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Abstract

The electric power system network is going through a paradigm shift in power generation
and load demand utilisation, with various players acting in power management to boost
the economy of the energy market. To incorporate these changes, analysis of the power
flow in the network is necessary, predominantly to accommodate the immediate needs
of integrating Photovoltaic generating units and Electric vehicle charging infrastructures.
The purpose of this thesis is to accurately model photovoltaic generating units and the
Electric vehicle charging station uncertainties and to solve critical problems encountered
in using these models in probabilistic load flow analysis of the power system network.

The data-driven modeling approach is adopted in this work to reduce the assumptions in
modeling and in capturing uncertainties accurately, but it poses many challenges in using
them. The key issue in using this approach is the availability of data with large sample
sizes, as probabilistic load flow techniques such as Monte Carlo simulation demand a large
sample set of data. The other important factor is handling non-elementary statistical
distributions obtained from the modeled systems in the load flow analysis.

In this work, modeling the PV systems for use in the probabilistic load flow is facili-
tated by repopulating the samples using Nataf’s transformation technique, and later the
correlation among the PV generators is considered and included among the modeled sys-
tems using the Gaussian mixture model and Gaussian copula methodology. To model
the Electric vehicle demand uncertainty in the network, measurement data obtained from
the smart meters present in the vehicle charging stations are used. The vital charging
event data are statistically analyzed, and then electric vehicle load profiles are created,
including analyzed uncertainties to study the performance of the grid in the presence of
such uncertain electric vehicle user behavior in the network.

The stochastic response surface method is widely used in including the correlation among
the input variables and accelerating the simulation of probabilistic load flow, but it fails to
approximate the results accurately due to high non-linearity involved in the step of copula
transformation in approximating the physical input variables and the inner variables of
the model. A novel method of probabilistic load flow is proposed in this work by adopting
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the inclusion of correlation among the input variables and surrogate modeling of the
stochastic response in two separate steps. The repopulation of samples required for the
load flow is realized with the utilization of the Gaussian Copula and a surrogate model
using polynomial chaos expansion is used to precisely approximate the slightly nonlinear
input and output relationship of the probabilistic load flow process.

The proposed modeling approaches and the novel probabilistic load flow methodology
is implemented using different standard test networks such as IEEE 13 bus test feeder
network, IEEE 69 bus medium voltage test feeder network, IEEE European low voltage
test feeder network, and Non-synthetic European low voltage test network. The obtained
results are compared against the standard results of Monte Carlo simulation.

The results show the inclusion of correlation among the input random variables of the
probabilistic load flow will positively affect improving the accuracy of the simulation.
Gaussian copula can handle the non-elementary distributions very well and repopulates
the samples by preserving the distribution shape and the correlation among the variables
with an error rate < 1%. The proposed novel load flow is delivering a remarkable 50x
speed up in the simulation when compared to the Monte Carlo simulation in reaching
the same accuracy. Using the tools and techniques developed in this work, an analysis
is presented showing the effects of uncertain Photovoltaic generation and Electric vehicle
user demand on the low voltage distribution network in three different time windows. The
proposed modeling techniques and the novel probabilistic load flow method are general
that can be applied to any dataset and any network of interest.

Keywords: Correlated PV generation, Electric vehicles, Gaussian copula, Gaussian mix-
ture model, Polynomial chaos approximation, Probabilistic load flow, Stochastic response
surface method.
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Abstract in lingua italiana

La rete del sistema elettrico sta attraversando un cambio di paradigma nella generazione
di energia e nell’utilizzo della domanda di carico, con vari attori che agiscono nella gestione
dell’energia per rilanciare l’economia del mercato energetico. Per recepire questi cambia-
menti, è necessaria un’analisi del flusso di energia nella rete, principalmente per soddisfare
le esigenze immediate di integrazione delle unità di generazione fotovoltaica e delle infras-
trutture di ricarica dei veicoli elettrici. Lo scopo di questa tesi è quello di modellare
accuratamente le unità di generazione fotovoltaica e le incertezze delle stazioni di ricarica
dei veicoli elettrici e di risolvere i problemi critici incontrati nell’utilizzo di questi modelli
nell’analisi probabilistica del flusso di carico della rete del sistema elettrico.

L’approccio di modellazione basata sui dati viene adottato in questo lavoro per ridurre le
ipotesi nella modellazione e nel catturare accuratamente le incertezze, ma pone molte sfide
nell’utilizzarle. La questione chiave nell’utilizzo di questo approccio è la disponibilità di
dati con campioni di grandi dimensioni, poiché le tecniche di flusso di carico probabilistico
come la simulazione Monte Carlo richiedono un ampio set di campioni di dati. L’altro
fattore importante è la gestione delle distribuzioni statistiche non elementari ottenute dai
sistemi modellati nell’analisi del flusso di carico.

In questo lavoro, la modellazione dei sistemi fotovoltaici da utilizzare nel flusso di carico
probabilistico è facilitata dal ripopolamento dei campioni utilizzando la tecnica di trasfor-
mazione di Nataf, e successivamente viene considerata la correlazione tra i generatori fo-
tovoltaici e inclusa tra i sistemi modellati utilizzando il modello della miscela gaussiana
e la copula gaussiana metodologia. Per modellare l’incertezza della domanda dei veicoli
elettrici nella rete, vengono utilizzati i dati di misurazione ottenuti dai contatori intel-
ligenti presenti nelle stazioni di ricarica dei veicoli. I dati sugli eventi di carica vitale
vengono analizzati statisticamente, quindi vengono creati profili di carico dei veicoli elet-
trici, comprese le incertezze analizzate per studiare le prestazioni della rete in presenza di
tale comportamento incerto degli utenti dei veicoli elettrici nella rete.

Il metodo della superficie di risposta stocastica è ampiamente utilizzato per includere
la correlazione tra le variabili di input e accelerare la simulazione del flusso di carico
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probabilistico, ma non riesce ad approssimare accuratamente i risultati a causa dell’elevata
non linearità coinvolta nella fase di trasformazione della copula nell’approssimare la fisica
variabili di input e le variabili interne del modello. In questo lavoro viene proposto un
nuovo metodo di flusso di carico probabilistico adottando l’inclusione della correlazione
tra le variabili di input e la modellazione surrogata della risposta stocastica in due fasi
separate. Il ripopolamento dei campioni necessari per il flusso di carico viene realizzato
con l’utilizzo della copula gaussiana e un modello surrogato che utilizza l’espansione del
caos polinomiale viene utilizzato per approssimare con precisione la relazione di input e
output leggermente non lineare del processo di flusso di carico probabilistico.

Gli approcci di modellazione proposti e la nuova metodologia probabilistica del flusso di
carico vengono implementati utilizzando diverse reti di test standard come la rete bus
test feeder IEEE 13, la rete bus test feeder media tensione IEEE 69, la rete europea test
feeder bassa tensione IEEE e la rete europea non sintetica a bassa tensione rete di prova di
tensione. I risultati ottenuti vengono confrontati con i risultati standard della simulazione
Monte Carlo.

I risultati mostrano che l’inclusione della correlazione tra le variabili casuali di input del
flusso di carico probabilistico influenzerà positivamente il miglioramento dell’accuratezza
della simulazione. La copula gaussiana può gestire molto bene le distribuzioni non elemen-
tari e ripopolare i campioni preservando la forma della distribuzione e la correlazione tra
le variabili con un tasso di errore < 1%. Il nuovo flusso di carico proposto offre una notev-
ole velocità 50x nella simulazione rispetto alla simulazione Monte Carlo nel raggiungere
la stessa precisione. Utilizzando gli strumenti e le tecniche sviluppati in questo lavoro,
viene presentata un’analisi che mostra gli effetti della generazione fotovoltaico incerta e
della domanda degli utenti di veicoli elettrici sulla rete di distribuzione a bassa tensione
in tre diverse finestre temporali. Le tecniche di modellazione proposte e il nuovo metodo
probabilistico del flusso di carico sono generali che possono essere applicati a qualsiasi set
di dati e qualsiasi rete di interesse.

Parole chiave: Approssimazione del caos polinomiale, Copula gaussiana, Flusso di carico
probabilistico, fotovoltaica correlata, Generazione Veicoli elettrici, Metodo della superficie
di risposta stocastica, Modello di miscela gaussiana.
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1| Introduction

In this chapter, a brief overview of the challenges in power system analysis and simulation
is presented, with the objectives and the original contributions of the research. The vision
is to build new computation algorithms and software tools that are helpful in power system
analysis using data-driven models of power system elements. The measurement data
obtained from smart meters are used in the uncertainty quantification of photovoltaics
(PV) and Electric vehicles (EV) to study their impact on the power system network using
the novel methodologies and the software tools developed in this work. The organization
of this thesis is given in Section 1.6 of this chapter.

1.1. Need for Power System Simulations

Energy security is significant to governing bodies, businesses, and stakeholders as energy
plays a crucial factor in the progress of humankind. In recent years, renewable energy
lies in the main focus of energy security [1], this change is not just because of market
imbalances, resource availability, and political tension in obtaining fossil fuels but also
to meet carbon-free goals in building a sustainable and healthy ecosystem [2]. When it
comes to renewable energy, electric grid connected solutions such as PV are lucrative [3].
They can be integrated with the existing electric power system infrastructure to exploit
and deliver the energy irrespective of geographical restrictions while participating in the
demand-driven electricity market [4] for higher profits.

The electrical power system is a complex connection of various electrical components
installed to generate, transmit and distribute electrical power. Modern power system
network is transnational [5], proving as one of the largest infrastructures on the planet,
allowing the exchange of power between countries, and has a vision of becoming transcon-
tinental [6]. Apart from being a complex system, it is always in service, and interruption
is not tolerable. Before integrating the renewable energy resources or making any changes
to the power system network, testing and analyzing the proposed changes are necessary.
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The power system also requires consistent innovation in the field to cope with changing
technology, and a good example is the transition of electric grids into smart grids. Simu-
lation helps in this aspect to plan, analyze, optimize and verify such changes incorporated
in the power network [7].

In the conventional power system network, power flow is unidirectional, with generation
at the top and consumption at the bottom. This paradigm is shifting with distributed
generation and exploiting the locally available energy resources making the power flow
bidirectional. A few of the hot topics that are under study in support of the modern,
sustainable and futuristic power network [8] are high penetration of PV and distributed
generation in the power network [9], integration of electric vehicles in the power net-
work [10], impact of PV and EV integration on the power network [11], energy man-
agement strategies for optimal power flow in presence of distributed generation [12, 13],
protection scheme for power distribution system with distributed energy resources [14, 15]
and flexible and secure communications for power systems [16]. All of these studies are
conducted by using the simulation techniques.

The power system simulation involves in mathematical modeling of electrical systems, such
as generators, transformers, transmission lines, loads, and many other components used
in the network [17, 18]. Later, the characteristic equations of those modeled systems are
solved in the computers to study their combined behavior in the power network for given
input data. The power system simulations are typically applied in long-term generation
and expansion of the transmission systems in the planning phase [19] and short-term
operational and market analysis [20].

Load flow analysis is the most common type of simulation performed by the power system
community, the analysis results in a detailed picture of the power flow from the generators
to the loads in the network neglecting the transients, it provides the complex voltages and
currents [21, 22] at every node with which the powers and the losses are determined. Load
flow analysis is performed in phasor domain using the root mean square (RMS) values,
that captures the Macro phenomena in the power system network that is of the order in
tens of seconds. The Electromagnetic transient (EMT) simulations are a type in which
the modeled characteristic equations are time-dependent [23], and the instantaneous value
of currents and voltages are determined by solving time-domain circuit equations [24, 25].
EMT simulation can capture the Micro phenomena such as harmonics, nonlinearities, and
fast transients. It intrigues the power system community to conduct these analyses and
observe the power network [26].



1| Introduction 3

1.2. Challenges in Power System Analysis

The motivation behind this work is to identify the challenges in power system analysis and
to provide solutions to as many as possible. The hurdle faced in the power system simu-
lations is the complexity of the power network itself. It is composed of various elements
that exhibit nonlinearity and is modeled using complex mathematical equations, which
requires high computational capability, resulting in a slower simulation process. Newton
Raphson’s (NR) [21] method is used in the load flow problem, it is robust in solving non-
linear equations, but its convergence to the solution is not always guaranteed [27], and
sometimes it suffers from the divide by zero problems. When the load flow is extended to
perform the stochastic analysis of the power system, the challenge is solving the network
for a large number of input samples [28] that needs more time to deliver the results and
is also tedious to handle the data generated in the run-time of the simulation. This work
focus in detail on challenges faced in load flow analysis related to PV, EV, and extendable
to other distributed energy resource integration with the power system network.

1.2.1. Challenges in Probabilistic load flow simulation

In probabilistic load flow simulation (PLF), uncertainty quantification is challenging. It
requires precise modeling of the system under study, and many assumptions are made
to approximate the behavior of the systems, which might deliver erroneous results. In
modeling PV uncertainty, many models are suggested by the research community, starting
from solar irradiation and considering the diffusion phenomena, clear sky index, and
cell temperature based modeling [29, 30], these are good models but fail to deliver an
accurate picture as they ignore the effects of device efficiency, partial shadowing, device
failure, and topological uncertainties. Modeling using a measurement data is a good
solution but it comes with other challenges such as availability of the historic data for
desired period and they tend to follow non-standard statistical distributions [31] that
are difficult to handle. After overcoming the hurdles of modeling, running the load flow
for large number of samples using Monte Carlo (MC) simulation technique might take
more time that some applications can not afford, to overcome this problem there are
approximation techniques [32, 33] available but to obtain the results with high accuracy
and ability to interface the desired models having non standard statistical distributions
using approximation methods is challenging and the challenges of PLF analysis are listed
below.

1. Quantification of PV uncertainties using data-driven models is challenging as the
power injections from the PV sources results in non-elementary distributions.
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2. The measurement samples in the data set to model the PV characteristics are not
enough in reaching the convergence of the PLF analysis using MC simulation.

3. The techniques used in the repopulation of the samples in data-driven uncertainty
quantification will directly impact the PLF results. As it is necessary to consider
the possibility of correlation among the input variables.

4. Once the above-mentioned challenges are vanquished, the PLF using MC simulation
suffers from simulation time requirement and memory.

5. Among many methods to accelerate MC simulation, it is necessary to implement
PLF that can be used with non-elementary distributed data-driven input models.

6. Generic Polynomial chaos (gPC) is a good alternative in accelerating the PLF, but
the challenge in implementing input variables having non-elementary distributions,
and using lower order gPC expansions for accurate results to avoid a bad tail end
in the resulting distributions are still an open challenge in the field of PLF analysis
using gPC.

7. EV uncertainty quantification to analyze the impact on the power distribution net-
work is less explored in the research community, and the challenge is involved in
data-driven modeling and the implementation of test cases for scenarios found in
the real world.

1.3. The Research Objectives

The objective of this research is to develop novel techniques and methodologies to integrate
the data-driven modeling approach into the stochastic analysis of power systems. It is
realized by quantifying the PV and EV uncertainty seen in the power system network and
accelerating the process of load flow simulation by using approximation techniques. The
specific goals that are met in the research activities are as follows,

1. Data-driven modeling of PV systems to quantify PV uncertainties in the power
system network.

2. Stochastic impact analysis of PV using standard test feeder networks.

3. Modeling PV systems with consideration of correlation among the PV generators,
using Gaussian Mixture Model and Gaussian Copula.

4. Developing a novel methodology to accelerate probabilistic load flow which is capable
of using non-standard distributions in load flow approximation using the Stochastic
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Response Surface Method (SRSM).

5. Data-driven modeling of EV charging station (EVCS) behavior to study their impact
on the medium voltage (MV) and the low voltage (LV) test network.

1.4. The Research Contributions

Apart from the mathematical formulation and test setup implementation, the critical
contribution of this work to the field of Power Systems is listed below.

1. Data-driven modeling of PV might result in non-standard statistical distribution
with a lower sample size. Re-populating these samples for use in Monte Carlo sim-
ulations using Nataf’s transformation that matches the original distribution shape
is discussed here.

2. PV systems are spatially correlated, including this correlation in modeling PV char-
acteristics using Gaussian copula, and the Gaussian Mixture model (GMM) is im-
plemented.

3. Impact of the correlated PV generators on the standard test systems are analyzed,
which has the importance of practical application of the tools developed.

4. With the use of non-standard statistical distributions, conventional SRSM intro-
duces inaccuracies in approximation. In this work, a novel method is proposed in
combination with Gaussian copula. A surrogate model of SRSM is built with gener-
alized polynomial chaos (gPC) to accurately approximate the nonlinear relationship
between PV power injection and the voltage outputs of the test network.

5. A novel methodology is introduced to model EVCS behavior using historic data,
starting from EV charging events and then moving to EVCS aggregation at the MV
node.

6. Stochastic impact analysis of PV generation uncertainty and the EV load demand
on the LV distribution network using data-driven modeling approach.

1.5. Bibliographic Disclaimer

This work is the result of my research carried out during my Philosophiae Doctor (Ph.D.)
studies, which I have presented at many conferences and published in Journals. The
publications relative to this work are summarized below in chronological order.

1. Palahalli, H., Maffezzoni, P. and Gruosso, G., 2020, September. Modeling pho-
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of Electric Vehicle behaviour applied to low voltage distribution network. In 2021
22nd IEEE International Conference on Industrial Technology (ICIT) (Vol. 1, pp.
657-662). IEEE. [36]
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PV Source Models. IEEE Transactions on Sustainable Energy.[37]

5. Palahalli, H., Maffezzoni, P., Daniel, L., and Gruosso, G., (2022). Statistical Analy-
sis of PV penetration impact on Residential Distribution Grids. Sustainable Energy,
Grids and Networks, p.100949.[38]
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1.6. Dissertation Overview

The organizational overview of the research work presented in this dissertation is given in
this section. Introduction to the work carried out in the Ph.D. Studies and the research
objectives are presented in Chapter 1.

Chapter 2 describes the background knowledge and state-of-the-art research in the field of
PLF. In particular, it introduces the problems that need to be addressed in the stochastic
analysis of power systems with PV and EV uncertainty models. Also, the detailed formu-
lation of the complex NR method for use in load flow and the approximation technique
of PLF using polynomial chaos are explained.

Chapter 3 details the test networks used in this work to study the impact of PV and EV
models and to validate the proposed simulation hypothesis. The mathematical formula-
tion of including uncertainty in load flow of three phase unbalanced systems for stochastic
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analysis is given here.

Data-driven Modeling of PV uncertainties is discussed in Chapter 4, primarily using
Nataf’s transformation, drawback of using Nataf’s transformation is noted and updated
with GMM and Gaussian copula techniques to preserve the correlation.

Chapter 5 is dedicated to novel SRSM to perform load flow studies with penetration of PV
uncertainties, and the detailed mathematical implementation of the proposed methodol-
ogy is given with an example of implementation on the power network, and the accuracy
and efficiency of this methods are compared against Monte Carlo and conventional SRSM
methods.

Chapter 6 narrates the Data-driven modeling of EVCS to study the impact of EV inte-
gration into the power network at the MV level. A detailed explanation of modeling using
EV charging event data of charging stations is presented. The methodology to pass from
event-based time-series simulation of EV to the probabilistic simulation is well narrated.

Chapter 7 presents the detailed analysis of the cumulative impact of the PV generation
and the EV load demand uncertainty on the LV test network. The analysis is performed
in four hour time windows in a day, PLF simulation is on the test network is performed
using MC simulation with 19 stochastic input variables. Finally, the conclusion of this
work with the scope of future research is discussed in Chapter 8.
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2| Literature Review and

State-of-the-Art

This chapter presents the development in the field of power system simulation, with a brief
description of the background knowledge and the state-of-the-art research in probabilistic
load flow and modeling PV and EV elements integrated in the power system network.

In TS simulations, the positive sequence component or the root mean square (RMS)
values of the power system elements are considered, and this type of simulation neglects
the harmonics and DC offset by assuming the system works at the fundamental frequency,
the minimum time step achieved in this simulation is in the range of few a ms in general,
load flow studies are classified under TS simulation. Before going into the subject matter
a few basics of probability distribution are discussed in the next Section 2.1.

2.1. Probability Distributions

Distributions hold vital information about the event and help to predict the outcome of
an event. In general, a distribution is a set of possible values a variable can take, and it
also has information regarding the frequency of occurrence of the respective values.

Let 'Y ' be the actual outcome called a random variable, and 'y ' is one of the possible
outcomes of an event. The cumulative distribution function (CDF) of a random variable
Y is defined as probability that Y will achieve, that is less than or equal to y as given in
Equation 2.1 [39].

FY (x) = P (Y ≤ x),∀ x ∈ R (2.1)

Consider a measurement device such as a voltmeter having a measurement uncertainty of
0.25%, and such uncertainty follows a normal distribution. The 230V voltage is measured
over 10,000 times that represents our samples. The CDF of such measurement obtained
by using the considered voltmeter is given in Figure 2.1.
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Figure 2.1: CDF of measuring 230 V supply with a voltmeter having an uncertainty of
0.25% full scale voltage.
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Figure 2.2: PDF of measuring 230 V supply with a voltmeter having an uncertainty of
0.25% full scale voltage.
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The probability density function (PDF) expresses the probability of each distinct outcome,
and it is the measure of probability per unit of sample space that shows the likely hood
of an outcome depending on its occurrence in the sample space [40].

Let f(y) be the PDF of a continues random variable Y, the probability density at any
point y is given by Equation 2.2. It is evaluated over the limit of probability in the interval
(y, y +∆).

f(y) = lim
∆→0+

P (y < Y ≤ y +∆)

∆
(2.2)

We know that the probability over the interval is given by P (y < Y ≤ y +∆) = FY (y +

∆)− FY (y) hence the Equation 2.2 is rewritten as Equation 2.3 differentiable at y where
FY (y) is the CDF.


f(y) = lim

∆→0+

FY (y +∆)− FY (y)

∆

f(y) =
dFY (y)

dx
= F ′

Y (y)

(2.3a)

(2.3b)

The PDF of the voltage measurement event with a voltmeter with an uncertainty factor
of 0.25% that follows normal distribution is given in Figure 2.2. The PDF holds the
information of distribution such as mean, variance, standard deviation, and median. The
mean value of the PDF is the expected value in an Event, it defines the axis of symme-
try, and it can be considered as an average value. The Median is the mid-value in the
distribution that separates the distribution into higher and the lower half of the values
equally. The variance of a distribution signifies the variability of the distributed value in
sample space from the mean value, it is measured as the mean of the squared distance
to the mean value of the distribution, and the positive square root of the variance is the
standard deviation.

Using the mean value and the standard deviation, many of the elementary distributions
can be constructed, and samples can be reproduced. In many cases the PDF obtained
from an event is represented using a ’boxplot’ as shown in Figure 2.3. It summarizes the
statistical information to be extracted from the distribution, the central red line in the
box plot indicates the median of the distribution, and the points a and b indicate 25th

and 75th percentiles respectively. This type of representation is helpful when many PDFs
are represented in the same figure space.
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Figure 2.3: Box plot summarizing the statistical information of the PDF

When the measurement results in a non-elementary distribution, the PDF can be deter-
mined numerically. The steps to determine the PDF of a non-elementary distribution are
given in Algorithm 2.1. The critical factor is the selection of the bin size, the comprehen-
sion of the data varies with the bin size hence, it should be selected appropriately.

Algorithm 2.1 Algorithm to determine the PDF numerically
1: Separate the sample space of the distribution into a finite equal number called bins.
2: Count the number of elements e and the median b in each bin.
3: Find the distance between the bins i.e., bd = b2-b1.
4: Determine the sum e of all the bins and divide the elements by the sum to normalize.

5: The numerical PDF can be obtained by e
sum(e)

× bd and can be plotted verses b as the
sample space.

To demonstrate, an example is considered using the measurement data of a smart meter,
the active power measurement is normalized and analyzed, it represents a non-elementary
distribution, and hence the Algorithm 2.1 is followed to obtain the PDF. The obtained
PDF with 8 bins and 32 bins are shown in Figure 2.4, showing the importance of selecting
appropriate bin size.
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Figure 2.4: Non-elementary PDFs obtained using the normalized active power measure-
ment data, (a) shows the PDF with resulted with 8 equal bin sizes and (b) shows the
PDF obtained using a bin size of 32.

2.2. Probabilistic Load flow

Load flow or power flow is a numeric analysis to determine the primary and secondary
unknowns of nodes present in the network by using the known entity of the respective
nodes. Depending on the type of bus the known and unknown entity varies [41], their
details are given in Table 2.1, the inputs are used in load flow to determine the primary
and secondary unknowns. P is active power, Q is reactive power, V is voltage, and δ is
the voltage angle.

Type Input Primary Unknown Secondary Unknown

PV P, V δ Q

PQ P, Q V, δ -
Slack V, δ - P, Q

Table 2.1: Types of buses, known and unknown entities of a bus in a power system network
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Load flow is employed in solving a system of nonlinear equations with iterative methods.
The conventional load flow is often called deterministic load flow (DLF), as it calculates
the nodal voltages and line flows at a static operating condition [42]. Consider a power
system network composed of N number of buses, connected with Nl number of lines, at
each node the voltage phasors are calculated using the load flow as given in Equation 2.4.


Fn

(
V⃗
)
= Sn − Vn

N∑
i=1

YniV
∗
i = 0

Sn = Pn + jQn

(2.4a)

(2.4b)

where,

n 1,2,.....,N
V⃗ Vector of node voltage phasors
Sn Complex power
Yni Bus admittance matrix
Pn Active Power
Qn Reactive Power

The Equation 2.4 is valid for any time instant t, for a time varying conditions in the
network, the above mentioned quantities will be time dependent and can be written as
Pn(t), Qn(t) and Vn(t). The Equation 2.4 can be solved using many methods, among
them most used are the Gauss iteration method [43], Gauss-Seidel method [44], Newton-
Raphson algorithm [21], DC power flow [45], and Fast decoupled power flow [46]. Each
method has its advantages and disadvantages. Among all, the popular one used in the
field is the Newton-Raphson algorithm, as it shows fast convergence as long as the initial
guess is close to the solution, it exhibits a large region of convergence, and the number of
iterations remains the same irrespective of the size of the system.

2.2.1. Newton Raphson method for power flow solution

In the power flow, it is assumed that the power system network is balanced, and the
formulation to derive the solution for the nonlinear Equation 2.4, later it can be extended
to the three-phase unbalanced system.

The complex power in any considered bus n is given by,

Sn = Vn

N∑
i=1

YniV
∗
i (2.5)
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In rectangular coordinates, the elements in Equation 2.5 is given by,



Vn = vn + jfn

Yni = Gni − jBni

Vi = vi + jfi

Sn = Pn + jQn

(2.6a)

(2.6b)

(2.6c)

(2.6d)

Where G and B are conductance and susceptance of the line, P and Q are the active and
the reactive powers of the bus n. The Equation 2.5 is now be rewritten as Equation 2.7
and by separating the real and imaginary parts, the active power Pn and the reactive
power Qn is given by Equation 2.8.

Pn + jQn =
N∑
i=1

(vi + jfi)(Gni − jBni)(vi − jfi) (2.7)


Pn = vn

N∑
i=1

(Gnivi −Bnifi) + fn

N∑
i=1

(Gnifi +Bnivi)

Qn = fn

N∑
i=1

(Gnivi −Bnifi) + vn

N∑
i=1

(Gnifi +Bnivi)

(2.8a)

(2.8b)

In Equation 2.8 the specified electrical quantities (Pn, Qn) of the buses is a nonlinear
simultaneous equations equations of unspecified electrical quantities (vn, fn, vi, fi). To
obtain the solution for such a relation Taylor’s series expansion is used. In a balanced
three-phase network, there are two specified electrical quantities for every bus hence two
equations are required for each bus, for a N bus system, 2N number of equations are
formed, by considering one bus as a slack bus in the network, a total of 2(N-1) equations
needs to be solved.

The Taylor series expansion is given by Equation 2.9, the unknown quantities are x1, ....xn
and the specified quantities are y1, ....yn.

y1 = f1(x1, ....xn)

.

.

yn = fn(x1, ....xn)

(2.9)
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In the series expansion the unknown terms xn can be expressed as sum of initial guess
value xon and the unknown residual value ∆xn. After expansion and considering the initial
and residual values, the Equation 2.9 is rewritten as Equation 2.10 and further can be
simplified as Equation 2.12.

y1 = f1(x
o
1, ....x

o
n) +

∂f1
∂x1

|∆x1
xo
1

+ ......
∂f1
∂x1

|∆xn
xo
n

.

.

yn = fn(x
o
1, ....x

o
n) +

∂fn
∂xn

|∆x1
xo
1

+ ......
∂fn
∂xn

|∆xn
xo
n

(2.10)


y1 − f1(x

o
1, ....x

o
n)

.

.

yn − fn(x
o
1, ....x

o
n)

 =


∂f1
∂x1
...... ∂f1

∂xn

.

.
∂fn
∂x1
...... ∂fn

∂xn



∆x1

.

.

∆xn

 (2.11)


∆y1

.

.

∆yn

 =


∂f1
∂x1
...... ∂f1

∂xn

. . . .

. . . .
∂fn
∂x1
...... ∂fn

∂xn



∆x1

.

.

∆xn

 (2.12)

In Equation 2.12 the known residual matrix is composed of ∆yn elements, the partial
derivative matrix composed of ∂f

∂x
elements is a Jacobian matrix, and the unknown residual

matrix is composed of ∆xn elements that are obtained by using the inverse Jacobian
product with the known residual matrix.

Coming back to the power system, the voltage magnitudes are not directly unknown for
the case of generator buses (PV buses) it requires linearizing the Equation 2.13,

V 2
n = v2n + f 2

n (2.13)

The Taylor series expansion is used to linearize the Equation 2.8 and Equation 2.13 that
results in the below Equation 2.14 with six sub matrices in the Jacobian matrix.
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 ∆P

∆Q

∆(V 2)


0

=


∂P (x)
∂v

∂P (x)
∂f

∂Q(x)
∂v

∂Q(x)
∂f

∂(V 2)
∂v

∂(V 2)
∂f


0

+

[
∆v

∆f

]
0

(2.14)

The iteration is continued until the desired convergence is achieved using the Equa-
tion 2.15.

[
v

f

]
1

=

[
v

f

]
0

+

[
∆v

∆f

]
0

(2.15)

Once the complex bus voltages in and the power injected are known, the respective cur-
rents are determined which delivers the load flow solution. The DLF neglects [47] the
uncertainties present in the network, and these uncertainties include the change in the
network configuration, variation of load, and generation entities. The modern power sys-
tem network is far different from the traditional ones, and it allow bidirectional power flow
with the help of distributed energy resources. To include the uncertainties that arises from
generation side such as PV generators and the load side such as user behaviour and the
EV charging, Probabilistic load flow (PLF) is used [32, 48]. It is a coalition of DLF and
stochastic methods characterizing the uncertainties present in the power system network
using PDF [34, 49].

Consider a vector ξ⃗ = [ξ1, ξ2, ...., ξu] that is made of u number of stochastic parameters
which includes the uncertainty. Each element ξu in the uncertainty vector is given by
a PDF ρu(ξu). Considering this uncertainty is associated to the power of the candidate
nodes, the output of DLF given in Equation 2.4 will become dependent variable of time
t and uncertainty vector ξ⃗, given by Vn

(
t, ξ⃗
)

which formulates the PLF problem, the
detailed formulation is explained in the next chapters.

2.2.2. Methodologies in PLF evaluation

The goal of the PLF process is to determine the probability distribution of the output
variables such as voltages and currents of the power network, using the PDF of input
variables. A detailed review of available methods to tackle the PLF problem is given
in [30, 32, 50], the most critical factors that show the state-of-the-art in the field are
depicted here. The PLF analysis computational method can be classified into three major
groups as shown in Figure 2.5, the first numerical methods, the second analytical methods,
and the latter are approximation techniques.
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Figure 2.5: Classification of probabilistic load flow evaluation methods.

Numerical methods

In numerical methods of PLF, Monte Carlo (MC) simulations are often used, which is
a sampling-based technique that repeatedly performs the DLF by using the samples of
input random variables. MC simulations work without any simplification of the input
random variables, and hence they can deliver highly accurate results. MC is used as the
standard reference method to compare with other PLF evaluation methods.

As MC simulations run for a large number of samples, the stopping criteria could be a large
number or a limit of a coefficient variation. Despite all its advantages, it is not efficient
concerning the simulation time. As the sample size is high, it troubles the memory of
the processor in run-time while simulating large power system networks. To increase the
simulation speed of MC several methods are proposed. The first type is by using different
sampling techniques such as uniform design sampling [51, 52] and Latin hypercube [53–55].
Another method is to adopt a different approach than sampling, such as quasi-random
number-based MC [56, 57], using nonparametric density estimators [58, 59] to decrease
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the number of samples to use in MC. This work uses simple random sampling based MC
simulation, with large samples to evaluate the impact of PV and EV uncertainties on
power system network and to compare the accuracy with the proposed methods.

Analytical Methods

The analytical method of PLF establishes the relationship between the input and output
variables of the power flow problem by performing the arithmetic operations on the PDFs
of the input variables. The analytical methods are further classified into convolution type
and cumulant type. In convolution type, as the name suggests, the PLF is obtained by
performing the convolution using the Laplace transform [60] or Fast Fourier transform in
the case of discrete convolution in the frequency domain that promises to deliver results
faster. In [13], discrete convolution technique is used to calculate the joint distribution of
multiple independent variables in PLF.

The convolution process is cumbersome in a large system with multiple input and output
variables, which led to a new method of PLF using cumulants [61]. The idea is to replace
the moments in the distribution of input variables with their cumulants and to identify
the relationship between input and output variables using the sensitivity of the system
obtained by running a few DLF. Several series expansion techniques such as the Cornier
Fisher [62], Gram Charlier [63], and Edgeworth method are used to determine the distri-
bution shape of the output variables, in [64] an effort is made to compare the results using
the above mentioned series expansion and they summarized that all the above discussed
expansions are accurate methods as long as the distribution of the interested variable is
close to the normal distribution, and the Cornier Fisher and Edgeworth method suffers
from bad tail-end behavior.

Approximation Methods

In this type, the mainly used techniques are the point estimation method (PEM), the
statistical information about the input PDFs are extracted, and the minimum number of
samples containing this information, such as mean and variance are created to use in the
power flow [65]. Depending on the type of the approximation method, the number of runs
required to perform DLF is determined. For m input random variables 2m, 2m+1, 4m+1
DLF runs are required in case of 2m scheme, 3m scheme, and 4m+1 scheme [66]. It dras-
tically reduces the time required to evaluate PLF, but the major setback is that it cannot
handle non-Gaussian input random variables and suffers from accuracy degradation.

The other approximation method is Unscented transformation method (UTM) [67, 68],
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in which the samples for the power flow are generated by approximating the PDFs of the
input random variables to equivalent probabilistic mass functions (PMF) such that both
the input and the newly generated samples have same moments. This idea is not explored
much by the research community.

Hybrid methods

This is an unconventional classification of PLF methodology. To exploit the advantages
of the above-mentioned methods, researchers have combined them to obtain exceptional
results. In [69] a method that combines the polynomial chaos expansion and the non-
parametric kernel density estimation technique is used capturing the correlation among
the PV generators. Another nonparametric method is used in PLF by using saddle point
approximation in [70] with first-order Taylor series expansion. This method requires m+1
DLF runs for m number of input random variables, and the obtained results are better
when compared with other cumulant methods such as 2PEM and UTM. A recent study in
comparison of PLF using parametric and non-parametric methods is depicted in [71] and
showed that using nonparametric approaches such as kernel density estimation delivers
better results than the parametric approaches such as PEM and UTM.

2.3. Uncertainties

According to [50], uncertainties associated with the Power system are classified into two
types, i.e., input uncertainties which are randomness associated with the generation and
consumption of electric power, and the second one is network uncertainties. Network
uncertainties are due to changes in the network configuration due to switching operations,
device failures and changes in the line parameters due to environmental factors such as
temperature and humidity. This work focus only on the input uncertainties associated
with the power system network.

2.3.1. Load power uncertainties

The load profile in the electrical network is highly dependent on time due to the user
behavior, and it varies according to the season, which constitutes the deterministic element
of the load behavior modeling. The uncertainty element is caused due to variations in the
load connected, equipment failures, and changes in climatic conditions. The load profiles
are aggregated at the bus level, and it varies depending on the type of the network, such
as low voltage and medium voltage.
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The PDF of the load powers are obtained for the concerned time window using historical
data, these PDFs can be used in two ways, one is to fit the standard statistical distribution
to the historical data and generate the samples for use in PLF, and the other is to use the
empirical data directly. In [72–74] the load PDFs are modeled using Gaussian distribution,
in [75] authors have modeled load uncertainty using Beta distribution, and they have
considered 4 hours of time window due to the low resolution of the samples in the data.

2.3.2. PV power uncertainties

Many PV generation modeling techniques are available to capture the PV uncertainties
and to use in PLF to investigate PV impact on the power system network. PV power
generation mainly depends on solar radiation available to harvest energy on the surface
of the PV panels. The amount of radiation that falls on the surface depends on many
factors such as the latitude, orientation of the panels, angle of inclination, and other
meteorological factors such as clouds, temperature, and the diffusion index. A few of the
modeling methodologies that are widely used are explained below.

Clearness index based modeling

Clearness index is the ratio of global solar radiation on any horizontal surface H of unit
length to the extraterrestrial solar radiation on a horizontal surface of same unit length
Ho [76, 77], it is calculated using the Equation 2.16.

kt =
H

Ho

Ho =
24× 3600

π
Gsc

(
1 + 0.033 · cos360n

365

)
×
(
cosϕ cosδ sinws +

πws

180
sinϕ sinδ

)
(2.16a)

(2.16b)

where,

n 1,2,.....,N
kt Clearness index
ϕ Location latitude
n Days in a year considered
δ Daily solar declination
ws Solar sunset hour angle
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The PV power output can be obtained using the clearness index using the Equation 2.17.

Ppv = saη
(
Tkt − T

′
k2t

)
(2.17)

sa is surface area, η is the efficiency of the PV panels, Ppv is output PV power that
represents a random variable, T and T ′ [78] are parameters that depend on δ, ϕ, n, and
ws and the relation obtained in the article [77].

Diffuse fraction and clearness index based modeling

In this method, the diffused irradiation fraction (cloudiness index) is considered along with
the clearness index, in [76] the cloudiness is considered as the function of the clearness
index as given in Equation 2.18.

(
kdf =

Hd

H

)
≈ f

(
kt =

H

Ho

)
(2.18)

A Similar model is proposed in [79] in which the diffused irradiation factor kdf t is expressed
as the ratio of the modeled direct beam irradiance to the measured irradiance on the
surface using a Pyranometer.

kdf =
Imeasured

Imodel

Imodel = Io ε exp (−0.8662 TLK m δr(m) sin(γs)))

(2.19a)

(2.19b)

where,

Imeasured Measured output from Pyranometer
Io Solar constant
ε Solar distance correction
m Correction of air mass
δr Rayleigh optical depth
γs Solar altitude angle
TLK Linke turbidity factor

Finally the out PV power is obtained using the Equation 2.17 by replacing the clearness
index factor kt by diffuse fraction clearness index factor kdf .
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Global irradiance and cell temperature based modeling

This model is based on PV power curve, that the active power generated by PV is di-
rectly proportional to the global solar irradiance with the consideration of cell operating
temperature as given in Equation 2.20. In this model, the global irradiance G and the
cell operating temperature ∆T are the random variables that can be represented by Beta
and Gaussian distributions respectively [80].

Ppv = sa η G (1−KT ∆T ) (2.20)

where,

sa Surface area
η Efficiency of the PV panels
G Global solar irradiance
KT Temperature coefficient
∆T Cell temperature

Depending on the number of cells stacked in the PV module, the output power is given
as an algebraic sum of individual cell outputs.

PV power curve based modeling

In this method PV characteristics equation to deliver the active power is considered that
use the irradiation as the input variable, rest of the parameters can be obtained in the
manufacturer data sheet. The PV output power Ppv is the product of current delivered
Ipv by the PV panel and Vpv the terminal voltage of the panel.

Ppv = Ipv × Vpv (2.21)

The cell current Ipv can be obtained by the Equation 2.22 [81], The input parameter λ is
a random variable that follows the beta distribution in the Equation 2.23 [50].

Ipv = NpIph −NpIo

[
exp

( Vpv

NcellNs
+ IpvRs

Np

nVt

)
− 1

]
− Ish (2.22)

where,



24 2| Literature Review and State-of-the-Art

Iph Photo current
Io Module saturation current
Ish Current in shunt element
Ns Series modules connected in string
Np Parallel strings in array

Iph = [Isc +Ki(Tcell − Tref )]λ (2.23)

where,

Isc Short-circuit current at 250C and 1kW/m2

Ki Short-circuit current temperature coefficient
Tcell Cell temperature in Kelvin
Tref Reference temperature in Kelvin
λ Ratio of solar irradiation to global reference 1kW/m2

Irs =
Isc[

exp
(

qVoc

NcellKnTcell

)
− 1
] (2.24)

where,

Irs Reverse saturation current
q Electron Charge
Ncell Series cells to form module
n Ideal factor of diode
k Boltzmann’s constant
Eg Energy band gap of PV material

Io = Irs

[
Tcell
Tref

]3
exp

{
qEg

nK

(
1

Tref
− 1

Tcell

)}
(2.25)

Vt =
KTcell
q

(2.26)

Ish =
Vpv

Np

NcellNs
+ IpvRs

Rsh

(2.27)

Where,
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Vt Diode thermal voltage
Voc Open circuit voltage
Rs,Rsh Series and Shunt resistance

The data of active power delivery of PV are gathered by any of the above methods, then
the standard statistical distributions are used to fit the data. The best fit distribution
is selected to generate the samples for use in PLF studies. To model PV uncertainty
in [82] log-normal and bimodal distributions are used, in [64, 78, 80, 83] beta distribution
is used. Only a few articles use the empirical data obtained from the measurement, in [84]
historical empirical data is directly used in the PLF by using moments and cumulants of
the input PDFs. In [75] PDF of the PV active power is used to generate the samples for
use in PLF without using fitting methods. In this work, historical PV measurement data is
used to model the PV uncertainty, and the obtained non-standard statistical distributions
are used to regenerate the samples without losing their original characteristics, which will
be explained in the next chapters.

2.3.3. EV uncertainties

The uncertainties in the EV interaction with the electric power network arise from many
phenomena such as the type of charger used (level-1, level-2), EV charging station infras-
tructure, and the human behavior that makes it more random. Modeling EV uncertainty
is highly explored these days due to its immediate need in adapting the power system
network and its popularity, yet it is not very well established. There are many modeling
methods proposed by the research community, and a few of them are explained here.

One of the methods to model EV behavior is the Spatial-Temporal model [85, 86], which
evaluates the impact of large-scale EV integration into the power network, this method
considers the power system and transportation system analysis. The origin and destina-
tion of EV with charging event as a load to power network are considered in this method.
In [87] the EV behaviour is modeled by also considering the initial state of charge (SOC)
of the batteries in the EV, the start time of charging and the SOC of the battery behaviour
are considered as a Gaussian distribution in this work whereas, uniform distribution is
used to represent the same characteristics in [88].

In [89] the demand active power of EV is modeled considering various parameters such
as arrival time, charging time, range for single and multiple EVs, and the active power
demanded is fitted with weibull distribution in case of single EV and normal distribution
in case of multiple EVs.

A data-driven modeling approach of EV charging demand is proposed in [90–93], by pro-
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cessing heterogeneous EV demand using measurement data obtained from smart meters.
It works for the specific selected data set with assumptions, a general method to model
the EV behavior from the measurement or EV charging events that replicate the real-life
scenarios is still missing.

2.3.4. Correlation in uncertainty modeling

The power system input variables might be dependent among each other, the PV systems
that are geographically near are spatially correlated due to the similarity in weather
patterns [29]. The load behaviour [94] are correlated due to similar human activity with
respect to the time. In case of EV, the correlation might exits due to geographic location
and spatial availability at the charging stations. In some cases the correlation can also
exits between PV-EV [95], PV-loads [96], and loads-EV [91].

The correlation among the random variables is determined by the use of covariance. The
measure of joint variability among two random variables is divided by their standard de-
viations to obtain the correlation coefficient among them. A higher correlation coefficient
means the higher value of one variable coincides with the higher value of the other vari-
able. For any two random variables X and Y, having the sample size n the covariance
among them is given by Equation 2.28, where x̄ and ȳ are the mean values, σx and σy are
the standard deviation. The correlation coefficient among them is determined by using
Equation 2.29.

Cov(X, Y ) =
n∑

i=1

(xi − x̄) (yi − ȳ)

n
(2.28)

ρ(X, Y ) =
Cov (X, Y )

σx, σy
(2.29)

In the analytical methods of PLF, the correlation among the input variables is directly
used while determining the relationship between the input and the output variables [97,
98]. Other techniques to model the uncertainty including correlation among the random
variables correlation is by using Gaussian mixture model (GMM) and Copulas. In GMM
multiple Gaussian distributions are used to match the sub population of the input data,
i.e., with a mixture of finite number of Gaussian distributions all the data points of
the inputs can be grouped [99]. Copulas are the entity or the functions that contains
the dependence information about the correlated random variables [29, 100], they are
used to model the dependence between two or more random variables where the marginal
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distributions of the input random variables are combined to arrive at a joined distribution,
the correlation coefficient ρ plays an important role while using copulas that is explained
in detail in the next chapters. In [69] the correlation among wind and PV input variables
is included in PLF evaluation, polynomial chaos expansion, and the stochastic response
surface method is used in which the correlation inclusion is with the help of Cholesky
decomposition.

2.4. Uncertainty quantification using generalized Poly-

nomial Chaos

Monte Carlo is a non-intrusive method that takes a sample from the PDF of desired
input variable and delivers the solution by running the power flow for every sample, and
it takes a large number of sample runs to converge to an accurate solution. To accelerate
this process, generalized Polynomial Chaos (gPC) expansion can be used and approximate
the input and output relationship by running fewer load flows for the selected number of
test points.

Consider l number uncertainty elements present in the uncertainty vector ξ⃗ i.e.,

ξ⃗ = [ξ1, ξ2, ......ξl]

The desired output of interest in the power flow solution such as a node voltage that
depends on time t and the uncertainty vector ξ⃗ i.e., V [tm, ξ⃗] having a finite variance is
approximated using a β-order truncated series.

V
[
tm, ξ⃗

]
≈

Nb∑
i=1

ci(t)Hi[ξ⃗] (2.30)

The Equation 2.30 has ci(t) polynomial chaos coefficients that weighs Nb multi-variate
basis function Hi[ξ⃗], and these basis functions are the product of uni-variate orthogonal
polynomials that depends on the PDF of the uncertainty vector elements ξr [101] as given
in Equation 2.31.

Hi[ξ⃗] =
l∏

r=1

ϕir(ξr) (2.31)

where,
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ϕir(ξr) uni-variate orthogonal polynomial
ir degree of the uni-variate orthogonal polynomial
l Number of elements present in the uncertainty vector ξ⃗

The type of these uni-variate orthogonal polynomials depends on the distribution type of
the uncertainty vector element ξr, as given in Table 2.2.

Si.No. Distribution type ϕir(ξr)

1 Gaussian Hermite polynomials

2 Gamma Laguerre polynomials

3 Beta Jacobi polynomial

4 Poisson Charlier polynomial

5 Binomial Krawtchouk polynomial

6 Negative Binomial Meixner polynomials

7 Hyper geometric Hahn polynomials

8 Uniform Legendre polynomials

Table 2.2: The type of uni-variate orthogonal polynomials depends on the input distribu-
tion type of the uncertainty vector element.

For any given number of uncertainty elements l, and the series expansion truncation order-
β the sum of the degrees of the uni-variate orthogonal polynomials ir used should be less
than or equal to the series expansion truncation order-β as given in Equation 2.32.

β ≥
l∑

r=1

ir (2.32)

The number of basis functions to be used in the expansion depends on the truncation
order-β, and the number of stochastic parameters l used in the analysis is given in Equa-
tion 2.33.

Nb =
(β + l)!

β! l!
(2.33)

For example, two (l=2 ) independent Gaussian distributions parameters ξ1 and ξ2 are used
as input stochastic parameters with the series truncation order β = 3, 10 basis functions
are formed which are the product of Hermite polynomials given in Table 2.3.
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Uni-variate Hermite polynomials

ϕ0(ξ) = 1, ϕ1(ξ) = ξ, ϕ2(ξ) = ξ2 − 1, ϕ3(ξ) = ξ3 − 3ξ

Multi-variate gPC basis functions

ϕ0(ξ1)ϕ0(ξ2), ϕ0(ξ1)ϕ1(ξ2), ϕ0(ξ1)ϕ2(ξ2), ϕ0(ξ1)ϕ3(ξ2),

ϕ1(ξ1)ϕ0(ξ2), ϕ1(ξ1)ϕ1(ξ2), ϕ1(ξ1)ϕ2(ξ2),

ϕ2(ξ1)ϕ0(ξ2), ϕ2(ξ1)ϕ1(ξ2)

ϕ3(ξ1)ϕ0(ξ2)

Table 2.3: Uni-variate Hermite polynomials and the Multi-variate gPC basis functions
for two independent Gaussian distributed variable ξ⃗ = [ξ1, ξ2] and the truncation order
β = 3.

The gPC coefficients ci should be determined to use in Equation 2.30, it can be obtained
using two methods the first one is an intrusive one called Galerkin Projection and the
second one is the stochastic collocation method.

2.4.1. Galerkin Projection to find the gPC coefficients

In this method, Equation 2.5 has to be modified for the integration of the gPC expan-
sion. The Equation 2.30 is used in evaluation of every nodal voltage Vn(tm) resulting in
Equation 2.34.

Vn

[
tm, ξ⃗

]
≈

Nb∑
i=1

cni (tm)Hi[ξ⃗] (2.34)

It leads to finding NbXN number of gPC coefficients where N is the total number of
nodes to be evaluated in the test network, which is represented by a non-linear system
given by Equation 2.35.

〈
Fn

{
V⃗
[
ξ⃗
]
, Hi[ξ⃗]

}〉
Ω
= 0 (2.35)

⟨·⟩Ω represents the stochastic space inner product, that requires a huge computational
effort to realize the solution. For a case with the order β = 3, the stochastic uncertainty
parameter l=3 will result in 20 basis functions and let the number of buses in the network
is N=100, it will result in 2000 nonlinear systems that requires the solution. Due to its
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complexity in the implementation, this technique of finding gPC coefficients is not much
used in power system applications.

2.4.2. Stochastic Collocation to find the gPC coefficients

In this method, several test points are selected to determine the gPC coefficients of the
series given in Equation 2.30. This method does not demand the change of load flow
equations as seen in the previous method, and it is called collocation-based Stochastic
Testing (ST) [102]. According to this method, we need to find the Nb number of gPC
coefficients ci(t) testing points Ns = Nb are selected from the uncertainty vector

−→
ξ k for

k = 1, ..Ns in the stochastic space in which the output parameter for the selected testing
point is determined using the traditional load flow analysis i.e., Vk(t) = V

[
t,
−→
ξ k
]

using
Equation 2.15. With this, at every testing point the Equation 2.30 is forced to exactly fit
the values of Vk(t) resulting in a linear system given in Equation 2.36.

Mc⃗(t) = V⃗ (t) (2.36)

The column vector c⃗(t) = [c1(t), ...cNb
(t)]T collects the Nb unknown gPC coefficients and

the column vector V⃗ (t) = [V1(t), ...VNs(t)]
T collects the Ns node voltages. The transi-

tional square matrix M = {ak,i} =
{
Hi

[−→
ξ k
]}

of the size NbXNs gathers the gPC basis
functions to be determined at the testing points as given in Equation 2.37. The testing
points and the selected basis functions decides the characteristics of the matrix M and
hence it can be predetermined and can be used for any instants of time t = tm.

M =


H1(

−→
ξ 1) · · · HNb

(
−→
ξ 1)

... . . . ...
H1(

−→
ξ Ns) · · · HNb

(
−→
ξ Ns)

 (2.37)

The ST method of determining the gPC coefficients is very efficient, for the parameters
β = 3, and the stochastic input parameter l=3, it needs to run only 20 runs of determin-
istic load flow irrespective of the size of the network.

The accuracy of the gPC interpolation scheme used in the PLF is highly dependent
on the selection of the testing points in the stochastic space. Good accuracy can be
achieved by considering the uni-variate polynomial ϕ(ξr) of highest order β that describes
the rth uncertainty parameter ξr with the PDF σr(ξr). The selection is done differently
based on the type, in the uni-variate case, the testing points related to (P+1) Gauss
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quadrature nodes are used in the numerical integration of ξkr . In case of multivariate
with l number of stochastic input parameters the testing point vector

−→
ξ k =

[
ξk1 , ξ

k
2 , ...ξ

k
l

]
are determined by considering a multidimensional grid of all the possible combination of
uni-variate quadrature nodes.

The number of quadrature nodes in the multidimensional grid is given by (β+1)l, which is
greater than the number of basis functions Nb. For example, l=2 and β = 3 the number
of Gauss nodes is 16, whereas the number of basis function Nb = 10. To solve this
problem, a subset formed by Ns = Nb quadrature nodes are selected as testing points.
The selection of those points is made using criteria, and the first one is to select the
statistically important quadrature nodes i.e., the nodes with larger weight values. The
second criterion is to make the M matrix full ranked and well conditioned.

2.4.3. gPC basis function for data-driven stochastic variables

The gPC basis functions are obtained using the uni-variate orthogonal polynomials, de-
pending on the PDF and the distribution type of the stochastic variable. Table 2.2 details
the resulting uni-variate orthogonal polynomials using different types of distribution. In
data-driven modeling of PV and other elements of the power system network, the candi-
date of interest will result in a non-elementary distributed random variable whose PDF
is known numerically. In such a case, it is mandatory to compute the valid gPC basis
functions [75] instead of using the ones mentioned in Table 2.2.

Consider a random variable x having its PDF f(x) which is non-elementary distributed
over x ∈ I ⊆ R the PDF samples f(xj) are known only numerically in the sequence xj ∈ I.
The gPC basis functions of x are a set of polynomials qi(x) orthonormal in regards to the
inner products as given in Equation 2.38.

⟨qi(x), qj(x)⟩ =
∫
I

qi(x)qj(x)f(x)dx = δij (2.38)

where,

i and j polynomial degrees
δij Kronecker delta operator

These polynomials are obtained by using the three-term recurrence formula on a set of
monic orthogonal polynomials πi(x). The three-term recurrence relation [103] is given in
Equation 2.39.
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
πi+1(x) = (x− αi)πi(x)− βiπi−1(x)

π−1(x) = 0

π0(x) = 1

(2.39a)

(2.39b)

(2.39c)

where,

i 0,1,2,....
αi and βi positive constants

In the three term recurrence relation, the real positive constants αi and βi depends on the
distribution shape of f(x), to compute these constants a iterative Darboux’s formula [75,
104] is used as given in Equation 2.40.


αi =

∫
I
xπ2

i (x)f(x)dx∫
I
π2
i (x)f(x)dx

βi+1 =

∫
I
π2
i+1(x)f(x)dx∫

I
π2
i (x)f(x)dx

(2.40a)

(2.40b)

From the Three Term Recurrence relation given in Equation 2.39 and the initialisation
β0 = 1, the first n̂ gPC basis functions are deduced as,

qi(x) =
πi(x)√
β0β1....βi

,∀ i = 0, 1, ...n̂ (2.41)

In this implementation, the stochastic variable x is non-elementary distributed over the
interval I = [0,1]. The samples of the PDF f(xj) are known over a sequence ofNs+1 values
that are equidistant j from each other. The samples can be represented using xj = j ∆x

in I with ∆x = 1/Ns and j = 0, 1, ...Ns. With this considerations, the Darboux’s formula
given in Equation 2.40 is be simplified into the integral form given in Equation 2.42.

∫
I

p(x)f(x)dx (2.42)

The term p(x) is the known polynomial through their coefficients, the PDF f(x) is avail-
able in the numerical form having Ns + 1 sample points xj. The integral type given
in Equation 2.42 is solved by using Simpson’s integration formula with the number of
Simpson’s integration interval Nint as the exact half of the number of samples Ns i.e.,
Ns = 2Nint and the evaluation results in the Equation 2.43.
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∫
I

p(x)f(x)dx ≈ ∆x

3

Nint∑
s=1

p(x2s−1) · f(x2s−1) + s4 · p(x2s) · f(x2s) + p(x2s+1) · f(x2s+1)

(2.43)

Using the three-term recurrence relation with Simpson’s integration formula delivers the
orthogonal polynomials for the non-standard stochastic variables obtained from the data-
driven modeling approach. The obtained orthogonal polynomials are used in the gPC
expansion in approximating the input-output relationship of the PLF. The accuracy of
this method is verified by applying it to the known standard distributions, in [101] a
beta distributed stochastic variable is considered, and the resulting polynomial sequence
represents a Jacobi polynomial proving the accuracy to use the technique for non-standard
statistical distributions. The testing points are selected among the Gaussian quadrature
points xj ∈ R with j = 1, 2, ...n̂ + 1, enabling the evaluation of the integral given in
Equation 2.44.

∫
R
g(x)f(x)dx ≈

n̂+1∑
j=1

g(x̂j)wj (2.44)

The element wj are the Gaussian weights of the polynomial g(x) of degree ≤ 2n̂+1. The
detailed implementation in determining the Gaussian weights using Darboux’s formula
given in Equation 2.40 is described in [75].

2.5. Concluding Remarks

PLF studies, it is well understood that the MC method is accurate and takes more time to
deliver the results, hence other PLF techniques are recommended to overcome the prob-
lem. When modeling uncertainties of power system elements, the data-driven approach
delivers good results as the approximations in modeling are minimal and can also capture
the topology uncertainties in the network. The problem with this modeling approach is
that the quantified uncertainties might lead to non-standard (non-elementary) statistical
distributions that should be used as input random variables in the PLF process.

Only a few techniques, such as the approximation methods, can use these non-standard
statistical distributions, but they suffer from the problem of accuracy. In [61] a case of
using bi-modal correlated input random variable used in PLF with IEEE 14 bus system
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is evaluated, and the proposed approximation methods such as 2PEM and 3PEM could
not deliver accurate results compared to MC simulation. Polynomial chaos expansion can
be used efficiently with stochastic variables having elementary statistical distributions
resulting in the utilization of standard uni-variate orthogonal polynomials, but in pres-
ence of nonelementary distributed variables, gPC basis functions should be determined
numerically. In [69] polynomial chaos expansion is used with Cholesky decomposition to
include uncertainty in PLF. This method suffers from a bad tail end due to the use of
higher-order polynomials in the case of using the nonelementary distributions obtained
through a data-driven modeling approach.

These gaps in the PLF simulation studies are addressed in this work, and the use of
nonelementary statistical distributions in PLF is facilitated. The case of correlated PV
generators is considered to demonstrate the use of nonstandard statistical distributions
in multiple PLF methodologies. The use of Gaussian copula for modeling uncertainty
in PLF that can be evaluated with lower order generic polynomial chaos expansion is
also presented. Among all the EV modeling approaches, data-driven modeling of EV
charging behavior from the heterogeneous EV charging event delivers a detailed picture,
and moving from the charging station to the aggregation is necessary to study the impact
analysis of EV charging on the MV distribution network, and an effort is made to realize
this objective in this work.
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3| Test Networks and the PLF

Formulation

This Chapter describes the test networks used in this work to evaluate the impact of the
PV and EV uncertainties and to prove the proposed uncertainty modeling and the PLF
methodology.

3.1. IEEE 13 Node Test Feeder Network

IEEE 13 node test feeder network [105] is a radial distribution feeder that operates at
50 Hz, 4.16 kV with an unbalanced distribution of loads resulting in unbalanced power
distribution and different operating voltage of the phases in the lines and the buses. The
single-line diagram of the test network is shown in Figure 3.1.

PV2

Figure 3.1: IEEE 13 node test feeder network
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The test network has a total of 13 buses, it is highly loaded for a 4.16 kV feeder, it
has an inline transformer between bus 5 and 6 to study the 400 V distribution at bus
6, a substation voltage regulator, and shunt capacitor banks of 200 kvar and 100 kvar
connected to the bus 10 and 12 respectively. The network constitutes various phasing
at different sections, and the line connected between bus 2 - bus 8, bus 3 - bus 11 is of
two-phase, the line connected between the buses 11 - 12 and 11 - 13 are of single phase
while the rest of the lines are of three phases. The loads connected at the buses are called
spot loads whereas, in one case, the distributed loads are connected between buses 2 and
3. The total loading of the network according to the respective phases is given in the
Table 3.1.

Si.No. Parameter Active Power Reactive Power

(kW) (kvar)

1 Phase A 1175 616

2 Phase B 1039 665

3 Phase C 1252 821

4 Total 3466 2102

Table 3.1: IEEE 13 node test feeder network load data according to the phases.

The main reason to select this network is it is very popular in the research community
because of its properties that are exploited to test various test scenarios. It has fewer
buses which help in a faster simulation process.

3.2. Non-synthetic European Low Voltage Test Net-

work

Non-synthetic European low voltage test network (NSELVTN) [106] is a distribution
network test system that resembles an actual European town. It is made using real
measurement data using smart meters, and it operates at 50 Hz, three-phase 416 V
voltage rating (line to line). It is an isolated four-wire system with neutral on customer
grounds. The network diagram is given in Figure 3.2.
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500 m

Power Transformers

Figure 3.2: Non-synthetic European low voltage test network diagram with the power
transformer locations.

It consists of 10,290 buses connected with 8087 loads, the distribution network is connected
to the medium voltage line with the help of power transformers at the locations shown
in Figure 3.2, and the medium voltage line is hidden. Each load is represented by its
load shape that is captured using smart meters, and the load shapes are present for 20
calendar days with hourly samples.

The NSELVTN network is very complex concerning the size and meshing, to analyze
in detail, the part of the network is selected by isolating the network supplied by the
substation transformer 13. The sub-network of NSELVTN that is extracted and used is
given in Figure 3.3. This network has a total of 7 feeder lines with 29 buses. The active
power demand of the sub-network is given in Table 3.2 a total of 480 kW peak load
demand is served.
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Figure 3.3: extracted Network of NSELVTN isolated and supplied with the power trans-
former 13.

Si.No. Parameter Active Power

(kW)

1 Phase A 225

2 Phase B 135

3 Phase C 120

4 Total 480

Table 3.2: NSELVTN sub-network load data according to the phases.
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3.3. IEEE European Low Voltage Test Network

IEEE European low voltage test network [107] is a test standard of a power distribution
system network representing a real world network. It is a meshed network with a total
area of 22,500 m2 and the loads are distributed randomly among the phases creating an
unbalance in the system. It is power by a single power transformer of 800 kVA rating,
the operating line to line voltage of the network is 416 kV at 50 Hz frequency. It has a
total of 906 buses, with 55 residential loads having an installed load capacity of 328 kW
distributed among all three phases of the network [108, 109].

Figure 3.4: Single line diagram of the IEEE European low voltage test network.
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3.4. 69 Bus Medium Voltage Test Network

69 bus is a three-phase balanced radial MV test network that operates at 50 Hz 12.7
kV voltage rating, and as the name suggests, it has 69 buses and has a total of 11.4
MW 8.08 Mvar load connected to it. The single-line diagram of the test network is
shown in Figure 3.5. More details on the loading parameters of the network can be found
in [110, 111].
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Figure 3.5: Single line diagram of the 69 bus MV test feeder network.

3.5. Probabilistic Load Flow formulation for unbal-

anced three phase systems

As explained in section 2.2, the PLF aims to determine the current injections at the
buses with their complex voltages. The equation 2.4 is valid for a balanced three-phase
network, the determined voltage at any bus is the voltage of all three phases. In the case
of the unbalanced systems, the voltage among the phases is different, therefore a new
formulation for an unbalanced case is given in this section.

Consider an electrical network with N number of buses with l number of lines. The phase
current relationship with its respective phase voltage is given by the Equation 3.1.


Iabc1
...
IabcN

 =


Y abc
11 · · · Y abc

1N
... . . . ...

Y abc
N1 · · · Y abc

NN



V abc
1
...

V abc
N

 (3.1)
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where,

a, b, c Phase representation
Iabci Three phase current
Y abc
ij Admittance matrix
V abc
j Three phase voltage

Iabci =

I
a
i

Ibi

Ici


Iai , I

b
i , I

c
i Current injected in ith bus

Y abc
ij =

Y
aa
ij Y ab

ij Y ac
ij

Y ba
ij Y bb

ij Y bc
ij

Y ca
ij Y cb

ij Y cc
ij


Y pq
ij Element of admittance matrix
i, j Combination of buses
p, q Combination of phases

V abc
j =

V
a
j

V b
j

V c
j


V a
j , V

b
j , V

c
j Complex voltage of jth bus

For any bus i and phase p, the current Ipi of the bus is given by the Equation 3.2.

Ipi =
N∑
k=1

∑
q=a,b,c

Y pq
ik V

q
k (3.2)

The unbalanced three phase system complex power is determined using Equation 3.3,

Sp
i = V p

i

N∑
k=1

∑
q=a,b,c

(Y pq
ik )∗(V q

k )
∗ (3.3)

Where,
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Sp
i Complex power injected

(Y pq
ik )∗ Admittance conjugate

(V q
k )

∗ Voltage conjugate

The voltage quality of the power system network in a three-phase system is measured by
the inequality of the phase voltages in the selected node. This inequality in the voltage is
called as voltage unbalanced factor (VUF), it is defined as the ratio of the negative voltage
sequence component to the positive voltage sequence component, and it is expressed in
percentage as given in Equation 3.4.

V UF =
|Vn|
|Vp|

∗ 100 (3.4)

Vn =
VAB + α2 · VBC + α · VCA

3

Vp =
VAB + α · VBC + α2 · VCA

3

where,

Vn Negative voltage sequence component
Vp Positive voltage sequence component
VAB, VBC , VCA Line voltages
α exp(j120◦)

α2 exp(j240◦)

The unbalanced complex power Equation 3.2 is of DLF, to move from DLF to PLF
probabilistic uncertainty factor should be included. The uncertainty is represented using
a set of stochastic parameters ξ⃗ = {ξ1, ξ2, ....ξl}, each ξl represents a random variable with
the PDF f(ξl),this stochastic parameters can be voltage, current or power injections at any
nodes. In this work the stochastic parameter considered is the active power injections in
the power system network by PV and EV elements. The reactive power is not considered
due to IEEE standard 1547 [112] as the PV elements should not inject reactive power into
the grid.

The active power injected or absorbed at any node in the grid varies with respect to the
time tm, hence the modeled PDF of the uncertainty is time dependent i.e., f [tm, ξl]. With
the dependence of time tm and the uncertainty vector ξ⃗ the voltage of nth node pth phase
is given by V p

n [tm, ξ⃗]. For every time step an uncertainty vector is constructed ξ⃗m and load
flow is conducted for each vector element to determine V p

n [tm, ξ⃗
m], this process formulated
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the PLF of a three phase unbalanced system.

3.5.1. PLF simulation Framework

The framework to conduct the PLF simulation using the load flow simulation software
is given in Figure 3.6, the stochastic modeling and the uncertainty vector generation is
performed in the MATLAB software, then the desired network configuration is loaded in
the load flow simulator, the active power in the desired nodes are changed, and DLF is
performed, the network variables are stored for further analysis. This process is repeated
for ξ⃗m of times to perform the PLF.

or

Initialize the Load flow simulator Communication established

Import/define  the power system 
network

Network defined is loaded

Send the stochastic variable  
Change the active power 

parameter of the desired bus

Solve the CircuitBus Voltages and Currents are saved 

Repeat the process
for m samples

Figure 3.6: Simulation framework to conduct the PLF using MATLAB and the transient
simulation software such as MATPOWER or OpenDSS.





45

4| Data-Driven Modeling of PV

Generation Uncertainty

In this Chapter modeling PV uncertainties using power output measurement data of PV
generators is explained for use in the PLF simulation. Initially to repopulate the samples
for use in PLF, only the shape of the PDF is considered and modeled using Nataf’s
transformation. Later, the inclusion of correlation among the PV generators is made
possible with the use of the Gaussian Mixture Model and Gaussian Copula.

4.1. PV Power Generation Data

Obtaining PV power generation data is the first step in modeling PV generation uncer-
tainty. As explained earlier in Section 2.3.2, uncertainty in PV power generation is caused
by meteorological effects and system uncertainties such as device failure. The model-
ing techniques such as Clearness sky index, diffused fraction modeling, and PV power
curve-based modeling can include meteorological uncertainties, but it fails to capture un-
certainties caused due to partial shading, device failure, power network, and topology
uncertainties.

To overcome such limitations in modeling, a data-driven approach that uses historical
measurement data of PV plants output power is considered. This way, it can include
both meteorological and system-dependent uncertainties in PV power generation. The
proposed method is developed for historical measurement data but can also be applied
to other methodologies. For demonstration purposes here, the recorded measured data
of active power delivered by domestic PV systems present in the distribution network of
Sydney city is considered [113].

The active power delivered by PV plants in a day by three different PV plants that are
spatially separated are given in Figure 4.1, and significant variations of power are seen in
the mid-day hours.
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Figure 4.1: Normalized active power delivered by three spatially separated PV plants on
the same day.
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Figure 4.2: PDFs of a normalized active power delivered by a PV plant for one hour time
window. A clear change in the shape of the distribution is observed between 12:00-13:00
and 15:00-16:00 time windows.
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The data collected is for one calendar year from 1stJuly 2012 to 30thJune 2013, the
measurement samples are recorded every 30 minutes. The recorded data is grouped into
an hourly time window representing the sample time tm, and for a one-hour time window,
there are 730 samples. The PDF of such hourly time window obtained from the samples
is shown in Figure 4.2, the change in the distribution shape is seen between the 12:00-
13:00 hour time window and the 15:00-16:00 hour time window. Such change in the
distribution shape is observed for every hour time window starting from 09:00 to 17:00.
For PLF evaluation, 730 samples are not enough, a large number of samples are required
for every time window Hence, the repopulation of samples is necessary.

To generate large sample sets required for MC simulation according to the non-standard
statistical distribution shape as shown in Figure 4.2, different modeling approaches are
followed. The first one is immediate that PV power samples of individual PV generators
are considered independent of each other, and the PDF shape is preserved in the repopu-
lated samples using cumulative distribution (CDF). In reality, the PV generators that are
geographically close to each other and separated by minimal distance will be correlated
in power generation. In this case, considering such correlation among the repopulated
samples is imperative.

4.2. Inverse CDF method

In the inverse CDF method, the active power samples of the PV generators are considered
as independent random variables, and the samples are repopulated independently, hence
this method is also called as Independent method. The normalized active power grouped
into hourly time window represented by a random variable X given in Equation 4.1 is
considered for repopulation.

X =
Ps

ks
(4.1)

Where,

X Normalized active power
Ps Measured active power in kW
ks Installed capacity of the PV generator in kW

As discussed in Section 3.5, the statistical input parameter of the PLF is the PV active
power uncertainty, the random variable X represents the uncertainty element ξ i.e., X =

ξ1, as the input random variable X grouped into time, the sample time tm is considered
into picture. The distribution of X is obtained from the data is non-elementary, and
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its PDF is given by f [tm, x]. The CDF FX(tM) is deduced numerically using the PDF
f [tm, x], random samples are drawn from a uniformly distributed variable u ∈ [0, 1] and
given as input to the inverse CDF F−1

X (·) which will provide the repopulated sample values
of x of a random variable X as given in Equation 4.2 called as Nataf’s transformation [55].

X = F−1
X (u) ⇔ u = FX(x) (4.2)

For each realisation X=x, the PV active power involving the uncertainty is computed
using Pn[tm, ξ1] = ks · x. The same process is repeated for second statistical variable
ξ2 = Y , that represents the active power samples second PV generator, and so on for all
the considered PV generators for the PLF. The active power of PV employed is used an
input to the load flow simulation to get the associated V p

n [tm, ξ⃗].
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Figure 4.3: Marginal PDFs of the PV generators computed with empirical data (E data)
and with repopulated samples (R data) using independent method.
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The marginal PDFs of two PV generators obtained by grouping measurement data for the
12:00-13:00 time window are given in Figure 4.3, and the PDF of the repopulated samples
obtained using the independent method fits the empirical data with relative errors < 1%.

The independent method is good and efficient in modeling PV generation uncertainties,
but the major drawback is, that it is assumed the PV generation is independent. In
reality, PV generators are spatially correlated, and the degree of correlation in this type
is proportional to the distance among the generators. It is necessary to include this
correlation among the input random variables in modeling and can be done using GMM
and Gaussian Copula.

4.3. Gaussian Mixture Model

In Gaussian mixture modeling method [114], a mixture of a finite number of Gaussian
distributions are used to fit the empirical data of the measured active power delivered
by PV generators. This method is general, it can be used to model correlation between
any sources, loads and other parameters of interest, for demonstration PV generators
are considered. Also here, the normalized active power of the generators in the hourly
time window is considered as given in Equation 4.1. Active power measurement of two
PV generators in the time window 12:00-13:00 hour, whose marginal PDFs are given in
Figure 4.3 is considered.

The combined effects of two PV generators PV1 and PV2 is modeled with the two random
variables X1 and X2, garnered into a column vector X⃗ = [X1, X2]

T which has the joint
probability function f(X⃗) given in Equation 4.3.


f(x⃗) =

NG∑
n=1

αn g(x⃗, µ⃗n,Σn)

g(x⃗, µ⃗n,Σn) =
1

((2π)n|Σn|)0.5
e−

1
2
(x⃗−µ⃗n)TΣ−1

n (x⃗−µ⃗n)

(4.3a)

(4.3b)

where,

n 1,2,.....,N
NG Number of Gaussian distributions
X⃗ Vector of random variables
αn scalar coefficients
µ⃗n Mean value vector
Σn Covariance matrix
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Function g(·) is a multivariate Gaussian described by its mean value vector µ⃗n and covari-
ance matrix Σn. The coefficients 0 < αn ≤ 1 are the weights so that

∑NG

n=1 αn = 1. The
Equation 4.3 is the GMM model that can approximate the PDF using a sum of weighted
multivariate Gaussians whose approximation converges to the PDF when the number of
NG components is increased [115].

The joint PDF of the PV sources using empirical data is fitted with the GMM model
given in Equation 4.3 using Expectation Maximization (EM) iterative algorithm [116],
the EM technique is defined in the MATLAB function "fitgmdist", for a given number of
Gaussian components NG EM algorithm delivers αn, µ⃗n and Σn.

EM algorithm requires a number of Gaussian components NG as an input to determine
how many Gaussians to be used to fit the model, the variance of the GMM components
is verified by gradually increasing the value of NG, the criteria to stop is to reach the
minimum sum of the variances of nth component σmin given in Equation 4.4.

σmin = min
n

sum[diag(Σn)] (4.4)
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Figure 4.4: The dependence of minimum sum of diagonal elements of the covariance
matrix σmin with the Number of Gaussians NG is used.
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The empirical PDFs of the PV generators shown in Figure 4.3 are considered, and the
GMM model is used to fit the scattered empirical data. To determine the number of
Gaussians NG to be used in fitting, the minimum sum of diagonal elements of the co-
variance matrix is determined as shown in Figure 4.4. Once the Knee point is crossed,
the increase in the number of Gaussians will result in relatively smaller variances, here
the Knee is observed with NG = 2 so, NG = 3 is selected as input to the GMM model.
Figure 4.5 shows the PDFs obtained after passing the correlated random variables i.e.,
empirical data of normalized active power two PV generators considered for a time win-
dow of 12:00-13:00 having correlation coefficient ρ = 0.826 through the GMM model, the
scattered plot shows the empirical data while the contour lines show the PDFs obtained
after fitting.
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Figure 4.5: The PDFs were obtained by fitting the scattered empirical data of the PV
generators using the GMM model.
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4.4. Gaussian Copula

A copula is a function that contains the dependence information about the random vari-
ables, and it couples the uni-dimensional marginal distributions. The marginal distri-
butions of random variables are combined to arrive at a joined distribution using copu-
las [117]. The marginal dependency is investigated in a common domain, and once the
joined distribution is obtained, repopulated samples of random variables are mapped to
their original form using their CDFs without losing any information associated.

Consider physical random variables as xk, for k = 1, ..., N and its empirical CDF is
given by Fk(xk), to arrive at joined distribution from the marginals Equation 4.5 is used.
Repopulation of samples using copulas involves two steps, the first is the transformation
of physical variables, and the second step is the regeneration of correlated samples.

F1k(x1, xk) = C(F1(x1), Fk(xk)) (4.5)

Where,

k 1,2,.....,N
F1k Joint CDF of variables x1, xk
C Copula function carrying dependence
F1(x1) CDF of variable x1
Fk(xk) CDF of variable xk

4.4.1. Transforming physical variables

As defined earlier, physical random variables xk and associated CDF Fk(xk) is selected.
Now consider a uniform random variables uk that are distributed in u ∈ [0, 1] the random
variables uk and xk are related as given in Equation 4.6. A set of middle variables zk is
obtained by using Nataf’s transformation [55] given in Equation 4.7, Φ(·) represents the
Gaussian CDF hence the name Gaussian Copula.

uk = Fk(xk) (4.6)

zk = Φ−1(uk) = Φ−1(Fk(xk)) (4.7)
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In Gaussian Copula, the middle variables zk are assumed to be joint Gaussian. As given in
Equation 4.7 the samples of zk are derived from the measurement data set xk, it facilitates
to compute the correlation matrix Cz among the zk variables. These zk variables are
collected into a vector z⃗ that can be decorrelated using a liner transformation relationship
given in Equation 4.8.

z⃗ = L ξ⃗ (4.8)

Parameter L in the Equation 4.8 is the square root of correlation matrix Cz of vector ξ⃗
which is determined using Cholesky decomposition method [54]. The vector ξ⃗ holds N
Gaussian distributed and independent variables ξk, and these normal distributed variables
are the inner variables of the model. The detailed transformation of physical variables to
arrive at inner independent variables is given in Figure 4.6.
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Figure 4.6: Flowchart to implement Gaussian copula for sample repopulation, showing
from transformation of physical stochastic variables ξk obtained from the PV profiles to
regeneration of desired number of samples for the use in PLF.

4.4.2. Generating correlated samples

The transformation of physical input stochastic variables as explained in previous Sec-
tion 4.4.1 is followed backward to generate a large set of correlated samples of physical
variable xk while preserving the shape of the marginal distributions and the correlation
among them. The desired number of samples are generated using the normal distributed
inner independent variables ξ⃗, the related middle variables are obtained using z⃗ as given
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in Equation 4.8, later the associated physical variables xk are determined by taking the
inverse CDF of zk as given in Equation 4.9. The computational flow of repopulation es-
tablishes a deterministic relationship between the physical stochastic input variables xk
and the inner independent variables ξk.

xk = F−1
k [Φ(zk)] (4.9)

As previously shown in Figure 4.3, the marginal PDFs computed with the empirical
data of the active power delivered by PV generators for the time window 12:00-13:00 are
considered. The correlation coefficient among the PV generator data for these selected
random variables is ρE = 0.826, the samples for the PLF are repopulated using Gaussian
Copula, and the correlation among the repopulated variables is ρR = 0.817, the marginal
PDFs of empirical data and the repopulated samples are given in Figure 4.7.
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Figure 4.7: Marginal PDFs of the PV generators computed with empirical data (E data)
and with repopulated samples (R data) using Gaussian Copula.
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It is confirmed that using Gaussian copula, non-standard statistical distributions can be
handled effectively for the use in PLF, the repopulated variables resulted has correlation
coefficient with a relative error of around ≈ 1%, and the PDF shape exactly matches the
PDF of the empirical data with a relative error rate of < 1%.

4.5. Comparison among modeling methods

All the methods discussed in this Chapter proved to handle non-standard statistical dis-
tribution of PV generation uncertainty. In this section, all the described methods are
compared to see conclusive results.

The important parameters interested in modeling are, the PDF shape, with which the
characteristics of the distribution such as mean and the standard deviation are obtained,
and then the correlation among the variables. The scatter plots of the two PV generators
data and the repopulated samples of the same using all the modeling methodologies
described above are shown in Figure 4.8.
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Figure 4.8: Scatter plot of the normalised active power of PV generation, is plotted with
empirical data, and repopulated samples obtained from Gaussian Copula, GMM, and
Independent method.

It is expected that the independent method will not reproduce samples considering cor-
relation, but the resulting PDFs effectively fit the distribution of empirical data. The
GMM model preserves correlation more accurately, but the resulting PDF shape is more
distorted than the original, and the relative error is much higher. The Gaussian copula
is effective as it preserves the Shape and correlation efficiently, the details of comparison
are given in Table 4.1.
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Method Correlation PDF Shape Simulation time

relative error relative error 10k samples

Independent - ≤ 1% 1.09 s

GMM < 1% ≤ 5% 0.5 s

Gaussian Copula ≈ 1% ≤ 1% 1.13 s

Table 4.1: Comparison among proposed modeling techniques to capture PV uncertainty.

4.6. Impact of Correlated PV generators on the Power

System Network

In this section, the proposed modeling techniques of PV generation uncertainty, such
as the Independent method, GMM, and Gaussian Copula are included in PLF using
MC simulation methodology to study their impact on the power system network. Four
correlated PV generators are considered, their correlation among each other is given in
Table 4.2.

PV1 PV2 PV3 PV4

PV1 1 0.826 0.732 0.618

PV2 0.826 1 0.694 0.588

PV3 0.732 0.694 1 0.730

PV4 0.618 0.588 0.730 1

Table 4.2: Correlation coefficient among PV generators for the 12:00-13:00 hour time
window.

To evaluate the impact of correlated PV on the power system network, IEEE 13 node test
network is modified with the inclusion of four correlated PV generating sources having
correlation as mentioned in Table 4.2, the modification details of the test network are
given in Table 4.3 and shown in Figure 4.9.
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Element Bus name Phase P [kW]

1ϕ PV generator 1 4 B 250

1ϕ PV generator 2 9 B 250

1ϕ PV generator 3 4 C 300

1ϕ PV generator 4 9 C 300

Table 4.3: Modifications in IEEE 13 node test feeder network to include correlated PV
generators.

PV2

PV2

PV4

PV1

PV3

Figure 4.9: Modified 13 node test feeder network with four correlated PV generators, the
voltages are measured at Bus 3 to study the impact of PV generators on the network.

The PV generators connected to Phase B are having installed capacity of 250 kW, and
connected to Phase C are having installed capacity of 300 kW, the installed capacity is
considered according to the load demand present in the respective phases. The uncertainty
vector of the PV generators ξ1, ξ2, ξ3 & ξ4 are gathered using the modeling methodologies
in hourly time windows from 09:00 to 18:00, then the distributions each having 10,000
samples are scaled to the respective installed capacity to realize the active power stochastic
variable P1[tm, ξ1], P2[tm, ξ2], P3[tm, ξ3] and P4[tm, ξ4] to use in MC simulation.
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MC simulation is performed with independent, GMM, and Gaussian copula to model the
PV characteristics. Figure 4.10 shows the Phase C voltage distribution measured at Bus
3 for the time window 14:00-15:00 for different modeling techniques. It can be observed
the effect of considering correlation among the PV sources results in a wider variability in
the node voltage i.e., the standard deviation of 23.16 V in the case of Gaussian copula,
23.23 V of deviation in case of GMM whereas, 16.28 V in case of independent method.
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Figure 4.10: The Phase C voltage distribution of Bus 3 for the time window 14:00-15:00,
the active power stochastic variables are modeled using Independent method, GMM and
Gaussian Copula.

The Phase B (ϕb) and Phase C (ϕc) voltage distributions of Bus 3 resulted from MC sim-
ulation in hourly time window is given in Figure 4.11. The mean value of the distribution
results in approximately the same in all modeling methods. The variation is seen in the
standard deviation between independent and correlated methods.
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Figure 4.11: Comparison of mean and standard deviation of the Bus 3 Phase B (ϕb) and
Phase C (ϕc) voltage distributions using different modeling approaches of PV generation
uncertainty.

From Figure 4.11 it is evident to consider correlation among the sources present in the
power system network, hence the Independent method can be ruled out, as it fails to
consider such correlation among the variables. GMM and Gaussian copula effectively
handle the correlation approximately with the same accuracy, but from Figure 4.10 it is
hard to determine which shape of the PDF is accurate.

To determine which method can deliver better results, the distribution shape of empirical
data of the PV generators PV3 and PV4 are compared with repopulated samples using
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GMM and Gaussian copula as shown in Figure 4.12. The Gaussian copula can fit the
distribution of empirical data more accurately than the GMM. Therefore, results from
Gaussian copula are used to evaluate the impact of PV generators on the network.
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Figure 4.12: Comparison of marginal PDFs of PV generators PV3 and PV4, and repopu-
lated samples using GMM and Gaussian Copula.

The hourly voltage distributions of Phase B and Phase C due to change in PV active
power delivery resulted in PLF using Gaussian Copula is given in Figure 4.13 and Fig-
ure 4.14. The network health due to injection of uncertain active power into the network
is determined using the voltage unbalance factor in percentages given by the Equation 3.4,
and the results in hourly time windowed distribution of V UF% due to the PV generators
are given in Figure 4.15.

The obtained results clearly shows that the considering correlation among the PV gen-
erators data significantly varies the numerically determined statistical distribution of the
network. Specifically, MC simulation with correlation resulted in wider variability of node
voltages compared to independent method where correlation is ignored.
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Figure 4.13: Bus 3 phase B voltage distributions of IEEE 13 node test feeder network
considered in hourly time window from 09:00 to 18:00.
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Figure 4.14: Bus 3 phase C voltage distributions of IEEE 13 node test feeder network
considered in hourly time window from 09:00 to 18:00.
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Figure 4.15: Distribution of the voltage unbalance factor measured in percentage of Bus 3
IEEE 13 node test feeder network considered in hourly time window from 09:00 to 18:00.
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5| Novel PLF using SRSM and

Gaussian Copula

In the previous chapters, it is well demonstrated how the data-driven modeling of PV gen-
erators results in non-standard statistical distributions and how correlation among such
generators will influence the simulation results. MC simulations stands as an ultimate
reference to compare against any other PLF methods due to the simulation results accu-
racy. However, its slow convergence rate makes the simulation run with a large sample
set of data, resulting in higher simulation time that are not acceptable.

As explained earlier, there are many approaches to speed up the PLF process, using
analytical or approximation approaches. An effective way of doing PLF is to adopt a
surrogate model of the network response that employs polynomial chaos expansion. In
this adoption, Stochastic Response Surface Method is preferable as they directly deliver
PDFs of non-elementary quantities of the power network such as voltage and VUF in the
PLF process. In [69] SRSM is extended with copula for PLF analysis, the transformation
using Natf’s allowed PV powers into a new set of inner variables ξ⃗ which is statistically
independent. A surrogate SRSM can be derived approximating the relationship with the
inner variables ξ⃗ and the outer variables containing the uncertainty xk using standard
Hermite polynomial.

5.1. Conventional SRSM

Let the observable variable of the grid in the PLF process such as voltage, current, and
V UF% be y, a direct method to implement conventional SRSM along with copula is by
using a surrogate model in the approximation of the multi-variate relationship between
inner independent parameters ξk of copula and the observed variable y. To remind, in
copula functions the non-linear function of the inner variables ξk connects the physical
variables xk. As the observed variable y depends on the input physical variables xk
carrying the uncertainty i.e., normalized active power delivered by PV, it turns out that
the output observed variable y is ultimately depends on the inner variables ξk as given in
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Equation 5.1.

{
xk = hk(ξ1, ....., ξN)

y = l(x1, ...., xN) = h̃(ξ1, ....., ξN)

(5.1a)

(5.1b)

In the conventional implementation of SRSM with copula, the surrogate model approx-
imates the non linear relationship h̃(·) using polynomial chaos expansion formed by Nb

multi-variate basis functions Hi(ξ⃗) given in Equation 5.2. The main benefit of this method
is ease of implementation, the inner stochastic parameters are standard normal distribu-
tions and hence the associated polynomial basis functions Hi(ξ⃗) are standard Hermite
polynomials.

y = h̃(ξ⃗) ≈
Nb−1∑
i=0

c̃iHi(ξ⃗) (5.2)

5.1.1. Drawback of Conventional SRSM

The hindrance of this method is due to the fact that the relationship between the physical
variables xk and the inner variables ξ1, ...., ξN is highly nonlinear, which is defined during
the transformation step of Copula functions. In such case, the polynomial chaos will de-
liver poor approximations [118]. The high non-linearity observed in copula transformation
step is because of using CDF Φ(·) and inverse CDF F−1

k (·) as explained in the flowchart
given in Figure 4.6.

An example is considered to understand this problem, a Hermite polynomial of growing
order is employed to interpolate the relationship 5.3 obtained in Copula implementation.

h(ξ) = F−1[Φ(ξ)] (5.3)

Where,

ξ Normally distributed random variable
Φ(·) Gaussian CDF
F−1(·) Inverse CDF

The interpolation of function h(ξ) with 2nd and 5th order Hermite polynomial interpolation
is shown in Figure 5.1, Gaussian quadrature nodes are selected as interpolation points,
i.e., the number of nodes is equal to the polynomial order+1. In Figure 5.1, it can be seen
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how the interpolation results are inaccurate from the interpolation points. As the order
is increased to 5, interpolation points oscillate at the domain borders, which is a problem
of over fitting.
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Figure 5.1: The continues line in blue shows the nonlinear relationship h(ξ), the green line
is the 2nd order Hermite polynomial interpolation and the red line is 5th order Hermite
polynomial interpolation.

To avoid these inaccuracies in the PLF evaluation of output variable distributions using
conventional SRSM in presence of non-standard statistical distributions of uncertain input
parameters, a novel technique is used. The idea for the novel implementation is to apply
the SRSM surrogate model and the Copula in two separate computational flows, and it
overcomes the above-discussed drawback. To prove the accuracy and efficiency of the
proposed novel PLF methodology, the obtained results are compared against the results
of MC simulations for the same cases.

5.2. Novel SRSM with Gaussian Copula

The novel technique of PLF is implemented using Gaussian Copula and SRSM surrogate
modeling in two separate steps. In the initial step, the repopulation of samples required
for the PLF is realized with the utilization of the Gaussian Copula technique as described
in detail in Section 4.4. The repopulated data contains the active power delivered by PV
considered in an hourly time window. In the second step, a polynomial SRSM surrogate
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model is used to precisely approximate the slightly nonlinear input and output relationship
of the PLF process i.e., the relationship between the observable output variable of the grid
y and the physical input variables of PV active power delivered xk as given in Equation 5.4.

y = l(x1, ..., xN) (5.4)

The main advantage of the proposed novel SRSM is that it uses lower order polynomial to
approximate the relation 5.4, which results in more accurate approximations. Earlier the
standard Hermite polynomials Hi(ξ⃗) were used as the variable to approximate ξk which
are standard normal distributed variables. In the novel approach, the physical variables xk
which are non-standard statistical distributions are approximated, the surrogate SRSM
cannot be built with the standard polynomial chaos bases. Instead, generalized base
functions associated with statistical variables xk are predetermined using a Three-Term
Recurrence relation [103] and iterative Darboux’s formula [75].

5.2.1. Mathematical formulation of Novel SRSM

A truncated series expansion of an order-γ as given in Equation 5.5 is formed using Nb

multi-variate generalized basis functions Ψi(x⃗) weighted by unknown coefficients ci.


y = l(x⃗) ≈

Nb−1∑
i=0

ciΨi(x⃗)

Ψi(x⃗) =
N∏
k=1

ψik(xk)

(5.5a)

(5.5b)

Every multi-variate basis function Ψi(x⃗) is the product of the uni-variate polynomials
ψik(xk) of degree ik associated to the physical random variable xk that has non-standard
marginal probability density function fk(xk). As mentioned earlier, the uni-variate poly-
nomials ψik(xk) for non-standard distributed physical random variables are determined
through a Three-Term Recurrence relation applied to the empirical PDFs obtained in the
modeling step.

It is observed that if the physical random variables xk are mutually independent, the
multi-variate polynomials in Equation 5.5b are given by the product of the uni-variate
polynomials, that provide a set of orthogonal basis allowing the approximation of smooth
y(x⃗) relationship with high accuracy and also it helps in extraction of the statistical mo-
ments of the observed variable y. When the physical variables xk are not independent,
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as in the proposed data-driven modeling of correlated PV generation, the multi-variate
polynomials are not orthogonal, so the expansion is not used for the analytical computa-
tions. To solve this issue, a new set of orthogonal polynomial bases can be derived using
the Gram-Smith orthogonalization process.

However, when the relation 5.5a is simply used to accelerate the process of MC simulation,
polynomial orthogonalization is not required, multi-variate functions of 5.5b preserves the
approximation capability of the relationship y(x⃗) in presence of the correlated variables.
Hence they are adopted as basis functions in the proposed response surface model given
in Equation 5.5a.

In the Equation 5.5a the expansion coefficient ci is determined using the least square
regression technique in which the samples Ns ≥ Nb are generated for x⃗. In each sample
x⃗j the observable variable value yj = l(x⃗j) is determined by running a deterministic load
flow. The coefficients ci minimizes the squared difference between the observable variables
and the gPC evaluated at the samples i.e.,

ci ≈ argmin
c̃i

1

Ns

Ns∑
j=1

(
yj −

Nb−1∑
i=0

c̃iΨi(x⃗j)

)2

(5.6)

The Equation 5.6 is solved by the introduction of the matrix given in Equation 5.7, that
collects the Ns samples in vector form, and it results in the linear system as given in
Equation 5.8.

M =


Ψ0(x⃗1) . . . ΨNb−1(x⃗1)

... . . . ...
Ψ0(x⃗Ns) . . . ΨNb−1(x⃗Ns)

 (5.7)

(MTM)


c0
...

cNb−1

 = MT


y1
...
yNs

 (5.8)

Computational flow to implement the novel SRSM with Gaussian Copula are as follows;

1. From the initial data set having lesser samples repopulate large sample set of desired
quantity of xk as explained in Section 4.4.

2. Determine the generalized polynomial chaos related to the marginals having PDF
f(xk) using a Three-Term Recurrence Relation and gather the sample points for



68 5| Novel PLF using SRSM and Gaussian Copula

DLF.

3. Approximate the relationship between input and output, i.e., the power and voltage
in this case with the generic polynomial chaos expansion given in Equation 5.5.

4. The series coefficients ci are obtained by solving Equation 5.8.

5. The gPC expansion is used to estimate the resulting output PDF f(y) instead of
running simulation for a large sample set.

5.3. Validation of the Novel SRSM

To validate the proposed novel PLF method, the distribution network modified by adding
the PV generating sources is evaluated using the novel SRSM approach. Two test networks
are considered to evaluate the performance, one is the subsection of the NSELVTN, and
the other is the 69-bus medium voltage test network as explained in Section 3.2 and
Section 3.4 respectively. The reason for selecting the two test networks is to study the
system behavior at lower and medium voltage levels, PV sources are sized according to
the selected network which will impact the simulation.
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Figure 5.2: Probability density of normalized PV power delivered in two time windows of
one hour each obtained from the new set of measurement data.

The measurement data to model the PV generation uncertainty are obtained from [119],
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the reason for changing the data is to prove that the proposed methodology of Gaussian
copula is general and any data set can be used. As explained earlier, the analysis is
done on an hourly basis and the PDF of normalized active power delivered by PV at two
hourly time windows is given in Figure 5.2, and the PDFs are non-standard and complex
statistical distributions.

5.3.1. Impact analysis of correlated PV generators on NSELVTN

A part of the NSELVTN is used to study the impact of the correlated PV generators
and to evaluate the performance of the proposed PLF methodology in comparison with
others. NSELVTN operates at 50Hz, 416 V (phase-phase) in an unbalanced load distri-
bution configuration. Four correlated PV generators of the size that are present in the
distribution network, such as solar rooftops are considered, the size and the phasing of
the considered PV generators are given in Table 5.1 and the respective single line diagram
of the modified NSELVTN network is given in Figure 5.3.
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Figure 5.3: NSELVTN feeder with additional PV generators injecting power in Phase A
and Phase C.
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Element Bus name Phase P [kW]

1ϕ PV generator 1 7 A 10

1ϕ PV generator 2 9 A 10

1ϕ PV generator 3 11 C 6

1ϕ PV generator 4 13 C 6

Table 5.1: Installed capacity of the considered PV generators in the NSELVTN and their
respective phasing connections.

PV1 PV2 PV3 PV4

PV1 1 0.68 0.72 0.48

PV2 0.68 1 0.94 0.87

PV3 0.72 0.94 1 0.78

PV4 0.48 0.87 0.78 1

Table 5.2: The correlation coefficient among PV generators empirical data for the 13:00-
14:00 hour time window.

PV1 PV2 PV3 PV4

PV1 1 0.66 0.73 0.47

PV2 0.66 1 0.94 0.88

PV3 0.73 0.96 1 0.77

PV4 0.47 0.88 0.77 1

Table 5.3: The Correlation coefficient among PV generators using the repopulated samples
for the 13:00-14:00 hour time window.

The first step in the novel PLF is to repopulate the samples using Gaussian Copula,
the analysis is conducted for every hour time window from 09:00-17:00, as an example
hourly time window of 13:00-14:00 is discussed here. The four PV generator data are
repopulated using Gaussian Copula for 10,000 samples. The correlation among the PV
generators empirical data and the repopulated samples are given in Table 5.2 and Table 5.3
respectively.
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The high accuracy of the proposed Gaussian Copula is proved in Figure 5.4, the marginal
PDF shape of PV generators considered for a given time window of 13:00-14:00 is plotted
using empirical data, and the repopulated samples, the PDFs match with the relative
error < 1% also from the Tables 5.2 and 5.3, the correlation among the PV generators
are well preserved with less error percentage.
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Figure 5.4: Marginal PDF of the PV generators obtained using empirical data (E-data)
and the repopulated samples (R-data).

The novel SRSM proposed in this work is compared against the conventional SRSM
method and the reference MC simulation with 10,000 samples. The number of samples
for MC simulation standard reference is fixed by knowing the convergence of the result
after running multiple simulations starting from 4,000 to 10,000 samples. Once the MC
simulation has reached convergence, the standard deviation of the resulting PDF will have
a slight variation. The comparison of Phase C voltage distribution of bus 12 evaluated
using MC simulation with different sample sizes is given in Figure 5.5. Passing from 8,000
samples to 10,000 samples in MC simulation, the shape of the PDF had a small change,
with the standard deviation of 0.411 V and 0.409 V respectively, showing the convergence
of the simulation for 10,000 samples, hence this result is used as a standard reference to
compare the proposed SRSM technique.
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Figure 5.5: Phase C voltage distribution of bus 12 of the NSELVTN test network, evalu-
ated using MC simulation with variable sample sizes from 4000 to 10,000 samples.
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Figure 5.6: PLF evaluation Comparison of Phase C voltage distribution of bus 12 of
the NSELVTN test network: a) MC simulation with 10,000 samples; b) Conventional
SRSM having 5th order Hermite polynomials; c) Novel SRSM using 2nd order generalized
polynomial chaos.
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The comparison among all the three considered PLF evaluation techniques are given in
Figure 5.6. The conventional SRSM is realized using 5th order Hermite polynomials,
yet it failed to approximate the input-output relation of power and voltage accurately
when the non-standard statistical distributions are used. The proposed novel SRSM
method is implemented using 2nd order generalized polynomial chaos, which fits the MC
simulation standard with 10,000 samples with great accuracy. The evaluation is performed
on a personal computer having an Intel i7 processor of 3.3 GHz clock, the comparison of
simulation characteristics among the considered methodologies is given in Table 5.4.

Si.No. MC Simulation Conventional SRSM Novel SRSM

Total DLF runs 10,000 36 15

Simulation Time 291 s 16.5 s 5.9 s

Relative Error - ≈ 10% < 0.4%

Table 5.4: Comparison of simulation characteristics among 10,000 MC, Conventional
SRSM and the Novel SRSM.

The PDF resulting in novel SRSM has a relative error of < 0.4% in all the points when
compared to the standard MC simulation result, and it only takes 15 DLF runs. In this
example, the novel SRSM introduces a remarkable ≈ 50x speed up in PLF evaluation
compared to the MC simulation for the same accuracy.

The PDF of the voltages observed at Phase A and Phase C of bus 6 and bus 14 are
given in Figure 5.7, and the voltage distributions of bus 12 for all the time windows from
09:00-17:00 are given in Figure 5.8 and Figure 5.9, the corresponding distributions of
V UF% determined are given Figure 5.10. It can be noticed that the voltage magnitude
is increasing with the injection of PV power, high variablity are observed in the mid day
hours. Most significantly, V UF% is decreasing with an increase in PV power injection,
this is because the considered network has unbalanced distribution of loads, hence the
power injection by PV compensates for such an unbalance.
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Figure 5.7: PDF of Phase A and Phase C Voltage distribution in bus 6 and bus 14 due
to the presence of the correlated PV generators in the network.
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Figure 5.8: Box plot of the hourly distribution of bus 12 Phase A voltage in NSELVTN.
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Figure 5.9: Box plot of the hourly distribution of bus 12 Phase C voltage in NSELVTN.
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Figure 5.10: Box plot of the hourly distribution of bus 12 V UF% in NSELVTN.
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5.3.2. Study of distribution grid quality violation in presence of

PV generators

The exploitation of the novel SRSM in application to rapidly evaluate the probability of
the violation of network constraints due to penetrating PV sources are explained here.
Several matrices of the grid quality variables are defined, and the critical value not to be
violated for maintaining the good quality of the grid can be determined. To serve this
purpose, two cases are considered in which the 6 PV sources are connected to Phase C
of the NSELVTN as shown in Figure 5.11. In the first case, the PV penetration ratio
i.e., the ratio of installed active power to the total demand power is fixed to 10.3%, and
in case 2, it is increased to 17.2% the corresponding amount of PV powers are given in
Table 5.5.

14

Bus

23

4

5

6

7
8

9

10

1213

15
16

17

18

19
20

21
22

2324
24

25
26

28

27

29

1

PV Generator

19

11

Figure 5.11: PV generators are connected to Phase C of the network for grid quality
evaluation. Bus 14 marked in red is the critical bus which is an observable node in this
case.
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Case.No. PV Penetration Ratio Active Power Total generators

Case I 10.3% 36 kW 6 units

Case II 17.4% 60 kW 6 units

Table 5.5: Pv generators and their corresponding penetration ratio in Phase C to evaluate
the grid quality.

Bus 14 is considered as the critical bus in the network, the node voltages of this bus
are observable to check the network quality with voltage deviation and V UF% as the
indicators. The threshold considered for the voltage deviation is 0.03 pu and the V UF%
is 3%. The Figure 5.12 shows the PDF of the voltage deviation indicator, evaluated
using novel SRSM considering two cases of PV penetration. The area of the two PDFs
that corresponds to the voltage deviation >0.03 pu is determined, and the probability of
voltage deviation violation are 51% and 62.6% in Case I and Case II respectively. The
violation indicator of V UF% in both cases are given in Figure 5.13, the probability of
violation in Case I is 45% and 52% in Case II.
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Figure 5.12: The PDF of voltage deviation in bus 14 due to the PV penetration analyzed
in two cases.
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Figure 5.13: The PDF of V UF% in bus 14 due to the PV penetration analyzed in two
cases.

5.3.3. Validation using 69-bus Test Network

To further validate the proposed novel SRSM another test network operating in the
medium voltage range IEEE 69-bus test network is selected. It is a balanced 3ϕ net-
work operating at 12.7 kV, 50 Hz and has a total load demand of 11.4 MW, 8.08 Mvar.
Four correlated PV generators with correlation coefficients as in Table 5.3 are considered
at the locations shown in Figure 5.14, and the measurements are taken at bus 18 and bus
27 for the impact evaluation. The connection details and the installed capacity of the PV
generators are given in Table 5.6.

The reason for selecting the bus 18 and 27 is due to their sensitivity to variation of active
power injected into the other buses. Moreover, in the selected test network, bus 27 is at
a longer distance from the substation transformer and tends to have high fluctuations in
voltage.
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Element Bus name Phase P [kW]

1ϕ PV generator 1 16 A 200

1ϕ PV generator 2 20 A 200

1ϕ PV generator 3 23 C 350

1ϕ PV generator 4 24 C 350

Table 5.6: Installed capacity of the considered PV generators in the 69-bus MV test
network and their respective phasing connections.
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Figure 5.14: 69-bus MV test network with additional PV generators injecting power in
phase A and phase C.

The comparison of the novel SRSM results with the MC simulation of 10,000 samples and
the conventional SRSM with 5th order Hermite polynomial is given in Figure 5.15. The
proposed method matched the MC simulation, whereas the conventional SRSM is not
accurate enough to deliver results. The phase A and phase C voltages of buses 18 and 27
due to the presence of the PV generators for one hour time window 13:00-14:00 are given
in Figure 5.16, and the related V UF% of both the buses are given in Figure 5.17.
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Figure 5.15: PDF of bus 27 phase C voltage, Novel SRSM compared with MC simulation
of 10,000 samples, and conventional SRSM with 5th order Hermite polynomial.
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Figure 5.16: PDF of phase A and phase C voltages of bus 18 and 27 due to PV power
injections.
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6| Data-Driven Modeling of EV

Demand Uncertainty

In this Chapter, modeling of the EV charging behavior using the measurement data
obtained from the charging events is described, in which the EV aggregation is integrated
into the MV network to study the impact of growing EV demand in the power system
network at medium voltage level. The impact analysis is performed using MC probabilistic
load flow simulation using the IEEE 69-bus test network.

The motivation to adopt the proposed modeling approach is to replicate the real-life
EV charging scenarios, starting from the EV charging event and moving to the charging
station and aggregation of such stations connected to the MV network. By this approach,
the dependence on the type of EV is eliminated but mainly depends on the level of EV
charger used in the charging event.

6.1. Modeling EV Charging Station Demand

The historic charging events registered in the smart meters of the public EV charging
stations (EVCS) are used, and the proposed modeling method is general that can be used
with any charging event data. In this work, the public charging data set of two different
providers are used. The first is from the California Institute of Technology (Caltech) [120],
which contains the EV charging event data of 54 EVCS present on the campus. The
second set of data is obtained from 28 public EVCS that are dispersed in Boulder city
of Colorado [121]. The reason for the selected second set of data is because of diversified
EV user behavior. in the first case, only academic personnel uses the EVCS and is biased
toward the usage of university opening hours, whereas in the second case, the EVCS is
present in public areas such as parks, cinema halls, and shopping streets. Data-driven
modeling of EVCS demand is performed in two steps, one analyzing EV charging event
data and the second moving to repopulation and aggregation of EVCS behavior.
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6.1.1. Analyzing the EV charging events data

An EV charging event is defined as the process of the EV connecting to the EVCS and
disconnecting after charging. From every data set [120, 121] more than 10,000 valid
events are filtered after the removal of bad data and outliers. From every charging event
vital information such as, Start time, and Duration are extracted. Start time is the time
in a day at which the EV is connected to EVCS for charging, and the Duration is the
total length of time the vehicle is connected to the EVCS only for charging purposes.
The resulting Start time and Duration from the event data are statistically analyzed by
knowing the probability distribution as given in Figure 6.1 and Figure 6.2.
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Figure 6.1: The PDF of EV connection time instants for charging, Figure (a) is obtained
from Caltech data, and (b) resulted from analyzing Boulder city data.

The duration PDF of EV charging is approximately the same in both data sets, whereas
distinct variation can be seen in the starting time of the EV charging event. The peak
charging is expected around 09:00 hours in the first set, while it is observed twice at 12:00
and 15:00 hours in the second set of data. The variables Start time and Duration might
depend on each other which is analyzed using the scatter plot shown in Figure 6.3. From
Figure 6.3(a) of Caltech data, it is evident that certain hours of starting time, such as
07:30-11:30 shows the Independence of the duration as vehicles connected at this duration
are charged from minimum to maximum duration of time. While the other instants of
starting time are dependent on the duration. Figure 6.3(b) shows no dependence among



6| Data-Driven Modeling of EV Demand Uncertainty 85

the variables in the case of Boulder city-data.
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Figure 6.2: The PDF of EV charging duration, (a) obtained using Caltech data and (b)
is obtained using Boulder city data.
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Figure 6.3: Scatter plots of the duration of charging versus the start time of charging (a)
obtained using Caltech data, and (b) obtained using Boulder city data.
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Using the energy delivered by EVCS and the Duration, the power level of the charging
event is extracted, it is important in deciding the power level of the charging event as EV
is integrated into the network as additional load demand. Figure 6.4 shows the PDF of
active power delivered by EVCS to the EV during charging events.
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Figure 6.4: PDF of active power delivered consumed by PV in the charging events (a)
obtained using Caltech data, and (b) obtained using Boulder city data.

6.1.2. Re-population: EV charging profiles to EVCS aggrega-
tion

The data analyzed is of EV charging events obtained from the EVCS ideally, EVCS are
connected to the MV distribution network for power consumption during charging. The
goal is to model this behavior of EVCS to study its impact on the distribution network
at the MV level. The idea is to aggregate the EVCS behavior connected to the same
MV node of the distribution network so that the EV behavioral uncertainty is grouped,
making it easy to implement in the PLF process, the aggregation configuration employed
in this work is shown in Figure 6.5.

In the modeling framework, EV charging events are repopulated, and the EV charging
profiles for each charging station is generated. Later, these EVCS are aggregated by
summing the load demands of each EV for respective time instant to draw the power from
the MV network for the modeled charging event. To include any dependency among the
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variables such as Start time, duration and power level an expeditious method is followed
by forming a lookup table from the event data that carries the information associated,
and a random number is called the information associated to the resulted random number
is assigned to the charging event.

MV Node

1. Every EV connected will
increase the power level of the

station

2. Increase in power level is
limited by maximum operating

power of the station 

3. MV node will have the
aggregation of the power

demand 

Figure 6.5: Aggregation of EVCS at MV node, as the EV numbers in the area increase,
EVCS increases thereby increasing the power demand level at the MV node.

To generate the EV charging profiles associated to a charging station, following assump-
tions are made;

1. EVCS will deliver the charge to the EV in constant power level in an event. This
power level might change in the next event and will follow the distribution given in
Figure 6.4.

2. For one EV aggregator a maximum number of ’J’ EVs are operated.

3. Each EVCS has a limit of 50 kW power capacity rating, any EV previously con-
nected requesting the power exceeds the limit of EVCS rating should wait until the
EVCS is available to deliver the energy at set power.
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Figure 6.6: Algorithm to generate the EV loadshape from the EV charging event mea-
surement data.
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A total of ′J ′
C EVs are assigned for each aggregator dispersed over ’C’ charging stations,

the EV profiles are created as daily load shapes with a sample period of 15 minutes. Hence,
for one day, 96 samples are present, and the detailed algorithm for this implementation
is given in Figure 6.6.

A random number among the index of the lookup table is called, Start time, duration,
and the power level corresponding to the indexed random number details are extracted to
generate the new EV profile. This process is repeated for the desired number of samples
required for MC simulation, the samples are limited by using the repopulation for ’i’
number of days.
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Figure 6.7: (a) Shows the load profiles of 6 EVs connected to a charging station, (b)
shows the PDF of average active power of the EV charging event data of the empirical
data compared to the modeled data.

Figure 6.7(a) shows the load profiles of 6 EVs connected to a charging station over a
daily time period generated for 10 days using the proposed modeling methodology. Fig-
ure 6.7(b) shows the PDF of the average power rating of the EV charging event in an
EVCS from the point of view of a single EVCS, the modeled EV charging behavior is in
good agreement with the measured charging event data.
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Figure 6.8: (a) Shows the daily load profile of a aggregated EVCS demand at a MV node,
(b) shows the PDF of aggregated EVCS demand for time window 09:00-11:00 seen at MV
node.

With the increase in EV, the power level of EVCS increases, cumulating the power levels
of all the EVCS connected to a single MV bus, which will result in the charging station
demand as a continuous random variable. Figure 6.8(a) shows the daily load profile of
such aggregation of EVCS seen at an MV bus. Whereas, Figure 6.8(b) shows the PDF of
the active power demand of the aggregated EVCS at the MV node for the time window
of 09:00-11:00 obtained using the proposed modeling methodology.

Depending on the scenario of investigation, as many stations as required can be aggregated
per phase, the power demand distribution as shown in Figure 6.8(b) will be the vector of
uncertainty represented by Pn[tm, ξ⃗].

6.2. Impact analysis of EVCS on the MV distribution

network

To study the impact of the EVCS present in the power system network, IEEE 69-bus MV
test feeder network is selected. As explained earlier, it is a three phase system operates
at 50 Hz frequency and 12.7 kV medium voltage rating with a total load demand of 11.4
MW and 8.08 Mvar in all the three phases.
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10 EVCS load demand is aggregated at an MV node with the aggregation configurations
as shown in Figure 6.5, the aggregated EVCS demand are connected to the bus 16, 19,
21, 24, 26, and 27. The reason for selecting these buses is the voltage drop at the tail
of the network is higher, and they are sensitive to power fluctuations, more importantly,
bus 27 is the critical bus present in the network. To study the network unbalance, all
the connected to Phase A of the MV node. The voltage measurements are recorded at
bus 18 to study the effects due to EVCS aggregation present in the rest of the network.
The detailed Figure 6.9 shows the EVCS aggregation and the measurement bus location
in the 69-bus MV test network.

Figure 6.9: 69-bus medium voltage test network with the aggregated EVCS load and the
measurement bus for impact analysis using MC simulation.

The stochastic impact analysis is performed by selecting three different time windows,
the first window is between 07:30-11:30, the second window is at 12:00-16:00, and the last
window is at 16:00-20:00. The selection of the time windows depends on the characteristics
of the start time of EV charging event data, the first and last window represents the peak
charging time and second window presents the valley of the start time shown in Figure 6.1.

In the MV network, it is also necessary to incorporate the load behaviour [122], the static
loads present in the MV test network are multiplied with the scaling factor of 0.65 PU,
0.8 PU, and 1.0 PU in the first, second and the third window respectively.
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Figure 6.10: PDF of phase A voltage distribution of bus 18 in 69-bus MV distribution test
network at three different time windows. 1st window is at 07:30-11:30 and 65% installed
load capacity, 2nd window at 12:00-16:00 and 80% installed load capacity and the last
window is at 16:00-20:00 with 100% installed load capacity.
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Figure 6.11: PDF of V UF% distribution of bus 18 in 69-bus MV distribution test network
at three different time windows.
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MC simulation is performed with 10,000 samples, the resulting voltage distribution PDF
measured at bus 18 at three different time windows are given in Figure 6.10. It can be
noted that in the 1st time window the installed load capacity is minimum (0.65 PU of
installed capacity) and, the EV charging demand is maximum, hence the variability of
the voltage is maximum in this time window causing greater impact on the grid voltage
deviation with maximum deviation of 200V.

The impact of the EVCS on the network unbalance at bus 18 is found by determining the
V UF% as given in Figure 6.11, maximum unbalance is seen in first time window with
wide interval, the unbalance of other two time windows lies inside the interval of the first
one signifying the first time window is critical in managing the EV behaviour in the MV
network.
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7| Impact Analysis of PV
Generation and EV Demand
Uncertainty

In the previous Chapters, the impact on the distribution system due to uncertainties in
PV generation and the EV load demand is analyzed. Whereas in this Chapter, both the
uncertainties are considered together, and the collective impact of these uncertainties on
the LV distribution network is analyzed. The PV power injection uncertainty should be
mitigated by the EV demand present in the network, Data-driven modeling approach is
adopted to model PV and EVCS load demand, and the PLF analysis is performed using
the MC simulation technique.

7.1. IEEE European Low Voltage Test Network

The test system selected for the analysis is the IEEE European low voltage test net-
work [108, 109], it is a moderately meshed unbalanced system that represents a real
distribution network. It is powered using an 800 KVA 11 kV/0.416 kV transformer oper-
ating at 50 Hz frequency. It has a total of 55 loads with the installed capacity of 328.14
kW distributed in the network composed of 906 buses, Phase A has a loading of 112 kW,
Phase B with 127.66 kW and followed by Phase C with 89.18 kW.

The PV sources are integrated with the PV penetration ratio, which is the ratio of the
total installed capacity of the PV to the total load capacity. A PV penetration of 40% in a
modern distribution system is reasonably acceptable, as the solar rooftops are considered,
this PV of total installed capacity of 135 kW≈40% PV penetration ratio is split into 9
different correlated PV generators with an installed capacity of 15 kW each. Considering
the area of the distribution network and the residential load clusters, it is reasonable to
assume the presence of 60 EVs dispersed over 10 EVCS in the network. The modified
test network with the addition of correlated PV generators and the EVCS is shown in
Figure 7.1 with modifications as mentioned in Table 7.1.
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Figure 7.1: Modified IEEE low voltage test network with 9 correlated PV generators and
10 EV charging stations. The colors red, yellow, and blue represent the three phases of
the electric network.

Element Bus no. Phase Element Bus no. Phase

EVCS 1 59 A EVCS 8 596 A

EVCS 2 123 B PV Source 3 611 B

EVCS 3 133 A PV Source 4 639 A

EVCS 4 187 C PV Source 5 676 A

EVCS 5 332 A PV Source 6 682 A

EVCS 6 460 B EVCS 9 707 C

PV Source 1 502 B EVCS 10 794 C

PV Source 2 562 B PV Source 7 886 C

EVCS 7 594 B PV Source 8 899 C

PV Source 9 906 C

Table 7.1: Integration of the PV sources and the EVCS in the IEEE LV test network.
Installed capacity of each PV source is of 15 kW and the EVCS is of 27 kW.
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7.2. Data-Driven modeling of PV generation uncer-

tainty

The impact analysis of EV and PV uncertainties is performed using MC simulation with
suitable time windows. The measurement data [119] of the PV generators present in
the close vicinity is used in the uncertainty quantification. The data gathered is for one
calendar year and sampled every 5 minutes, with this data set an appreciable quantity of
samples are available, yet it is not enough for MC simulation. The Gaussian copula is used
to repopulate the samples preserving the correlation. The flowchart for repopulating the
samples using Gaussian copula is given in Figure 4.6. The stochastic analysis is performed
in hourly time windows. As an example, the PDF obtained for two PV generators for
the time window of 12:00-13:00 hour is shown in Figure 7.2. The PDF of the repopulated
samples matches the PDF of the empirical data showing the accuracy of the repopulation
methodology. The correlation coefficient among the generators for the same time window
after repopulation is given in Table 7.2, it is verified that the correlation coefficient is
preserved with an error < 0.5%.
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Figure 7.2: Normalised active power PDF of two PV generators analyzed for an hourly
time window of 12:00-13:00.
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PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV9

PV1 1 0.4236 0.6933 0.7235 0.8724 0.5167 0.7824 0.7784 0.9349

PV2 0.4236 1 0.7355 0.7064 0.5980 0.7600 0.7139 0.7025 0.5069

PV3 0.6933 0.7355 1 0.9783 0.7420 0.9404 0.9673 0.9674 0.6940

PV4 0.7235 0.7064 0.9783 1 0.7678 0.9105 0.9716 0.9810 0.7203

PV5 0.8724 0.5980 0.7420 0.7678 1 0.5622 0.8380 0.8235 0.9276

PV6 0.5167 0.7600 0.9404 0.9105 0.5622 1 0.8691 0.8701 0.5118

PV7 0.7824 0.7139 0.9673 0.9716 0.8380 0.8691 1 0.9876 0.7893

PV8 0.7784 0.7025 0.9674 0.9810 0.8235 0.8701 0.9876 1 0.7780

PV9 0.9349 0.5069 0.6940 0.7203 0.9276 0.5118 0.7893 0.7780 1

Table 7.2: The correlation coefficient among PV generators repopulated samples for the
13:00-14:00 hour time window.

7.3. Data-Driven modeling of EVCS demand

The IEEE European LV test system is modified with the addition of 10 EVCS, and the
load demand of these stations is modeled using the EV charging event data obtained from
the smart meters of the charging station.
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Figure 7.3: (a) is the day EV charging profiles of 6 EVs scheduled to charge at EVCS1,
(b) is the time series active power demand of EVCS1 in one day.
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Two different data sets are used, one from Caltech [120] and the other from Boulder
city Colorado [121]. The vital information such as Start time, Duration and the Energy
consumed is extracted and analysed as explained in Section 6.1.1. The charging profiles
of 60 EVs distributed over 10 EVCS are produced using the methodology as explained in
the flowchart of Figure 6.6. The EV charging profiles for 6 EVs scheduled to charge in
EVCS1 is given in Figure 7.3.

The analysis is conducted in a four-hour time window, hence the active power demand of
the single EVCS for a time window of 07:30-11:30, 12:00-16:00, and 16:00-20:00 are given
in Figure 7.4. The other EVCS considered tends to follow the same behavior.
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Figure 7.4: (a) is the PDF of a single EVCS active power demand in kW for the first time
window 07:30-11:30, (b) is the active power PDF in kW for the second time window 12:00-
16:00 while (c) shows the active power demand in the third time window 16:00-20:00.
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7.4. Impact analysis on the LV network

To study the impact on the LV network due to the injection of PV power and the EV
charging loads, PLF analysis using MC simulation is performed. The analysis is concerned
with three-time windows as mentioned in Figure 7.4, the installed load capacity of the
network is varied according to the selected time window. In the first time window of
07:30-11:30, the loads are maintained at 0.65 pu times of installed capacity. In the second
time window of 12:00-16:00, the loads are at 0.8 pu times the installed load whereas, in
the last time window of 16:00-20:00 the loads are at full capacity i.e., 1.0 pu times the
installed capacity. The EV and PV uncertainties are extracted for these time windows
and applied as additional elements of the network. Since the Voltages are subjected to
high variability at the end of the network, the measurements are taken at bus 617 point
m2 and bus 881 m3, and also at the substation bus m1 as shown in the Figure 7.1.

7.4.1. Analysis using Caltech data

Initially, the impact analysis was performed using Caltech data presented. The voltage
measured at point m2 of the LV network, the voltage variations are due to uncertain EV
and PV power injections and is given in Figure 7.5.
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Figure 7.5: Three phase voltage distributions and the V UF% measured at the point m2 of
the LV network. (a), (b) and (c) shows the voltage distributions measured in 1st, 2nd and
3rd time windows respectively. (d) shows the V UF% measured in all the time windows.
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Phases A and B show wide variability than Phase C, it is because the PV generators of
Phase A and B are nearer to the measuring point and the PV generators connected to
the Phase C are at the far end of the electrical network from the measuring point m2.
The same phenomena can be observed in the case of measurements obtained at point m3,
a high variability is observed in Phase C than in the other phases.

The most impact on the voltage quality of the network is caused in the 3rd time window
i.e., at 16:00-20:00 operating at 1.0 PU of installed capacity. The loading is higher, the EV
demand is higher and less injection of power from the PV source, and the mean V UF% is
seen up to 1.5% highest compared to 1.3% and 1.01% in the first and second-time windows
respectively.

A significant improvement in the voltage variations and the V UF% is seen in the second
time window operating with 0.8 pu of installed load capacity, and it is due to the fact that
the EV load demands are compensated by the PV power injections, whose uncertainties
are mitigating each other and causing a lesser burden on the distribution network.
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Figure 7.6: Three phase voltage distributions and the V UF% measured at the point m3 of
the LV network. (a), (b) and (c) shows the voltage distributions measured in 1st, 2nd and
3rd time windows respectively. (d) shows the V UF% measured in all the time windows.

The point m3 of the LV network suffers from an under voltage problem that is seen in
Figure 7.6, it is due to its farthest position from the substation. Much improvement in
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voltage variations is seen in the third time window, where the effect of EV and PV is
minimal, and the network is operating at maximum installed load capacity.

In the substation bus i.e., at the measurement point m1 of the LV network the voltage
variation seen is significantly less and it is in the order of 2.5 V, but an import factor to
observe is the current distribution, the amount of power that is delivered from the MV
network to this LV distribution network can be obtained. The three phase currents and
the V UF% measured at m1 in all the time windows is given in Figure 7.7.
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Figure 7.7: Three phase current distributions and the V UF% measured at the point m1 of
the LV network. (a), (b) and (c) shows the current distributions measured in 1st, 2nd and
3rd time windows respectively. (d) shows the V UF% measured in all the time windows.

The Figure 7.7 shows the complete detail of current distributions in three time windows,
most of the power is utilized from the MV network in the third time window where the
loading is maximum and very less power generation from the PV sources. Though the
loading in second time window is increased from 0.65 pu to 0.8 pu, due to injection of
power from PV sources and the less EV activity in this time window, lesser current flow
is measured in this window than in the first time window.

The above analysis is conducted using Caltech data, where the EV user behaviour is
biased according to university working hours. Hence a Boulder city data is used in the
next analysis to verify how the change in EV data set will impact on the results.
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7.4.2. Analysis using Boulder city data

In this analysis, Boulder city data is used where the EV user behavior is not confined to
one profile such as a university. The analysis is performed in the same three-time windows,
with 0.65 pu, 0.8 pu, and 1.0 pu of installed load capacity in the first, second and third-
time windows respectively. The voltage distributions measured in all time windows at the
measuring point m2 are given in Figure 7.8.
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Figure 7.8: Three phase voltage distributions and the V UF% measured at the point m2 of
the LV network. (a), (b) and (c) shows the voltage distributions measured in 1st, 2nd and
3rd time windows respectively. (d) shows the V UF% measured in all the time windows.

The change in the EVCS user behavior did not impact much on the LV network measured
at the point m2, except for a slight increase in the variability of voltages in the 2nd time
window, similar impact characteristics are observed here. The 3rd time window has the
higher V UF% with a mean value of 1.52 V while, the 1st and 2nd time windows have a
mean value of 1.31 V and 1.04 V respectively.

The most vulnerable section of the selected test network is the measuring point m3, the
voltage distributions and the V UF% analyzed using the boulder city data are given in
Figure 7.9, wider voltage variability is seen in Phase C in all the time windows. The
current distributions measured in point m1 are given in Figure 7.10 whose results are
similar to the previous case.
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Figure 7.9: Three phase voltage distributions and the V UF% measured at the point m3 of
the LV network. (a), (b) and (c) shows the voltage distributions measured in 1st, 2nd and
3rd time windows respectively. (d) shows the V UF% measured in all the time windows.
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Figure 7.10: Three phase current distributions and the V UF% measured at the point
m1 of the LV network. (a), (b) and (c) shows the current distributions measured in 1st,
2nd and 3rd time windows respectively. (d) shows the V UF% measured in all the time
windows.
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8.1. Final Remarks

This thesis is developed with a clear objective of quantifying the PV generation uncertain-
ties and EV demand uncertainties using a data-driven modeling approach. The modeled
electrical elements have been integrated with the test network to perform the stochastic
impact analysis of such uncertain elements on the power system network operating at dif-
ferent voltage levels. The thesis covers various aspects of probabilistic load flow analysis,
from data analysis and stochastic modeling to advanced numerical simulation proposing
the novel accelerated load flow with correlated input variables.

The reason to adopt a data-driven modeling approach is to accurately model the system
characteristics as present in the real world with minimal assumptions, thereby capturing
the whole behavior of the system. Using this approach, an accurate analysis is conducted
to verify the performance of the modeled systems, and then the impact of such systems
on the power network is studied. The uncertainty is included in the deterministic load
flow, and the analysis is conducted in suitable time windows. With the uncertainty vector
and time as a variable, the deterministic load flow problem is converted into probabilistic
load flow, the detailed formulation is narrated in Section 3.5.

The historical measurement data of PV systems and EV charging events are collected. To
prove the generality of the proposed techniques the analysis is performed with multiple
data sets that are reliable and used by the research community. To model PV generation
uncertainty, data sets obtained from the Australian utility network and United Kingdom
power network are used. The EV demand modeling is done with the data sets obtained
from the California institute of technology and Boulder city of Colorado is used.

Initially, the probabilistic load flow analysis is performed with Monte Carlo simulation
as it is the standard reference method, and the first challenge faced is the availability
of the large sample set to use in MC simulation as it requires a large sample set to
reach the convergence of the solution. In the conventional methods, the practice is to
fit the data to a elementary statistical distribution and generate the required number
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of samples from that distribution, but in data-driven analysis, the main threat posed is
the resulting distributions obtained were non-elementary, as demonstrated in Section 4.1,
hence a statistical method is necessary to repopulate samples.

At this stage, the goal of repopulating the samples is to obtain the same distribution
shape of the input random variables with a large sample set. This is achieved using the
Inverse CDF method, the complex distribution shape of the input random variables and
the distribution shape of the regenerated samples are highly accurate with an error rate
< 1%. Later it is realized that the input random variables might be correlated, and this
correlation will affect the accuracy of the results hence modeling techniques such as the
Gaussian Mixture Model and Gaussian Copula are used in repopulating samples and used
in PLF. Using these approaches not only delivers the accurate distribution shape, but also
preserves the correlation among the variables.

In Chapter 4 of this work, the detailed analysis is conducted using all three above-
mentioned methods in modeling PV generation uncertainty, and the modeled PV system
is tested with IEEE 13 node test feeder network. It clearly shows the consideration of
correlation among the input variables will have a significant improvement in the accuracy
of the results. Among all the methods the Gaussian Copula is further exploited in the
PLF because of its simplicity and high accuracy.

MC simulation is very expensive in terms of time and computational resources. The
various PLF accelerating methods are followed by the research community, and in our
case, well suited is using polynomial chaos expansion. In the power system, PLF analysis
using polynomial chaos is still in an early development stage, and it is used to include
the correlation among the input variables in accelerated PLF. Conventional SRSM uses
polynomial chaos expansion and copula the surrogate model approximates the non-linear
relationship between the physical input variables xk and the inner variables ξ1, ..., ξN which
is highly nonlinear defined in the transformation step of copula function. This method
suffers from the drawbacks of inaccurate results, the bad tail end of the distributions, and
numerical ill-conditioning. Along with these issues, higher-order polynomial expansion
has to be used with more sample points. Although it has inaccuracies, it is one of the
widely used methodologies in PLF analysis.

To overcome the drawbacks of the conventional SRSM, a novel SRSM is developed in this
work. A simple idea is followed to apply the method of SRSM surrogate modeling and the
copula in two separate computational flows, thereby reducing the non-linearity observed
in approximating the input-output relationship. A big threat faced in implementing this
novel approach is as it requires generalized base functions in building surrogate SRSM,
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as non-elementary statistical distributions are used. The problem is solved successfully
thanks to Darboux’s formula and the three-term recurrence relation. The novel approach
uses lower-order polynomials and results in more accurate approximations.

A test case is implemented to prove the proposed methodology. Four correlated PV gener-
ators resulting in non-elementary distributions are selected to integrate with NSELVTN.
The obtained results are compared with conventional SRSM and the standard reference
MC simulation. The obtained results are more accurate and take less time than the con-
ventional SRSM, and novel SRSM delivers the result approximately 50x faster than the
MC simulation with the same accuracy as MC, which is a remarkable achievement. An
effort is made in this work to extend the theory to the practical application to find the
PV hosting capacity for a small section of the NSELVTN.

To model the EV load demand uncertainty, EV charging event data is used, vital infor-
mation of the charging events such as Start time, Duration, and the Energy delivered are
extracted. In the case of EV, the input variables are dependent among each other and
hence a primitive but equally effective method is used in repopulating samples for use in
MC simulation. A random number is called and the EV charging event data related to
that number is used in EV profile generation, and it is found that this method is effective
in preserving the characteristics of the charging event and the same has been demon-
strated in Section 6.1.2. The EV load demand is created starting from an EV charging
event and moving to the daily load profile of an EVCS and then the aggregation of EVCS.
The proposed modeling methodology can be applied to the analysis in both LV and MV
distribution networks by selecting the appropriate aggregation. The analysis is conducted
in a four-hour time window with variable installed load capacity. The analysis conducted
on 69 bus MV test network with aggregation of 10 EVCS at every selected node, shows
the EVCS aggregation daily profiles have a higher impact in the morning hours i.e., 07:30-
11:30 the load in the test network is operated with 65% percent of installed load capacity
the impact of EV is much higher compared to other time windows with voltage variability
of about 210 V and the V UF% variability of 0.45%.

In the last chapter, the analysis is performed including both the PV generation uncertainty
and EV load demand uncertainty in the IEEE European LV test network. The test
network is modified by including 9 PV generators of 15 kW each that corresponds to 40%
PV penetration ratio that are modeled using Gaussian copula methodology preserving the
correlation among the variables, 10 EVCS are setup in the network, each EVCS having
an installed capacity of 27 kW. MC simulation is performed in a four hour time windows
to analyze the impact of PV and EV demand uncertainty, higher impacts are seen in
the third time window i.e., 16:00-20:00 when the PV generation less, load is operating
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at maximum installed capacity. With this it is evident that with proper planing, EV
demand uncertainty can be mitigated with PV generation uncertainty, the burden on the
distribution network can be reduced, the tools and techniques developed in this thesis
are very much useful in performing such analysis using data-driven methods that delivers
results with high accuracy.

8.2. Future work

The future developments and the improvements suggested are as follows:

1. The proposed novel SRSM is a very good methodology in PLF, the selection of the
samples points in the 3D space using stochastic collocation is very complex, and it is
observed that the proposed method is failing to deliver sample points for more than
19 variables that are having non-elementary distributions. Further investigation is
required in the selection of sample points among the quadrature nodes resulting in
good accuracy with shorter computational time.

2. The NSELVTN used in this work is a good test network that is made using mea-
surement data, but it is very complex to handle it for PLF analysis. Much of the
work is needed in the direction to extract a smaller section of the network that is
highly interesting to perform various types of analysis, such as hosting capacity and
EV integration scenarios.

3. When the test network with several buses is used, statistical variation of load using
measurement data is not easy, and it is due to the complexity of handling a large
number of random variables as an input of PLF analysis that needs a solution.

4. Reliable residential load data for multiple loads in an LV distribution with large
observation time intervals are not available. A solution has to be figured out to
synthesize this data using any start-of-the-art techniques with which more accurate
results in PLF uncertainty analysis can be achieved.

5. The tools and techniques of PLF developed in this work can be used as a predicting
tool by the distributed energy management system in estimating the power flow
in presence of PV and EV elements. The integration of load flow analysis into a
real-time electromagnetic transient simulation test bench has to be developed.
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