
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learning for evaluating the performance of binary classifiers. Moreover,
plotting multiple curves on the same graph provides an immediate graph-
ical comparison between different evaluation setups or techniques.

5.2 Training Parameters

Both feature extraction and classification stages are data-driven. Hence,
training stages are required for every implemented model. We have
trained the Speech Emotion Recognition (SER) system following the
specifics proposed in [127]. This means that, for the SER training alone,
we performed feature extraction on audio tracks. We normalized each
signal between −1 and 1. Specifically, we have used the improvised dia-
logues from the IEMOCAP dataset of which we considered the classes of
Anger, Happiness, Sadness, Neutral. We then considered a last class we
called Other for every other label in the dataset. Called N the number
of classes, we have N = 5. Since IEMOCAP is divided into 5 dialogue
sessions containing different actors, we have selected different sets of ses-
sions for training and testing phases of our models to let our results re-
main speaker-independent. Following the specifics in [127], we generally
trained our models on the first four sessions and tested them on the fifth
session. We have used Adam optimizer with learning rate lr = 3 · 10−4

and categorical cross-entropy as loss function.
In our system, the SER network acts both as an emotion estimator

and a feature extractor for subsequent tasks. We present the input vec-
tors and feature vectors dimensions in each experiment separately. As
we will show in Section 5.3 those were occasionally changed empirically,
according to the best-obtained performances. The train sets have been
balanced with the repetition of samples belonging to classes with lower
cardinalities. This produces an increase in classification performance at
the inherent expense of generalization. Despite this, we decided to carry
out this process as the classification results obtained on the test sets
are still good. Referring now to the video emotion recognition task, we
remained consistent with the training criteria we used for the previous
model. We implemented the network for the task subsequently to the
SER one. We have used the improvised dialogues from the IEMOCAP
dataset considering the same classes mentioned above. We obtained the
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best results for emotion prediction using Adam optimizer with a learning
rate lr = 2 · 10−4 and categorical cross-entropy as loss function. Spec-
ularly to our SER network, our video model acts both as an emotion
estimator and a feature extractor. We will present input vectors and
feature vectors dimensions while describing the relative experiments.

For deepfake detection task we used a different dataset. We consid-
ered a subset of the DFDC, composed by its folders from 45 to 49. For
every experiment we performed for this task, we divided it as follows:
sessions 45, 46, 48 combined as the training set, session 47 to validate
our model and session 49 to test it. When we refer to it simply as DFDC
we are still implying this implemented split. For the LSTM classifier we
implemented for classification we used Adam optimizer with a learning
rate of lr = 4 · 10−4 and categorical cross-entropy as function. From now
on, when it is not specified otherwise, we will refer to Balanced Accuracy
(BA) simply as accuracy.

5.3 Speech Emotion Recognition Results

In this section, we describe in detail the SER experiments we conducted
and provide their results. To be consistent with prior research on IEMO-
CAP we begin implementing Tripathi et al. models [127].

5.3.1 Experiment I

The first model proposed in [127] is a fully connected MLP with 1024,
512, 256 hidden neural units. It is fed with feature vectors of size (100,
34) for each 10 seconds utterance. With ReLU as activation function and
4 output neurons with softmax they achieve 0.506 accuracy on the four
classes of: Anger, Happiness, Sadness and Neutral. They use the first 4
IEMOCAP sessions as their train set and the last one as test set.

We implemented the same network architecture and setup to repli-
cate the article performances and have a first speech emotion classifier.
With the same time constraint of 10 seconds, we extract (100, 39) fea-
ture vectors per utterance. We obtain features using OpenSmile in the
so-called EmoBase2010 configuration. With this setup, we achieved 0.334

balanced accuracy on the same 4 classes. It is worth noticing that the
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Table 5.1: List of features extracted by OpenSmile with the
EmoBase2010 configuration [17].

1 energy related LLD Group
Loudness as normalized intensity prosodic
32 spectral related LLD Group
MFCCs (0-15)
logpower of 8 Mel-frequency bands (0-8kHz)
8 LSP frequencies derived by 8 LPC coeffs.

spectral
spectral
spectral

6 voicing related LLD Group
F0 (SHS & Viterbi smoothing)
Jitter (local & δ), Shimmer (local)
Prob. of voicing

prosodic
voice qual.
voice qual

two sets of extracted features differ, especially as we do not focus on the
chromagram-based ones. The paper mentions 13 Mel Frequency Cepstral
Coefficients (MFCC), 13 chromagram-based features and 8 spectral fea-
tures: zero-crossing rate, short-term energy, short-term entropy of energy,
spectral centroid and spread, spectral entropy, spectral flux, spectral roll-
off. Table 5.1 provides the complete list of features we extracted in our
implementation. We point out that, at this stage, we do not apply any
normalization process. We also highlight that the implemented model is
computationally heavy.

5.3.2 Experiment II

In this experiment we want to achieve better emotion estimation accu-
racy on IEMOCAP’s audio tracks. To do this, we refer to the second
speech emotion recognition model proposed in [127] which was reported
as having higher performances of 0.5132. We implement a LSTM network
based on the one described in the article. Our goal with this architecture
is to infer time dependencies in the signal that a MLP architecture would
not have learned. We already provided a description of the implemented
model in Section 4.6.1. It is the one we refer to as LSTMI. Compared to
the architecture we used in the experiment 5.3.1, we also reduce the num-
ber of trainable parameters by more than a factor of 10, thus reducing
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computational complexity. To better exploit the LSTM layers capabil-
ity of learning time-dependent characteristics, we collect more descriptor
vectors per second. We now extract 100 vectors per second. This being
allowed by OpenSmile time resolution. We also shortened the time con-
text to 3 seconds. The choice is reasonable as it takes into account the
mean IEMOCAP utterance duration of 4.5 seconds. We then switched to
the previously described ComParE2016 configuration (see Section 4.7.1
for details) to augment the amount of extracted audio descriptors, having
more informative data inputs. We therefore fed our LSTM model with
(300, 130) LLDs vectors. We obtained comparable to the paper results
with 0.54 accuracy on improvised data.

5.3.3 Experiment III

Maintaining the same model of the previous experiment 5.3.2, we added
another emotional class to the problem. A label for every other emotion
recorded in IEMOCAP. The goal is now to augment our model’s emotion
description capabilities to provide more representative characteristics in
time for the later deepfake detection stage. We perform this experiment
to show the performances we obtain with the implemented model on
N = 5 classes.
First implementation.
To obtain more training data, we implemented overlap between time win-
dows we extract features from. From now on, we also scale our features as
mentioned in 5.2 between −1 and 1 values. With a 67% overlap, namely
2 seconds overlap, we obtained 0.557 accuracy.
Second implementation
With the same setup, we implemented a control on provided emotion
evaluations. Each IEMOCAP utterance is labeled by three different eval-
uators. To consider an utterance as valid, we now require at least two
evaluations to be identical. From now on, we implemented this check
step for every experiment conducted on IEMOCAP. We obtained 0.44

accuracy on improvised data, interpreting this fall in recognition rate
with data reduction following the addition of the new constraint.

We now introduce the experiments on video emotion recognition and
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their results for further explanation on the experimental campaign.

5.4 Video Emotion Recognition Results

Here we provide descriptions and results of our experiments on emotion
recognition performed on IEMOCAP’s video tracks. We based our mod-
els on [16]. As we built our image-based system specularly to the speech
one, we needed a single model to act both as a classifier and a feature
extractor. Since we want to collect time-dependent cues, we also need a
model to capture the time dependencies between video frames. 3DCNN
typology was the choice for this task network.

3DCNN based on the work of Ji et al. [16]. CNNs are among the best
architectures for image analysis and though 3DCNNs we can also capture
the temporal information encoded in adjacent frames. For the first ex-
periments, we tried a more straightforward implementation of the model.
We experimented with 2 layers of convolution and tried to pass 300 adja-
cent frames. We used the model to extract visual features directly from
the internal layers of the net.

5.4.1 Experiment I

This experiment aims to show the performances of an architecture pro-
posed for a visual but not emotion-based task to video emotion recogni-
tion. The model presented in [16] performed human action recognition
with good results, 90.2 accuracy on average over 6 classes of actions.
For the first experiment, we implemented a simplified version of the pro-
posed model. Our 3DCNN was composed of a first 3D convolutional layer
with 2 filters, a 3D max-pooling layer for feature dimensions reduction,
a dropout layer, a second 3D convolutional layer with 32 filters and an
output dense layer with 5 neurons. Moreover, at this stage we do not
process frames as described in [16]. We proceeded to the audio pipeline.
We perform classification on 5 classes with the same division of folders.
We check for emotion evaluation consistencies and initially consider a
time constraint for utterances of 10 seconds. Given IEMOCAP’s frames
per second rate of fpsiemocap = 30Hz, with this time context, we feed
the network with vectors of 300 frames from which we obtain promising
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results with over 0.64 accuracy on average. We point out that this result
was obtained with a manual crop on IEMOCAP frames. We pass from
470x720 dimensions to 100x93, basing on the required actor position for
IEMOCAP instrumentation correct recording. We center our crop win-
dow on the center of the left speaker window. It is now essential to
focus on the labeling method, on which we gave a detailed description in
Section 4.9. We label each frame in input vectors individually. By do-
ing this, we discard time information contained in adjacent frames. For
our deepfake detection task, however, we need to correctly model visual
temporal cues of displayed emotions.

5.4.2 Experiment II

For the following experimental setup we changed our labeling method and
maintained unchanged our network model. The goal of this experiment
is to correctly address temporal features of emotional evolutions in time.
We gave a single label for each of the 300 frames vectors we extracted
from 10 seconds time clusters created as described in Section 4.9. With
the usual data division, we obtain 0.52 accuracy on the five classes.

It is now crucial to highlight some experimental passages to provide
further descriptions of the experiments. We extracted speech emotion
descriptors applying the SER model of the third experiment 5.3.3 on
DFDC audio tracks. Its performances were not excellent: 0.54 accu-
racy on available data and 0.44 on the restricted subset. However, bi-
nary classification on the so extracted EMOs(t) time-series in the last
stage obtained good scores with Lazypredict: over 0.88 accuracy on the
two Real and Fake classes. Being the accuracies of this experiment ar-
chitecture and the one considered for speech tracks comparable on the
same dataset, we extracted EMOv(t) time-series from this model. This is
based on the hypothesis that similar behavior was possible for the video
pipeline, being the two pipelines constructed specularly. Given this, we
extract visual emotion time-series from DFDC video tracks and classify
them. We obtain low classification results. The best Lazypredict classi-
fier performs to 0.52 accuracy. Implementing an LSTM model to better
address temporal information, the one we refer to as LSTMII, we obtain
a flat 0.5.
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At this point, we tried to extract EMOv(t) time-series from the same
3DCNN model. Still, we changed the activation function for the convolu-
tional layer from which we extract feature vectors, moving from a softmax
function to the tanh function used in the article. With this new configu-
ration, performances of both emotion recognition and deepfake detection
tasks raise. We obtain 0.64 accuracy for emotion recognition and over
0.52 accuracy for both deepfake classification approaches. Encouraged
by the new results on the emotion recognition task, we implemented the
exact 3DCNN structure proposed in [16].

5.4.3 Experiment III

This experiment aims to adapt the exact 3DCNN model for human action
recognition to video emotion recognition and show its performances. We
give a detailed description of the model used for this experiment and its
frame processing method in Section 4.6.2. With the new frame processing
required for the network, we remove the time constraint and start labeling
each MAP vector, defined as in 4.6, with the utterance label the frames
to process are taken from. From our experimentation, we find 7 to be
the optimal number of adjacent frames to consider. We manually crop
IEMOCAP frames from 470x720 to 110x95, centering our crop window
on the center of the left speaker window. We obtain the best results by
reducing cropped frames to 80x60 dimensions with bicubic interpolation.
We report that this configuration is memory demanding so, we reduced
our training set to the first two IEMOCAP sessions. We test our model
on the fifth.

5.4.4 Experiment IV

This experiment aimed to show the performance of video emotion recog-
nition with our implemented model and less memory demanding setup.
Our approach to frame extraction changes as we apply BlazeFace face de-
tection on each IEMOCAP frame. From now on, for every video-related
task, we will use this face detector toolkit. With the software, we extract
and save the face bounding boxes the tool predicts. We reduce them to
the same 80x60 dimensions of the previous experiment with bicubic inter-
polation. We group and process 7 frames at a time, labeling them as in
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the previous experiment. With this configuration, we train our 3DCNN
model. We obtained good classification results using the first three ses-
sions as the training set and the fifth as the test set. We provided some
examples of BlazeFace-extracted faces in Section 4.7.2, Figure 4.5.

5.5 Deepfake Detection Results

Here we give results and details of the experiments we conducted for
deepfake detection. To discriminate between altered and genuine videos,
we use both their audio and visual components. Separately as a first ap-
proach, combined as a second. EMOs(t) and EMOv(t) are the time-series
representing the evolution in time of the emotional content of considered
videos. We label both emotional components in every (300, 32) matrix
we extract from emotion recognition networks.

5.5.1 Audio Deepfake Detection

The following experiments have been performed to show our perfor-
mances on deepfake detection considering only the emotional features
obtained by audio tracks. To classify DFDC’s EMOs(t), we use a LSTM
resembling the one implemented for the SER task. We refer to it as
LSTMII. The architecture that gives the best performances is composed
of: a 32 filters LSTM layer, a dropout and two dense layers. The first
with 8 neurons and ReLU activation function and the last with 2 and
softmax for its binary classification task. Referring to the division of
the folder we mentioned in Section 5.2, this model discriminate between
Real and Fake videos with accuracies up to 0.5838. We compared this
result with the Lazypredict multiclassification approach, obtaining the
best accuracy of over 0.882 with its best model, an LGBM classifier.

As we can see in Figure 5.1 LSTMII recognize more accurately fake
videos than real ones using speech emotion features. However, the LGBM
classifier overall performance is better.

5.5.2 Video Deepfake Detection

We conducted this set of experiments to obtain the performances on
deepfake detection considering only video tracks. We obtained the best
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(a) Discrimination performed with
LSTMII classifier.

(b) Discrimination performed with
LGBM classifier.

Figure 5.1: Confusion matrices comparison for deepfake detection based on
audio.

classification results using EMOv(t) as descriptors, was 0.57 accuracy for
both LSTMII model and the best performing Lazypredict classifier, which
was a Support-Vector Machine (SVM) for this modality. We followed a
new approach to tackle this problem since the recognition rates with
video emotion features were low even when extracting them from our
best video emotion recognition network. We applied the 3DCNN model
directly to DFDC videos without generating any feature. We utilized it
as a mere binary classifier. To do this, we substituted the output layer
with 5 neurons and softmax of the 3DCNN video emotion recognition
network with a layer of 2 neurons layers with softmax. We trained it
directly on DFDC clips using the same folder division we used for the
audio experiments. With this approach, we achieved average accuracies
slightly below 0.83, with a minimum of 0.8242 and a maximum of 0.8304
By doing this, we are no longer considering emotions.

To take emotion classification into account, and therefore the emotion
characteristics of DFDC clips, we tackled the problem with a new ap-
proach. We used the IEMOCAP trained 3DCNN model and re-trained
it on DFDC. We took the trained model and substituted its 5 neuron
output layer with a 2 neuron dense layer. We processed DFDC frames
as described in Section 5.4.4. By doing this, we are no longer extracting
speech and visual cues from the same time regions. We have feature-level
decoupled audio and video discrimination systems. With these double
training stages, we say the network is taking emotions into account. This
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(a) Discrimination performed with
3DCNN model directly applied to DFDC.

(b) Discrimination performed with
3DCNN model with re-train stage.

Figure 5.2: Confusion matrices comparison for deepfake detection based on
video.

configuration obtains accuracies slightly above 0.83, with a minimum
value of 0.8296 and a maximum of 0.8341.

As we can see from Figure 5.2 the two models perform very similarly
on the same data. However, the double-trained 3DCNN model has a
moderate edge over the other approach.

5.5.3 Bimodal Deepfake Detection

This set of experiments was conducted to show our performances when
combining the two classification modalities in a bimodal approach. At
first, we implemented a feature-level fusion with both classification mod-
els. We combine each (300, 32) EMOs and EMOv matrix horizontally,
into (300, 64) feature matrices. For both classification approaches, we
obtain that one of the feature sets dominates the other. With Lazypre-
dict classifiers, we obtain the exact results of the audio modality alone,
0.88. With the LSTMII model we obtain the same classification results
of the video modality alone 0.57.

We implemented the decision-level fusion by computing the average
between the classification scores given by models on the two modalities
separately. We can do this with different model combinations. For a vi-
sual representation of the results, we refer to bimodal confusion matrices
given in Figure 5.3.

We achieve accuracies of:

• 0.8284 with LSTMII and emotion-considering 3DCNN;
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(a) Bimodal detection performed
with LSTMII and emotion-considering
3DCNN model.

(b) Bimodal detection performed with
LSTMII and 3DCNN model trained only
on DFDC.

(c) Bimodal detection performed with
LGBM classifier and 3DCNN model
trained only on DFDC.

(d) Bimodal detection performed with
LGBM classifier and emotion-considering
3DCNN model.

Figure 5.3: Confusion matrices comparisons for different decision-level fusion
approaches.

• 0.8304 with LSTMII and emotion-independent 3DCNN;

• 0.9503 with LGBM classifier and emotion-independent 3DCNN;

• 0.9532 with LGBM classifier and emotion-considering 3DCNN;

These results shows how combining modalities is a valid approach to
deepfake detection with our system. Bimodality allows achieving better
performances compared to single modalities. In particular, the approach
with LGBM classifier and the double trained 3DCNN model combined
give, on average, our best results with a reasonable margin over that
obtained with LGBM combined to the emotion-independent 3DCNN.
Plots in Figure5.4 of the respective ROC curves gives some more insights
on these decision-level fusions. They show how well the LGBM classifier
performs compared to the LSTMII model in classifying EMOs(t) time-
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(a) Bimodal detection performed
with LSTMII and emotion-considering
3DCNN model.

(b) Bimodal detection performed with
LSTMII and 3DCNN model trained only
on DFDC.

(c) Bimodal detection performed with
LGBM and 3DCNN model trained only
on DFDC.

(d) Bimodal detection performed with
LGBM and emotion-considering 3DCNN
model.

Figure 5.4: ROC curve comparisons for different decision-level fusion ap-
proaches.

series. They also show how the bimodal approach is better compared
to single modalities. The ROC curves of the best unimodal approaches
are always very similar to the bimodality one. This is expected, as it
indicates that the best performing unimodal approach gives a significant
contribution to the overall performance. We can also see that in the
worst case bimodality enhances the probability of rightly predicting a
class, being it Real or Fake, by 2.3%.

5.6 Conclusive Remarks

In this chapter, we analyzed the results of the set of conducted exper-
iments to evaluate the proposed system’s different components. While
some of the experiments did not excel in their task, we remained consis-
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tent with performances mentioned by the paper we followed. Moreover,
the results of the experiments gave an overall positive response to the
proposed approach. In particular, the last bimodal combination evalu-
ated in 5.5.2 performs with reasonable accuracies.

The next chapter summarizes the work done and provides some pos-
sible future works to expand it further.



6
Conclusions and Future Works

The advancements of AI-based technologies allow believable multime-
dia manipulations. In a society as connected as ours, with the pervasiv-
ity of connected devices and social media importance in communication
nowadays, the need for controls over shared media entity and origin is as
delicate as necessary. Diffusion of realistic altered contents and fake news
pose severe threats to both society and the individual. Moreover, these
AI-based techniques evolve as rapidly as they spread. In this scenario,
it is no surprise that the number of deepfake related publications raised
almost 6 times between the years 2018-2019 and again by more than 3
times between 2019 and 2020.

In this work of thesis, we proposed a system to discriminate between
genuine and synthetic media. We tackled our goal as a binary classifica-
tion problem. The system is based on two main pipelines based on audio
and video components of multimedia content. The first one exploits
state-of-the-art Speech Emotion Recognition (SER) techniques to per-
form emotion recognition on speech signals. It later extracts emotional
features from clips of which we want to infer the nature. The second one
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is a video emotion recognition-based pipeline, built specularly to the first
one, from which we obtain both emotion predictions based on visual cues
and video emotion features for further deepfake detection. The pipelines
are fused in a further classification stage as we use extracted emotional
features to discriminate between real and fake videos. We experimented
with two kinds of fusion: feature and decision-level. The latter giving
promising results achieving balanced accuracy up to 0.9532. However,
many improvements may still be implemented to improve the proposed
methodology further.

Classification performed with speech content alone gives better results
than the video modality. We can read this result in two ways. The first
conclusion we can make is that audio techniques are more effective for
this task. The second could be that when creating a deepfake, more effort
is put on creating the video more than its audio content. Thus visual
content could be more accurate and refined, making detection based on
visual manipulation more difficult. Given this, the first suggestion goes
in the direction of strengthening the emotion recognition models. The
networks could be upgraded with attention layers for both modalities to
enhance the semantic quality of learned features. The video model could
individuate, for example, critical facial regions for emotion conveyance
and focus on them in the training phase.

Another improvement on the SER model could be implementing bidi-
rectional LSTM layers to obtain a better understanding of the considered
time context. By this, extracted speech features could be more infor-
mative. Another way to improve the informative content of extracted
characteristics could be to consider additional classes in the Emotion
Recognition (ER) task. This could be done by leveraging the idea of
generalizing the semantic content of collected emotion features.

The network models could also be strengthened by working on their
parameters. It could be implemented automatic research of the hyper-
parameters. At this point, the task could be optimized by analyzing the
sensitivity of the models as the latter varies.

Moreover, based on the proposed system, an interesting experiment
could be to implement a fusion stage for the two emotion recognition
pipelines. This would not influence the deepfake recognition perfor-
mances but could provide good results for the ER task. As we did for



Chapter 6. Conclusions and Future Works 66

deepfake detection, this fusion could be performed both feature-level and
decision-level.
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