
Sharon: a Smart Home Environ-
ment Simulator

Tesi di Laurea Magistrale in
Computer science and Engineering - Ingegneria in-
formatica

Author: Francesco Maria Di Rienzo

Student ID: 944548
Advisor: Prof. Sara Comai
Co-advisors: Fabio Salice, Andrea Masciadri
Academic Year: 2022-2023

i

Abstract

The average age of the world population is increasing; in particular, it is forecast that the
percentage of elderly people will grow as well. This fact will pose important challenges
to the healthcare system which would be in charge of treating a larger number of people.
To limit the pressure on the public healthcare system and help aged people live a better
life in their own homes, it is possible to use a smart home environment that assists them
in their ordinary lives . The problem is that to design a smart home environment, a lot
of data is needed, both for the development of the hardware and the software. However,
data is scarce because the simplest approach of gathering them using a real prototype of
a smart home environment would not work. It would not work because it would be too
burdensome in terms of cost and time to build a specific smart home environment for a
specific place without a priori information; moreover, this installation would not be able to
generate sufficiently general datasets. We developed a smart home environment simulator
called Sharon to solve this issue. This simulator can produce datasets that can be used
to build real smart home environments. The simulator can produce two datasets; one
contains the scheduling of activities of daily living (ADL); the other contains the sensors’
activations representing the status of each sensor in the virtual environment. The dataset
containing sensors’ activations is computed starting from the dataset composed of ADLs.
In this thesis, we developed additional features to increase the software simulator’s capa-
bilities. The first feature that we added to the program is the fact that the user can force
a set of ADLs in precise time instants at run-time, affecting the output datasets. The
second functionality that we implemented is the ability to reproduce anomalous events in
the form of a sequence of sensors’ activations arbitrarily decided by the user itself. Ex-
amples of anomalous events can be the fall of the inhabitant or the fact that the dweller
does not remember to close the fridge. The third feature that was coded is the ability to
use Sharon to do real-time software testing of a real smart home environment. In partic-
ular, the user can choose the speed of the simulation and so the output datasets can be
processed by a real smart home environment in real-time while they are being computed.
The first two goals have been completely reached; the third one works if the translation
of ADL scheduling in sensors’ activations is based on a deterministic approach; instead,

ii | Abstract

when using a stochastic approach it does not work.

Keywords: Smart home, Human environment simulation, aging population, elderly care

iii

Abstract in lingua italiana

L’età media della popolazione mondiale sta aumentando, in particolare è previsto che
anche la percentuale di anziani crescerà. Questo fatto pone importanti sfide al sistema
sanitario che sarebbe in dovere di trattare un maggior numero di persone. Per limitare
la pressione sul sistema sanitario pubblico e aiutare gli anziani a vivere una vita migliore
presso le loro abitazioni, è possibile usare un ambiente domestico intelligente per assis-
terli nella vita di tutti i giorni. Il problema è che per progettare un ambiente domestico
intelligente è necessaria una grande quantità di dati, sia per sviluppare il software che
l’hardware. Tuttavia c’è una penuria di dati poiché il più semplice approccio di rac-
coglierli usando un prototipo di ambiente domestico intelligente non funzionerebbe. Non
funzionerebbe perché sarebbe troppo oneroso in termini di denaro e tempo costruire uno
specifico ambiente domestico intelligente per uno specifico luogo senza informazioni a pri-
ori, inoltre questa installazione non sarebbe in grado di generare insiemi di dati abbastanza
generali. Per risolvere questo problema abbiamo sviluppato un simulatore di ambiente
domestico intelligente chiamato Sharon. Il simulatore è capace di produrre insiemi di dati
che possono essere usati per progettare ambienti domestici intelligenti reali. Il simulatore
può generare due insiemi di dati, uno contenente la programmazione delle attività gior-
naliere (ADL), l’altro comprendente le attivazioni dei sensori, che rappresentano lo stato
dei sensori presenti nell’ambiente. L’insieme di dati che contiene le attivazioni dei sensori
viene calcolato a partire dall’insieme di dati che contiene le ADL. In questa tesi abbiamo
sviluppato funzionalità addizionali al fine di aumentare le capacità del programma di sim-
ulazione. La prima funzione che abbiamo aggiunto al programma è il fatto che l’utente
può forzare durante l’esecuzione un insieme di ADL, in un preciso istante temporale, che
ha un effetto sugli insiemi di dati prodotti. La seconda funzionalità che abbiamo imple-
mentato è l’abilità di riprodurre eventi anomali nella forma di sequenze di attivazioni di
sensori arbitrariamente decise dall’utente stesso. Esempi di eventi anomali possono essere
la caduta dell’abitante o il fatto che il residente non si ricorda di chiudere il frigorifero.
La terza funzione che abbiamo codificato è l’abilità di usare Sharon per fare un collaudo
di un ambiente domestico intelligente in tempo reale. In particolare l’utente può scegliere
la velocità di simulazione e quindi gli insiemi di dati prodotti, mentre sono computati,

possono essere processati da un ambiente domestico intelligente in tempo reale. I primi
due obiettivi sono stati completamente raggiunti, il terzo funziona se la traduzione da pro-
grammazione di attività in attivazioni di sensori si basa su un approccio deterministico,
mentre quando si usa il metodo stocastico non funziona.

Parole chiave: Casa domotica, simulazione di ambiente umano, invechiamento della
popolazione, cura degli anziani

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 State of the art 5
1.1 Persim . 5
1.2 DiaSim . 6
1.3 Simulation of a smart home environment 6
1.4 IE Sim . 7
1.5 Simulating Events to Generate Synthetic Data for Pervasive Spaces 7
1.6 Multilevel Simulation of Daily Activities:Why and How? 7
1.7 Computer simulation of the activity of the elderly person living indepen-

dently in a Health Smart Home . 8
1.8 Simulation of home daily activities for lifestyle monitoring systems devel-

opment . 9
1.9 CASS . 9
1.10 SIMACT . 10
1.11 A Simulator for Generating and Visualizing Sensor Data for Ambient In-

telligence Environments . 10
1.12 Development of a smart home simulator for use as a heuristic tool for

management of sensor distribution . 11
1.13 Simulation of smart environments . 11
1.14 Classification and analysis of literature . 11
1.15 Literature review . 12

2 Method 15
2.1 Sharon framework . 15
2.2 Important implementation details . 19
2.3 My contribution to the work . 22
2.4 Utilize Sharon to do software testing . 22
2.5 Real time data generation . 23
2.6 Anomalies generation . 24
2.7 Forcing an ADL in the high level scheduling 28

3 Results 31
3.1 Results regarding the high level scheduling 32
3.2 Results regarding the low level scheduling 35

4 Conclusions and future works 41

Bibliography 45

List of Figures 49

List of Symbols 51

Acknowledgements 53

1

Introduction

According to various reports [3, 5, 16] among which the one from the United Nations [4],
by the middle of the century, one-sixth of the world population will be at least 65 years
old, up from one-eleventh in 2019. These reports also suggest that the world is undergoing
a “longevity revolution” according to which the amount of life that is spent above age 65
is raising considerably and this means that there are a lot more people reaching old age.
According to the World Health Organization [2], by the middle of the century, the number
of people older than 60 will nearly double for 2015. Another important argument is that,
by 2050, 80% of old people will be living in low and middle-income countries. In the article
published by the International Monetary Fund [23] it is pointed out that the aging of the
population will have an economic impact, in particular working people will pay more to
support the elderly and also a bigger part of the public spending should be allocated to
support health and retirement programs. From these forecasts, the problem of how can
low- and middle-income deal with the aging of their population arises. If we analyze the
problem more deeply we can notice that there is also a time constraint all the forecasts
will occur by 2050 so all the countermeasures should be ready for that time. In this master
thesis, we will try to find a solution to this urgent problem respecting the temporal and
pecuniary constraints. This problem is relevant because it is common in all countries.
After all, the tendency to live longer is spread all over the world. Not only this problem
will be extremely diffused as already said, but it will have a significant impact on the life
of people, specifically, those people that are in the working age and that will be obliged
to pay to sustain the health of the elderly. There are already costly ways to deal with this
problem, but precisely these are expensive and we want affordable solutions for low or
middle-income countries and people. One of these expensive ways is hiring a caregiver to
assist the old person in his/her own home, but this method is not always possible because
not all families have the economic possibilities to hire a cohabitant caregiver, moreover,
this operation, has the effect to make the aged adults feel old and this often leads to
refuse of help, this intervention is highly invasive from the perspective of an old adult
who will lose part of his/her freedom and privacy. Another method to take care of the
elderly without weighting on the state budget is to entrust the old adult to a retirement

2 | Introduction

home, but also this solution is quite expensive and presents various problems related to
the fact that the person will have to stay with other unknown persons and will have
to live in a completely different environment that will deeply affect its freedom and its
habits. Moreover, both the two discussed solutions, have a common problem: they rely
on the fact that the elderly would be physically assisted in doing activities of daily living
by a caregiver who is not part of the family unit. Nowadays this approach is dangerous
because of the spread of the Covid19. Consequently, a solution that reduces contact
between people would be preferred because less dangerous. From these considerations
and problems, the idea was to create a smart home that would be able to monitor the
elderly in his/her own home, allowing him/her to keep living a normal life without too
much intrusion, and to notify the relatives of the dweller only in case of anomalies. This
approach would solve the economic problem because a smart home is less expensive than
hiring a cohabitant caregiver or entrusting the old adult to a retirement home. Also, the
issue of the Covid19 diffusion is decreased because the inhabitant’s contacts with other
people external to the family are limited. A person would be more willing to accept a set
of electronic devices that constitute the smart home environment than a new unknown
cohabitant person or a new environment which is the retirement home, so we can state
that there is a higher probability that this solution would be accepted by the elderly. The
work described in [9] focuses on the acceptance of the Internet of Things environment,
a network of sensors, actuators, digital devices connected through the Internet, from the
inhabitants, especially this study shows that compatibility, ease of use and usefulness
are the among the best indicators of the intention to use the IoT system, also cost has
a significant impact. In other words, we are proposing a known approach called Active
and Assisted Living that should avoid the hospitalization of the elderly ensuring a high
quality of living to the old adult and a high-security standard regarding the elderly status
to the family [1, 24]. The smart home environment should retrace the IoT architecture
where the digital devices, sensors, or actuators, in a home, are connected to a central
server that can compute the information coming from the home of the elderly and should
be able to provide the relatives with a detailed report of the status of the monitored old
people. To do so the server should use Artificial Intelligence techniques and algorithms,
but these algorithms rely on a model that has a variable number of parameters, the
more the parameters the more the model is complex, that needs to be estimated, and to
estimate them you need training data, and the more is complex and powerful the model,
the more the data that you need. Moreover to validate and test the model further data
are needed, that is to say, that these approaches are data eager. Unfortunately, several
reasons determine a shortage of datasets with a good quality that can be used to train
these smart home environments servers that should compute the Artificial Intelligence

| Introduction 3

algorithms. For example, if you wanted to put in place a smart home environment that
collects data in a real home, with a dweller or more, you should recruit that dweller, you
should design and built the system, both the hardware and the software, also you would
need money investments for the design and the production phase. In this scenario, it is
important to consider that the data collection would be extremely slow because it should
respect the pace of life of the people involved in the experiment. Furthermore, if there is a
mistake in the design or production phase, and you can discover that only after that you
have already gathered some data, it would be necessary to do again the data collection,
again at the same pace, the iteration of these two phases could cause a remarkable waste of
time and money. Even after having designed the smart-home environment that should be
used to gather the data, it is not given that it will work according to the requirements so
it is important to verify that it is working properly. To be sure that the system meets the
requirements the people living in the environment must write down what are they doing
together with a description of the context in which the data was collected, this additional
information is called “ground truth”. This “ground truth” however is not reliable because
people often forget to compile it. The specific problem that we want to solve with this
thesis is to find a different way to gather data that will be used to design a smart home
environment for helping the elderly and their families, in a faster and cheaper way than
proceeding with iterations of designing the initial smart home, producing it, putting it in
place, collecting data, checking the results and repeating if needed.

Here at Politecnico di Milano, in particular at the Assistive Technology Group, (ATG), a
project of this kind has been developing: a wireless sensor network that can perceive the
activities of the people in the environment in which is installed, and can send notifica-
tions to a visualization tool that will provide all the needed information to the relatives
of the old person. The architecture of the whole system is one of the Behavior dRift
compensation for autonomous and InDependent livinG, (BRIDGe), project. BRIDGe is
the visualization tool that receives the information from the smart home environment
and computes them to give aggregate visual information and reports. To produce the
data that is needed to train, validate and test the Artificial Intelligence algorithms and
techniques that are used in BRIDGe and also to test other functionalities of that project,
the ATG has been developing SHARON which is a human behavior software simulator
that can output text files representing the scheduling of Activities of Daily Living, ADL,
over many days that can be chosen, and it can also output text files representing sensors’
activations corresponding to that high-level scheduling. A more detailed explanation of
how SHARON works and its functionalities will be given in the method section. The
important message is that the SHARON software simulation allows us to generate data

4 | Introduction

in a controlled environment, in a very short time with respect to the time that would be
required to gather the same amount of data in a real scenario, and in a much cheaper
way than designing and building an actual smart home capable of collecting data. In the
subsequent chapters, we will illustrate the state of the art, the method, the results, and
the conclusions.

5

1| State of the art

In this chapter, we will present, analyze and classify the relevant literature regarding the
smart home environment simulators and useful tools that have an impact on the functions
of this kind of software. In particular, we wanted to find significant functionalities imple-
mented in other simulators to enrich Sharon with them. Another important purpose of
this inquiry is to be able to classify Sharon with respect to the current state of the art.

1.1. Persim

Persim is a software [11] that is able to simulate, human activities. It is event-driven,
it can generate datasets in a standard format which is the Sensory Dataset Description
Language, SDDL, in order to facilitate the sharing of the data. It can be configured to
capture micro or macro events. Its use cases are:

• Converting a dataset into SDDL.

• Simulate human behaviour in a smart environment and generate the corresponding
dataset.

• Share datasets through a repository.

• Extend a given dataset by modifying the environment in which it was computed.

• Validate a general dataset by comparing it against a real one.

There are five steps that must be done in order to be able to simulate a smart home
environment. You have to create the space and areas, then you can choose among a set of
sensors and actuators and place them in the space, then you express the activities to be
executed, then you define the mapping between activities and sensors that specifies which
are the sensors relevant for each activity, and in the end, you can start the simulation.
The user can set all these parameters through a graphical user interface. There are two
modes: Activity-Driven and State-space. In the Activity-driven mode, the user creates
the list of activities and the mapping between sensors and activities and the simulator
produces the dataset. In State-space mode a series of events, fired at a certain timestamp,

6 1| State of the art

is created and for each of them the proper activation of all sensors is generated, that is
a sensor can be activated or not by a certain event. It is not possible to model outdoor
activities.

1.2. DiaSim

DiaSim [8] is a software that can simulate a smart home environment, it has parameters
that allow modifying the target environment according to the needs of the user. The set
of parameters describes the environment which should mimic the real environment. Then
it is possible to execute the applications in this environment and a platform that allows
the development of simulation logic which can be tested in the former environment, a
special debugger is also integrated.

1.3. Simulation of a smart home environment

PlaceMaker is a utility software that can be used to generate a matrix that can have
two or three dimensions and that represents an environment, and a connectivity matrix,
which represents paths between rooms, is associated with the matrix representing the
environment. V-PlaceLab is software that is used to create a list of activities that should
be executed by the virtual agent. VPlaceSims is software that gives the user the ability
to move the avatar in a graphical environment and allows the virtual agent to interact
with others and also with objects. Now we present this peculiar work [6]. A utility to
draw the house map is presented, it gives the user the ability to draw on a canvas the
various elements such as walls furnishings, each of these entities has its properties such as
size that can be modified. It is also possible to insert sensors: PIR sensors detect human
presence using infrared, PM sensors detect human presence using pressure. Each home
space that is created with that tool can be saved in XML format, and it is possible to load
an XML file representing a floor plan. It is possible to define an agent profile and also a
list of activities for each agent, each activity can generate a set of signals which are the
output of the sensors in the environment. The simulation can be repeated to increase the
size of the data collected which can be saved into a database. As a recap, the input for
the simulation is the structure of the home, the resident profile, and the schedule. The
simulator enables the user to see the virtual dweller moving in the virtual environment
during the simulation.

1| State of the art 7

1.4. IE Sim

IE Sim is a software simulator [15], endowed with a graphical interface, that allows the
user to create a dataset composed of ADLs deriving from the activity of a dweller in a
smart digital environment. In the simulator, there is a utility that allows the user to create
a 2D plan, with objects and sensors which have properties that can be modified. The
user moves the virtual agent in the virtual environment using the keyboard, the virtual
agent can interact with the sensors in two ways: a passive interaction or active interaction
in which the user has to use the interaction menu to interact with them. The generated
dataset is in the homeML standard.

1.5. Simulating Events to Generate Synthetic Data

for Pervasive Spaces

In this work [19], the authors present a model that will be used to carry out the simulation,
that is based on Markov chains, probability distributions, and Poisson processes. Accord-
ing to the work described here, Markov chains are indicated as useful to produce patterns
of activities given a priori information about the target schedule. To assign timestamps
in a given time interval it is suggested to use Poisson distribution. The generation of the
activations of the sensors is based on probabilities distributions that are tuned according
to the characteristics of the sensors.

1.6. Multilevel Simulation of Daily Activities:Why

and How?

This work [13] presents a very interesting state of the art section in which it is pointed out
that it is possible to adopt a Markov model to estimate the location of the virtual agent.
Another important reference is to Cardinaux where a model updates the probability that
the dweller will perform a certain action according to how much time has elapsed from
the previous execution of that action, after each execution that probability is set to zero.
The virtual dweller is represented using a set of parameters, a part of them represents the
character of the person such as how many hours of sleep a person needs, the remaining
part represents the needs of the person such as tiredness. Given this set of variables,
which represents the current status of the person, the next action that has to be executed
can be determined. There is also the description of the virtual environment that consists
of a plan of all the locations where the dweller can go, also in this case there is a set

8 1| State of the art

of parameters associated with the virtual environment, such as how many doors there
are. In the environment both motion and non-motion sensors. There are three types of
activities: high-level activities, middle-level activities, and low-level activities, so there is
a hierarchy between them. A certain top-level activity is scheduled if its corresponding
priority function is the maximum among the set of priority functions, this is a sort of
schedule according to the needs of the person, if the person is hungry then it will eat.
The middle-level activity is more fine-grained than a high level one in the sense that a
high-level activity is composed of a sequence of middle-level activities, for instance, the
high level can be clean the bathroom and the sequence of the middle level can be clear
the bathtub, clear the sink and clear the floor. The state of the simulation and the output
is produced when the bottom-level actions are performed, in particular, these actions will
influence the variables and the parameters that are used to describe the human character
and the environment. The output of the simulator consists of a set of text files containing
the logs of the various sensors, also logs that contain high and low-level activities.

1.7. Computer simulation of the activity of the el-

derly person living independently in a Health

Smart Home

An important discussion here [20] reported is about the fact that the data that comes out
of the sensors and get stored as a time series is incomplete, two reasons are mentioned:
the sensor can fail and produce false positive or false negative detections, the second one
is that there is a lack of people that are willing to stay in the monitored environment to
trigger the sensors and produce the data. The data is preprocessed, re-sampling it at 1
Hz, subtracting the median, and passing over a first-order hold filter. The next step is the
clustering of the data using Data Mining techniques, then this data is used as transition
elements to compute two Markov matrices of transition. Then, to start the simulation,
the two previously computed matrices are used as input for a Matlab function called
HMMGENERATE that will give as output the states and the sequence. It is presented
experimental data gathered over 1492 days from a real smart home environment where
passive presence infrared sensors were used. The collected data is organized as a time
series where there is the timestamp, the date, and the localization of the dweller.

1| State of the art 9

1.8. Simulation of home daily activities for lifestyle

monitoring systems development

In [10] the authors present a software simulator that is based on a hierarchy of two layers,
the first and the higher one represents the schedule of the activities that the dweller does
in the environment, the lower layer represents how these actions take place, how they are
carried out, an activity is composed of a series of actions, actions have not a duration
time, activities duration time is determined by the actions that compose it. The envi-
ronment is coded as a graph, edges are locations and transitions are vertices. The route
path of a moving agent is computed using the shortest path. This is a parameterized
software for example there is a parameter that regulates the moving speed of the agent.
The parameters can change at run time according to various factors such as the health of
the simulated agent. The scheduling of the activities during a day depends on the needs
of the person which vary over time, in particular, a need increases until it’s satisfying. A
Bernoulli trial will decide at each iteration if a certain activity that has a certain proba-
bility, depending on the urgency of the related need, to be executed has to be executed.
The probability of performing a certain action grows linearly with the elapsed time and a
constant, so that constant is a parameter of the system, in fact, it directly influences the
interval of time between one instance of action and another one. In this simulator there
are a lot of parameters, they are divided into four classes: Subject parameters, sensor
parameters, change parameters, and environmental parameters. The subject parameters
are the ones that influence the subject conduct. The sensor parameters regulate the detec-
tion of events from the actions of the agent. Change parameters are deputed to represent
possible changes in the needs of the agent. Environmental parameters describe entities
such as weather, television programs, and so on.

1.9. CASS

An important contribution presented in [21] is the definition of context, which can be
of two types, one is called primitive context information and the other is called complex
context information. The first one represents the data coming from the sensors enriched
with the time and location of the sensor that gathered the data. The second represents
information that contains knowledge that derives from primitive context information.
Another concept that is introduced is that of contextual rule, which is composed of a
condition and an action, the condition can be expressed in terms of primitive or complex
context information, the action part consists of actions that can be done by devices and

10 1| State of the art

actuators. The software includes a graphical interface that helps the user in defining
the contextual rules, it can also understand the conflicts between them and displays the
control movement of the digital agent. The software can produce its primitive context
information to check and test the rules. This simulator has three kinds of virtual agents:
the administrator, the authenticated user, and the guests, the three types have different
privileges, for example, the guest cannot control the smart home. The software allows the
user to set up the virtual environment, containing the sensors and actuators, in which the
simulation will take place.

1.10. SIMACT

This simulator [14] can set up, with a visual tool, a three-dimensional environment. An
interesting feature is that a plan is defined as a series of steps, but it can also contain
steps that are not useful for reaching the goal of that plan; it is possible to see, thanks to
a graphical interface, the execution of the plan and its steps. The simulation speed can
be set according to the user’s needs. The sensor’s data can be saved into a database so
that this data is available to other applications. The tool works out of the box thanks to
a set of scripts, but the user can create new scripts to personalize the simulation, where
each script describes a series of actions in the virtual environment. It is clear that in this
project the user interface is very advanced. A choice that also they have made is to use
SketchUp for the creation of the 3D environment. In this approach, the activity model is
a composed one, in the sense that there is a hierarchy where activity is composed of a set
of actions.

1.11. A Simulator for Generating and Visualizing

Sensor Data for Ambient Intelligence Environ-

ments

The smart home environment simulation software described by Buchmayra, Kurschlb, and
Küng in [17] can have as an environment a two-dimensional floor plan where the user can
locate the sensors that can be also defined by the user. The sensor model can represent
the fault of the sensor or the corruption of the data caused by the noise by altering the
output of the sensor itself or by activating a sensor that should not be activated. The
output data is available to external components in real-time.

1| State of the art 11

1.12. Development of a smart home simulator for use

as a heuristic tool for management of sensor

distribution

The work presented in [22] describes a software simulator that is based on a 3D virtual
environment where the virtual dweller is moved by the real user through the keyboard
of the computer, the virtual agent will interact with the sensors placed in the 3D envi-
ronment and the actual user can see the simulation in the 3D environment from different
perspectives such as a first person or third person. The objective of this simulator is to
help the researcher to identify the best sensors placement given a certain environment.

1.13. Simulation of smart environments

The smart home environment presented in the work of Armac, Ibrahim, and Retkowitz [7]
is called eHomeSimulator. The environment is represented in a peculiar three-layered way:
there is the actual floor plant that describes the position of the various rooms, there is the
virtual agent, and there are the sensors. The display is in 2D, and the three layers are:
the lower one is in charge of representing the background, the middle one must represent
the sensors in the environment, and the higher one is devoted to the representation of
the digital dweller in the smart space. Various external tools are used to render the
environment, for example, Google Sketchup for the background image. An environment
editor is provided within the software which allows to define and create accessible and not
accessible areas and to locate sensors in the environment. The graphical user interface
(GUI) of the simulator allows the user to select the virtual agent that will be moved, there
can be more than one dweller but only one at a time can be controlled by the user. Also,
the sensors’ output can be viewed from the GUI.

1.14. Classification and analysis of literature

The classification of the software that is used to simulate the smart home environment,
which is presented in [12] is very significant. In particular, the classification is based
on how the output is computed and does not take into account additional features that
do not contribute to the creation of the output, for instance, a nice feature that is does
not determine the category of software is the possibility to have more people in the
same environment, another feature that does not influence the classification is the ability
to define new sensors. The classification that is presented supposes two classes: the

12 1| State of the art

model-based class and the interactive-based class. If the software is model-based then it
means that there is a mathematical model that defines the succession of activities and the
duration of each activity. We have found in the literature that for these objectives the
hidden Markov model is used to compute the schedule of the activities and the Poisson
probability distribution is used to calculate the duration of an activity. An example of
model-based software is SIMACT and Persim. The software that is based on an interactive
approach produces its output thanks to the direct interaction of the real human user
that defines in some ways, mouse or keyboard, for example, the movements and the
actions of the virtual agent in the simulated environment, so the key part of this family
of software is the GUI that allows the interplay. Also in this kind of software, there could
be some code representing a mathematical model, for example, the activation of a sensor
is not represented in a deterministic way but in a stochastic way using some probability
distribution. An example of the previously analyzed software that belongs to this class is
the CASS simulator. From this classification, interesting observations arise. The model-
based approach produces a dataset that derives from the models that it uses, so the quality
of the dataset depends on the quality of the model. The model is composed of parameters
and hyperparameters that need to be estimated from real data, but as we already said, in
this field, there is a shortage of real data. Moreover, these models need to be complex to
have the sufficient power to describe human actions in a smart environment and so they
must be complex. This fact brings another disadvantage: it is difficult to fine-tune the
model and to reconstruct the computation of the results. The advantage of this approach
is that it can generate a dataset over an extended period of simulated time in a short
real-time. Regarding the advantages and the disadvantages of the interactive approaches
it is clear that the user has fine-grained control over the activities that the virtual agent
is going to perform in the virtual environment, this allows a better explainability of the
results of the simulation. Another advantage is that a model of the behavior of the
dweller is not needed, this is important because as we have already said, to build its
data are needed and in this area, they are few, instead of in this interactive approach the
complexity shifts to the design of the virtual environment and the GUI of the simulator.

1.15. Literature review

In this chapter, we will try to comment and grasp the most interesting and useful results
that we have found in our research. In particular, we will point out some features that
could be integrated with Sharon to make it better.

The first comment that we make, addresses an important problem of the field: there is

1| State of the art 13

not an established standard dataset representation used by the majority of the simula-
tors. This is important for many reasons, first of all, it slows down the advancement of the
knowledge of the field because it makes comparisons between simulators more difficult.
Another reason is that it would be very useful to be able to combine datasets coming from
different simulators to get a much larger dataset, that is also considerably more general
and so more qualitative. We think that having such a dataset would be a dream scenario
because the machine learning algorithms would get a significant benefit from the greater
quantity and quality of the data. We think that there is already a feeling in the field for
this problem, as evidence of this, there are various projects that provide utilities that can
convert a dataset in one format into a dataset in another format such as Persim does. The
dataset translation is a feature that some simulators offer, we have found that this is not
the only functionality that is often provided. Some simulators offer functionalities that
can be used to produce configuration files that will be used by the simulator itself, for
example, a common utility is the one that allows the user to design and build the map of
the environment that is usually coded as a graph. Another common utility is the one that
allows the user to create a list of ADLs representing the scheduling of the activities of the
virtual agent and this high-level scheduling is used to produce the sensors’ activations.
Some other simulators make extensive use of external tools such as SketchUp for the cre-
ation of the environment, PlaceMaker that allows the creation of matrices representing
the environment, and VPlaceSim that allows the user to see the avatar moving in the
environment. Both these two types of utilities are important because the real challenging
part of a simulator is how is the high-level scheduling of activities produced and how it
is mapped into sensors’ activations and we think that it is important to direct the re-
sources to develop these two points rather than investing them on secondary features that
can be reused. In other words, we are suggesting for someone willing to make a human
environment simulator to take the utilities that are already developed and tested and
concentrate on the models of the dweller and the sensors. Another pattern that we have
detected is the use of a GUI, in particular for those simulators that need the intervention
of the user to move the dweller in the virtual environment and generate the sensors’ acti-
vations. For what concerns the simulators that generate the high-level scheduling of the
activities and the low-level dataset with a mathematical model, commonly, the designers
of those algorithms organize the code to reflect this hierarchy, several projects assert to
have two or even three layers, the higher one is in charge of computing the high-level
scheduling and the lower one has to duty to translate that in sensors’ activations. This
feature is detectable also in Sharon where the high-level layer computes the list of ADLs
and the lower layer the sensors’ activations. In particular, these kinds of simulators often
use the Markov model to produce the high-level scheduling and the Poisson probability

14 1| State of the art

distribution to decide how much a certain ADL should last, also the model of the sen-
sor is usually probabilistic. Sharon uses in the computation of the high-level part both
Poisson probability distribution and Markov models and also the model of the sensor is
stochastic. The advantages and disadvantages of using a model-based simulator have been
already discussed before. Another feature that is often implemented in these simulators
is the possibility to save the produced datasets in databases. This feature could become
crucial if the produced datasets become too large or too complex to be handled only as
text files because managing them would be too burdensome with respect to the execution
time. Among the described ones we think that two features would improve the usability
of Sharon. The first one is adopting the most used format for the sensors’ activations
dataset and handling it with a database. The second one is providing the user with a tool
that may be integrated into the simulator, which makes the process for creating a new
representation of the virtual environment simpler than before.

15

2| Method

In the first part of this section we will illustrate the functioning of Sharon, then we will
present the changes that we have done following an approach that consists in describing
the goal that we want to reach and then describing how to actually change the source
code of the program to accomplish it.

2.1. Sharon framework

According to the classification provided in the state of the art section, Sharon is a human
environment software simulation, based on a model approach, so there is a model and
parameters that govern the computation of the output. The model, is based on a set of
needs that involves both the virtual dweller and the house, in particular, these needs are:

• Tiredness: how much a person needs to rest.

• Boredom: how much a person needs to perform some entertaining activity.

• Hunger: how much a person needs to satisfy its appetite.

• Stress: how much a person needs to relax.

• Loneliness: how much a person needs to interact with other people.

• Uncleanness: how much a person desires to wash himself/herself.

• Excretion: how much a person needs to defecate and urinate.

There are also needs that are linked to the environment and not to the dweller:

• Low Stock: it represents how few things are in the house.

• Untidiness: it represents how dirty the house is.

For each of these needs, there is a variable σn that represents the urgency of the related
need to be performed, it takes decimal values between zero and one. These variables
representing needs evolve through time following a linear model, in particular, to explain
this model it is necessary to introduce further notions. Each need has a spontaneous

16 2| Method

growth rate γn that represents how much that need is increased from one time instant to
another, for example, it is clear that during the day a person gets constantly tired over
time, the same reasoning can be applied to the other needs. Another concept that needs
to be introduced, is the effect of specific action on the urgency of a certain need ζn, there
is a quantity that can be positive or negative and that is a function of the action that has
been performed that influences the future value of the variable representing the urgency
of a specific need, for example, if the virtual agent has eaten than the effect of the ongoing
activity would be a negative number, that would decrease the variable representing the
hunger. The final equation that represents the status of a need as a function of the time
is the subsequent one.

σ(t)n = σn(t− 1) + γn + ζn

Another function that is necessary to be defined is a scoring function that takes in input
a certain action and the set of variables, each representing the urgency of a specific need,
and returns as output a decimal value between zero and one that describes how much
that specific action is good taking into account all the needs that the virtual dweller has
in that specific time instant.

Scoring function’s definition: N(a, σn(t)) =
∑

nwn,a ∗ σn(t)

In particular, this scoring function computes the weighted sum of the set of variables
representing the urgency of each need. The weights wn,a involved in the weighted sum
represent how much a certain need n is satisfied by that action a. This scoring function is
not sufficient to be used to produce a schedule of activities for the virtual agent because
it does not take into consideration the periodicity of actions of a human being it is well
known that most humans will have lunch around noon and they will have lunch after
seven post meridiem. There is a function θa(t) representing time dependency for each
possible action that takes in input time and returns as output the probability to execute
that specific action in that specific time, so it is a decimal value between zero and one.
According to this function, there would be a deterministic series of actions, but it is
necessary to add a random element to obtain a more realistic model, in particular, a
random variable υ that can take values between zero and one is extracted, if υ > θa(t)

then the actual likelihood function would be Θa(t) = θa(t) otherwise Θa(t) = 1. The
true final score function that is computed for each action and takes in input the current
time, returns a value between zero and one, in particular, it is the product of three terms:
the first one is a factor that discourages the activity change, so if the current activity is
the activity for which the score is being calculated, then its value is one otherwise it is a
constant less than one, the second factor is the scoring function defined before that takes

2| Method 17

into account the set of needs, and the third component is the timing function with the
random heuristic.

Final scoring function’s definition: S(a, t) = α(a) ∗
∑

nN(a, σn(t)) ∗Θ(a, t)

As already said, Sharon is a smart home environment simulator that is based on a model
which by definition has a set of parameters that characterize it. In this case, the param-
eters used by the model present in Sharon are:

• The set of ADLs that the virtual agent can do in the environment.

• The set of needs of the dweller and the set of needs of the house.

• The set of wn,a which represents how good a certain action is to fulfill a certain
need.

• The set of spontaneous growth rates σn each of which represents how much a certain
need increases from a timestamp to another.

• The set of effects of each activity over each need γn.

• The set of functions, each for each action, representing the likelihood to perform it
in a specific timestamp θa(t).

These parameters have been obtained in two ways:

Interview analysis is a method that consists in directly asking an interviewed person the
activities that he or she performs during the day, what are the needs that these activities
satisfy, and what are the times during the day in which they are performed. The data
deriving from these interviews have to be conscientiously taken into account because it
strongly depends on the person that has provided them and so there is a bias.

Real dataset analysis and diary analysis, the first approach consists in collecting data
from a real smart home environment installation, the second one consists in asking a real
dweller to fill in a diary in which they report the scheduling of their activities for each
day and the duration of each activity. From this type of approach, it is possible to gain
quantitative data.

Until now the generation of the high-level scheduling of the actions has been described,
but Sharon can generate, starting from the high-level scheduling, the sensors’ activations
which are the output that would be produced if these sensors would be in a real smart
home environment monitoring the actions of a dweller that does the actions contained in
the high-level scheduling. There are two ways in which Sharon can produce this output
from the high-level scheduled list of activities that it has already produced: the first one is

18 2| Method

based on the behavior of the virtual dweller, the second one utilizes a stochastic approach
to produce the synthetic output data. The Sharon simulator is thus able to both produce
new datasets and extend one already existent. It is also possible to import the high-level
scheduling and generate using it the low-level sensors’ activations.

Now the model of the agent in the software will be discussed. In Sharon, the agent has two
properties: its location, described by a couple of coordinates, and a maximum walking
speed that represents the maximum distance that the agent can cover between two-time
instants. It does not accomplish any action and in fact, it triggers the activation of a
sensor only according to their relative position, in other words, it is just the presence of
the agent that activates a sensor.

Now the virtual environment model will be discussed. The plant of the building in which
the simulation takes place is discrete and it contains walls, doors, and furniture, it is
composed of tiles that describe the possible paths that the agent can run across, in
particular, the agent will follow the shortest path for going from a position to another.
In particular, the environment is modeled using a matrix of zeros and ones. The model
of the sensor has three properties: the position of itself, the area in which a passing agent
can be detected, and the probability distribution that is the probability of success of a
Bernoulli trial used to determine the output, all of the sensors have a binary output.

The computation of the low-level dataset containing sensors’ activations can be carried
out in two different ways: a deterministic manner and a stochastic manner. We will now
discuss the deterministic manner. Each high-level activity that is scheduled is used to
produce a further output representing the sensors’ activations deriving from the high-
level scheduling, but it is common knowledge that each activity, even of the same time
duration, can be carried out in different ways, for example, if a dweller cooks pasta then
the sensors’ activations of the kitchen will be different then the case in which the dweller
decides to cook fish and chips. Thus a single high-level activity can be represented at a
lower level in different ways. This can be represented and obtained by associating a set of
patterns to each activity. A pattern is a sequence of tuples of two elements, one represents
a position and the other represents the duration for which the agent stays in that position.
The execution of a pattern is carried out in this way: the agent moves to the first position
that is in the first tuple and stays in that position for the time that is in the same tuple,
then the second tuple is processed in this way and so on. It is important to notice that
the agent will follow the sequence of positions in a deterministic way. During the walking
from one place to another, the virtual agent will activate the sensors that will produce the
lower output dataset. The creation of the various pattern can be done without considering
real data but only using common knowledge, for instance, the activity “Watching TV”

2| Method 19

can have as a lower-level pattern a sequence of tuples where the virtual agent spend the
time sitting on the sofa or another possible pattern of the same activity can be one in
which the agent sits on a chair for a different time.

Now we will discuss the stochastic approach. There are several ways to act, in fact,
the generic activity “washing” can be done in various ways for example “washing a t-
shirt” is not the same as “washing the clothes for the family”, in particular, these two
specific activities differ in the number and type of the subtasks. To cover this difference
it is necessary to introduce the concept of Activity Template which specifies in which
way a certain activity should be performed. It is also required to specify the concept
of sensorset (SS) which is a vector of size N, where N is the number of sensors in the
virtual environment, that has at each position i the output of the i-th sensor. An Activity
Template is a tuple characterized by four elements: the probability to be executed given
the actual high-level activity (“washing” in the previous example), the probability of a
certain SS to be the initial SS, a transition probability matrix between SSs and the change
rate between SSs. In particular, the sensorset changes can be described with a stochastic
system with finite state space where each state is a sensorset and the general framework
that can is used to describe our solution is the Semi-Markov model [18, 25].

The model of the sensor is not deterministic but stochastic in the sense that its output
will not be one, that is the sensor is active, just because the agent is in the area that the
sensor can monitor, but the fact that the agent is in the area is a necessary precondition
to get the result of a stochastic process that will determine the output of the sensor, the
probability distribution, on which the process is based, has been determined with real
data.

2.2. Important implementation details

In this section important information about the implementation and the usage of the
Sharon simulator will be given.

To be able to use the simulator it is necessary to download the source code and it is also
necessary to install Ant, which is a java library and a command-line tool. The code for the
public will be made public at a later time. After downloading the source code and after
installing Ant, to start the simulation it is necessary to open the terminal and navigate to
the folder of the source code, at this point the user has to give the command “ant” to start
the simulation. At the end of the simulation, the high-level scheduling of activities will
be under the data/ActivityOutput and in particular, in this folder, there will be as many
folders as the simulated days, the lower level output representing the sensors’ activations

20 2| Method

can be found in the folder data/SensorOutput.

Now the necessary files for the configuration of the simulator will be presented. The
configuration file about the needs can be found at the following path config/need.conf in
the Sharon folder. Each row of this configuration file represents the configuration of a need
which consists of the ID of the need, the name of the need, the spontaneous growth rate
of the need, and the optimal initial value for that need, each of these values is a comma-
separated. In the config folder, it is possible to find a .conf file for each ADL, the first row
of the file says which is the activity that it represents, the second row contains the effects
that the ADL has on each need, in the third row there is the name of the needs that can
activate the ADL, each value in position i of the seventh line says which is the probability
to execute that ADL in the i-th day, the ninth line indicates how that ADL is influenced
by the weather, then there is the probability distribution over each minute of the day that
represents how likely is to perform that activity in that specific minute of the day, at the
end of the file it is reported the minimum duration of the activity. The previous part is
mandatory for the execution of the simulator, the fact that the simulator can reproduce
also the sensors’ activations is a plus that can be turned off and so the configuration
part regarding this part of the program is optional. In the folder, config/env can be
found various .conf files regarding the low-level simulation. The map.conf file contains
the plant of the house saved in a binary way, zero values represent the area in which
the agent can walk, one values stand for walls, at the end of the file there is the scale of
the representation expressed in points per meter. The sensors.conf file, which is in the
same directory, contains the configuration for each sensor, in particular, each of that files
represents a sensor in the form of a string where the information regarding that sensor
is comma-separated. The first parameter of the row is the name of the furniture where
the sensor is located, the second and the third identify the position of the sensor from
the center of the map in centimeters. The next four parameters identify the rectangular
area in which the agent can be detected and the final parameter identifies the probability
that the sensor is triggered if the agent passes in the area. The area and the probability
can be omitted and are inferred at run time with values of zero and one respectively. The
places.conf file represents what are the furniture in the environment and their location,
also in this case each row of the file matches an element. The sensorsId.conf file is just a file
that contains a string composed of comma-separated id values each for every sensor in the
environment. The sensorsets.conf file represents all the possible grouping of the sensors’
Ids that can make sense. In the folder config/patterns, there are various .conf files each of
which represents the execution of a pattern of activity. An important consideration that
must be done is that Sharon does not provide any utility that can facilitate the creation

2| Method 21

of the change of the various configuration files, this is a problem because it decreases the
variability and generality of the results, for example, it is quite tricky to manually change
the map.conf.

Now the format of the output of the simulation will be analyzed in greater detail. In
the folder data/ActivityOutput will be generated as many .txt files as the days simulated
and each name will be of the type “DAY_*” where the “*” is a number that denotes
the simulated day that the file refers to. Every first line of each of these files is a sort
of reminder in the sense that it explains everything of the subsequent lines, in partic-
ular, it is a string that contains a comma-separated list of strings where each of these
strings is composed of one or more word in natural language, the whole string represents
a pattern for the subsequent lines. The first pattern string is the following “simula-
tion_seconds,activity_id,activity_name,time_of_the_day” and it means that the first
value of each of the following lines will be the elapsed time from the start of the simu-
lation, the second value will be the Id of the activity that has been scheduled and so on
for the other parameters. In the folder data/SensorOutput there is the optional output
which represents the sensors activations, in particular, each line of this input represent
the state of all the sensors, the i-th number represents the state of the i-th sensor and can
be either zero if it is inactive or one if it is active.

It is possible to change the context of the simulation. It is necessary to have downloaded
the source code of Sharon, it is also advisable to have installed an IDE to open the project
that is written in Java so also Java should be installed. The following reasoning applies
even if the user decides to modify the source code using a simple text editor. After
opening the chosen IDE it is necessary to open the Main.java class, here there are all the
parameters that the user can fine-tune according to his/her needs and desires.

The parameters are:

• def_simulatedDays: integer variable that represents the number of days of simula-
tion.

• ENABLE_SENSORS_ACTIVITY: boolean that if set to true allows the generation
of the sensors’ activations.

• PRINT_LOG: boolean that allows the user to choose to have the logs or not.

• DISABLE_PATH: boolean that disables the path during the simulation.

• USE_DRIFTS: boolean that activates the drifts that change the needs during the
simulation.

22 2| Method

• USE_HMM_LL: boolean that forces the software to generate the sensors’ activa-
tions using the probabilistic model.

• GENERATE_HL_SCHEDULING: boolean that allows the generation of the high
level scheduling if true, if it is false then the high level scheduling is imported from
a configuration file.

• MIMIC_ARAS: boolean that if set to true will force the output to have the same
format of the ARAS dataset.

• WALK_SPEED: it is a double that allows the user to change the walking speed of
the agent.

2.3. My contribution to the work

In this section, we will go through the various features that we discussed and that we
implemented. We will follow the temporal order of the challenges that we have faced and
we will present them by enunciating the problem or the issues that were presented to us,
the reasonings that we have done, and the solution that we have reached.

2.4. Utilize Sharon to do software testing

The first objective that was given to us was to modify Sharon to be able to use it to
software test another software that in this particular case is BRIDGe. BRIDGe is a
software that can receive the information from a real smart home environment installation
and send reports and notifications to the relatives of the dweller, so they can check the
health status of the inhabitant. It can also send alerts in case a bad event happens. It is
crucial that a person using the software BRIDGe can trust it, in other words, BRIDGe
should be as reliable as possible, and to obtain this goal, diversified and deep tests should
be performed. Under these premises, the Sharon simulator comes very useful it can
produce an output that corresponds to the real sensors’ activations and so it can be
used as input for BRIDGe that will have to analyze it to produce the various statistics
that are interesting for the relatives of the dweller. It is important to point out that
only the sensors’ activations should be used as input for BRIDGe and not the high-level
scheduling that BRIDGe can produce which instead should be inferred by BRIDGe, so it
is possible to conclude that Sharon can provide also a part of what should be the output
of BRIDGe. Another advantage of Sharon is that it uses a model-based approach in the
generation of the output which means that the user plays no role in the execution of the
algorithm and so its intervention is not needed, moreover has already shown it is possible

2| Method 23

to set a parameter in the Main class that regulates how many days of simulation should
be generated. This is an interesting advantage because the testing can be completely
automated it is possible to create a script that can launch Sharon and at the end of its
simulation another script can launch BRIDGe that will take in input the files generated
by Sharon containing the sensors’ activations. The problem that was presented to us was
that the output of Sharon could have made BRIDGe crash.

At the beginning of the simulation, in the Main.java class, there is an if statement that
discriminates if the high-level scheduling should be imported or generated. There is a
second if statement that discriminates if the sensors’ activations should be generated and
then another if statement that has the function to choose between the agent generation or
the probabilistic generation. It is important to notice that the control flow of the program,
independently of the results of the evaluation of the conditions in the if statements,
will create one thread that generates or imports the high-level scheduling and if the
boolean flag for the generation of the low level is true then also for the low level will be
created a thread that will take as a parameter for the constructor function the list of
ADLs representing the high-level scheduling. So the objective was to somehow reduce the
throughput of output data that could flow from Sharon to BRIDGe. We simply solved
this issue by exploiting the ability of a Thread to be set in a state of sleep for a given
amount of time, this would have slowed the generation of the output as desired by the user.
Going into more details now we will give how we implemented this feature. We created a
boolean variable in the Main.java file, in the section where are the other variable that we
have already introduced, called SLOWED_GENERATION that if set to true will slow
the computation of the low-level thread by putting it into a sleep state, in particular, we
have used the method Thread.sleep() of the Thread class. We have created another global
integer variable in the Main class that is passed as a parameter to the method function
Thread.sleep() and that will represent the number of milliseconds for which the thread
can be put in a sleep state so that the user can decide how much the computation should
be slowed down.

2.5. Real time data generation

The second problem that was presented to us was that Sharon was not able to produce
data in real-time in the sense that it is possible to identify two steps in the computation
of the output, there is a high-level step and a low-level step, and each step is computed
by a different thread. The high-level thread produced the high-level scheduling composed
of ADLs and the low-level thread produced the low-level sensors activations based on

24 2| Method

the high-level scheduling. To produce the sensors’ activations the list of ADLs is needed
but these two elements were computed by two different threads that were created and
started in the main function of the Main.java class. According to the implementation
of the Thread class in java, it is not possible for the user or the programmer to state
which one of the two threads with the same priority is running, but the sequentiality of
the execution of the two threads that must be preserved because of the nature of the
output. To preserve the sequentiality of the two threads the one which dealt with the
computation of the sensors’ activations was forced to sleep for a second using the method
Thread.sleep(1000) where the parameter “1000” represents the number of milliseconds for
which the thread must be in the sleep state.

We partially solved the problem by eliminating the second thread, the one computing
the sensors’ activations. In particular, we have copied the method run() of the canceled
thread and we have created another method in the first thread with that copied code. We
have copied in the high-level thread also all the needed variables and the other methods
of the low-level thread. We did also some minor, but necessary changes, to have a correct
execution. We did this procedure to be able to correctly call the low-level procedure
to obtain the low-level dataset at the correct time. We said that we have reached this
objective but partially because the feature of calling at the right time the generation of the
low-level part of the output is not available when the boolean variable USE_HMM_LL,
in the Main class, is set to true, when it is set to true the software generates all the
high-level output and then all the low-level output, but when it is set to false for each
ADL it can compute the corresponding sensors’ activations right after the current ADL
has been scheduled.

2.6. Anomalies generation

An important feature that should be implemented to make the simulator more complete
and useful is the possibility to generate and represent anomalous, dangerous, unlucky
events in the dataset of sensors’ activations. Some examples of these types of events can
be the fall of the dweller, the fact that the dweller opens the fridge and forgets to close
it. The set of possible events that can be represented is limited by the number and the
type of the sensors in the virtual environment, these sensors in Sharon can be found in
the folder “config/env/sensors”, this limit derives from the fact that the abnormal events
are represented at the low level in the dataset that contains only the sensors’ activations.
When the request for a way to generate and represent abnormal events was raised, we
were thinking in the wrong direction in the sense that we were imagining all the possible

2| Method 25

anomalies that we could have forecast, given the virtual environment, and how we could
represent them in the dataset. Later we have found this approach at least limiting if
not wrong we were creating a function, for each anomaly, that would output a string
representing the sensors’ activations appropriately modified to represent the abnormal
event. This approach presented some concerning problems: it was not easy to find a lot
of abnormal events, it was quite complicated to generalize because each anomaly would
have corresponded to a hard-coded algorithm, and it was difficult to estimate the duration
time of an anomaly.

We had the idea to give all the power to the user and this was the turning point of the
design part of this feature. The main reason that made us think about this approach
was the fact that we were not satisfied with the representation of the anomalies in the
low-level dataset, they seemed too specific to us and sometimes also a bit naive. We
thought that if the simulator would have been used by a person specialized in the study
of human behavior, for example, a psychologist, this professional figure would be for sure
more capable than us in representing the anomalies in the dataset. As said, we give more
power to the user, in the sense that it is the user itself who decides how an anomaly should
be represented, when it should be placed in the dataset, and for how long. We wanted
to create a way to let the user program the anomaly representation part of the software.
Now we will present the changes that we made to the source code of the simulator to
obtain this feature. To represent the concept of an abnormal event that lasts over time
we have created the class Event.java that contains an array of singular anomalous events
that we have called an anomaly, each event object has as a private field a staring time
represented by an integer initialized by default to zero and has another private field
containing an integer variable that stands for the number of time that the anomalies in
the event should be repeated. We have created another class Anomaly.java that as said
represents an atomic anomalous event, in other words, it represents a single line of output
in the sensors’ activation dataset that has been generated according to the specifications
provided by the user expert in the field of human behavior. The target user will program
the generation and representation part of the simulator by writing in a specific text
file a particularly formatted string, this string will contain all the information needed
to generate the appropriate anomalous sensors’ activations that represent an abnormal
event. The user can generate complex input strings and this can be done thanks to the
format that we have invented this is a sort of programming feature because the repetition
property of an event object acts as a statement in modifying the output dataset and the
time field of an event acts like an if statement. Now we will specify the format that should
be used to create an input string that is later interpreted by the simulator to produce

26 2| Method

part of the output, this will also clarify the previous statement.

Example of a general input string encoding the anomalous events: [(x,y,z)(a,b,c).N;T]
Now we will discuss what it means. A couple of [] is used to identify an anomalous event
that directly maps to the Event class. It is possible to write a sequence of events by
simply writing a sequence of couples of parenthesis. The order of representation of the
events does not depend on the order of each event in the sequence. Each couple of ()
represents an anomaly in the event, in other words, it represents a line in the sensors’
activations, particular each couple of () can contain from one to twenty integers, each
of which represents the Id of a sensor placed in the virtual environment and because
of that it makes no sense to put more than twenty numbers in the comma-separated
list and for the same reason, each number should be between zero and nineteen. The
effect of putting x,y,z in a couple of round brackets is to have a line in the sensors’
activations that has only the sensors which have the same Ids as the ones indicated in
the sequence. It is possible to have a couple of round brackets without any character
between them, this means that the output line will have all the sensors turned off, that
is to say, that all the twenty numbers indicating if a sensor is active or not will be zeros.
In a single event it is possible to have more than one anomaly, this means that the two
anomalies will appear in the output in series and in this case, the order of appearance
in the input string will be replicated in the output dataset. In particular, if the example
provided above is considered there will be a line in the output dataset that will have “1”
in positions x, y, z, and in all the other positions there will be “0”, in the following output
line there will be “1” in positions a, b and c and in all the other positions there will be
“0”. In the string, after the character ‘.’, there is another integer N that specifies how
many iterations of the sequence of anomalies should be printed in the output dataset, in
particular, the above example specifies that the anomaly (x,y,z) must be printed, then
the anomaly (a,b,c) must be printed and this must be done for N consecutive times. The
“.” character is used just to make the parsing of the string easier during the execution of
the software. The character “;” has the same purpose. The integer T represents the time
instant at which the anomalous event should be placed in the dataset. This input should
be given to the program as a configuration file, in particular, the program expects it in
the folder config/Anomalies_list and it should be a text file. There is also a variable in
the Main.java class that is named USE_ANOM, it is a boolean that needs to be set to
true if the user wants to use the feature that allows the representation of the anomalies
in the dataset. We have chosen to force the Sharon simulator to read from a text file the
input string containing all the information needed for the representation of the anomalies
because this was the pattern already chosen in the development of the code by the guys

2| Method 27

that preceded us. To manage the reading of the input from the file we have created an
AnomalyDB.java file, the class in this file can read the text from the file and load it into a
string, this class has another method that takes as an argument a string that contains the
anomalous events coded in the previously specified way and returns as output an array
of events where each event has a field the containing an array of the anomalies that make
it up, also the other parameters of both the classes Event and Anomaly are set. After
having retrieved all the anomalous events from the configuration file, during the high-level
part of the computation, if the boolean enabling the anomalies generation is set to true,
at each iteration the program checks if there is an event that has a firing time that is
equal to the current time, if so the current high-level activity is preserved but there is a
function that takes in input the occurring abnormal event and prints in the output file
the corresponding anomalies. It is important to point out that the anomalies affect only
the low-level dataset which contains sensors’ activations, it does not affect the high-level
dataset that contains the ADL scheduling, the main reason for this choice is that only
the first one should be used by another software to extract information from the data
that is producing a dweller in a real smart home environment, moreover the concept of
an anomaly is similar to the concept of an unforeseen event and so it would not make
sense to represent it in a scheduling dataset. The purpose of this feature is to increase the
quality of the datasets that Sharon can produce so that this new information can be used
to train machine learning algorithms that are more powerful, in particular, a software like
BRIDGe should be able to inform the relatives of the real dweller if something as a fall
of the inhabitants has happened, that is to say, that the monitoring software should be
able to detect and notify anomalies from the real sensors’ activations. To facilitate the
development of this feature in the real monitoring software we have decided to double
the output, now Sharon, if the user requires it, can generate two datasets containing
sensors’ activations, one contains the sensors’ activations corresponding to the high-level
scheduling and in the folder data/SensorOutput it is possible to find a text file for each
day of the simulation. We have created another folder in the project to host the new
dataset that contains the anomalies and this folder is data/AnomalyOutput and contains
the files in the same structure. Each file can contain up to a line for each second of the
day, so they are not very human-readable, this can be a problem during the development
of a real smart home environment algorithm based on this data, so we have decided to
make it a bit more human-readable with respect to the anomaly feature, in fact, each line
corresponding to an anomaly in the sensors’ activations dataset is composed of two parts,
the normal sensors’ activations consisting in twenty boolean values and then there is the
keyword “anomalous” that denotes that it is a line corresponding to an anomaly.

28 2| Method

2.7. Forcing an ADL in the high level scheduling

The next objective that we were given was to be able to force, during the execution of
the simulation, the scheduling of a specific ADL at a certain instant and it should have
been possible for the user to set both these parameters at run time. The change in the
schedule should be reflected also in the dataset containing the sensors’ activations.

There are fourteen different activities that can be be scheduled, and they are:

• Sleeping which has an ID equal to 1.

• Breakfast which has an ID equal to 2.

• Working which has an ID equal to 3.

• Lunch which has an ID equal to 4.

• Dinner which has an ID equal to 5.

• Shower which has an ID equal to 6.

• Toilet which has an ID equal to 7.

• WatchingTV which has an ID equal to 8.

• Cleaning which has an ID equal to 9.

• GoingOut which has an ID equal to 10.

• Internet which has an ID equal to 11.

• Reading which has an ID equal to 12.

• Relax which has an ID equal to 13.

• Other which has an ID equal to 14. To be able to use this feature it is crucial to
know the ID of each ADL, it is possible to find all the information regarding each
ADL in the folder config of the project Sharon where there is a configuration file for
each activity that starts with the name that is reported in the list above. The list
provided can be used as a quick reference to check the ID of a particular ADL.

To implement this feature we exploited the fact that the simulation is launched via ter-
minal in which during the simulation are shown various data. We decided to implement
a simple but effective dialog that asks the user for the times in which he or she wants
to stop the high-level execution of the program to manually choose the ADL to perform
in that specific time. Though there is a small problem with this solution when the user

2| Method 29

types in the terminal the characters that are typed are not shown and this can cause the
user to make some mistakes and so cause a wrong execution of the program. To partially
limit this weakness, we decided to print the input that the user has just typed so that
he or she can check if that input is correct. In particular, after having launched the pro-
gram, before starting the simulation, the user will be asked to enter a comma-separated
list of time instants in which the simulation should be stopped and in that times, again
with a dialogue in the terminal, will be asked to enter the ID of the ADL that he or she
wants to force. The program will stop for every time specified in the comma-separated
list. Speaking about the source code, when the simulation of the high level is iterating
over all the seconds of the simulation days, if the second matches one of the times that
was given by the user in the comma-separated list, then the execution stops and asks
the user to submit an integer number that corresponds to an ADL ID, after the input
is submitted the program retrieves the corresponding ADL from its ID, then it is set as
the ongoing ADL and its elapsed time is set to zero, subsequently the needs are updated
taking into account the current ADL, and if the user wants there is a boolean that can
enable or disable the fact that this forced ADL can affect or not the output of the sensors’
activations, if the boolean is set to false then the forced ADL will only affect the high-level
output containing the schedule of the ADLs. The user can choose to not use this feature
by simply pressing “enter” when asked to insert the comma-separated list of times. To
facilitate the development of new applications through the use of the datasets produced
by Sharon we have decided that the lines in the high-level output regarding the forced
ADLs end with a default keyword that in this case is “forced activity”.

At this point, after having implemented a feature that would involve the interaction with
the user at run time, we were asked to extend this also to the anomaly generation and
we did it. In particular at the beginning of the simulation, just after the dialogue in
the terminal where the user is asked to insert a comma-separated list of times, another
dialogue requires the user to insert a string with the same format of the string present
in the text file Anomalies_list, that is the format that has been discussed in the part
dedicated to the anomalies generation. It is possible to disable this feature by simply
pressing the enter key when asked to insert the string.

30 2| Method

Figure 2.1: A use case diagram that summarises the functionalities of Sharon.

31

3| Results

In this section, we will illustrate the result of our work. In particular, this has been
an implementation work that has added some key features to a project that has been
developed at Politecnico di Milano. Because of this nature of the work, also the results
will be presented appropriately, that is we will demonstrate that with the changes that
we have done, it is possible to achieve our goals. As far as possible we will provide details
on how to replicate the results that will be shown. However, it is not possible to replicate
exactly the shown results as the simulator is based on a model that is also based on
pseudo-random calculations. Despite this inconvenience, the experiments, from which the
results have been taken, have been thought to mitigate this issue.

To gain some results there must be an experiment. In computer science, the software can
be thought of as an experiment, so we wrote a computer program, external to Sharon, that
can take in input the output of the simulator, process it, and then return some statistics
that are tailored to highlight the outcome of the implementation process.

In particular, this program, written in Java, has four subfolders in its root directory, each
of which contains a specific dataset that has been generated through Sharon but with
different parameters. One directory contains the high-level scheduling of the ADLs, one
holds the high-level scheduling of the ADLs but with some forced ADLs according to a
specific input that will be specified later, one encompasses the low-level sensors’ activa-
tions, one includes the low-level sensors’ activations that have been created using a specific
input, to represent anomalous behavior, that will be made clear after. The program reads
from these folders and computes only the statistics that are relevant to demonstrate the
success of the implementation, which has been described in this paper. If the reader wants
to see how Sharon performs in the generation of the high-level scheduling and the low
level, we refer to reading the work by Veronese, Masciadri, Trofimova, Matteucci, Salice
[25], which in the result section, shows various metrics regarding probability distances
between distributions. The program used to inspect the output of Sharon will not be
available.

32 3| Results

3.1. Results regarding the high level scheduling

Now we will introduce the resulting statistics that the program, that tests Sharon, can
provide to the user. We start from the statistics computed from the high-level dataset. To
summarize, the main change that has been made to the high-level part of Sharon regards
the possibility to force a particular ADL in a certain instant. We thought to compute
the number of times that a certain ADL is done by the virtual agent and the relative
frequency of that ADL with respect to all the ADLs performed. After having written the
code to do this operation, we used it to inspect the data representing the ADLs not forced
by the user. We noticed that the ADL “Working”, which has an ID equal to 3, was never
executed.

Figure 3.1: A screenshot representing the high level statistics.

3| Results 33

This fact can be seen in the first image. Leaving aside considerations on why this hap-
pened, we thought to exploit this fact to show the goodness of our work. In particular,
we thought that to prove that the user can force some ADLs, we could make a specific
input to force only the ADL that was not appearing in the normal dataset, this would
have made the changes in the statistics a clear proof of the good result of our imple-
mentation. To obtain that result, the input that the user should give to Sharon at run
time, after having set the boolean representing the will of using this specific feature, is the
following string, when asked about the time instants 1, 90000, 180000, 270000, 360000,
450000, 600000, 690000, 800000, 890000, 900000, 1000000, 11000000, 12000000, 2050000,
21000000, 2190000, 2200000, 2250000, 45000, 600000, 800000, 1500000, 3000000 (without
spaces, here present for readability) where each number represents the time instant of the
simulation at which the program will ask the user to insert the ID of the ADL, that needs
to be forced. The time instants were picked up randomly. To replicate this particular
experiment, the user has to insert the number 3 every time that is asked to provide the
ID of the ADL to be forced. If the reader wants to replicate the results shown in the
second image, the previous steps must be followed, in particular, only the counter and
the frequencies for the ADL having ID equals to 3 will be perfectly replicated because
decided by the user, instead of the statistics regarding the other ADLs will not be the
same, because of the random elements of the model.

34 3| Results

Figure 3.2: A screenshot representing the statistics after that the dataset has been mod-
ified forcing some ADLs.

It should be noticed that if in the string representing the list of timestamps, a number
is repeated more than one time, then this duplicate will be present also in the generated
dataset. Another observation that is worth doing is that if the typed number is greater
than the product between the number of simulated days and the number of seconds per
day, then the user will not be asked to provide an ID for a certain ADL to be forced in
that particular timestamp. The third image shows a subset of the dataset representing
the high-level scheduling. In particular, it is possible to notice that there are only ADLs
with the same ID, equal to 3, representing the activity of “working”.

3| Results 35

Figure 3.3: This screenshot shows a subset of the dataset containing only the forced ADLs,
it is important to notice the timestamps.

This image not only is further proof of the fact that the forced ADL is the one that the
user wanted, but it also shows that also the time stamps are correct, which means that
the ADLs are where the user wants them to be in the final dataset.

3.2. Results regarding the low level scheduling

Now we will describe the results that we have found about the low-level dataset, con-
taining sensors’ activations. It is important to recall some ideas. The low-level dataset
is divided into text files, each of which represents a simulated day, and each row of each
day represents the sensors’ activations at a certain second of the day. The most relevant
feature that we implemented to enrich the power of the simulator is the fact that the user
can specify a string in a specific input file, that contains formatted instruction on how
to produce a subset of the sensors’ activations. It is possible to insert the string also at
run time, without modifying the corresponding text file. Given the same input, the two
methods will produce the same output. This feature should be used by the simulator’s
user to reproduce anomalous behavior in the virtual dweller.

We thought to start analyzing with the auxiliary tool the lower level dataset containing

36 3| Results

sensors’ activations without anomalies. This dataset is composed of twenty zeros or ones,
representing active or sleeping sensors, and two more numbers that are not relevant in the
discussion. The most rational approach to adopt was to reproduce the previous strategy
used in the high-level case, but this time the object of the experiment is the sensors and
not the ADLs. Hence we decided to scan the dataset to build one statistic representing the
total number of times that a certain sensor is activated and another statistic representing
the relative frequency, which is the total number of times in which that sensor is active
over the total amount of timestamps of the simulation. After having generated a dataset
without anomalies with Sharon, we analyzed it with the tool and we found the results
that are shown in picture four. In this picture, the reader can see that in the first part
there are, for each sensor represented by its ID, the various counters, in the second part
of the image there are the frequencies displayed with the same style.

3| Results 37

Figure 3.4: This screenshot shows the statistics for the sensors’ activations without anoma-
lies.

The reader can see that there are some counters equal to zero, in particular, the sensors 2,
10, and 11 are never activated during this simulation. With the same reasoning as before,
we thought that even in this case we could exploit this fact to present proof of the good-
ness of our work. Hence we built a specific text file representing anomalies that should
trigger just those sensors. In particular the string that should be written in the configura-
tion file is the following [(2,10).4;30000][(2,10).7;95000][(2,10).9;1500000][(2,10).3;2000000]
[(2,10).5;3000000][[(2,10).9;450000][[(2,10).5;520000] [[(2,10).5;610000][[(2,10).5;700000]. The
reader can see that we have chosen to trigger only the sensors 2 and 10, and not the num-

38 3| Results

ber 11 because we also want to see if the situation in which all those three sensors are
zero will happen again. After having produced a new low-level dataset with sensors’ ac-
tivations and anomalies, we analyzed it using the other program. It is possible to see the
new results in the following image.

Figure 3.5: A screenshot that shows the low level statistics of a dataset with anomalies.

As we can see the counters for sensors 2 and 10 are changed, but for sensor 11 is still
zero. If the reader counts all the numbers in the string that is between the character ‘.’
and ‘;’, he/she will notice that their sum is 52. It is also possible to see that the counter
for sensor 12 has remained the same and it is again equal to zero. This can be considered

3| Results 39

as proof of the implementation process. It is necessary to verify that the anomalies are
placed at the right moment. For this scope, we invite the reader to watch the following
image in which there is a list containing all the sensors’ activations that correspond to an
anomaly.

Figure 3.6: A screenshot that shows a subset of the low level dataset plus the timestamp
of each line.

40 3| Results

The reader can check that the timestamps are correct by looking at the number after the
character ’;’ in the input string and the timestamps in the image, this is further proof of
the good outcome of the implementation phase.

41

4| Conclusions and future works

In this section, we will present the conclusions deriving from the results of the previous
section. The results, on which this chapter is built, have been derived from experiments
that were conceived to inspect the outcome of the implementation work that is the sub-
ject of this work. It is straightforward to state that the results are relevant because they
are derived from ad-hoc experiments and so it will be possible to determine if the im-
plementation phase has been completed correctly. To state if the results are original or
not it is necessary to remember the literature review that has been done in the state of
the art chapter. In this case, results can be original if the experiment that has made
them is original, which means that the implemented feature, the object of the inquiry of
the experiment, must be original. A feature of the software will be considered original if
not already implemented in any of the analyzed papers used to write the state of the art
section. This is the reason why it is necessary to remember the features of the various
simulators presented in the state of the art, or at least the literature review.

Now we focus on the results, that the ad-hoc testing program that we have created, has
provided us. It is necessary to notice that in the testing section only one instance of the
testing experiment is reported to avoid redundancy, but actually, the actual smart home
environment simulator has been tested with several random inputs for the same feature.

For the high-level part, we can assert that we have reached the goal that we had set for
ourselves, which consisted in allowing the user to decide at run time which ADL force in a
certain time of the simulation. According to the results shown in the appropriate section,
we can assert that the objective has been completely reached because the differences in
the output statistics between the dataset with the forced ADLs and the normal dataset
completely respect our previsions. The low-level feature consisted in designing a particular
format for encoding a set of anomalous events to be reproduced in the low-level dataset
containing sensors’ activations. Also in this case the difference between the dataset with
anomalies and the dataset without them are in line with our expectations, so even in this
case, we can declare that we reached our goal. The more abstract goal of modifying Sharon
so that it would allow the user to do software testing of a real smart home environment

42 4| Conclusions and future works

application has been partially reached. In particular, the feature that allows the user to
set the pace of the simulation works as expected, but the fact that Sharon can produce the
two datasets in parallel works only if the low level operates under the “agent assumption”
which means that a virtual agent is simulated moving in the space triggering the sensors,
instead of the low level operates under the “probabilistic assumption” which means that
given an ADL the sensors are triggered using probability distributions, then, in this case,
this feature does not work and the generation of the two datasets is sequential.

The feature that allows the execution of a certain ADL in a certain time can be thought
to be original because there is no simulator that at the run time asks the user to provide
the activity to be executed by the virtual dweller. In particular, in this case, it is like
we are mixing the model-based approach with the interactive-based approach, the first is
represented by how Sharon works, and the second is featured by the fact that the user
directly interacts with the simulation by specifying the ADL. We can state that this is an
original result and will allow the user of the simulator to represent anomalous sequences
of actions. The other feature allows the user to specify a sequence of events composed of
anomalies that are reproduced in the sensors’ activations dataset. This result is original
in the sense that no read paper ever talks about the representation of anomalous events,
so we can assert that we have implemented a breakthrough functionality.

During the testing phase, when we were executing the experiments, we discovered a
strange phenomenon in the output dataset, both in the high-level dataset containing
ADLs and in the low-level dataset containing sensors’ activations. In particular, looking
at the statistics of the high-level dataset we can notice that the ADL with ID equal to 3,
which represents the activity of working, is never executed by the virtual agent. This is
not realistic because we have simulated 90 days and it is not likely that a person does not
work a single time in such a time interval. Also in the low-level dataset, if we look at the
sensors’ activations statistics, we can notice that three sensors never get triggered, these
sensors have IDs 2,10,11. In particular, we can notice that the sensor with ID 10 is placed
on the wardrobe and the sensor with ID 11 is placed on the bathroom cabinet. Even in
this case, we can say that it is not realistic that those sensors are never triggered if we
consider the time interval of our simulation. The scope of this thesis was not to assert
or improve the quality of the output datasets, but we think that it is important to signal
this small problem.

We will now talk about future works that we think could improve the Sharon simulator.
We think that in light of the results that have shown a strange behavior regarding the
fact that the ADL with ID equal to 3 is never executed and the sensors with IDs equal to
2,10 and 11 are never triggered. So the first work that we would suggest is the one that

4| Conclusions and future works 43

checks the correctness of the models producing the datasets. The second suggestion that
we would like to give arises from the analysis of the state of the art. In particular, we have
highlighted the fact that various simulators make available to the users various tools that
allow the creation of an ad-hoc smart-home environment in which the simulation takes
place. We think that Sharon should provide the user with a simple tool to create a virtual
environment in which to place the various sensors. A less important feature that could be
added is a graphical interface that could allow the user to see the actions of the agent in a
friendly way during the simulation itself; we think that this would be particularly useful
if Sharon is used to doing online software testing because the user could see in real-time
and in an immediate way the correlation between the simulated data and the reported
data.

45

Bibliography

[1] Activity and Assistive Program. URL http://www.aal-europe.eu/wp-content/

uploads/2015/11/20151001-AAL-Strategy_Final.pdf.

[2] Ageing and healt. World Health Organization website. URL https://www.who.int/

news-room/fact-sheets/detail/ageing-and-health.

[3] World population ageing. Department of Economic and Social Affairs, Population
Division, 2017. URL https://ifa.ngo/wp-content/uploads/2018/12/WPA2017_

Highlights.pdf.

[4] World population ageing 2019: Highlights. Department of Economic
and Social Affairs, Population Division, 2019. URL https://www.

un.org/en/development/desa/population/publications/pdf/ageing/

WorldPopulationAgeing2019-Highlights.pdf.

[5] Population ages 65 and above (% of total population). World Bank Indicators, 2019.
URL https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS.

[6] A. Ariani, S. J. Redmond, D. Chang, and N. H. Lovell. Simulation of a smart home
environment. pages 27–32, 2013. doi: 10.1109/ICICI-BME.2013.6698459.

[7] I. Armac and D. Retkowitz. Simulation of smart environments. pages 322–331, 2007.
doi: 10.1109/PERSER.2007.4283934.

[8] J. Bruneau, W. Jouve, and C. Consel. Diasim: A parameterized simulator
for pervasive computing applications. pages 1–10, 2009. doi: 10.4108/ICST.
MOBIQUITOUS2009.6851.

[9] P. Eunil, C. Yongwoo, H. Jinyoung, and J. K. Sang. Comprehensive approaches to
user acceptance of internet of things in a smart home environment. IEEE Internet of
Things Journal, 2017. URL https://ieeexplore.ieee.org/abstract/document/

8031000.

[10] C. Fabien, B. Simon, B. David, and M. S. Hawley. Simulation of home
daily activities for lifestyle monitoring systems development. IEEE Trans-

http://www.aal-europe.eu/wp-content/uploads/2015/11/20151001-AAL-Strategy_Final.pdf
http://www.aal-europe.eu/wp-content/uploads/2015/11/20151001-AAL-Strategy_Final.pdf
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://ifa.ngo/wp-content/uploads/2018/12/WPA2017_Highlights.pdf
https://ifa.ngo/wp-content/uploads/2018/12/WPA2017_Highlights.pdf
https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf
https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf
https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf
https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS
https://ieeexplore.ieee.org/abstract/document/8031000
https://ieeexplore.ieee.org/abstract/document/8031000

46 | Bibliography

action on Information Technology in Biomedicine, 2010. URL https:

//www.researchgate.net/publication/45196532_Simulation_of_home_daily_

activities_for_lifestyle_monitoring_systems_development.

[11] S. Helal, J. W. Lee, S. Hossain, E. Kim, H. Hagras, and D. Cook. Persim - simulator
for human activities in pervasive spaces. pages 192–199, 2011. doi: 10.1109/IE.2011.
34.

[12] S. Jonathan, N. Chris, and J. Paul. Simulation of smart home activity datasets.
National library of medicine, 2015. URL https://www.researchgate.net/

publication/278790342_Simulation_of_Smart_Home_Activity_Datasets.

[13] B. Kormányos and B. Pataki. Multilevel simulation of daily activities: Why and
how? pages 1–6, 2013. doi: 10.1109/CIVEMSA.2013.6617386.

[14] B. Kévin, A. Amir, B. Bruno, and B. Abdenour. Simact: a 3d open source
smart home simulator for activity recognition with open database and visual
editor. International Journal of Hybrid Information Technology (IJHIT), 2012.
URL https://www.researchgate.net/publication/230646951_SIMACT_a_3D_

Open_Source_Smart_Home_Simulator_for_Activity_Recognition_with_Open_

Database_and_Visual_Editor.

[15] J. Lundström, J. Synnott, E. Järpe, and C. D. Nugent. Smart home simulation
using avatar control and probabilistic sampling. pages 336–341, 2015. doi: 10.1109/
PERCOMW.2015.7134059.

[16] J. Marcin Pawel, E. Thomas, G. Alexandros, F. Kensuke, E. Sofia, H. Dagmar,
G. Julie, K. Sara, S. Osamu, T. Kazuhiko, T. Töres, D. Nannan, K. Fumiko,
W. Ryugo, S. Giles Bruno, Y. Makoto, and P. Jian. Ageing and population shrinking:
implications for sustainability in the urban century. npj Urban Sustain, 2021. URL
https://www.nature.com/articles/s42949-021-00023-z.

[17] B. Mario, K. Werner, and K. Josef. A simulator for generating and visualiz-
ing sensor data for ambient intelligence environments. 2011. URL https://www.

sciencedirect.com/science/article/pii/S1877050911003395.

[18] A. Masciadri, F. Veronese, S. Comai, I. Carlini, and F. Salice. Disseminating synthetic
smart home data for advanced applications. 01 2018.

[19] A. Mendez-Vazquez, S. Helal, and D. J. Cook. Simulating events to generate synthetic
data for pervasive spaces. Semantic scholar, 2008.

[20] N. Noury and T. Hadidi. Computer simulation of the activity of the elderly person

https://www.researchgate.net/publication/45196532_Simulation_of_home_daily_activities_for_lifestyle_monitoring_systems_development
https://www.researchgate.net/publication/45196532_Simulation_of_home_daily_activities_for_lifestyle_monitoring_systems_development
https://www.researchgate.net/publication/45196532_Simulation_of_home_daily_activities_for_lifestyle_monitoring_systems_development
https://www.researchgate.net/publication/278790342_Simulation_of_Smart_Home_Activity_Datasets
https://www.researchgate.net/publication/278790342_Simulation_of_Smart_Home_Activity_Datasets
https://www.researchgate.net/publication/230646951_SIMACT_a_3D_Open_Source_Smart_Home_Simulator_for_Activity_Recognition_with_Open_Database_and_Visual_Editor
https://www.researchgate.net/publication/230646951_SIMACT_a_3D_Open_Source_Smart_Home_Simulator_for_Activity_Recognition_with_Open_Database_and_Visual_Editor
https://www.researchgate.net/publication/230646951_SIMACT_a_3D_Open_Source_Smart_Home_Simulator_for_Activity_Recognition_with_Open_Database_and_Visual_Editor
https://www.nature.com/articles/s42949-021-00023-z
https://www.sciencedirect.com/science/article/pii/S1877050911003395
https://www.sciencedirect.com/science/article/pii/S1877050911003395

4| BIBLIOGRAPHY 47

living independently in a health smart home. Computer methods and programs in
biomedicine, 108 3:1216–28, 2012.

[21] J. Park, M. Moon, S. Hwang, and K. Yeom. Cass: A context-aware simulation system
for smart home. pages 461–467, 2007. doi: 10.1109/SERA.2007.60.

[22] M. P. Poland, C. D. Nugent, W. Hui, and C. Liming. Development of a smart home
simulator for use as a heuristic tool for management of sensor distribution. National
library of medicine, 2009.

[23] L. Ronals and M. Andrew. Cost of aging. Finance and Development, 2017. URL
https://www.imf.org/external/pubs/ft/fandd/2017/03/lee.htm.

[24] F. Veronese, S. Mangano, S. Comai, M. Matteucci, and F. Salice. Indoor activity
monitoring for mutual reassurance. 2017. URL https://re.public.polimi.it/

handle/11311/1031854?mode=full.593#.YZZZBGDMJPZ.

[25] F. Veronese, A. Masciadri, A. Trofimova, M. Matteucci, and F. Salice. Realistic
human behaviour simulation for quantitative ambient intelligence studies. Technology
and Disability, 28:159–177, 01 2017. doi: 10.3233/TAD-160453.

https://www.imf.org/external/pubs/ft/fandd/2017/03/lee.htm
https://re.public.polimi.it/handle/11311/1031854?mode=full.593#.YZZZBGDMJPZ
https://re.public.polimi.it/handle/11311/1031854?mode=full.593#.YZZZBGDMJPZ

49

List of Figures

2.1 A use case diagram that summarises the functionalities of Sharon. 30

3.1 A screenshot representing the high level statistics. 32
3.2 A screenshot representing the statistics after that the dataset has been

modified forcing some ADLs. 34
3.3 This screenshot shows a subset of the dataset containing only the forced

ADLs, it is important to notice the timestamps. 35
3.4 This screenshot shows the statistics for the sensors’ activations without

anomalies. 37
3.5 A screenshot that shows the low level statistics of a dataset with anomalies. 38
3.6 A screenshot that shows a subset of the low level dataset plus the timestamp

of each line. 39

51

List of Symbols

Variable Description SI unit

σn need status pure number

γn growth rate pure number

ζn effect on the need pure number

wn,a weight of the model pure number

Θ(t)a likelihood function pure number

ν random variable pure number

S(a, t) scoring function pure number

53

Acknowledgements

Grazie a tutti.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the art
	Persim
	DiaSim
	Simulation of a smart home environment
	IE Sim
	Simulating Events to Generate Synthetic Data for Pervasive Spaces
	Multilevel Simulation of Daily Activities:Why and How?
	Computer simulation of the activity of the elderly person living independently in a Health Smart Home
	Simulation of home daily activities for lifestyle monitoring systems development
	CASS
	SIMACT
	 A Simulator for Generating and Visualizing Sensor Data for Ambient Intelligence Environments
	Development of a smart home simulator for use as a heuristic tool for management of sensor distribution
	Simulation of smart environments
	Classification and analysis of literature
	Literature review

	Method
	Sharon framework
	Important implementation details
	My contribution to the work
	Utilize Sharon to do software testing
	Real time data generation
	Anomalies generation
	Forcing an ADL in the high level scheduling

	Results
	Results regarding the high level scheduling
	Results regarding the low level scheduling

	Conclusions and future works
	Bibliography
	List of Figures
	List of Symbols
	Acknowledgements

