
HW-SW architectures for security
and data protection at the edge

Tesi di Laurea Magistrale in
Ingegneria Informatica

Author: Donald Gazidedja

Student ID: 10591781
Advisor: Prof. Stefano Zanero
Co-advisors: Christian Pilato
Academic Year: 2021

i

Contents

Contents i

Acknowledgements i

Abstract in lingua italiana iii

Abstract v

1 Introduction 1
1.1 Background and Motivations . 2
1.2 Problem Overview . 3
1.3 Results . 5
1.4 Thesis Structure . 6

2 Review of literatures 9
2.1 Trusted Execution Environment (TEE) . 9

2.1.1 Reference Architecture . 11
2.2 Trusted platform modules (TPM) . 14

2.2.1 TPM Architecture . 15
2.2.2 Vulnerabilities . 16

2.3 ARM TrustZone . 16
2.4 AMD SEV . 17

2.4.1 Privilege Levels . 19
2.5 Intel SGX . 20

2.5.1 Intel SGX Architecture . 20

3 Technology Research & Assessment 31
3.1 Architecture Elements . 31
3.2 Vulnerability Model . 39

3.2.1 Introduction . 39

3.2.2 Selected classes of embedded systems vulnerabilities 39
3.2.3 Mapping of Vulnerabilities . 43

4 Proposed Solution Architecture 57
4.1 Introduction . 57
4.2 Attacker Model . 59
4.3 Threat Model . 61
4.4 Use Case . 63
4.5 Scenarios . 65
4.6 Technical Background . 69

5 Conclusion 79
5.1 . 79
5.2 Future work & improvements . 81

Bibliography 83

i

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Assoc. Prof.
Stefano Zanero, Asst.Prof. Christian Pilato, Dott.Ing. Senni Valerio and Dott.Ing. Fabio
Federici who guided and supported for the whole period of the thesis. Without them, it
wouldn’t have been possible! A million times thank you!

My sincere appreciation goes to the whole Polimi Como Campus team (professors, student
secretary, etc.), it was an amazing experience for as long as it lasted and I am so very
thankful for your time!

I want to thank my second family, my friends, for the beautiful moments we passed during
these years and for the support we gave to each other to reach our goals, especially my
brother from another mother, Amrit.

Last but not least, I dedicate this thesis to the most important persons, my family mem-
bers and my fiancee for their support during my study period in Italy, even tho far away,
they have always been there for me in every moment!

iii

Abstract in lingua italiana

Con il rapido sviluppo della tecnologia, oggigiorno, garantire la sicurezza si traduce in
diverse sfide progettuali, imposte dalle caratteristiche uniche di questi sistemi. Queste
funzionalità vengono eseguite su un’ampia base di elaborazione non affidabile, che include
il sistema operativo, l’hypervisor, il firmware e l’hardware. La condivisione di risorse
hardware e software è rischiosa e il problema della base di calcolo non attendibile consente
l’accesso in diversi modi a un utente malintenzionato per compromettere l’applicazione /
hypervisor / sistema operativo per rubare segreti dal sistema.

Ani fa, ricercatori e aziende utilizzavano tecniche basate su software per fornire sicurezza
e isolamento in domini distinti. Ma la storia suggerisce che le vulnerabilità del kernel
e del sistema operativo vengono scoperte e sfruttate più spesso. Queste vulnerabilità
possono portare a un attacco di escalation dei privilegi, con il rischio che il sistema perda
la riservatezza e l’integrità dei dati. Per risolvere il problema della base di calcolo non
attendibile, è stato introdotto il concetto di Trusted Execution Environment che si basa
sull’hardware per isolare gli ambienti.

In questo lavoro analizzeremo dal punto di vista della sicurezza, quattro diverse tecnolo-
gie di ambienti di esecuzione attendibili che sono TPM, ARM TrustZone, AMD SEV
(inclusa un’introduzione a SEV-SNP) e Intel SGX. Inoltre, dimostreremo e spiegheremo
diverse funzionalità e componenti dell’architettura per capire come possono proteggere
da varie vulnerabilità e quali sono le differenze o le somiglianze tra loro. Verrà eseguita
un’analisi comparativa basata su una serie di vulnerabilità selezionate. Le lacune e la va-
lutazione identificate guideranno la selezione di una tecnologia specifica per sperimentare
l’implementazione di una piattaforma sicura affidabile. L’attenzione dovrebbe essere posta
sull’adozione e la convalida di garanzie di sicurezza ad alta sicurezza (ad esempio, uti-
lizzando componenti con un ingombro ridotto, certificati, verificati) e su una valutazione
preliminare dell’overhead prestazionale. Oltre alla sperimentazione, l’altro risultato di
questo lavoro sarà la formulazione di promettenti sfide di ricerca per le specifiche tecnolo-
gie utilizzate nella campagna di sperimentazione.

Keywords: Trusted Execution Environment, Rich Execution Environment Intel SGX,

iv | Abstract in lingua italiana

ARM TrustZone, AMD SEV, Trust, Trusted Os, Secure Storage, Encryption, Enclave,
Sealing, Attestation

v

Abstract

With the rapid development of technology, nowadays, ensuring security translates into
several design challenges, imposed by the unique features of these systems. These features
are being executed on a large untrusted computing base, which includes the operating
system, hypervisor, firmware, and hardware. Sharing hardware and software resources
is risky and the untrusted computing base problem allows access in several ways for a
malicious attacker to compromise the application/hypervisor/OS to steal secrets from the
system.

Originally, researchers and companies were using software-based techniques in order to
provide security and isolation in distinct domains. But history suggests that kernel and OS
vulnerabilities are discovered and exploited more often. These vulnerabilities can lead to
a privilege escalation attack, risking the system to lose the confidentiality and integrity of
the data. To resolve the untrusted computing base problem, it was introduced the concept
of the Trusted Execution Environment relies on hardware to isolate the environments.

In this work we are going to analyze from a security perspective, four different trusted
execution environments technologies that are TPM, ARM TrustZone, AMD SEV (includ-
ing an introduction to SEV-SNP), and Intel SGX. Furthermore, we will demonstrate and
explain different functionalities and architecture components in order to understand how
they can protect from various vulnerabilities and what are the differences or similarities
between them. A comparative analysis based on a set of selected vulnerabilities will be
performed. The identified gaps and assessment will drive the selection of a specific tech-
nology to experiment with an implementation of a trusted secure platform. The focus
should be put on the adoption and validation of high-assurance security guarantees (e.g.,
using components with a small footprint, certified, verified) and on a preliminary evalu-
ation of performance overhead. Besides the experimentation, the other outcome of this
work will be the formulation of promising research challenges for the specific technologies
used in the experimentation campaign.

Parole chiave: Trusted Execution Environment, Rich Execution Environment Intel
SGX, ARM TrustZone, AMD SEV, Trust, Trusted Os, Secure Storage, Encryption, En-

vi | Abstract

clave, Sealing, Attestation

1

1| Introduction

A secure environment must guarantee secure operations even if there are untrusted en-
tities. To provide this, it may be easier to design a secure embedded system if we can
rely on the existing physical security of the device or come up with an assumption that,
secure parts of the system cannot be accessed by malicious entities. However, embedded
systems are sometimes required to work under complex trust relationships, where one
party wants to put sensitive data and functions on the hands of another, with the assur-
ance that the second party cannot modify them, if not required by the entity who owns
the data. Security measures can be implemented at hardware-level or at software-level,
with the objective of preserving the system’s key security properties (along the three axes:
confidentiality, integrity, and availability) despite upper-level vulnerabilities.

Bypassing the security measures can have enormous impacts, one of the main reasons
why this can happen is because of the weak security architecture that leads to possible
vulnerabilities. The OS Kernel is a part of the Trusted Computing Base (TCB) of many
systems, this means that a vulnerability in the kernel, will lead to unsecure systems, and
it will open the door to an adversary to bypass the protection mechanisms. Later he
can compromise the system, gain root access, and get data that are supposed to stay
secure. Researchers have been trying to find different ways and methods to support the
isolation and manage the resources of applications, analogous to that provided by the
OS. Butler Lampson, 1974 mentions that harm can be inflicted in several ways, from
destroying or modifying other users’ data, reading/copying data without permissions till
a denial-of-service attack. [30] A way of mitigating the risk is having different protection
domains/environments where each domain has its own capabilities, and can/cannot access
certain data. As mentioned by Gang Tan, since the introduction of protection rings and
virtual memory in MULTICS, all modern operating systems are structured to have an OS
protection domain, also known as the kernel mode, and multiple user-application domains,
which are processed in the user mode. The OS domain executes privileged instructions,
sets up virtual memory protections, and performs access control, this is the “protection”
from the user-application domain, which must go through the OS domain via system call
interface to perform privileged operations. [45]

2 1| Introduction

Another approach was presented by Stuart E. Madnick and John J. Donavan, in 1973 by
combining virtual machine monitor/operating system to create system isolation that can
provide better software security compared to a conventional multiprogramming operating
system approach.[32]

According to the literature, a secure environment should allow the execution of arbitrary
code within a confident environment that provides tamper-resistant execution to its ap-
plications. M. Sabt, M. Achemlal mention in their research that many names and similar
ideas with the same goal exists, such as closed-box VM, operator Virtual Machine (OVM),
TrustZone software, and trusted language runtime,[40] but in the last decade, the term
Trusted Execution Environment, coined by Global Platform, is being used. The idea of
Trusted Execution Environments (TEEs) was proposed, to solve issues like isolation of
user applications and data from system software by providing cryptographic layers and
secure isolation on the HW component to mitigate against attacks. The general idea be-
hind every solution using TEE is to provide protection creating an isolated environment
that will create secure storage, protection, and confidentiality of applications code, remote
attestation to protect from observation and tampering by unauthorized parties (provide
trustworthiness), and protecting against general software attacks.

The architecture is composed of 2 different domains, the Rich Execution Environment,
and the Trusted Execution Environment. The Trusted Execution Environment is used
to enhance the security and protect the security-sensitive data, secrets, and applications
running in the TEE against malicious software in the untrusted Rich Execution Environ-
ment (REE). The isolation is enforced via embedded hardware technologies which can be
built inside the processor or as “external devices” like TPM. We will be focusing on some
of the most used and recent technologies such as TPM, ARM Trust Zone [36], AMD SEV
(SEV-SNP), and Intel SGX[21] .

There are plenty of use cases where embedded systems are being used in daily life, for
example, industries as Aerospace, telecommunication, cars are using it to provide some
gadgets or equipment’s, where we can mention some of the most common ones, Smart
Watches, IoT devices, Smart Homes, Digital phones, Automatic toll system or even In-
dustrial Robots, etc. [17]

1.1. Background and Motivations

The goal of this work is to provide a better security approach to understand the recent
TEE technology introduced by Intel for the new versions of its processors called Secure
Guard Extension (SGX). This work is based on some existing resources that describe

1| Introduction 3

this technology, including the Intel white paper and reports, workshop papers from Intel
researchers and research works done by community.

This work tries to tailor various aspects ranging from a TEE high-level architecture to
understand the concept, a sort of comparative analysis between the technologies and
their adequacy w.r.t. various critical vulnerabilities, to lower levels, like understanding
how different components communicate inside and outside Intel SGX. The practical work
starts with the definition of a use case, using Intel SGX to provide hardware security, and
trying to understand the outcomes and limitations of this technology. Our use case is
based on a Cloud scenario and is created by different actors. Using Intel SGX, we should
be able to provide trust from the data source (IoT devices), protect the data, secrets,
and source code from the attackers. Intel SGX uses Enclaves, which is the environment
where all the security applications will be running. We explore Sealing and Attestation
to improve the security of our data and try to understand better how Intel SGX can help
to mitigate and protect data from various vulnerabilities that target entities on normal
execution environments or embedded systems.

The practical work requires a machine with Intel SGX available in the CPU and BIOS.
For this thesis, we decided to explore Intel SGX on Ubuntu 20.04. At first, it was quite
challenging to put all the puzzles together, because of lack of documentation, and not all
the available sample codes or tutorials are available or updated for our OS. We even run
into some bugs when trying to run sample codes provided from SGX SDK, which required
help from Intel SGX forum. This also helped the community because it was a bug that
came with this version of SDK for Ubuntu 20.04.

1.2. Problem Overview

On our devices, normal applications and specific applications which need to run in a secure
environment, are being executed on a large computing base. Being composed of many
important entities, this large computing base includes the Operating System, hypervisor,
firmware, and hardware, and this makes it more complex and harder to provide security.
Usually, Operating Systems have thousand and millions of lines of code, and this means
more vulnerability to be exploited. According to CVE [3] , from 2015 till 2021, Linux
has around 574 vulnerabilities, out of this around 205 are from Code Execution, 73 on
Memory Corruption, 200 on Information Gain, and 111 on Gain Privilege. And from 2018
there is a decrease in these vulnerabilities.

From 2010 and March 2011[20] , 141 Linux kernel vulnerabilities were discovered, and the
studies suggested that a kernel bug should be treated as security-critical and patched [15]

4 1| Introduction

as soon as possible. The outcome stays the same, the attacker can gain root privilege,
mount attacks by corrupting important kernel data or by hijacking control flow to existing
kernel code etc.

Figure 1.1: Linux Vulnerability by type and year

The main problem we are addressing is how to provide security on our data and code?
Usually trusted and untrusted applications are being executed in a shared environment,
using shared resources, and being controlled by untrusted entities. This opens the way for
malicious to attack and exploit the vulnerabilities and gain unprivileged access, maybe
corrupt the hypervisor or the OS. The kernel permissively exports a sensitive interface to
all users, allowing unprivileged users to alter crucial system state and information. For
example, CVE-2010-1146 and CVE-2010-4347 are two vulnerabilities on Linux where the
attacker successfully gains root privilege, by modifying the kernel’s control flow editing
directories which are supposed to be private. LXFI [33] is a system proposed in 2011 to
partition the modules through module principal idea in Linux. And the goal is to prevent
an adversary from exploiting vulnerabilities in kernel modules in a way that leads to a
privilege escalation attack.

What the researchers have been trying to do in the past 50 years, is to create an isolation
layer using different domains to prevent privilege escalation, data leakage, protection of
memory regions, code corruption, etc. Securing the environment with hardware-based
security will provide more protection since the secure execution environment is isolated
from the rest of the system and the attack surface is smaller.

According to Gruschka and Jensen, the attack surface is categorized between the user,
service, and cloud providers.[25] Figure 1.2demonstrates the attack surface when the sys-
tem does not use Inter SGX. While Figure 1.3 demonstrates how Intel SGX minimizes
the attack surface to protect the data in a secure environment. By creating 2 domains,
code and data on the secure domain cannot be accessed from outside and the memory

1| Introduction 5

regions are separated. Intel SGX provides strong data integrity and authorization by
using sealing and attestation.

Figure 1.2: Attack Surface Without Intel SGX

Figure 1.3: Attack surface using Intel SGX

1.3. Results

First, a selected list of vulnerabilities from CWE is analyzed w.r.t TEE technologies,
focusing mainly on important aspects such as confidentiality and integrity of the data. The
goal was to understand how this vulnerabilities impact each of the HW/SW components
and if protection is provided or these technologies are vulnerable analyzing their common
and different features regarding the HW and SW component. The conclusion was that
Intel SGX and TPM provide better protection than ARM TrustZone and AMD SEV,
because of their architecture and using features such as attestation and sealing.

Second, we analyze different HW and SW element for each architecture. The results in
this section show that TPM uses two types of memory to provide security, ARM TZ and
Intel SGX share the same concept using the system memory to create trusted domains.
While AMD SEV uses virtual memory and physical to. Regarding encryption, Intel SGX
and AMD SEV used to provide stronger algorithms, generating unique pair of keys per

6 1| Introduction

VM or Enclave. But with the new update of TPM in 2019 now it uses SHA-1 and
SHA-256 for hashes. Also to provide signature generation and verification plus public-
key cryptography, TPM uses the RSA and ECC with Barreto-Naehrig 256-bit curve and
a NIST P-256 curve. ARM TZ did not had encryption before the new version, and it
uses AES-256. One very important part to provide good security is integrity. TPM and
Intel SGX provide integrity in different ways, such as Intel SGX uses enclaves to provide
integrity and TPM does it through the concept of Root of Trust. ARM TZ and old version
of AMD SEV did not provide integrity, but the new AMD SEV-SNP does it by giving
access to the data only to the "owner" who wrote them on the memory. According to my
research, on overall Intel SGX and TPM provide better security because they give the
opportunity to use attestation and sealing.

The expected experimental part shows on the practical point of view how Intel SGX’s
features work on a real life scenario. On one side, enclave provides some mechanism to
provide attestation, in order to "trust" third parties. In our case it the idea to be used
to attest IoT devices. Intel SGX provides two types of attestation, Intel® Enhanced
Privacy ID (Intel® EPID) Attestation and Elliptic Curve Digital Signature Algorithm
(ECDSA) Attestation. Differences between this two are mentioned on Subsection 2.5.1.
We used EPID, because of technology limitations, ECDSA usually is available only on
Intel server processors. And we show how this idea can be used on a Cloud Solution
for hospitals where we have many actors and devices that need to interact, for eg: using
EPID for Medical IoT device attestation, described better on chapter 4.

1.4. Thesis Structure

The remainder of this paper is organized as follows. SubSection 1.1 describes in short
the goal, the motivation of this work, and the background on Intel SGX. SubSection
1.2introduces with the problem that we want to overcome by giving a simple example
on Linux OS vulnerabilities, Subsection 4.2 describes the attacker model to identify the
threats and specify the security requirements, Subsection 3.2.2 we make a classification
of some vulnerabilities selected from CWE, targeting embedded systems, then we give
a brief explanation how each technology protects and what can be the outcome of the
attack. Chapter 2 introduces the TEE and explains the idea behind it using a reference
architecture and its components. Here we understand better the notion of Trust between
different entities. In this chapter we also describe the architecture of TPM, ARM Trust
Zone, AMD SEV, and we focus more on Intel SGX where we explore some of its main
components and functionalities. Chapter 3 describes a mapping table with different com-

1| Introduction 7

ponents from each technology and gives a description on how each technology provides
with the following elements. We have selected some critical vulnerabilities on the TEE
technologies and the focus is to understand which of the technologies is affected and if
not, which component ensures the mitigation and how. Chapter 4 explores the use case,
by describing a high-level architecture, the different actors and how we will use the Intel
SGX. When designing an application using Intel SGX it is recommended to follow the
following approach: 1) Identify the application’s secrets. 2) Identify the providers and
consumers of those secrets. 3) Determine the enclave boundary. 4) Tailor the application
components for the enclave. On Chapter 5 we the conclusion and possible improvements
on this work.

9

2| Review of literatures

Summary

We start this work by describing first the TEE concept and what is the main goal of this
technology. A reference architecture is provided to create the main idea of trusted and
untrusted executed environment which is composed of different elements and functions
that are briefly described in subsection 2.1.

This chapter will describe and compare TPM, ARM Trust Zone, AMD SEV, and Intel
SGX[21]. Four different TEE architectures with the same mission: provide a secure
domain. In the beginning, we will describe the main designs, components, and futures
and in the end, we will talk about vulnerabilities and different mitigation methods. Special
focus will be given on Intel SGX which is quite a new technology with only 5 years but
has taken special attention from a lot of researchers.

Disclaimer: We will not go into much detail in the TPM, ARM Trust Zone, and AMD
SEV, but we will give a high-level description of the main functionalities. What we will
focus more on is Intel SGX. Intel SGX has been gaining attention from researchers not
only because it is quite a new technology, but compared to the mentioned solutions, it
provides a unique idea to use what so-called Enclave in the trusted execution environment
and it uses attestation and sealing. An Enclave is the smallest entity, which is responsible
for running the trusted applications and saving the data to the secure memory area. Many
use cases have been proposed using Intel SGX and we focus our research on providing a
solution on a complex system such as the cloud, including different actors and external
IoT devices to provide with user’s data. Intel SGX can be also used combined with other
software solutions to secure secrets or code from the untrusted environment.

2.1. Trusted Execution Environment (TEE)

In order to create strong security mechanisms in embedded systems, some companies
create their own architecture design by using different types of components, logic, and

10 2| Review of literatures

domains. Even if we assume that each part of the system is well secured, the way that
they are composed can lead to exposure to new vulnerabilities. The responsibility to
create a secure environment is big because the end product will be sold to companies that
provide services based on it,

Trusted Execution Environment is an architecture used to create trusted establishment
solutions that provide secure and isolated environments from potential attacks. It provides
a level of assurance for the following properties:

1. Data Confidentiality: Unauthorized entities cannot view data while in use within
the TEE.

2. Data Integrity: Unauthorized entities cannot add, remove, or alter data while it is
in use within the TEE.

3. Code integrity: Unauthorized entities cannot add, remove, or alter code executing
in the TEE.

This is ensured by isolating memory areas to execute code and store sensitive data that
can be accessed only by trusted elements using hardware mechanisms that those other
environments cannot control. It provides security features such as isolated execution,
integrity, and confidentiality of the trusted applications. Both domains utilize several
different components such as RAM, ROM, Memory, Cryptographic accelerators, etc. It
has secure storage where confidentiality, integrity, and freshness of stored data are guar-
anteed and where only authorized entities can access the data. And in case there is a
need for data to travel from one domain to another the communication between the two
is done through Access Control which provides components hardware software to check
the communication between the partitions.

TEE works on the notion of trust, inside the security domain there are trusted entities,
the component which is responsible for this is Root of Trust. Root of Trusts starts at
the beginning of technology, which comes from manufacturing with trusted elements, and
during the runtime, it is its duty to define elements on trusted or not trusted. There are
different techniques, but the most two important are Dynamic and Static Trust (Mohamed
Sabt, 2015) [40].

There is always a drawback, TEE cannot be fully protected against hardware-based vul-
nerabilities and software ones. Because of the different components and entities that
create the whole architecture, there will be weak links in the system which an attacker
can exploit and perform successful attacks. Even in modern times, where the technolo-
gies are more complex and secure, some attacks have been successfully performed and this

2| Review of literatures 11

leads to big concerns, for example, TPM-Fail using timing and lattice attacks to recover
256-bit private keys, Foreshadow[46] attack on Intel SGX targeting enclaves operating
within an untrusted context, Spectre [26] and Meltdown[31], etc. Section ?? describes
a reference architecture and goes more into detail about how TEE works and what are
some of its main elements.

2.1.1. Reference Architecture

Different companies configure TEE architecture, hardware, and software, based on their
requirements in order to achieve maximum security. Such components or logic may be for
example use of volatile/nonvolatile memory, separation of system memory in the secure
and non-secure domains or using separate memory, use of Root of Trust, use of Certified
Authority, use of RAM, ROM, the configuration of secure boot, etc. More will be de-
scribed for each technology. As mentioned before, the goal of TEE is to provide a secure
environment so sensitive data/code/functionalities can run there. This way the system
has an isolation layer and access to secure memory is restricted only to trusted entities.
The communication between the two environments is performed through TEE Access
Control which is responsible to check and trust the API calls from the Rich Execution
environment (untrusted part) toward the TEE and vice versa. Now we go more in detail
on how this works, and why this architecture provides good protection.

Figure 2.1: High-End TEE architecture

12 2| Review of literatures

Normal Operating System is the untrusted execution environ-

ment.

REE Rich Operating System Execution Environment – Originally considered to hold the
Rich OS(s). Now, due to the deployment of TEE technology in IoT environments
where the “other OS” may not be considered feature-rich, the REE may also be
described as holding the Device OS(s). In one sense, it should be considered “every-
thing else” inside the device that is not part of the current TEE and hence capable
of attacking the TEE. In terms of security, the REE should include components
such as Secure Elements and other TEEs if present, but for simplicity, these are
kept separate.

Rich OS The “main” operating system inside a device. Such an OS is designed to provide
the user access to the general software functionality of a device and is considered
“feature-rich”. In a TEE-enabled device, this Rich OS runs in the REE, alongside
the TEE and may make use of some services offered by TA’s.

Apps The applications that run on the Rich OS. These apps should not be able to access
the data, update, delete or manipulate on TEE.

REE Communication Provides support for messaging between the Client Application
and the Trusted Application.

Trusted Execution Environment.

Is an environment that is isolated from where our trusted code/applications are executed,
and the data is stored. It has a signature-check all loadable components and a run-
time environment where only signature-check application software is loaded. For different
technologies, the TEE is assigned in different ways. A TEE is composed of software and
hardware components.

Trusted OS The Trusted OS is the component that exposes run-time capabilities to
enable and manage Trusted Applications. In IoT devices, this may not be an OS as
such, but a set of generic services, such as a TLS stack enabling secure communica-
tions to off-device entities. TEE OS has all the management components such as,
Secure Storage, Trusted I/O paths, secure attestation, etc.

Secure Storage Is where all the data are saved and cannot be accessed from untrusted
entities but only from authorized ones. Data should be saved with minimum en-
cryption security and integrity or confidentiality should be provided. Sealed storage
is an example that has integrity-protected secret keys, accessible only from TEE.

2| Review of literatures 13

Cryptographic and data rollback protection mechanism.

Secure Boot ROM is used to start the secure boot, and it is accessible only from TEE.
At the moment of boot, TEE is isolated from the REE. The secure boot is carried
out in five steps (Arfaoui, Gharout, and Traoré, 2014) [14].

■ The boot starts from the trusted ROM.

■ The first initializations are done, and the TEE Trusted OS is authenticated
and validated.

■ The TEE Trusted OS is set up. Then it prepares the environment to boot the
REE.

■ The REE takes control and starts the REE OS initializations.

■ The REE is set up and the TEE functionalities are ready. Thus, the mobile is
turned on.

TEE Communication Environment Agent: a driver in TEE that enables safe com-
munication between REE and TEE. But this introduces new threats such as: mes-
sage overload attacks, user control (Duongsaa, Jun. 2005.),[39] and data corruption
attacks. Three models of communication are mentioned in literature (1) Global
Platform TEE Client API, (2) secure RPC (Remote Procedure Call) of Trusted
Language Runtime, and (3) real-time RPC of SafeG.

TE Image/Signature Check

ontains components that check and assign the validity of TEE components. It can also
contain elements such as Root of Trust (RoT) which is a combination of software, hard-
ware, and data, providing a service for which no other combination of software, hardware
and data is capable of attesting the initial state of the system.

TEE Isolation/Access Control provides components hardware software to check the
communication between the partitions. The communication succeeds only if it passes the
security checks. It also provides Secure Scheduling which guarantees a “balanced” and
“efficient” coordination between the TEE and the rest of the system. This way we are
sure that the tasks running in both Environments do not affect each other and TEE does
not affect the responsiveness of the main OS.

14 2| Review of literatures

2.2. Trusted platform modules (TPM)

TPM [16] has been around since early 2003, created by a group of computers engineers
who came to be known as Trusted Computer Group (TCG). The first TPM 1.1b[41] was
created to be physically attached to the motherboard of the PC, and since it had to be
cheap and cost-effective everything that could be done by the software was not included
in the HW. The goal of TPM 1.1b was to provide key generation (limited to RSA keys),
storage, secure authorization, and device-health attestation. Since it was a new technology
in the market, not every pc vendor was ready to adopt it easily. It lacked compatibility
at a hardware level, it required different drivers, pins, etc. But it also suffered from quite
a few attacks e.g., dictionary attacks, to guess the password. The TPM version 1.2 was
released with some change’s w.r.t to 1.1b, and their major target was to protect from
dictionary attacks. It also included a non-volatile RAM of 2kb so the keys would not
get lost when switching devices. Years later TCG introduced TPM 2.0, which we will
describe more in, as an updated version with some important changes in the encryption
algorithms. TPM 1.2 used the SHA-1 algorithm but it was weak, and it needed a change
to protect against brute force and cryptoanalysis.

As described in the main white paper , TPM is a device that enables trust in computing
platforms in general. The main goal is of this technology is to provide a secure environ-
ment, inaccessible from the external environment, for sensitive data and to establish the
foundation of trust between different entities. TPM architecture can vary depending on
the platform that it will be installed, so the architecture is Slightly different. These appli-
cations make the authorization of secrets more secure and allow only entities with proper
authorization to access them. In this work, we will explore the general TPM architecture.

TPM was first designed as a separate hardware component, and it was more like a root
of trust for the system where it was embedded but can also be designed as part of the
CPU. It used to communicate with the CPU through the bus with Lpins (check this).

Before giving a high-level description of TPM’s main functionalities we will have a look
on the architecture and describe the main components.

2| Review of literatures 15

2.2.1. TPM Architecture

Figure 2.2: TPM Architecture Example

In order to provide security TPM works on the notion of trust, it should trust the entities
on which require or want to perform some functionalities inside the TPM. So TCG has
defined schemes for establishing trust on the platforms composed of HW and SW compo-
nents so they can provide identification. TPM relies on a concept called Root of Trust,
and the different trusted platforms combined with Root of Trust perform the security
check. According to TCG cannot be proved that Root of Trust is behaving properly, but
they can check how different roots have been implemented by checking the certificates. A
platform should have 3 Root of trust,

Root of trust for measurement which send integrity-relevant information to the RTS
and is controlled by the Core Root of Trust for Measurement (CRTM) which is the first
set of instructions executed when a new chain of trust is established which is the starting
point for root of trust. At this moment its values are sent to the RTS.

Root of trust for storage makes sure that the shielded memory cannot be accessed
by any entity other than the TPM. And in this case, TPM acts as the Root of Trust for
Storage.

Root of trust for reporting is used to report the platform characteristics. It commu-
nicates with the Root of trust for measurements and in order to provide trust to each
other they by using asymmetric aliases (endorsement keys).

Root of trust is also used to attest external entities as trusted ones. They are different
types of attestation used, but the general concept is to provide trust for an external
entity to communicate with TPM. TPM provides protection on data and operations that
should run in a safe environment, it uses two types of memory RAM and Non-Volatile

16 2| Review of literatures

memory. Ram is used to hold transient data in TPM, which can be deleted, and Non-
Volatile memory holds the secrets. Both RAM and NVM data cannot be accessed from
unauthorized entities.

2.2.2. Vulnerabilities

In the beginning, we mentioned that each pc provider can configure the TPM architecture
based on its needs, it chooses to use or not different functionalities. So basically, do it
at your own risk, this means more vulnerabilities, or more security. But this wasn’t the
case for Intel fTPM and STMicroelectronics TPM chips. These Vulnerabilities are also
mentioned on CVE, CVE-2019-11090 impacts Intel’s Platform Trust Technology (PTT).
CVE-2019-16863 impacts the ST33 TPM chip made by STMicroelectronics. The reason
behind this vulnerability is "timing leakage." An external observer can record the time
differences when the TPM is performing repetitive operations and infer the data being
processed inside the secure chip – all based on the amount of time the TPM takes to do
the same thing repeatedly.

A passive adversary who observes signals can reconstruct cryptographic keys and break the
confidentiality and authenticity of a computing system. Because of physical phenomena
such as power consumption, electromagnetic emanations, or timing behavior.

• Side-channel attacks are a potential attack vector for secure technologies like TPMs.
These attacks exploit the unregulated physical behavior of a computing device to
leak secrets.

• Low key encryption

2.3. ARM TrustZone

Arm TrustZone [11], is an efficient way to provide security using hardware-enforced isola-
tion built inside the CPU. Compared to TPM, ARM comes inbuild into the CPU. Trust
Zone is based on TEE architecture where the environment is divided into 2 different exe-
cution environments, the Normal World, and the Secure World with system-wide isolation
between them. As it is shown in Figure 3.2, the architecture of ARM TrustZone is sim-
ilar to the classic TEE, also Intel SGX uses the same approach. Before going into more
details, Arm TrusZone has many different architectures, what we will be focusing on are
Armv8-M and Armv8-A. First, we will give a simple understanding of Arm TrustZone
then make a high-level comparison between the two.

2| Review of literatures 17

Figure 2.3: Arm TrustZone Architecture. From: Security in ARMv8-A systems, v1.0,
2021, p.5 [2]

On a high-level description, the normal world is used to run complex system software,
like Linux operating system, hypervisor, etc. As mentioned in TEE, this environment
can be an easy target for aggressors, since it is a complex software stack the size of the
attack surface is larger. Introducing the Secure world, the architecture will have a smaller
attack surface, and the system secrets can be saved into secure memory. The trusted
secure world runs smaller and simpler software applications, which are also trusted by the
environment. The creation of a separate secure world means that we also need to have
other secure entities, one of them is the memory. The trusted memory is isolated from
the untrusted environment and cannot be accessed, modified and it is divided by means
of an additional bit, called NS bit. Something which should be mentioned is that in ARM
TrustZone the level hierarchy is the opposite to Intel SGX, it starts from L0 as lowest to
L3 as highest.

2.4. AMD SEV

So far, the technologies we described, including intel SGX next, create a secure execution
environment by separating a physical part of the environment. AMD SEV does it by
means of virtualization, it isolates the VMs from the hypervisor and it encrypts the mem-
ory of VMs by taking advantage of SME (Secure memory encryption) technology. AMD
SEV evolved during the years, and now there is SEV-SNP (secure nested pages). AMD
SEV suffered from integrity attacks; it couldn’t provide protection against hypervisors
that would attempt to steal the data from the protected memory regions!

18 2| Review of literatures

Figure 2.4: AMD SEV Architecture, From: R. P. Pires. Distributed systems and trusted
execution environments: Trade-offsand challenges.CoRR, abs/2001.09670, 2020, p.9. [38]

SME is a real-time memory encryption technology, and it makes the memory more re-
silient from some types of attacks such as snooping or cold boot attacks. By using SME,
SEV provides memory encryption for each VM, by providing unique keys generated in
the Secure Processor isolated from the rest of the system-on-chip. This means that theo-
retically, only this VM can access its data, even the hypervisor.

When it comes to sharing data and communicating with hypervisor and OS, AMD SEV
uses a C-bit, in each page table of each page entry to indicate if a page has been encrypted
or not. This way the VM and Hypervisor can use the unencrypted pages to share data.

Integrity

As mentioned in the description of AMD SEV, this version lacks integrity attacks, where
a determined attacker can change the value of data in the memory even though he cannot
have the encryption key. The VM will now see random data in the memory. This type of
attack can be mitigated somehow by the software inside the VM, but the Software inside
VM doesn’t know if its data has been compromised and this makes it hard to be tracked.

AMD SEV-SNP is the upgraded version of AMD SEV which includes integrity in the VM
software. The idea behind SNP is that the VM should read the lattes value it wrote in
the memory area and nothing else, otherwise it will give an exception and the value will
not be read. This means it provides integrity protections against these threats Replay
Protection, Data Corruption, Memory Aliasing, and Memory Re-Mapping.

SEV-SNP does this by enforcing entities only to write their own memory pages, and it is

2| Review of literatures 19

done by using the Reverse Map Table mechanism. About memory Aliasing and Memory
Re-mapping, we will see how AMD SEV-SNP protects in the next section 3 where we
map different vulnerabilities with the selected TEE technologies.

2.4.1. Privilege Levels

Privilege levels in AMD are introduced with the new version of AMD SEV-SNP and are
of the nature where VMPL0 (Virtual machine privilege level) is the highest privilege level
and VMPL3 is the least privilege. Each VM has a vCPU which is assigned a VMPL,
and the RMP entry for each page of private guest memory is also augmented with page
privilege so we have standard paging permission.

20 2| Review of literatures

2.5. Intel SGX

Intel SGX was launched in 2015 from Intel, to provide a secure hardware technology in-
side the CPU, unlike TPM which is placed in the motherboard usually near the CPU. It
used the same basic idea of TEE to create two separate environments where the secure
environment is used data integrity, authenticity, confidentiality, etc. Intel SGX uses some
different and similar concepts compared to the above-mentioned technologies and from
some other similar technologies in the market. Two main concepts to protect data inside
the Secure Environment are attestation and sealing which are used to provide security
between two entities or reuse the data after reboot. This is done using Enclaves, an ex-
ecution environment responsible for running code inside the secure environment, isolated
from potentially malicious OS or hypervisor. Even though SGX provides a secure layer
from the untrusted part of the system, like from hypervisor or the OS, it was proven and
admitted by Intel that it is not resilient from side channels attacks.

Figure 2.5 is a reference architecture for Intel SGX, demonstrating more in detail how it
works, different functionalities, enclave lifetime, memory security, Attestation, encryption
Libraries, etc. Chapter 4 describes the work done based on Intel SGX.

Figure 2.5: Intel SGX High-level architecture design

2.5.1. Intel SGX Architecture

Memory Organization

Processor Reserved Memory (PRM) is the part of the memory where code and data are
saved from Intel SGX, it is a subset of DRAM and it belongs to the secure execution
environment. The data stored in PRM cannot be accessed by entities on the untrusted

2| Review of literatures 21

environment even the CPU itself including system software, and System Management
Module Ring 2. The picture below is the composition of Secure memory.

Figure 2.6: Intel SGX Memory Organization

Enclave Page Cashe (EPC)

As a subset of PRM we have EPC, which is used to store the data structures and content
of enclaves. Each EPC is composed of pages of 4kb and each of those is designed to be
assigned to enclaves, so we can have multiple enclaves running in the system. Because
the total size of PRM is 128 MB max, the number of enclaves we can have is limited. The
management of EPC is done by the same system software that manages the rest of the
computer’s physical memory which can be an OS kernel or a hypervisor, but it uses the
SGX instructions to allocate unused pages to enclaves.

Since the system software is not trusted by Intel SGX, the SGX processor will check if
the mapping of an EPC page with an enclave is done correctly, otherwise, it will refuse to
perform any action that will compromise the security of the trusted system. To do these
security checks, it uses the Enclave Page Cashe map, which saves the allocation decision
of the system software. EPCM has 3 fields on which it saves the information and tracks
the ownership, as shown in table 2.1. The PT flag determines the use of the EPC page

22 2| Review of literatures

if it will be used for the enclave or other entities such as the Enclave Control Structure.

Enclave’s EPCM
Field Bit Description
Valid 1 BIT 0 for un-allocated EPC Pages
PT 8 BIT Page type.
ENCLAVESECS Identifies the enclave owning the

page.

Table 2.1: Enclave Page Cashe map, which saves the allocation decision of the system
software. Each enclave is mapped to one EPC, and this table describes the fields that
EPCM needs to provide the security checks.

From a security point of view, SGX should not allow operation on EPC pages with a
valid bit of 1 in the EPCM, to protect from different vulnerabilities on memory region
overlapping or from editing another enclave’s EPC Page. The ENCLAVESECS, saves the
enclave that owns the page, this information is used to enforce SGX’s isolation guarantees
and to prevent enclaves from accessing each other’s private information. If two enclaves
will communicate, it is done through eCalls and oCalls, and not via EPC pages.

Enclave Attributes

As mentioned before the EPC page can be used from different elements in the SGX and
the PT flag should be set correctly. SGX stores per-enclave metadata in the SGX Enclave
Control Structure, in a dedicated EPC page with a page type PT_SECS.

Enclave’s identity is almost synonymous with its SECS (SGX Enclave Control Structure).
The first step in bringing an enclave to life allocates an EPC page to serve as the enclave’s
SECS, and the last step in destroying an enclave deallocates the page holding its SECS.
The EPCM entry field identifying the enclave that owns an EPC page points to the
enclave’s SECS. The system software uses the virtual address of an enclave’s SECS to
identify the enclave when invoking SGX instructions.

All SGX instructions take virtual addresses as their inputs. Given that SGX instructions
use SECS addresses to identify enclaves, the system software must create entries in its page
tables pointing to the SECS of the enclaves it manages. However, the system software
cannot access any SECS page, as these pages are stored in the PRM. SECS pages are not
intended to be mapped inside their enclaves’ virtual address spaces, and SGX-enabled

2| Review of literatures 23

processors explicitly prevent enclave code from accessing SECS pages.

To run an enclave, it is important to set the correct values on the enclave’s SECS. In case
a programmer, on the moment that he starts the enclave execution environment, sets the
wrong values, he may risk opening an attack gate. For example, if the DEBUG field is set
to true when an enclave is running in production, it enables the DEBUG features of SGX
such as the ability to read and write most of the enclave’s memory. According to Intel
SGX Developer document, the recommendation is to set all the attribute flags, except
Mode 64-bit, Provision Key, and Launch the key, and none of the XFRM attributes.

For example, the Mode 64 bit should not be touched, because it will make the enclave
run into a 32-bit environment and will change its behavior which should be avoided, for
security reasons.

Enclave’s SECS
Name Size Description
DEBUG 1 BIT Debugging features, r/w enclave’s

mem. But in the development en-
vironment.

XFRM 64 BIT Running with XCR0 register.
Specifies the set of architectural
extensions to produce enclave
code.

MODE64BIT 1 BIT 64-bit enclave arch.

Table 2.2: Enclave execution attributes. The execution environment depends on the
configuration of these attributes.

Enclave Life Cycle

When creating an enclave, SGX manages and prepares the whole system, allocates EPC
to the enclave, etc. The life cycle of an Enclave goes into different stages, where first is
the creation of an enclave, loading, initialization, and teardown.

24 2| Review of literatures

Figure 2.7: Enclave Life Cycle

Ecreate: To create an enclave, the function is called from the untrusted part of the
app. An important part of the system is the EDGER8 tool, which provides edge routines
to define the interface of the untrusted app and the enclave. By reading the EDL file
of the enclave, this function will create two parts, Enclave_u.h, enclave_u.c which con-
tains prototype declaration and function definition for the untrusted proxies and bridges.
Enclave_t.c contains function definitions for trusted proxies and bridges, Enclave_u.h
prototype declarations for trusted proxies and bridges.

EADD/EEXTEND: EADD instructions are used to load the initial code and data into
the enclave. EADD is used to create both TCS pages and regular pages. This function
copies a source page from non-enclave memory into the EPC, associates the EPC page with
an SECS page residing in the EPC, and stores the linear address and security attributes
in EPCM. EADD reads its input data from a Page Information (PAGEINFO) structure.

Initialization (EINIT): This is the last function for the enclave creating process. After
EINIT, the MRENCLAVE measurement is complete, and the enclave is ready to start
user code execution using EENTER instruction. When EINIT completes successfully,
it sets the enclave’s INIT attribute to true. This opens the way for ring 3 application
software to execute the enclave’s code, using the SGX instructions. On the other hand,
once INIT is set to true, EADD cannot be invoked on that enclave anymore, so the system
software must load all the pages that make up the enclave’s initial state before executing
the EINIT instruction.

TearDown

After the enclave has done the computation, it was designed to perform, the system
software executes the EREMOVE instruction to deallocate the EPC pages used by the
enclave. EREMOVE will first make sure that there is no logical processor executing code

2| Review of literatures 25

inside the enclave and then will mark the EPC page as available, so it will be freed for
use.

Attestation and Sealing

Sealing The last function in the enclave lifecycle will destroy it and its EPC. This can lead
to data loss and no other enclave can read others enclave stored data. In order to provide
a more stable solution, sealing is used. This allows secrets to be retrieved if the enclave
is torn down (either due to a power event or by the application itself), and subsequently
brought back up. There are two types of sealing Sealing, the first one seals the data to
the Enclave Identity and the second one will seal the data to the Sealing Identity. The
first one will allow data to be accessed by enclaves sealed by the same sealing authority
and the second can sign multiple enclaves with the same key and allow them to exchange
data.

Attestation Attestation is the process of demonstrating that a piece of software has been
properly instantiated on the platform. Intel® SGX is the mechanism by which another
party can gain confidence that the correct software is securely running within an enclave
on an enabled platform. So basically, when two enclaves want to communicate, they can
trust each other by providing secrets generated

Local Attestation and Remote Attestation. The successful result of local attestation
provides an authenticated assertion between two enclaves running on the same platform
that they can trust each other and exchange information safely, while remote attestation
provides this kind of verification for the ISV client to the server so that ISV server can
confidently provide the client with the secrets it requested. Intel SGX provides two
different types of Attestation key algorithm, Elliptic Curve Digital Signature Algorithm
(ECDSA) and Intel Enhanced Privacy ID (Intel® EPID).

Data center Attestation Primitives using Elliptic Curve Digital Signature Al-
gorithm (ECDSA) algorithm [42] This attestation service is provided by Intel to
support non-Intel attestation infrastructures for Intel SGX. This provides with an enclave
called Provisioning certificate Enclave which acts as a local CA for local Quoting Enclaves
which are running on the same platform. Quoting Enclaves provides the PCE with the
public key and it issues a certificate identifying the QE and the Attestation Key. This
structure is signed by the Provisioning Certification Key. Intel Provides APIs so the com-
munication between different entities is done in a secure manner. Figure 2.8 shows how
the Data Center Attestation Primitive works to generate and attest a third party.

26 2| Review of literatures

Figure 2.8: Attestation cycle for third parties. From: V. Scarlata, S. Johnson, J. Beaney,
and P. Zmijewski. Supporting third party at-testation for intel sgx with intel data center
attestation primitives.White paper, 2018, p.3 [42]

The ECDSA attestation key generated by the QE needs to be certified by an Intel®
SGX key rooted to the platform HW fuses. Intel develops and signs an enclave called
the Provisioning Certification Enclave (PCE). The key generated by the PCE to certify
(sign) attestation keys is rooted to the CPU HW fuses. This key is called the Provision-
ing Certification Key (PCK) private key. Intel will also generate and publish a public
key that matches the signing key (PCK) generated by the PCE. The public key is pub-
lished as an X.509 certificate format called the Provision Certification Key Certificate
(PCK Cert). The PCE will provide an interface to retrieve the PCK Certificate identifier
(EncPPID+TCB+PCEID) used by a verifier to find the matching PCK Cert. The PCE
also provides a mechanism to sign another enclave (i.e. QE) REPORT using the PCK
private key. For Intel® SGX DCAP, the QE will generate the ECDSA Attestation Key
(AK) and include a hash of the AK in the QE.REPORT.ReportData. Only the PCE can
produce the PCK private key. This PCE certification data will ultimately be embedded
in the ECDSA Quote generated by the QE. The AK is then used to sign application
enclave Reports to prove that the enclave is running with Intel® SGX protections at a
given TCB. This is called the ECDSA Quote. The Attestation infrastructure owner can
verify the ECDSA attestation key using the PCK Certificate.

Attestation using Intel Enhanced Privacy ID (Intel® EPID) [18] EPID is a
group signature scheme that allows a platform to sign objects without uniquely identi-
fying the platform or linking different signatures where each signer belongs to a “group”,

2| Review of literatures 27

and verifiers use the group’s public key to verify signatures. EPID supports two modes of
signatures, fully anonymous mode of EPID a verifier cannot associate a given signature
with a particular member of the group, while in n Pseudonymous mode an EPID verifier
has the ability to determine whether it has verified the platform previously. As in DCAP,
quoting enclaves create EPID key used for signing platform attestations which are then
certified by an EPID backend infrastructure. The key is the reason Intel SGX can trust
the platform of the underlying hardware. Figure 2.9 shows an example of how an appli-
cation with a secure processing element on the user platform could provide an attestation
to a challenging service provider in order to receive some value-added service from the
provider. Note that many usages will use this process infrequently (e.g., at enrollment
time) to provision the enclave with a communication key that will then be used directly
in subsequent connections.

Figure 2.9: Remote Attestation Example From: V. Scarlata, S. Johnson, J. Beaney, and
P. Zmijewski. Supporting third party at-testation for intel sgx with intel data center
attestation primitives.White paper, 2018, p.3 [42]

1. Initially, the application needs service from outside the platform and establishes
communication with the service-providing system. The service provider issues a
challenge to the application to demonstrate that it is indeed running the necessary
components inside one or more enclaves. The challenge itself contains a nonce for
liveness purposes.

2. The application is provided with the Quoting Enclave’s Enclave Identity and passes
it along with the provider’s challenge to the application’s enclave.

3. The enclave generates a manifest that includes a response to the challenge and an
ephemerally generated public key to be used by the challenger for communicating

28 2| Review of literatures

secrets back to the enclave. It then generates a hash digest of the manifest and
includes it as User Data for the EREPORT instruction that will generate a REPORT
that binds the manifest to the enclave, as described in section 3.2. The enclave then
sends the REPORT to the application.

4. The application forwards the REPORT to the Quoting Enclave for signing.

5. The Quoting Enclave retrieves its Report Key using the EGETKEY instruction and
verifies the REPORT. The Quoting enclave creates the QUOTE structure and signs
it with its EPID key. The Quoting Enclave returns the QUOTE structure to the
application.

6. The application sends the QUOTE structure and any associated manifest of sup-
porting data to the service challenger.

7. The challenger uses an EPID public key certificate and revocation information or
an attestation verification service to validate the signature over the Quote. It then
verifies the integrity of the manifest using USERDATA and checks the manifest for
the response to the challenge it sent in step 1.

Crypto Library

Crypto API Toolkit for Intel(R) SGX (CTK) aims at enhancing the security of data
and key protection applications by exposing interfaces that run the key generation and
cryptographic operations securely inside an Intel(R) Software Guard Extensions (SGX)
enclave. We will use this library to encrypt our data with high-level encryption API.

SGX SSL [5]

It provides cryptographic services for Intel SGX. This will be useful when we pass the
data from the trusted execution environment to the untrusted one. Using its api, one
can use Ocall in a more secure way. Intel® SGX SSL library provides integrity and
confidentiality of security assets and protects them from both malicious software and a
simple hardware attack.

Figure 3.10 shows how Intel SGX SSL uses a trusted library providing an implementation
for missing system APIs inside an enclave and an untrusted library providing implemen-
tation of missing system APIs outside an enclave. The untrusted part calls the trusted
code with a function in the EDL file of enclave and based on the API which is called the
trusted code continues execution.

2| Review of literatures 29

Figure 2.10: SGX SSL, Providing a secure communication between two domains

31

3| Technology Research &

Assessment

Summary

Different TEE technologies are built on similar but quite different HW/SW architecture,
each trying to provide the best security solutions. The goal of this chapter is to provide
a unique mapping table of HW/SW elements for each technology, a description on what
is the role, etc.

3.1. Architecture Elements

The focus is given on four main elements: memory, software, communication, and execu-
tion environment. We select some entities and critical functions, and this will be correlated
with Section 5 where a more detailed description of some selected vulnerabilities is given
on how they impact the system and the protections against them.

32 3| Technology Research & Assessment

Figure 3.1: Comparison of physical elements and functions that compose the technologies

We believe that Intel SGX provides better security compared to the other technologies, not
only because it creates a good isolation environment, but it also provides confidentiality
and integrity of Code and Data inside the enclave. While most of these technologies
aim to create isolation only for the secrets. Intel SGX code integrity can be leveraged
by other software companies, which want to protect and run important code inside the
enclave. Recent research used Intel SGX to isolate tensor flow code and data which may
contain private and sensitive information [28]. Something else that makes Intel SGX more
“secure”, is the fact that it uses attestation and sealing as describer on section 3.4.2. In a
case where we must trust elements from outside the trusted environment or even inside,
one can use attestation to provide trust in certain elements. For example, in a scenario
where we must pass data between two enclaves, they should be attested in order to trust
each other. Furthermore, the memory region inside the trusted execution environment
is well protected and cannot be accessed from untrusted entities. This protects the data
from unwanted privilege escalation attacks [23].

Memory

• Secure Memory is a safe location to store the data in the trusted execution envi-
ronment.

– TPM has two types of Secure memory Volatile (store temporary data and code
related to the executing application) and Non-Volatile (store persistent data

3| Technology Research & Assessment 33

related to integrity of the system and its users and associated state).

– ARM TZ has a physical memory that is shared between trusted zones and
the normal world, the partition can be done physically or virtual at booting
time by a secure firmware. This is done by the Memory Protection Unit MPU
which is a programmable unit that allows privileged software, typically the OS
kernel, to define memory access permission. Regions of the physical memory
are designated as secure which can be accessed only by TZ.

– AMD SEV has a virtual memory and physical which is secured by SEV. Virtual
memory is used to access data within the virtual memory space while Physical
addresses are used to directly access main memory.

– IntelSgx Uses DRAM to create a subset of it for the secure memory region.
This subset is called Processor Reserved Memory (PRM) and it is used to store
Enclave Page Cache (EPC), where all enclaves are created inside this region.
Usually, the PRM is 128MB (EPC takes 93.5MB) but it can be configured
between 32MB, 64MB.

• Encryption

– TPM technology uses a random number generator system for encryption. But
this system is not reliable and the newer version uses a more sophisticated
algorithm.

– ARM TZ does not provide cryptography techniques alone, and so it needs some
software or hardware crypto accelerators such as Arm TrustZone CryptoCell
products [1]. One security solution that can be used is Arm CryptoCell Family,
respectively CryptoCell-300 and 312 for lower power and low area design and
CryptoCell 700 and 712 .

– AMD SEV uses Secure encrypted virtualization and Secure memory encryp-
tion. SEV allows the association of one encryption key per hardware virtual
machine in a way that the hypervisor has no longer access to everything within
the guest VM. SME defines a simple and efficient architecture capability to
encrypt the main memory and it is integrated into the CPU architecture, scal-
able from embedded to high-end server workloads, and requires no application
software modifications.

– Intel SGX uses the memory encryption engine (MEE). The MEE is responsi-
ble for providing cryptographic operations. At every boot, it generates random

34 3| Technology Research & Assessment

keys every, one for cryptographic operations and another for message authen-
tication codes (MACs).

3| Technology Research & Assessment 35

• Integrity

– TPM uses SRTM (Static Root of Trust for Measurements) and DRTM (Dy-
namic Root of Trust for Measurements) to provide integrity. SRTM is used
on system boot aka the BIOS boot block will measure the BIOS and send the
value (hash) to the TPM in a location called Platform Configurations Register
(PCR) 0 before executing it. Then the BIOS measure the next thing in the
boot chain and again will store the value in a PCR of the TPM. This process
is executed for each component in the boot sequence (PCI option ROM, boot
loader, etc.). DRTM is different from SRTM, since it happens when the system
is running.

∗ TPM also uses the Root of Trust where the elements but be trusted and
it is done with the help of Root of Trust for Measurement (RTM), Root
of Trust for Storage (RTS), and Root of Trust for Reporting (RTR).

– ARM TZ and AMD SEV does not provide memory integrity which leads to
attacks to exploit this vulnerability.

– AMD SEV-SNP . The VM should read the lattes value it wrote in the mem-
ory area and nothing else, otherwise, it will give an exception and the value
will not be read. This means it provides integrity protections against these
threats Replay Protection, Data Corruption, Memory Aliasing, and Memory
Re-Mapping

– IntelSgx Memory integrity and freshness in conjunction with confidentiality
guarantees, on the other hand, make the secure environment robust against all
kinds of memory tampering. Creating an integrity table on the memory. The
main elements to provide this are MEE and MACs.

Software

• Attestation

– TPM Attestation is the action of having the TPM sign some internal data with
a Key. It involves the generation of a signature using the respective Attestation
identification key stored on PCR (integrity matrix).

– Arm TZ Does not provide attestation, this can lead to data leak if an attacker
exploits.

– AMD SEV one of the protection that firmware offers to protect SEV-enabled

36 3| Technology Research & Assessment

guests, is the attestation of a launched guest, and the confidentiality of the
guest’s data. Attestation of the guest launch proves to guest owners that their
guests securely launched with SEV enabled.

– Intel SGX stands out from the others because the code that is used only con-
tains the private data in computation and the code that operates on the enclave.
The link of trust starts from a signing key owned by the HW manufacturer (acts
as a CA) which shall be trusted by the verifier. The manufactures provisions
each secure processor that produces a unique attestation key, which is used to
produce attestation signatures. The manufacturer also issues an endorsement
certificate for each secure processor’s attestation key.

• Sealing

– TPM sealing the data is encrypted and it is associated with a PCR state, and
it will only be decrypted if the PCR value is the same as at the time of the
encryption.

– Arm TZ and AMD SEV do not provide sealing.

– Intel SGX sealing depends on the platform hardware key derivation and is
obtainable through the EGETKEY instruction.

Execution Environment

• TPM commands (instructions) are executed by the execution engine in a secure
and reliable manner. The execution engine is an on-chip (within the boundary of a
TPM) processor that provides execution isolation.

• Arm TZ has trusted zones and the normal world which is selected by the system on
boot time. The same logic applies to Intel SGX, but the trust zone is predefined.

• AMD SEV provides a trusted execution environment by VMs. Which are created
and encrypted based on the needs.

• Intel SGX: Executes the code inside Enclaves which are secured inside the trusted
execution environment. Each enclave is mapped to an EPC and its data are safely
encrypted and stored inside the memory region.

Communication

More information on the bus vulnerabilities is provided in the CWE - 1264 section.

3| Technology Research & Assessment 37

• TPM, This depends on where the TPM location is [47]. TPM usually uses the LPC
bus to communicate through the host and its environment, since some of them are
implemented as single-chip components. The host can change the values inside the
TMP only through the I/O buffer that is part of the system.

Figure 3.2: Communication of TPM using LPC bus

• Arm TZ systems connect the processors, memories, and peripherals using common
bus types include AMBA High-performance Bus (AHB), Advanced Peripheral Bus
(APB), and Advanced eXtensible Interface (AXI) [?]. In other words, the core’s
security state information propagates via hardware logic present in the TrustZone
enabled AMBA AHB5 / APB4 bus fabric (an extra signal (HNONSEC[1] = 0)
on the AHB bus indicates a secure transaction and vice versa). [7] This allows
extending security to memories and peripherals through bus filters also known as
TrustZone-aware peripherals which are directly connected to AHB — MPCs, PPCs,
AHB/APB bridge (used as a secure gate to block or propagate secure/non-secure
transaction towards APB agents). Ensuring that no secure world resources can be
accessed by the non-secure world components, enabling a strong security perimeter
to be built between the 2.

• AMD SEV uses an external and internal bus to provide communication with different
parts of the system. The external bus for example is used to provide cache-coherency
with the main memory. AXI bus is the main bus of the system to provide commu-
nication between different parts and APB is a simpler, lower power bus than the
main AXI bus. The APB protocol does not carry the bits related to the TrustZone
security state of the bus transactions. This places responsibility for managing the
security state onto the AXI-to-APB Bridge that provides the interface between the
high-speed AXI domain and the low-power APB domain. Each AXI-to-APB bridge
provides an AXI slave interface and can mediate accesses for up to 16 peripherals

38 3| Technology Research & Assessment

on its local APB bus. The bridge contains address decode logic that generates the
APB peripheral select based on the incoming AXI transaction. The bridge includes
a single TZPCDECPROT input signal for each peripheral that is located on the bus.
This signal is used to determine if the peripheral is configured as Secure or Non-
secure; the bridge will reject Non-secure transactions to Secure peripheral address
ranges.

• Intel SGX system bus is used for communication with the memory and the I/O
devices and it connects all these components. When an outside system asks for
data, Intel SGX does not provide them unless they are attested by the system,
which means it should be trusted. The data are sent in a secure manner with eCalls
and oCalls, using sgxssl library.

3| Technology Research & Assessment 39

3.2. Vulnerability Model

3.2.1. Introduction

Trusted Execution Environments come with a bunch of vulnerabilities and threats which
are discovered by chance or by “bad” intention from the attacker. Below is shown a
list with some of them based on recent research [37]. The focus is to discover HW/SW
vulnerabilities and threats which already exist and give a result on which technology can
protect them better against them and why. Some similar research has been done providing
some good information to understand which vulnerabilities still affect trusted execution
environment technologies [35].

3.2.2. Selected classes of embedded systems vulnerabilities

In this section, we try to classify some vulnerabilities found in embedded systems based
on CWE. We consider these vulnerabilities very critical for our system and if not taken
into consideration a malicious user can exploit them and make significant damage to
our system. The focus will be given only on HW/SW vulnerabilities, which are very
common and dangerous leading to data stealing, manipulation, and breaking the integrity
or confidentiality of the system.

In Chapter 3 a table of selected vulnerabilities is shown, described on the impact they
have and if different TEE technologies provide mitigation or not. In this section, we go
more into detail, as we explore that some components may be important not just for one
or two types of vulnerability, but sometimes for a good part of them.

Some other vulnerabilities that can be exploited but are out of the scope for this work,
are related to system power, voltage, current, temperature, clocks, system state sav-
ing/restoring, and resets at the platform on the CPU. If not taken into consideration
when developing the architecture, they may lead to serious security issues in the system.
These kinds of vulnerabilities are out of the scope for the moment since some of them
require special devices to be performed.

40 3| Technology Research & Assessment

Hardware Vulnerabilities
Authority and Core Issues (LA) Vulnerabilities

CWE-1302 Security Identifier Chip/OS/VMs/TrustZone
CWE-1281 Miss-configuration of ISA and

CPU Logic
CPU Logic and ISA

CWE-1252 Miss-Configuration of CPU for
W/R

Memory

CWE-1220 Insufficient Granularity of Access
Control

Memory/Registers

CWE-1260 Overlap Between Protected Mem-
ory Ranges

Memory Regions

CWE-1261 Register Interface Allows Soft-
ware Access to Sensitive Data

Register Interface -> hard-
ware functionality

Security Flow Vulnerabilities
CWE-1190 DMA enabled too early in boot

phase
DMA/Secure World

CWE-1264 Insecure De-Synchronization be-
tween Control and Data Channels

Buss

CWE-1274 Volatile memory containing boot
code

NVM

Logic Design Vulnerabilities
CWE-1254 Incorrect Comparison Logic

Granularity
MACs

Memory Vulnerabilities
CWE-1257 Improper Access Control Applied

to Mirrored/ Aliased Memory Re-
gions

Memory/Cache

CWE-1282 Assumer-Immutable Data is
Stored In Writable Memory

Memory/Cache

Cryptographic Vulnerabilities
CWE-1279 Cryptographic Operations are

run before supporting units are
ready

Cryptographic Units

CWE-325 Missing Cryptography Steps Memory/Cache/Buss

Table 3.1: A list of hardware vulnerabilities that can affect an unsecure system

3| Technology Research & Assessment 41

Software
Permission Vulnerabilities

N/A Security Identifier Bus/Memory/Registers
N/A Communication Channel Memory Bus/ Bus
CWE-283 Unverified ownership Bus/Memory/registers
CWE-1220 Insufficient Granularity of Access

Control
Bus/Memory/registers

CWE-276 Incorrect Default permissions Bus/Memory/registers
Cryptographic Vulnerabilities

CWE-1240 Use of risky cryptographic primi-
tives

Bus/Memory

CWE-325 Missing Cryptography Steps Bus/Memory
Memory Vulnerabilities

CWE-226 Sensitive Information in Re-
sources not Removed Before
Reuse

Bus/Memory

Table 3.2: A list of Software vulnerabilities that can affect an unsecure system

42 3| Technology Research & Assessment

Hardware

The main vulnerability we wanted to point out is the Authority and Code issues. In
a system, it is important that the secure part has an identification protocol controlling
who can access the data, otherwise, if an attacker gets a ring 3-0 privilege, he can inject
malware that can fully run on Kernel level and can successfully have full access to memory,
all CPU instructions, and all hardware. A miss-configuration of ISA and CPU can lead to
microarchitectural side effects. In security, Flow Issues class vulnerabilities can happen in
2 phases, one when the system is booting which it needs to run some security checks and
create secrets, two when system entities communicate. Memory Issues vulnerability class,
give focus on 2 vulnerabilities where the access control and immutable data are targets of
different attacks. Cryptographic vulnerabilities are an issue not only in embedded systems
but in all ICT, eg. blockchain [49], cloud systems, web-based systems etc. an unsecure
cryptographic algorithm is considered if it provides with a key lower than 128 bits[43]. If
a system uses a weak type of algorithm it must be changed, because it will be an easy
target to attackers.

Software

As mentioned in the introductory section, security in traditional systems is mostly based
on the software part, where antiviruses or different architecture solutions provide protec-
tion from malicious code. The main classes we are focusing on in this part are Permission
Issues, Cryptographic Issues, and Memory Issues. As it is noticeable both the SW and
HW have some common vulnerabilities which can be exploited using the same techniques
or different ones. In the section below, we will see how using TEE some of these vulnera-
bilities can be mitigated, but this doesn’t mean that it will provide 100% security. As we
will see, new technologies face new vulnerabilities or some old ones can be used against
them, which should be taken into consideration before choosing the architecture of the
system. This should protect the cloud service providers and their clients from:

• Unauthorized access of data.

– Provide Confidentiality

• Integrity of data

– Protecting from improper modification

• Secure Data encryption and Decryption using Trusted Execution Environment.

• Secure Code Execution

3| Technology Research & Assessment 43

3.2.3. Mapping of Vulnerabilities

The two tables below show a map of different vulnerabilities taken from CWE. Each one
has a status corresponding to each architecture.

• NV: Not Vulnerable, the corresponding technology provides minimum protection
against the vulnerability type.

• Vulnerable: Technology does not provide minimum protection.

• N/A: it is not known if the technology is vulnerable or not

CWE ID HW Vulnera-
bility

TPM ARM
TZ

AMD
SEV

Inter
SGX

Target

CWE-
1302

Security Identi-
fier

NV NV NV NV Chip/OS/VMs /
TrustZone

CWE-
1281

Miss-
configuration
of ISA and CPU
Logic

NV NV NV NV CPU Logic and
ISA

CWE-
1252

Miss- Configura-
tion of CPU for
W/R

NV NV NV NV Memory

CWE-
1220

Insufficient
Granularity
Access Control

NV NV NV NV Memory /
Registers

CWE-
1260

Overlap Be-
tween Protected
Memory Ranges

NV NV NV NV Memory Regions

CWE-
1261

Register In-
terface Allows
Software Access
to Sensitive
Data

NV NV NV NV Register In-
terface ->
hardware func-
tionality

Logic Design Vulnerabilities
CWE-
1254

Incorrect com-
parison Logic
Granularity

NV NV NV NV MACs

Security Flow Vulnerabilities

44 3| Technology Research & Assessment

CWE-
1190

DMA enabled
too early in boot
phase

N /A NV NV NV DMA /Secure
Domain

CWE-
1264

Miss-
configuration
of ISA and CPU
Logic & beta

NV NV NV NV BUSS

CWE-
1274

Volatile memory
containing boot
code

NV N /A N /A N /A NVM

Memory Vulnerabilities
CWE-
1257

Improper Access
Control Applied
to Mirrored/
Aliased Memory
Regions

NV V V NV Memory /Cache

CWE-
1282

Assumer- Im-
mutable Data
is Stored In
Writable Mem-
ory

NV V V NV Memory /Cashe

Cryptographic Vulnerabilities
CWE-
1279

Cryptographic
Operations are
run before sup-
porting units are
ready

NV V NV NV Cryptographic
Units

CWE-
325

Missing Cryp-
tography Steps

NV V NV NV Memory 1/
Cashe /Buss

Table 3.3: A list of hardware vulnerabilities that can affect an unsecure system.

3| Technology Research & Assessment 45

CWE ID SW Vulnera-
bilty

TPM ARM
TZ

AMD
SEV

Intel
SGX

Target

Permission Vulnerabilities
N /A Security Identi-

fier
NV NV NV NV Bus/Memory/

Register

N /A Communication
Channel

NV NV NV NV Memory Bus/
System Bus/

CWE-
283

Unverified Own-
ership

NV NV NV NV System Bus
/Memory /
Registers

CWE-
1220

Insufficient
Granularity
Access Control

NV NV NV NV System Bus
/Memory /
Registers

CWE-
276

Incorrect De-
fault Permis-
sions

NV NV NV NV System Bus
/Memory /
Registers

Memory Vulnerabilities
CWE-
226

Sensitive In-
formation in
Resources not
Removed Before
Reuse

NV V V NV Memory /Cashe
/Ciphertext

N /A Memory In-
tegrity

NV V V NV Memory /Cashe
/Ciphertext

Cryptographic Vulnerabilities
CWE-
1240

Cryptographic
Operations are
run before sup-
porting units are
ready

NV V NV NV Cryptographic
Units

CWE-
325

Missing Cryp-
tography Steps

NV NV NV NV Memory 1/
System Bus
/Memory

Table 3.4: A list of hardware vulnerabilities that can affect an unsecure system.

46 3| Technology Research & Assessment

On the first column is the id of each vulnerability from CWE, and in the case in the id
column it is written N/A, it was proposed by us.

Even though all the architectures provide good protection for most of the vulnerabilities
that can risk the domains, still it is possible to break these security mechanisms, and risk
confidentiality and the integrity of data. Meltdown, Spectre, and Side Channels attacks
have been successfully performed and resulting in disclosure of taking the secrets from
the trusted environment.

CWE - 1220 Insufficient Granularity of Access Control

Scope Impact Likelihood
Confidentiality, Integrity,
Availability, Access Control

Modify/Read Memory, Execute Unau-
thorized Code or Commands, Gain
privileges or assume identity, bypass
Protection mechanism.

High

Table 3.5: Vulnerability short details

The product implements access controls via a policy or other feature with the intention
to disable or restrict accesses (reads and/or writes) to assets in a system from untrusted
agents. However, implemented access controls lack required granularity, which renders the
control policy too broad because it allows access from unauthorized agents to the security-
sensitive assets. Integrated circuits and hardware engines can expose accesses to assets
(device configuration, keys, etc.) to trusted firmware or a software module (commonly
set by BIOS/bootloader). This access is typically access-controlled. Upon a power reset,
the hardware or system usually starts with default values in registers, and the trusted
firmware (Boot firmware) configures the necessary access-control protection. A common
weakness that can exist in such protection schemes is that access controls or policies are
not granular enough. This condition allows agents beyond trusted agents to access assets
and could lead to a loss of functionality or the ability to set up the device securely. This
further results in security risks from leaked, sensitive, key material to modification of
device configuration.

TPM To provide granularity, TPM does it by using a combination of operations such as
ownership, attestation indeed keys, and PCR.

• Ownership To perform all the operations, the TMP needs to be under the owner-
ship of an entity. This means that the environment will set up all the policies and
a shared secret to prove ownership per user. During this process, it will generate
a Storage Root key related to a particular user. Each user is unique and cannot

3| Technology Research & Assessment 47

access other users’ data unless data migration. The proof of ownership is done
by using protocols with the idea of providing ownership, command, and parameter
authentication.

• AIK (attestation identity keys) AIK key is generated from a CA at the request of
the TMP owner and it is stored on non-volatile storage outside TMP. The reason why
we need AIK is to generate signatures on data in order to provide data confidentiality
and integrity.

• PCR is 160-bit data that stores a generated hash per system component, which
is the result of integrity measurements. Its values are secured by the RTS, and
they are stored on volatile memory. On each boot, TMP calculates new values for
individual PCRs and these values are then used to provide secure boot and platform
state attestation.

Upon a BIOS reset, the boot sequence starts from the Core BIOS, which its integrity
measurement is stored inside PCR-0, and later it is extended to include the integrity
measurements of the rest of the BIOS. Next, the motherboard configuration will be mea-
sured by Core BIOS, stored on PCR-1, and next the rest of the code, ROM firmware,
and ROM firmware configuration. Then the process continues to start the OS, as usual,
we need to measure the integrity of OS loader code and OS code and in the end, the
respective software (application code) will be checked. After each integrity measurement,
the result is stored on PCR.

This way we have a trusted and reliable view of the current state of the system. PCR-0
to PCR-7 are saved for TMP, and the rest till PCR-15 is used for operating system and
installed applications. The minimum number of PCR is 16. When reporting the integrity
measurement, it is more secure to generate a signature on the value to avoid replay and
man in the middle. If a malicious user tries to boot a different operating system or is able
to compromise the operating system (i.e. installed a rootkit backdoor to an operating
system), the PCR values will be different and the data will not decrypt properly. When
an entity requests the attestation, it will sign the PCR value with the sealed private key.
If there is a change in any of the PCR values during the system boot, the signature will
not verify. This Will indicate to the requester that the system is not in the state as before,
whether it is still secure or not is a decision that the requesting entity must make.

Vulnerabilities: CVE-2018-6622: Allows local users to overwrite static PCRs of TPM
and neutralize the security features. [24] It allows an adversary to reset and forge PCRs
when the system wakes up.

48 3| Technology Research & Assessment

In this paper, the authors successfully perform attacks to perform end-to-end key recovery
attacks. [34] Using 3 different level of privileges. And in all 3 it was possible to perform
key recovery. To perform these attacks, we need to read the processor’s cycle right before
the TMP device starts executing-security critical function and right after its completion.

ARM TrustZone On boot time the system decides with NS bit for the secure and
not secure world. In the secure world the data cannot be accessed by the non-secure
world, but TZ can access the data can access memory and I/O designated for both Secure
and Normal World, whereas code running in Normal World is restricted to Normal World
resources. Thus, any operations on secure data or hardware must be done by Secure World
on behalf of Normal World. The transition of control from Normal World to Secure World
is known as a world switch. A Horizontal Privilege Escalation vulnerability arises when
Trusted App exposed APIs enable untrusted processes to access or manipulate Client app
provided data. For example, key-stores contain HPE vulnerabilities if a malicious CA can
obtain or use keys belonging to other CAs. A malicious CA can access any data stored
in memory between a target CA’s requests, provided it can time its own requests before
a shared TA clears the respective data and this data is retrievable though at least one
exposed APIexposed that do not perform any origin checks regarding there quests (e.g.,
sessions). Such attacks are most damaging when CA-provided keys are cached between
CA requests.[44]

AMD SEV To provide limited access within VMs, AMD uses SEV which provides 1
key per VM. Keys are managed by a secure processor (AMD SP), coordinated by the
hypervisor, which is later used to encrypt memory pages. A future to protect the guest
register state from hypervisor is Encrypted State. The SEV-ES VM’s CPU register state
is encrypted during world switches. On the first run, the hypervisor must coordinate with
AMD-SP to create an initial encrypted state image for the guest VM.

Another way is to assign on each VM a privilege level, VMPL. It is identified numerically,
starting from 0 to 7. The most privileged on is VMPL0 which is only read, 1 is write, 2
execute user, 3 execute supervisor and 4-7 reserved. This is used to restrict guest memory
accesses. On software, AMD provides a segment protection mechanism with the ability to
restrict program access into other software routines and data. There are 4 levels (0-3), high
to low. And there are 3 types of privileges, Current privilege level, description privilege
level, and requestor privilege level. CPL is the privilege level at which the processor is
currently executing. DPL is the privilege level that system software assigns to individual
segments. It is used in privilege checks to determine whether software can access the
segment. It is stored in the segment descriptor. RPL reflects the privilege level of the
program that created the selector, and it is used to let called programs know the privilege

3| Technology Research & Assessment 49

level of the program that initiated the call. CPL and RPL are compared by the processor
to determine the effective privilege level for data access.

Attacks that protect from: flow attacks (modifying VM state), rollback attacks (restoring
VM register state), exfiltration (Reading VM state).

Intel SGX On boot time Intel SGX sets aside a secure memory region called Processor
Reserved Memory, which is protected from CPU from all non-enclave memory accesses.
It holds EPC which stores the enclave’s code and data. EPC state is tracked by CPU
in the Enclave Page Cache Metadata. The data in each enclave and the ones saved to
memory cannot be accessed by any other enclave or user who doesn’t have the privileges.

Integrity is provided by using cryptographic constructs. Intel SGX creates an integrity
tree that holds the hashes of its children.

Access control in some cases is provided also by the Launch Enclave, which in some cases
may result as an unnecessary approval step to run enclaves. The idea was to make sure
that the enclave’s author is a trusted entity. But the same job of the LE can become by
System software that has access.

To prevent malicious enclaves from using keys such as EGETKEY, SGX includes a simple
access control mechanism that can be used by system software to limit enclave access to
provisioning keys.

Problem is that the enclave’s initial code and data is loaded by unprotected memory and
that a malicious system software might abuse the PROVISIONKEY attribute to generate
a unique identifier for the hardware that runs.

CWE - 1260

Isolated memory regions and access control (read/write) policies are used by hardware to
protect privileged software. Software components are often allowed to change or remap
memory region definitions to enable flexible and dynamically changeable memory man-
agement by system software. If a software component running at lower privilege can
program a memory address region to overlap with other memory regions used by software
running at higher privilege, privilege escalation may be available to attackers. The mem-
ory protection unit (MPU) logic can incorrectly handle such an address overlap and allow
the lower privilege software to read or write into the protected memory region resulting
in a privilege escalation attack. Address overlap weakness can also be used to launch a
denial-of-service attack on the higher privilege software memory regions. TPM PCR and
TPM ownership change so far do not provide a risk of memory address region overlap

50 3| Technology Research & Assessment

because of the access control which controls the data written to memory. If the memory
address region is subject to writing from another entity, TPM will go through a security
check. If the entity has the right to write that memory region then it will go on, otherwise,
it will fail. But the memory region cannot be overlapped.[13] If the PCR values will be
different the data will not be decrypted on every boot so even if an aggressor can manage
to overlap the memory regions, get the data, won’t be able to decrypt them. Unless it
gets the key, which it won’t be able because it just overlapped it. ARM TrustZone
MMU is the major component of the L1 memory system. It is capable of mapping the
virtual address space that is running on the processor to the physical address space that
exists outside of the processor.

A direct memory access controller is the dedicated engine for moving data around the
physical memory system. It can support concurrent Secure and Non-secure channels.
This means that a non-secure transaction trying to program a DMA transfer to or from
Secure memory will result in the transfer failing. AMD SEV AMD SEV divides its
address space into four levels to provide hardware isolated abstraction layers within a
VM for additional security controls. The privileges start from VMPL0 high to VMPL3
which gets the lowest. VPML needs to be enabled and in this case, every CPU of a VM
is assigned a VMPL. Individual guest pages is also augmented with page access rights
corresponding to each VMPL and can be marked as R/W supervisor-mode executable
and user-mode executable. The default permission is VPML0. Each permission can
be modified via RMPADJUST instruction. The restriction is that on level cannot grant
more permission than it currently has, and a higher level can modify permissions for a less
privileged one. Example 1: a vCPU that is executing at VMPL0 could use RMPADJUST
to restrict a page or memory to be only read-write but not executable at VMPL1. Also,
RMPADJUST cannot be used to grant greater permission of what is allowed by permission
mask. Example 2: If VMPL1 wants to write access to VMPL2 but when permissions were
set it was not specified then the RMPADJUSR will fail.[6]

Intel SGX [21] A reserved memory area is predefined at boot time and is called PRM.
PRM consists of EPC allocated to enclaves. EPCM (enclave page cache map) is used to
save records about the system software’s allocation decisions for each EPC page. This
way, if a malicious system software wants to allocate the same EPC page to two enclaves
it cannot. EPCM uses the information to track the ownership of each EPC page. But
two entities can communicate via untrusted non-EPC memory. Intel SGX uses an EPC
page eviction. In short, it does page swapping to utilize all the resources effectively. This
method is done in save mode because enclaves do not trust the system software, so SGX
offers a method that can protect against a malicious OS trying to make address translation

3| Technology Research & Assessment 51

attacks. This method uses EWB instruction which evicts an EPC page into a DRAM
outside the EPC and parks the page as available. Another thing that should be kept in
mind is that no TLB has address translation associated with the evicted page, in order
to avoid the TLB-based address translation attack.

CWE - 1264

Many high-performance on-chip bus protocols and processor data paths employ separate
channels for control and data to increase parallelism and maximize throughput. Bugs in
the hardware logic that handle errors and security checks can make it possible for data
to be forwarded before the completion of the security checks. If the data can propagate
to a location in the hardware observable to an attacker, loss of data confidentiality can
occur. ’Meltdown’ is a concrete example of how de-synchronization between data and
permissions checking logic can violate confidentiality requirements. Data loaded from a
page marked as privileged was returned to the CPU regardless of the current privilege
level for performance reasons. The assumption was that the CPU could later remove
all traces of this data during the handling of the illegal memory access exception, but
this assumption was proven false as traces of the secret data were not removed from the
microarchitectural state.

On the reference architecture of the TEE, it is mentioned that TEE Isolation/Access
Control provides components hardware software to check the communication between the
partitions. The communication succeeds only if it passes the security checks. This states
that by default the communication between two parties will occur and only occur if the
untrusted entity passes the security checks. Which implies that the proposed technologies
provide it. TPM On TPM the data on volatile memory cannot be accessed by everyone,
weather way in the case when data need to be passed from the secure memory to unsecure
entities and the only interaction is through the LPC bus.[11]

LPC bus has been shown to be vulnerable to passive eavesdropping. [29] ARM TZ
AMBA3 AXI system bus has a control signal for each r/w on the main system bus. This
bus has a protocol that defines Non-Secure bits, AWPROT[1] and ARPROT[1], used
to write and read with low-high value, Secure-Non-secure. These signals are set by bus
masters on every new transaction and the bus/slave decode logic must interpret them
that the security mechanism has not been violated. As said high values in NS bits make
them nonsecure, so the NS masters cannot access secure slaves.

In order to carry ‘the security and privilege capabilities‘ over to other memory systems
and interfaces, we use logic present in the system’s bus (AMBA AHB 5/APB4) fabric

52 3| Technology Research & Assessment

i.e. the privilege attribute (HPRIV) and secure attribute (HNONSEC) are carried across
the internal Advanced High-performance Bus (AHB) matrix to reach memory protection
checkers (MPCs), peripheral protection checkers (PPCs), and master security wrappers
(MSWs) for other bus masters.

Furthermore, to move data around the system Direct Memory Access (DMA) Controller
is used to move data around the physical memory system. DMAC can support concurrent
Secure and non-secure channels controlled by a APB interface.

AMD SEV VMM can restrict guest CPU access to memory. SVM provides multiple
protection domains which can restrict device access to physical memory on a per-page
basis. The northbridge’s host bridge provides different protection domains that are asso-
ciated with a device exclusion vector that specifies per page access rights of the device.
Devices are identified by a device ID.

AMD does an access checking when a w/r request is received on memory staples from an
external host bridge port. The id of the device doing the request is mapped to a protection
domain number, which selects the DEV defining the access permission for the device. In
case of error handlers, AMD uses machine-check registers to control and report hardware
machine-check errors. Intel SGX Intel SGX contains a memory encryption engine, whose
role is to encrypt and authenticate the data stored in EPC. The problem is that it doesn’t
encrypt the addresses on the memory bus. Which can lead to possible attacks. It is not
quite mentioned what type of protocols are used in Intel SGX communication bus, but
in general, it is said to not be trusted but the communication bus in the secure world is
secure. Intel SGX offers a certificate-based identity system that can be used to migrate
secrets between enclaves from the same authority. And this provided a strong privilege
security mechanism.

CWE - 1257

Aliased or mirrored memory regions in hardware designs may have inconsistent read-
/write permissions enforced by the hardware. A possible result is that an untrusted agent
is blocked from accessing a memory region but is not blocked from accessing the cor-
responding aliased memory region. Hardware product designs often need to implement
memory protection features that enable privileged software to define isolated memory
regions and access control (read/write) policies. Isolated memory regions can be defined
on different memory spaces in a design (e.g., system physical address, virtual address,
memory-mapped IO). Each memory cell should be mapped and assigned a system ad-
dress that the core software can use to read/write to that memory. It is possible to map

3| Technology Research & Assessment 53

the same memory cell to multiple system addresses such that read/write to any of the
aliased system addresses would be decoded to the same memory cell. This is commonly
done in hardware designs for redundancy and simplifying address decoding logic. If one of
the memory regions is corrupted or faulty, then that hardware can switch to using the data
in the mirrored memory region. Memory aliases can also be created in the system address
map if the address decoder unit ignores higher order address bits when mapping a smaller
address region into the full system address. A common security weakness that can exist
in such memory mapping is that aliased memory regions could have different read/write
access protections enforced by the hardware such that an untrusted agent is blocked from
accessing a memory address but is not blocked from accessing the corresponding aliased
memory address. Such inconsistency can then be used to bypass the access protection
of the primary memory block and read or modify the protected memory. An untrusted
agent could also possibly create memory aliases in the system address map for malicious
purposes if it is able to change the mapping of an address region or modify memory region
sizes.

TPM To the best of my research TPM doesn’t suffer from memory aliasing problems
because it doesn’t use it. ARM TZ [11] For memory mapping, TZ must take care to
ensure that the 33-bit address space is used in such a way that data remains coherent
in all the locations that are stored. The same memory location appears as two distinct
locations in the address map, one Secure one Non-secure. The protection that TZ offers
is from the Secure, Non-Secure flag to the cache. ARM TZ [48] suffers from cache side-
channel leaking information. [27] The attack is performed based on a cache timing side
channel to extract sensitive information.

This paper proposes a new attack on memory aliasing problems with ARM TZ. Capable
of extracting fine-grained information from the secure world of Trust-Zone. AMD SEV
A new system-wide data structure called reverse Map table is used to perform additional
security checks on memory access. Which is a feature on the SEV version. A reverse map
table is used to ensure a one-to-one mapping between system physical addresses and guest
physical addresses. RMP entries contain flags indicating if the physical page is assigned to
a guest at the AMD-SNP, page size, immutable flag. The integrity of RMP is maintained
by restricting software manipulations.

The security mechanism of AMD requires that the pages are validated before being ac-
cessed with the PVALIDATE. After RMPUPDATE can be used by the hypervisor to
unassign, reassign or remap the page and will become invalidated.

The privileges are assigned by vCPU and they restrict guest memory accesses. The only

54 3| Technology Research & Assessment

reason when full permissions are enabled is for VMPL0 using RMPUPDATE. Intel SGX
Uses MESIF protocol, which is implemented in the CPU and in the protocol layer of the
QPI bus. The SDM and the CPUID instruction output indicate that the L3 cache, also
known as the last-level cache (LLC) is inclusive, meaning that any location cached by a
L1 or L2 cache must also be cached in the LLC. The QPI protocol uses home agents and
cache agents to make sure the memory is coherent, and the ownership is saved.

Many cache-based timings attacks against SGX enclaves have been published, and all of
them are possible because of the cache-hierarchy system and because the caching of mem-
ory leaves effects in the system state which are measurable. SGX enclaves are vulnerable
to cache attacks.[37]

CWE – 1282 Assumed-Immutable Data is Stored in Writable
Memory

Scope Impact Likelihood
Integrity Modify/Read Memory, Gain privileges

or assume identity, bypass Protection
mechanism and it varies by context.

N/A But
mostly
unlikely

Table 3.6: Table to test captions and labels.

Immutable data, such as a first-stage bootloader, device identifiers, and "write-once"
configuration settings are stored in writable memory which gives the opportunity for
aggressors to reprogram or update in the field. Security services such as secure boot,
authentication of code and data, and device attestation all require assets such as the
first stage bootloader, public keys, golden hash digests, etc. which are implicitly trusted.
Storing these assets in read-only memory (ROM), fuses or one-time programmable (OTP)
memory provides strong integrity guarantees and provides a root of trust for securing the
rest of the system. Security is lost if assets assumed to be immutable can be modified.

TMP Sensitive data are kept in non-volatile memory which contains shielded locations
which are accessed with protected capabilities (ROM, flash memory).

ARM TZ Uses a non-volatile memory to store important information such as user keys,
which is managed by a non-volatile memory manager who is also in charge of OTP storage
and LCS life cycle state management. On OTP are stored important data which are meant
to be written once with a 0-bit next to them.

3| Technology Research & Assessment 55

AMD SEV Data are Stored in DRAM but encrypted from SEV (secure encrypted vir-
tualization) which separates the data through a private bit. Vms can choose which data
memory pages would like to be private. The encryption key is managed by ADM-SP,
which is a separate processor present on AMD SOCs. It contains RAM, non-volatile stor-
age which is used to save the endorsement key PEK, which is used to derive the platform
Diffie-Hellman in conjunction with guest OSes every time the machine is powered on or
reset.

Intel SGX Is configured in such a way that all the components that generate different
types of Keys, or certificates are saved in tamper-resistant hardware or ROM memory with
a security bit. For example, when we create encryption keys for Enclaves, the system can
save those keys in non-volatile memory. Important attributes are also saved in this non-
volatile memory so in cases of reset or boots the system will not lose the data. But if
something happens to the CPU, eg. the user’s system dies, we cannot decrypt the data
because only 1 enclave can have access to the key.

57

4| Proposed Solution Architecture

Summary

As discussed in the previous chapters, leveraging the opportunity of using an isolated
hardware domain technology can enhance the security to protect from Software-based
vulnerabilities in the system. Intel SGX has proven to be quite a successful solution,
being used in many industry solutions because it increases the security of sensitive and
critical data or code. It also protects the Trusted Execution Environment from many
advanced threats that compromise BIOS, system components, or user profiles with root
permission.

In this chapter, we are going to talk about how we leverage the use of Intel SGX technol-
ogy on a cloud-based solution for Healthcare. First we start by giving a brief introduction
on the cloud and Internet of Things impact in the healthcare section towards its evolution
to Healthcare 4.0 and how can Intel SGX enhance security. than a more detailed descrip-
tion of the use case with a high-level representative architecture of the cloud including a
description of its actors and entities and towards the end some possible scenarios asso-
ciated with sequence diagrams. In the end it is described the Threat Model for the use
case described and then a technical background regarding the developing process, the use
of the different functionalities that Intel SGX provides, and its security impact on our
solution.

4.1. Introduction

Cloud Solution, Internet of Things, Big Data are revolutionizing the Healthcare domain
and its whole ecosystem bringing a new era, Healthcare 4.0. With the development
of the Internet of Things healthcare, many devices which measure people’s health data
are being used by hospitals and doctors to monitor patients remotely and take faster
precautions. However, the responsibility of software maintenance and cloud security is
handed over to cloud providers. Security is not the only issue, an important factor is the
performance of message delivering from devices and on January 14th, Yin Zhang propose

58 4| Proposed Solution Architecture

a performance isolation algorithm that can reduce the device message delay by 87%. [50]
Besides the advantages of using cloud computing, there are many security challenges as
shown by recent reports. Verizon’s 2020 data breach investigation report shows that 15%
of all breaches in 2020 happed in healthcare organizations [9]. According to a HIPPA
Journal, due to ransomware attacks, in September 2020, 9.7 million healthcare records
were exposed from 95 data breaches – 348.97% more than august 2020. [8] Figure ??
shows the causes of September 2020 healthcare data breaches.

Figure 4.1: Causes of September 2020 Healthcare Data Breaches. From: HIPAA Journal
on Oct 22, 2020 [8]

Since 2015 Intel has been providing a Trusted Execution Technology called Intel SGX.
Intel SGX has gained quite a popularity in the past 6 years since its release, and many
companies have provided useful Use Cases including here, Confidential Computing and
Cloud Data Shield, BlockChain to help increase privacy and security for transaction
processing, consensus, smart contracts, key storage or even Edge Computing to assist
with securing IoT edge devices to cloud and client communications, etc.

Intel SGX maintains a chain of trust, for each layer that composes the system, so this way
we create and provide some extra security between different domains. One of the areas
that are important is the data in transit, and Intel SGX uses TLS to provide security.
Section 6.4 describes the technical background of the application design based on our use
case.

4| Proposed Solution Architecture 59

4.2. Attacker Model

The attacker model will describe the vulnerabilities and attacks that can happen when
a system is not protected by TEE, different assumptions on the conditions an aggressor
can perform an attack, and then at Chapter,3 we will see how the different technologies
minimize these threats and especially Intel SGX.

In a normal situation, the security of data will be provided by using different software
solutions, but this will bring the risk of security issues since more software means a larger
“attack surface” and higher chances for vulnerability issues.

Assumptions: We assume that the attacker does not have physical access to the device and
the only way he can access it is by remote attacks. The attacker can gain root privilege to
the system and he can gain access to the ring 3 and ring 2-0 privilege levels, which he can
leverage to break the confidentiality and integrity of data or inject malicious code. Ring 3
is the lowest privileged level and ring 0 is the most privileged. After gaining privilege, the
attacker can perform different attacks, such as DOS attacks, data manipulation, etc. For
example, a new vulnerability was discovered on Linux, CVE-2021-33909 [12], fs/seq_file.c
in the Linux kernel 3.16 through 5.13.x before 5.13.4 does not properly restrict seq buffer
allocations, leading to an integer overflow, an Out-of-bounds Write, and escalation to
root by an unprivileged user, aka CID-8cae8cd89f05.[10] It is common that most of the
architectures follow a hierarchical privilege mode. Based on this the software processes
operate at different privilege levels. Because of this, security depends on OS, VMM, and
BIOS levels. However, root users in the system can launch processes in kernel mode,
this comes back to our problem where a malicious worker from the cloud provider can
have access. This can result in data breaches. So, using the traditional security system,
a malicious application running on the system may be able to use a zero-day bug or an
unpatched privilege escalation vulnerability to obtain root privilege and then attack other
running applications. Thus, the attack surface of a conventional application includes all
the processes that are running on the same server.

60 4| Proposed Solution Architecture

Figure 4.2: Privilege Ring

In our use case definition, section 4.4, we choose Intel SGX to develop and explore its
properties in a cloud environment. In normal situations in cloud, the data are saved
altogether and the system administrators can “access” them and confidentiality of the
user data of cloud services is only ensured by the trust in the cloud services provider. It
means that it cannot be guaranteed that a cloud service provider company will not access
private user data that was stored in the cloud or that aggressors will find loopholes that
can hack the system. There may also be the problem of an insider abuse authority threat.
But not only this, imagine if someone is able to gain access to the Cloud Service Provider
it will be a total mess. He can basically do everything with the data or even more, and in
this case the integrity, and confidentiality of data is broken. In our case, we will consider
three types of aggressors. First, the normal user who has only limited access to data may
aim to attack the cloud provider. The second is a foreign user who has no access to any of
the services and the third is a user from inside the cloud. The last user is because he may
have access to the system files, so he can have an advantage on understanding the code
and trying to break it. Example 1. A user wants to attack a hypervisor on the database
VM server, to steal all information running on that machine. He starts by getting the
initial access to the database VM by which he will attack the hypervisor and by exploiting
CVE-2013-4344, the attacked can get data related to all VMs or use the hypervisor to get
access to the target VM. This may lead to data loss, etc.

Using TEE, we have the coexistence of trusted and untrusted applications in the same
embedded device, which they can communicate only if they trust each other. This is
crucial because the goal of a TEE is to separate the important code and functionalities
from the environment.

4| Proposed Solution Architecture 61

In general, the system cannot trust the HW and OS unless this is configured in the TEE,
and which functions to trust. The OS can get corrupted and try to get/modify our
secrets. Since the goal is to provide secure Data Isolation, information flow in the trusted
environment is quite limited. OS cannot add/modify code in the TEE, its functions are
limited towards the secure environment such as, only to secure its secrets. In order for
an aggressor to find the vulnerabilities, the following preconditions are required, but not
limited:

Network embedded systems: The majority of embedded systems are connected to
the internet, which makes them a perfect target for the aggressors. No physical access is
needed to exploit the vulnerabilities and break the security mechanism.

Weak Encryption algorithm: Based on the encryption algorithm used, the data may
be stolen and decryption methods such as brute-forcing may be used to break the security.
This can happen because the algorithm uses a key with a small length, which is below
128 bits [43].

Weak Software and Hardware architecture: In some cases, there are software se-
curity measurements to secure the data, and the attacker can break the security easier.
Also, hardware isolation solutions have their own drawbacks when it comes to security,
as we will see AMD SEV does not provide data integrity, even though it provides TEE.
Sometimes vulnerabilities on the software can risk also the HW technology, even though
they are not supposed to impact each other. For example.

4.3. Threat Model

We believe that the cloud service provider will maintain all the security parameters and
the data will not be shared with third parties unless explicitly said in the contract. But
the cloud providers for many reasons cannot be fully trusted, there may be malicious
employees, etc., which may be interested in breaking and compromising the confidentiality
and integrity of hosted containers.

Users are given roles, which based on this they can access different data. This role is
given by the main user. A normal user cannot access data if not specified, to protect from
possible malicious users, if one manages to request data his role will be checked inside the
enclave.

We do not trust the Linux Kernel, firmware, hypervisor, or the running programs on the
cloud, but we only trust the Trusted execution environment inside the CPU. We create
a code partition of trusted and untrusted functions. This may be time-consuming, but it

62 4| Proposed Solution Architecture

should be done, so aggressors cannot run a malicious which can compromise the enclave.

We assume that each user has a two-factor authentication to protect from loss/theft of
their credentials. We assume that the attacker cannot have physical access to the cloud,
so we do not consider different physical attacks.

Intel SGX will play a critical role on:

1. Allowing application developers to protect sensitive data from malicious software
running at higher privilege levels, trying to gain unauthorized access.

2. Preserve the confidentiality and integrity of sensitive code and data and at the same
time system software can schedule and manage the use of platform resources.

3. Inside Enclaves we will be generating Key Pairs for each user, Encrypting/Decrypt-
ing data, and creating trusted functions for our application to run.

4| Proposed Solution Architecture 63

4.4. Use Case

A hospital used an old CRM system to manage their clients, we can assume that the
servers used to be based on the hospital, or in another location, but still managed by the
hospital’s IT staff. This method is an old solution, it can be costly, hard to maintain,
and easy to target from aggressors since the technology mostly will be the same for some
years. The hospital can suffer from many cyber security issues including malware that
can be taken from emails or any peripheral device which will lead to failure risks, data
breaches, etc. There are a lot of benefits to using the cloud and enforcing security through
hardware means. Figure ??represents a high-level architecture of our cloud solution,
including different actors and entities that take place.

Figure 4.3: High-level representation of our Cloud Architecture shows the architecture
of our cloud, different actors, and devices all connected and streaming or retrieving data
online.

Actors

In this section, we describe what are the different actors that compose our use case! These
actors are the ones who will be "using" the system through the client application. For
this use case, it is important, from a security point of view, to make some assumptions

64 4| Proposed Solution Architecture

regarding some possible threats that can affect our system which is not the scope of this
thesis!

Actors Roles

Relatives Basic
Patient Basic
Nurse Normal

Doctors High
Managers Admin

Table 4.1: List of actors and their role/privilege on our system

Relatives:

1. Basic Role

2. Can only view and control the data of their relatives. It can modify some basic
functionalities.

Patients:

1. Basic Role

2. Provides the healthcare data from IoT device

3. Cannot see and control anything but its own data

Nurse:

1. Can insert/update/delete data for users

2. Only of those they have under their care

3. Can register new users

4. Can view the data of hospital patients

Doctors:

1. Can Insert/update/delete users’ data

2. Can register new users

3. Can view data of hospital patients

4. Can assign Nurses to users

4| Proposed Solution Architecture 65

Manager:

1. Can Insert/delete/update users’ data

2. Can Edit/register Doctors etc.

Devices:

1. IoT health sensor: A device that is connected and registered to a patient and will
send data to the cloud in a secure manner.

4.5. Scenarios

In this section we are going to explain some scenarios and sequence diagrams for better
understanding the functions and data flow in the system, and why it is necessary to take
the right measurements. First let’s describe some of the main entities and what are their
roles on this case.

Scenario 1

In this scenario, a nurse will be registering a new patient from the client app and all the
business logic will be described.

66 4| Proposed Solution Architecture

Figure 4.4: First Scenario of the use case, registering a new user on the database

To enforce the first scenario, figure 4.5 describes a sequence diagram showing different
group objects communicating with each other to provide security for the data.

4| Proposed Solution Architecture 67

Figure 4.5: Nurse Registering a new Patient, Intel SGX validates nurse, and saves users
data to unsecure memory after encryption inside the Enclave

Scenario 2

In this scenario user is sending will be registering a new patient from the client app and
all the business logic will be described.

1. Before saving the data controller if proof of identity.

2. Check if data are valid and are not suspicious.

3. Encrypt the data with the public key and store them into the main memory.

The communication channel between the IoT device and the Cloud is secured using SSL.
This way we believe that the data won’t be corrupted in transit, but still, there is a need
to check them. If we take a scenario where we blindly trust the data from the Device, the
proposed Sequence Diagram makes Sense, otherwise, we need to add a control scheme for
the data which I propose below.

68 4| Proposed Solution Architecture

Figure 4.6: Second Scenario, the patient is sending data to the cloud database

To enforce the first scenario, figure 4.7 describes a sequence diagram showing different
group objects communicating with each other to provide security for the data. On the
first Alternative check, the system controls if the user is not a malicious attacker, and
inside enclave on the trusted app, we check for its authorization.

4| Proposed Solution Architecture 69

Figure 4.7: Sequence diagram of patient sending data to the cloud.

4.6. Technical Background

In this section, we are going to talk about the different security principles and concepts
used for our use case. Some of the concepts are also described in Section 3 when we
talk about Intel SGX and its features. The section will start by giving some important
information on how we plan to use Intel SGX on our use case, the use of confidentiality,
integrity, attestation, cryptographic solutions, and the basic concepts.

The experiment will be done on a pc that comes with Intel SGX capability in CPU and
BIOS and the OS is Ubuntu 20.04. Intel SGX should be enabled on BIOS so we can install
the drivers and the SDK. SGX will create the trusted executed environment by setting
aside a memory region called the Processor Reserved memory. CPU protects PRM from
all non-enclave memory accesses, including the kernel, hypervisor, etc. PRM is important
because it will hold all the Enclave Page Cache (EPC), which consists of 4KB pages that
store enclave code and data. This secure data cannot be accessed by untrusted entities,
as mentioned in section 2.5, but only by the enclave that created them. An important
element that we want to secure is the encryption key pairs for each user. As the data will
be stored in the server, the encryption keys need a secure environment. So even if it is
the case that someone can gain user-level access, and maybe reach for the data he won’t
be able to decrypt them. This is important for public cloud storage or hybrid storage
because the data are stored in a shared infrastructure can be a target for many attackers.

70 4| Proposed Solution Architecture

So, we want to provide confidentiality, the integrity of data, and code integrity.

Architecture Solution

In this section, we study more about our architecture and how Intel ® SGX will help us
to reach our scope as mentioned in the previous section.

Assumptions:

• We assume that the user who can access the data from the client application is not
an aggressor and his account is not compromised.

– Our goal is not to prove user authentication from the client application point
of view but Intel SGX helps us to protect his data so we can provide data
confidentiality.

• The connection between the IoT device to the cloud is secured.

– We assume that the Device uses one of the secure communication protocols
SSL/TLS to minimize data leaking and man-in-the-middle attacks. [19]

• Data Recovery is provided.

The assets which we need to protect are

1. the private key

2. the user data

The data after the secure encryption inside Intel SGX can be saved inside the unsecure
memory in the cloud, but the private key which is used for encryption is saved in the
EPC.

Application Design:

To build the application design we need to clarify some points which will be useful in
designing the enclaves.

1. Identify the secrets

2. Providers and Consumers Of secrets

3. Determine Enclave Boundary

4. Tailor the Code

To program inside the enclave, we need to use the Enclave Definition Language syntax.
Both ECALL and OCALL are prototyped inside the EDLs. Intel SGX doesn’t not call

4| Proposed Solution Architecture 71

the ECALL and OCALL functions directly; it calls the proxy functions. On the moment
that of an ECALL, first is called the untrusted proxy function for the ECALL, which in
turn calls the trusted proxy function inside the enclave. That proxy then calls the “real”
ECALL and the return value propagates back to the untrusted function. This sequence is
shown in Figure 22. When the system makes an OCALL, the sequence is reversed: first
call the trusted proxy function for the OCALL, which calls an untrusted proxy function
outside the enclave that, in turn, invokes the “real” OCALL.

Figure 4.8: API communication between trusted and untrusted domains. sd From: Intel®
Software Guard Extensions Part 7: Refine the Enclave with Proxy Functions, 2016 [4]

enc lave {
// Inc lude f i l e s
// Import other ed l f i l e s
// Data s t r u c tu r e d e c l a r a t i o n s to be used as
// parameters o f the func t i on prototypes in ed l

t ru s t ed {
// Inc lude f i l e i f any . I t w i l l be i n s e r t e d
// in the t ru s t ed header f i l e (enc lave _t . h)
// Trusted func t i on prototypes (ECALLs)
} ;

untrusted {
// Inc lude f i l e i f any . I t w i l l be i n s e r t e d in
// the untrusted header f i l e (enc lave _u. h)
// Untrusted func t i on prototypes (OCALLs)

72 4| Proposed Solution Architecture

} ;
} ;

Identify the secrets

Secrets are the data that should not be known or seen by other users. Only the users’
owners of this data can edit, view delete his secrets. In no way the secrets should be
exposed to other users or applications regardless of their privilege level. For example, in
figure ?? we show a sequence diagram of the data flow from an untrusted environment,
the application checks for the ownership before passing the data, get the private key from
EPC, performs decryption Inside the enclave on TEE, and sends the data.

For our use case secrets can include the following data:

1. Medical records

2. Healthcare data from IoT devices

3. Encryption keys

4. Enclave keys

Figure 4.9: High level sequence diagram of data flow between domains.

4| Proposed Solution Architecture 73

Data flowing from the untrusted environment to the EPC

It is important that the data going to the untrusted environment to be secure. Because it
is the only place where there is no security, and the data can be manipulated. SGX design
supports having multiple enclaves on a system at the same time, which is a necessity in
multi-process environments. This is achieved by having the EPC split into 4 KB pages
that can be assigned to different enclaves. The EPC uses the same page size as the
architecture’s address translation feature. The EPC is managed by the same system
software that manages the rest of the computer’s physical memory. The system software,
which can be a hypervisor or an OS kernel, uses SGX instructions to allocate unused
pages to enclaves and to free previously allocated EPC pages. Non-enclave software
cannot directly access the EPC, as it is contained in the PRM. Inside the TEE (trusted
execution environment) is where all the trusted code will be located to perform our crucial
functions. This protects the code from being accessed from outside. Some of the main
functions which will go here are:

Identify the providers & consumers of secrets

When we create the secrets, they can enter or leave the enclave, but the most important is
to minimize them to untrusted code. Intel SGX uses the enclave to perform the encryption
or decryption of our data. One important aspect will be Sealing and Attestation (Remote
Attestation). This is because at the moment that our data will be encrypted, we may
lose them since the enclave life cycle ends by destroying itself. So, every data cannot be
decrypted, thus we can derive an encryption key that can be used to provision encrypted
secrets to the application that only the trusted enclave on that client system can decrypt.

As mentioned, the data can travel outside the enclave to the untrusted code, the important
part is that they are encrypted all the time.

74 4| Proposed Solution Architecture

Figure 4.10: Data Flow of different entities to the cloud and Intel SGX functionalities

Figure 4.10 represents a data flow, where we have different providers of our secrets and
different consumers. The main provider is the IoT device which will provide health moni-
toring data, after a secure communication with the backend data are redirected to Enclave
for secure encryption which will be saved on the cloud database. When data come from
the device, using secure communication protocol SSL/TLS, they need to be encrypted
before being saved inside the Cloud Database. Here comes the use of Intel SGX, by using
the Crypto Library we generate a new pair of keys so they can be used from Intel SGX
to encrypt and decrypt the data. The private key is sealed and saved inside the secure
memory and the public key is saved to the Cloud database.

Determine Enclave Boundary It is important to understand the main data flow
through the application’s core components. By this, the enclave boundary should give
an understanding of how the different components act with our data. It should provide
minimum access to the secrets and the components that act upon them. Minimize the
interaction with the untrusted code unless needed.

4| Proposed Solution Architecture 75

Figure 4.11: Data flow from different Entities, to the Intel SGX

The user’s private-public key is generated inside the enclave and not outside. Then it
is encrypted with the enclave key and saved securely. The enclave’s private key is saved
inside the EPM and never send outside the enclave otherwise the whole idea of a trusted
execution environment is gone. We can have a problem with the way our data will be
shown to the user. Since the data is taken from the database and then the decryption
is done inside the enclave with the user’s private key, when it goes to the untrusted
environment it will be on plain text. And idea is to use OpenSLL so the data will have
minimum encryption when they are on transit. When the data is outside the enclave, it
should never be saved in any variable or whatsoever, since some libraries have their own
memory management it is hard to control all the data saved everywhere for no reason.

76 4| Proposed Solution Architecture

Figure 4.12: Sealing and generating encryption keys

In this diagram it is shown how the keys are generated and the use of Sealing. Sealing it
is important because it guarantees that the data will be encrypted when the Enclave is
restored otherwise, they will be lost. The Crypto function creates the enclaves’ keys to
be used and is saved in secure memory. Which cannot be accessed by outside users and
nor by untrusted code.

Code Tailoring

On the specifications of Intel SGX, it is recommended to tailor the code in such a way
that it will minimize the risks and the trusted functions are well distinguished from the
untrusted ones. For our Use Case we want to focus on the creation of new users, generating
key pairs, attesting the user and the IoT device and sealing their data.

Classes that I am going to use for the trusted and untrusted domains: Trusted App:
These functions are called inside the trusted execution environment and run inside the
enclave. Some of these functions may need to use oCall and eCall APIs to get or send
data from an untrusted environment to the trusted execution environment.

Ecall_check_user

4| Proposed Solution Architecture 77

Before creating a new user, we need to make sure that this user profile does not exist, in
case the user has the same name and family name as another user, the person registering
will need to give a confirmation.

Ecall_Create_User_File
This class will create an encrypted file, which will serve as the “database” for the user.
The reason why we are using this approach is for simplicity, but this file plays the same
role as a real database. The data inside will be sealed and encrypted using users and
enclave private keys.

Ecall_key_generation_and_sealing
When a new user gets registered, this function will be called inside to generate two key
pairs for him and seal this data so they will be secured inside the secure memory. This
key pair will be later used to encrypt and decrypt users’ data inside the enclave.

Ecall_show_item
This function will be used to decrypt the data of the user from the database. When
someone requests to get the data for x user the data need to be decrypted inside the
enclave then can be shown to the user. For security measurements, we cannot send the
keys outside a trusted execution environment.

Ecall_add_data
As shown in scenario 2, the user will be sending data to the database periodically. This
function inserts the new data on the cloud database. First, the data will be encrypted,
sealed, and then saved.

ecall_remove_data
On the moment that someone decides to delete data from the database, we must delete
the key pairs of the user. This function takes care of it. Untrusted App: These functions
are called within the enclave to exit enclave temporarily and call a function in the un-
trusted space.

Ocall_show_info
At the moment we call the function Ecall_show_item, for security reasons Enclave cannot
be used to send the data to the user client. What Intel SGX provides is the Ocall library,
where you call a function from the untrusted environment inside the Enclave to perform
a certain task. In this case, our function will take the decrypted data from the enclave,

78 4| Proposed Solution Architecture

pass it through API in a secure manner to the untrusted environment. As mentioned on
Section 2.5, the data inside the enclave can be accessed only if the owner is proven.

Ocall_save_file
The functions inside the trusted environment Ecall_Create_User_File and Ecall_add_data
decrypt the data sent by user and then call the function Ocall_save_file to pass the data
and save them. Ocall_user_exists
Ecall_check_user will check if the user exists on the database and send a return message
to the untrusted environment through the Ocall_user_exists.

79

5| Conclusion

5.1.

This work explored Trusted Execution technologies by differentiating their commons and
differences regarding the HW and SW component, how they protect or not w.r.t different
vulnerabilities. A list of different selected vulnerabilities were analyzed, to see how they
impact these technologies, which components were affected the most and which can pro-
vide better protection. Intel SGX was the main target of this work, and so it was analyzed
more in details. From this work we can conclude that Intel SGX provides a good and
novel protection mechanism, which comes with the cost of some drawbacks.

Figure 5.1: This image represent the total number, n/m, of 5 different HW CWE vulner-
ability categories, that each TEE technology can protect from. Where m is the total nr.
of vulnerabilities, and n is the nr. they can protect from.

80 5| Conclusion

Figure 5.2: This image represent the total number, n/m, of 3 different SW CWE vulner-
ability categories, that each TEE technology can protect from. Where m is the total nr.
of vulnerabilities, and n is the nr. they can protect from.

From the results on the Figure 5.2 and Figure 5.1 we conclude that Intel SGX and TPM
can provide a better secure environment w.r.t CWE vulnerabilities.

Regarding the main architecture elements for SW and HW part, the only difference be-
tween the four technologies is that ARM TrustZone does not provide sealing, Integrity
and attestation is missing for both ARM TZ and AMD SEV. AMD SEV uses VM to
create the secure executed environment. ARM TZ by default does not provide encryption
techniques, so its need some SW or HW crypto accelerators.

In our use case when the data were stored in a unsecure memory, database, but they were
all encrypted. So even if an attacker can manage to get the data from database, he wont
be able to decrypt them, as the algorithm that can be used, provides good encryption keys
which will take basically forever to brute-force decryption. Second, the way how enclaves
works, even if the user manages to get inside an enclave, which is almost impossible and
really hard without physical access to the device, it cannot get access to all the data and
cannot risk integrity and confidentiality. From the research done Intel SGX can provide
a better secure environment than the other technologies. On one hand, enclave provides
some mechanism to provide attestation, in order to "trust" third parties. In our case it the
idea to be used to attest IoT devices. Intel SGX provides two types of attestation, Intel®
Enhanced Privacy ID (Intel® EPID) Attestation and Elliptic Curve Digital Signature
Algorithm (ECDSA) Attestation. Differences between this two are mentioned on section
2.5.1. We used EPID, because of technology limitations, ECDSA usually is available only
on Intel server processors. On the other hand, it wasn’t possible to reach all the wanted
goals. We used Linux Ubuntu 20.04 as OS and to set the working environment. There
were many limitations on the developer documentations of Intel SGX for Ubuntu.

5| Conclusion 81

5.2. Future work & improvements

The outcome of this work can be better improved by using an Intel server processor in
order to explore the full capabilities of Intel SGX. On section 2.5.1 we show the differences
between two types of attestation that Intel SGX provides,ECDSA and EPID, but they
cannot both be applied on normal Intel processors. ECDSA requires XEON processors
while EPID can run on any normal Intel processors who support Intel SGX. Another
interesting approach can be using another computation protection SW, which can interact
with Intel SGX to run functionalities which need protection inside the Enclaves. These
technologies can be combined to perform a better secure environment. An example is
Ferraiuolo Andrew 2017 [22], which decouple the core HW and SW mechanisms to work
together. Some other research that can be done, is to measure the time delay of the
encryption and decryption process till the moment that data are provided the the user,
which can be a critical part for environments with very high density of data.

83

Bibliography

[1] Trustzone technology for armv8-m architecture version 2.1, . URL https://

developer.arm.com/documentation/100690/latest/.

[2] The trustzone hardware architecture, . URL https://developer.arm.com/

documentation/100935/0100/The-TrustZone-hardware-architecture-.

[3] Linux " linux kernel : Vulnerability statistics. URL https://www.cvedetails.com/

product/47/Linux-Linux-Kernel.html?vendor_id=33.

[4] Intel® software guard extensions part 7: Refine the enclave with..., Oct 2016. URL
https://www.intel.com/content/www/us/en/developer/articles/training/

intel-software-guard-extensions-tutorial-part-7-refining-the-enclave.

html.

[5] Nov 2017. URL https://github.com/intel/intel-sgx-ssl/blob/master/

Intel(R)SoftwareGuardExtensionsSSLLibraryArchitecture.pdf.

[6] https://www.amd.com/system/files/techdocs/sev-snp-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf, Jan
2020. URL https://www.amd.com/system/files/TechDocs/

SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.

pdf.

[7] Demystifying arm trustzone for microcontrollers, Sep 2020. URL https://

developer.arm.com/documentation/dui0446/u/debugging-embedded-systems/

about-accessing-ahb--apb--and-axi-buses.

[8] September 2020 healthcare data breach report: 9.7 million records
compromised, Oct 2020. URL https://www.hipaajournal.com/

september-2020-healthcare-data-breach-report-9-7-million-records-compromised/.

[9] Business technology reports, 2020. URL https://www.verizon.com/business/

resources/reports/.

https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave.html
https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave.html
https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave.html
https://github.com/intel/intel-sgx-ssl/blob/master/Intel(R) Software Guard Extensions SSL Library Architecture.pdf
https://github.com/intel/intel-sgx-ssl/blob/master/Intel(R) Software Guard Extensions SSL Library Architecture.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/documentation/dui0446/u/debugging-embedded-systems/about-accessing-ahb--apb--and-axi-buses
https://developer.arm.com/documentation/dui0446/u/debugging-embedded-systems/about-accessing-ahb--apb--and-axi-buses
https://developer.arm.com/documentation/dui0446/u/debugging-embedded-systems/about-accessing-ahb--apb--and-axi-buses
https://www.hipaajournal.com/september-2020-healthcare-data-breach-report-9-7-million-records-compromised/
https://www.hipaajournal.com/september-2020-healthcare-data-breach-report-9-7-million-records-compromised/
https://www.verizon.com/business/resources/reports/
https://www.verizon.com/business/resources/reports/

84 | Bibliography

[10] Cve-2021-33909, Jun 2021. URL https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-33909.

[11] 2021. URL https://developer.arm.com/documentation/PRD29-GENC-009492/c/

TrustZone-Hardware-Architecture.

[12] Cve-2021-33909, Nov 2021. URL https://access.redhat.com/security/cve/

cve-2021-33909.

[13] R. N. Akram, K. Markantonakis, and K. Mayes. An Introduction to the Trusted
Platform and Mobile Trusted Module, pages 71 – 94. 09 2013. ISBN 978-1-4614-
7914-7. doi: 10.1007/978-1-4614-7915-4_4.

[14] G. Arfaoui, S. Gharout, and J. Traoré. Trusted execution environments: A look under
the hood. In 2014 2nd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, pages 259–266, 2014. doi: 10.1109/MobileCloud.2014.47.

[15] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas, and A. Kaseorg.
Security impact ratings considered harmful. arXiv preprint arXiv:0904.4058, 2009.

[16] W. Arthur, D. Challener, and K. Goldman. A practical guide to TPM 2.0: Using the
new trusted platform module in the new age of security. Springer Nature, 2015.

[17] Biya and Ar. 30 examples of embedded systems in daily life, Aug 2019. URL
https://compscistation.com/examples-embedded-systems-daily-life/.

[18] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing for hardware authen-
tication and attestation. volume 1, pages 768–775, 08 2010. doi: 10.1109/SocialCom.
2010.118.

[19] Z. Cekerevac, Z. Dvorak, L. Prigoda, and P. Čekerevac. Internet of things and the
man-in-the-middle attacks – security and economic risks. MEST Journal, 5:15–5, 07
2017. doi: 10.12709/mest.05.05.02.03.

[20] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek. Linux
kernel vulnerabilities: State-of-the-art defenses and open problems. In Proceedings
of the Second Asia-Pacific Workshop on Systems, pages 1–5, 2011.

[21] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptol. ePrint Arch., 2016
(86):1–118, 2016.

[22] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, page 287–305, New York,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33909
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33909
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture
https://developer.arm.com/documentation/PRD29-GENC-009492/c/TrustZone-Hardware-Architecture
https://access.redhat.com/security/cve/cve-2021-33909
https://access.redhat.com/security/cve/cve-2021-33909
https://compscistation.com/examples-embedded-systems-daily-life/

| Bibliography 85

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350853. doi:
10.1145/3132747.3132782. URL https://doi.org/10.1145/3132747.3132782.

[23] M. J. Haber. Privilege escalation attack and defense explained,
Oct 2021. URL https://www.beyondtrust.com/blog/entry/

privilege-escalation-attack-defense-explained.

[24] S. Han, W. Shin, J.-H. Park, and H. Kim. A bad dream: Subverting trusted platform
module while you are sleeping. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 1229–1246, 2018.

[25] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono. On technical security issues
in cloud computing. In 2009 IEEE International Conference on Cloud Computing,
pages 109–116, 2009. doi: 10.1109/CLOUD.2009.60.

[26] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, et al. Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE, 2019.

[27] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer,
1996.

[28] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.
Tensorscone: A secure tensorflow framework using intel sgx. arXiv preprint
arXiv:1902.04413, 2019.

[29] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing trusted platform communi-
cation (2005).

[30] B. W. Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18–24,
1974.

[31] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. arXiv preprint arXiv:1801.01207,
2018.

[32] S. E. Madnick and J. J. Donovan. Application and analysis of the virtual machine
approach to information system security and isolation. In Proceedings of the workshop
on virtual computer systems, pages 210–224, 1973.

[33] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek. Software
fault isolation with api integrity and multi-principal modules. In Proceedings of the

https://doi.org/10.1145/3132747.3132782
https://www.beyondtrust.com/blog/entry/privilege-escalation-attack-defense-explained
https://www.beyondtrust.com/blog/entry/privilege-escalation-attack-defense-explained

86 | Bibliography

Twenty-Third ACM Symposium on Operating Systems Principles, pages 115–128,
2011.

[34] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. Tpm-fail:{TPM} meets
timing and lattice attacks. In 29th {USENIX} Security Symposium ({USENIX}
Security 20), pages 2057–2073, 2020.

[35] M. A. Mukhtar, M. K. Bhatti, and G. Gogniat. Architectures for security: A compar-
ative analysis of hardware security features in intel sgx and arm trustzone. In 2019
2nd International Conference on Communication, Computing and Digital systems
(C-CODE), pages 299–304, 2019. doi: 10.1109/C-CODE.2019.8680982.

[36] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. Trustzone explained:
Architectural features and use cases. In 2016 IEEE 2nd International Conference on
Collaboration and Internet Computing (CIC), pages 445–451. IEEE, 2016.

[37] A. Nilsson, P. N. Bideh, and J. Brorsson. A survey of published attacks on intel sgx.
arXiv preprint arXiv:2006.13598, 2020.

[38] R. P. Pires. Distributed systems and trusted execution environments: Trade-offs
and challenges. CoRR, abs/2001.09670, 2020. URL https://arxiv.org/abs/2001.

09670.

[39] J. Regehr and U. Duongsaa. Preventing interrupt overload. SIGPLAN Not., 40
(7):50–58, jun 2005. ISSN 0362-1340. doi: 10.1145/1070891.1065918. URL https:

//doi.org/10.1145/1070891.1065918.

[40] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution environment: what
it is, and what it is not. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages
57–64. IEEE, 2015.

[41] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy. Tcg inside?
a note on tpm specification compliance. In Proceedings of the first ACM workshop
on Scalable trusted computing, pages 47–56, 2006.

[42] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski. Supporting third party at-
testation for intel sgx with intel data center attestation primitives. White paper,
2018.

[43] C. Sincerbox. Security sessions: Exploring weak ciphers - an explanation and an ex-
ample, 2014. URL https://electricenergyonline.com/energy/magazine/779/

article/Security-Sessions-Exploring-Weak-Ciphers.htm.

https://arxiv.org/abs/2001.09670
https://arxiv.org/abs/2001.09670
https://doi.org/10.1145/1070891.1065918
https://doi.org/10.1145/1070891.1065918
https://electricenergyonline.com/energy/magazine/779/article/Security-Sessions-Exploring-Weak-Ciphers.htm
https://electricenergyonline.com/energy/magazine/779/article/Security-Sessions-Exploring-Weak-Ciphers.htm

5| BIBLIOGRAPHY 87

[44] D. Suciu, S. McLaughlin, L. Simon, and R. Sion. Horizontal privilege escalation in
trusted applications. In 29th {USENIX} Security Symposium ({USENIX} Security
20), 2020.

[45] G. Tan et al. Principles and implementation techniques of software-based fault isola-
tion. Now Publishers, 2017.

[46] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the keys to
the intel {SGX} kingdom with transient out-of-order execution. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 991–1008, 2018.

[47] Windows-Driver-Content. Trusted plaform module (tpm) 2.0, May 2021.
URL https://docs.microsoft.com/en-us/windows-hardware/design/

device-experiences/oem-tpm.

[48] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou. Truspy: Cache side-channel
information leakage from the secure world on arm devices. IACR Cryptol. ePrint
Arch., 2016:980, 2016.

[49] R. Zhang, R. Xue, and L. Liu. Security and privacy on blockchain. ACM Computing
Surveys (CSUR), 52(3):1–34, 2019.

[50] Y. Zhang, Y. Sun, Y. Sun, R. Jin, K. Lin, K. Lin, W. Liu, and W. Liu. High-
performance isolation computing technology for smart iot healthcare in cloud envi-
ronments. IEEE Internet of Things Journal, pages 1–1, 2021. doi: 10.1109/JIOT.
2021.3051742.

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-tpm
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-tpm

	Contents
	Acknowledgements
	Abstract in lingua italiana
	Abstract
	Introduction
	Background and Motivations
	Problem Overview
	Results
	Thesis Structure

	Review of literatures
	Trusted Execution Environment (TEE)
	Reference Architecture

	Trusted platform modules (TPM)
	TPM Architecture
	Vulnerabilities

	ARM TrustZone
	AMD SEV
	Privilege Levels

	Intel SGX
	Intel SGX Architecture

	Technology Research & Assessment
	Architecture Elements
	Vulnerability Model
	Introduction
	Selected classes of embedded systems vulnerabilities
	Mapping of Vulnerabilities

	Proposed Solution Architecture
	Introduction
	Attacker Model
	Threat Model
	Use Case
	Scenarios
	Technical Background

	Conclusion
	
	Future work & improvements

	Bibliography

