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Abstract 

This thesis combines different subjects. Data science, mathematical analysis and 

electrical engineering collaborate here to determine the representative or typical 

electrical load days along one year by applying a quite recent technique, under a 

strong development process: time series clustering. Indeed, though three different 

clustering algorithms, a dataset composed by 365 daily load curves is clustered into 

36 or less clusters, and for each cluster a representative day is selected (typical load 

day). In the introduction, the importance of clustering in everyday life will be 

discussed and deepened though real-life examples. Instead, in the first chapter, a 

solid theoretical basis on time series, similarity measures and clustering will be 

provided. Moreover, the second chapter will analyze in detail the three employed 

clustering algorithms, while their practical implementation will be examined in the 

third chapter to determine the typical load days from a real-life dataset. The 

considered softwares to perform the clustering process are Matlab, typically used in 

engineering field, and R-studio, common instead in data-analysis. The obtained 

results will show that is possible to use only the typical days, instead than the 

complete dataset, as input to many specific algorithms to greatly reduce the 

computational time, achieving anyway coherent results. Finally, the conclusion will 

highlight again the importance of clustering in addressing modern problems and will 

provide a possible further development of the standard algorithms to solve some 

issues that are nowadays under research.  

 

Key-words: typical days; representative days; clustering; time series,  

similarity measure; load curve. 
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Abstract in lingua italiana 

Questa tesi combina diversi ambiti scientifici. In particolare, data-science, analisi 

matematica e ingegneria elettrica vengono impiegate per determinare i giorni di 

carico elettrico rappresentativi o tipici durante un anno, applicando una tecnica 

abbastanza giovane ma che sta subendo un forte processo di sviluppo: il clustering di 

serie temporali. Infatti, attraverso tre diversi algoritmi di clustering, un dataset 

composto da 365 curve di carico giornaliere è stato raggruppato in 36 (o meno) 

cluster, e per ogni cluster viene selezionato un giorno rappresentativo (giorno di 

carico tipico). Nell'introduzione, l'importanza del clustering nella vita di tutti i giorni 

sarà discussa e approfondita attraverso esempi di vita reale (per esempio 

analizzando il caso di Google). Nel primo capitolo, invece, verranno fornite solide 

basi teoriche su serie temporali, misure di similarità e clustering. Inoltre, il secondo 

capitolo analizzerà in dettaglio i tre algoritmi di clustering impiegati, mentre la loro 

implementazione pratica sarà esaminata nel terzo capitolo allo scopo di determinare i 

giorni di carico tipici da un dataset reale. I software utilizzati per eseguire il processo 

di clustering sono Matlab, tipicamente impiegato in campo ingegneristico, e  

R-studio, comune invece nell'analisi dei dati. I risultati ottenuti mostreranno che è 

possibile utilizzare solo i giorni tipici, invece del dataset completo, come input di 

molti algoritmi specifici per ridurre notevolmente i tempi di calcolo ma ottenendo 

comunque risultati coerenti. Infine, la conclusione evidenzierà ancora l'importanza 

del clustering nell'affrontare i problemi moderni e fornirà un possibile ulteriore 

sviluppo degli algoritmi standard per risolvere alcuni problemi tutt’oggi oggetto di 

ricerca. 

 

Parole chiave: giorni tipici, giorni rappresentativi, clustering, serie temporali;  

misura di similarità; curva di carico. 
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Introduction to Clustering 

This thesis has the purpose to determine the so-called typical or representative load 

days. More precisely, starting from 365 daily load curves of a real dataset (which will 

be further examined), a reduced number of load curves will be obtained through a 

clustering process. The derived curves are the representative load days and are 

extremely useful to reduce the computational time of many algorithms. Indeed, by 

considering just the typical days rather than the complete dataset, coherent results 

can be achieved in a fraction of the required time. In this introduction, the 

importance of clustering in everyday life will be discussed and deepened though 

real-life examples. Instead, in the first chapter, a solid theoretical basis on time series, 

similarity measures and clustering will be provided. Moreover, the second chapter 

will analyze in detail the three employed clustering algorithms, while their practical 

implementation will be examined in the third chapter to determine the typical load 

days from a real-life dataset. The obtained results will show that is possible to use 

only the typical days, instead than the complete dataset, as input to many specific 

algorithms to greatly reduce the computational time, achieving anyway coherent 

results. Finally, the conclusion will highlight again the importance of clustering in 

addressing modern problems and will provide a possible further development of the 

standard algorithms to solve some issues that are nowadays under research.  

 

Clustering is a technique used to partition similar data elements into homogeneous 

groups without advance knowledge of the groups definition. Clusters are formed so 

that objects have maximum similarity with the other objects in the same group and 

minimum similarity with objects in the other groups. In particular, assume to have a 

set of objects to be analyzed. Note that the term “objects” is used instead of the term 

“elements” to underline that the set could be composed by physical objects or by 

abstract elements, such as data collected from measurement stations. Moreover, 

assume that the class is not known for each of the objects in the set. The process of 

grouping the set in classes with similar objects is denoted as clustering. It is 

important to underline that, even if the class of the single object in the set is not 

known, different possible classifications are known. Then, considering all the 
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possible classification criteria, a grouping method is defined according to the set of 

objects under consideration. For the sake of clearness, let’s consider the following 

practical examples, which show also that clustering is an essential process in many 

fields and that it permeates human life in its possible aspect. 

 

Natural clustering in human life 

During childhood, each infant learns to distinguish between animal and plant reign 

and even between different species inside of each reign (e.g., between cats and dogs, 

both part of the animal reign). Growing up, the child continuously improves its 

subconscious classification schemes evolving, for instance, from “color-based“, 

“shape-based” or “dimension-based” criteria to more sophisticated classification 

criteria like “number of legs” or “natural ambient”. Moreover, exploiting the 

knowledge learnt during the grow-up process (school education, self-education, 

internet), even more theoretical classifications are possible, like “type of respiratory 

system”. This shows up that the clustering process is actually a natural activity that 

our subconscious performs spontaneously to have a clearer view of a set of objects so 

that, even if the specific class of each object is not known, it is possible to assign a 

specific label to a subset of objects, according to a classification criterion. 

 

Clustering in marketing and economy [1], [2] 

The clustering process can help companies to determine different groups of 

customers, classifying the customers set according to different possible criteria (for 

instance: buying preferences, age, maximum budget, demand elasticity). Moreover, 

data-clustering can be essential in identifying trends in stock exchange quotations by 

grouping data points of a considered graph according to some similarity criteria. On 

the other hand, the clustering process could be useful also to a potential customer 

and is used by many websites that identify, for instance, groups of car insurances 

with the same policy or groups of houses in a city according to same characteristics, 

same value or same location. 

Clustering in biology [3] 

The clustering process can be exploited to derive plants and animals taxonomies, to 

catalogue genes with similar functionalities and to examine similar characteristics 

between populations or species.  

Clustering in data mining [4] 

The clustering process can be exploited to examine data distributions, defining the 

most important distributions and focalizing in studying their characteristics. 
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Alternatively, it can be used as a preprocessing step for data mining algorithms, that 

will consider only the obtained clusters as input, to reduce the computational time. 

 

The previous examples show that clustering is an essential activity to improve the 

performance in multiple fields, scientific and non, like subconscious processes which 

are part of everyday life. Despite the evident advantages, the scientific approach to 

clustering is a modern subject, under a strong development process. It is now part of 

many research areas like data mining, statistics, machine learning, space database 

technology (e.g., identifying terrestrial areas with similar use or characteristics), 

biology, marketing. Last but not least, the clustering process can be also useful for 

outliers detection, finding values that are very “distant” from the clusters (for 

instance, exceptional transactions with a credit card could indicate a fraud or illegal 

e-commerce activity). Note that the term “distant” is used on purpose, since in the 

next chapter different possible distance measures will be presented. It has been 

shown [5] that different works exploiting clustering can be found in many different 

subjects such as geology [6], bioinformatics [7], biology [8], human motion analysis 

[9], space exploration [10], handwriting recognition [11], multimedia [12], and 

finance [13]. Moreover, there are some comprehensive surveys and reviews that 

focus on comparative aspects of time-series clustering experiments [14], [15] which 

show a trend of increased activity and research in the last twenty years. 

As the previous examples show, clustering is an extremely important process that 

permeates everyday life in its possible aspect. Among all the research areas, this 

thesis focuses on data clustering, also denoted as time series clustering. A formal 

definition of time series will be provided in the next chapter; so, for now, it is enough 

to state that a time series is composed by a list of two-coordinates points, in which 

the first coordinate is the time instant while the second coordinate is the value of the 

series at the considered instant. According to this unformal definition, it is clear that 

a time series can be represented as a two-dimensional graph on a xy plane, where the 

time instants are on the x-axis and the values of the time series are on the y-axis. 

Clustering of time series data is mostly used to discover interesting patterns in the 

time series dataset. More precisely, two main tasks can be defined: 

• Find patterns that appear frequently in the dataset; 

• Find patterns that appear surprisingly in the dataset. 

As the title suggest, this thesis is focused on the first task. Indeed, the main purpose 

of this work is to determine a good method for clustering electrical load and 

generation data, in order to reduce the computational time of many optimization 

algorithm which are often employed in electrical engineering field. Frequently, these 
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algorithms receive as input 365𝑦 electrical load/generation curves (one curve for 

every day of the year, for a selected number of years 𝑦) and exploit them to optimize 

the size of the machines/components to be installed or to make predictions about 

future development. Typically, the computational complexity for these algorithms is 

in the order of 𝑂(𝑛2). For the sake of clearness, it is recalled that time complexity is a 

function of the number of data points [16] and is commonly estimated by counting 

the number of elementary operations performed by the algorithm, supposing that 

each elementary operation takes a fixed amount of time to perform. Thus, the 

amount of time employed to complete the algorithm and the number of elementary 

operations performed by the algorithm itself are related by a constant factor. Since 

this function is generally difficult to compute exactly, and the running time for small 

inputs is usually not consequential, the behaviour of the complexity becomes 

relevant when the input size increases. Thus, only the asymptotic behaviour of the 

complexity is of interest, so the time complexity is typically expressed using big O 

notation. The following figure shows a graph of the main functions commonly used 

in algorithms analysis to express the computational complexity.  

 

 

Figure 0.1: Commonly used time complexity functions in algorithm analysis 

https://en.wikipedia.org/wiki/Constant_factor
https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
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In figure 0.1 the input data size 𝑛 is on the x-axis, while the number of operations 𝑁 

of the algorithm is on the y-axis. As it is possible to observe, different behaviors occur 

for different algorithms. Since the main purpose of this thesis is to reduce the 

complexity of an optimization algorithm, as already discussed, the red function will 

be selected as reference to determine the reduction rate of the computational time 

after the clustering process. 

The fact that typically optimization algorithms have a computational complexity in 

the order of 𝑂(𝑛2) implies that the computational time has a quadratic asymptotic 

behaviour, that becomes more and more precise for larger and larger datasets. In this 

perspective, halving the number of datapoints will make the computational time 

almost one quarter of the original one, while using one tenth of datapoints will make 

it almost one hundredth of the original one. This makes clear, again, that time series 

clustering is an essential pre-processing activity that greatly improves the 

performance of whichever algorithm, leading to coherent and consistent results in a 

fraction of the original computational time. In this thesis, different clustering 

techniques will be employed to reduce the computational time of an optimization 

algorithm which receives as input 365 load duration curves and/or 365 generation 

curves, one for every day of the year. By clustering the 365 curves in 36 curves 

(approximately one tenth), the most representative days of the year will be 

determined. The selection of the number of curves to be obtained is not random: it 

derives from the computation of some quality indexes of the clustering result, 

exploited to determine the optimal number of clusters as a compromise between the 

needs to reduce the computational time and to well represent the original data. The 

determined representative days are called typical load/generation days and are 

extremely important since they allow to obtain similar and consistent results as using 

the complete 365 days in the optimization algorithm, but also reducing the 

computational time as: 

 

𝑂 ((
𝑛

10
)
2

) = 𝑂 (
𝑛2

100
) =

1

100
𝑂(𝑛2) 

(0.1) 

As equation 0.1 shows, the proposed approach can reduce the computational time by 

almost one hundredth, of course provided that the results are coherent with the use 

of the complete 365 curves. In the next chapter, a more theoretical and rigorous 
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explanation of time series, clustering techniques and their practical implementation 

will be provided.  

As already discussed, clustering of time series data is mostly used to discover 

interesting patterns in the time series dataset. More precisely, four main applications 

can be defined: 

 

1. Anomaly detection: methods to discover unusual and unexpected patterns 

which occur surprisingly in the dataset. As an example, it can be used in 

sensor databases obtained by sensor readings to discover unexpected or 

critical events. 

2. Recognizing dynamic changes in the time series: methods to detect correlation 

between time series. As an example, it can be used in financial databases to 

find companies with similar stock price move. 

 

3. Prediction and recommendation: a hybrid technique combining clustering and 

function approximation per cluster that can help users to predict and 

recommend the future data trend. As an example, it can be used in scientific 

databases by addressing problems such as finding the patterns of solar 

magnetic wind to predict its daily development. 

 

4. Pattern discovery: methods to discover interesting patterns in a database. As 

an example, it can be used in marketing databases to find different daily 

patterns of sale for a specific product in a store. 

 

The following table reports some applications of time series clustering, in different 

domains [1], to address real world problems. 

 

Reference Dataset Objective 

Košmelj & Batagelj, (1990) 
Country’s energy 

consumption 

Energy Consumption pattern of 

23 European Countries 

(commercial consumption) 

VanWijk & Van Selow(1999) 
Daily power 

consumption 

Discovering consumer power 

consumption patterns 

Ramoni, Sebastiani, & 

Cohen(2000) 
Robot sensor data 

Prototypal representations of 

robot’s experiences 
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Fu et al. (2001) Stock market data 
Discovery patterns from stock 

time-series 

Golay et al., (1998); Wismüller et 

al., (2002) 

Functional 

MRI(fMRI) 
Detecting brain activity 

Tran & Wagner (2002) Speechtime-series Speaker verification 

M. Kumar & Patel (2002) 

Sales data from 

several 

departments of a 

major retail chain 

Finding seasonality patterns 

(Retail pattern) 

Steinbach, Tan, Kumar, Klooster, 

& Potter, (2003) 
Climate time-series Discovery of climate indices 

Möller-Levet, Klawonn, Cho, & 

Wolkenhauer, (2003) 
Gene expression 

Identification of functionally 

related genes 

Bagnall, Janacek, De la Iglesia, & 

Zhang, (2003) 

Time-series 

representing the 

per capita personal 

income 

Personal income pattern 

Shumway,(2003) Earthquake 

Analyzing potential violations of 

a Comprehensive Test Ban Treaty 

(CTBT) 

Guan & Jiang, (2007) Financial data 

Creating an efficient portfolio  

( a group of stocks owned by a 

particular person or company) 

C. Guo, Jia, & Zhang, (2008) 
Stock exchange 

data 

Discovery patterns from stock 

time-series 

Rebbapragada, Protopapas, 

Brodley, & Alcock, (2009) 

Astronomical data 

(star light curves) 

Pre-processing for outlier 

detection 

Gullo et al., (2011) Mass spectra data 

Exploring, identifying, and 

discriminating pathological cases 

from MS clinical samples 

Kurbalija et al., (2012) 
Human behavior 

data 

Analysis of human behavior in 

psychological domain 

Table 0.1: Some applications of time series clustering in different domains 
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As table 0.1 shows, time series clustering is an essential task in many different 

research areas, that helps in discovering and analysing useful and interesting 

patterns that represent the data trend, leading to optimal results in a fraction of the 

necessary time. However, its usage requires an important amount of resources and is 

subject to many requirements. In the following pages, the most typical requirements 

for a good clustering model are defined. 

• Scalability: the clustering algorithm must work fine for small and large 

datasets. This is very important in big data analysis, where the databases are 

composed by hundreds of millions of data. Thus, many clustering methods 

that are fitted for small databases must work well also for big databases. 

 

• Capability to treat different data attributes: many clustering algorithms are 

designed to cluster numerical data. However, the possible applications can 

require clustering other data types (e.g., binary, categorical, a combination of 

different data attributes…). 

 

• Definition of clusters according to different metrics: many clustering 

algorithms define clusters according to Euclidean distance. These methods 

tend to create spherical clusters with similar dimensions and density. 

However, a cluster can generally have a generic shape, different from the 

spherical one. Therefore, it is important to define clustering algorithms able to 

work with different distance metrics, defining cluster with an arbitrary shape. 

 

• Minimum requests number to determine input parameters: many clustering 

algorithms require to the user to define a priori some parameters (for instance, 

the number of desired clusters). Since clustering results are quite sensitive to 

input parameters, and these parameters are very difficult to estimate with 

precision, it is important that a good clustering model requires a number of 

inputs as little as possible, not to bind users and make clustering quality 

difficult to control. 

 

• Robustness: capability to treat noisy data. Typically, measurements dataset 

contains missing, unknown or noisy data. A good clustering algorithm must 

have a low sensibility to these data, avoiding to determine low quality 

clusters. 

 

• Incremental clustering ability: capability to incorporate new data in already 

existent clusters, avoiding to re-perform the whole clustering process in case 

of addition of new data. This requirement is typically not so essential, but 
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anyway it would be important to develop algorithms able to update the 

clusters incrementally.  

 

• Insensibility to input data order: a good clustering model must not generate 

dramatically different clusters if the order of the input data changes. 

 

• Multidimensionality: capability to cluster dataset containing many different 

variables, with one or more time series for every variable.  

 

• Capability to include constraints: in real world applications, many constraints 

can be imposed to the clustering process. A good clustering model should be 

able to include these constraints in the algorithm.  

 

• Interpretability and usability: clustering results must be interpretable, 

understandable and usable  

 

As it is possible to note, a good clustering model must comply with many 

requirements. In this thesis, two main clustering algorithms have been considered:  

k-means clustering and Ward hierarchical clustering. These algorithms have some 

advantages and disadvantages which will be discussed furthermore but anyway they 

generally comply with all the previously presented requirements [17]. Moreover, 

both clustering techniques exploit a dissimilarity matrix between data to perform the 

clustering process. More precisely, it is possible to divide clustering algorithms in 

two categories, according to the matrix exploited to perform: 

 

• Clustering algorithms exploiting a raw data matrix  

 

A data matrix represents 𝑛 objects, with 𝑝 variables for each object. Indeed, 

data are represented by a 𝑛 × 𝑝 matrix, as shown below. 

 

(

 
 

𝑥11 … … 𝑥1𝑝
… … … …
… … … …
… … … …
𝑥𝑛1 … … 𝑥𝑛𝑝)

 
 

 

(0.2) 



10 Introduction to Clustering 

 

 

This structure is called object-by-variable since the matrix relates every object 

with its variables. Indeed, the first row contains the 𝑝 observations of the first 

of the 𝑛 objects, and so on for the successive rows. As an example, 𝑛 can be a 

certain number of people and 𝑝 could be a set of measurements for every 

people, like height, weight, ethnicity and so on. 

 

• Clustering algorithms exploiting a dissimilarity matrix  

 

A dissimilarity matrix contains the degree of dissimilarity between each 

couple of objects. Indeed, it is represented by a 𝑛 × 𝑛 matrix, as shown in the 

next page. 

(

0 𝑑(1,2) … 𝑑(1, 𝑛)
𝑑(2,1) 0 … …
… … 0 …

𝑑(𝑛, 1) 𝑑(𝑛, 2) … 0

) 

(0.3) 

In the matrix 0.3, 𝑑(𝑖, 𝑗) denotes the dissimilarity between object 𝑖 and object 𝑗. 

This parameter can be computed in many different ways, but typically a 

distance metric is exploited, as Euclidean distance or more sophisticated 

metrics. In this thesis, a particular but extremely important distance metric is 

considered: dynamic time warping (DTW). As it will be clarified in the next 

chapter, the use of DTW allows to greatly improve the precision of the 

clustering model, since it exploits the Euclidean distance multiple times to 

find the minimum/maximum dissimilarity between every possible object 

couple, leading to a more precise estimation of the dissimilarity matrix. 

Eventually, it is important to recall that in matrix 0.3 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖) and 

𝑑(𝑖, 𝑖) = 0. This structure is called object-by-object since rows and columns of 

the matrix represent the same entity (the objects). 

 

Most clustering algorithms perform exploiting the dissimilarity matrix. Thus, if data 

are represented in the object-by-variable form, it is necessary to move from the raw 

data matrix to the dissimilarity matrix before running the algorithms. This topic will 

be developed in detail in the next chapters. 

 

This introduction had the purpose to remark the importance of clustering in 

everyday life, showing its applications and its advantages. Moreover, the most 
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important requirements of a good clustering algorithm have been defined and an 

important distinction between algorithms exploiting a raw data matrix and 

algorithms exploiting a dissimilarity matrix has been analysed. In the first chapter, a 

more theoretical and formal definition of time series, distance metrics (with DTW) 

and time series clustering will be provided. In the second chapter, instead, the two 

already mentioned algorithms, that will be employed in this thesis, will be analysed 

in details and a mathematical proof will be provided, when possible, to show the 

effectiveness of the methods. Moreover, in the third chapter, the adopted 

methodology to exploit the clustering algorithms in an electrical engineering 

problem will be explained, as well as the implemented codes, and the experimental 

results will be discussed. Finally, the last chapter will focus on the chronological 

ordering of clustered data, an open problem which affects the clustering process in 

its possible application. Again, some methodology will be proposed and the results 

will be discussed.  

Eventually, to conclude the introduction and to remark the importance of clustering, 

it is recalled that many real-life companies exploit data clustering to reach better 

performances and improve the user experience. In particular, the Google case can be 

discussed [18]. Indeed, at Google, clustering is used for generalization, data 

compression and privacy preservation in products such as YouTube videos, Play 

apps and Music tracks. More precisely: 

 

• Generalization: when some objects in a cluster have missing feature data, it is 

possible to infer the missing data from other objects in the cluster. For 

instance, less popular videos can be clustered with more popular videos to 

improve video recommendations. 

 

• Data compression: as discussed, data in a cluster can be replaced by their 

cluster ID. This replacement simplifies the feature data and saves storage. 

These benefits become significant when scaled to large datasets. Further, 

machine learning systems can use the cluster ID as input instead of the entire 

feature dataset., reducing the complexity of input data and making the 

machine learning model simpler and faster to train. For instance, feature data 

for a single YouTube video can include: viewer data on location, time and 

demographics, comment data with timestamp, text and user ID, video tags. 

Clustering YouTube videos makes possible to replace this set of features with 

a single cluster ID, thus compressing the data.  
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• Privacy preservation: it is possible to preserve privacy by clustering users and 

associating user data with a cluster ID instead of with specific users. For 

instance, if the video history for YouTube users has to be added to a ML 

model, instead of relying on the user ID, it is possible to cluster users and rely 

only on the cluster ID. Now the model cannot associate the video history with 

a specific user, but only with a cluster ID that represents a large group of 

users. 

 

 

This example shows that even an extremely important real-life companies like 

Google exploits clustering in its everyday activity to improve the performance and 

guarantee the privacy of its users. Again, this underlines the effectiveness and 

advantages of the clustering process, which will be discussed and remarked also in 

the next chapters. In particular, chapter 1 will provide a more theoretical and formal 

definition of time series, distance metrics (with DTW) and time series clustering, 

while chapter 2 will focus on the two implemented algorithms, to make the reader 

having a clear view of the proposed methodology and a full comprehension of the 

obtained results, presented in chapter 3. 
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1. The scientific approach to Clustering 

In this chapter, most of the formal and mathematical aspects of time series, 

dissimilarity measures and of the clustering process will be developed in detail. Even 

if it could result quite long, it is extremely important to provide a scientific approach 

to the subject, to give the reader all the necessary information to have a clear 

understanding of the implemented algorithms, which apply time series clustering to 

an electrical engineering problem. More precisely, three sections are considered 

below: time-series (section 1.1), dissimilarity measures (section 1.2) and time-series 

clustering (section 1.3). Each section is subdivided in subsections to better distinguish 

between the different concepts, metrics or algorithms that will be presented. 

1.1 Time-series analysis 

The term time series denotes a succession of values obtained by observation of a 

phenomenon, ordered according to the time variable. In formal terms: 

 

𝑌(𝑡) = {𝑦1, 𝑦2, … , 𝑦𝑡, … , 𝑦𝑁} 

(1.1) 

Equation (1.1) shows that the time series 𝑌(𝑡) is composed by a set of values, ordered 

according to a time variable going from 1 to 𝑁. This last term is called duration of the 

series and corresponds to the number of observations. It is important to remark that 

each observation 𝑦𝑖 can be composed by multiple variables. For instance, as already 

discussed, 𝑌(𝑡) could be a time series regarding a company and 𝑦𝑖 could be a set of 

observations (values) related to multiple variables such as number of employees, 

incomes, outcomes, presence or absence of certain condition (binary variable), most 

diffused ethnicity between employees (categorical variable) and so on at the time  

𝑡 = 𝑖. This type of series, in which each observation 𝑦𝑖 is a vector containing multiple 

variables, are called multivariate time series and, for the sake of simplicity, will not be 

considered in this thesis. In this perspective, a single-variable time series, which has 



14 1. The scientific approach to Clustering 

 

 

just one variable with 𝑁 observations, can be represented as a two-dimensional 

graph on a xy plane, where the time instants are on the x-axis and the values of the 

time series are on the y-axis; this type of graph is called run chart. For instance, the 

following figure shows the run chart of a time series representing the total Italian 

load of 10/02/2022 from 12:00 a.m. to 2:00 p.m., whit a period of observation of 15 

minutes.  

 

 

Figure 1.1: The total Italian load curve is an example of run chart of a single variable 

time series 

The period of observation can be defined according to a succession of time instants 

(for instance: the employees of a company at the end of the month) or to time 

intervals, equally spaced or not (for instance: the electrical energy demand of a 

certain nation, monitored every hour). In the first case, the series is denoted as state 

or positional time series while in the second case it is denoted as flux time series.  
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Two different approaches are possible to study a time series: the “classical” approach 

or deterministic approach and the “modern” approach or statistical approach. In the first 

case, it is assumed that the process represented by the series has a deterministic 

nature, which allows to decompose the series in four components that can be 

estimated. The second approach, instead, assumes that the series has been generated 

by a stochastic process, so that each observation is the realization of a random 

variable 𝑌𝑡. In the following pages, the two approaches will be analyzed separately, 

focusing on the deterministic one for the sake of simplicity.  

1.1.1  Deterministic approach to time series analysis 

As already discussed, the fundamental hypothesis for this approach is that the series 

is generated by a process which has a deterministic nature. In this perspective, it is 

possible to state that generally time series show oscillations around a long-period 

behavior. This leads to an important decomposition which can be applied to any 

time-series. Indeed, a time series can be decomposed in four components, called 

virtual components of the series: 

 

• 𝑇𝑡: trend component of the series at time instant 𝑡. This component reflects the 

long-term progression of the series, which highlights a structural evolution of 

the observed phenomenon due to causes acting systematically on it.  

Typically, the trend component is non-zero when there is a persistent 

increasing or decreasing of the data, linearly or not. To remark that this 

component reflects the long-term behaviour of the series, it is also denoted as 

secular variation component. 

 

• 𝐶𝑡: cyclical component of the series at time instant 𝑡. This component reflects 

repeated but not periodic fluctuations, which duration depends on the time 

series nature. In economy, where the time series could represent stock prices, 

typically these fluctuations are caused by the occurrence of favourable or 

negative conditions, such as the expansion or contraction of the economic 

context where the studied phenomenon develops. 

 

• 𝑆𝑡: seasonal component of the time series at time instant 𝑡. As the name 

suggests, this component reflects seasonal variation of the time series. Of 

course, a seasonal pattern exists only when the time series is affected by 

seasonal factors. Generally, these factors are climatic conditions or social 

events. For instance, in the electrical engineering field, the electrical energy 
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demand of a certain nation increases during summer due to a massive usage 

of air conditioning systems. 

 

• 𝐼𝑡: irregular component of the time series at time instant 𝑡. This component 

reflects random or irregular behaviour of the time series, caused by accidental 

events or measurement noise. 

 

In formal terms, it is theoretically possible to define the following relationship for a 

considered time series: 

𝑌𝑡 = 𝑓(𝑇𝑡, 𝐶𝑡, 𝑆𝑡, 𝐼𝑡) 

(1.2) 

where 𝑡 = 1, … , 𝑁.  

This decomposition highlights that, in the classic approach, the series is supposed to 

be composed by a systematic or deterministic pattern, with random oscillations or 

disturbances superposed. Moreover, two main models are typically employed: 

 

• Additive model: 𝑌𝑡 = 𝑇𝑡 + 𝐶𝑡 + 𝑆𝑡 + 𝐼𝑡 

(1.3) 

• Multiplicative model: 𝑌𝑡 = 𝑇𝑡 × 𝐶𝑡 × 𝑆𝑡 × 𝐼𝑡 

(1.4) 

 

Typically, the additive model is appropriate when the amplitude of the seasonal 

oscillation does not vary with the variation of the level of the series, that in this case 

is called additive time series. Moreover, all the four components are expressed in the 

same unit of 𝑌𝑡. Instead, the multiplicative model is appropriate when the seasonal 

oscillation increases (reduces) proportionally to the increase (reduction) of the level 

of the series, and only 𝑇𝑡 and 𝐶𝑡 have the same unit of 𝑌𝑡, while 𝑆𝑡 and 𝐼𝑡 are 

expressed as indexes with respect to 𝑇𝑡 × 𝐶𝑡 For the sake of clearness, figures 1.2, 1.3, 

1.4 in the next page [19] show an additive time series (1.2), in which the oscillations 

are the same even if the level of the series is increasing, and a non-additive time 

series, in which the oscillations increase or decrease as the level of the series increases 

(1.3) or decreases (1.4).  
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Figure 1.2: additive time series 

 

Figure 1.3: non-additive increasing time series 

 

Figure 1.4: non-additive decreasing time series 
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Before analyzing the techniques to determine the four virtual components of the 

series, it is important to remark that since the cyclical component is typically very 

difficult to estimate, the analysis will consider a single component 𝑇′𝑡, given by the 

sum (additive model) or the multiplication (multiplicative model) of 𝑇𝑡 and 𝐶𝑡.  

More precisely: 

 

• Additive model: 𝑇′𝑡 = 𝑇𝑡 + 𝐶𝑡 

(1.5) 

• Moltiplicative model: 𝑇′𝑡 = 𝑇𝑡 × 𝐶𝑡 

(1.6) 

This new component is called trend-cycle component, since it includes both 

contributions. Eventually, it is important to remark that in the additive model the 

irregular component can assume positive and negative values and has zero as 

neutral value, while in the multiplicative model the irregular component can assume 

only positive values and has one as neutral value. Moreover, it is possible to move 

from the multiplicative to the additive model by applying the natural logarithm to 

the decomposed time series as follows: 

 

ln(𝑌𝑡) = ln (𝑇′𝑡 × 𝑆𝑡 × 𝐼𝑡) 

(1.7) 

ln(𝑌𝑡) = ln(𝑇′𝑡) + ln(𝑆𝑡) + ln (𝐼𝑡) 

(1.8) 

 

Equation (1.8) shows that instead of applying a multiplicative model on the original 

data of the series, it is possible to apply an additive model on their natural logarithm. 

In the following pages, figures 1.5, 1.6 and 1,7 [19] show the run chart of a time series 

representing the sold bottles of a famous drink (1.5), the run chart of the seasonal 

component (1.6) and the run chart of the original time series without the seasonal 

component (seasonally adjusted data). The estimation of the components has been 

obtained with an additive model, thus the seasonally adjusted data can be obtained 

by subtracting the seasonal component from the original time series. 
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Figure 1.5: original time series (actual) and prediction (predicted) 

 

 

Figure 1.6: seasonal component of the time series 
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Figure 1.7: seasonally adjusted time series (no seasonal component) 

For the sake of clearness, it is recalled that seasonally adjusted data can be derived 

after the estimation of the seasonal component as follows: 

 

• Additive model: 𝑌′𝑡 = 𝑌𝑡 − 𝑆𝑡 

(1.9) 

• Moltiplicative model: 𝑌′𝑡 = 𝑌𝑡/𝑆𝑡 

(1.10) 

The seasonally adjusted data should have a more or less flat behavior, without the 

oscillations that are typical of the series seasonality. Therefore, figure 1.7 shows that 

the additive model is not appropriate for analyzing the original time series, reported 

in figure 1.5. Indeed, there is an over-adjustment in the first periods (the peaks are 

inverted with respect to the original series) while there is an under-adjustment in the 

last periods (there is still a very high peak). The reason behind this is that the 

additive model, as already discussed, assumes that the seasonal component has an 

amplitude more or less constant along the observation period and this is probably 

not true for the case under examination. Therefore, the estimation of the seasonality, 

reported in figure 1.6, cannot be considered valid and a multiplicative model must be 

adopted.  
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It is now possible to discuss the techniques used to estimate the virtual components 

of a time series. These components can be obtained using empirical or analytic 

methods. The two cases will be treated separately for a better readability. 

 

Empirical methods 

These estimation techniques exploit the so-called moving average (MA). Indeed, a new 

time series is derived from the original one by substituting every point with its 

moving average. Therefore, this parameter is computed in the original series for 

every time instant and the result is saved in the correspondent time instant of a new 

series. For the sake of clearness, it is recalled that the moving average is defined as 

the mean of 𝑘 contiguous terms of the considered time series. More precisely: 

 

• If 𝑘 is odd:  

𝑀𝐴𝑘(𝑌𝑡) =
1

𝑘
∑ 𝑌𝑖

𝑡+1

𝑖=𝑡−𝑘+2

 

(1.11) 

• If 𝑘 is even: it is necessary to compute the mean between the two contiguous 

moving averages of the considered time instant, calculated with the same 

formula as for odd 𝑘. For instance, if 𝑘 = 4: 

 

𝑀𝐴4(𝑌𝑡−1) =
𝑌𝑡 + (𝑌𝑡−1 + 𝑌𝑡+1) + 𝑌𝑡−2

4
 

(1.12) 

𝑀𝐴4(𝑌𝑡+1) =
𝑌𝑡 + (𝑌𝑡−1 + 𝑌𝑡+1) + 𝑌𝑡+2

4
 

(1.13) 

𝑀𝐴4(𝑌𝑡) =
𝑀𝐴4(𝑌𝑡−1) + 𝑀𝐴4(𝑌𝑡+1)

2
 

(1.14) 

Of course, the first and last data of the original time series correspond to their 

moving average, since a previous or successive term cannot be found for the first and 

last element of the series, respectively.  
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By substituting every point of a time series with its moving average of length 𝑘, a 

new series is obtained in which the value correspondent to a considered time instant 

is smoothed with respect to the correspondent value in the original series. Due to 

this, this technique is also denoted as local adaptation method. The length 𝑘 of the 

moving average has a strong impact on the result of the process: the higher is 𝑘, the 

smoother will be the new obtained series. As an example, let’s consider the following 

dataset, that reports the monthly selling of shampoo 𝑌𝑡, in liters and for three years, 

of a famous company [20]. Moreover, the moving averages of length 3, 5 and 7 have 

been computed with the expressions presented in the previous page. Of course, if 

𝑘 = 5, also the second term of the original series is equal to its moving average, since 

it is not possible to define the term 𝑡 − 2. In the same fashion, if 𝑘 = 7, the term 𝑡 − 3 

cannot be defined therefore also the third term of the series coincides with its moving 

average. 

 

month 𝒀𝒕 𝑴𝑨𝟑(𝒀𝒕) 𝑴𝑨𝟓(𝒀𝒕) 𝑴𝑨𝟕(𝒀𝒕) 

1 266.0 - - - 

2 145.9 198.3 - - 

3 183.1 149.4 178.9 - 

4 119.3 160.9 159.4 185.0 

5 180.3 156.0 176.6 179.1 

6 168.5 193.5 184.9 185.8 

7 231.8 208.3 199.6 177.2 

8 224.5 216.4 188.1 208.2 

9 192.8 180.1 221.7 209.0 

10 122.9 217.4 212.5 212.7 

11 336.5 215.1 206.5 200.9 

12 185.9 238.9 197.8 198.9 

1 194.3 176.6 215.3 210.4 

2 149.5 184.6 202.6 220.1 

3 210.1 211.0 203.7 213.1 

4 273.3 224.9 222.3 218.8 

5 191.4 250.6 237.6 234.4 

6 287.0 234.8 256.3 254.5 

7 226.0 272.2 259.6 284.7 

8 303.6 273.2 305.6 283.4 

9 289.9 338.4 301.1 305.0 
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10 421.6 325.3 324.4 312.5 

11 264.5 342.8 331.6 343.1 

12 342.3 315.5 361.7. 344.9 

1 339.7 374.1 340.6 366.2 

2 440.4 365.3 375.5 363.3 

3 315.9 398.5 387.3 388.0 

4 439.3 385.5 406.9 421.4 

5 401.3 426.0 433.9 431.1 

6 437.4 471.4 452.2 465.5 

7 575.5 473.5 500.8 488.3 

8 407.6 555.0 515.6 508.6 

9 682.0 521.6 544.3 543.7 

10 475.3 579.5 558.6 - 

11 581.3 567.8 - - 

12 646.9 - - - 

Table 1.1: Shampoo selling of a company and moving averages computation 

The following figure shows the run chart of the original time series and of the three 

moving averages computed in the previous table. 

 

Figure 1.8: Selling of shampoo [liters] and moving averages in three years 
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As it is possible to observe from figure 1.8, the moving average techniques eliminates 

a certain amount of oscillations in the time series. Moreover, the higher is the selected 

length, the smoother is the obtained series (more oscillations are eliminated). It is 

possible to prove that a moving average of length 𝑘 does not smooth 
𝑘−1

2
 points at the 

beginning and at the end of the series if 𝑘 is odd, while does not smooth 
𝑘

2
 points at 

the beginning and at the end of the series if 𝑘 is even. Typically, moving averages 

with an even length are used to eliminate the seasonal component of the series, 

selecting for instance 𝑘 = 12 for monthly data in one year, 𝑘 = 4 for trimestral data in 

one year, 𝑘 = 2 for semestral data in one year and so on Indeed, the moving average 

has the property to eliminate the oscillations that have a period equal to the length of 

the moving average itself [19]. Therefore, by selecting a length equal to the period of 

the seasonality, it is possible to remove the seasonal component from the original 

time series, leading to the previously discussed decomposition.  

 

Once that the concept of moving average has been discussed, it is now possible to 

explain the procedure to decompose a time series in its virtual component. This 

procedure is the same for additive and multiplicative model, with little differences in 

the formulas used. Anyway, for the sake of simplicity, it will be presented only for 

the additive model. However, it is recalled that it is possible to move from a 

multiplicative model to an additive model by applying the natural logarithm, as 

equation (1.8) remarks. The main steps to be followed are: 

 

1. Computation of approximate trend-cycle component 

This component is computed for every point of the original series, as a moving 

average of length 12. In the following, it will be denoted as 𝑀𝐴12(𝑌𝑡), with  

𝑡 = 7, 6, … , 𝑛 − 6 due to the non-smoothing effect at the beginning and end of 

the series. 

 

2. Computation of the seasonal+irregular component 

This component is given by the sum of the seasonal and irregular components 

of the original time series. It will be denoted as 𝑆𝐼𝑡 and is computed as: 

 
𝑆𝐼𝑡 = 𝑌𝑡 −𝑀𝐴12(𝑌𝑡) 

(1.15) 
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3. Estimation of the seasonal component 𝑆𝑡 

This component is obtained by subtracting from 𝑆𝐼𝑡 the irregular component, 

which can be assumed a priori. If no information on the irregular component 

is available, it is possible to assume that the seasonal component has a 

constant value, different for every month. Therefore, for a considered month 

𝑚, this component is computed as the arithmetic mean of the terms 𝑆𝐼𝑡, with 

𝑡 = 𝑚,𝑚 + 12,𝑚 + 24,…. For instance, the seasonal component for January is 

given by the arithmetic mean of all the values of 𝑆𝐼𝑡 referring to January. The 

constant value of the seasonal component in every month is called seasonality 

coefficient for that month. When it is negative, the seasonality creates a 

contraction of the series with respect to the behaviour it would have without 

seasonal effects. On the opposite, when it is positive the seasonality amplifies 

the observed phenomenon. 

 

4. Derivation of seasonally adjusted series 

The seasonally adjusted series is computed as:  

 
𝑌′𝑡 = 𝑌𝑡 − 𝑆𝑡 

(1.16) 

It is recalled that this formula holds just for the additive model. 

5. Estimation of the trend-cycle component 

This component is computed with a moving average of length 3 on the 

seasonally adjusted series. 

 

6. Estimation of the systematic behaviour of the series 

By summing up the estimated trend-cycle component and seasonal 

component, a new series 𝑌̂𝑡 is obtained. This series contains only the 

systematic pattern of the original time series. 

 

7. Estimation of the irregular component 

This component is derived by subtracting to the original series its systematic 

behaviour. In particular: 

 

𝐼𝑡 = 𝑌𝑡 − 𝑌̂𝑡 

(1.17) 
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Typically, an analysis of this last component is performed to evaluate the 

goodness of the decomposition. Indeed, if it is valid, the irregular component 

should not present systematic oscillations and its run chart should be 

oscillating around the neutral value (0 for the additive model, 1 for the 

multiplicative model). 

 

Deterministic methods 

These estimation techniques suppose that it is possible to represent the seasonally 

adjusted time series as a function of time. In formal terms: 

 

𝑌𝑡 = 𝑓(𝑡) + 𝑖𝑡 

(1.17) 

where 𝑖𝑡 is a function of time representing the irregular component of the original 

time series. The definition of 𝑓(𝑡) could use any analytic function and is generally 

derived from the behaviour of the series, observed through its run chart. The most 

common functions employed are [19]: 

 

• Constant function: 𝑓(𝑡) = 𝐾 

(1.18) 

• Linear function: 𝑓(𝑡) = 𝐴𝑡 + 𝐵 

(1.19) 

• Quadratic function: 𝑓(𝑡) = 𝐴𝑡2 + 𝐵𝑡 + 𝐶 

(1.20) 

• Exponential function: 𝑓(𝑡) = 𝐴 ∗ 𝐵𝑡 

(1.21) 

 

Once that a function for the seasonally adjusted series has been selected, the 

coefficients are estimated with already known techniques. For instance, in case of 

linear function, the least square method of the linear regression can be employed. 
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After having estimated the trend-cycle component (seasonally adjusted data), by 

adding (additive model) or multiplying (multiplicative model) the seasonal 

component, estimated as in the previous paragraph, the systematic behaviour of the 

series is obtained. Then, the irregular component is computed with the same 

expression already presented. Typically, the analytic method is used when there is 

the need to make predictions on the future development of the series. 

Once that the deterministic approach to time series analysis has been examined, it is 

now possible to move to the modern probabilistic approach. For the sake of 

simplicity, this latter will be explained briefly and not in details. 

 

1.1.2  Statistical approach to time series analysis 

As already discussed, the fundamental hypothesis for this approach is that the values 

of a time series correspond to the realizations of a random variable 𝑌. More formally: 

A time series model for the observed data {𝑦𝑡} is the specification of the joint distribution (or 

evenly of the mean and the covariance) of a sequence of random variables {𝑌𝑡} of which {𝑦𝑡} is 

postulated to be a realization. [21] 

A complete probabilistic time series model should specify all the joint distributions 

between its random variables {𝑌1, 𝑌2, 𝑌3, … }. However, this specification is rarely used 

in time series analysis (unless the data are obtained by a well-known mechanism or 

phenomenon), since it would contain too many parameters to be estimated from the 

data. Instead, generally only the first and second order moment of the joint 

distributions are specified. For the sake of clearness, the definition of these two 

parameters is recalled: 

 

• First order moment: the first order moment of a distribution 𝑌𝑡 is defined as 

the expectation 𝐸[𝑌𝑡]. The computation of this parameter changes between 

classical and Bayesian statistics. More precisely, in classical statistic it 

corresponds to the mean value of the considered distribution, while in 

Bayesian statistics it corresponds to the mean value of the posterior 

probability density function, computed through Bayes theorem. 

 

• Second order moment: the second order moment of a distribution 𝑌𝑡 is defined 

as the expected product 𝐸[𝑌𝑡 × 𝑌𝑡+ℎ] with ℎ = 0, 1 ,2… 
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Generally, the statistical analysis of a time series focuses on properties of the 

sequence {𝑌𝑡} that depend on the two previously defined parameters. These 

properties are called second order properties. In the particular case in which all the joint 

distributions are normal distributions, the second order properties of {𝑌𝑡} completely 

determine the joint distributions and therefore provide a complete probabilistic 

characterization of the sequence [21]. In the following, two examples of simple time 

series statistical interpretation are discussed. 

 

A. Independent and identically distributed (iid) noise 

The iid noise is maybe the simplest model of a time series. In particular, it 

does not contain any trend or seasonal component and the observations are iid 

random variables with zero mean. Moreover, two main properties can be 

defined: 

 

1. 𝑃[𝑌1 ≤ 𝑦1, … , 𝑌𝑁 ≤ 𝑦𝑁] = 𝑃[𝑌1 ≤ 𝑦1] × …× 𝑃[𝑌𝑁 ≤ 𝑦𝑁] = 𝐹(𝑦1) × …× 𝐹(𝑦𝑁) 

(1.22) 

indicating with 𝐹 the cumulative distribution function of each of identically 

distributed random variables 𝑌𝑡. 

2. 𝑃[𝑌𝑁+ℎ ≤ 𝑦|𝑌1 = 𝑦1, … , 𝑌𝑁 = 𝑌𝑁] = 𝑃[𝑌𝑁+ℎ ≤ 𝑦], for ℎ ≥ 1 

(1.23) 

Equation (1.23) defines the probability that a realization of a future random 

variable 𝑌𝑁+ℎ of the sequence {𝑌𝑡} is lower than a certain value 𝑦, conditioned 

to the fact that a realization of all the previous random variables 𝑌1:𝑁 has 

already occurred. This probability is equal to the simple probability that 𝑌𝑁+ℎ 

is lower than 𝑦, thus the knowledge of {𝑌1, … , 𝑌𝑁} is of no value for predicting 

the behaviour of 𝑌𝑁+ℎ. 

 

B. Random walk 

A random walk time series is obtained by summing up iid random variables. 

More precisely: 

 
𝑌𝑡 = 𝑌1 + 𝑌2 +⋯+ 𝑌𝑁 

(1.24) 
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Depending on the distribution adopted for the random variables, the random 

walk can be denoted as Gaussian random walk (normal distributio1n for the 

variables) or simple symmetric random walk (binary distribution for the 

variables). For instance, this latter case could represent the location of a 

pedestrian who starts at position zero at time zero and at each integer time 

tosses a fair coin, stepping one unit forward each time a head occurs, one unit 

backward each time a tail occurs. A realization of length 200 of a simple 

symmetric random walk is shown in figure 1.9 [21]. Note that the result of the 

toss at time 𝑡 can be derived as 𝑌𝑡 − 𝑌𝑡−1. 

 

 

Figure 1.9: Realization of simple random walk of length 200 

 

To conclude this brief discussion about the probabilistic approach to time series, it is 

important to remark that even in this case the decomposition already presented is 

valid. Of course, the techniques to estimate the virtual components of the series are 

different with respect to the deterministic approach. In particular, one method is 

based again on the moving average, with the important difference that in this case 

this parameter is a random variable itself. It is possible to prove that, if no seasonal 

component is present in the series, for a considered length 𝑘, the moving average 
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𝑀𝐴𝑘(𝑌𝑡) represents the best estimate for the trend-cycle component, for  

𝑘 + 1 ≤ 𝑡 ≤ 𝑛 − 𝑘. Then, the irregular component is obtained by subtraction or 

division of the trend-cycle component from the original time series. Instead, if also a 

seasonal component of period 𝑇 exists, the trend component is estimated by selecting 

𝑘 = 𝑇/2 if 𝑇 is even or  𝑘 =
𝑇−1

2
 if 𝑇 is odd and proceeding with the previously 

explained method. Then, the seasonal component is estimated by computing the 

average value of the deviations of the original time series data from the 

correspondent data in the trend component, and subtracting from this value the sum 

of all the deviations, divided by the seasonality period. After having determined the 

seasonal component, the seasonally adjusted data component is computed by 

subtraction or division of the seasonal component from the original time series. This 

allows to obtain a time series with no seasonal component, that is exactly the case 

analyzed before. Therefore, the trend-cycle component can be re-estimated, as well as 

the irregular component, with the same method already explained.  

There is another technique to estimate the virtual components of a time series. This 

method is based on the definition of new operators and is called trend elimination by 

differentiation [21]. More precisely, if no seasonal component is present, the lag-1 

operator can be defined as follows: 

 

∇𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = (1 − 𝐵)𝑌𝑡 

(1.25) 

B is called backward shift operator and is defined such that: 

 

𝐵𝑌𝑡 = 𝑌𝑡−1 

(1.26) 

Powers of the lag-1 operator are introduced in a standard way. For instance: 

 

∇2𝑌𝑡 = ∇(∇𝑌𝑡) = (1 − 𝐵)(1 − 𝐵)𝑌𝑡 = (1 − 2𝐵 + 𝐵
2)𝑌𝑡 = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡−2 

(1.27) 

The application of this operator supposes that an analytic function representing the 

trend cycle component has been selected. For instance, if 𝑇𝑡 = 𝐴𝑡 + 𝐵 then ∇𝑇𝑡 = 𝐵 

while if 𝑇𝑡 = 𝐴𝑡
2 + 𝐵𝑡 + 𝐶 then ∇2𝑇𝑡 = 2𝐶. In the same fashion, it can be shown that 
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every polynomial of degree 𝑘 can be reduced to a constant by applying the operator 

∇𝑘. This implies that the trend-cycle component is eliminated since, by 

differentiating, the original time series reduces to the irregular component plus a 

constant. This suggests the possibility to repeatedly apply the lag-1 operator to the 

data sequence {𝑦𝑡} until a more or less stationary sequence is found. This sequence 

corresponds to the irregular component plus a constant, since it presents no apparent 

trend. Then, the trend-cycle component can be estimated by subtracting or dividing 

the irregular component from the original sequence. Instead, if also a seasonal 

component is present in the original time series, the lag-d operator is defined as 

follows: 

 

∇𝑑𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−𝑑 = (1 − 𝐵
𝑑)𝑌𝑡 

(1.28) 

By applying the lag-d operator to the additive model of a time series and selecting d 

equal to the period of the seasonality, the following result is obtained: 

 

∇𝑑(𝑌𝑡) = 𝑌𝑡 − 𝑌𝑡−𝑑 = ∇𝑑(𝑇𝑡 + 𝑆𝑡 + 𝐼𝑡) = 𝑇𝑡 − 𝑇𝑡−𝑑 + 𝐼𝑡 − 𝐼𝑡−𝑑 

(1.29) 

Equation (1.29) shows that the selection of d equal to the period of the seasonality 

eliminates the seasonal component and decomposes the difference 𝑌𝑡 − 𝑌𝑡−𝑑 into a 

trend-cycle component 𝑇𝑡 − 𝑇𝑡−𝑑 and an irregular component 𝐼𝑡 − 𝐼𝑡−𝑑. The first of 

these two components can be eliminated using the already presented method 

(application of lag-1 operator) and consequently the irregular component can be 

obtained. Then, the deterministic behavior of the series is obtained by subtracting or 

dividing this component from the original time series. 

 

To conclude the analysis of time series it is important to mention the so-called 

representation methods. The representation of a time series 𝑌𝑡 of length 𝑁 is a model 𝑌𝑡̅ 

with length 𝑁′ < 𝑁 (time dimensionality reduction) or with a reduced number of 

variables in case of a multivariate time series (dimensionality reduction) such that 𝑌𝑡̅ 

approximates 𝑌𝑡 [22]. This process is extremely important and is one of the main 

challenging issues for time series clustering. Indeed, especially in data mining and 

big-data analysis, time series data are larger than memory size [23]. This increases 

the required processing power and the time for clustering process increases 



32 1. The scientific approach to Clustering 

 

 

exponentially. Thus, it is crucial for time series data to be representative of the 

observed phenomenon without slowing down algorithm execution time. As for 

clustering algorithms, also for data representation methods some requirements can 

be listed [24]: 

 

• Reduce time or variable dimensionality  

 

• Maintain the local and global characteristics of the original time series 

 

• Acceptable computational cost 

 

• Reasonable level of reconstruction from the reduced representation 

 

• Insensitivity to noise or implicit noise handling 

 

Data representations methods can be classified in four main categories:  

 

1. Data adaptive methods: methods in this category try to assign a constant 

value to an interval of contiguous data of the series. Therefore, the time series 

is represented by horizontal segments in such a way that the original shape is 

maintained. Different variations of this technique exist: using equal length 

segment (piecewise linear approximation), using unequal length segment 

(adaptive piecewise linear approximation), or considering also inclined lines in the 

representation. The name “data-adaptive” comes from the fact that these 

methods have changing parameters according to the considered time series 

data. 

 

2. Non-data adapting methods: use fixed parameters for representing time series 

data. For instance, applying the discrete Fourier transform to the time series, it 

is possible to obtain its spectral distribution and energetic coefficient of each 

harmonic. Typically, most of the information of the time series is contained in 

the first 10-13 coefficients. To show this, it is possible to check the energetic 

content of each harmonic and identify the harmonic coefficient for which this 

parameter decreases significantly. Then, all the harmonics with a lower 

energetic content are eliminated, and the representative series is retrieved 

through the inverse Fourier transform.  
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3. Model based methods: assume that the set of observations of the time series 

can be described by an underlying model. Once selecting a simpler 

representative model with respect to the original series, the parameters of 

these model are computed (real issue of these methods). For instance, hidden 

Markov model technique assumes that the observations are independent but 

correlated through a probabilistic sequence of unobserved (hidden) variables, 

related by some parameters, that regulate the observed phenomenon 

occurrence with respect to time. Then, applying Bayesian statistics methods, 

these parameters are estimated. This process is typically applied in speech 

recognition and to generate automatic subtitles in many videos. For instance, 

in this latter case the hidden variable are the words, and by determining the 

parameters that relate the sequence of observations (audio wave received as 

input) and the hidden variables it is possible to assign a variable to a defined 

observations interval. 

 

4. Data dictated methods: while in the previous categories the new reduced 

dimensionality is selected by the user, these methods automatically determine 

the optimal dimensionality reduction rate. For the sake of simplicity, they will 

not be analysed furthermore. 

 

After having examined time series analysis, it is now possible to move to the next 

section, regarding distance metrics, an important concept necessary to understand 

many clustering algorithms, since it is widely used for the computation of the 

dissimilarity matrix.   

 

1.2 Similarity and dissimilarity measures 

The theoretical issue of time series similarity/dissimilarity search has been proposed 

by Agrawal et al. [25] and subsequently it became one of the main research areas in 

data mining and clustering, since this latter relies on dissimilarity measures to 

perform. Moreover, in traditional clustering, the distance between static objects is 

computed exactly while in time series clustering the degree of similarity or 

dissimilarity between time series is calculated approximately. Indeed, typically a 

distance function is exploited to determine the distance measurement between all the 

points of the multiple time series to be compared, and an estimated distance between 

time series is then derived. For the sake of simplicity, this thesis will consider just 
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two univariate time series and will focus on the main methods to estimate the 

similarity/dissimilarity between them. First of all, it is convenient to formally define 

the concept of similarity/dissimilarity measure and of time series distance [26]. 

 

Similarity measure 

Let 𝑌𝑡 be a time series representing a set of data. A function 𝑠: 𝑌𝑡 × 𝑌𝑡 → ℝ is called 

similarity on 𝑌𝑡 if it satisfies the following properties, ∀ 𝑦𝑖, 𝑦𝑗 ∈ 𝑌𝑡: 

 

• Non-negativity: 𝑠(𝑦𝑖, 𝑦𝑗) ≥ 0 

(1.30) 

• Symmetry: 𝑠(𝑦𝑖, 𝑦𝑗) = 𝑠(𝑦𝑗 , 𝑦𝑖) 

(1.31) 

• If 𝑦𝑖 ≠ 𝑦𝑗 then 𝑠(𝑦𝑖, 𝑦𝑖) = 𝑠(𝑦𝑗 , 𝑦𝑗) > 𝑠(𝑦𝑖, 𝑦𝑗) 

(1.32) 

A similarity measure must have a large value for similar objects and zero value for 

very dissimilar objects. Generally, the similarity value ranges between zero and one, 

where one indicates the maximum similarity measure.  

 

Dissimilarity measure 

A function 𝑑: 𝑌𝑡 × 𝑌𝑡 → ℝ is called dissimilarity on 𝑌𝑡 if it satisfies the following 

properties, ∀ 𝑦𝑖, 𝑦𝑗 ∈ 𝑌𝑡: 

 

• Non-negativity: 𝑑(𝑦𝑖, 𝑦𝑗) ≥ 0 

(1.33) 

• Symmetry: 𝑑(𝑦𝑖 , 𝑦𝑗) = 𝑑(𝑦𝑗 , 𝑦𝑖) 

(1.34) 

• Reflexivity: 𝑑(𝑦𝑖, 𝑦𝑖) = 0 

(1.35) 
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Different transformations are possible to obtain the dissimilarity 𝑑 from the 

similarity 𝑠. The most common are: 

 

• absolute dissimilarity: 𝑑(𝑦𝑖, 𝑦𝑗) = 𝑠(𝑦𝑖, 𝑦𝑖) − 𝑠(𝑦𝑖, 𝑦𝑗) 

(1.36) 

• relative dissimilarity: 𝑑(𝑦𝑖, 𝑦𝑗) =
𝑠(𝑦𝑖,𝑦𝑖)−𝑠(𝑦𝑖,𝑦𝑗)

𝑠(𝑦𝑖,𝑦𝑗)
 

(1.37) 

• square dissimilarity: 𝑑(𝑦𝑖, 𝑦𝑗) = √𝑠(𝑦𝑖, 𝑦𝑖) − 𝑠(𝑦𝑖, 𝑦𝑗) 

(1.38) 

Typically, when the dissimilarity measure between two time series has a low value, 

the distance measure between them has a low value too. This suggests the use of 

distance metrics, defined below, to determine the degree of similarity between time 

series, as already done in many papers and works [27].  

 

Distance metric 

A function 𝐷: 𝑌𝑡 × 𝑌𝑡 → ℝ is called a distance metric on 𝑌𝑡 if it satisfies the following 

properties, ∀ 𝑦𝑖, 𝑦𝑗 , 𝑦𝑘 ∈ 𝑌𝑡: 

 

• Non-negativity: 𝐷(𝑦𝑖, 𝑦𝑗) ≥ 0 

(1.39) 

• Symmetry: 𝐷(𝑦𝑖 , 𝑦𝑗) = 𝐷(𝑦𝑗 , 𝑦𝑖) 

(1.40) 

• Reflexivity: 𝐷(𝑦𝑖, 𝑦𝑖) = 0  

(1.41) 

• Triangle inequality: 𝐷(𝑦𝑖, 𝑦𝑗) ≤ 𝐷(𝑦𝑖, 𝑦𝑘) + 𝐷(𝑦𝑘, 𝑦𝑗) 

(1.42) 
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If any of these properties is not satisfied, the distance is a measure but not a metric. 

The key difference between the two is that a metric allows to obtain standardized 

results since its properties hold always, while a measure can be derived with 

different techniques and different results can be possible. Although having the 

characteristics of a metric is desirable, a (dis)similarity measure can be quite effective 

without being a metric. For the sake of simplicity, in the following the two terms will 

be used indiscriminately. 

 

The main distance metrics employed in time series analysis and clustering will be 

presented in the following. Anyway, once a metric has been selected, the distance 

between the two time series under consideration is typically computed as the sum of 

the distances between individual points. More formally, if 𝑌𝑡 and 𝑌𝑡′ are two time 

series of length 𝑁 representing a set of data and 𝑦𝑖, 𝑦𝑗
′ are generic points of the first 

and second series respectively: 

 

                          𝐷( 𝑌𝑡, 𝑌𝑡
′) =∑𝐷( 𝑦𝑖 , 𝑦𝑗

′),

𝑁

𝑡=1

            ∀𝑖, 𝑗 ∈ [1, 𝑁] 

(1.43) 

Of course, equation (1.43) supposes that the two series under consideration have the 

same number of points. If this assumption is not true, other measures (typically non-

metric) must be adopted, as it will be further explained. 

 

The metrics exploited in clustering algorithms must cope with the problems caused 

by common features of time-series data such as noise, temporal drift, longitudinal 

scaling, offset translation, linear drift, discontinuities, and amplitude scaling. Various 

techniques have been developed for similarity measure, and the method to choose is 

problem specific. In particular, the choice of a proper distance approach depends on 

the characteristic of time-series, its length, representation method, and of course on 

the objective of the clustering process. Typically, the methods to determine 

similarities between time series can be classified under three main categories  

 

• Similarity in time: distance measures in which the time of occurrence of 

patterns is crucial. This kind of measuring is computationally costly if applied 

to raw time series, thus the calculation is performed on transformed time 
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series. For instance, as already discussed before, a Fourier transform can be 

applied to the time series to reduce its complexity by eliminating the 

unnecessary harmonics (low energetic content). 

 

• Similarity in shape: distance measures in which the time of occurrence of 

patterns is not important. More precisely, clusters of time series with similar 

patterns are constructed regardless of the time instants. It is possible to see the 

similarity in time as a special case of similarity in shape. 

 

• Similarity in change: in this approach modelling methods are employed to 

represent the time series and then a similarity measure is applied on the 

parameters of the fitted model. For instance, as already discussed, 

deterministic methods allow to estimate an analytic function that describes the 

series. Moreover, Hidden Markov Model technique allows to obtain a 

probability density function, for the considered time series, dependent on 

some parameters. If this model is applied to two time series, it is possible to 

exploit similarity in change between their model parameters. The result of 

using this metric is time-series clusters that have a similar autocorrelation 

structure. Besides, it is not a suitable metric for short time series [28]. 

 

 

Despite the presented classification, it is also possible to distinguish between  

shape level and structure level similarity measure. In particular, shape level similarity 

measures are exploited to measure similarity in short-length time series by 

comparing their local patterns. For instance, expression profiles or individual 

heartbeats can be compared through these techniques. Instead, structure level 

similarity measures are exploited to measure similarity basing on global/high level 

structure and are used in long time series data. For instance, the case in analysis of 

this thesis focuses on a set of load duration/generation curves; each curve is 

composed by 8760 time instants (one for every 15 minutes of one year) and related 

electrical power measurement. Therefore, a structure level similarity is searched in 

order to obtain the dissimilarity matrix necessary for the clustering process.  

Figure 1.10 resumes the concepts discussed until now. 
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Figure 1.10: Approach to select the correct distance measure 

Once that the different similarity classifications have been discussed, it is now 

possible to present the main distance metric that has been exploited for this thesis, 

called dynamic time warping (DTW). For an optimal understanding of this metric, it is 

first necessary to briefly introduce, for two time series, the Euclidean distance and its 

generalization, Minkowski distance. More formally: 

 

Euclidean distance 

Let 𝑌𝑡 and  𝑌𝑡′ be two time series of length 𝑁. The Euclidean distance between 𝑌𝑡 and 

𝑌𝑡′ is defined as: 

 

𝐷𝐸(𝑌𝑡, 𝑌𝑡
′) = √∑(𝑦𝑡 − 𝑦′𝑡)

2

𝑁

𝑡=1

 

(1.44) 

This distance is simple and used as benchmark in many works. Moreover, the 

computational complexity is in the order of 𝑂(𝑛), thus its computation is fast. 

However, it has some disadvantages to be considered. Firstly, it requires that the two 

time series to be compared have exactly the same length; secondly, it is very weak 

and sensitive to small shift across the time axis [29]. Indeed, the Euclidean distance 

between time series is computed as the sum of the Euclidean distances between 

every couple of points corresponding to the same time instant of the first and second 

series respectively. Therefore, if one series is time-shifted forward or backward, 

• Shape level 

• Structure level 

• Similarity in time 

• Similarity in shape 

• Similarity in change 

Distance measures 
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every distance of each couple will change, leading to a completely different global 

result. The generalization of the Euclidean distance is the Minkowski distance, 

defined as follows: 

 

𝐷𝐿𝑝(𝑌𝑡, 𝑌𝑡
′) = √∑(𝑦𝑡 − 𝑦′𝑡)

𝑝

𝑁

𝑡=1

𝑝

 

(1.45) 

where 𝑝 is called the Minkowski order. Indeed, according to the value of this 

parameter, the Minkowski distance can be called Manhattan distance (𝑝 = 1), 

Euclidean distance (𝑝 = 2) or Maximum distance (𝑝 = ∞).  

It is important to recall that Euclidean distance, as well as its generalization, defines a 

similarity in time between the two considered time series. Indeed, as already 

discussed, the fact that it is computed only for points of a correspondent time instant 

implies that the time occurrence of a pattern is crucial (definition of similarity in 

time). Again, this underlines the great sensitivity to time shifts of this distance metric, 

an open issue that affects this method. To address this issue, a new distance metric is 

now introduced. This metric is called Dynamic Time Warping (DTW) and is instead 

based on similarity in shape. The following subsection focuses on DTW, providing 

all the formal and mathematical details for its full scientific comprehension.  

 

1.2.1  Dynamic time warping 

Dynamic time warping is an extremely important algorithm in many areas. It has 

been introduced in the 60s [30] and extensively explored during the 70s for speech 

recognition applications [31]. More recently, its role has become essential in many 

applications such as handwriting and online signature matching [32], gestures 

recognition [33], data mining and time series clustering (time series databases search) 

[34], surveillance [35], protein sequence alignment and chemical engineering [36], 

music and signal processing [37]. As it will be further discussed, DTW allows to 

address the issue of time shift sensitivity of Euclidean distance and makes also 

possible to compare two time series with different length. Indeed, since with 

Euclidean distance method the distance measure is computed for every couple of 

points corresponding to the same time instants, the two considered series must have 

the same length. Instead, DTW computes the distance measure for every possible 
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couple of point and determines the minimum/maximum distance between the two 

series, thus finding their optimal alignment regardless of their length. In the 

following, dynamic time warping technique will be analysed in detail from a 

mathematical and a practical point of view. For the sake of clearness, the two 

approaches will be discussed separately, with a greater focus on the second one.  

 

Mathematical approach to dynamic time warping 

Let 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑁} be a set of time series of length 𝑇. Note that this assumption is 

not strict, since as already discussed it is possible to make the hypothesis that the 

series have different lengths. Anyway, for the sake of simplicity, this case will not be 

examined in detail. An alignment 𝐴 of length |𝐴| = 𝑚 between two time series 𝑌𝑖 , 𝑌𝑗 is 

defined as the set of 𝑚 couples, with  𝑇 ≤ 𝑚 ≤ 2𝑇 − 1, of aligned elements of 𝑌𝑖 to 

elements of 𝑌𝑗. More formally: 

 

𝐴 = {(𝑎1(1), 𝑎2 (1)), (𝑎1(2), 𝑎2 (2)),… , (𝑎1(𝑚), 𝑎2 (𝑚))} 

(1.46) 

𝑎 defines a so-called warping function that realizes a mapping from time axis of 𝑌𝑖 to 

time axis of 𝑌𝑗 and the applications 𝑎1 and 𝑎2 obey to the following conditions: 

• Boundary condition: 1 = 𝑎1(1) ≤ 𝑎1(2) ≤ ⋯ ≤ 𝑎1(𝑚) = 𝑇 
1 = 𝑎2(1) ≤ 𝑎2(2) ≤ ⋯ ≤ 𝑎2(𝑚) = 𝑇 

(1.47) 

• Monotonicity condition: 𝑎1(𝑙 + 1) ≤ 𝑎1(𝑙) + 1 and 𝑎2(𝑙 + 1) ≤ 𝑎2(𝑙) + 1        

         (𝑎1(𝑙 + 1) − 𝑎1(𝑙)) + (𝑎2(𝑙 + 1) − 𝑎2(𝑙)) ≥ 1        

∀𝑙 ∈ {1,… ,𝑚} 

(1.48) 

Even if the mathematical explanation can appear quite cumbersome, intuitively an 

alignment 𝐴 defines a strategy to associate all the elements of the two series. Note 

that the boundary condition imposes that the first and last point of the two series 

respectively must be coupled. This is shown by equation (1.47), where 𝑎1(1), 𝑎2(1) 

are equal to one and 𝑎1(𝑚), 𝑎2(𝑚) are equal to 𝑇, and contributes to the low 

sensitivity of DTW to time shifts. Indeed, if a series is time-shifted forward or 



1. The scientific approach to Clustering 41 

 

 

backward, its first and last point will be coupled anyway with the first and last point 

of the other time series. A slight difference can be present between alignment of the 

other points in the middle, but anyway the global distance measure does not show a 

great variation as does instead using Euclidean distance method. It is important to 

remark that the boundary condition does not impose severe restrictions on the 

alignment between the other points of the series. For instance, the second point of the 

first series could be coupled with the third point of the second series or vice versa. 

Clearly, many different alignments are possible, as represented in figure 1.11, that 

shows three possible alignments between two series  

𝑋𝑗𝑡 = {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗7} and 𝑋𝑖𝑡 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖7} [26]. For example, the green path in 

figure 1.11 aligns the two series as: 

𝐴 = {(𝑥𝑖1, 𝑥𝑗1), (𝑥𝑖2, 𝑥𝑗2), (𝑥𝑖2, 𝑥𝑗3), (𝑥𝑖3, 𝑥𝑗4), (𝑥𝑖4, 𝑥𝑗4), (𝑥𝑖5, 𝑥𝑗5), (𝑥𝑖6, 𝑥𝑗6), (𝑥𝑖7, 𝑥𝑗7)} 

(1.49) 

 

Figure 1.11: Three possible alignments (warping paths) between two time series 

In the following, Å will denote all the set of possible alignments between the two 

considered time series. Dynamic time warping between time series 𝑌𝑖 , 𝑌𝑗 is defined as: 

 

𝐷𝑇𝑊(𝑌𝑖, 𝑌𝑗) = 𝑚𝑖𝑛𝐴∈Å  
1

|𝐴|
∑ 𝜑(𝑦𝑖𝑡′ , 𝑦𝑗𝑡)

(𝑡′,𝑡)∈𝐴

 

(1.50) 
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where 𝜑: 𝑌𝑖 × 𝑌𝑗 → ℝ is a positive and real value point-distance function (generally 

the Euclidean distance). As it is possible to note from equation (1.50), DTW is 

realized by determining the alignment of the two considered time series able to 

minimize the total distance between them, given by the sum of the point-to-point 

distances scaled by 
1

|𝐴|
. In particular, as it will be clarified in the next section, a 

|𝑌𝑖| × |𝑌𝑗| cost matrix is built up, in which the value at (𝑡, 𝑡′) is the minimum distance 

warp path that can be constructed from the two series and the value at (|𝑌𝑖|, |𝑌𝑗|) is 

the minimum distance between the two series under the minimum distance warp 

path  Thus, through DTW an optimal alignment is determined with the important 

property of being almost insensitive to time shifts. Euclidean distance method, 

instead, consider just one alignment, in which only the points correspondent to the 

same time instant are aligned.  

 

 

More formally, the Euclidean alignment between time series 𝑌𝑖 , 𝑌𝑗 is: 

 

𝐴𝐸 = {(𝑎1(1), 𝑎2 (1)), (𝑎1(2), 𝑎2 (2)),… , (𝑎1(𝑇), 𝑎2 (𝑇))} 

(1.51) 

 

where ∀𝑡 = 1,… , 𝑇: 𝑎1(𝑡) = 𝑎2(𝑡) = 𝑡 and |𝐴𝐸| = 𝑇. According to this definition, it is 

possible to prove that the Euclidean distance between time series 𝑌𝑖, 𝑌𝑗 is obtained as: 

 

𝐷𝐸(𝑌𝑖, 𝑌𝑗) =
1

|𝐴𝐸|
∑𝜑(

|𝐴𝐸|

𝑘=1

𝑦𝑖𝑎1(𝑘), 𝑦𝑗𝑎2(𝑘)) =
1

𝑇
∑𝜑(𝑦𝑖𝑡, 𝑦𝑗𝑡)

𝑇

𝑡=1

 

(1.52) 

This result is coherent with the already proposed definition of Euclidean distance 

between time series as the sum of the Euclidean distances between their 

correspondent points. To conclude this brief mathematical analysis of dynamic time 

warping, it is important to recall that DTW is not a distance metric, since it does not 

satisfy the triangle inequality (equation (1.42)), and its computational complexity is 

in the order of 𝑂(𝑛2). 
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Practical approach to dynamic time warping 

In this paragraph, a more practical and operative approach to DTW will be 

presented. In particular, the algorithm for DTW computation will be discussed while 

the implemented code in Matlab and R Studio will be examined in the third chapter. 

As already mentioned, in order to compare two time series, a distance function 𝜑 

must be exploited. Intuitively, 𝜑 has a small value when the series are similar and a 

large value if they are different. It is common to call the distance function cost 

function and the task of optimal alignment of the series becomes the task of arranging 

and coupling all series points by minimizing the cost function. More precisely, if 𝑌𝑖 

and 𝑌𝑗 are two time series to be compared of length 𝑁 and 𝑀 respectively, the 

algorithm starts by computing the distance matrix 𝐶:𝑁 × 𝑀, that contains all the 

pairwise distances between 𝑌𝑖 and 𝑌𝑗. Indeed, the (ℎ, 𝑘) element of 𝐶 corresponds to 

the Euclidean distance between 𝑦𝑖ℎ ∈ 𝑌𝑖  and 𝑦𝑗𝑘 ∈ 𝑌𝑗. The distance matrix is 

commonly called local cost matrix. Formally: 

 

𝐶:𝑁 × 𝑀,      𝑐(ℎ, 𝑘) = √(𝑦𝑖ℎ − 𝑦𝑗𝑘)
2
= |𝑦𝑖ℎ − 𝑦𝑗𝑘|,      

ℎ ∈ {1,… ,𝑁}, 𝑘 ∈ {1,… ,𝑀} 

(1.53) 

 

Once the local cost matrix has been computed, the algorithm determines the 

alignment path which minimizes the total local cost, given by the sum of local costs 

along the path. It is also possible to plot a heatmap of the local cost matrix to 

highlight that the optimal alignment path runs through its low-cost areas. For 

instance, figure 1.12 shows an example, taken from [38], of the local cost matrix 

heatmap. Instead, furthermore in this section, the heatmap related to a specific 

example case will be examined and discussed in detail. 

As it is possible to observe from figure 1.12, the optimal alignment represented by 

the blue path passes only through the green areas of the heatmap, thus leading to a 

minimized global cost.  
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Figure 1.12: example of local cost matrix heatmap and optimal alignment path 

The alignment path, also called warping path or warping function, defines the 

correspondence of an element 𝑦𝑖ℎ ∈ 𝑌𝑖 to an element 𝑦𝑗𝑘 ∈ 𝑌𝑗. More formally, it is a 

sequence of points 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝐿) with 𝑝𝑙 = (𝑝𝑖, 𝑝𝑗) ∈ [1,… ,𝑁] × [1, … ,𝑀]  

for 𝑙 ∈ [1, … , 𝐿]. Of course, there are some conditions and criteria to be fulfilled. These 

conditions have been already presented in the previous section and will now be 

recalled, adopting the new notation introduced in this section: 

 

• Boundary condition: 𝑝1 = (1,1) and 𝑝𝐿 = (𝑁,𝑀) 

(1.54) 

This condition ensures that the starting and ending points of the warping path 

must be the first and last points of the aligned series. 

 

• Monotonicity condition: 𝑛1 ≤ 𝑛2 ≤ ⋯ ≤ 𝑛𝑘 and 𝑚1 ≤ 𝑚2 ≤ ⋯ ≤ 𝑚𝑘 

(1.55) 

This condition preserves time ordering of aligned points. 
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• Step-size condition: (𝑝𝑙+1 − 𝑝𝑙) ∈ {(1,1), (1,0), (0,1)} 

(1.56) 

This condition limits the warping path from long jumps (shifts in time) while 

aligning sequences. Indeed, if for example (2,0) was an allowed jump, a 

position of the cost matrix could be skipped, since the warping path could 

move by two positions for each step. This concept will be discussed and 

examined in detail further in this section. 

 

 

The cost function associated to a warping path on the local cost matrix is defined as: 

 

𝑐𝑝(𝑌𝑖, 𝑌𝑗) =∑𝑐(𝑦𝑖𝑙, 𝑦𝑗𝑙)

𝐿

𝑙=1

 

(1.57) 

Equation (1.57) shows that, as already discussed, the global cost related to a warping 

path is the sum of single local costs of the local cost matrix positions related to the 

warping path itself. 

The warping path which has the minimum global cost is called optimal warping path 

and will be denoted with 𝑃∗. To determine the optimal one, every possible warping 

path between 𝑌𝑖, 𝑌𝑗 should be tested. Since this could be computationally challenging 

due to the exponential increase of paths corresponding to a linear increase of the 

lengths of the two series, DTW employs dynamic programming-based algorithm 

with computational complexity in the order of 𝑂(𝑁𝑀). More precisely, DTW 

algorithm exploits the DTW distance function, defined as follows: 

 

𝐷𝑇𝑊(𝑌𝑖, 𝑌𝑗) = 𝑐𝑃∗(𝑌𝑖, 𝑌𝑗) = min {𝑐𝑝(𝑌𝑖, 𝑌𝑗), 𝑝 ∈ 𝑃
𝑁×𝑀} 

(1.58) 

where 𝑃𝑁×𝑀 denotes the set of all possible warping paths. To determine this distance, 

the global cost matrix or accumulated cost matrix 𝐷 is built up according to the following 

expressions: 

 



46 1. The scientific approach to Clustering 

 

 

• First row: 

𝐷(1, ℎ) = ∑𝑐(𝑦𝑖1,

ℎ

𝑘=1

𝑦𝑗𝑘), ℎ ∈ (1,… ,𝑀) 

(1.59) 

• First column: 

𝐷(ℎ, 1) = ∑𝑐(𝑦𝑖𝑘 , 𝑦𝑗1), ℎ ∈ (1, … , 𝑁)

ℎ

𝑘=1

 

(1.60) 

• All other elements:  

 

𝐷(ℎ, 𝑘) = min{𝐷(ℎ − 1, 𝑘 − 1) + 𝑐(𝑦𝑖ℎ, 𝑦𝑗𝑘), 𝐷(ℎ − 1, 𝑘), 𝐷(ℎ, 𝑘 − 1)} + 𝑐(𝑦𝑖ℎ, 𝑦𝑗𝑘), 

 ℎ ∈ (1,… ,𝑁), 𝑘 ∈ (1,… ,𝑀) 

(1.61) 

where 𝑐 denotes an element of the local cost matrix, already computed.  

 

Once that the global cost matrix has been obtained, the optimal warping path and the 

global distance are derived. In the following pages, algorithm 1 and algorithm 2 

report the main steps to build up the global cost matrix and to find the optimal 

warping path. Moreover, figure 1.13 shows the so-called three-way plot of the 

alignment between the two considered time series. Indeed, it places one series 

horizontally in a small lower panel, the other series vertically on a left panel and a 

larger inner panel holds the warping curve. In this way, matching points can be 

recovered by tracing indices on the first time series, moving upwards until the 

warping curve is met, and then moving leftwards to discover the index of the other 

matched series. 
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Algorithm 1 Computation of global cost matrix (dtw) [38] 

1: 𝑛 = |𝑌𝑖| 

2 𝑚 = |𝑌𝑗| 

3: dtw=matrix(𝑛 × 𝑚) 

4: dtw(1,1)= 𝑐(1,1) 

5: for 𝑖 = 2, 𝑖 ≤ 𝑛, 𝑖 + + do 

6:  dtw(𝑖, 1)=dtw(𝑖 − 1,1) + 𝑐(𝑖, 1)#first column 

7: end for 

8: for 𝑗 = 2, 𝑗 ≤ 𝑚, 𝑗 + + do 

9:  dtw(1, 𝑗)=dtw(1, 𝑗 − 1) + 𝑐(1, 𝑗)    #first row 

10: end for 

11: for 𝑖 = 2, 𝑖 ≤ 𝑛, 𝑖 + + do 

12:  for 𝑗 = 2, 𝑗 ≤ 𝑚, 𝑗 + + do 

13:   dtw(𝑖, 𝑗)=min{dtw(𝑖 − 1, 𝑗) + 𝑐(𝑖, 𝑗), dtw(𝑖, 𝑗 − 1), dtw(𝑖 − 1, 𝑗 − 1)} 

  +𝑐(𝑖, 𝑗) 

14:  end for 

15: end for 

16: return dtw 

 

It is recalled that 𝑐 represents the local cost matrix, which element are the Euclidean 

distances between all the points of the two series. As it is possible to note, the 

algorithm computes first the upper left corner element of the global cost matrix, as 

the Euclidean distance between the first elements of the two time series to be 

compared. Then, the first row and column are computed through the expressions 

presented in previous page and reported by equation (1.59) and (1.60). In particular, 

these equations show that an element of the first row/column is given by the sum of 

the elements of the local cost matrix in the first row/column until the position of the 

considered element. This is achieved by summing up to the value of the local cost 

matrix in the considered position the value of the global cost matrix in the previous 

position in the row/column under consideration. Then, all the remaining elements of 

the DTW matrix are computed iteratively according to equation (1.61). 

 

 

 

 

 



48 1. The scientific approach to Clustering 

 

 

Algorithm 2 Computation of optimal warping path (path) [38] 

1: path=new_array(max between 𝑛,𝑚) 

2 𝑖=rows(dtw) 

3: 𝑗=columns(dtw) 

4: while (i>1) and (j>1) do 

5:  if i==1 then 

6:   i= 𝑖 − 1 

7:  else if j==1 then 

8:   j= 𝑗 − 1 

9:  else 

10:   if dtw(𝑖 − 1, 𝑗)=min{dtw(𝑖 − 1, 𝑗), dtw(𝑖, 𝑗 − 1), dtw(𝑖 − 1, 𝑗 − 1)} then 

11:    𝑖 = 𝑖 − 1 

12:   else if dtw(𝑖, 𝑗 − 1)=min{dtw(𝑖 − 1, 𝑗), dtw(𝑖, 𝑗 − 1), dtw(𝑖 − 1, 𝑗 − 1)} 

  then 

13:    j= 𝑗 − 1 

14:   else 

15:    𝑖 = 𝑖 − 1, 𝑗 = 𝑗 − 1 

16:   end if 

17:  add to path position (𝑖, 𝑗) 

18:  end if 

19: end while 

20: return path 

 

As it is possible to note, starting from lower right corner of the global cost matrix (𝑖, 𝑗 

are initialised to the number of rows and columns of the matrix, thus the first 

considered position is the lower right corner) the three adjacent positions are checked 

in order to determine the one which has the minimum distance. For instance, if the 

DTW matrix is 9x9, starting from position (9,9) the examined positions are (8,9), (9,8) 

and (8,8), that are adjacent to (9,9). The indexes of the new selected position (that 

have minimum distance from the starting position) are saved in the path array and 

the procedure is iteratively repeated until the first position of the global cost matrix 

(upper left corner) is reached. The result is an array containing the positions of the 

selected element of the global cost matrix, thus containing the indices of the optimal 

warping path (alignment) between the two considered time series. 
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Figure 1.13: three-way plot of time series alignment 

Figure 1.13 shows the so-called three-way plot of the alignment between the two 

considered time series. As already discussed, it places one series horizontally in a 

small lower panel, the other series vertically on a left panel and a larger inner panel 

holds the warping curve. In this way, matching points can be recovered by tracing 

indices on the first time series, commonly called query series, moving upwards until 

the warping curve is met, and then moving leftwards to discover the index of the 

other matched series, commonly called reference series. More precisely, the two time 

series that have been compared are: 

 

• First series: 𝑌1 = {7,9,6,9,12,6,4,6,8} 

 

• Second series: 𝑌2 = {5,6,4,3,9,5,6,8,9} 
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Note that both series have length 𝑁 = 9, thus the local and global cost matrixes will 

be 9 × 9. For visual purpose, the two considered series are reported in the following 

figure (𝑌1 in blue and 𝑌2 in red). 

 

 

Figure 1.14: two time series under consideration 

By applying Algorithm 1, it is possible to compute the global cost matrix. Then, 

through Algorithm 2, the optimal warping path is defined. Figure 1.15 reports a 

heatmap of the global cost matrix, with the optimal path shown as a blue line. As it is 

possible to observe, this path runs only through the low-cost areas of the matrix, as 

already explained. Moreover, figure 1.16 shows the alignment between the two series 

through dotted lines connecting their points. For instance, it is possible to observe 

that the first two points of the red series are aligned with the first point of the blue 

series. This is confirmed by the three-way plot in figure 1.13, which is made by a 

horizontal line in the first two positions. On the contrary, when the warping path is 
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made by vertical lines, more points of the blue series are aligned with one point of 

the red series. 

 

Figure 1.15: global cost matrix heatmap and optimal warping path 

 

Figure 1.16: optimal alignment between the two considered time series 
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To conclude the analysis of dynamic time warping, it is now convenient to briefly 

discuss the effect of the step-size condition on the result. As already explained, when 

there is no difference between the considered time series, the warping path coincides 

with a diagonal line. As differences between time series increase, the warping path 

deviates more from the diagonal line by matching similar time-axis fluctuations. 

Indeed, if the two series coincide, DTW algorithm surely defines a one-to-one 

matching of correspondent points, since they have the minimum distance with 

respect to other points of the series. Thus, the warping path will show a diagonal 

line, also evident in the three-way plot. Instead, when multiple points of a series are 

matched to a single point of the other, the warping path becomes horizontal or 

vertical, deviating from the diagonal behaviour. While dynamic time warping finds 

the optimal alignment of the two considered time series, sometimes it tends to create 

an unrealistic correspondence between time series features by aligning very short 

features of one of them to long features of the other. In order to avoid this 

phenomenon, the warping path is subject to constraints on each step. These 

constraints define the possible relations between several consecutive points on the 

path and are called step-size conditions or step-size functions. For instance, after moving 

in horizontal or vertical direction for 𝑘 consecutive points, the warping path could 

not be allowed to continue in the same direction before stepping l points in diagonal 

direction. This situation is shown in the left part of figure 1.17 below [38], in which 

after k horizontal steps the warping path must proceed in diagonal direction for l 

steps. 

 

 

Figure 1.17: example of possible step-size conditions 

Instead, the right part of figure 1.17 shows the step-size condition presented in this 

chapter (equation (1.56)) and used for the optimal warping path computation. This 

condition imposes that, for a generic position in the cost matrix, the warping path 

1 
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can move just of one step horizontally, vertically or diagonally, as described in 

Algorithm 2 explanation. Indeed, according to the right part of figure 1.17, to reach 

the end point it is possible to move diagonally only from a position adjacent to the 

end point itself, while it is necessary to move one step horizontally or vertically and 

one step diagonally from a non-adjacent position to the end point. 

Once that a step-size condition has been selected, a weight is assigned to each step of 

the obtained warping path. Several step patterns have been discussed in literature.  

A classic paper by Sakoe and Chiba [31] classifies them according to two properties: 

their symmetry (symmetric/asymmetric), and the bounds imposed on the slope 

expressed through a parameter 𝑃. Figure 1.18 shows four typical step patterns. 

 

 

Figure 1.18: four typical step patterns in literature 

The step-size condition exploited in Algorithm 2 corresponds to the upper right 

image in figure 1.18. It is called symmetric2 step pattern and allows an unlimited 

number of elements of the query to be matched to a single element of the reference, 
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and vice-versa, anyway avoiding to skip points since the maximum step is of one 

position forward (45° slope). The average cost per-step is computed by dividing the 

cumulative distance by 𝑁 +𝑀, where 𝑁 is the length of the query time series and 𝑀 

is the length of the reference. Moreover, the cost (weight) assigned to a diagonal step 

(one-to-one matching) is higher with respect to the weight assigned to horizontal or 

vertical steps, as shown by numbers on figure 1.18. The left right corner image, 

instead, shows the so-called symmetric1 step pattern, similar to symmetric2 but with a 

same weight assigned to each step. Finally, the lower images show asymmetric 

patterns, where some positions can be skipped since the slope of diagonal lines can 

be higher of 45°.  

To conclude the analysis of dynamic time warping, it is convenient to list its main 

advantages and disadvantages for a more complete view. On one hand, DTW is 

capable to handle time shifts, allowing similar shapes to be matched even if they are 

out of phase along the time axis. Moreover, it can assist clustering of different-length 

time series and its error rate is lower than using the Euclidean distance. On the other 

hand, DTW is sensitive to outliers and its complexity is higher than Euclidean 

distance complexity. To solve this issue, an efficient lower bound approximations of 

the DTW distance has been proposed [38]. 

 

1.3 Time series clustering  

Before analysing in detail time series clustering, it is important to briefly discuss the 

so-called data preparation methods, employed to normalize, scale and transform data to 

achieve time-shift invariance and insensibility to possible offsets. Different possible 

methods can be exploited; the main are presented in the following.  

 

Z-normalization 

This technique transforms the time series to the same time scales by normalizing 

them. The new scaled element 𝑦𝑖′ can be obtained from its related original element 𝑦𝑖 

as: 

𝑦𝑖
′ =

𝑦𝑖 − 𝜇

𝜎
 

(1.62) 

In equation (1.62), 𝜇 and 𝜎 represent respectively the mean and standard deviation of 

the considered time series of length 𝑁, computed as follows: 
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𝜇 =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

 

(1.63) 

𝜎 = √
1

𝑁
∑(𝑦𝑖 − 𝜇)2
𝑁

𝑖=1

 

(1.64) 

Figure 1.19 below [18] shows the clustering result of a set of elements before and 

after z-normalization. The red, blue and yellow dots represent the centroids 

(“representative element”) of the defined clusters, a concept that will be further 

discussed. As it is possible to observe from the left-side image (before normalization), 

the red centroid seems closer to the blue one than the yellow one. However, a 

different scale is adopted for x- and y-axis of the three series, therefore the observed 

similarity could be false. Indeed, the right-side image (after normalization) shows 

that red centroid is closer to the yellow one than the blue one. Thus, after  

z-normalizing data, it is possible to have a more accurate measure of the similarity 

between clusters. 

 

 

Figure 1.19: clustering results before and after z-normalization 
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Z-normalization is typically exploited when data have a normal distribution or if the 

dataset has too few elements to employ other methods. However, it is the simplest 

and fastest data-preparation method and can be used for preliminary but coherent 

results. 

 

Log-transform 

This method exploits another data transformation, called log-transform. When the 

distribution of the data is non-normal, they are transformed to make them as 

"normal" as possible and, thus, increase the validity of the associated statistical 

analyses. The log transformation is, arguably, the most popular among the different 

types of transformations used to make data approximately conforming to normality. 

Formally, the new transformed element 𝑦𝑖′ can be obtained from its related original 

element 𝑦𝑖 as: 

 

𝑦𝑖
′ = ln (𝑦𝑖) 

(1.65) 

For instance, figure 1.20 below [18] shows some data which follows a power-law 

distribution. For the sake of clearness, it is recalled that the power-law function is 

defined as: 

 

𝑓(𝑦) = 𝑎𝑦𝛼 + 𝜀 

(1.66) 

where 𝜀 is called deviation term and represents uncertainty in observed values. 

Typically, 𝛼 ranges between 2 and 3; this implies that the power-law function cannot 

be a probability density function strictly, since the area below cannot be equal to one. 

However, it is possible to define a truncated-power-law distribution as follows: 

 

𝑓𝑦(𝑦) = 𝐶𝑦
−𝛼 + 𝜀,      𝑦 ≥ 𝑦𝑚𝑖𝑛 

(1.67) 

The minimum value 𝑦𝑚𝑖𝑛 is needed since the distribution has infinite area 

approaching zero, while the constant 𝐶 is a scaling factor to ensure that the total area 

below the curve is equal to one. Figures 1.20 and 1.21 in the next page show the 
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results of clustering points of a time series, which follows a power-law distribution, 

in three clusters, represented by their centroids (blue, red, yellow dots). As it is 

possible to observe, after a log-transform the distribution of the data is closer to a 

normal distribution, and the red centroid is closer to blue than yellow, differently 

from figure 1.20. 

 

Figure 1.20: power-law distributed data and clusters centroids 

 

 

Figure 1.21: data distribution and clusters centroids after log-transformation 

 

Data preparation methods using quantiles 

While the previously presented methods typically require a specific data distribution 

for the time series, this method instead applies to any time series. Indeed, it can make 

a series statistically identical to a different reference data distribution. Typically, a 

normal distribution is used as reference so that by quantile-transforming the 

considered time series, that has an unknown distribution, a new transformed time 

series, that has a normal distribution, is obtained. The method is based on dividing 

data in intervals such that each interval contains the same number of elements. The 
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elements at interval boundaries are called quantiles. The main steps to convert data 

into quantiles are the following: 

 

1. Sort values of series to be transformed and reference series from lowest to 

highest 

 

2. Compute the mean between the lowest values, the second lowest values, the 

third lowest values of the two series and so on until the mean of the highest 

values of the two series is obtained. 

 

3. Replace every value of each series with its correspondent mean (quantile). 

 

By applying this process (with the same reference distribution) to two time series to 

be compared, after having converted data, the similarity between two elements is 

inversely proportional to the number of elements between the two, computed as the 

difference between the correspondent quantiles: 

 

𝑠𝑖𝑚(𝑦𝑖, 𝑦𝑗) ≈ 1 − |𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑦𝑖) − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑦𝑗)| 

(1.68) 

Quantiles are typically the best default choice to transform data. However, to obtain 

reliable indicators of the data distribution, a big dataset is needed. As a rule of 

thumb, to create 𝑛 quantiles, at least 10𝑛 elements are necessary, otherwise other 

transformation methods are preferred. In this thesis, for the sake of simplicity, z-

normalization method has been exploited, since anyway it allows to obtain a low 

sensitivity to offsets and scaling. 

 

After having applied a data preparation method, a similarity measure must be 

selected for the clustering algorithm to perform. Indeed, before the algorithm can 

cluster data, it must be defined how similar pairwise elements are. As already 

discussed in the previous section, the most employed similarity metrics are 

commonly the Euclidean distance and the dynamic time warping, which determine 

similarity between time series in time and shape, respectively. After having prepared 

the data and selected a similarity measure, the clustering algorithm exploits this 

latter to cluster data. Eventually, it is important to carefully check the quality of 

clustering output; this is done by computing some quality parameters that indicates 
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the goodness of the result, as it will be further discussed. If clustering output is not as 

good as expected, the algorithm or its parameters are changed and the quality of 

results is checked again, in an iterative process that stops when the clustering output 

is accurate enough. Figure 1.22 [18] shows graphically the main steps to perform the 

clustering process, as discussed above. 

 

 

 

Figure 1.22: main steps to perform clustering on a dataset 

 

Once that data preparation methods have been discussed, it is now possible to 

analyze in detail the clustering algorithms, defining their classification and working 

principle. First, it is convenient to formally introduce clustering: 

Let 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑁} be a set of N time series. Time series clustering is the process of 

partitioning 𝑌 into 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} according to a similarity measure or criterion.  

𝐶𝑖 is called cluster so that 𝑌 =∪𝑖=1
𝑘 𝐶𝑖 and 𝐶𝑖 ∩ 𝐶𝑗 = 0 for 𝑖 ≠ 𝑗. 

The previous definition remarks that clustering algorithms group similar elements of 

the original set in the same clusters, according to the defined similarity measure.  

The term element is used on purpose, since two main clustering types are possible: 

clustering of multiple time series into representative ones (coherent with the 

provided definition) and clustering of points of a single time series to reduce its time 

dimensionality. In this latter case, the same definition can be used by defining 𝑌 as a 

set of points of a single time series of length 𝑁. Moreover, another distinction can be 

made for clustering of multiple time series. Indeed, the approach to time series 

clustering can be classified into: 
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A. Multiple time series clustering approach 

 

i. Whole time series clustering: clustering a set of time series with respect to 

their similarity 

ii. Subsequent time series clustering: clustering of a set of subsequences 

extracted from a single time series  

B. Single time series clustering approach 

 

i. Time point clustering: clustering of points of a single time series based on 

a combination of their temporal proximity and similarity. Typically, 

subsequent time series clustering is preferred to this approach. 

 

This thesis focuses on whole time series clustering, since as already mentioned 365 

load/generation curves are clustered into 36 in order to reduce the computational 

time of many optimization algorithms. Therefore, before introducing the clustering 

algorithms that have been compared, it is convenient to analyze their possible 

classifications.  

Firstly, there are generally three different approaches to (whole) time series 

clustering: 

 

• Shape-based approach: the shapes of the (two) series are matched as much as 

possible, by a non-linear stretching and contracting of the time axes in order to 

align them. Typically, conventional clustering algorithms are exploited, with a 

modified similarity measure such as dynamic time warping.  

 

• Feature-based approach: the row time series are converted into feature vectors 

of lower dimension. Then, a conventional clustering algorithm is applied to 

these vectors.  

 

• Model-based approach: a parametric model is defined for each time series and 

then a suitable similarity measure and clustering algorithms is selected and 

applied to the extracted parameters. 

 

Figure 1.23 [1] in the next page remarks graphically the previously discussed points. 

As it is possible to observe, shape-based and feature-based approach employ one of 

the most classical clustering algorithm, called k-means or k-medoids depending on the 

selected type of centroid. In this thesis, the k-medoids and hierarchical Ward algorithms 
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have been exploited to perform clustering on a set of load/generation curves, thus 

adopting a shape-based approach. The two algorithms will be discussed in detail in 

the next chapter.  

 

 

 

Figure 1.23: approaches to (whole) time series clustering 

After having defined the main approaches to time series clustering, it is now possible 

to analyze the clustering algorithms, starting from their classification. In particular, 

the main categories in which clustering algorithms can be classified are: 

 

• Partitional algorithms: given a dataset of 𝑁 objects, a partitional algorithms 

creates 𝑘 partitions (clusters) of them, with 𝑘 ≤ 𝑁. Moreover, it is required that 

each cluster contains at least one object and each object must belong to one 

and only one cluster. Typically, the number of partitions to be obtained 𝑘 is an 

input of the algorithm that begins creating an initial partitioning and applies 

an iterative re-locating technique which moves objects from one cluster to 

another to improve the result. The general criterion for an effective clustering 
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is based on similarity: objects in the same cluster must be similar, close ore 

correlated while objects in different clusters must be very distant between 

each other. Once that the portioning process is complete, an optimal 

representative value for each cluster is defined. As it will be further discussed, 

in k-means algorithm this value is represented by the cluster mean, while in  

k-medoids it is represented by one of the objects located near the cluster 

centre. 

 

• Hierarchical algorithms: these algorithms create a hierarchical decomposition 

of a set of 𝑁 objects. Moreover, they can be classified in agglomerative  

(bottom up) or divisive (top-down), according to how the decomposition is 

obtained. More precisely: 

 

▪ Agglomerative approach: initially each object forms a separate group. 

Successively, the closest objects are merged forming groups that are 

merged again in an iterative process until a desired number of clusters 

is obtained. 

▪ Divisive approach: initially all the objects belong to the same cluster. 

Successively, though an iterative process, this initial group is 

subdivided into smaller groups, until a desired number of clusters is 

obtained.  

 

The main issue with hierarchical algorithms is that they cannot correct errors. 

Indeed, whenever a step is performed (merging or splitting), there is no 

possibility to restore it. However, this “rigidity” of the clustering process is 

useful since it reduces the computational complexity and improves the 

stability of the method.  

 

• Density-based algorithms: these algorithms have been created as an alternative 

to clustering algorithms exploiting distance measures between objects. The 

working principle is based on increasing a cluster dimension until the density 

(number of objects or data-points) in its neighbourhood (represented by a 

circle of radius 𝑟) exceeds a defined threshold. In other words, it is necessary 

to guarantee that, for each point inside a cluster, the neighbourhood of radius 

𝑟 contains a number of points higher and lower of a minimum and maximum 

value respectively.  

 

• Grill-based algorithms: these algorithms quantize the objects space in a finite 

number of cells that form a grill structure. Then, all the clustering process is 
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performed on this quantized space. The main advantage of this approach is 

the very low time complexity, that does not depend anymore on the number 

of objects but just on the number of cells in each dimension of the quantized 

space.  

 

• Model-based algorithms: these algorithms are applied to the extracted 

parameters of the model representing the series. For instance, clusters could 

be localized from a probability density function that reflects the spatial 

distribution of the data, by using standard statistical techniques. Typically, 

these algorithms consider the presence of noise, thus creating robust clusters. 

 

In this thesis, as already discussed, k-medoid algorithm and hierarchical Ward 

algorithm have been exploited. Therefore, in the following, they will be analysed in 

detail. Since it would be too long to discuss every category, density-based, grill-based 

and model-based approaches are left to the reader as a possible deepening. of the 

subject.  

Before examining the two mentioned algorithms, it is necessary to briefly analyse the 

possible “representative elements” of a cluster, formally called cluster prototypes or 

cluster centroids. Given a cluster 𝐶 = {𝑌1, 𝑌2, … , 𝑌𝑁} containing 𝑁 time series, its 

prototype 𝑅̂ minimizes the distance between all time series in the cluster and the 

prototype itself. More precisely: 

 

𝑅̂ = min𝑅{𝐷(𝐶, 𝑅)} = min𝑅{
1

𝑁
∑𝐷(𝑌𝑖, 𝑅)}

𝑁

𝑖=1

 

(1.69) 

where 𝐷 indicated a generic distance measure. Generally, three main cluster 

prototypes have been defined in literature, as discussed below. 

 

Using averaging prototype 

The simplest cluster centroid is represented by the mean of the elements in the 

cluster. For instance, if this latter contains three time series, the average value 

between points with a correspondent time instant is computed and a new 

representative series is obtained (cluster prototype). However, if the series have 

different length the one-to-one mapping nature of this prototype makes it unable to 

capture the actual shape of the time series in the cluster, leading to an average 
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centroid with a distorted shape. The same holds in case of adopting a similarity-in-

shape measure like dynamic time warping, since again it is not trivial to implement a 

pairwise prototype method. Instead, if the cluster contains data points rather than 

time series (for example to cluster points of a single time series to reduce its 

dimensionality), the average value of the elements in the cluster represents the 

optimal cluster prototype. To demonstrate this concept, the following mathematical 

proof is provided: 

 

Given 𝑁 points of a dataset assigned to 𝐾 clusters, the optimal centroid 𝜃𝑘̂ of a cluster 

𝑘 minimizes the sum of distances between points in the clusters and the centroid 

itself. Thus, 𝜃𝑘̂ can be determined through the following optimization problem: 

min𝑤,𝜃{f(𝜃)} =  min𝑤,𝜃{∑∑𝑤𝑛𝑘|𝜃𝑘 − 𝑥𝑛|
2}

𝐾

𝑘=1

𝑁

𝑛=1

 

subject to  𝑤𝑛𝑘 ∈ {0,1} ∀ 𝑛, 𝑘 

and  ∑ 𝑤𝑛𝑘 = 1 ∀ 𝑛
𝐾
𝑘=1  

(1.70) 

In equation (1.70), 𝑤𝑛𝑘 represents a binary variable equal to one if the 𝑛th point of the 

dataset belongs to the 𝑘th cluster and zero otherwise. Since the constraints do not 

requires difficult computations when derived, it is possible to solve the optimization 

problem by computing the derivative of the objective function with respect to 𝜃𝑘 and 

equating it to zero to determine its minimum value as follows: 

𝜕𝑓(𝜃)

𝜕𝜃𝑘
= 2∑𝑤𝑛𝑘(𝜃𝑘 − 𝑥𝑛) = 0

𝑁

𝑛=1

 

(1.71) 

The solution to equation (1.71) gives: 

∑𝑤𝑛𝑘𝜃𝑘 = ∑𝑤𝑛𝑘𝑥𝑛

𝑁

𝑛=1

𝑁

𝑛=1

 

𝜃𝑘∑𝑤𝑛𝑘 =∑𝑤𝑛𝑘𝑥𝑛

𝑁

𝑛=1

𝑁

𝑛=1
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𝜃𝑘̂ =
∑ 𝑤𝑛𝑘𝑥𝑛
𝑁
𝑛=1

∑ 𝑤𝑛𝑘
𝑁
𝑛=1

 

(1.72) 

As it is possible to observe from equation (1.72), the optimal cluster centroid 𝜃𝑘̂ of the 

𝑘th cluster is computed as the sum of the points inside the cluster, divided by the 

number of points of the cluster itself. This is exactly the definition of average value, 

hence the correctness of the averaging prototype for a set of points is proved. 

 

Using medoid as cluster prototype 

In this approach, the centre of a cluster is defined as a time series which minimizes 

the sum of squared distances to other objects within the cluster. Note that this 

definition is similar to the one provided in equation (1.70), but the important 

difference in this case is that the medoid must be one of the time series/points of the 

cluster. Indeed, given time series in a cluster, the distance of all time series pairs 

within the cluster is calculated using a distance measure such as Euclidean distance 

or DTW. Then, the time series in the cluster which has lower sum of square distances 

is defined as medoid of the cluster itself. If the cluster contains data points rather 

than time series (for example to cluster points of a single time series to reduce its 

dimensionality), the same optimization problem already presented can be solved, 

with the additional constraint that 𝜗𝑘 ∈ {𝑥1, … , 𝑥𝑛} ∀ 𝑘. This problem is not trivial at 

all and is solved by the k-medoid algorithm to determine the cluster centroids. There 

are several advantages in using medoids as centroids with respect to the average 

values. First, a medoid-based approach can be used with any similarity measure; 

secondly, the medoid is comparable to the median. Searching in literature, plenty of 

articles can be found describing how and why the median is less sensitive to outliers 

and noise than the average value. Anyway, using medoid as cluster prototype 

increases the computational time and complexity of the clustering algorithm. For 

instance, k-means algorithm has a computational complexity in the order of 𝑂(𝑁 ×

𝐾 × 𝑖), where 𝑖 denotes the number of iterations, while k-medoid algorithm has a 

computational complexity in the order of 𝑂((𝑁 − 𝐾)2 × 𝐾 × 𝑖). 

 

Using local search prototype 

In this approach, at first a medoid-based clustering is performed. Then, based on the 

selected optimal warping path, the average prototype is computed and new warping 

paths are defined from this prototype. Then, a medoid-based clustering is performed 

again, in an iterative process that stop when there is no variation from medoid based 
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and average centroids. This approach can lead to better results then the other, but it 

increases a lot the computational complexity of the clustering algorithm. Therefore, 

typically is not used and the medoid prototype is preferred. 

 

The last important topic related to whole time series clustering, before analysing the 

two mentioned algorithms in detail, consists of evaluating the goodness of the 

clustering result. The evaluation measures employed in different approaches can be 

classified in visualization measures (visualize the result and analyse it) and scalar 

accuracy measures (a single real number represents the accuracy of the result). These 

latter numerical measures are further classified into: 

 

• External validity indexes: external validity indexes are the measures of the 

agreement between two clusters, one of which is usually a known/golden 

cluster (the so-called ground truth) and another is derived from the clustering 

procedure. Ground truth is the ideal clustering that is often built using human 

experts. In this type of evaluation, ground truth is available, and the index 

evaluates how well the clustering matches the ground truth. 

 

• Internal validity indexes: typically, the goal of a clustering process is to obtain 

high intra-cluster similarity (objects within a cluster are similar) and low inter-

cluster similarity (objects from different clusters are dissimilar). Internal 

validation indexes compare solutions based on the goodness of fit between 

each cluster and the data. More precisely, they evaluate clustering results by 

using only features and information inherent in a dataset and are typically 

used in case that true solutions (ground truth) are unknown. However, these 

indexes can only make comparisons between different clusters generated 

using the same model/metric.  

 

Many different indexes can be listed these two categories. Since it would be too long 

to analyse them all, they are left to the reader as a deepening of the subject, while the 

only index which is now presented is an internal validity index called sum of squared 

errors, defined as follows: 

 

𝑆𝑆𝐸 =∑∑ 𝐷(𝑌𝑖, 𝑅𝑘)̂
2

𝑌𝑖∈𝐶𝑘

𝐾

𝑘=1

 

(1.73) 
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where 𝑅𝑘̂ represents the prototype of the cluster 𝑘. As it is possible to observe from 

equation (1.73), the SSE parameter is obtained by summing up all the distances of 

every time series to the nearest cluster prototype. Intuitively, a good clustering result 

is supposed to give a low SSE value. 

Figure 1.24 shows the classification of validity indexes (with some examples). 

Instead, figure 1.25 [1] resumes all the topics discussed until now about whole time 

series clustering.  

 

 

Figure 1.24: evaluation measures classification 
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Once that the main topics related to whole time series clustering have been 

discussed, it is now possible to analyse the two mentioned algorithms exploited in 

this thesis: the k-medoid algorithm and the hierarchical Ward algorithm. This analysis is 

examined in the next chapter, while chapter 3 focuses on the practical 

implementation of these algorithms to an electrical engineering problem. 

 

Figure 1.25: overview of the five components of whole time series clustering 
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2. Clustering algorithms and optimal 

number of clusters 

In this chapter, the two clustering algorithms exploited in this thesis are presented 

and discussed in detail. Then, their main advantages and disadvantages are listed in 

order to have a quick and clear comparison between the methods. Eventually, a brief 

discussion about the optimal number of clusters is conducted, and some parameters 

are defined.  

2.1 K-means clustering algorithm 

K-means clustering has been introduced by MacQueen in 1967 [40]. It is a quite 

simple algorithm with a computational complexity in the order of 𝑂(𝑁 × 𝐾 × 𝑖), 

indicating with 𝑁 the number of datapoints, with 𝐾 the number of clusters and with 𝑖 

the required number of iterations. It is important to remark that 𝐾 is an input 

parameter of the algorithm and must be defined by the user. This is one of the main 

differences with the hierarchical Ward method, in which the optimal number of 

clusters is automatically selected according to some constraints.  

K-means algorithm can be divided into two main stages: the initialization stage and 

the iteration stage. In the first stage, 𝐾 elements are randomly selected from the 

dataset. These elements represent the initial centroids of the 𝐾 clusters to be 

obtained. The initialization stage is followed by the iteration stage, which is divided 

in two steps: the assignment step and the update step. In the first step, each element of 

the dataset is assigned to the cluster whose centroid (average value) is closer to the 

considered element. In the second step, the cluster centroids are re-calculated 

according to the recent cluster assignments of the data points. These two steps are 

iterated until the new centroids after cluster assignment do not vary more than a 

certain threshold with respect to the previous ones or until the convergence of a 

certain criterion function is reached. Typically, this function is represented by the 

sum of the squared errors, defined formally in the next page. 
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𝑆𝑆𝐸 =∑∑ ||𝑌𝑖 − 𝜃𝑘||̂
2

𝑌𝑖∈𝐶𝑘

𝐾

𝑘=1

 

(2.1) 

In equation (2.1), 𝑌𝑖 denotes a time series belonging to cluster 𝐶𝑘 and 𝜃𝑘̂ denotes the 

centroid of cluster 𝐶𝑘. As it is possible to observe, the SSE is computed as the sum, for 

all clusters, of the square of the difference between the element of a cluster and its 

centroid. The iteration stage of the clustering process is performed until the sum of 

squared errors becomes lower than a defined threshold. This criterion leads to 

compact clusters, as much as possible distant between each other. 

The above explained algorithm can be summarized in five steps as follows: 

 

1. Initialize the number of clusters 𝐾 

 

2. Randomly select 𝐾 datapoints as clusters centroids 

 

3. Assign each point to the cluster with closer centroid to the considered point 

 

4. Recalculate the centroids based on the recent cluster assignment of data points 

 

5. Repeat steps 3 and 4 until centroids no longer vary or the convergence of a 

certain criterion function is reached. 

 

K-means clustering is relatively scalable, very efficient in clustering big datasets due 

to its quite low computational complexity and generally reaches a local optimum. 

However, it cannot be applied if the average value of the data cannot be defined, for 

instance in case of presence of categorical variables. Moreover, the fact that the 

number of clusters is a required input of the algorithm could be seen as a 

disadvantage. Eventually, this algorithm is sensitive to noise and outliers, since a 

small number of these data can sensibly affect the average values. Therefore, 

typically k-means is accompanied by an outlier detection algorithm, a quite young 

but well-known topic in statistics. Figure 2.1 [42] in the next page shows the 

algorithm flowchart, while figure 2.2 explains graphically its working principle. 
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Figure 2.1: k-means algorithm flowchart 
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Figure 2.2 shows graphically the first iteration of k-means algorithm, for a desired 

number of clusters 𝐾 = 2. Indeed, as it is possible to observe from (a), first two 

elements of the dataset are randomly selected as centroids C1 and C2 of the two 

clusters. Then, each element of the dataset is assigned to the cluster whose centroid 

has the minimum distance with respect to the element itself (b). Therefore, two 

clusters are formed (represented in red and green color) and their centroid are the 

initially selected one. Successively, new centroids are computed as the average value 

of the data within a cluster; these centroids are represented as a red or green cross in 

(c). Then, data are assigned again to the cluster with minimum data-centroid 

distance. As it is possible to note from (d), the lower element of the dataset moves 

from cluster 2 to cluster 1 after the reassignment. This procedure is iteratively 

repeated until cluster centroids do not move anymore, or until the sum of squared 

errors is lower than a certain threshold. 

 

(a) 

(b) 

(c) 
(d) 

Figure 2.2: illustrative example of k-means clustering algorithm 
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There are several variants of the k-means algorithm, differing from the original one 

in the selection of the 𝐾 initial means, in the computation of the similarity measure or 

in the strategy for the computation of the cluster mean. An interesting approach, 

which typically gives good results, consists in applying first a hierarchical 

agglomerative algorithm to determine the optimal number of clusters and an initial 

data classification and then improving it by applying the iteration stage of the  

k-means algorithm. Moreover, another variant is the k-modes algorithm, that extends 

the clustering method also to categorical data, by replacing the cluster mean with its 

mode, adopting new similarity measures that consider categorical data and 

employing frequency-based methods to update the modes. K-means and k-modes 

algorithms can be integrated to cluster data with mixed values (categorical, 

numerical, binary); the resulting algorithm is called k-prototypes. 

 

As already discussed, k-means is a quite scalable clustering algorithm. However, to 

conclude the analysis, it is convenient to discuss how the scalability can be improved. 

A common approach to address this problem is to identify three classes in the data 

region:  

 

• Discardable data: data with a certain belonging to a cluster 

 

• Compressible data: data that cannot be discarded but belong to a reduced  

sub-cluster. A data structure called clustering feature is used to summarize the 

objects that have been discarded or compressed. 

 

• Main memory data: data that cannot be discarded nor compressed and must 

be kept in the main memory.  

 

To improve the scalability, the iteration stage of the algorithm considers only the 

features related to main memory and compressible data. In this way, good results are 

obtained for small and large datasets and a very important amount of data can be 

processed. Another approach to obtain the same improvement consists in creating 

micro-clusters by clustering near objects in the dataset and, successively, applying  

k-means algorithm to the micro-clusters.  
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2.2 K-medoids clustering algorithm 

K-medoids algorithm has been introduced to address the issues of k-means. Indeed, 

it is less sensitive to noise and outliers, resulting in a more robust algorithm [41]. 

More precisely, instead of using the mean as the centroid of a cluster, k-medoids 

selects an actual point in the cluster to represent it. Typically, the medoid is the most 

centrally located object of the cluster, as it will be further defined. This choice for the 

computation of the centroids allows to greatly reduce the sensitivity of the algorithm 

to outliers, since their presence affect significantly only the mean and not the medoid 

of the cluster, as it does not modify crucially the data distribution. However, the 

computational complexity of k-medoids is higher than k-means complexity, since 

determining the value of the median is more computationally expensive than 

determining the value of the mean. More precisely, if k-means algorithm has a 

computational complexity in the order of 𝑂(𝑁 × 𝐾 × 𝑖), k-medoids algorithm has a 

computational complexity in the order of 𝑂((𝑁 − 𝐾)2 × 𝐾 × 𝑖). To reduce the 

complexity, typically the criterion function that is used to stop the iterative stage is 

not the sum of squared errors, but instead the sum of absolute errors, defined as 

follows: 

 

𝑆𝐴𝐸 = ∑∑ ||𝑌𝑖 −
𝑌𝑖∈𝐶𝑘

𝐾

𝑘=1

𝜃𝑘||̂  

(2.2) 

As it is possible to note from equation (2.2), the difference between an element of a 

cluster and its centroid is no more squared, thus reducing the necessary number of 

operations and the computational time. The working principle of the k-medoids 

algorithm is similar to the one of k-means algorithm, with several differences that 

will now be examined. It is possible to summarize the main performed steps as 

follows: 

 

1. Initialize the number of clusters 𝐾 

 

2. Randomly select 𝐾 datapoints as clusters centroids 

 

3. Assign each data point to its nearest cluster by minimizing the sum of 

dissimilarities between each point and its medoid. 
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4. Recalculate the medoids of each cluster by determining the object that 

decreases its average dissimilarity coefficient (cost function). 

 

5. If there is no change in the medoids the algorithm stops. If medoids still 

change then steps 3 and 4 must be repeated until medoids does not vary 

anymore or until the convergence of a criterion function is reached. 

 

The base strategy of the k-medoids algorithm is to partition the 𝑁 object into 𝐾 

clusters. As for k-means, 𝐾 is an input parameter and must be defined a priori by the 

user. As the previously presented steps highlight, 𝐾 objects are first randomly 

selected as medoids of the clusters. Then, each remaining object is inserted in the 

cluster related to the most similar medoid to the object itself. The similarity is 

typically computed through Euclidean distance or dynamic time warping measures. 

Successively, the algorithm iteratively substitutes medoids 𝑜𝑗 with all the  

non-medoids objects 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, stopping when the clustering quality cannot be 

improved anymore. This quality is estimated through a cost function that measures 

the average dissimilarity of an object and the medoid of its cluster. More precisely, to 

determine if a non-medoid object 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 is a good substitute of the current medoid 

𝑜𝑗 it is necessary to examine the four following cases, for each of the other non-

medoid objects 𝑝: 

 

1. 𝑝 currently belongs to the cluster related to medoid 𝑜𝑗. If 𝑜𝑗 is substituted by 

𝑜𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑝 is closer to another medoid 𝑜𝑖 , 𝑖 ≠ 𝑗, then 𝑝 is assigned to the 

cluster related to medoid 𝑜𝑖. 

 

2. 𝑝 currently belongs to the cluster related to medoid 𝑜𝑗. If 𝑜𝑗 is substituted by 

𝑜𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑝 is closer to 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, then 𝑝 is assigned to the cluster related to 

medoid 𝑜𝑟𝑎𝑛𝑑𝑜𝑚. 

 

3. 𝑝 currently belongs to the cluster related to medoid 𝑜𝑖, 𝑖 ≠ 𝑗. If 𝑜𝑗 is substituted 

by 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑝 is still closer to 𝑜𝑖, then 𝑝 is still assigned to the cluster 

related to medoid 𝑜𝑖 (no changes). 

 

4. 𝑝 currently belongs to the cluster related to medoid 𝑜𝑖, 𝑖 ≠ 𝑗. If 𝑜𝑗 is substituted 

by 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 and 𝑝 is closer to 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, then 𝑝 is assigned to the cluster related 

to medoid 𝑜𝑟𝑎𝑛𝑑𝑜𝑚. 
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Every time that a reassignment of data occurs, the cost function varies from its 

previous value; this variation can be positive or negative. The sum of all the 

variations of the cost functions obtained after the reassignment of all the non-

medoids objects according to the previous cases is called total swapping cost. If the 

total swapping cost is negative, 𝑜𝑗 is substituted with 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 since the total error is 

reduced. Instead, if the total swapping cost is positive, the current medoid 𝑜𝑗 is 

considered acceptable and is not substituted. The examined procedure is repeated 

until medoids do not vary anymore or until the sum of absolute errors is lower than 

a defined threshold. Figure 2.3 below [42] shows the flowchart of k-medoid 

algorithm, while figure 2.4 in the next page shows graphically the four cases 

presented in page 75. 

 

Figure 2.3: k-medoids algorithm flowchart 
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Figure 2.4: the four possible cases of the cost function for the k-medoids algorithm 

As it is possible to note looking at figure 2.4, the four cases are enumerated in the 

exact same way in which have been presented (page 75). In particular, case 1 

represents the reassignment of 𝑝 to the clusters related to the medoid 𝑜𝑖. Indeed, 

before substituting 𝑜𝑗 with 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 𝑝 was closer to 𝑜𝑗, while after the swapping 𝑝 is 

closer to 𝑜𝑖, thus is assigned to its related cluster and the cost function varies. Instead, 

in case 2 after the swapping of 𝑜𝑗 with 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, 𝑝 is closer to 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 and therefore is 

assigned to its related cluster and the cost function varies. Case 3 represents a 

situation in which no changes occur on the assignment of point 𝑝. Indeed, before and 

after the swapping of 𝑜𝑗 with 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, 𝑝 is closer to 𝑜𝑖 so its belonging to the cluster 

represented by medoid 𝑜𝑖 is unchanged and the cost function does not vary. 

Eventually, in case 4 after the swapping 𝑝 is closer to 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, thus is assigned to its 

related cluster and the cost function varies. 

To conclude the analysis of k-medoids algorithm, as done for k-means, a method to 

improve the scalability is now discussed. This method is based on sampling, and the 

algorithm that performs it is called CLARA (Clustering LARge Applications). The 

concept behind CLARA is the following: instead of considering the entire dataset, a 

small portion (sample) is selected and considered representative of all data., and the 

medoid is computed through a traditional k-medoids algorithm only on this sample. 

If more than one samples are collected randomly, they should represent the whole 

dataset quite well and the determined medoids should be similar to the ones that 

would have been obtained by applying a traditional k-medoids algorithm on the 

complete data. Therefore, CLARA algorithm creates different samples of the dataset, 

applies a traditional k-medoids algorithm on the various samples and selects the best 

clustering result as output. This allows to perform a medoid-based partitional 
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clustering process also on very big datasets, thus improving the scalability of the 

method. However, this increases the computational complexity, that becomes in the 

order of 𝑂(𝐾𝑠2 + 𝐾(𝑁 − 𝐾)), denoting with 𝑠 the sample dimension, with 𝐾 the 

desired number of clusters and with 𝑁 the total number of objects. 

 

 

2.3 Ward hierarchical algorithm 

Before introducing the main steps of this algorithm, it is convenient to examine a 

little bit more than in the previous chapter the hierarchical clustering algorithms.  

The hierarchical approach to clustering works by grouping the objects into the  

so-called cluster trees. Moreover, as already discussed in chapter 1, hierarchical 

clustering algorithms can be classified into: 

 

• Agglomerative algorithms: bottom-up strategy that starts by considering each 

object as a separate cluster and then merges these atomic clusters until some 

determined conditions are satisfied. The various algorithms inside this 

category differ just for the computation of the similarity measure between 

clusters (inter-cluster similarity). 

 

• Divisive algorithms: top-down strategy operating in the inverse way of 

agglomerative algorithms. It starts by assigning all the objects to the same 

cluster and then divides this cluster into smaller and smaller portions, until 

some determined conditions are satisfied.  

 

The conditions to be satisfied to stop the algorithm can be various; for instance, a 

desired number of clusters can be required. However, one of the main advantages of 

hierarchical clustering algorithms is that the necessary number of clusters can be 

automatically obtained by imposing different conditions, related to the distance 

between clusters or to some quality parameters, to stop the algorithm. For instance, a 

minimum/maximum distance between clusters in the divisive/agglomerative 

approach respectively or a threshold for a quality parameter can be defined as 

stopping conditions. Figure 2.5 in the next page shows one of the most important 

graphical representations for hierarchical clustering algorithm: the so-called  

cluster tree or, more commonly, dendrogram. 

 



2. Clustering algorithms and optimal 

number of clusters 

79 

 

 

 

Figure 2.5: example of cluster dendrogram 

As it is possible to observe from figure 2.5, the dendrogram is related to an 

agglomerative clustering algorithm of 22 objects. Indeed, the different levels of the 

graph represent the merging process performed by the algorithm, starting from 

separated clusters composed by a single object (bottom level or level 0) and (in this 

case) stopping when the desired number of clusters has been obtained (top level). For 

instance, let’s analyze the transition from level 0 to level 1 and from level 1 to level 2: 

figure 2.5 provides a simple way to understand which clusters have been merged 

and why. Indeed, starting from 22 separated atomic clusters, the algorithm merges 

together clusters 20 and 21, clusters 17 and 18, cluster 9 and 10 and so on. The objects 

order in the level 0 of dendrogram reflects the fact that the clusters that are merged 

are the ones with lower inter-cluster distance. For instance, cluster 14 is closer to 

cluster 16 than cluster 15, thus objects 14 and 16 are merged in the first transition. 

Successively, in the second merging step, the cluster formed by objects 20 and 21 is 

merged with the cluster formed by object 22, as it is possible to see from level 1 of the 

dendrogram. The process iteratively proceeds until a desired number of clusters is 

reached or until some conditions are satisfied. Finally, the y-axis of the dendrogram 

reports the distances between two clusters that have been merged. This distance can 
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be computed in different ways; the most typical are shown below. For the sake of 

clearness, it is recalled that 𝑝 and 𝑝′ are two generic objects belonging to different 

clusters 𝐶𝑖 and 𝐶𝑗, 𝑚𝑒𝑎𝑛𝐶𝑖 is the mean value of the cluster 𝐶𝑖 and 𝑁𝑖 denotes its 

number of objects. 

 

• Minimum distance (single linkage): 𝑑𝑚𝑖𝑛(𝐶𝑖, 𝐶𝑗) = min𝑝∈𝐶𝑖,𝑝′∈𝐶𝑗{|𝑝 − 𝑝
′|} 

(2.3) 

• Maximum distance (complete linkage): 𝑑𝑚𝑎𝑥(𝐶𝑖, 𝐶𝑗) = max𝑝∈𝐶𝑖,𝑝′∈𝐶𝑗{|𝑝 − 𝑝
′|} 

(2.4) 

• Mean distance (centroid linkage): 𝑑𝑚𝑒𝑎𝑛(𝐶𝑖, 𝐶𝑗) = |𝑚𝑒𝑎𝑛𝐶𝑖 −𝑚𝑒𝑎𝑛𝐶𝑗| 

(2.5) 

• Average distance (average linkage): 𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑖, 𝐶𝑗) =
1

𝑁𝑖𝑁𝑗
∑ ∑ |𝑝 − 𝑝′|𝑝′∈𝐶𝑗𝑝∈𝐶𝑖

 

(2.6) 

Actually, Ward’s hierarchical algorithm exploits another distance function, called 

Ward distance [43] and defined as: 

 

𝑑𝑊𝑎𝑟𝑑(𝐶𝑖, 𝐶𝑗) =
𝑁𝑖𝑁𝑗

𝑁𝑖+𝑁𝑗
∑ ∑ |𝑝 − 𝑝′|2

𝑝′∈𝐶𝑗𝑝∈𝐶𝑖

 

(2.7) 

As it is possible to note from equation (2.7), Ward distance is a variant of the average 

distance, where the scaling coefficient is modified and the distance between objects is 

squared rather than linear. Moreover, there is another simple way to compute this 

distance, based on the sum of squared errors presented in equation (1.73): 

 

𝑑𝑊𝑎𝑟𝑑(𝐶𝑖, 𝐶𝑗) = 𝑆𝑆𝐸(𝐶𝑖 ∪ 𝐶𝑗) − [𝑆𝑆𝐸(𝐶𝑖) + 𝑆𝑆𝐸(𝐶𝑗)] 

(2.8) 
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In equation (2.8), 𝐶𝑖 ∪ 𝐶𝑗 represents the combined cluster obtained by merging 

clusters 𝐶𝑖 and 𝐶𝑗 . This strategy to compute the distance is fast and simple and can be 

implemented iteratively with optimal results. 

Hierarchical clustering algorithms have many advantages such as the automatic 

definition of the necessary number of clusters and the capability to threat noisy data. 

However, several issues can be defined. Indeed, these methods are crucially based on 

the definition of the merging/splitting points. This selection is critical since once that 

a group of objects is merged or split, the algorithm will operate on the new clusters at 

the next iteration, without any possibility to come back and restore the previous 

objects. Therefore, since hierarchical clustering algorithms never cancel what have 

been done and never reassign objects from a cluster to another, if the 

merging/splitting decision is wrong or bad low-quality clusters are obtained. 

Moreover, these methods are not very scalable, since any decision for 

merging/splitting objects requires an evaluation of a quite high number of objects. 

Thus, typically in big datasets partitional clustering techniques are preferred., or the 

hierarchical clustering method is integrated with other strategies to improve the 

quality of the clustering result.  

 

To conclude the analysis of hierarchical clustering algorithms, it is now convenient to 

introduce formally Ward’s hierarchical algorithm. More precisely, the main steps to 

be performed are: 

 

1. Set the initial number of clusters 𝑛 equal to the total number of objects 𝑁.  

 

2. Determine the centroid of each cluster as the mean value of the cluster itself. 

 

3. Compute the distance between each pair of clusters according to Ward’s 

method. 

 

4. Merge the two closest clusters. 

 

5. Update 𝑛 = 𝑛 − 1 

 

6. If a predefined condition is satisfied (for instance, the number of clusters is 

equal to a desired value) go to step 7, otherwise go to step 2. 

 

7. Determine the centroid of each cluster as the cluster medoid. 
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The previous steps can be graphically summarized by the following example: 

 

Figure 2.6: agglomerative hierarchical clustering example 

As it is possible to observe from figure 2.6, in the initial step the distance between 

atomic clusters formed by a single object is computed. Then, similar clusters are 

merged to form a new cluster. For instance, in the considered example, B,C and D,E 

are similar clusters thus they are merged and only four clusters remain: A, BC, DE, F. 

Successively, the distance between these four clusters is computed again and similar 

clusters are merged. Figure 2.6 shows that DE and F are merged thus only three 

clusters remain: A, BC, DEF. This process iteratively proceeds until a single cluster 

containing all the objects is obtained, as in figure 2.6, or until a certain condition is 

satisfied. As already discussed, this process can be visualized by a dendrogram or by 

a Euler-Venn diagram. Both these graphs are shown in the next page; the 

dendrogram does not show any value on the y-axis since no real data have been used 

for this example. 
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Figure 2.7: dendrogram and Euler-Venn diagram of example reported in figure 2.6 

For the sake of clearness, it is recalled that the arrangement of the clades (branches of 

the dendrogram) is based on how similar (or dissimilar) clusters are. Clades with 

same or close height are similar to each other; whereas clades with different heights 

are dissimilar from each other. This implies that the higher is the value of the 

difference in height between clades, the more dissimilar will be the related clusters. 

Ward’s hierarchical method has a computational complexity in the order of 𝑂(𝑁2𝑖). 

As it is possible to note, the parameter 𝐾 doesn’t appear in this expression since 

typically the number of clusters is not an input of the algorithm, but instead is an 

output related to satisfying certain conditions. Some examples will be discussed in 

detail in the next chapter. As already discussed, the complexity of hierarchical 

algorithms is higher than the one of partitional algorithms. This implies that, even if 

higher-quality clusters are obtained, these methods have a lower scalability and can 

require an important amount of time when applied to big datasets. 

 

2.4 Optimal number of clusters and clustering 

evaluation 

This last section focuses on determining the optimal number of clusters. This is a 

very important task, especially when there is no prior knowledge on the data. Many 

different methods have been proposed in literature; the most commonly employed 

are the so-called elbow method [44], average silhouette method [45] and gap statistical 

method [46]. In the next pages, these methods will be analyzed briefly. Successively, 

some parameters to indicate the quality of the clustering result will be discussed. 

These parameters will be employed in the next chapter to examine the goodness of 

the proposed approach to an electrical engineering problem. 
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The elbow method is a very simple strategy that is based on an iterative process. In 

particular, the sum of squared errors is used as an indicator to detect the optimal 

number of clusters. Indeed, a clustering algorithm (typically partitional, to reduce the 

computational complexity) is iteratively performed considering a required number of 

clusters ranging from 1 to +infinite, and for every clustering the sum of squared 

errors is computed. Then, a graph of the SSE vs the number of clusters is plotted. 

This graph will show a strong increase in the first part, since increasing the number 

of clusters will add intra-cluster variance, and then after an elbow the increase is 

strongly reduced, meaning that increasing the number of clusters does not affect any 

more significantly the sum of squared errors. Therefore, the elbow point of the graph 

is selected as optimal and the related number of clusters 𝐾 is the optimal number of 

clusters.  

 

The average silhouette method is an alternative strategy to the elbow method and 

follows a similar process. The average silhouette 𝑆 is a parameter defined as the 

mean of the average point silhouette 𝑆𝑖, computed for every object 𝑖 in the clustered 

dataset. This parameter characterizes the overall quality of the partition in clusters, 

thus it is used also for clustering evaluation, as it will be discussed further. More 

precisely, it is defined as follows: 

 

𝑆 = 𝑚𝑒𝑎𝑛(𝑆𝑖), 𝑆𝑖 =
𝑑𝑖𝑛𝑡𝑟𝑎,𝑖 − 𝑑𝑖𝑛𝑡𝑒𝑟,𝑖

max {𝑑𝑖𝑛𝑡𝑟𝑎,𝑖, 𝑑𝑖𝑛𝑡𝑒𝑟,𝑖}
 

(2.9) 

In equation (2.9), 𝑑𝑖𝑛𝑡𝑟𝑎,𝑖 represents the average distance between object 𝑖 and other 

data points in the same cluster, while 𝑑𝑖𝑛𝑡𝑒𝑟,𝑖 represents the average distance between 

object 𝑖 and all the data points in the nearest neighboring cluster. The silhouette 

index is computed for every object in the dataset after the clustering process, and its 

value is a good indicator of the clustering quality. Indeed, the accuracy of the result 

is high when 𝑆𝑖 has a value close to one, while is low when 𝑆𝑖 has a value close to 

zero. Therefore, a clustering algorithm considering a required number of clusters 

ranging from one to +infinite is iteratively performed on the dataset and for every 

clustering result the average silhouette parameter is computed. The model in which 

this parameter has the highest value (close to one) is selected as optimal and the 

related number of clusters 𝐾 is the optimal number of clusters. 
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The gap statistic method is based on comparing the total within-cluster variation 

with its expectation for a different number of clusters. Formally, it can be defined as: 

𝐾̂ = min𝐾 {𝐾|𝐺(𝐾) ≥ 𝐺(𝐾 + 1) − 𝑠
′
𝐾+1} 

(2.10) 

Since equation (2.10) can result quite difficult to understand, it is convenient to 

explain it better. The optimal number of clusters 𝐾̂ is obtained through a 

minimization problem that considers the result of clustering algorithm performing 

with different values of 𝐾, ranging from one to +infinite. Moreover, for a given 

number of clusters 𝐾, two distributions are considered: the dataset distribution 

𝑊𝑘,𝑑𝑎𝑡𝑎 and a reference uniform distribution 𝑊𝑘,𝑢𝑛𝑖𝑓 composed of 20 points and used 

as a reference cluster. The different terms appearing in equation (2.10) are computed 

as: 

 

Gap function: 𝐺(𝐾) = ln(𝑊𝑘,𝑢𝑛𝑖𝑓) − ln (𝑊𝑘,𝑑𝑎𝑡𝑎) 

(2.11) 

𝑠𝐾+1 = 𝑠𝐾√1 +
1

20
 

(2.12) 

𝑠𝐾 = 𝑠𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 ln(𝑊𝑘,𝑢𝑛𝑖𝑓) 

(2.13) 

As equations (2.13) and (2.12) shows, the initial value of 𝑠𝐾 is the standard deviation 

of a uniform distribution of 20 points. Then, increasing the number of clusters, this 

deviation is increased by √1 +
1

20
; this means that is continuously higher for each 

performed step. The basic idea behind the Gap Statistics technique is to choose the 

number of K for which the biggest variation in within-cluster distance occurred, 

based on the overall behavior of uniformly drawn samples. However, it could 

happen that only a very slight reduction in within-cluster distance occurs. For this 

reason, 𝑠𝐾+1 acts as a threshold, to sort out too small changes and to remove the 

sampling noise from the data. Only if the change is so big that the threshold 𝑠𝐾+1 

plays no role anymore, the optimal value of K will be selected. In practice, the 

optimal number of clusters is selected such that, increasing K, the gap function starts 
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decreasing and the maximum variation of within cluster distance is obtained.  

Figure 2.8 below shows an example of gap function behavior for different K. 

 

Figure 2.8: example of gap function behavior for different K 

As it is possible to observe from figure 2.8, the optimal number of clusters for the 

example case is K=3. Indeed, the gap function increases for 1 ≤ 𝐾 ≤ 3 and starts 

decreasing for 𝐾 ≥ 3. Thus, the minimum value of K for which equation (2.10) holds 

is exactly 3.  

 

After having analyzed the techniques to determine the optimal number of clusters, to 

conclude this chapter, it is convenient to briefly examine the parameters for the 

clustering evaluation. In particular, two main clustering quality indexes can be 

defined: the Dunn index [47] and the Davies-Bouldin index [48]. 

The Dunn index, introduced by Dunn in 1974 [47], determines the quality of the 

clustering result by detecting if clusters are well-separated between each other. More 

precisely, it is defined as follows: 
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𝑄𝐷 = min {𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛} max {𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟}⁄  

(2.14) 

In equation (2.14), 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 refers to the inter-cluster distance, while 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

refers to intra-cluster distance. Thus, the Dunn quality index is determined as the 

ratio between the minimum inter-cluster distance (distance between data points in 

different clusters) and the maximum intra-cluster distance (distance between data 

points in the same cluster). The value of this parameter is high if clusters are 

well-separated, meaning that the clustering process has been efficient. Typically, 

Dunn index is used to estimate the quality of partitional clustering algorithms such 

as k-means or k-medoids, already explained in the previous sections.  

 

The Davies-Bouldin index, introduced by Davies and Bouldin in 1979 [48], is a sort of 

inverse of the Dunn index, anyway computed with different formulas. More 

precisely, it is defined as the average value of the ratios of within-cluster distances 

and between clusters distances and is computed as follows: 

 

𝑄𝐷𝐵 =
1

𝐾
∑𝐵𝑖

𝐾

𝑘=1

 

(2.15) 

In equation (2.15), 𝐾 represents the total number of clusters while 𝐵𝑖 is a parameter 

related to the data point 𝑦𝑖, defined as: 

 

𝐵𝑖 = max {
𝑣𝑎𝑟(𝑦𝑖) + 𝑣𝑎𝑟(𝑦𝑗)

|𝑦𝑖̂ − 𝑦𝑗̂|
} , ∀𝑗 ≠ 𝑖 ∈ {1,… ,𝑁} 

(2.16) 

For the sake of clearness, it is recalled that: 

 

𝑣𝑎𝑟(𝑦𝑖) =
1

𝑁𝑖 − 1
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁𝑖

𝑖=1

 

(2.17) 
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where 𝑁𝑖 is the number of data points in cluster 𝐶𝑖 and 𝑦𝑖̂ is the centroid related to the 

cluster 𝐶𝑖, to which 𝑦𝑖 belongs.  

As it is possible to note from equation (2.15) and (2.16), the Davies-Bouldin index is 

computed as the average value on all clusters of the parameter 𝐵𝑖, which is defined 

as the maximum of the sum between the intra-cluster distance of cluster 𝐶𝑖 and the 

intra-cluster distance of all the other clusters 𝐶𝑗, divided by the distance between 

their centroids 𝑦𝑖̂ and 𝑦𝑗̂. (average inter-cluster distance) The lower is the value of the 

Davies-Bouldin index, the higher is the quality of the clustering result. Indeed, if 

clusters are well-separated, the inter-cluster distance, represented by the distance 

between centroids (denominator) is high, while the intra-cluster distance, 

represented by the variance (numerator), is low.  Figure 2.9 below shows an example 

of computation of this quality index, denoted as 𝑅̅ instead than 𝑄𝐷𝐵 [48]. 

 

 

Figure 2.9: comparison of partitions of a 4-points dataset and use of Davies-Bouldin 

index to compare their quality 

The 4-points data set represented in figure 2.9 has been partitioned through the  

k-means algorithm. As it is possible to observe, two partitions are obtained, 

depending on the selected initial centroids. More precisely, if points (1,1) and (1,3) 

are chosen as initial centroids, the algorithm produces the partition indicated by 

surface 1, with clusters centers at (3,1) and (3,3). Instead, if points (1,1) and (5,1) are 

chosen as initial centroids, the algorithm produces the partition indicated by surface 

2, with clusters centers at (1,2) and (5,2). Computing the Davis-Bouldin index for the 
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two partitions, it is possible to obtain: 𝑅1̅̅ ̅ = 2.0 and 𝑅2̅̅ ̅ = 0.5. Since 𝑅2̅̅ ̅ < 𝑅1̅̅ ̅, the 

second partition has a higher quality, and its clusters are better separated. It is 

important to remark that a data set must be partitioned into at least two clusters with 

different centroid for the Davis-Bouldin index to have meaning. This is a 

mathematical necessity since the distance measure in the denominator of 𝑄𝐷𝐵 must 

be non-zero for it to be defined Moreover, the use of this index becomes limited if 

clusters containing a single object are allowed, since such clusters have zero variance. 

If 𝑄𝐷𝐵 is used as a parameter to estimate the clustering quality, these two limitations 

should be always kept in mind.  

 

Once having analyzed the main parameters to select the optimal number of clusters 

and to detect the quality of clustering result, it is now possible to move to the 

practical implementation of clustering algorithms to an electrical engineering 

problem, examined in the next chapter that also provides, as well as Appendix A, the 

adopted codes in Matlab and R-Studio.  
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3. Clustering algorithms 

implementation: an Electrical 

Engineering problem. 

Before analyzing the practical implementation of the clustering algorithms described 

in the previous chapter, it is convenient to examine the considered dataset. More 

precisely, firstly 365 load curves have been grouped in 36 clusters and some quality 

parameters have been computed to determine the goodness of the result. 

The same procedure can be applied to a set of generation curves without any 

difficulty. The centroids of the obtained clusters are extremely important curves, 

called typical load/generation days since they represent the typical behavior of the 

energy consumption/generation curves belonging to a certain cluster Therefore, 

instead of considering 365 curves as input for a generic algorithm, it is possible to 

exploit just the 36 determined typical days curves to obtain coherent and consistent 

results. Finally, the last part of this chapter focuses on the time-point clustering 

approach (clustering of points of a single time series based on a combination of their 

temporal proximity and similarity), introducing a new issue that has never been 

examined until now and that will be further analysed in the conclusion: the 

chronological ordering of clustered objects.  

 

The considered dataset of load duration curves can be downloaded from the  

ENTSO-E power statistics website [49]. Once on the website, many sections are 

available; the set of curves under analysis can be found in “Monthly Hourly Load 

Values”, that reports the aggregated monthly electrical power consumption of 

different countries on an hourly basis, from 2015 to 2019. The 365 selected load 

curves correspond to the electrical consumption of Germany in 2015 (one curve per 

day, with 24 points per curve).  

For the sake of clearness, three curves of the dataset are shown in the next page: 
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Figure 3.1: examples of the considered load duration curves 

Figure 3.1 shows three days of different months. For instance, the blue curve 

represents the aggregated electrical power consumption of Germany on the 2nd 

January 2015, the yellow curve represents the aggregated power consumption of 

Germany on the 2nd April 2015 and the red curve represents the aggregated power 

consumption of Germany on 2nd July 2015. As it is possible to observe, in July the 

electrical energy consumption is higher than in January or April due to the usage of 

air conditioning systems. This is generally true for all summer months with respect 

to winter months, in which the power consumption is lower.  

 

Once having examined the considered dataset, as discussed in chapter 1, the first task 

to be performed is a data-preparation method in order to make the clustering process 

less sensitive to scaling, time shifting and offsets. Several data-preparation 

techniques have been examined in the previous chapters. For the sake of simplicity, 

the z-normalization method has been selected for this practical implementation, since 

it allows to obtain anyway a clustering model with low sensitivity. For the sake of 
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clearness, the following figure shows the three load curves reported in figure 3.1 

after having z-normalized the data. 

 

 

Figure 3.2: curves of figure 3.1 after z-normalization 

As it is possible to note from figure 3.1 above, the power consumption values now 

are adimensional, since the division by the standard deviation eliminates the 

measurement unit. Moreover, data points now range around zero, anyway 

maintaining the same shape for each curve with respect to its original one.  

 

After having normalized the dataset, it is possible to perform the clustering process 

to determine the typical load days. Three main clustering algorithms have been 

employed, as already defined in the previous chapter: k-means, k-medoids and 

Ward’s hierarchical algorithm. Moreover, two softwares have been considered: 

Matlab and R-Studio. For the sake of clearness, the analysis of the implemented code 

and result will be conducted in separate sections.  
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3.1 Matlab clustering implementation 

The implemented code for clustering implementation in Matlab is reported in 

Appendix A. The algorithms needed to perform clustering can be found in the 

“Statistical and Machine Learning Toolbox”. As it is possible to note by looking at the 

code in Appendix A, the functions that implement the clustering process are: 

 

[idx,c,sumd,d]=kmeans(data_norm,n_clust,'Distance', 

'sqeuclidean', 'replicates',5); 

(3.1) 

[idx,c,sumd,d]=kmedoids(data_norm,n_clust,'Distance', 

@dtwf, 'replicates',5); 

(3.2) 

These functions produce four outputs: 

 

• idx: vector containing the cluster indexes for each of the load duration curves. 

For instance, if idx is equal to N in a certain position X, the Xth curve of the 

dataset belongs to the Nth cluster.  

 

• c: matrix containing the centroids of the obtained clusters. Since 365 load 

curves with 24 points per curve are clustered to 36 curves, c will be a 36x24 

matrix in which each row represents a typical day, i.e., the centroid of the 

related cluster. 

 

• sumd: vector containing the sum of within-cluster series-to-centroids 

distances.  

 

• d: matrix containing distances between each time series of the dataset and 

every centroid. Therefore, in the considered case d will be a 365x36 matrix in 

which the element 𝑖, 𝑗 represents the distance between the load curve 𝑖 of the 

dataset and the centroid of the cluster 𝑗. 

 

Instead, the required input to perform are: 
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• data_norm: matrix containing the 365 power consumption curves. Since data 

points are collected hourly, data_norm is a 365x24 matrix. 

 

• n_clust: the required number of clusters. As already discussed in the previous 

chapter, this is a user-defined parameter for k-means and k-medoids 

algorithm.  

 

• ‘Distance’: definition of the similarity measure to be used. For example 

purpose, the Euclidean distance has been adopted for the k-means algorithm, 

while dynamic time warping has been adopted for k-medoids algorithm. 

 

• ‘replicates’: a non-mandatory parameter which defines the number of times 

the algorithm must be repeated. For instance, if ‘replicates’ is equal to 5 as in 

the examined case, the software performs the clustering process five times and 

select the optimal result as output.  

 

It is important to remark that Matlab does not allow to compute DTW distance 

between more than two curves at a time and anyway the output is always scalar. 

Therefore, to exploit dynamic time warping advantages, it is necessary to write a 

simple function that extends DTW computation also to a matrix containing a set of 

time series (in this case power consumption curves). This function has been called 

dtwf and the related code is reported below: 

 

function dist = dtwf(x,y) 

m2 = size(y,1); 

dist = zeros(m2,1); 

for i=1:m2 

dist(i) = dtw(x,y(i,:)); 

end 

end 

(3.3) 

As it is possible to note from code (3.3), the dtwf function is based on a simple  

for-cycle that repeats dynamic time warping computation. Indeed, x is 1 × 𝑁 vector 

containing a single time series (one of the load curves in the dataset) while y is a 

𝑚2 × 𝑁 matrix containing multiple time series (all the other load curves in the 

dataset). The output dist is a 𝑚2 × 1 vector of distances, in which dist(k) represents 

the distance between time series x and the kth time series in y. As an example.  
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figure 3.3 below shows the result of dynamic time warping between April and July 

power consumption curves reported in figure 3.2.  

 

 

Figure 3.3: result of DTW between two of the curves reported in figure 3.2 

As already discussed in detail, dynamic time warping determines the optimal 

alignment between the two considered time series, shown in the bottom image in 

figure 3.3, thus computing their minimum total distance, equal to 3.36 in this case. 

Though the dtw function presented in code (3.3), this procedure is repeated for all 

the possible pairs of time series in the considered dataset, extending DTW 

computation to a matrix of time series and therefore allowing to perform k-medoids 

clustering in Matlab without problems.  

 

After having examined the functions needed to implement partitional clustering in 

Matlab, it now possible to analyze the results. In particular, by clustering through  

k-means algorithm and k-medoids algorithms the set of curves, 36 clusters are 

obtained. The figures reported in the next pages report some results of the clustering 

process, showing the curves belonging to a cluster and their related cluster centroid, 

represented by a line with a bigger width.  

 



3 Clustering algorithms implementation: 

an Electrical Engineering problem. 

97 

 

 

 

Figure 3.4: cluster1 obtained by k-means 

 

 

Figure 3.5: cluster2 obtained by k-means 
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Figure 3.6: cluster21 obtained by k-means 

 

Figure 3.7: cluster1 obtained by k-medoids 
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Figure 3.8: cluster2 obtained by k-medoids 

 

Figure 3.9: cluster21 obtained by k-medoids 
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Figure 3.10: cluster35 obtained by k-medoids 

As it is possible to observe from the previous figures, applying different clustering 

algorithms gives different results. Indeed, by comparing figure 3.4 with 3.7, figure 3.5 

with 3.8 and figure 3.6 with 3.9 it is clear that a certain cluster contains different 

curves depending on the clustering method. Moreover, figure 3.6 and 3.10 shows that 

it is possible to obtain a cluster composed by a single curve. The centroids of the 

determined clusters are called typical days or representative days of electrical 

consumption. It is important to remark that: 

 

• In the k-means algorithms, the typical days that are obtained are not actual 

days of electrical consumption in Germany, since they are computed as the 

average values of the curves belonging to a cluster. Instead, in the k-medoids 

algorithms, the obtained typical days are actual days of electrical 

consumption. This allows to define the most important days of the year in 

term of representation. Exploiting these days as input for different algorithm 

instead of the complete 365 curves leads to coherent and consistent results in a 

fraction of the original computational time. 
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• A surely important electrical consumption day is represented by the peak load 

day, that must be included as a typical day in the model in order not to 

undersize or underestimate components and plants. Therefore, it is necessary 

to verify if this day has been selected as medoid by the clustering algorithm 

and, if not, it must be manually included.  

 

Since different results are obtained by performing different algorithms, to determine 

the optimal solution some quality indexes must be computed. As already discussed, 

k-means and k-medoids exploit different error parameters. More precisely, k-means 

algorithm typically relies on the sum of squared errors while k-medoids algorithm 

typically relies on the sum of absolute errors. Therefore, these two parameters will 

not be computed since it makes no sense to compare them. Instead, two different 

indexes will be analysed in order to determine the optimal number of clusters and 

the quality of clustering result. These indexes have a different nature: the first is the 

percentage mean error computed on the load duration curves (the real one and 

another one built up with clustered data), while the second is the already presented 

Dunn index. Before discussing the obtained results, it is convenient to analyse the 

Matlab implementation of these two indexes.  

The load duration curve is an extremely important curve used to make predictions 

and planning forecasts. It is built up by ordering in descending order the values of 

the power consumption, and then plotting them on the y-axis of a graph, while the  

x-axis reports the time instants all over the year. Figure 3.11 shows the load duration 

curve related to the case under analysis. 

 

Figure 3.11: load duration curve related to the considered dataset 
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As it is possible to note from figure 3.11, the x-axis (time axis) goes from zero to 8760, 

i.e., the number of hours in one year. Instead, as already defined, the y-axis reports 

the load values in descending order. Note that the real data have been used (and not 

the normalized ones) since the load duration curve has a physical meaning that is not 

evident if normalized data are considered. Indeed, a point (𝑡, 𝑃) on the curve defines 

that for 𝑡 hours along the year the power consumption has been higher than 𝑃. For 

instance, entering in the graph with 𝑡 = 2000 ℎ and moving upwards until the curve 

is met allows to read on the y-axis a power value 𝑃 ≈ 70000 𝑀𝑊. This implies that 

for 2000 hours in one year the power consumption has been higher than 7000 MW. 

These considerations are extremely important in order to make predictions about the 

necessary generation capacity for the next years in terms of both energy and power 

requirements. After the clustering process, instead than the original 365 curves, only 

36 curves are obtained, corresponding to the centroids of the 36 determined clusters 

through k-means or k-medoids. Therefore, instead than 8760 hourly values (365x24), 

only 864 (36x24) are available. However, to build up a load duration curve using 

clustered data, all the hours in a year must be considered Thus, a weight 

corresponding to the number of curves inside the cluster has been defined for every 

cluster. Then, the centroid curve of every cluster has been replicated a number of 

times equal to its weight, so that at the end of the process 365 curves are available. 

For instance, if the first determined cluster contains 10 curves, its centroid is 

replicated ten times in a new vector used to sort in descending order the power 

consumption values in order to build up the reconstructed load duration curve from 

clustered data. In the following, the implemented Matlab code to perform the 

explained process is reported. 

 

w=zeros(1,n_clust); 

for i=1:n_clust 

a=find(idx==i); 

l=length(a); 

w(1,i)=l; 

end 

dur_data_rec=zeros(8760,1); 

temp=zeros(1,24); 

temp=c(1,:); 

dur_data_rec(1:w(1)*24,1)=(repmat(temp, 1, w(1)))'; 

jj=w(1)*24+1; 

for i=2:n_clust 

temp=c(i,:); 

dur_data_rec(jj:jj+w(i)*24-1,1)=(repmat(temp, 1, 

w(i)))'; 
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jj=jj+w(i)*24; 

end 

dur_curve_rec=sort(dur_data_rec, 'descend'); 

 

(3.4) 

As it is possible to note from code (3.4), the weight vector w contains in each position 

the number of curves inside the cluster related to that position. Then, a vector temp 

containing the centroid of a considered cluster is repeated for a number of times 

equal to the related value of the vector w though the Matlab function “repmat” and 

the result is stored in the vector dur_data_rec. Finally, by sorting in descending order 

this last vector, the vector dur_curve_rec, used to plot the reconstructed load 

duration curve, is obtained. Figure 3.12 below shows the real load duration curve 

and the reconstructed one from clustered data in 36 clusters: 

 

 

Figure 3.12: real and reconstructed load duration curves for K=36 

Figure 3.12 shows that the reconstructed load duration curve is made by a series of 

steps of different length, corresponding to the fact that a certain power consumption 

value has been repeated for a certain number of times, depending on the number of 
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repetitions of the centroid to which that value belongs. Moreover, the reconstructed 

curve is sometimes higher, sometimes lower than the real load duration curve, as the 

focus in figure 3.13 shows. 

 

 

Figure 3.13: focus on figure 3.12 

It is possible to consider the error between these two curves as a reliable indicator of 

the clustering quality. More precisely, the mean percentage error can be computed 

as: 

 

𝑀𝑃𝐸 =
1

𝑁
∑
|𝑑𝑢𝑟𝑟𝑒𝑐,𝑡 − 𝑑𝑢𝑟𝑟𝑒𝑎𝑙,𝑡|

𝑑𝑢𝑟𝑟𝑒𝑎𝑙,𝑡

𝑁

𝑡=1

× 100 

(3.5) 

For a number of clusters 𝐾 = 36, the computation of the mean percentage error gives 

𝑀𝑃𝐸 = 0.17%. Therefore, the real load duration curve is well approximated by the 

reconstructed load duration curve using only the clustered data. If the number of 

clusters is set to an extremely low value 𝐾 = 2, the computation of the mean 

percentage error gives 𝑀𝑃𝐸 ≈ 2%. The MPE has increased by more then ten times 
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with respect to considering 36 clusters, thus reducing the accuracy of the clustering 

model and the goodness of fit of the typical days. This can be shown also graphically, 

by plotting on the same graph the real and reconstructed load duration curve with 

only 2 clusters, as figure 3.14 reports. 

 

Figure 3.14: real and reconstructed load duration curves for K=2 

It is also possible to compute the area below the two curves in order to determine 

another percentage approximation index. For the sake of clearness, it is recalled that 

this area represents the total energy required by the load along the year. Once the 

two areas have been evaluated, the percentage area error can be defined as: 

 

𝑃𝐴𝐸 =
𝐴𝑟𝑒𝑎𝑙 − 𝐴𝑟𝑒𝑐
𝐴𝑟𝑒𝑎𝑙

∗ 100 

(3.6) 

To compute the area below a curve, the Matlab function “trapz” can be exploited. 

This function numerically approximates the integral of the curve by using the 

trapezoids method. Again, 𝐴𝑟𝑒𝑐 has been evaluated for 𝐾 = 36 and 𝐾 = 2. In the first 
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case, 𝑃𝐴𝐸 = 0.05% while in the second case 𝑃𝐴𝐸 = 0.08%. This implies that the 

model with a higher number of clusters is better, as the computation of the MPE also 

shows. 

 

The previously discussed results can be obtained also by computing the Dunn index, 

presented in the previous chapter, after clustering data with a number of clusters 

ranging from 1 to 40. More precisely, once a value for K has been defined, the 

clustering algorithm is performed and the Dunn index is computed. Then, to 

determine the optimal number of clusters and the quality of the clustering result, the 

model with the highest value of the Dunn index is selected as optimal. The 

implementation of this index on Matlab is not trivial at all, and its computation can 

be performed through the following code, developed in 2010 by Julian Ramos [50]: 

 

function DI=indexDN(data,labels,distance) 

if ~exist('distance','var') || isempty(distance) 

distance = 'euclidean'; 

end 

i= length(unique(labels)); 

distM = squareform(pdist(data,distance)); 

ind = labels; 

denominator=[]; 

for i2=1:i 

indi=find(ind==i2); 

indj=find(ind~=i2); 

x=indi; 

y=indj; 

temp=distM(x,y); 

denominator=[denominator;temp(:)]; 

end 

num=min(min(denominator));  

neg_obs=zeros(size(distM,1),size(distM,2)); 

for ix=1:i 

indxs=find(ind==ix); 

neg_obs(indxs,indxs)=1; 

end 

dem=neg_obs.*distM; 

dem=max(max(dem)); 

DI=num/dem; 

end 

(3.7) 
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Looking at code (3.7), it is possible to note that it implements the formula presented 

in equation (2.14). Indeed, the numerator of the Dunn index ratio is computed as the 

minimum inter-cluster distance, determined as the minimum value of a vector 

“denominator” which contains distances between every couple of curves  

non-belonging to the same cluster. Instead, the denominator of the Dunn index ratio 

is computed as the maximum intra-cluster distance, determined as the maximum 

value of a vector “dem” which contains distance between every couple of curves 

belonging to the same cluster. As already mentioned, the clustering algorithms has 

been performed with a variable number of clusters ranging from 1 to 40 and for 

every clustering output the Dunn index has been computed. The result can be 

observed in figure 3.15 below: 

 

 

Figure 3.15: Dunn index values for different number of clusters 

For the sake of clearness, it is recalled that since the Dunn index is defined as the 

ratio between the inter-clusters and intra-cluster distances, the higher is its value the 

better is the clustering result. Therefore, figure 3.15 shows that the optimal number of 
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clusters is 𝐾 = 34, since the Dunn index reaches its highest peak for this number of 

clusters. The performed analysis considering 36 clusters is of course valid, since with 

𝐾 = 36 the Dunn index has still a high value that reflects the goodness of fit of the 

clustering model. Thus, the 36 obtained curves (representative load days) can be 

employed as input for many different algorithms in order to reduce the 

computational time and complexity anyway reaching coherent and consistent 

results. 

 

 

3.2 R-studio clustering implementation 

The implemented code for clustering implementation in R-studio is reported in 

Appendix B. While in the previous section the partitional clustering algorithms have 

been exploited, now the Ward hierarchical algorithm has been considered. Before 

analyzing the obtained results, it is convenient to show also how the dynamic time 

warping distance has been determined. Indeed, R-studio includes a library for the 

computation of dtw distance measure and its use is very simple. However, for the 

sake of clearness, the code related to this library is reported and examined in the 

following: 

 

#compute the distance matrix bewtween elements of two time series of length 9 

dtw(a1, a2)$stepPattern; #shows equations that are used 

dtw_matrix = matrix(rep(c(0),81), nrow=9, ncol=9, byrow = TRUE); 

dtw_matrix[1,1] = sqrt(a1[1]^2 - a2[1]^2); #first element, euclidean distance 

#first column 

for (i in 2:9){ 

dtw_matrix[i,1] = sqrt((a1[i] - a2[1])^2) + dtw_matrix[i-1,1]; 

}  

#first row 

for (j in 2:9){ 

dtw_matrix[1,j] = sqrt((a1[1] - a2[j])^2) + dtw_matrix[1,j-1]; 

}  
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#rest of the matrix 

for (i in 2:9){ 

for (j in 2:9){ 

dtw_matrix[i,j] = sqrt((a1[i] - a2[j])^2) + min(dtw_matrix[i,j-1], 

dtw_matrix[i-1,j], dtw_matrix[i-1,j-1]+sqrt((a1[i] - a2[j])^2)); 

}  

} 

#find the optimal allignement bewtween time series-->minimum global distance path 

on matrix 

#if d(i−1,j−1)=d(i,j−1) we choose d(i,j−1) and if d(i−1,j−1)=d(i−1,j) we choose d(i−1,j−1) 

path = c(9,9); # starting with furthest place in matrix (lower right corner) 

i = 9; 

j = 9; 

while(i>1 & j>1){ 

if (j == 1) { 

j = j - 1; 

} else if (i == 1) { 

i = i - 1; 

} else if (dtw_matrix[i,j-1] == min(dtw_matrix[i-1, j-1], dtw_matrix[i-1, j], 

dtw_matrix[i, j-1])){ 

j = j - 1; 

} else if (dtw_matrix[i-1,j-1] == min(dtw_matrix[i-1, j-1], dtw_matrix[i-1, j], 

dtw_matrix[i, j-1])){ 

i = i - 1; 

j = j - 1; 

} else { 

i = i - 1; 

} 

path = rbind(path, c(i,j)); 

} 
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path = rbind(path, c(1,1)); 

plot(dtw(a1,a2)); 

points(path[,1], path[,2], type="l"); 

plot(dtw(a1,a2, k=TRUE), type="three"); 

(3.8) 

As it is possible to note from code (3.8), the implemented procedure is exactly the one 

described previosuly: first, the local cost matrix is computed by determining initially 

its first row and column and then computing the remaining elements using the step-

pattern equation. Then, starting from lower right corner of the global cost matrix  

(𝑖, 𝑗 are initialised to the number of rows and columns of the matrix, thus the first 

considered position is the lower right corner), the three adjacent positions are 

checked in order to determine the one which has the minimum distance. For 

instance, if the DTW matrix is 9x9, starting from position (9,9) the examined positions 

are (8,9), (9,8) and (8,8), that are adjacent to (9,9). The indexes of the new selected 

position (that have minimum distance from the starting position) are saved in the 

“path” array and the procedure is iteratively repeated until the first position of the 

global cost matrix (upper left corner) is reached (while cycle is stopped). The result is 

an array containing the positions of the selected element of the global cost matrix, 

thus containing the indices of the optimal warping path (alignment) between the two 

considered time series. As in the previous section, the following figures show the 

obtained optimal alignment between two time series (the same load curves reported 

in figure 3.3) by means of the three-way plot. 

 

Figure 3.16: optimal alignment between time series of figure 3.3 
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Figure 3.17: three-way plot of the optimal alignment reported in figure 3.16 

It is not convenient for graphical purpose to report the local or global cost matrix, 

since it has 365 rows and columns. Anyway, a portion of it limited to 20 rows and 

columns is represented in figure 3.18. Even if it is not possible to precisely read the 

distance values in each position of the matrix, its meaning is clear. Indeed, as it is 

possible to observe, the optimal warping path (represented in blue) is the first 

portion of the alignment reported in figure 3.17. As already mentioned many times, 

this path passes only through the low-cost areas of the heatmap, denoted by a lighter 

color, thus leading to a minimized global cost. 
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Figure 3.18: heatmap of the global cost matrix 

Before discussing the clustering results, it is convenient to analyze the function that 

implements the clustering process. In particular, the R-studio code is: 

 

cluster_dtw_h <-list() 

for (i in 2:36) 

{ 

cluster_dtw_h[[i]] <- tsclust(df_list_z, type = "h", k = i,  distance = "dtw", 

control = hierarchical_control(method = "complete"), preproc = NULL, args = 

tsclust_args(dist = list(window.size = 5L))) 

} 

(3.9) 

As it is possible to note from code (3.9), the function exploited to cluster the dataset is 

denoted as “tsclust”. More precisely, it produces the same outputs as Matlab (vector 
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of clusters belonging indexes, centroid matrix, distance matrix and sum) while the 

required inputs are listed in the next page. 

• df_list_z: input dataset containing the normalized load curves. The “tsclust” 

function works with datasets and not matrix, therefore it is necessary to 

convert the 365x24 input matrix to a data frame (basic R-studio structure) 

through the command: 

data_df=as.data.frame(t(data_mat)); 

(3.10) 

• type: desired category of clustering algorithms. Possible types are “p” 

(partitional clustering) or “h” (hierarchical clustering). 

 

• k: desired number of clusters. 

 

• distance: selected similarity measure. Typically, dynamic time warping is 

employed (distance=”dtw”). 

 

• control: appropriate list of control parameters. 

 

• preproc: function to pre-process the data. Since a z-normalization technique 

has been already applied to the dataset, the value of this parameter is set to 

NULL. 

 

• args: appropriate list of arguments for pre-processing, distance and centroid 

functions. The definition of the window size has the same meaning than in 

Matlab: selecting 5L as window size implies that the clustering algorithm is 

repeated five times and the optimal result is selected and stored.  

 

Moreover, code (3.9) shows that with R-studio it is possible to perform automatically 

the clustering process in a for-loop, creating a list of clustering results for different 

values of K. This process has been performed considering a number of clusters 

ranging from 1 to 36 and then computing some quality indexes as done in the 

previous section to determine the best model and the optimal number of clusters. 

Some of the obtained clusters for 𝐾 = 2 and for 𝐾 = 36 are reported in the next 

pages.  
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Figure 3.19: overview of the obtained clusters for K=36 

 

Figure 3.20: centroids (typical days) of the 36 obtained clusters 
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Figure 3.21: overview of the obtained clusters for K=2 

 

Figure 3.22: centroids of the 2 obtained clusters 
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As it is possible to note from figures 3.22 and 3.20, clustering the load curves in a too 

low number of clusters (K=2) results in a bad definition of the typical load days. 

Indeed, even if cluster1 centroid catches well the shape of its cluster participants, 

cluster2 centroid misses an important load peak around 19 p.m., thus it does not 

represent well the behavior of the load during the days belonging to cluster2 itself. 

Instead, clustering the dataset in 36 clusters (K=36) allows to obtain very 

representative typical load days. Indeed, for each obtained cluster, the centroid 

resembles the shape of the cluster participants. This implies that using the typical 

load days as input of whichever algorithm leads to obtain coherent result with using 

the entire dataset, of course significantly reducing the computational time.  

The following figure shows the cluster dendrogram for K=36: 

 

 

Figure 3.23: cluster dendrogram for K=36 

Even if it is not possible to precisely read which load curves have been clustered 

together from the dendrogram, its meaning is clear. Indeed, the y-axis reports the 

distances between time series and the different branches show which clusters have 

been merged in every step until a single cluster containing all the objects is obtained. 

Of course, the procedure stops when the selected number of clusters is reached.  
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Typically, exploiting hierarchical algorithms the quality of clustering results is higher 

and the optimal number of clusters is lower than using partitional algorithms. This 

can be proved by computing quality indexes as done for Matlab implementation. In 

particular, the following figures show the Dunn index, the Davies Bouldin index and 

the gap statistic behavior for different numbers of clusters: 

 

 

Figure 3.24: Dunn index for different numbers of clusters 

As it is possible to note from figure 3.24, the highest value of the Dunn index is 

obtained for k=6. However, this is in contrast with the already used criterion of 

matching as much as possible the real load duration curve with a reconstructed one 

from clustered data. Making several attempts, it is possible to determine a good 

compromise between the Dunn index value and the error on the load duration 

curves with a number of clusters 𝐾 ≥ 31, coherently with the result obtained in the 

previous section. 
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Figure 3.25: Davies-Bouldin index for different numbers of clusters 

According to the Davies-Bouldin index, the optimal number of clusters is 31. Indeed, 

it is recalled that the best clustering model is the one that minimizes the Davies-

Bouldin index and maximizes the Dunn index. This value is coherent with the 

tradeoff discussed in the previous page (it is possible to determine a good 

compromise between the Dunn index value and the error on the load duration 

curves with a number of clusters 𝐾 ≥ 31) and allows to obtain a very precise 

reconstructed load duration curve.  

Eventually, figure 3.26 in the next page shows the gap statistic behavior for different 

number of clusters. As it is possible to note, the optimal value of clusters suggested 

by this parameter is K=10. Indeed, for 𝐾 ≥ 10 the gap statistic does not exhibit a great 

variation, while it increases rapidly until 10 clusters are considered. Of course, 
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increasing the number of clusters increases the gap statistic value and the matching 

degree between the load duration curves (advantages) but the computational effort 

increases too and the values of other quality indexes can be reduced (disadvantages). 

Again, after several attempts, it is possible to determine a good compromise between 

the gap statistic value and the error on the load duration curves with a number of 

clusters 𝐾 ≥ 21, 

 

 

 

Figure 3.26: gap statistic value for different number of clusters 
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After having examined the obtained results with Matlab and R-Studio, it is 

convenient to make a brief comparison between them. First, as it is possible to note 

from the computation of the quality indexes, there is never a purely correct answer to 

a clustering problem. Different parameters provide different results and a 

compromise between them must be always found, without focusing too much on one 

of them but rather searching for the optimal tradeoff solution. For instance, with  

R-Studio a minimum number of clusters 𝐾 = 31 has been determined as a good 

compromise between the Dunn index value and the error on the load duration 

curves. The same considerations can be made after the computation of the Davis-

Bouldin index and the gap-statistic index. This result is coherent with the one 

obtained with Matlab. Indeed, as shown by the Dunn index plot (figure 3.15), the 

optimal number of clusters found with this software is 𝐾 = 35. Moreover, the 

computation of the quality indexes has shown that, with a hierarchical clustering 

algorithm, the necessary number of clusters is lower than the one with a partitional 

clustering algorithm. However, the need to correctly represent the load duration 

curve increases this number up to the already determined value.  

The previous comparison and the different results show that, with both softwares, 

the centroids of the obtained clusters (typical load days) are able to well-represent 

the behavior of the load along the year, leading to a small error on the load duration 

curve and on its total area. To properly remark this conclusion, it is possible to check 

if the minimum/maximum load ramps are still present after having clustered the 

load curves. For this purpose, the following code can be exploited: 

ramp=zeros(365,24); 

for ii=1:365 

for jj=2:24 

ramp(ii,jj)=data(ii,jj)-data(ii,jj-1); 

end 

end 

ramp(1,1)=data(365,24)-data(1,1); 

for ii=2:24 

ramp(ii,1)=data(ii,1)-data(ii-1,24); 

end 

ramp_rec=zeros(36,24); 

for ii=1:36 

for jj=2:24 

ramp_rec(ii,jj)=c(ii,jj)-c(ii,jj-1); 

end 

end 

ramp_rec(1,1)=c(36,24)-c(1,1); 
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for ii=2:24 

ramp_rec(ii,1)=c(ii,1)-c(ii-1,24); 

end 

max_ramp=max(max(ramp)); 

max_ramp_rec=max(max(ramp_rec)); 

min_ramp=min(min(ramp)); 

min_ramp_rec=min(min(ramp_rec)); 

(3.11) 

The previous Matlab code computes a matrix “ramp”, which reports the load ramp 

values for every hour of the day. More precisely, the position 𝑖, 𝑗 of this matrix 

contains the load ramp between hours 𝑗 and 𝑗 − 1, on the day 𝑖. Then, using the 36 

obtained typical days, another matrix “ramp_rec” is computed with the same logic. 

Successively, the maximum positive and negative values are found for both matrixes, 

to determine if the maximum load ramps are preserved in the clustered model. By 

running code (3.11), the following result is obtained: 

 

 Maximum positive 

ramp [MW] 

Maximum negative 

ramp [MW] 

Original dataset 1.031 × 104 −0.612 × 104 

Clustered dataset 1.056 × 104 −1.811 × 104 

Table 3.1: Maximum positive and negative ramps for original and clustered dataset 

As it is possible to observe from table 3.1, similar values of the maximum ramps are 

obtained after the clustering process. More precisely, it is possible to compute the 

percentage of error as: 

𝐸𝑟𝑎𝑚𝑝,% =
|𝑟𝑎𝑚𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑟𝑎𝑚𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑|

|𝑟𝑎𝑚𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|
∗ 100 

(3.12) 

The computation of the previous error index using the values from table 3.1 gives 

𝐸𝑟𝑎𝑚𝑝 𝑝𝑜𝑠,% = 2.45% and 𝐸𝑟𝑎𝑚𝑝 𝑛𝑒𝑔,% = 66%. While the error on the maximum 

positive ramp is very low, the error on the maximum negative ramp is quite high. 

Anyway, the maximum negative ramp after clustering is higher (more negative) than 

the one before clustering. This can be a conservative hypothesis (assuming that the 

load varies more than its actual variation) not to undersize machines and 

components and to make worst-case scenario economical evaluations. On the other 
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side, if this error must be reduced, it is necessary to include constraints in the 

clustering algorithm (for instance: impose a maximum negative ramp rate). This 

approach is not easy at all since it need clustering algorithms which consider the 

chronological occurrence of data points, as it will be explained in the next section. 

The previous comparison shows that there is never a purely correct answer to a 

clustering problem. Different parameters provide different results and a compromise 

between them must be always found, without focusing too much on one of them but 

rather searching for the optimal tradeoff solution. Moreover, the clustering 

algorithms need a starting condition to perform and some crucial decisions are taken 

during operations. The facts that the starting condition is typically random and that 

the merging/splitting decisions are irreversible and can be affected by errors 

highlight the importance of interpreting the results. Due to this, data scientists are 

currently studying and implementing new clustering techniques, addressing all the 

issues that are still present in the clustering process. In this perspective, one of these 

issues will be examined in the next section, and two solutions under development 

will be briefly discussed. 

 

3.3 Future developments 

To conclude this thesis, one last aspect about time series clustering must be analyzed. 

More precisely, this aspect is related to the chronological ordering of clustered time 

series. Indeed, in most capacity expansion models the representative days or weeks 

are chosen using classical clustering techniques such as K-means or hierarchical 

clustering [51]. This approach works well only if the considered load/generation 

profile has a repetitive daily pattern along the year or if it exhibits a certain 

seasonality. However, with the penetration of renewable energy sources in the 

generation area, this is no more true and the extremely dynamic behavior of 

generation cannot be properly captured by representative days. Moreover, in parallel 

with the growth of fluctuating renewable power generation, the increasing role of 

energy storage in power systems also questions the use of representative days in 

capacity expansion models [52]. For instance, the use of inter-day ESS is crucial in 

Europe when the weather conditions reduce the wind and PV production to a 

minimum. Anyway, adopting representative days it is possible to keep track of the 

energy level of only the intra-day ESS, while for the inter-day ESS this is not possible, 

since it is not sure that the transition from a typical day to another one represents 

well the actual transition from one day to another. Due to all these reasons, many 

researchers are studying a strategy to cluster the time periods of a capacity expansion 

model while keeping, as much as possible, the chronological information of the time-
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dependent parameters throughout the whole planning horizon. In this way, the 

resulting capacity expansion model can capture the longer dynamics of renewable 

power generation and properly model the energy conservation constraints of 

interday storage. In this conclusion, two main methods for clustering data preserving 

their chronological features are illustrated. The first one is related to whole time 

series clustering and determines clusters in which the belonging time series are 

adjacent in time, avoiding to obtain clusters containing extremely time-separated 

load curves, even if with similar shape. For instance, in this way the load curves of 

January cannot be clustered with load curves of July, thus the longer dynamics of the 

load can be analyzed though the typical days and intraday storage can be included in 

the model. Instead, the second proposed method exploits an optimization problem to 

chronologically order the already selected representative days. In the following, for 

the sake of simplicity, the two strategies will be briefly discussed while their 

implementation is left as a possible deepening.  

 

The first proposed method has been presented by Salvador Pineda and Juan M. 

Morales in [53]. The adopted approach is based on the classical Ward hierarchical 

algorithm, with an important variation in the fourth task. Indeed, the main steps to 

be performed are: 

 

1. Set the initial number of clusters 𝑛 equal to the total number of objects 𝑁.  

 

2. Determine the centroid of each cluster as the mean value of the cluster itself. 

 

3. Compute the distance between each pair of clusters according to Ward’s 

method. 

 

4. Merge the two closest adjacent clusters. 

 

5. Update 𝑛 = 𝑛 − 1 

 

6. If a predefined condition is satisfied (for instance, the number of clusters is 

equal to a desired value) go to step 7, otherwise go to step 2. 

 

7. Determine the centroid of each cluster as the cluster medoid. 

As it is possible to note, now only adjacent clusters can be merged. Two clusters 𝐶𝑖, 𝐶𝑗 

are defined adjacent if 𝐶𝑖 contains a time instant that is chronologically consecutive to 
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a time instant in 𝐶𝑗. In this way, only the load curves of consecutive days will be 

merged, thus the resulting cluster preserves the chronological feature of clustered 

data and allows to capture the long-time dynamic of the load. 

 

The second proposed method has been presented by Bram van der Heijde et al. in 

[54]. After having selected the representative days, the adopted approach exploits an 

optimization problem to chronologically order them in such a way to preserve the 

time features of the original dataset. This problem is formulated as a mixed integer 

quadratic problem (MIQP) as follows: 

 

min𝑤 {∑∑∑(𝑓𝑠(𝑑, 𝑡) − 𝑔𝑠(𝑑, 𝑡))
2

𝑡∈𝑇

}

𝑑∈𝐷𝑠∈𝑆

 

(3.13) 

       s.t.: 

∑𝑤(𝑑, 𝑟) = 𝑛(𝑟) − 1, ∀𝑟 ∈ 𝑅

𝑑∈𝐷

 

(3.14) 

𝑤(𝑑, 𝑟 = 𝑑) = 1, 𝑖𝑓 𝑑 ∈ 𝑅 

(3.15) 

∑𝑤(𝑑, 𝑟) = 1

𝑟∈𝑅

, ∀𝑑 ∈ 𝐷 

(3.16) 

∑𝑤(𝑑, 𝑟) ∗ 𝑓𝑠(𝑟, 𝑡)

𝑟∈𝑅

= 𝑔𝑠(𝑑, 𝑡), ∀𝑑 ∈ 𝐷, ∀𝑡 ∈ 𝑇 

(3.17) 

In the previous equations, 𝑑 is the considered day of the year belonging to  

𝐷 = [0,1, … ,364] while 𝑡 is the time-step during the day belonging to  

𝑇 = [0, … , 𝑛𝑠𝑡𝑒𝑝𝑠 − 1]. In case of hourly values 𝑇 = [0,1, … ,24]. Moreover, 𝑟 is one of 

the days belonging to the determined set of representative days 𝑅 while 𝑤(𝑑, 𝑟) is a 

binary variable equal to 1 if the typical day 𝑟 is selected for representing day 𝑑 and 
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equal to 0 otherwise. Eventually, 𝑛(𝑟) denotes the number of repetitions (weight) of 

the representative day 𝑟 (number of participants in the cluster which centroid is 𝑟), 𝑠 

is the index of all time series in set 𝑆 with related value 𝑓𝑠(𝑑, 𝑡) and  𝑔𝑠(𝑑, 𝑡) is the 

reconstructed year, obtained by substituting to a day 𝑑 its representative day 𝑟. 

Moreover, different constraints are defined: equation (3.15) ensures that the typical 

days are selected to represent themselves in the reconstructed year. For instance, if 

day 3 of the year is selected as typical day, it must represent day 3 too in the 

reconstructed year. This implies that the total number of repetitions of the 

representative day 𝑟 in the rest of the year is 𝑛(𝑟) − 1, as shown by equation (3.14). 

Moreover, equation (3.16) indicates that to every day of the year must be assigned 

exactly one representative days and, finally, equation (3.17) assign the time series 

data  𝑓𝑠(𝑟, 𝑡) of the representative day 𝑟 to the reconstructed time series 𝑔𝑠(𝑑, 𝑡). 

Figures 3.27 and 3.28 show graphically the above-described process: 

 

 

Figure 3.27: objective of the second proposed approach 

 

 

Figure 3.28: working principle of the second proposed approach 
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Figure 3.28 shows an example of a “year” consisting of 6 different days. The year 

must be represented by 3 representative days. The first step is to select which days 

are optimal to represent the full dataset and how many times they must be repeated 

to end up with the same total duration. This can be done though whichever 

clustering algorithm, as already discussed in the previous chapter. Successively, the 

proposed MIQP orders the days in a new chronology that minimizes the error with 

the original data sets. In this way, the resulting reconstructed year preserves the 

chronological feature of original data and allows to capture the long-time dynamic of 

the load. 
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4. Conclusion 

 

The purpose of this thesis was to highlight the extreme importance that clustering 

has in everyday life. Indeed, the introduction has reported several examples and 

applications of the clustering process in many different research areas and subjects. 

Moreover, chapter 1 has provided the theoretical knowledge and support necessary 

to fully understand what clustering is and how it is implemented, deepening all the 

aspects related to its input parameters such as the selected similarity measure or the 

concept of time series. Chapter 2, instead, has focused on the three clustering 

algorithms employed in this thesis (k-means, k-medoid, Ward hierarchical 

algorithm), explaining their working principle, their features and their main 

advantages and disadvantages. For the sake of clearness, these last are listed in a 

summarizing table at the end of this conclusion. Moreover, chapter 2 has examined 

some indexes to determine the optimal number of clusters and to check the quality of 

the clustering results. Chapter 3, instead, has discussed the practical implementation 

of the clustering algorithms in Matlab and R-studio, applying the clustering process 

to an electrical engineering problem to determine the so-called representative load 

days. These days are extremely important to reduce the computational time of many 

algorithms which exploit the load curves to make predictions or to size electrical 

components. Indeed, by considering only the representative days instead of the 

original curves, coherent results can be achieved in a fraction of the required 

computational time. This shows that clustering is essential also in electrical 

engineering or more generally in all the scientific areas in which big datasets are used 

as input of subject-specific algorithms. The goodness of the clustering model has 

been estimated through the computation of the presented quality indexes, and an 

optimal number of clusters has been found. Eventually, a comparison between the 

obtained results has been examined, showing that even if they are coherent between 

different softwares, there is never a purely correct answer to a clustering problem. 

Different parameters provide different results and a compromise between them must 

be always found, without focusing too much on one of them but rather searching for 

the optimal tradeoff solution. 
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Again and for the last time, time series clustering has gained an extreme importance 

in the last years, due to its capability to reduce the computational time of many 

algorithms or machine-learning models. Nowadays, it is part of many research areas 

that try to improve it by adding specific features, such as the chronological order 

preservation or even more. This thesis has provided a solid theoretical basis for 

understanding and implementing the main time-series clustering algorithms, 

applying them to a real-life electrical engineering problem by determining the 

representative load days, useful in many planning, sizing and development 

algorithms. To conclude, as already mentioned, the following table reports the main 

advantages and disadvantages of the three employed clustering algorithms, to have a 

quick comparison between them. 

 

 K-means K-medoids Ward hierarchical 

Advantages 
Low computational 

complexity 

 

Easy and simple to 

implement 

 

Quite scalable 

 

Efficient in clustering 

big datasets 

Low 

complexity 

(higher than 

k-means) 

 

Quite 

scalable 

 

Less sensitive 

to noise and 

outliers 

No need to define a 

priori the number of 

clusters 

 

Capability to treat noisy 

data 

Disadvantages 

Cannot be applied if 

categorical variables are 

present 

 

Need to select a priori 

the number of clusters 

 

Sensitive to noise and 

outliers 

Need to 

select a priori 

the number 

of clusters 

Sensitive to 

noise 

 

Need a 

scalability 

improvement 

for clustering 

big datasets 

Crucially based on the 

definition of 

merging/splitting point 

 

Not very scalable due to 

its computational 

complexity 

Table 4.1: Advantages and disadvantages of the employed clustering algorithms 
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A. Appendix A 

K-means Matlab implementation 

%z-normalization to be invariant to offsets and scaling 

for i=1:365 

for j=1:24 

data_norm(i,j)=(data(i,j)-

mean(data(i,:)))/std(data(i,:)); 

end 

end 

n_clust=36; %desired number of clusters 

%clustering 

[idx,c,sumd,d]=kmeans(data_norm,n_clust,'Distance', 

'Euclidean','replicates',5); 

%clusters plot 

for i=1:n_clust 

a=find(idx==i); 

figure 

plot(data_norm(a(1,1),:)); 

hold on 

for j=2:length(a) 

plot(data_norm(a(j,1),:)); 

end 

plot(c(i,:), 'LineWidth', 3); 

hold off 

end 

%comparison of load duration curves (real vs 

reconstructed) 

%real ldc 

dur_data_real=reshape(data_norm, [], 1); 

dur_curve_real=sort(dur_data_real, 'descend'); 

plot(dur_curve_real); 

%dur_data=reshape(data, [], 1); 

%dur_curve_non_norm=sort(dur_data, 'descend'); 
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%weight vector for every typical day-->weight=number of 

days in cluster 

w=zeros(1,n_clust); 

for i=1:n_clust 

a=find(idx==i); 

l=length(a); 

w(1,i)=l; 

end 

dur_data_rec=zeros(8760,1); 

temp=zeros(1,24); 

temp=c(1,:); 

dur_data_rec(1:w(1)*24,1)=(repmat(temp, 1, w(1)))'; 

jj=w(1)*24+1; 

for i=2:n_clust 

temp=c(i,:); 

dur_data_rec(jj:jj+w(i)*24-1,1)=(repmat(temp, 1, 

w(i)))'; 

jj=jj+w(i)*24; 

end 

dur_curve_rec=sort(dur_data_rec, 'descend'); 

plot(dur_curve_rec); 

hold on 

plot(dur_curve_real); 

hold off 

edc=(1-mean(((dur_curve_real-

dur_curve_rec)./dur_curve_real).^2))*100; %percentage mean 

square error 

 

 

K-medoids Matlab implementation 

%z-normalization to be invariant to offsets and scaling 

for i=1:365 

for j=1:24 

data_norm(i,j)=(data(i,j)-

mean(data(i,:)))/std(data(i,:)); 

end 

end 

n_clust=36; %desired number of clusters 

%clustering 

[idx,c,sumd,d]=kmedoid(data_norm,n_clust,'Distance',@dtwf,

'replicates',5); 

%clusters plot 
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for i=1:n_clust 

a=find(idx==i); 

figure 

plot(data_norm(a(1,1),:)); 

hold on 

for j=2:length(a) 

plot(data_norm(a(j,1),:)); 

end 

plot(c(i,:), 'LineWidth', 3); 

hold off 

end 

%comparison of load duration curves (real vs 

reconstructed) 

%real ldc 

dur_data_real=reshape(data_norm, [], 1); 

dur_curve_real=sort(dur_data_real, 'descend'); 

plot(dur_curve_real); 

%dur_data=reshape(data, [], 1); 

%dur_curve_non_norm=sort(dur_data, 'descend'); 

%weight vector for every typical day-->weight=number of 

days in cluster 

w=zeros(1,n_clust); 

for i=1:n_clust 

a=find(idx==i); 

l=length(a); 

w(1,i)=l; 

end 

dur_data_rec=zeros(8760,1); 

temp=zeros(1,24); 

temp=c(1,:); 

dur_data_rec(1:w(1)*24,1)=(repmat(temp, 1, w(1)))'; 

jj=w(1)*24+1; 

for i=2:n_clust 

temp=c(i,:); 

dur_data_rec(jj:jj+w(i)*24-1,1)=(repmat(temp, 1, 

w(i)))'; 

jj=jj+w(i)*24; 

end 

dur_curve_rec=sort(dur_data_rec, 'descend'); 

plot(dur_curve_rec); 

hold on 

plot(dur_curve_real); 

hold off 
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edc=(1-mean(((dur_curve_real-

dur_curve_rec)./dur_curve_real).^2))*100; %percentage mean 

square error 
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B. Appendix B 

Ward hierarchical algorithm R-Studio implementation 

library(xlsx); 

library(factoextra); 

library(cluster); 

library(tidyverse); 

library(dendextend); 

library(TSclust); 

library(dtwclust); 

library(dtw); 

library(R.matlab); 

data_mat=readMat('C:/Users/Simone/Desktop/data_mat.mat'); 

data_mat=matrix(unlist(data_mat$data), nrow=365); 

data_df=as.data.frame(t(data_mat)); 

data_long=gather(data_df[c(1:24), c(1:365)]); #create a column vector containing all 

the observations (24 observations, 365 variables) 

data_long$time = rep(1:24,365); #add time to data_long -> from 1 to 24, 365 times 

#plot of data 

data_long %>%  

  ggplot(aes(x= time, y= value, color= key)) + 

  geom_line( size=0.2) + 

  ggtitle("Control chart sequences") +  

  facet_wrap(~ key , scales = 'free_x', nrow= 2); 
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df_list <- as.list(utils::unstack(data_long, value ~ key)); #create a list of time series 

df_list_z <- dtwclust::zscore(df_list); #z-normalization 

 

#make from 2 to 36 clusters with HIERARCHICAL METHOD 

cluster_dtw_h <-list() 

for (i in 2:36) 

{ 

  cluster_dtw_h[[i]] <- tsclust(df_list_z, type = "h", k = i,  distance = "dtw", control = 

hierarchical_control(method = "complete"), seed = 390, preproc = NULL, args = 

tsclust_args(dist = list(window.size = 5L))) 

} 

#example with 36 clusters 

plot(cluster_dtw_h[[36]]); #dendrogram 

plot(cluster_dtw_h[[36]], type = "sc"); #plot cluster partecipants 

lines(cluster_dtw_h[[36]], type = "centroid"); #centroids 

 

#make 2 to 36 clusters with PARTITIONAL METHOD-->K-MEDOID 

cluster_dtw_p <-list() 

for (i in 2:36) 

{ 

  cluster_dtw_p[[i]] <- tsclust(df_list_z, type = "p", k = i,  distance = "dtw", control = 

partitional_control(nrep=1L), seed = 390, preproc = NULL, args = tsclust_args(dist = 

list(window.size = 5L))) 

} 

#example with 36 clusters 

#plot(cluster_dtw_p[[36]]); 

plot(cluster_dtw_p[[36]]); #plot cluster partecipants and centroids 
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2.  List of Symbols 

Variable Description SI unit 

y number of years - 

n number of input data - 

O( ) big O notation - 

DTW dynamic time warping - 

𝑻𝒕 
trend component of a 

time series at time 𝑡  
- 

𝑪𝒕 
cyclical component of a 

time series at time 𝑡 
- 

𝑺𝒕 
seasonal component of a 

time series at time 𝑡 
- 

𝑰𝒕 
irregular component of a 

time series at time 𝑡 
- 

𝑻′𝒕 
trend-cycle component 

of a time series at time 𝑡 
- 

𝒀′𝒕 
seasonally adjusted time 

series at time 𝑡 
- 

MA moving average - 

𝒎 considered month - 
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𝒀 random variable - 

iid 
independent and 

identically distributed 
- 

𝛁 lag-1 operator - 

𝛁𝒅 lag-d operator - 

𝒔(𝒚𝒊, 𝒚𝒋) 
similarity measure 

between 𝑦𝑖 , 𝑦𝑗 
- 

𝒅(𝒚𝒊, 𝒚𝒋) 
dissimilarity measure 

between 𝑦𝑖 , 𝑦𝑗 
- 

𝑫(𝒚𝒊, 𝒚𝒋) 
distance measure 

between 𝑦𝑖 , 𝑦𝑗 
- 

𝑫𝑬(𝒀𝒕, 𝒀𝒕
′) 

Euclidean distance 

between 𝑌𝑡 , 𝑌𝑡
′ 

- 

𝑫𝑳𝒑(𝒀𝒕, 𝒀𝒕
′) 

Minkowski distance 

between 𝑌𝑡 , 𝑌𝑡
′ 

- 

𝑫𝑻𝑾(𝒀𝒊, 𝒀𝒋) 
dynamic time warping 

between 𝑌𝑖 , 𝑌𝑗 
- 

C local cost matrix - 

𝒄𝒑 
cost function related to a 

warping path 
- 

𝒚𝒊
′ normalized 𝑦𝑖 value - 

𝝁 mean value - 

𝝈 standard deviation - 

𝑹̂ 
cluster prototype  

(whole time series) 
- 

𝜽𝒌̂ 
cluster centroid  

(time point) 
- 

𝒘𝒏𝒌 binary variable - 
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𝑆𝑺𝑬 sum of squared errors - 

SAE sum of absolute errors - 

𝒐𝒋 medoid object - 

𝒐𝒓𝒂𝒏𝒅𝒐𝒎 
non-medoid object 

(candidate) 
- 

𝒑 non-medoid object - 

𝒅𝒎𝒊𝒏(𝑪𝒊, 𝑪𝒋) 
minimum distance 

between clusters 𝐶𝑖, 𝐶𝑗 
- 

𝒅𝒎𝒂𝒙(𝑪𝒊, 𝑪𝒋) 
maximum distance 

between clusters 𝐶𝑖, 𝐶𝑗 
- 

𝒅𝒎𝒆𝒂𝒏(𝑪𝒊, 𝑪𝒋) 
mean distance between 

clusters 𝐶𝑖, 𝐶𝑗 
- 

𝒅𝒂𝒗𝒆𝒓𝒂𝒈𝒆(𝑪𝒊, 𝑪𝒋) 
average distance 

between clusters 𝐶𝑖, 𝐶𝑗 
- 

𝒅𝑾𝒂𝒓𝒅(𝑪𝒊, 𝑪𝒋) 
Ward distance between 

clusters 𝐶𝑖, 𝐶𝑗 
- 

𝑺𝒊 
average point silhouette 

index 
- 

𝑮(𝑲) gap function - 

𝑸𝑫 Dunn index - 

𝑸𝑫𝑩 David-Bouldin index - 

𝑴𝑷𝑬 mean percentage error - 

𝑷𝑨𝑬 percentage area error - 

𝑬𝒓𝒂𝒎𝒑,% 
percentage error on load 

ramps 
- 
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