POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Learning Trajectory Tracking For An Autonomous Surface Vehicle In

Urban Waterways

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING

INGEGNERIA INFORMATICA

Author: ToMA SIKORA
Advisor: PRorF. RICCARDO SCATTOLINI

Academic year: 2021-2022

1. Introduction

Autonomous surface vessels (ASVs) have be-
come a popular solution for marine exploration,
search and rescue, environmental monitoring,
and hydrology surveying. With congestion be-
coming a serious problem on the roads, an ASV
could take on the task of transportation in many
cities with urban waterways, such as Amsterdam
or Venice.

Roboat is an example of such a system, devel-
oped as a research project by the AMS Institute
and the MIT [5]. The platform can provide nu-
merous functions to a city, such as dynamic in-
frastructure or autonomous garbage collection.
Although in a very mature state, the system’s
control strategy, a Nonlinear Model Predictive
Controller (NMPC), proved sensitive to uncer-
tainties and disturbances.

Recent advancements in the field of reinforce-
ment learning, namely the work done by the
Robotic Systems Lab in Zurich on quadrupedal
locomotion in [3]|, gives hope that such an ap-
proach could inherently learn robustness.

The goal of this work is to develop a learning-
based robust controller for trajectory tracking
of an ASV. Faced with uncertainties or dis-
turbances, the proposed controller should track

trajectories with less tracking error than the
NMPC.

Similar problems have been considered in the
past, for example one of the most prolific authors
in vessel automation, Thor I. Fossen, considered
the automation of tasks such as dynamic posi-
tioning, path following, line of sight algorithms,
etc. in his book [2]. Furthermore, reinforcement
learning approaches to vessel control have also
been tested, namely the Proximal Policy Op-
timization algorithm [4] was used to learn dy-
namic positioning in [1], proving successful both
in simulation and real world tests.

2. Background
2.1. ASV kinematics and dynamics

The movement of an ASV can be expressed using
two reference frames, the inertial and the vessel’s
own reference frame. It can be condensed in 3
degrees of freedom (DOF) in the inertial refer-
ence frame, presenting the vessel’s position and
orientation:

n = [z,y,9] (1)

Likewise, the linear and angular velocities of the
vessel’s movement can be expressed in the ves-

sel’s reference frame:

v =[u,v,r] (2)

The two vectors are connected through the fol-
lowing equation:

n=R{) v (3)

where R(%)) is the transformation matrix from
the vessel’s own to the inertial frame.

The most popular form of propulsion for ASVs
are propellers which, according to [2]|, produce
thrust relative to the vessel’s advance speed and
the propeller RPM with the following equations:

T = pD4KT(J0)\u]u (4)
C (1-w
Jo="—5— (5)

where p is the density of the fluid, D the pro-
peller diameter, Kp the thrust coefficient esti-
mated for a hull-propeller pairing, Jy the ad-
vance number, defined with the equation (5),
and w the wake fraction number.

The Roboat platform is actuated through a set
of four thrusters in the "+4" thruster configu-
ration, with the main thrusters on the port and
starboard side of the center of mass and two side-
ways thruster on the bow and stern, making the
system overactuated.

The most significant uncertainties and distur-
bances for the Roboat platform are: varying
payload, wind, current, and waves. These can
be modelled in the following manner.

Firstly, since the magnitude of payload is sig-
nificant with regards to the vessel’s own weight,
varying payload induces high trajectory tracking
error. The effect of the distribution and mag-
nitude of payload is reflected in a proportional
change in the vessel’s mass and damping matri-
ces and the wake fraction number w.

Secondly, the effect of wind can be approximated
with a force and torque combination acting on
the vessel with:

1 —ce Apw coS(Yrw)
Tw = §Pavr2w cyALw sin(Yrw) (6)
CzALWLOA Sin(2%w)

where 7,,, is the apparent wind angle, p, the
density of air, V,,, the apparent wind speed,
Apw the frontal projected windage area, Apw

the lateral projected windage area, Lo 4 the ves-
sel’s overall length, and w the wind’s apparent
angle of attack. c;, ¢y, and c; are the wind co-
efficients estimated for the vessel at hand.
Thirdly, the current acts as a constant transla-
tion of the vessel’s moving frame with a certain
velocity. Its effect can be described by the fol-
lowing equation:

ue = Vecos(B —) (7)

ve = Vecos(B — 1) (8)

where u. and v, present the current’s velocity in
vessel’s surge and sway directions respectively.
Waves are not considered in this work as the low
frequency waves are never encountered in the ur-
ban waterways and the effects of high frequency
waves are very weak.

Finally, the equations of motion for the entire
system can be written as:

Mv+ C(v)v+ Dr(v)v+vDgv)v +g(n) =T

(9)

M = Mgp + Mg (10)
T=Ty+TE (11)
n=R{) v (12)

where M pp+ M 4 are the rigid body and added
mass terms, Dy, (v) the linear damping matrix,
Dg(v) the quadratic damping matrix, 7, the
vector of thruster generated torques, and 7g the
vector of environmental torques.

2.2. Reinforcement Learning

Basic reinforcement learning (RL) problems can
be described through the notion of discrete-time
stochastic control processes called Markov Deci-
sion Processes (MDPs). They are defined by a
(S, A, P,, R,) tuple where:
e S is the set of possible states called the state
space,
e A is the set of possible actions called the
action space,
e P, is the probability of action a taken in
state s leading to state s’
e R, is the immediate reward for taking ac-
tion a in state s.
The agent’s behavior, or more specifically the
choice of action in any given state, is defined

through the policy function 7(s,a). A policy
that maximizes the reward function in the infi-
nite horizon is called the optimal policy 7*(s, a).
The goal of RL algorithms is to obtain this op-
timal policy for a given agent-environment pair.
This is usually done without knowledge of the
environment dynamics P,, which is where the
name model-free RL comes from.

In the early stages of RL, the optimal policy was
found by using the Q-learning algorithm which,
inspired by the Bellman equation, extracts it
from a table of approximated infinite horizon re-
wards for state-action pairings. To solve more
complex problems, a neural network was used
in place of the table in algorithms such as Deep
Q-learning. Most recently, a new family of algo-
rithms called Policy Gradient Methods showed
promise allowing also continuous state and ac-
tion values. These algorithms directly optimize
the agent’s policy, presented with a parameter
vector # usually in the form of a neural network,
by performing gradient ascent on it.

The most recent breakthrough in the family
is the Proximal Policy Optimization (PPO)
from [4]. Presented in 2017, PPO is simple,
more general than its predecessors, and has bet-
ter sample complexity. To achieve this perfor-
mance, the algorithm uses two tricks: trust re-
gion methods and a clipped surrogate objective.
Currently, PPO outperforms similar algorithms
in a number of tasks.

3. Simulation of the Roboat
and design of the RL con-
troller

To simulate the Roboat system in code, the
equations from 2.1 were translated to Python
code, parameterized based on uncertainties and
disturbances, and wrapped in a Gym environ-
ment, following the interface architecture from
the industry standard OpenAl Gym.

The following criteria must be met to use RL
algorithms in an environment: define the obser-
vation and action space, and define the step and
reset methods.

For the task of trajectory tracking the observa-
tion space was chosen to contain: the x and y
error in the vessel’s reference frame, the sine and
cosine (for continuity) of the look-ahead head-
ing error, the current and reference velocity val-

ues, and the actuation vector for the previous
timestep.

The action space was defined as four values from
-1 to 1, mapped to the minimum and maximum
thruster range.

The reward function was defined as:

_ Tgauss T Theading — Tu — TAu if Nerr <5
~100 if Dopr > B

(13)

Tgauss = €XP (_kl * ((ft - xt)Q + (th - yt)Q))

(14)
Theading = €XP (_k2 * Awtz) <15)
Ty = k3 * (k5 * (U%’t + u%t) + k6 * (ug,t + ui,t))
(16)
4
TAy = k4 * Z ’(Ui7t - ui,t—l)‘ (17)
=1

where At the difference between the current
and desired heading at time t, u; (i = 1,2,3,4)
are the actuation values at time t, and k;(i =
1,...,6) constants balancing the effect of each
component on the learning process. The pa-
rameter values balancing the reward function are
given in Table 1.

’Parameter‘kl‘kg‘kg‘M ‘kg) ‘kg ‘
| Value |3 [3 |1 [05[01]0.7]

Table 1: Constant values in the reward function

The RL simulator was also compared to the
proprietary Roboat simulation through step
response tests and validated that it performs
almost identically to the proprietary one.

To create a rich set of trajectories a trajectory
generation module was built to output straight
line, circular, and sine wave trajectories, pa-
rameterized with speed, radius, amplitude, and
period values.

The training was performed for 1 million
timesteps to avoid overfitting, as at that point
the algorithm stagnated. The episode reward
through the training process can be observed in
Figure 1 and the learning process is visualized
in Figure 2 on a sine wave trajectory.

800

&00

a00

200

Episade reward

00 02 04 06 08 10
Taining timesteps. 16

Figure 1: Plot of the episodic reward through-
out one million steps of training. Orange line
presents the moving average with a window size
50, light orange presents the standard deviation

of the value.

After 0 steps of trianing

— xy position
Xy trajectory

0 5 0 5 0 5 0 =
Time (0.1%sec)

After 100000 steps of trianing

XY, Yaw

— xyposition
Xy trajectory

0 5 10 5 0
Time (0.1%sec)

After 200000 steps of trianing

. /_\
xy trajectory g
EY Ed

0 H pt] 15 0 =
Time (0.1'sec)

XY, Yaw

After 500000 steps of trianing

2
1 pd

1] — %y posiion

-2 xy trajectory

] 5) 5 E) = EY E3
Time (0.1%sec)

XY Yaw

4. Results

Having trained a trajectory tracking controller
it was time to compare it to the current control
strategy. The performance of the NMPC and
the RL controller was compared through two
metrics.
compared with the Euclidean distance between
the current position and the desired position
on the reference trajectory. In general, the
performance was compared with the Root
Mean Squared Error (RMSE) of that measure.
Secondly, the average power usage of a given
algorithm was measured with the Equation 18:

Firstly, the tracking precision was

N i i i i i
P -3 (LAl + 1f5] + | f3] + | fa]) * |’
average — N

i=1
(18)

where N is the number of data points, u’ is the
surge speed of the vessel at time ¢ and f; is the
force command for thruster j at time <.

4.1. Trajectory tracking comparison

in simulation

The tests in simulation were done on a sine wave
trajectory with amplitude 2 m, period 10 m, and
forward speed 0.5 m/s. Figures 3 and 4 visual-
ize the results of the comparison in simulation
without the inclusion of uncertainties and dis-
turbances. The position, the tracking error, and
the force allocation are presented in the graphs.
The two controllers perform similarly in terms
of position error with RL being more reactive to
its increase. Also, it is obvious that RL exhibits
erratic and oscillatory actuation using up more
power in the process.

Table 2 contains the comparison between the
controllers with the inclusion of the disturbances
and uncertainties.

XY Yaw

‘ Scenario ‘ Undisturbed ‘ Added payload ‘ Current ‘ ‘Wind ‘
After 1000000 steps of trianing A pos. NMPC (m) | 0.3018 0.6979 1.6810 1.8032
: \ T~ A pos. RL (m) 0.2836 0.5836 0.5803 1.701
0 . Difference -6.03% -22.83% -65.48% | -5.69%
T ey \\1 /\) / A P NMPC (W) 323.7134 559.3913 412.3100 | 184.7790
5 : P s % E) 3 AP RL (W) 491.3406 742.1449 460.2448 | 300.3304
Ty Difference 51.78% 32.67% 11.63% | 62.53%

Visualization of intermediate tra-
jectory tracking training results for the RL
controller after initialization, 100000, 200000,
500000, and 1000000 training steps.

Figure 2:

Table 2: Comparison between the NMPC and
the RL algorithm in the evaluated metrics: av-
erage position error and power consumption.

The data clearly shows RL is capable of reducing
the tracking error in simulation, however, this
comes at a significant power cost. Furthermore,
the erratic actuation hints at model exploitation.

IRy e W\ Wa st

ED E Fa E

Tmei0.1%5)

Figure 3: Comparison between the NMPC and
RL algorithm trajectory tracking performance.
Trajectories of NMPC, RL, and reference sine
on the top graph. Tracking error of NMPC and
RL on the bottom graph.

“1000

nnnnnnnnn

1000

nnnnnnnnn

Figure 4: Comparison between the NMPC and
RL algorithm trajectory tracking performance.
Force allocation of NMPC (top) and RL (bot-

tom) for tracking the sine wave trajectory.

4.2. Trajectory tracking comparison
on the real system

After studying the controller in simulation, ROS
framework for deployment to the real system was
developed. Initially, a number of problems arose
that caused failure. These problems range from
unexpected software behavior, sensor noise and

latency, to model discrepancies. Some of these
were solved, others partially mitigated.

Firstly, to avoid badly formed trajectories, a
module in the framework enforces certain struc-
ture by interpolating between points in the tra-
jectory. Due to this, the reference trajectory is
always slightly different at each timestep caus-
ing RL failure. This was fixed by overriding the
said module.

Secondly, measurement noise and GPS delay
caused choppy odometry signals and RL per-
formance deterioration. The odometry is cal-
culated with an Extended Kalman Filter from
an IMU and two GPS sensors. To mitigate the
problem its covariance matrix was re-tuned to
obtain a smoother output.

The last and most potent problem discovered,
was the discrepancy between the physical and
thruster model between the real world and
the simulation. Upon tedious inspection, the
thruster behavior was discovered to be a com-
pound problem formed of a 0.5s - 1s command
signal delay, a proprietary RPM value PID con-
troller, and thruster dynamics (as explained
in 2.1). These effects are most obvious whenever
changing speeds, which is why the sine waves are
tracked much worse in real life than in simula-
tion. Furthermore, this led to errors in parame-
ter estimation for the physical model as reference
force values do not align with true output. Ap-
proaches used to improve the model range from
adding random noise, autoregressive and moving
average processes, and thruster dynamic mod-
elling. In the end, a combination of a random
noise and a moving average with a window of size
5 applied to the actuation vector yielded best re-
sults. The resulting actuation was more robust
and the algorithm learned the slower and unreli-
able nature of the actuation. Detailed modelling
of the thruster from a control signal to the ac-
tual thrust output could be a very interesting
study case in itself.

Figures 5 and 6 visualize the best results for
RL of the comparison with two people on board
amounting to around 160 kg of additional pay-
load, facing wind of around 2 on the Beaufort
scale, and no notable current or waves. Once
again, the graphs present the position, the track-
ing error, and the force allocation.

éu / \\\ e / -
N N

ED
Tmei0.145)

Figure 5: Comparison between the NMPC and
RL algorithm trajectory tracking performance
on the real Roboat vessel. Trajectories of
NMPC, RL, and reference sine on the top, track-
ing error of NMPC and RL on the bottom.

“1000

nnnnnnnnn

nnnnnnnnn

Figure 6: Comparison between the NMPC and
RL algorithm trajectory tracking performance
on the real Roboat vessel. Force allocation of
NMPC (top) and RL (bottom).

5. Conclusions

The goal of this work was to train a learning-
based controller to perform precise trajectory
tracking for the Roboat platform. Not finding an
adequate simulator, a new simulator of the ves-
sel’s dynamics, including the uncertainties and
disturbances, has been developed to train agents
through reinforcement learning algorithms. Af-
ter the search for the best setup and hyperpa-
rameters, an agent was trained with the PPO
algorithm in simulation to perform trajectory
tracking successfully even when faced with un-

certainties and disturbances. Compared to the
NMPC, the controller showed better tracking
performance, at a significant power consumption
cost and an erratic actuation signal.

When deployed on the real system its per-
formance deteriorated significantly proving not
to be robust to differences between the real
world and the simulated system, especially the
thruster model. In the end, a study of problems
causing the tracking to fail was performed with
some of them being successfully solved and oth-
ers needing further work.

Reinforcement learning still seems to be a bad fit
for critical real world applications, however, re-
cent developments hint it might become robust
enough in the near future.

6. Acknowledgments

I would like to thank my supervisor, prof. Ric-
cardo Scattolini, for leading me through this
work. Furthermore, I would like to thank
Jonathan and the entire AMS institute and
Roboat team, for providing me with the op-
portunity to work on such a project. Finally,
I would like to thank my family and Ivana for
the endless love and support.

References

[1] Jens Balchen, Nils Jenssen, Eldar Mathisen,
and Steinar Saelid. Dynamic positioning of
floating vessels based on kalman filtering and
optimal control. pages 852 — 864, 01 1981.

[2] T.I. Fossen. Guidance and Control of Ocean
Vehicles. Wiley, 1994.

[3] Joonho Lee, Jemin Hwangbo, Lorenz Well-
hausen, Vladlen Koltun, and Marco Hutter.
Learning quadrupedal locomotion over chal-
lenging terrain. Science Robotics, 5(47), oct
2020.

[4] John Schulman, Filip Wolski, Prafulla
Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms,
2017.

[5] Wei Wang, Luis Mateos, Shinkyu Park,
Pietro Leoni, Banti Gheneti, Fabio Duarte,
Carlo Ratti, and Daniela Rus. Design, mod-
eling, and nonlinear model predictive track-
ing control of a novel autonomous surface ve-

hicle. 05 2018.

	Introduction
	Background
	ASV kinematics and dynamics
	Reinforcement Learning

	Simulation of the Roboat and design of the RL controller
	Results
	Trajectory tracking comparison in simulation
	Trajectory tracking comparison on the real system

	Conclusions
	Acknowledgments

