
Master thesis

Master of Science in Space Engineering

School of Industrial and Information Engineering

Real-Time and On-Orbit
Inspection Trajectories Based On

Artificial Intelligence

Author:
Alejandro de Miguel
Mat.number:
918897

Supervisor:
Dr. Mauro Massari

Co-Supervisor
Michele Maestrini

24th November 2021

"To confine our attention to terrestrial matters
would be to limit the human spirit."

-Stephen Hawking

Abstract

On-Orbit inspections are one of the most complex types of missions
while, at the same time, they are of vital importance as their proper

execution is a key enabler for other types of missions (e.g. rendezvous
and docking, on-orbit refuelling, space debris removal...). In addition, the
increasing number of spacecrafts and satellites operating in space makes the
current manual mission design procedure untenable. Therefore, there is a
growing interest in developing new automated and optimised methodologies
able to design efficient on orbit trajectories.

Some methodologies have been developed over these last years, but,
even though they do a good job in computing efficient orbits, they are
not well suited for real-time decision making and on-board implementation.
These two last characteristics are of paramount importance. By removing
the need of computing the trajectories in the ground segment and sending
them back to the spacecrafts, vehicles would become fully autonomous in
this regard, making decisions based on their current situation and relieving
the ground segment workload. In turn, the operating cost of missions would
be decreased while at the same time the safety, efficiency and success rate
of said missions would increase.

This master thesis presents and successfully implements a sampling-
based receding-horizon inspection algorithm that will be fed into a Neural
Network in order to train it, so that it is able to solve on-orbit inspection
optimal trajectories. The novel idea is to take advantage of the Neural
Network’s fast computation capabilities so that, instead of a complex, slow
algorithm that needs many computational resources; a trained, fast and
light Neural Network implemented in the on-board computer can be in
charge of the inspection strategy.

Keywords: Artificial Intelligence; Machine Learning; Neural Networks;
Deep Learning; Cyclical Learning Rate;On-Orbit Inspections; Guidance;
Real-Time; Motion Planning; Sampling-Based Motion Planning; Receding
Horizon; Relative Motion; Heuristic Mesh Refinement.

iii

Sommario

Le ispezioni in orbita rappresentano uno dei più complessi tipi di missione,
ma, allo stesso tempo, sono di vitale importanza dato che la loro corretta
esecuzione è vitale per altri tipi di missione (e.g. rendezvous e attracco, ri-
fornimento in orbita, rimozione di detriti spaziali?). Inoltre, il crescente nu-
mero di satelliti che operano nello spazio, rende insostenibile l’attuale design
di missioni manuale. Perciò, esiste un crescente interesse nello sviluppare
metodologie automatiche ed ottimizzate capaci di progettare efficientemente
traiettorie in orbita. Nel corso degli ultimi anni sono stati sviluppati dei
metodi, ma, nonostante siano capaci di calcolare orbite efficienti, queste non
sono adatte a prendere decisioni in tempo reale e ad essere implementate a
bordo. Queste ultime due caratteristiche sono di fondamentale importanza.
Rimuovendo la necessità di calcolare le traiettorie nelle stazioni a terra e
rinviarle alle spacecrafts, i veicoli diventerebbero completamente autonomi
da questo punto di vista, prendendo decisioni basate sul loro attuale stato
e alleggerendo il carico di lavoro delle stazioni a terra. Di conseguenza, il
costo operativo delle missioni diminuirebbe e, allo stesso tempo, aumenter-
ebbero la sicurezza, l’efficienza e il tasso di successo di queste missioni.

Questa tesi magistrale espone un algoritmo sampling-based receding-
horizon inspection che alimenterà una Rete Neurale in modo da allen-
arla affinchè possa effettuare l’ispezione in orbita di traiettorie ottimali.
L’obiettivo finale è di trarre vantaggio dai rapidi calcoli della Rete Neurale
così che, invece di un algoritmo lento e complesso che necessita di molte
risorse computazionali, un’istruita, veloce e leggera Rete Neurale imple-
mentata sul computer di bordo possa essere incaricata del processo di de-
cisione dell’ispezione.

v

Acknowledgments

"Es de bien nacido ser agradecido" reads a famous saying in Spain. I would
like to follow this wise advice in the following.

Gracias, to my whole family, in Earth and Heaven, for your love and
your encouragement in all the decisions I have made to this moment. With
this thesis I would like to pay you back, at least a little bit, all the sacrifices
you have made to allow me to get this far, and to thank you for supporting
me and loving me no matter what.

Gracias, to all my friends of Certosa, too many to mention individually.
You all were a family to me during this time far from home, and I am
thankful for all the experiences, trips, parties and day to day moments I
have spent with you. We have already demonstrated that our friendship
will continue through the years, and I hope to see you all soon to celebrate
that I finally finished this thesis that we joked so much about.

Gracias, to my roommates of Casa di Federica: Aitor, Alicia, Jero,
Migue, Rafa. I am still amazed about how many memories and good mo-
ments those walls could contain. You all are one of the most brilliant people
I have ever met, in every way possible, and I admire you a lot. I cannot
think about better people to spend a lockdown with, we can repeat the
experience whenever you want.

Grazie, Milan, for exceeding my expectations and giving me two of the
best years of my life. This unfortunate pandemic time that I have lived
here is not able to blur all the good moments that I lived in your parks,
piazze and streets. Also, grazie to all the italian people I have met during
these two years, especially to Andrea, Mattia and Federico, for letting me
practise my italian with you and for considering me as one of you, I hope I
see you soon.

Grazie, Mauro and Michele for guiding me through this thesis and
providing me with your expertise.

vii

List of Abbreviations

Abbreviation Meaning Chapter
OOI On-Orbit Inspection Introduction
GNC Guidance, Navigation and Control Introduction
OCP Optimal Control Problem Introduction
APF Artificial Potential Function Introduction
MPC Model Predictive Control Introduction
ML Machine Learning Introduction
AI Artificial Intelligence Introduction

ANN Artificial Neural Networks Introduction
NMT Natural Motion Trajectories Introduction
RRT Rapidly Exploring Random Trees Introduction

SBMPO Sampling Based Model Predictive Optimisation Introduction
ECI Earth Centered Inertial Relative G&C

SBMPC Sampling Based Model Predictive Control Inspection
FOV Field of View Inspection
NMPC Nonlinear Model Predictive Control Inspection
DFF Deep Feed Forward Artificial Intelligence
RNN Recurrent Neural Network Artificial Intelligence
GNN Genetic Neural Network Artificial Intelligence
MSE Mean Squared Error Artificial Intelligence
MAE Mean Absolute Error Artificial Intelligence
MSLE Mean Squared Logarithmic Error Artificial Intelligence
CLR Cyclical Learning Rates Artificial Intelligence
CM Cyclical Momentum Artificial Intelligence
WD Weight Decay Artificial Intelligence
SGD Stochastic Gradient Descent Results

ADAM Adaptive Moment Estimation Results
ReLUs Rectified Linear Units Results

ix

Contents

Abstract iii

Sommario v

Acknowledgments vii

List of Abbreviations ix

Contents x

1 Introduction 1
1.1 Motivation. 3
1.2 State of the Art. 4

Flight demonstrations, challenges and future work. 6
1.3 Selected Inspection algorithm and Artificial Neural Network

type. 7

2 Relative Guidance and Control 9
2.1 Introduction. 9
2.2 The Optimal Guidance Problem. 10
2.3 Equations of motion. 10

Relative motion dynamics 11
Target attitude motion. 11

2.4 Integration of equations . 12

3 On-Orbit Inspection 13
3.1 The Inspection Problem . 13
3.2 Problem Statement . 14
3.3 Challenges and constraints 16
3.4 Observation Model . 16
3.5 Planning Algorithm . 18

Mission design . 18

x

Inspection legs . 19
Algorithm Routine . 20
Scoring . 22
Heuristic Mesh Refinement 23

3.6 Precision vs. Computational time Trade Off 24

4 Artificial Intelligence 27
4.1 Introduction to Artificial Neural Networks 27

Selected type of learning . 29
4.2 Types of Neural Networks 29

Selected Neural Network . 30
4.3 Loss Functions . 31

Selected Loss Function . 32
4.4 Hyper-parameter optimisation 32

Batch and On-line training comparison 33
Cyclical Learning Rates for Neural Network Training 35
Super-convergence . 37
Cyclical Momentum . 38

4.5 Regularisation . 38
Weight Decay . 39
Dropout . 39
L1 and L2 . 40

5 Results 41
5.1 Inspection implementation results 41
5.2 Database . 44

Database Generation . 44
Pre and post processing the database 46

5.3 Design and Architecture . 47
Neurone type . 47
Optimiser . 47
Initialisation methods . 49
Architecture . 51

5.4 Hyper-parameters choice . 52
Learning rate range test . 52
Cyclical learning rate . 53

5.5 Regularisation . 55
5.6 Neural Network Predictions 55

Comparison NN vs. Inspection Algorithm 55

6 Summary, Conclusion and Future Work 57

xii CONTENTS

6.1 Summary . 57
6.2 Conclusion . 58
6.3 Future Work . 61

Neural Network type . 61
Hyper-parameter optimisation 61

List of Figures 63

List of Tables 64

Bibliography 65

Chapter 1

Introduction

"The secret of success is to do the common thing uncommonly well."
-John D. Rockefeller Jr

On-orbit inspections (OOIs) refer to a specific type of mission in which a
spacecraft—called chaser or deputy—orbits within the vicinity of an-

other spacecraft or body—called target or chief—with the goal of observing
and inspecting it, by means of some inspecting instruments (see Figure 1.1).
The nature and requirements of the mission depend of many variables, but
the most influential one is the target’s ability to cooperate—which means
that it would be able to control its own trajectory or attitude—. For non-
cooperative, uncontrolled tumbling spacecrafts or bodies, OOIs become one
of the most challenging space missions, as it will be the case for this thesis.
To complete a mission of this kind, it is necessary to compute a trajectory
that brings the chaser spacecraft as close to the target as it is needed—
depending on the inspection instrument constraints—and under the right
conditions; prioritise the safety of both the chaser and the target; and ex-
ecute it in the minimal time possible and with minimal fuel consumption.
These are the main objectives of the inspection guidance and control.

It is convenient to start by properly defining some important concepts.
Guidance is the process of planning and determining a desired trajectory,
in terms of both translation and rotation of the spacecraft. Of course this
involves the computation of control forces and torques so that the trajectory
can be executed properly. On the other hand, control—more precisely,
feedback control—keeps the spacecraft close to the given trajectory. This
is done by receiving navigation updates to guide the control actions in
presence of disturbances, instrument noise and model uncertainties. The
sum of these actions in the context of two close orbiting bodies, is referred to
as relative GN&C (relative guidance, navigation and control). It constitutes

1

2 CHAPTER 1. INTRODUCTION

one of the pillars of on-orbit inspections, as the relative motion between two
close bodies dominates in these types of scenarios.

Today, OOIs are mostly designed from ground and then sent to the in-
spector. This, in contrast with fully automated, real-time OOIs has several
disadvantages that will be later discussed. Especially, due to the increas-
ing number of satellites in orbit, the automatisation processes in space is
becoming more and more necessary in order to keep a sustainable growth.

This is where machine learning (ML) comes in. Traditionally, OOIs
algorithms have been computationally expensive, since they have to find
the optimal solution for a complex problem with many degrees of freedom
in a very limited time—and with the surge of small satellites and CubeSats,
also with a very limited computational capability—. The introduction of
machine learning, more specifically artificial neural networks (ANNs), will
reduce the computational burden by taking advantage of their ability to
learn the underlying basis of complex problems and speed the computations
up, so that automated, real-time inspections algorithm can be successfully
implemented in the space environment, with all the advantages that this
implies.

Figure 1.1: On-orbit inspection scheme. Chaser and target orbits are rep-
resented in an inertial reference frame.[1]

1.1. Motivation. 3

1.1 Motivation.
The goal of this thesis is to provide an efficient, autonomous and real-
time on-orbit inspection method by mixing together the best state of the
art inspection methods and the low computational costs of machine learn-
ing. Autonomous relative guidance represents a key technology enabler
for the future of space industry. Multitude of different space disciplines,
such as planetary entry, descent and landing (EDL); close proximity oper-
ations (rendezvous and docking, on-orbit refuelling, space debris removal
and sample returns); scientific exploration (mapping and analysis of celes-
tial bodies or debris) or autonomous inspection and servicing (AIS), depend
on this technology (see Figure 1.2).

Figure 1.2: Examples of spacecraft proximity operations. Left: Rendez-
vous and docking. Middle: AIS. Right: Mapping of asteroid
[2].

In fact, NASA’s Office of the Chief Technologist and the National Re-
search Council published a report entitled "Restoring NASA’s Technological
Edge and Paving the Way for a New Era in Space" with a set of vital tech-
nologies to address the needs for the next generation of space programs. In
the chapter TA04 "Robotics, Tele-Robotics, and Autonomous Systems"[3],
one of the high-priority technologies is "Relative Guidance Algorithms",
the basis of on-orbit inspections.

Despite its importance and high-priority, real-time autonomous relative
guidance systems have not yet been developed or they are in the very early
stages of research and testing. The guidance problem can be represented
as an optimal control problem (OCP) that must be solved numerically, and
the solution algorithms to this problem should be:

• Robust: if a feasible solution exists, it should be optimal.

4 CHAPTER 1. INTRODUCTION

• Real-time: the algorithms should be executed in a reasonable amount
of time. This reasonable time will depend on the mission nature and
computation capabilities.

• Verifiable: must be possible to analyse the performance and robust-
ness of the algorithm.

in order to achieve a good degree of autonomy [4]. The autonomy capability
for a spacecraft, especially when operating close to other objects or bodies,
is essential for the success of future missions. Very often in space, remote
control is not possible due to the delay of signals, which have to travel long
distances (e.g a 26 minute delay to Mars). Also, with the recent increase in
space commercialisation and consequently, the increase of objects in space,
manual ground guidance and control will become difficult, unpractical and
expensive, which makes this methodology untenable and calls for a more
independent, automatised procedure. In addition, autonomy will directly
increase the robustness and reliability of missions by reducing risks and
human errors.

Another trend that supports autonomy and real-time capabilities is the
usage of CubeSat and nanosats. This type of satellites, which have gained
popularity over the last few years, are not equipped with big computation
systems due to their obvious size and weight limitations. Therefore, they
will also get directly benefited from low computational cost algorithms.
This is where machine learning comes into play.

Machine learning is an application of Artificial Intelligence (AI). It
uses algorithms based on statistics to find patterns in (usually) enormous
amounts of data (numbers, images, words...).

Machine learning is an extensive field, it comprehends many different
techniques and disciplines such as: Nearest-Neighbour Classifiers, Artificial
Neural Networks (ANN) or Decision Trees or Evolutionary Algorithms (EA)
among others.

1.2 State of the Art.

As it was briefly introduced before, the main challenge that autonomous
spacecrafts face is solving the guidance and control problem with accurate
dynamics and a constrained computational time.

Some successful techniques capable of dealing with autonomous space-
craft manoeuvring are:

1.2. State of the Art. 5

• Apollo Guidance: it comprehends the guidance techniques developed
by NASA during the Apollo Program. These classical techniques
served as the basis for other standardised modern guidance techniques.

• Artificial Potential Functions (APF): a collision-free trajectory is cre-
ated by guiding the spacecraft according to "forces", result of the
gradient of potential functions. This functions are designed to be
"attractive" towards the goal and "repulsive" to the obstacles. A lim-
itation of this method is getting trapped in local minima (there are
APFs with no local minima called navigation functions, but comput-
ing them is as hard as solving the whole planning problem).

• Model Predictive Control (MPC): it is a feedback law based on the
iterated optimal solution. It uses a dynamic model f and the cur-
rent state of the spacecraft as initial condition. Thus, it optimises
the propagated or predicted state response over a finite-time horizon.
However, when solved, only the initial segment is actually used, after
which the process is iterated again until it converges to the goal. Be-
cause of this renewal over an updated horizon the MPC is also called
receding horizon or moving horizon optimal control. Some important
advantages of this method is its capability to handle, time pointwise,
states and constraints; to withstand time delays; and to reconfigure
in the presence of failure modes.

• Mixed-Integer Linear Program (MILP): this solvers are used for simple
cases, when treating with linear dynamics and discrete decision vari-
ables, often together with a MPC to include simple logical constraints
(e.g mode switching and collision avoidance).

• Motion Planning Algorithms: they generate decision sequences to
safely guide a vehicle from an initial state to a target state (or goal).
It is a well studied type of algorithms, so its framework is general
enough to be applied to different types of vehicles (robots, rovers and
spacecrafts)

Each technique has its advantages and disadvantages. When dealing with
time-varying constraints (debris, other spacecrafts), logical modes (e.g. safety
modes) and real-time operations (i.e due to time limitations, tradeoffs
between feasibility and optimality have to be taken) the previous techniques,
except motion planning, fall short. In contrast, motion planning has proven
to be an effective solver for complex real-time kinodynamic problems, such
as the proximity operations one. In addition, it can be used in many scen-
arios due to its geometric modelling independence and the possibility of

6 CHAPTER 1. INTRODUCTION

implementing differential constraints and robustness verifications. Motion
planning techniques can be classified into two categories:

• Exact or combinatorial: they represent the portion of the config-
uration space occupied by obstacles. This guarantees a solution, if
any exists. Due to computational issues this approach is applied to
low-dimensionality, static environments—not really the case of the
thesis—.

• Approximate or sampling-based: they explore possible paths by sampling
the configuration space. A collision detection algorithm, which can be
designed independently, determines the safety of the manoeuvre. This
allows motion planning to be formulated for any particular model.
The obvious disadvantage is that the existence of solutions cannot be
guaranteed for a finite time.

Due to the requirements of the project, sampling-based methods are the
best fit. Proximity operations are, once again, characterised by complex
dynamics and constraints that this kind of planning algorithms can handle
autonomously.

Despite this, not much work in spacecraft control systems has been
done following this approach, as it is usually related to feasible plans, not
optimal ones, which is particularly important on spacecrafts and space mis-
sions. However, algorithms of this kind that offer some optimality (usually
weak) are currently receiving a lot of attention.

Flight demonstrations, challenges and future work.

FLIGHT DEMONSTRATIONS.
As mentioned before, spacecraft autonomy needs of robust and optimal
control techniques. Even though some progress in autonomous systems has
been made (e.g Mars Curiosity), they are too expensive and too mission-
specific to be implemented in a general, reliable way in other missions or
scenarios. On top of this, many of the existing methods cannot be con-
sidered as fully mature, as some anomalies (or even actual collisions such as
the satellite DART against MUBLCOM satellite [5]) in previous test flights
and mission demonstrations (see [6], [7], [8])suggest. This puts in perspect-
ive the degree of difficulty of these real-time autonomous decision-making
systems.

FUTURE WORK.
The work in [9] proposed an extended linearisation technique, the State-

1.3. Selected Inspection algorithm and Artificial Neural Network type. 7

Dependent Riccati Equation (SDRE), as a new suitable control law for rel-
ative guidance system. Simulation were carried out using real mission data
and including space perturbations to understand its applicability to real
situations. It takes advantage of the Natural Motion Trajectories (NMT)
to orbit around the target and inspect it. However, it does not propose any
inspection strategy—such as what features of the target are observed, dur-
ing how much time or under what illumination conditions—, nor includes
safety.

In [10] two motion planning algorithms are presented, namely Rapidly
Exploring Random Trees (RRT) and Sampling Based Model Predictive Op-
timisation (SBMPO), for two different guidance problems (landing on a
small body by RRT and its observation by SBMPO). It considers two real
mission scenarios to test the algorithms capabilities, the landing of Rosetta
and the observation of Didymain. The validation of these methods is done
by comparing them with classical direct optimisation techniques (e.g direct
collocation, multiple shooting) obtaining that, despite the local optimality
of the direct techniques, the best solutions of the planning algorithms were
more than comparable to the ones from the classic methods, while avoid-
ing the large computational times and parametrisation problems of the last.
They also fulfilled the "high-level" mission objectives (i.e a task that cannot
be directly translated into a predefined trajectory) Lastly, SBMPO included
safety constraints and an observation model (icosahedron) to make sure all
faces were observed at least a minimum time Tobs,min.

1.3 Selected Inspection algorithm and
Artificial Neural Network type.

As it was previously seen, state-of-the-art techniques for autonomous close
operations include Apollo guidance, Artificial Potential Functions and Model
Predictive Control. However, these techniques, although ideal for static
uncluttered environments, are not enough whenever the priority relies on
the optimisation, logical modes (e.g. safety modes) and time-varying con-
straints. In these contexts, a technique originally developed for robotics,
named motion planning technique, has arisen as a promising alternative.
Unfortunately, it is still in the process of being adapted and proven for
spaceflight. The motion planning techniques rely, at the same time on
algorithms like the Sampling-Based Motion Planning to reduce the compu-
tational burden that arises from the complexity of the problem. SBMP al-
gorithms rely on sampling the input space to then construct feasible paths.

8 CHAPTER 1. INTRODUCTION

The idea of sampling the input space and then propagating the feasible
commands is a powerful tool—specially to high-level guidance objectives as
in this thesis case—that has been successfully proven in other works ([11],
[12]).

In this thesis this type of approach will be followed. More precisely,
the inspection algorithm will be based on a receding-horizon trajectory
planning algorithm adapted to passively safe on-orbit inspections [13]. It
is an algorithm based on classic SBMPs, but the trajectory propagation is
made in a receding-horizon manner, rather than the classic search tree.

The details of the proposed algorithm will be explained later on in
Chapter 3.

Everything related to the ANN will be discussed in-depth inChapter 4

Chapter 2

Relative Guidance and Control

"Trust only movement. Life happens at the level of events, not of words.
Trust movement."

-Alfred Adler

2.1 Introduction.

It is useful to briefly define a few concepts that are key in optimal control
and trajectory planning. A state is the set of information that completely
defines, mathematically, the motion of a system. It is usually represented
as a vector x ∈ Rd which can include positions, velocities, masses or other
physical variables. A control is also a set of mathematical variables, but this
time of the variables one can have control over. In other words, they can be
modified to produce a given change in the state. It is usually represented
as a vector u ∈ RNu . They are the inputs of the system, such as actuators,
thrust forces or control torques. Lastly, an objective, often represented as
J , is a measure of the performance of the system. It can be also viewed as
the output of the system.

9

10 CHAPTER 2. RELATIVE GUIDANCE AND CONTROL

2.2 The Optimal Guidance Problem.

A more rigorous expression for the optimal guidance problem would be as
follows:

minimize : J(x(t),u(t), t) = K(x(tf), tf) +

∫ tf

t0

l(x(t),u(t), t)dt

subject to : x(t0) ∈ χ0 Initial Condition
x(tf) ∈ χf Final Condition
ẋ(t) = f(x(t),u(t), t) System Dynamics
u(t0) ∈ U(t) Control Admissibility
x(t) ∈ χ(t) for all t ∈ [t0, tf] Trajectory Feasibility

where x,u have been already introduced, t is time, t0 is the initial time, tf is
the final time, and χ0 and χf are the initial and final state constraint sets. J
is once again the cost-functional (combined with terminal and incremental
additive cost functionals K and l), f defines the dynamics and U, χ are set-
valued maps defining spacecraft control and state trajectory constraints,
respectively.

Due to the existence of system dynamics and constraints, the optimal
problem has to be numerically solved with an optimisation algorithm. If
the problem has to be solved on-board in real-time, the solution algorithm
should have the following characteristics:

1. Robust: given the existence of a feasible solution, an optimal solution
is desired.

2. Real-time implementable: computers should compute the algorithms
in a reasonable amount of time.

3. Verifiable: performance and robustness criteria must be studied and
verified.

2.3 Equations of motion.

When considering OOIs the main focus is the relative orbit or movement
between the chaser and the target. In the following, the selected equations
used for describing the movement of the two bodies—chaser and target—in
orbit around Earth will be briefly presented.

2.3. Equations of motion. 11

Relative motion dynamics

A sufficient approximation for most cases are the Hill’s equations [14],
[15] which written in the Local-Vertical/Local-Horizontal (LVLH) reference
frame look like the followinng:

ẍ = 2ω0ż + ux

ÿ = −ω2
0y + uy

z̈ = 3ω2
0z − 2ω0ẋ+ uz

where u is the chaser control acceleration provided by the thruster; ω0

is the target’s orbital rate; the coordinates x, y and z are the Cartesian
relative coordinates along the V-bar—positive toward the target’s orbital
velocity—; H-bar and R-bar (positive toward the Earth) respectively. These
equations describe accurately the relative motion for very close proximity
operations, assuming a passive target on a circular Keplerian orbit, as in
the case considered during the thesis.

An advantage of the implementation of this algorithm is that any other
type of dynamic equation—such as linear and non linear models— or any co-
ordinate parametrisation—cartesian, curvilinear or relative orbital elements—
can be easily implemented instead, as the governing equations are presented
as a black-box to the rest of the algorithm.

Target attitude motion.

The attitude motion of the target will follow the behaviour of the torque-
free Euler’s equations, which written in the target’s body frame look like
the following:

Jtω̇t = −ωt × Jtωt

q̇t =
1

2
qt ⊗

[
0
ωt

]
where ωt is the angular velocity of the target with respect to an inertial ref-
erence frame; Jt is the target inertia tensor, and qt is the unitary quaternion
describing the attitude of the target with respect to an inertial reference
frame.

In Chapter 3 the choice of the initial angular velocity ωt(t0) and the
initial target’s attitude qt(t0) will be justified and more deeply explained. In
short, they will be randomly sampled from the volume of a sphere of radius
ωmaxt and from the surface of a 4D sphere of unitary radius, respectively.

12 CHAPTER 2. RELATIVE GUIDANCE AND CONTROL

2.4 Integration of equations
The previous differential equations governing the dynamics of the inspec-
tion system have been numerically integrated in order to obtain the time
evolution of the system’s state variables. It will be further discussed in
Chapter 3 and Chapter 5 but because the algorithm has to be executed a
large number of times in order to obtain a good database for the neural net-
work, it is key to optimise the execution time. A big part of this execution
time is spent on the integration of a handful of differential equations—the
target’s attitude, the relative trajectory of the chaser and the target, the
target and chaser orbit with respecto to the ECI frame and the Earth’s
orbit with respect to the Sun—.

Therefore, any improvements regarding the integration speed of the
equations will have a profound effect in the overall speed of the program.
A quick study was carried out in order to compare the different integration
methods available in the Python’s integration package scipy.integrate.solveivp.
The comparison goal was to select the fastest method, but without dis-
regarding the accuracy and stability of the integration. The considered
methods were the default method ’RK45’, ’RK23’, ’DOP853’, ’Radau’ and
’LSODA’. The evaluation of the best method was the result of measuring
the execution time and accuracy for a given scenario over a large period of
time.

The method that best performed and therefore was selected for the thesis
was ’DOP853’. There are other parameters affecting the speed and accuracy
of numerical integrators, such as the relative and absolute tolerance. A
similar test was carried out, concluding that because the inspection time is
not very large (from 1 to 4 hours) the default values of atol = 1e − 6 and
rtol = 1e− 3 were accurate enough and faster that smaller values.

Another trick hat it was implemented during the thesis was to inter-
polate the Earth’s and the target’s orbits. Because the orbits are constant
so that the inspection conditions are similar, the position of the bodies
at different instants can be obtained by interpolating the orbit instead of
recomputing the orbit over and over for obtaining different orbit positions.

So for example, instead of propagating the Earth’s orbit around the
Sun and the target’s orbit around the Earth to compute the relative angle
between the Sun and the target at each instant, a simple—and fast—
interpolation of the sun angle for a given set of desired points yields the
same results as propagating the two orbits for the desired instants of time.
This little change ended up saving hours—and even days—when construct-
ing the database.

Chapter 3

On-Orbit Inspection

"Nature will bear the closest inspection. She invites us to lay our eye level
with her smallest leaf, and take an insect view of its plain."

-Henry David Thoreau

Among the most complex space mission types, such as rendezvous, debris
removal, servicing and refuelling missions, on-orbit inspection could be

considered as one of the most challenging ones, especially when involving a
non-cooperative, tumbling target. The complexity of this type of missions
is related to the high-level objective they propose and the high number of
constraints implicit in the success of the mission (e.g. collision avoidance
and safety, target’s proper illumination conditions, observation instrument
constraints, chaser’s attitude and distance relative to the target...). The
motivation for developing good on-orbit inspection algorithms, trajectories
and strategies comes from the powerful benefits and opportunities that
inspections yield, being the key enabler for carrying out effectively other
types of missions which require of information that can only be extracted
from an on-orbit inspection. The proposed inspection algorithm that will
be explained is based on the work of [13]

3.1 The Inspection Problem
The inspection problem could be briefed as the problem of finding the op-
timal guidance and attitude control (most commonly in terms of time and
fuel) that allows a chaser spacecraft to perform a proper inspection—which
depends on many variables such as illumination, safety or the inspection
equipment constraints (e.g. the field of view, resolution distance, the view-
ing orientation...)—by taking images or other measures of a target space-
craft.

13

14 CHAPTER 3. ON-ORBIT INSPECTION

The applications that come from a good inspection are numerous. In
many scenarios, it is indispensable that a target (either a vehicle or another
orbiting object) is properly inspected by a chaser before being able to ex-
ecute a further proximity operation, especially when the target is unknown,
non-cooperative and/or tumbling uncontrollably in space. Just to name
some fields that are directly benefited of inspections:

• Active space debris removal: the number of space debris orbiting
Earth is growing fast due to the increasing number of launches per
year and the later on-orbit collisions, which just make the number
of space debris grow exponentially. It is an imminent problem that
needs to be tackled as soon as possible. It constitutes one of the main
challenges the space industry has to face [16].

• Unmanned on-orbit servicing (OOS): some initiatives have been suc-
cessful, and it is an active investigated field due to its commercial
appeal.

• Scientific interest missions: in many scientific missions the main goal
is to observe (optically or by other means) a planet, moon, asteroid...
which indirectly involves an inspection trajectory and planning. In
addition to this, other types of mission in which the main goal can
be different (e.g landing, sample collecting..), require of a previous
inspection of a body in order to analyse its most interesting features,
landing sites or atmosphere composition for atmospheric entry for
example.

3.2 Problem Statement

As it was mentioned before, this thesis will study an on-orbit inspection of
a non-cooperative, uncontrolled tumbling vehicle placed on a circular orbit
around Earth. The inspection will be carried out by taking images with a
passive camera installed on the chaser vehicle. The success of the mission
will depend on: the ability to observe certain parts of the target during
sufficient time and under proper conditions; the mission cost in terms of
time and propellant; and last but not least, the safety of both the target
and the chaser. To guarantee the last goal, all eligible trajectories must
be passively safe (i.e their collision probability under anomalies or lack of
spacecraft control must be smaller than a defined safety threshold, which
must ensure that the trajectory is safe for a sufficient period of time so that
ground response can be executed).

3.2. Problem Statement 15

Figure 3.1: Chaser’s body reference frame and configuration of the
thruster, inspection camera and solar arrays.[13]

To further realistically model the inspection mission, vehicle and hard-
ware constraints are considered. In fact, to really test the limits of the
algorithm, a simple but highly constrained model will be implemented.
Figure 3.1 depicts a sketch of the chaser vehicle, where the configuration of
the thruster, camera and solar arrays can be visualised.

The chaser vehicle will be equipped with a single, non-orientable passive
visible camera, which means that, in order to observe a certain feature of the
target, the camera will depend on the relative attitude of the chaser with
respect to the target, on the illumination conditions and on the eclipse
periods. The thrust will be given by a single low-thrust electric engine
that will perform the desired trajectory manoeuvres. The thrust vector is
aligned with the camera boresight axis. Therefore, attitude manoeuvres are
necessary to redirect the thrust vector or the camera axis, depending on the
phase of the mission to be performed. These manoeuvres are performed by
the reaction wheels-based attitude control system and thus, must comply
with the maximum torque and momentum that the reaction wheels can
exert. Lastly, due to power constraints, the engine cannot be used during
eclipses and, in addition, whenever the spacecraft is outside the eclipse,
solar arrays need to maximise solar flux. The solar array drive mechanism
that enables its movement is constrained by a maximum rotation rate that
cannot be exceeded.

16 CHAPTER 3. ON-ORBIT INSPECTION

3.3 Challenges and constraints
The goal for an inspection guidance is to bring the chaser spacecraft as
close to the target as it is needed while consuming minimum fuel and en-
suring safety. This requirements introduce complex, non-convex trajectory
constraints into the optimal control problem. However, they are not the
only constraints that should be considered in an inspection mission. In the
following, relevant examples of inspection constraints will be briefly sum-
marised:

• Instrument Field of View (FOV): it is an important constraint that
depends on the instrument capabilities. It constraints the distance
range between chaser and target, and also the maximum angle at
which a target feature can be observed from.

• Illumination Conditions: not only the target needs to be illuminated
(not in eclipse), but properly illuminated. This constraint has been
introduced by means of an angle β between the viewing direction of
the feature and the Sun direction.

• Power Limitations: usually the operations in a spacecraft are very
limited due to the limited resources in space. Therefore, it can be
interesting to include power limitations during eclipses events so that
no power is available to carry out inspections during these periods.
Also, attitude motion could be considered in order to maximise the
solar flux arriving to the solar arrays whenever possible.

• Actuator Constraints: the mechanical actuators of the chaser can
be easily implemented. For example, a maximum turning angular
velocity for the solar arrays could be included by including θ̇SA ≤ ωmaxSA

• Safety: the chaser must not collide or closely approximate the target
for a given period of time. Uncertainties arising from orbital perturb-
ations, manoeuvre errors or navigation errors are not considered.

3.4 Observation Model
The main goal of the inspection is observing the target . Then, it is useful to
find a way to quantify the mission completion percentage and to discretise
the target area into discrete, observable, interesting features, from which
the target surface could be, for example, reconstructed, or they could also
be important scientific aspects that are desired to be observed specifically.

3.4. Observation Model 17

Figure 3.2: The lines point to the target observable features (faces and
corners of the vehicle) while the cones represent the valid ob-
servation regions for each feature.[13]

Figure 3.2 depicts the selected observable features (the center point of
each face and the vertices of the chaser vehicle) and the observation regions
(cones) that allow a feature to be observed, taking into account the field of
view (FOV), distance and illumination constraints. Each feature is unequi-
vocally defined by a viewing direction, that is, a vector coming from the
feature, normal to its surface.

The quality of the images is preserved if some conditions are fulfilled:

• The distance between the target and the chaser must be limited to
some values: robsmin ≤ r ≤ robsmax

• The angle α, defined as the angle between the viewing direction of the
feature and the relative position vector target-chaser, must be smaller
than a maximum threshold: α ≤ αmax

• The angle β, defined as the angle between the viewing direction and
the Sun direction, must be smaller than a maximum threshold: β ≤
βmax

• The target must not be eclipsed by the Earth during the observation
phase as it would not be illuminated during this period.

18 CHAPTER 3. ON-ORBIT INSPECTION

Now, the inspection mission progress can be quantified by a completion
percentage Mc, given by Equation (3.1):

Mc(t) =
100

np∆Tgoal

np∑
i=1

min(∆Tgoal,∆Tobs,i(t)) (3.1)

where ∆Tgoal is the cumulated time a feature has to be observed for to be
considered fully observed; np is the number of observables features of the
target (depending on the target angular motion, some features may not be
observable); and ∆Tobs,i defines the time a feature has been observed for. It
is easy to interpret that, when ∆Tobs ≥ ∆Tgoal for every observable feature,
the mission completion parameter Mc = 100%, indicating that the mission
has been completed.

3.5 Planning Algorithm

Mission design

Because of the complexity of the high-level inspection requirement, the
problem of finding the optimal trajectory able to completely observe a tar-
get has been reduced to finding the sequence of optimal trajectories (or
inspection legs) that completely observe a target. An inspection leg is, at
the same time, divided into several phases or sequences of events that, ulti-
mately, allow the chaser to observe the target. It is important to highlight
here the receding-horizon behaviour of the algorithm. Each manoeuvre
yields the optimal single inspection leg (computed in a finite time), and
inspection legs are performed until the inspection mission is completed.
Therefore, no a-priori inspection sequences are given to the algorithm, it is
free to choose all the trajectories based on the score it assigns to each leg
(the score function will be later discussed). Of course, in order to compute
which feature can be observed at each time, it is assumed that the attitude
of the target is known—by for example, propagating its attitude dynamics,
knowing its initial attitude conditions at the beginning of each leg, or using
an onboard pose estimation filter— during the inspection leg duration.

However, it is worth to mention that differently to [13], which focus
on computing the sequence of optimal inspection legs that fully observe
a target vehicle, in this thesis the focus will be on computing the single
inspection leg that maximises the number of observed features of a target
vehicle. This distinction is due to the fact that when computing an optimal
sequence of legs, the number of required legs to fully observe a target is
neither known or constant. This is a major drawback when training neural

3.5. Planning Algorithm 19

networks, as they need a constant number of inputs in each training example
to learn from. Therefore, having inspection leg sequences of different sizes
(e.g. having a sequence with 3 legs, another one with 5 legs and so on) is
not really an option. Therefore, the proposed inspection algorithm will be
used as a guideline, but a new single optimal inspection leg algorithm will
be developed in this thesis.

Inspection legs

An inspection leg (see Figure 3.3) comprehends different phases that will
be discussed in the following. An inspection leg starts with:

1) Manoeuvre computation, of duration ∆Tcomp in which the chaser’s
computer onboard computes the trajectory (manoeuvre) that maximices the
observation of the target; 2) Manoeuvre attitude acquisition, of duration
∆Tatt, in which the chaser acquires the attitude that positions the thrust
vector in a way that allows to perform the desired inspection trajectory; 3)
Manoeuvre execution, of duration ∆Tman, in which the engine propulses the
chaser to follow the computed trajectory; 4) Target pointing acquisition, of
duration ∆Tatt, in which the chaser changes its attitude so that the passive
camera can point towards the target; 5) Observation, of duration ∆Tobs,
this is the part of the inspection leg in which the observation can be made.
It is worth to point out that not all this period of time is actual useful
feature observation. As it was explained before, the observation is tightly
constrained to illumination conditions, relative distances or eclipse phases.
Also, notice that the times of each phase can be considered constant, as
they depend on the onboard computer and vehicle capabilities, except for
∆Tman, which depends on the ∆v required to perform each inspection leg,
and ∆Tobs, which depends on the total duration of the inspection leg.

Figure 3.3: Sequence diagram of an inspection leg phases.

In Figure 3.4 a better representation of an inspection leg sequence can be
observed, specially the difference between each phase time. For example,

20 CHAPTER 3. ON-ORBIT INSPECTION

the manoeuvre time is negligible with respect to the full inspection leg
time tleg which makes the impulsive manoeuvre assumption appropriate.
Lastly, note that the inspection leg time is much longer than the other
phases, which of course benefits an inspection mission. It is clear now that
reducing the other phases times—such as the manoeuvre computation—
would benefit directly the observable capabilities of a mission. Another
reason for pursuing real-time on-board decision making.

Figure 3.4: Distance [m] between the target and the chaser during an
inspection leg. The different inspection leg phases are also
highlighted.

Algorithm Routine

The proposed algorithm is a sampling-based model predictive optimisation
(SBMPO) algorithm, inspired by the work of [12], [17], [18], [19], [20] and
[13]. In consonance with the mission goal, the goal of the algorithm is find-
ing the optimal inspection leg that maximise the observation time while
minimising fuel consumption and time duration. This will be done by ex-
ploring the search space of all the admissible legs and selecting the optimal
one. To do so, a leg will be unequivocally defined by its duration and the
∆v needed to execute it: s = [∆vT ,∆Tleg]

T ∈ S. Notice that an admiss-
ible leg will have to belong to the four-dimensional admissible search space
S ⊂ R4 defined as:

S :
{
||∆v|| ∈ [∆vmin,∆vmax] ∪ {0},∆Tleg ∈ [∆Tminleg ,∆Tmaxleg]

}
(3.2)

The question that arises at this point is how the search space exploration
is carried out. It will be performed by a heuristic sampling, initialised ran-

3.5. Planning Algorithm 21

domly at the beginning to be later on guided based on the most promising
zones (the ones with a better scoring of S).

The logic of the algorithm is the following: it is initialised by sampling
ns0 uniform samples within S, which is analogous to sample points uni-
formly from a four-dimension sphere (as the legs are defined in four dimen-
sions, three of them representing the ∆v components, depicted in Figure 3.5,
and the fourth being the inspection leg time). This process is called ini-
tial mesh. Then, each sampled leg is propagated using the correspondent
dynamic equations (discussed in Chapter 2). The next step is scoring each
propagated trajectory following the scoring criteria of the method. It also
useful to discard not valid legs, as it gives a null score to those trajectories
that are not feasible (due to being unsafe, or escape from the target vicinity,
not fulfilling the attitude constraints...). The idea behind the scoring is to
refine the search space based on the previous sampled trajectories. This
will be done by the refine mesh method. Basically it is a heuristic function
to bias the new samples towards the most optimal/interesting regions of
the search space. This function will sample nS additional samples and can
be called several times. Finally, the leg with the highest score will be selec-
ted. In the original algorithm this process would be repeated until mission
completion reaches 100% (the whole spacecraft is inspected), but under the
circumstances of this thesis the goal is selecting just one optimal leg.

Figure 3.5: ∆v sphere of outer radius ∆vmax and inner radius ∆vmin from
which a thousand points have been uniformly sampled.

22 CHAPTER 3. ON-ORBIT INSPECTION

Scoring

An important advantage of this algorithm is that any score function can
be implemented, so it can serve different planning problems or strategies.
Depending on the goal, one or another strategy can be prioritised when
choosing the optimal legs. It is also useful to penalise or completely remove
those legs where mission conditions or constraints are violated by assigning
them a null score—for example in the events of the chaser escaping the
vicinity of the target, the chaser’s angular motion exceeding the allowed
reaction wheels and solar array limits, propulsion manoeuvres performed
during eclipse or unsafe trajectories—. Equation (3.3) has been designed
specifically in this thesis to compute the score of the sampled legs.

C =
w∆v

w∆v + ∆v

[
wγ

∫
∆Tleg

f(t)
π − γ(t)

π
dt+

np∑
i=1

∆Tuseful,i +mi

]
(3.3)

where wγ and w∆v are weighting terms; f(t) is a weighting function to reward
trajectories that maintain the distance to the target between the maximum
and minimum limits, defined as:

f =

r/rminobs if r < rminobs

1 if rminobs ≤ r ≤ rmaxobs

(rmaxobs /r)
3 if r > rmaxobs

(3.4)

γ(t) is the angle between the position vector target-Sun and the relative
position vector target-chaser; ∆Tuseful is the useful observation time during
which a feature can be properly inspected during an inspection leg (it is
worth to mention that this time is capped at ∆Tgoal as longer times than
this can be considered useless as the feature has already been completely
observed. Also, if a feature has not been observed for at least ∆Tminuseful,
the useful time will be considered as null); and ∆v is the magnitude of the
manoeuvre required impulse. Notice that the multiplying term at the be-
ginning of the equation weights the score in terms of propellant expenditure,
favouring those legs requiring a low ∆v. From the integral term it can be
deduced that the geometry of the leg is evaluated, favouring those traject-
ories on the sunlit side of the target and respecting the distance limits. On
the other hand, the summation term evaluates both the useful observation
time the leg can provide for each feature and the number of features that
are observable. The last consideration is quantified by mi, a tuneable vari-
able introduced to reward those trajectories able to observe more features.
Whenever a leg is not able to inspect a feature (∆Tuseful = 0), m = 0. If
the legs allow the observation of a feature, m takes the designed value.

3.5. Planning Algorithm 23

Heuristic Mesh Refinement

The refineMesh function is inspired in [19]. Its purpose is to heuristically
analyse the existing samples and the search space, looking for interesting
zones to sample new inspection legs from. To achieve this, it relies on a
Delaunay triangulation, subdividing the search space into four dimensional
simplices created by the initial available samples from initMesh. Each
vertex of each simplex is a scored inspection leg s. Then, each simplex is
given a score, computed by Equation (3.5):

Jq = V ηV
q

(
1 + ηM

Mq

Mmax

+ ηG
Gq

Gmax

)
, ∀q = 1, ..., N (3.5)

where Vq is the volume of a simplex; M is the maximum trajectory score
of the vertices of a simplex; G is the maximum trajectory score gradient of
a simplex, Mmax is the maximum score of all the vertices; and Gmax is the
maximum score gradient of the triangulation.

This cost is used to identify the regions that either have not been ex-
plored in depth—associated with large volumes, so it is given a high score—,
that will yield a high mission score S or the ones that are characterised by
high score gradients—potential to have interesting features or scores—. In
this sense, the weighting coefficients ηV , ηG and ηM give a lot of flexibility
to the heuristic search, opening possibilities for different types of searches
such as very explorative ones or very aggressive ones.

Then, the simplices are sorted in function of their scores so that new
samples will be more likely drawn from the most successful simplices. This
likelihood has been chosen to follow a weighted uniform distribution, so that
even though all simplices can be selected, the probability to be selected is
proportional to its score, (see [21] for more details).

Since a given simplex can be chosen more than once, sampling a point
from the center of the simplex would create degeneracies. The work in [19]
suggests sampling according to the simplex shell method, that utilises a
variant of the normal distribution to be able to control how close to the
simplex center the sample is obtained. However, in this thesis the work
of [22] has been followed when sampling points form a simplex. The new
samples are randomly drawn within the volume of the simplices.

24 CHAPTER 3. ON-ORBIT INSPECTION

3.6 Precision vs. Computational time Trade
Off

Once it has been explained how the inspection algorithm and the heuristic
search work, there is an obvious question that it is needed to address: what
is the optimal trade off between precision/consistency of the algorithm and
computational time. It is obvious that the heuristic search gets more and
more accurate and consisten as the number of samples ns increases, so that
if the number of samples taken tends to infinity, the algorithm computes
the optimal inspection trajectory. However, it is not possible to withdraw
an infinite amount of samples, and unrealistic to withdraw a large number
of them. Therefore, optimal number of samples to withdraw would be the
one that gives the most consistent results in a feasible computational time.

In order to compute the optimal ns, a consistency study has been made.
The results have been gathered in Table 3.1. In order to test the consistency
of the implemented algorithm, a given inspection scenario has been fixed–i.e
the initial conditions have been fixed–and computed its solution 500 times.
Then, the mean values of the inspection’s solution µ∆v, µtleg and µscore have
been computed.

The variation of the algorithm’s consistency as a function of ns can
be interpreted from the σscore column. As expected, as the number of
samples withdrawn from the solution space is increased, the results become
more consistent and so, their standard deviation decreases, so the algorithm
becomes more reliable and accurate, as column scoreerror shows. Note that
the error has been computed assuming the ns = 1× 106 mean result as the
true, optimal leg inspection, following the equation:

scoreerror =
|scorens − scoretrue|

scoretrue
· 100 [%] (3.6)

However, this improvement in consistency and accuracy involves an in-
crease in computational time, as column µtexecution suggests. These values
are the time for a single solution to be computed. Therefore, while the
simulation for ns = 100 for 500 runs took about 30 minutes; for a value of
ns = 10, 000 it took almost 2 days. It is important to note that, obviously,
for higher ns a 500 run is not feasible, as ns = 1, 000, 000 would take more
than 4 months. Thus, for ns = 1, 000, 000 for example, the algorithm was
run 3 times. However, as it can be seen, the consistency and precision with
such a large ns over performs lower ns. This is because being able to search
the solution space so thoroughly yields practically the same solution over
and over, so fewer runs are needed for the study.

3.6. Precision vs. Computational time Trade Off 25

ns µ∆v[km/s] µtleg [s] µscore σerror scoreerror [%] µtexecution

1× 102 4.49× 10−5 9725 287 66.7 56.1 3.8 [s]

5× 102 4.05× 10−5 11177 303 64 53.55 18 [s]

1× 103 3.32× 10−5 11604 360 52.6 44.87 28 [s]

5× 103 2.31× 10−5 12869 446 51.5 31.82 167 [s]

1× 104 2.7× 10−5 13083 482 49.3 26.06 324 [s]

1× 105 1.78× 10−5 14042 562 37.8 13.75 56 [min]

5× 105 1.69× 10−5 14291 606 32.4 7.12 4.85 [h]

1× 106 2.28× 10−5 14275 652 26.8 — 10.6 [h]

Table 3.1: Inspection algorithm’s consistency study for different number
of samples, ns, taken.

This study puts into perspective how computational expensive the al-
gorithm becomes as the number of times it has to be run for increases. This
is of course the case of this thesis, in which the algorithm is used to create a
database for the training of a NN. Average database’s sizes for NN training
range from thousands to millions of data. Using a very accurate version of
the algorithm—say, ns = 1, 000, 000—to build a database of size 100,000 (a
modest size for NNs training) would take about 121 years.

Therefore, considering a reasonable and realistic time for a thesis, the
selected value was ns = 1, 000. This sample strategy would create a data-
base of size 100,000 in approximately 32 days. Despite having a 45% of error
in the leg score, recall that this number was computed for a 500 iterations
run. Therefore, running it for 100,000 times will yield a better consistency
figure. Lastly, any other ns larger than this one would make the creation
of a database unrealistic for a study of this characteristics.

Chapter 4

Artificial Intelligence

"Tell me and I forget. Teach me and I remember. Involve me and I
learn"

-Benjamin Franklin

Artificial Intelligence is often hard to define robustly. In 1955, John
McCarthy–pioneer of AI–introduced the term as follows: "The goal

of AI is to develop machines that behave as though they were intelligent";
which raises the debate about what is intelligence. On the other hand,
Elaine Rich proposed a simple but elegant definition: "AI is the study
of how to make computers do things at which, at the moment, people are
better".

Effectively, this has been the goal of AI in the last decades and this
definition will probably be valid for another decades from now. However,
the interest and progress made on Artificial Intelligence in the last couple
of years have accelerated the improvement of this technology. In fact, ma-
chines are already outperforming humans in some tasks, so at this rate, we
may need to update Rich’s definition sooner than later. Still, the key abil-
ity separating humans from machines is the ability to learn and adapt to
different scenarios. This area of research is referred to as Machine Learning
and constitutes one of the most important branches out of AI.

4.1 Introduction to Artificial Neural
Networks

Machine Learning covers many types of algorithms. Depending on the
nature of the problem at hand, some algorithms will be better suited than
others. For example, when facing a classification problem the Nearest

27

28 CHAPTER 4. ARTIFICIAL INTELLIGENCE

Neighbor may be a well suited algorithm; for a decision problem the De-
cision Tree algorithm is definitely useful, and for regression and estimation
problems Artificial Neural Networks are getting more and more popular
because of their impressive results (in addition, ANNs can also be used for
classification problems with the proper loss function).

Artificial Neural Networks simulate the learning mechanism of biolo-
gical organisms, based on neurones and how they are connected and inter-
act between each other. As it can be seen in Figure 4.1 NNs and Deep
Learning have been favoured by the increase in computational power and
big data growth of the last years, making it as one of the most powerful
ML tools nowadays. Due to their ability to learn complex functions, their
fast execution once trained and the availability of computing power and big
data, Artificial Neural Networks will be chosen to develop the work in this
thesis.

Figure 4.1: Deep Learning excels over conventional ML as the amount of
data increases (as well as computational power). [23]

Depending on the type of learning, the ANNs can be classified in three
categories:

• Supervised learning: the neural networks receives a—usually large—
database with example inputs and desired outputs. The learning is
carried out by comparing how well the neural network is able to ap-
proximate the desired outputs given the inputs. It is after many
iterations that the neural network is able to adapt its parameters (i.e
biases and weights) to properly map the hidden dynamics that the
system, represented by the given set of inputs/outputs, has.

4.2. Types of Neural Networks 29

• Unsupervised learning: it is similar to the supervised learning, but
without labelling the database.. This way, the neural network is forced
to look by itself for patterns in the data, to hopefully find a structure
or logic among the inputs.

• Reinforcement learning: the neural network actively interacts with
an environment in order to achieve a goal or task. It is during this
interaction with the environment that the neural network learns about
how to effectively achieve its goal by means of trial and error and
feedback through "penalties" and "rewards". The challenge with this
type of learning is to properly design and parametrise the rewards and
penalties as well as manage all the possible states that might arise
during the learning. It is generally more complex than the previous
methods.

Selected type of learning

As introduced in the previous sections, and considering the above descrip-
tion of the learning methods, the better suited for the problem addressed
in this thesis is a Neural Network trained in a supervised manner. There-
fore, it is needed to provide to the Neural Network with a database from
which the NN can extract the hidden dynamics and patterns of the on-orbit
inspection missions, and learn how to solve it. Everything related to the
database generation will be discussed in Section 5.2

4.2 Types of Neural Networks
There are many different types of NN depending on the relation between
their neurones. The most relevant ones– in the "spacecraft guidance dy-
namics and control" field– have been researched in order to choose the best
option for the thesis. They are listed hereunder:

• Deep Feed Forward (DFF): a variant of the classic Feed Forward (FF)
Neural Network but with more than one hidden layer, depicted in
Figure 4.2a. All nodes are fully connected without loops. They are
simple to define and they are more much powerful than simple FF.
A good choice whenever it is needed to model complex non-linear
relationships.

• Recurrent Neural Network (RNN): the key characteristic of these NN
is the introduction of recurrent cells (curved arrows in Figure 4.3.

30 CHAPTER 4. ARTIFICIAL INTELLIGENCE

This brings up the possibility to use an internal state that could be
associated to "memory". Therefore, they have the ability to introduce
information from prior instants, so that their outputs depends on the
prior elements. They are used whenever previous results affect to
future ones.

• Genetic Neural Networks (GNN): the network is viewed as a com-
putational object with fields and fitness. The fields are the equival-
ent to genes that will be optimised by a Genetic Algorithm before
backpropagation as represented in Figure 4.3b, giving to the gradient
descent a better starting point which translates into fewer training
epochs and higher accuracy. This is really powerful as it solves one
of the problems of NN, hyperparameter tuning and transforms it to
hyperparameter learning. The counterpart is that it requires more
computational resources and time, so it is not well suited for a thesis.

Figure 4.2: Deep Feed Forward Neural Network architecture. [24]

Selected Neural Network

GNNs are one of the most promising networks right now but as it was men-
tioned they require a certain level of computational and time resources that
are not available for a thesis of this kind. RNNs have been also considered
because their "memory" feature could be useful to evaluate new inspec-
tion legs based on the previous inspection legs computed and what they
had achieved in terms of observation. However, because of the approach of

4.3. Loss Functions 31

Figure 4.3: a) RNN architecture [25] b) GNN diagram [26]

just focusing on a single optimal inspection leg instead of a series of them,
this advantage lost importance, and the increased complexity of building a
network of this type makes it not worth for the case at hand.

On the other hand, a DFF network is more simple to build than the
others, and its power and time requirements are much more modest and
acquirable. Also, they a well known type of NN and they have proved to
be a reliable and well-known technology in many areas, which constitutes a
clear advantage . The challenge will be to see if it can be powerful enough to
predict results close to the SBMPO algorithm in the context of a complex
inspection mission. Therefore, the selected network will be a Deep Feed
Forward Neural Network

4.3 Loss Functions
A loss function is in charge of measuring the error between the current pre-
dicted output ypred of a NN and the expected output ytrue. In other words,
it is a metric of how well a NN is performing and serves as a feedback for the
different adjustments that it does during the learning process. Previously it
has been determined that in this thesis the on-orbit inspections have been
presented as regression problems, in which a NN has to approximate an
optimal trajectory that optimises the observation of a target. Therefore,
some regression loss functions will be briefly summarised:

• Mean Square Error (MSE): squaring the difference serves two pur-

32 CHAPTER 4. ARTIFICIAL INTELLIGENCE

poses. Firstly, it transforms all the differences to positives values so
a summation can be performed. Secondly, it makes this loss function
to be very sensitive to outliers–values far from the mean value–, be-
cause the square amplifies big differences between the outputs, and
values close to the minima are related with lower gradients. There-
fore, the quadratic behaviour results very useful for gradient descent
algorithms, as larger errors get more punished. It is the most common
used loss function as it is one of the best performing losses in general.

MSE =
1

n

n∑
i=1

(yitrue − yipred)2

• Mean Absolute Error (MAE): it uses the absolute value to obtain pos-
itive differences, losing the quadratic behaviour of MSE and adopting
a "V" form typical from absolute functions. Therefore, the gradient
is the same in every point and does not change when close to the
minima, which makes it more robust to outliers. It is useful when
dealing with bad or noisy data.

MAE =
1

n

n∑
i=1

|yitrue − yipred |

• Mean Squared Logarithmic Error (MSLE): the introduction of the
logarithm has the effect of relaxing the punishment for large errors.
Therefore, it is useful when dealing with a wide spread of values or
when trying to predict unscaled data.

MSLE =
1

n

n∑
i=1

(log(yitrue + 1)− log(yipred + 1))2

Selected Loss Function

Considering that the training data generated is scaled before being fed into
the NN (see Section 5.2) and that there are not significant outliers, the
advantages of MAE and MSLE loss functions become irrelevant. Then,
following also with the standard practise in NN, it is clear that the best
choice is the MSE loss function.

4.4 Hyper-parameter optimisation
Together with regularisation and network architecture, setting the hyper-
parameters is one of the most important steps in any project involving

4.4. Hyper-parameter optimisation 33

Neural Networks. Choosing optimal hyper-parameters is key to achieve a
good performance and accuracy of the NN.

Unfortunately, there is still much to know about NN and their learning
process, and as a consequence, there are no a priori guidelines for tuning
and optimising hyper-parameters. In fact, many consider this activity as a
"black art" that requires many years of experience to acquire. Therefore,
most trainings are done with suboptimal hyper-parameters and require of
long training times.

To this date, there is no simple, easy way of choosing the hyper-parameters–
specially the learning rate, batch size, momentum and weight decay. The
most widely used strategy for hyper-parameter optimisation is to perform
a grid search of the hyper-parameter space. While effective, this approach
is computationally expensive and time consuming–again, something that is
not optimal for this thesis–. A better alternative to this grid search is pro-
posed in [27], but still expensive. Another less rigorous approach is taking
standard architectures that have proven to be effective and adopt them to
one’s project, but these are sub-optimal solutions in the best case.

On the other hand, the work of [28] proposes some efficient ways to set
the hyper-parameters, saving training time and improving the performance
of the NN. It is based on the balance between underfitting vs overfitting
(see Figure 4.4), observed via the training’s test or validation loss plots.
These plots will show the behaviour of the NN and will be used as meas-
ure of the efficiency. Also, the cyclical learning rates (CLR) and cyclical
momentum (CM) methods studied in [29] will be introduced, and they will
serve as a quick and effective method for choosing the hyper-parameters.
If observed carefully, validation loss early in the training process can give
enough information to tune the hyper-parameters, removing the need for
complete grid searches.

Batch and On-line training comparison

There are two ways in which the gradient descent can be done: either
on-line or by selecting a batch size. If using batches, weight changes are
accumulated over the training data (an epoch) before applying it. If on-
line, weight updates after each training sample (instance). A middle way is
the so called mini-batch, where the weight changes are accumulated over a
given number of instances before updating them. Notice that a mini-batch
of size 1 results in an on-line training, while a mini-batch of size N results
in batch training.

It is commonly believed that batch training is a better type of training
than on-line training because one would think that it better approximates

34 CHAPTER 4. ARTIFICIAL INTELLIGENCE

Figure 4.4: The optimal model (lower error) lays between the underfitting
and overfitting of the model. [28]

the true gradient for the weight updates. However, the work of [30] sug-
gest that this is false. It argues that batch training is slower than on-line
training—even orders of magnitude in large training sets— because even
though it can better estimate the direction of the true gradient, it does
not know "how far" it can go in that direction before the gradient changes
again. This requires batch training to use smaller LR, which in turn means
that more computation is required.

On the other hand, on-line training utilises the local gradient on each
instance to determine the correct path. Even when local gradients are
messy, the average of all the instances will move in the global local minima
direction. This enables the use of larger LR and thus the convergence is
much faster. Figure 4.5 depicts the difference behaviours of batch versus
on-line training.

In addition, even though that there is still no way to know the optimal
LR for neither of batch or on-line training, the fact that larger LR can
be used for on-line makes easier to find it, as the entire set of good LR for
batch training also apply for on-line training, plus an additional set of larger
LR that on-line can use as well. Lastly, on-line training still maintains the
upper hand when using momentum, has some experiments have concluded.

In summary, it is believed that in fact, on-line training is much better
than its counterpart, and the faster speed is also an attractive advantage for
this thesis which can compensate for the time spent building the database.
Therefore, batches of size 1 will be generally used for the training.

4.4. Hyper-parameter optimisation 35

Figure 4.5: a) Batch training b) On-line training. Note that a) ignores
the "error landscape" and overshoots a valley, while b) follows
the curves to the local minimum (black dot) .[30]

Cyclical Learning Rates for Neural Network Training

As it was introduced previously, the conventional method for choosing
hyper-parameters is a random or grid search. However, these methods
are slow and computationally expensive, and they may not even search the
space fairly. A different approach is to use the so called Cyclical Learn-
ing Rates (CLR), such as the ones studied in [31] and [29]. The idea is
to find a method that no longer relies in guessing and searching without
any knowledge. The foundation of this method is that instead of the tradi-
tional approach of fixing a LR value and monotonically decrease it during
training, a better idea is to allow the LR to cyclically vary between reas-
onable boundary values. The variation between the high and low bounds
can have different forms depending on the cyclic function it follows. It can
be linear—also called triangular such as the one in Figure 4.6a—, parabolic
or sinusoidal for example; but in general the overall results are equivalent.
Therefore, in this thesis the triangular scheme will be used, as it is simpler
and equally accurate.

It has been observed that increasing the LR has an immediate negative
effect. However, in the long term this effect becomes beneficial. An explan-
ation of this strange effect is that when minimising the loss, if near a saddle
point—characterised by small gradients—the learning process slows down.
But in this context, an increase of the LR allows more rapid traversal of
saddle point plateaus. Another argument supporting the CLR method is
that it is very likely that the optimum LR lays between the bounds, so
quasi-optimal LR will be frequently used.

In order to estimate the boundary range to be able to implement the

36 CHAPTER 4. ARTIFICIAL INTELLIGENCE

Figure 4.6: a) Triangular cyclical learning rate scheme. Note how the LR
increases and decreases linearly within the bound range.
b) Image classification accuracy comparison. Note the bene-
fits of CLR [29]

CLR, a learning rate range test can be carried out. The idea is to start with
a small LR and increase it linearly to obtain information on how well the
NN can be trained over a LR range, and determine the maximum LR at
which the model converges. Starting with small LR helps to the convergence
of the network, so larger LR can be used later. Note that this maximum
LR will not work for a constant LR, as starting directly with such LR will
cause the model to diverge. The speed of the LR variation also affects the
test—a larger stepsize will increase the range between the minimum and
maximum LR—.

To perform a LR range test, the model is run for 4-8 epochs while varying
the LR linearly from a reasonable low value to a reasonable high value. If
there is no prior experience with the database or the model, the test can be
done twice, one for very low values (i.e 0.0001-0.01) and the other one for
higher values (0.01-0.1). Then, plotting accuracy versus LR will indicate
the good range of values. The minimum bound value will be the LR at
which accuracy starts to increase; and the maximum bound value will be
the LR at which the accuracy starts slowing down or becoming ragged, as
indicated in Figure 4.7.

In summary, a short and easy test is enough to estimate the boundaries
of the LR. Then, the implementation of the actual CLR method is also very
straightforward, which means that differently to other methods, CLR does
not concur in additional computational expenses. The direct benefits of
CLR are the reduction of the guess-work, and reduction of training times.

4.4. Hyper-parameter optimisation 37

Figure 4.7: Example of a typical LR range test. [32]

Super-convergence

It is a phenomenon in which NN are trained orders of magnitude faster
than usual. Super-convergence training is the result of combining one cycle
CLR training and an unusual large LR. It is often referred to as "1cycle"
policy, and it allows the accuracy to plateau before the training ends. The
1cycle policy is actually a combination of curriculum learning and simulated
annealing.

Super-convergence training can be applied universally, but its perform-
ance depends much on the architecture of the network. The LR range test
can be used to check if super-convergence is possible for a given NN ar-
chitecture. In [32] a slight modification of CLR for super-convergence is
suggested: always use one cycle that is smaller than the total number of
iterations/epochs and allow the learning rate to decrease several orders of
magnitude less than the initial learning rate for the remaining iterations.
This learning rate policy is named ?1cycle? and reduces a lot the training
times.

Lastly, it is important to note that the benefits from super-convergence
increase as the training data becomes more limited. This could be specially
beneficial for this thesis, as the size of the database can be considered
relatively small due to time and computation power limits.

38 CHAPTER 4. ARTIFICIAL INTELLIGENCE

Cyclical Momentum

Gradient descent optimisation can be modified by adding a term referred
to as momentum. It has the ability to accelerate the training.

Momentum and LR are closely related. Therefore, if LR is considered
as the most important parameter to tune, momentum is equally important.
Similarly, it is beneficial to set momentum as large as possible—without
causing divergences, obviously—. However, experiments show that perform-
ing a momentum range test does not yield information about the optimal
momentum.

The optimal training method is to decrease the momentum while the
LR increases. This provides three benefits against other methods—such
as constant momentum or momentum increase—: a lower test loss; faster
initial convergence and convergence stability over a larger range of LRs.
These benefits comes to almost no cost, as cyclical momentum CM is easy
to implement. Some common CM ranges comprehend values from 0.97 to
0.7.

The idea of decreasing momentum may be counter intuitive at first, as
larger momentum values usually imply that the training speeds up and may
help escape saddle points, but this also induces a negative effect over the
stability of the training, and may cause divergence. Therefore, it makes
sense to reduce momentum at the end of the training, to ensure that the
training converges at the end.

It is important to remark that the above is true when using CLR.
Whenever a constant LR is used, CM yields approximately the same res-
ults as a good constant momentum value—which values range from 0.9 to
0.99—.

4.5 Regularisation

One of the most common issues when working with NNs is overfitting.
As explained before, a overfitted NN is no longer able to generalise the
problem, and so starts losing its prediction capabilities with the validation
or test data, and limits itself to copy the training data. Of course, this
is an undesired behaviour. One of the best tools to combat overfitting is
regularisation. There are several techniques and methods, but in this section
only the ones considered and tested for the thesis will be introduced.

A good general principle worth to mention is that the amount of regu-
larisation must be balanced for each dataset and architecture. This means
that simply implementing all known regularisation methods into a network

4.5. Regularisation 39

will not work. The implicit regularisation a NN may naturally have—for
example due to using small batch size—must be priorly acknowledge, in
order to select the best possible regularisation techniques and their optimal
tuning.

Weight Decay

Weight Decay (WD) is a form of regularisation and can play an important
role in training. Its effect will depend on the other forms or regularisation
and the balance between them. It is a small number that multiplies the
sum of the squares of the loss function, to avoid the loss function becoming
so big that the best model has no other option that setting all parameters
to zero.

Contrary to LR and momentum, the best results are obtained for WD
constant values during training. Common values for testing WD are 10−3,
10−4, 10−5 and 0, where larger values usually perform better for smaller
datasets and architectures. This can be due to large datasets having in-
trinsically their own percentage of regularisation. Another good tip is that,
once a good WD value has been found, try some runs around that value
with a factor of 3 instead of the intuitive 5—for example, testing 3× 10−5,
10−4, 3× 10−4—as a result of exponent bisection instead of value bisection.

Again, note that the optimal WD changes depending on the usage of
constant LR or CLR because the larger LR obtained with CLR contribute
to the network regularisation, so in order to balance regularisation, the WD
required is smaller.

Dropout

Dropout is a regularisation technique based on neurones removal—or dropped
out—. Depending on the dropout percentage, some number of the neur-
ones are ignored by removing all their connections during training. This
has the effect of making the training process harder and noisier, forcing all
the nodes of the network to respond and adapt, instead of relying in a small
number of nodes that are responsible for the learning. It is considered by
some authors as the magic regularisation technique, as its effect on a net-
work is usually very satisfactory. Another of its advantages is that it is very
simple to implement.

40 CHAPTER 4. ARTIFICIAL INTELLIGENCE

L1 and L2

L1 and L2 are two different regularisation techniques. Both of them add to
the loss function a penalty term which seeks for inducing different effects.

A regression model using L1 regularisation is called Lasso Regression,
an acronym for Least Absolute Shrinkage and Selection Operator. It adds
an absolute value of magnitude of coefficient as penalty term to the loss
function. In other words, L1 shrinks the less important feature’s coefficient
to zero, effectively removing the feature. Therefore it is used for feature
selection whenever there are a huge number of features.

A regression model using L2 is called Ridge Regression. It adds a squared
magnitude of coefficient as penalty term to the loss function. It is very good
at avoiding over-fitting issues.

Chapter 5

Results

"I’m a great believer in luck, and I find the harder I work the more I have
of it."

-Coleman Cox

This chapter gathers all the results obtained during the thesis, from the
ones regarding the inspection algorithm to the later neural network

approach to minimise the computational times.
The first section of the chapter presents the results of the inspection

algorithm implementation. These results will help to better visualise the
inspection mission and to check if the implementation was done correctly
and all the criteria and constraints are respected.

Later on in this chapter, the neural network results are presented in
three different sections. The first one is the database generated in order to
train the neural network, a crucial step and probably one of the most time
consuming and expensive regarding neural network training. The second
one is the neural network itself, its architecture, design criteria and training
methods. Lastly, the third one is the comparison between the predictions
that the neural network is able to do and the actual optimal result given
by the inspection algorithm.

5.1 Inspection implementation results

In order to analyse the results of the inspection, different graphs have been
plotted and are shown in the following. It is important to recall that, in
order to generate different inspection problems, some initial conditions—
namely the target’s angular velocity and attitude—have been randomly
initialised from a range of possible values. So for example, in order to

41

42 CHAPTER 5. RESULTS

initialise the angular velocity of the target, samples have been withdrawn
from the volume of a sphere with radius ωmaxt .

Figure 5.1 depicts what a complete inspection (Mc = 100) would look
like. The blue sphere, with radius rmin represents the target and its safety
sphere, a region where the chaser should not enter in order to comply with
the safety constraints. Each orbit colour represents a different inspection
leg. In this example, 4 different inspection legs are enough to observe the
full 100% of the target’s features.

Figure 5.1: Optimal legs inspection sequence. Each orbit color represents
a different inspection leg.

Now, Figure 5.2 shows the magnitude ||r|| of the relative position vector
target-chaser. It also depicts some important regions: the rmax region which
limits the maximum distance threshold in order to not escape from the
target; the rmin region which limits the minimum distance threshold in order
to not impact with the target; and the observation zone, which limits the
distance at which the chaser can properly observe the target. No observation
is possible out of this zone.

Note also from Figure 5.2 that each inspection leg offer little time inside
the observation zone compared to the total time of the leg. However, all
of them offer at least some observation time. It has been concluded that
sometimes, the target may present some features that are difficult to observe
due to the relations between the target’s angular velocity and the orbiting

5.1. Inspection implementation results 43

Figure 5.2: Distance [m] between the target and the chaser during a mis-
sion. Note that a proper observation of the target can only
be made while inside the observation zone.

rate of the chaser with respect to the target. Therefore, a priori non-optimal
inspection leg in terms of observation time versus total leg time; may in fact
be optimal as the little observation time that it offers may allow to observe
a feature that could not have been observed before.

The previous results show that the inspection algorithm works as ex-
pected. However, some changes have to be made when considering merging
this inspection technology with neural network training. The fact that
some missions required more inspection legs than others is problematic for
building a database and training a neural network, as the size of the input
layer is not constant. For this reason, the original inspection algorithm
has been redefined to, instead of computing a whole inspection mission,
computing only a single optimal inspection leg that fullest observes a given
target. Figure 5.3 shows an inspection mission as the one considered for
the thesis seen from an inertial reference frame. Note that despite the plot
representation, these orbits are actually very similar, but the z-axis has
been re-dimensioned for clarity purposes. Instead of being a combination
of different inspection leg, it is just one, optimal inspection leg. Figure 5.4
depicts the same scenario as before, but from the LVLH target reference
frame point of view.

44 CHAPTER 5. RESULTS

Figure 5.3: Target and chaser orbits around the Earth (ECI frame). The
z-axis has been scaled to make evident the difference between
the orbits.

5.2 Database

Database Generation

In other machine learning applications, creating a dataset is not even ne-
cessary as there may be a large amount of data already available to use
to this end. Unfortunately, this is not the case for this work and thus,
creating a database has become one of the main tasks of the thesis, as the
learning process and capabilities of the neural network will depend mostly
on having a good database where it can learn from. Generating or creating
a database is one of the most critical points for a successful neural network.
Having a database too short and the neural network may not have enough
examples to learn; too large and you will encounter overfitting problems as
well as having wasted resources (creating elements of a database takes both
computational power and time); include examples that are sparse or very
different from one another and they may confuse the network, making more
difficult the learning process; leave some important states or parameters of
the system out of the database and the neural network may find impossible
to learn the whole underlying dynamics of the system.

A priori there is not any theoretical rule or theorem about the minimum
requirements a good database should have in order to be useful for the

5.2. Database 45

Figure 5.4: Inspection leg around the target. Depicted in the LVLH target
frame.

learning of a neural network—e.g. how large the database should be or how
to measure the quality of the data—at best some rules of thumb, references
from previous works and the classic trial and error. In fact, due to the
high computational demand of the inspection algorithm and the limited
computational resources available for the development of this thesis, the
generation of a good database has become of paramount importance.

The main goal when generating the database is minimising computa-
tional time and power. In order to do so, the size of the database should be
kept to a working minimum and the developed inspection algorithm as ef-
ficient and fast as possible without disregarding data quality and accuracy.
Combining these two requirements is in fact a big challenge.

The database has been generated by randomly initialising the paramet-
ers that will be used as inputs to the neural network, and solving the in-
spection problem with the inspection algorithm presented along Chapter 3
in order to obtain the outputs for the neural network. This process has
been repeated until a decent database size has been obtained.

In this thesis, the parameters defining the attitude of the target have
been selected as inputs to the problem—namely three variables describ-
ing the tumbling angular velocity of the target and four variables describ-
ing its attitude, expressed in quaternions—. Therefore, the input of both
the database and the neural network will be determined by 7 parameters:
input = {ωt, qt}. Regarding the output, recall from Section 3.5 that just
four parameters are enough to fully define an inspection leg. However, the

46 CHAPTER 5. RESULTS

score of the leg has been also included into the output set. The reason
behind this decision is to induce to the NN the dynamics and factors that
the inspection mission depends on so that it can "understand" the problem
and learn from it. And the way to do that is through the score C, in which
all these factors underlie. Therefore: output = {∆v,∆Tleg, C}.

As for the size of the database, typical numbers for neural network’s
supervised learning are database sizes in the range from ten thousands up
to millions. In this case, a database of size 100.000 has been considered
to be enough to train the neural network. As mentioned in Chapter 3 the
computational time per leg for a 1,000 leg samples is about 30 seconds using
a 2.6GHz Intel®Core i7 processor and running on Python 3.8, which makes
up for a total computing time of approximately a month only to generate
the database.

Pre and post processing the database

The performance of the neurones in the network depends highly on the
size of the dataset and the data-processing techniques used. Pre-processing
the data before it is fed into the network plays an important role, which
translates into enhanced accuracy and less computational cost during the
learning phase.

Pre-processing comprehends a series of different techniques that can be
performed depending on the nature of the NN and the problem it has to
solve. For example, pre-processing the data to modify the training set size,
remove noisy samples, correcting possible labels, or data normalisation.

In this thesis, an analysis of the database has been made in order to
review that there is no abnormal inspection legs—for example, negative
scores, or no feasible trajectories—.

In addition, a normalisation of the data have been carried out. It has
been demonstrated that normalising the data before feeding it to the NN
helps in the learning process. In allows every data sample and data variable
to be equally important, despite its original large or small value.

There are many ways to normalise the data, such as the z-score norm-
alisation, min-max normalisation or decimal scaling normalisation. Using
one or another does not vary the end result by much. A priori, if the data is
related to normal distributions or outliers dominate, the z-score approach
may function a little bit better; whereas if the data is uniformly distributed,
min-max normalisation may have a little advantage. Therefore, based on
the nature of the generated database and prioritising simplicity, the max-

5.3. Design and Architecture 47

min normalisation has been used for the data, following Equation (5.1)

datap =
datao − datamin
datamax − datamin

(5.1)

where datap is the data value after the pre-process procedure; data0 is
the original value of the data; datamin and datamax are the minimum and
maximum possible values of the data, respectively.

5.3 Design and Architecture

Neurone type

One of the most important factors of Deep NN is the selection of the neur-
one type. Historically, the sigmoid neurone was the first one used in NN,
and for many years it has been the standard in the field. However, recent
results have given the upper hand to rectified linear units (ReLUs). They
do not saturate, avoiding the vanishing gradient problem, common when
dealing with Deep NN, in which saturated neurones stop learning. In ad-
dition, the output is frequently zero, which is effectively a regularisation
behaviour that benefit the generalisation capabilities of the NN. Lastly, the
hyperbolic tangent tanh neurone is best used in classification problems, so
it underperforms with respect to the others. Figure 5.5 shows the different
activation functions of the three most common neurones.

Figure 5.5: Left: sigmoid function. Middle: tahnh function. Right:
ReLU function. [33]

Optimiser

Optimisers are in charge of minimising the loss function by changing the
attributes of the NN, such as weights or biases. The way these attributes

48 CHAPTER 5. RESULTS

change depends on the type of optimiser it is used. There are many different
optimisers, but for brevity purposes only two will be considered:

• Stochastic Gradient Descent (SGD): it is based on stochastic gradi-
ent descent, but it updates the parameters more frequently. The
advantage is that it takes less memory than gradient descent and it
converges faster. It has different variations, such as the ones utilising
momentum, or mini-batches. It is the most commonly implemented
for NNs.

• Adaptive Moment Estimation (Adam): it is a method that computes
adaptive learning rates for each parameter. It utilises the first and
second moments to compute an exponential decaying average of the
past gradient and squared gradient. An important advantage is that
there is no need to tune the learning rate and achieve good results
with the default value.

The best optimisers is function of many variables about the network and
the training data. If the data is sparse, most likely an adaptive learning-rate
method will yield better results.

In order to test the best optimiser for the NN, each optimiser has been
run for several different network configurations, as Table 5.1 shows.

From Table 5.1 some conclusions can be extracted for both architecture
and type of optimiser. It is important to highlight that, in order to test
the optimisers performance in equal conditions—i.e. without any tuning
or optimisation of the methods—the Kera’s default implementation of the
optimisers have been used. This means that those results are not measur-
ing the best performance of a given architecture or optimiser, but rather
a simple comparison between optimisers at standard conditions. Other
parameters needed for the test have been kept under standard values—e.g.
batchsize = 64 or epochs = 100—.

The architecture conclusions will be explained in the correspondent sec-
tion. Regarding the performance of both SGD and Adam optimisers, it
is very similar for simple architectures (i.e. lower no of hidden layers and
neurones per layer). However, as the size and density of the network in-
creases, SGD starts to struggle to the point where it barely converges or
even performs worse than simpler configurations. On the other hand, Adam
is more stable to configuration changes, and it is able to keep the same per-
formance for very different networks. The lowest error MSEmin = 0.0244
is obtained for the Adam optimiser, and a 10 hidden layer; 64 neurones per
layer network.

5.3. Design and Architecture 49

Optimiser test MSE no hidden layers no neurones/layer Convergence

SGD 0.0278 1 64 Yes

Adam 0.0273 1 64 Yes

SGD 0.0275 1 128 Yes

Adam 0.0269 1 128 Yes

SGD 0.097 4 32 Yes

Adam 0.0263 4 32 Yes

SGD 0.0274 4 64 Yes

Adam 0.0262 4 64 Yes

SGD 0.0853 10 32 No

Adam 0.0262 10 32 Yes

SGD 0.1225 10 64 No

Adam 0.0244 10 64 Yes

SGD 0.1917 10 128 No

Adam 0.0272 10 128 No

Table 5.1: Results of SGD and Adam optimisers for different network con-
figurations. The optimisers have been tested with the default
configuration values of Keras library.

In summary, the Adam optimiser is the one that achieves better results
at first glance, but recall that the test is done without any kind of refinement
of the optimisers. Therefore, it may be possible to obtain a tuned SGD
which outperforms this default Adam optimiser, reason why both will be
considered, in order to see if any of them outperforms the other.

Initialisation methods

As it was mentioned, optimisation algorithms change the network’s attrib-
utes, such as weights. However, these attributes have to be predefined at
the beginning, and it actually affects to the speed and performance of the
network.

The Glorot uniform initialisation—also called Xavier uniform— is pretty
popular, and it has obtained good results when used for ReLU neurones.

50 CHAPTER 5. RESULTS

Initialisation test MSE no hidden layers Optimiser Convergence

Glorot uniform 0.0273 1 Adam Noisy

He normal 0.0271 1 Adam Yes

He uniform 0.0271 1 Adam Noisy

Glorot uniform 0.0262 4 Adam Yes

He normal 0.0268 4 Adam Yes

He normal 0.1147 4 SGD Bad

He uniform 0.0265 4 Adam Yes

Glorot uniform 0.0244 10 Adam Yes

He normal 0.0268 10 Adam Bad

He normal 0.1464 10 SGD Bad

He uniform 0.027 10 Adam Bad

Table 5.2: Results of 3 different initialisations for different optimisers and
architectures.

However, an increasing popular initialisation for ReLU activation functions
is called He initialisation. He weight initialisation is computed as a random
number with a Gaussian probability distribution G with mean µ = 0 and
standard deviation σ =

√
2/n with n being the number of inputs. There

is also another version of the He initialisation which draws samples from a
uniform distribution.

To discover which initialisation works better for the thesis, several net-
work configurations and optimisers have been run for three different ini-
tialisation schemes: the Glorot uniform (which is also the Keras default
weight initialisation); He normal and He uniform. The results are gathered
in Table 5.2. The differences between He normal and He uniform are min-
imal, except for some cases where He uniform does not converges as good
as He normal. However, when using the SGD optimiser, He initialisations
perform badly, while Glorot is more versatile and performs well with both
optimisers (note that from Table 5.1 the performance of Glorot initialisation
using SGD can be extracted, as it was the default initialisation used).

Therefore, the default Glorot initialisation has been chosen, as apart of
good performance, it provides with reliability and versatility.

5.3. Design and Architecture 51

Architecture

There is no standard or generic method to determine the best architecture
of a NN–in terms of number of neurones and number of layers–. Usually the
decision is based on previous experience on similar problems. Unfortunately,
in the context of OOIs, there is no previous work done regarding NNs,
therefore the starting point for this thesis is totally unexplored.

The cumbersome matter is that the size and depth of a NN also interact
with the other variables and hyper-parameters. Therefore, it is not possible
to isolate an optimal architecture to then continue refining the rest of hyper-
parameters. The best way that it has been found to face this design dilema
is to follow some popular "rules of thumb" to at least make a start in
a confident manner. For example, starting with simpler NN and build
complexity as the performance progresses or start with a network with
hidden layers similar size order to the input. After the first approaches, it
turns into an iterative design process, guided mainly by trial an error and
intuition.

Table 5.1 has been introduced for comparing two optimisation methods,
but it can also be used to study the behaviour and performance of differ-
ent NN architectures. One can notice that there appears to be a general
relationship between the increase in complexity—regarding both depth and
size—and an improvement in the results accuracy. So for example, for the
same number of layers (e.g. 1 or 4), the MSE is lower for those networks
with more neurones per layer. Similarly, networks with more hidden lay-
ers outperform networks with less hidden layers. However, there is a point
where complexity stops being worth.

An example of the last statement can be found in the 10 hidden layers
cases of Table 5.1. The network with 128 neurones does not improve the
accuracy of the one with 64 neurones per layer, even though it is more
complex. In fact, this behaviour is the one expected and it has been already
presented in Figure 4.4. There exist a given point in which a very complex
NN starts overfitting, in other words, it loses its prediction capabilities
because it starts "memorising" the training data. Therefore, even though
the accuracy for the training data keeps improving, the test data is no
longer well predicted, and thus, the test accuracy gets worse.

In summary, even though an absolute statement about the optimal archi-
tecture cannot be made, as it is an iterative and complex problem involving
many other variables; a NN with an architecture of 10 hidden layers and
64 neurones per layer is a good approach. This architecture contains 38277
trainable parameters.

52 CHAPTER 5. RESULTS

5.4 Hyper-parameters choice

Learning rate range test

In order to estimate a good LR, a LR range test has been performed, as
introduced in Chapter 4. By plotting the learning rate range of the test
versus the loss, the behaviour of the model for different LR can be observed
and thus, estimate a good LR value. Not only that, it will serve as a
foundation if a CLR strategy wants to be implemented.

Figure 5.6: Adam LR range test [1e-4-10]: LR=0.01.

Figure 5.6 shows the results of the LR range test. One can see how
the loss function peaks at a minimum at approximately LRmax = 2. Note
that if a normal training—with constant LR—is performed, the NN will
not converge for a LR so large. Convergence with such a high LR is only
achieved because of the small LRs with which the test starts.

Now the CLR can be implemented, using a maximum LR of 2 as com-
puted in the range test. The minimum LR for the CLR is recommended to
be between 1/5 and 1/10 of the maximum LR.

Another LR range test has been performed for the SGD optimiser and
the results are depicted in Figure 5.7. Notice that for the SGD optimiser
several parameters can be tuned—such as the weight decay, the momentum
and of course the learning rate—which affects the behaviour of the range
test and the maximal LR. The configuration with a larger LR will be used
for the next steps (so LRmax = 5) and LRinitial = 0.5.

5.4. Hyper-parameters choice 53

Figure 5.7: SGD LR range test [1e-4-10]: LR=0.01, WD=1e-5 and
a)Momentum=0.9 b)Momentum=0.99

Cyclical learning rate

The cyclical learning rate was introduced before in Chapter 4. Using the
results from the LR range test, different CLR tests have been carried out,
varying between SGD and Adam optimisers and their parameters, while
also tuning other network parameters such as the batch size or regularisa-
tion methods. Regarding the batch size, it was found out that, despite the
argument in Chapter 4 in favour of on-line training, when performing train-
ings using a CLR, larger batch sizes work better, and so they have been
used for the following results.

Figure 5.8 shows the result of the CLR = [0.2 − 2] training using
the Adam optimiser. It was observed that changing some of the Adam’s
parameters—such as epsilon—did not have any remarkable effects on the
LR range test. The NN achieved its best loss value of MSE = 0.0241.

Another CLR training has been performed for the SGD optimiser and
the results are shown in Figure 5.9. The LR varies according to the results
of the previous LR range test, and the optimiser’s momentum and weight
decay are also the same.

The results of both trainings are practically the same. After numer-
ous other tests trying different variations—for example using a LRinitial =
LRmax/4 or playing around with WD and momentum—no better results
have been obtained. Therefore, it appears that the learning limit of the
network has been reached. The best performances vary from a MSE range
between 0.028 to 0.024.

Both optimisers have performed similarly. The advantage of the Adam

54 CHAPTER 5. RESULTS

Figure 5.8: Neural Network CLR = [0.2 − 2] training using the Adam
optimiser.

Figure 5.9: Neural Network CLR = [0.5 − 5] training using the SGD
optimiser.

5.5. Regularisation 55

optimiser is that it achieved the same results as the SGD without needing
of any tuning or variable optimisation. However, the final predictions of the
neural network will be extracted from the SGD optimiser neural network,
as the hope is that thanks to its many tuning variables, a good combination
can be found that could potentially outperform Adam.

5.5 Regularisation
It is a good practise to look for the regularisation techniques once the net-
work has been designed and optimised to its fullest, to see if its capabilities
can be further enhanced. Here some of the attempts to do so by taking
advantage of regularisation are shown:

• Weight Decay (WD): it is already being used. A value of 1e-5 achieved
the best performance in the CLR training.

• Dropout: several testings of different dropout values—ranging from
0.25 to even 0.8 in some layers—as well as different combination of
layer dropouts have been considered. Unfortunately none of these
tests achieved significant results in the overall performance during
the CLR training of the network.

• L1 and L2: they have been tested both separately and simultaneously,
but their effect has not been observable. It is worth to mention that
not much time has been spent with these techniques. They require a
fine tune of their α parameter, in which depends the effectiveness of
the regularisation. This is not very practical, as the design process is
already complex and time consuming.

5.6 Neural Network Predictions

Comparison NN vs. Inspection Algorithm

In this section the predictions of the network will be compared against
the inspection legs computed by the inspection optimisation algorithm.
Table 5.3 gathers the data of 3 optimal inspection legs and their predicted
counterpart.

Note that while the predicted legs have practically identical ∆v, tleg and
score, the original inspection legs were in fact different from each other.
This can be due to two reasons, either the neural network is not able to
generate optimal inspection legs—or at least as optimal as the inspection

56 CHAPTER 5. RESULTS

∆vx [km/s] ∆vy[km/s] ∆vz[km/s] Tleg [s] Score

Inspection Leg 1 −1.3× 10−5 −1.65× 10−5 −8.1× 10−5 7635 501

Predicted Leg 1 −6.24× 10−6 −4.79× 10−6 −6.27× 10−6 10178 512

Inspection Leg 2 −7.43× 10−6 −8.25× 10−6 −1.76× 10−5 11471 525

Predicted Leg 2 −6.24× 10−6 −4.79× 10−6 −6.26× 10−6 10172 518

Inspection Leg 3 −1.77× 10−6 −2× 10−6 −9.3× 10−6 11923 554

Predicted Leg 3 −6.24× 10−6 −4.76× 10−6 −6.25× 10−6 10182 521

Table 5.3: Inspection legs as computed by the inspection algorithm and
by the neural network.

algorithm—or the database results are not consistent enough and thus the
inspection legs for a very similar inspection mission change a lot.

Despite this appreciation, note that the overall score of all inspection
legs is almost the same. It is possible that, due to the model and score
function design and definition, several different inspection trajectories that
observe different features for different times and different conditions, all
have the same score. Therefore, from the inspection point of view, they
would be equally optimal. This, far from being a positive feature, is a bad
new for a neural network training process. It means that the neural network
will not have a clear criteria of which trajectory to perform depending on
which mission conditions, so the things learned about one example may be
overwritten by the next one.

In summary, these results were not the goal of the thesis, which intended
to completely teach a complex, time consuming inspection algorithm to a
neural network to, in this way, being able to reduce computational power
and time and thus, enable on-orbit and real-time capabilities to inspection
missions. This will be further discussed in Chapter 6

Chapter 6

Summary, Conclusion and Future
Work

"Do not go where the path may lead, go instead where there is no path
and leave a trail."

-Ralph Waldo Emerson

6.1 Summary

In this thesis we firstly introduced in Chapter 1 On-Orbit Inspection mis-
sions, what they are and their level of complexity and importance. Then
we stated the motivation and goal of the thesis: firstly, to implement an
advanced inspection algorithm capable of minimising fuel and inspection
time as well as take into account other important constraints such as safety
or observation conditions. Secondly, to design and train a Neural Network
capable of reproducing the results of the implemented inspection algorithm
and to evaluate the feasibility of such a novel approach, which would enable
real-time and on-board capabilities that would accelerate the development
of many different space missions.

Later in Chapter 2 we introduced and defined the optimal guidance
problem as well as the governing equations of the inspection problem. Dur-
ing the chapter it was highlighted that a different set of equations could be
also easily implemented, which offers the algorithm a great flexibility for
adapting to different assumptions about the orbit or mission types. Lastly,
the integration strategy followed during the thesis was briefly detailed.

In Chapter 3 we defined the inspection problem more in depth and the
approach that has been taken for this thesis. A complete review of the
observation model, the planning algorithm, and the design decisions and

57

58 CHAPTER 6. SUMMARY, CONCLUSION AND FUTURE WORK

trade offs was also thoroughly described and explained.
Chapter 4 addressed the Artificial Intelligence part of the thesis. We

firstly introduced the foundations of Artificial Intelligence, more precisely
of Neural Networks. All the decisions about the design of the network were
properly reasoned, keeping in mind once again the limitations of the thesis,
for example about computational power and available time.

Chapter 5 presents the results obtained, both the ones related to the
inspection algorithm and the ones related to the database generation and
Neural Network architecture, design and optimisation, as well as comments
about them.

In this last chapter, Chapter 6, we have just summarised the thesis.
Then, we have drawn some conclusions about the thesis development and
the results obtained. Lastly, this thesis is concluded with some guidelines
about what the path of future work about this topic could look like, and
important points to research in order to progress in this matter.

6.2 Conclusion

The results about the inspection algorithm and its implementation have
been successful, both for the sequence of inspection legs and for the single
leg inspections. As it was discussed, due to the heuristic nature of the op-
timisation algorithm, the inspection results are dependent to the computa-
tional capabilities and available time. In situations with sufficient resources
the algorithm has proven to be consistent and effective.

Regarding the neural network approach, after several design and optim-
isation steps it appears that the learning limit of the neural network has
been met because the loss could not be minimised any further. Despite this
being a good sign, when the predictions of the trained NN were put to test
by comparing them to those generated by the inspection algorithm, it was
clear that the NN had not learn to replicate the algorithm results for some
of the test data.

Instead, it appears that the neural network has learned to compute a
"mean inspection leg" because all the prediction legs are practically the
same. The good news is that, precisely because it is kind of like the aver-
age of all of them, in most cases the predictions are a good approximation,
specially when considering the sort amount of time in which they are gener-
ated compared to the computational time of the algorithm. However, there
are other cases in which the predicted leg has nothing to do with the sup-
posedly "optimal" inspection leg. "Optimal" because it is worth to recall
that the accuracy or optimality of the inspection algorithm was dependent

6.2. Conclusion 59

of the number of samples withdrawn from the sample space, which in turn
was a trade off between accuracy and computational time. Therefore, it is
possible that these inspection legs that differ much from the prediction are
in fact, flaws of the algorithm due to its heuristic and random nature.

Figure 6.1: Six inspection legs. Legs 1-3-5 are computed by the inspection
algorithm while legs 2-4-6 are predictions from the NN.

Figure 6.1 depicts very well what it has just been mentioned about the
results. It shows 3 inspection legs—labeled in the figure as Leg1, Leg3
and Leg5—computed by the inspection algorithm; as well as 3 inspection
legs predicted by the neural network—labeled in the figure as Leg2, Leg4
and Leg6. Note how the trajectories are very similar to each other except
for Leg6. However, not entering in the debate of considering if Leg6 is an
optimal leg or not; the neural network should have predicted a leg of similar
kind. But far from that, it has just keeping reproducing a leg similar to
previous scenarios.

In the following, a number of possible hypotheses that would explain
these unexpected results are enumerated:

1. Incorrect design or training: either the training or the design of the
network has not been successful enough, and so there is the possibility
that another type of neural network trained differently could perform
as it was originally expected.

2. Insufficient scenario diversity: in order to create the database, we
recreated different inspection scenarios for which the inspection al-
gorithm had to compute a solution. We recreated these scenarios by

60 CHAPTER 6. SUMMARY, CONCLUSION AND FUTURE WORK

randomly initialising the angular velocity and attitude of the target
vehicle. There are two possibilities; one is that the boundaries for
varying these initial conditions were very restrictive; the second one
is that these variations were not able to recreate a different enough
scenario. Either way, the result could be that what was considered to
be totally different inspection problems were in fact not so different.
Therefore the network had not enough different examples to learn
from, so it just learned how to solve one specific scenario.

3. Differentiating the legs: even though each leg is uniquely and com-
pletely defined by its ∆v and tleg, there is the possibility that two
totally different legs could have the same score. This would be a re-
dundancy problem and could potentially affect the learning process.
One could think about hiding the score to the neural network, but
this would be counterproductive, as the score is the only way that the
network can understand how the inspection problem works, and what
parameters and variables affect the quality of a given inspection leg.
Our approach was to include both the ∆v, tleg and the score in the
output of the NN, but it may not have been a good enough solution.
The other possibility that was considered was to include the score
function directly into the loss function, but because the score func-
tion is not derivable, it cannot be propagated backwards, an essential
requirement for loss functions.

4. Database size and quality: the database generation capability was
very limited because of restricted computational power and time.
Even though we estimated that a database of the size created could
be enough, we may have underestimated the complexity of the prob-
lem. A larger database would most likely help to improve the results
and NN performance. However, maybe more importantly is the fact
that with better computational capabilities and time, a more accur-
ate and reliable database could have been generated by sampling a
larger size of samples and directly increasing the optimality of the
algorithm inspection legs. However, as it was reasoned in Chapter 3,
with the available resources for this thesis, increasing the accuracy
of the method would translate into months or even years of database
generation.

6.3. Future Work 61

6.3 Future Work
In order to improve the results of this thesis, as well as to advance in this
research topic, some suggestions about improvements and future lines of
work are presented.

Neural Network type

From the start of the thesis the supervised learning was adopted. However,
reinforcement learning has the potential to work as well, and an approach
based on this would be interesting.

From the supervised learning options, three of them were considered
in Chapter 4. The choice of using DFF networks was based on the lack
of computational and time resources available for the development of this
thesis. However, some promising achievements in trajectory optimisation
based on RNN and GNN (e.g. [34]) were found in the literature. A priori,
these types of NN, more complex and powerful, could potentially overcome
the DFF network performance.

Hyper-parameter optimisation

As explained before, it is a key step in any NN design and so, improving
this aspect could improve the NN capabilities. As usual, there is no real
consensus on which approach obtains the best results in the less amount of
time. While doing the research about hyper-parameter optimisation, the
Random Search hyper-parameter optimisation method [27] was considered.
It defends that Grid Search methods are obsolete and not optimal because
they allocate too much resources to the exploration of dimensions or hyper-
parameters that may not be relevant, which in turn gives poor coverage to
dimensions or hyper-parameters that could be further optimised. Figure 6.2
proofs graphically this argument. There are a handful of other statements
that support the usage of Random Search over Grid Search. On the other
hand, they present a non-adaptive strategy–results already available do not
influence future search; reason why this was not the method chosen during
this thesis.

Despite this, it is suggested that there is room for improvement when
considering sequential, adaptive search or optimisation algorithms. It is
possible that adopting this Random Search, adaptive search methods or
some other approach for hyper-parameter optimisation would yield better
results than the ones achieved in this thesis.

62 CHAPTER 6. SUMMARY, CONCLUSION AND FUTURE WORK

Figure 6.2: Grid Search vs. Random Search. Note that Random Search
explores better the most significant dimension.

List of Figures

1.1 On-orbit inspection scheme. Chaser and target orbits are rep-
resented in an inertial reference frame.[1] 2

1.2 Examples of spacecraft proximity operations. Left: Rendezvous
and docking. Middle: AIS. Right: Mapping of asteroid [2]. . . . 3

3.1 Chaser’s body reference frame and configuration of the thruster,
inspection camera and solar arrays.[13] 15

3.2 The lines point to the target observable features (faces and
corners of the vehicle) while the cones represent the valid ob-
servation regions for each feature.[13] 17

3.3 Sequence diagram of an inspection leg phases. 19
3.4 Distance [m] between the target and the chaser during an inspec-

tion leg. The different inspection leg phases are also highlighted. 20
3.5 ∆v sphere of outer radius ∆vmax and inner radius ∆vmin from

which a thousand points have been uniformly sampled. 21

4.1 Deep Learning excels over conventional ML as the amount of
data increases (as well as computational power). [23] 28

4.2 Deep Feed Forward Neural Network architecture. [24] 30
4.3 a) RNN architecture [25] b) GNN diagram [26] 31
4.4 The optimal model (lower error) lays between the underfitting

and overfitting of the model. [28] 34
4.5 a) Batch training b) On-line training. Note that a) ignores the

"error landscape" and overshoots a valley, while b) follows the
curves to the local minimum (black dot) .[30] 35

4.6 a) Triangular cyclical learning rate scheme. Note how the LR in-
creases and decreases linearly within the bound range. b) Image
classification accuracy comparison. Note the benefits of CLR [29] 36

4.7 Example of a typical LR range test. [32] 37

5.1 Optimal legs inspection sequence. Each orbit color represents a
different inspection leg. 42

63

5.2 Distance [m] between the target and the chaser during a mission.
Note that a proper observation of the target can only be made
while inside the observation zone. 43

5.3 Target and chaser orbits around the Earth (ECI frame). The
z-axis has been scaled to make evident the difference between
the orbits. 44

5.4 Inspection leg around the target. Depicted in the LVLH target
frame. 45

5.5 Left: sigmoid function. Middle: tahnh function. Right: ReLU
function. [33] . 47

5.6 Adam LR range test [1e-4-10]: LR=0.01. 52
5.7 SGD LR range test [1e-4-10]: LR=0.01, WD=1e-5 and a)Momentum=0.9

b)Momentum=0.99 . 53
5.8 Neural Network CLR = [0.2 − 2] training using the Adam op-

timiser. 54
5.9 Neural Network CLR = [0.5−5] training using the SGD optim-

iser. 54

6.1 Six inspection legs. Legs 1-3-5 are computed by the inspection
algorithm while legs 2-4-6 are predictions from the NN. 59

6.2 Grid Search vs. Random Search. Note that Random Search
explores better the most significant dimension. 62

List of Tables

3.1 Inspection algorithm’s consistency study for different number of
samples, ns, taken. 25

5.1 Results of SGD and Adam optimisers for different network con-
figurations. The optimisers have been tested with the default
configuration values of Keras library. 49

5.2 Results of 3 different initialisations for different optimisers and
architectures. 50

5.3 Inspection legs as computed by the inspection algorithm and by
the neural network. 56

64

Bibliography

[1] Lijun Zhang et al. ‘Space Flyaround and In-orbit Inspection Coupled
Control Based on Dual Numbers’. In: Journal of Navigation 71.5
(2018), pp. 1088–1110. doi: 10.1017/S0373463318000176.

[2] Joseph Alexander Starek. Sampling-based Motion Planning for Safe
and Efficient Spacecraft Proximity Operations. Stanford University,
2016.

[3] National Research Council. ‘NASA Space Technology Roadmaps and
Priorities: Restoring NASA’s Technological Edge and Paving the Way
for a New Era in Space’. In: The National Academies Press, 2012.
Chap. Appendix G: TA04 Robotics, Tele-Robotics, and Autonomous
Systems. doi: 10.17226/13354.

[4] Joseph Starek et al. ‘Spacecraft Autonomy Challenges for Next-Generation
Space Missions’. In: Lecture Notes in Control and Information Sci-
ences 460 (Sept. 2016). doi: 10.1007/978-3-662-47694-9_1.

[5] NASA. ‘Overview of the DART Mishap Investigation Results For
Public Release’. In: 2006.

[6] Isao Kawano et al. ‘Result and evaluation of autonomous rendezvous
docking experiment of ETS-VII’. In: Guidance, Navigation, and Con-
trol Conference and Exhibit. doi: 10.2514/6.1999- 4073. eprint:
https://arc.aiaa.org/doi/pdf/10.2514/6.1999-4073. url:
https://arc.aiaa.org/doi/abs/10.2514/6.1999-4073.

[7] Thomas Davis and David Melanson. ‘XSS-10 microsatellite flight demon-
stration program results’. In: Proceedings of SPIE - The International
Society for Optical Engineering 5419 (Aug. 2004). doi: 10.1117/12.
544316.

[8] R. T. Howard et al. ‘Orbital Express Advanced Video Guidance Sensor’.
In: 2008 IEEE Aerospace Conference. 2008, pp. 1–10. doi: 10.1109/
AERO.2008.4526518.

65

https://doi.org/10.1017/S0373463318000176
https://doi.org/10.17226/13354
https://doi.org/10.1007/978-3-662-47694-9_1
https://doi.org/10.2514/6.1999-4073
https://arc.aiaa.org/doi/pdf/10.2514/6.1999-4073
https://arc.aiaa.org/doi/abs/10.2514/6.1999-4073
https://doi.org/10.1117/12.544316
https://doi.org/10.1117/12.544316
https://doi.org/10.1109/AERO.2008.4526518
https://doi.org/10.1109/AERO.2008.4526518

66 BIBLIOGRAPHY

[9] Franzini giovanni. ‘Nonlinear Control of Relative Motion in Space
Using Extend Linearization Technique’. PhD thesis. 2014.

[10] Thierry Simeon Francesco Capolupo and Jean-Claude Berges. ‘Heur-
istic Guidance Techniques for the Exploration of Small Celestial Bod-
ies’. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Congress,
pp. 8279 –8284. issn: 2405-8963. doi: https://doi.org/10.1016/
j.ifacol.2017.08.1401. url: http://www.sciencedirect.com/
science/article/pii/S2405896317319432.

[11] Griffin Francis et al. ‘Sampling-Based Trajectory Generation for Autonom-
ous Spacecraft Rendezvous and Docking’. In: AIAA Guidance, Navig-
ation, and Control (GNC) Conference. doi: 10.2514/6.2013-4549.
eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2013-4549.
url: https://arc.aiaa.org/doi/abs/10.2514/6.2013-4549.

[12] D.A. Surovik and D. Scheeres. ‘Adaptive envisioning of reachable mis-
sion outcomes for autonomous motion planning at small bodies’. In:
Advances in the Astronautical Sciences 150 (Jan. 2014), pp. 537–551.

[13] Francesco Capolupo and Pierre Labourdette. ‘Receding-Horizon Tra-
jectory Planning Algorithm for Passively Safe On-Orbit Inspection
Missions’. In: Journal of Guidance, Control, and Dynamics 42.5 (2019),
pp. 1023–1032. doi: 10.2514/1.G003736. eprint: https://doi.org/
10.2514/1.G003736. url: https://doi.org/10.2514/1.G003736.

[14] G. W. Hill. ‘Researches in the Lunar Theory’. In: American Journal
of Mathematics 1.1 (1878), pp. 5–26. issn: 00029327, 10806377. url:
http://www.jstor.org/stable/2369430.

[15] Wigbert Fehse. Automated Rendezvous and Docking of Spacecraft.
Cambridge Aerospace Series. Cambridge University Press, 2003. doi:
10.1017/CBO9780511543388.

[16] L. Summerer R. Schonenborg O. Dubois-Matra E. Luraschi A. Cropp
H. Krag K. Wormnes R. L. Letty and J. Delaval. ‘ESA technologies
for space debris remediation’. In: Proceedings of the 6th IAASS Con-
ference: Safety is Not an Option, 2013, pp. 3–4.

[17] David A. Surovik and Daniel J. Scheeres. ‘Adaptive Reachability Ana-
lysis to Achieve Mission Objectives in Strongly Non-Keplerian Sys-
tems’. In: Journal of Guidance, Control, and Dynamics 38.3 (2015),
pp. 468–477. doi: 10.2514/1.G000620. eprint: https://doi.org/
10.2514/1.G000620. url: https://doi.org/10.2514/1.G000620.

https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.1401
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.1401
http://www.sciencedirect.com/science/article/pii/S2405896317319432
http://www.sciencedirect.com/science/article/pii/S2405896317319432
https://doi.org/10.2514/6.2013-4549
https://arc.aiaa.org/doi/pdf/10.2514/6.2013-4549
https://arc.aiaa.org/doi/abs/10.2514/6.2013-4549
https://doi.org/10.2514/1.G003736
https://doi.org/10.2514/1.G003736
https://doi.org/10.2514/1.G003736
https://doi.org/10.2514/1.G003736
http://www.jstor.org/stable/2369430
https://doi.org/10.1017/CBO9780511543388
https://doi.org/10.2514/1.G000620
https://doi.org/10.2514/1.G000620
https://doi.org/10.2514/1.G000620
https://doi.org/10.2514/1.G000620

Bibliography 67

[18] David A. Surovik and Daniel J. Scheeres. ‘Autonomous Maneuver
Planning at Small Bodies via Mission Objective Reachability Ana-
lysis’. In: AIAA/AAS Astrodynamics Specialist Conference. doi: 10.
2514/6.2014-4147. eprint: https://arc.aiaa.org/doi/pdf/10.
2514/6.2014-4147. url: https://arc.aiaa.org/doi/abs/10.
2514/6.2014-4147.

[19] E. Komendera, D. Scheeres and E. Bradley. ‘Intelligent Computation
of Reachability Sets for Space Missions’. In: IAAI. 2012.

[20] Damion Dunlap, Emmanuel Collins and Charmane Caldwell. ‘Sampling
Based Model Predictive Control with Application to Autonomous
Vehicle Guidance’. In: (Jan. 2008).

[21] E. Komendera. ‘Description of the Reachability Set Adaptive Mesh
Algorithm ; CU-CS-1090-12’. In: 2012.

[22] Christian Grimme. Picking a Uniformly Random Point from an Ar-
bitrary Simplex. Jan. 2015. doi: 10.13140/RG.2.1.3807.6968.

[23] C.C. Aggarwal. Neural Networks and Deep Learning: A Textbook.
Springer International Publishing, 2018. isbn: 9783319944630. url:
https://books.google.es/books?id=achqDwAAQBAJ.

[24] Anis Hanifah, Teddy Gunawan and Mira Kartiwi. ‘Speech Emotion
Recognition Using Deep Feedforward Neural Network’. In: Indone-
sian Journal of Electrical Engineering and Computer Science 10 (May
2018), pp. 554–561. doi: 10.11591/ijeecs.v10.i2.pp554-561.

[25] Engin Pekel and Selin Kara. ‘A COMPREHENSIVE REVIEW FOR
ARTIFICAL NEURAL NETWORK APPLICATION TO PUBLIC
TRANSPORTATION’. In: Sigma Journal of Engineering and Natural
Sciences 35 (Mar. 2017), pp. 157–179.

[26] Raymond Rowe and Elizabeth Colbourn. ‘Neural computing in product
formulation’. In: 8 (Jan. 2003), pp. 1–81.

[27] James Bergstra and Yoshua Bengio. ‘Random Search for Hyper-Parameter
Optimization’. In: J. Mach. Learn. Res. 13.null (Feb. 2012), pp. 281–
305. issn: 1532-4435.

[28] Leslie N. Smith. ‘A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momentum, and weight
decay’. In: (Mar. 2018).

[29] Leslie N. Smith. Cyclical Learning Rates for Training Neural Net-
works. In Applications of Computer Vision (WACV), 2017 IEEEWinter
Conference. 2017.

https://doi.org/10.2514/6.2014-4147
https://doi.org/10.2514/6.2014-4147
https://arc.aiaa.org/doi/pdf/10.2514/6.2014-4147
https://arc.aiaa.org/doi/pdf/10.2514/6.2014-4147
https://arc.aiaa.org/doi/abs/10.2514/6.2014-4147
https://arc.aiaa.org/doi/abs/10.2514/6.2014-4147
https://doi.org/10.13140/RG.2.1.3807.6968
https://books.google.es/books?id=achqDwAAQBAJ
https://doi.org/10.11591/ijeecs.v10.i2.pp554-561

68 BIBLIOGRAPHY

[30] D.Randall Wilson and Tony R. Martinez. ‘The general inefficiency
of batch training for gradient descent learning’. In: Neural Networks
16.10 (2003), pp. 1429–1451. issn: 0893-6080. doi: https://doi.
org / 10 . 1016 / S0893 - 6080(03) 00138 - 2. url: https : / / www .
sciencedirect.com/science/article/pii/S0893608003001382.

[31] Leslie N. Smith. ‘No More Pesky Learning Rate Guessing Games’.
In: CoRR abs/1506.01186 (2015). arXiv: 1506.01186. url: http:
//arxiv.org/abs/1506.01186.

[32] Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast
Training of Neural Networks Using Large Learning Rates. 2018.

[33] Zhiqiang Teng et al. ‘Structural Damage Detection Based on Real-
Time Vibration Signal and Convolutional Neural Network’. In: Ap-
plied Sciences 10 (July 2020), p. 4720. doi: 10.3390/app10144720.

[34] Bernd Dachwald. ‘Optimization of very-low-thrust trajectories using
evolutionary neurocontrol’. In: Acta Astronautica 57.2 (2005). Infinite
Possibilities Global Realities, Selected Proceedings of the 55th Inter-
national Astronautical Federation Congress, Vancouver, Canada, 4-8
October 2004, pp. 175–185. issn: 0094-5765. doi: https://doi.
org/10.1016/j.actaastro.2005.03.004. url: https://www.
sciencedirect.com/science/article/pii/S0094576505000627.

https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/https://doi.org/10.1016/S0893-6080(03)00138-2
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://www.sciencedirect.com/science/article/pii/S0893608003001382
https://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1506.01186
https://doi.org/10.3390/app10144720
https://doi.org/https://doi.org/10.1016/j.actaastro.2005.03.004
https://doi.org/https://doi.org/10.1016/j.actaastro.2005.03.004
https://www.sciencedirect.com/science/article/pii/S0094576505000627
https://www.sciencedirect.com/science/article/pii/S0094576505000627

	Abstract
	Sommario
	Acknowledgments
	List of Abbreviations
	Contents
	Introduction
	Motivation.
	State of the Art.
	Flight demonstrations, challenges and future work.

	Selected Inspection algorithm and Artificial Neural Network type.

	Relative Guidance and Control
	Introduction.
	The Optimal Guidance Problem.
	Equations of motion.
	Relative motion dynamics
	Target attitude motion.

	Integration of equations

	On-Orbit Inspection
	The Inspection Problem
	Problem Statement
	Challenges and constraints
	Observation Model
	Planning Algorithm
	Mission design
	Inspection legs
	Algorithm Routine
	Scoring
	Heuristic Mesh Refinement

	Precision vs. Computational time Trade Off

	Artificial Intelligence
	Introduction to Artificial Neural Networks
	Selected type of learning

	Types of Neural Networks
	Selected Neural Network

	Loss Functions
	Selected Loss Function

	Hyper-parameter optimisation
	Batch and On-line training comparison
	Cyclical Learning Rates for Neural Network Training
	Super-convergence
	Cyclical Momentum

	Regularisation
	Weight Decay
	Dropout
	L1 and L2

	Results
	Inspection implementation results
	Database
	Database Generation
	Pre and post processing the database

	Design and Architecture
	Neurone type
	Optimiser
	Initialisation methods
	Architecture

	Hyper-parameters choice
	Learning rate range test
	Cyclical learning rate

	Regularisation
	Neural Network Predictions
	Comparison NN vs. Inspection Algorithm

	Summary, Conclusion and Future Work
	Summary
	Conclusion
	Future Work
	Neural Network type
	Hyper-parameter optimisation

	List of Figures
	List of Tables
	Bibliography

