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Abstract

Anomaly detection is the problem of identifying abnormally and potentially dangerous or
faulty behaviour. It is applied in various domains and on several data types: tabular, im-
ages, or temporal. Many current state-of-the-art anomaly detection algorithms for time
series share preprocessing or postprocessing operations. Furthermore, several datasets
are employed for evaluating and comparing the performance of models. Such bench-
mark datasets exhibit a variable degree of complexity, which may affect the evaluation
of the power of the methods compared in distinct experiments. Some publicly available
datasets are overly simple and their use may overestimate the power of the models tested
on them. However, there is no automatic and unambiguous definition of simplicity for
these datasets. The first contribution of this thesis assesses the problem of simplicity
in datasets of time series anomaly detection through a formal approach. It reports a
definition of simplicity for anomaly detection datasets and the definition of scores repre-
senting three different types of simplicity. It also proposes algorithms to compute these
scores on datasets and the analysis of their time complexity. Secondly, although libraries
have been presented for many tasks, there is still a lack of an extensible and modular
library specifically developed for creating new techniques related to anomaly detection.
This thesis proposes anomalearn, a library for developing new models and approaches for
time series anomaly detection. It consists of a rigorous object-oriented design using UML
as the first tool to describe its functioning. Furthermore, anomalearn uses an approach
based on interfaces to share API design employing the Python programming language,
the current standard for machine and deep learning solutions. The thesis source code can
be downloaded and explored at: https://github.com/marcopetri98/2021-2022-thesis.

Keywords: anomaly detection, time series, datasets, library, object oriented program-
ming, python





Abstract in lingua italiana

Il rilevamento delle anomalie è il problema riguardante l’identificazione di comportamenti
abonormi che possono rappresentare un danno o un guasto. La sua applicazione avviene
in svariati domini di applicazione e mediante diversi tipi di dato: tabulari, temporali o
di immagini. Molti degli algoritmi stato dell’arte di rilevamento delle anomalie per serie
temporali hanno in comune le fasi di pre-processamento e post-processamento. Inoltre,
diversi insiemi di dati vengono utilizzati da numerosi approcci per valutare e confrontare le
prestazioni dei modelli. Infine, alcuni insiemi di dati pubblici sono semplici e non c’è una
definizione evidente e automatica di semplicità per questi insiemi. La prima contribuzione
di questa tesi è valutare il problema della semplicità in questi insiemi per il rilevamento
delle anomalie nelle serie temporali mediante un approccio formale. Essa riporta una
definizione formale di semplicità per insiemi di dati per il rilevamento delle anomalie e
la definizione di punteggi rappresentanti tre diversi tipi di semplicità. Inoltre, essa pro-
pone algoritmi per calcolare i suddetti punteggi su insiemi di dati e l’analisi della loro
complessità temporale. Secondariamente, anche se delle librerie sono state presentate per
svolgere svariati problemi, c’è ancora una carenza sostanziale di una libreria estendibile e
modulare specificamente sviluppata per la creazione di nuove tecniche di rilevamento delle
anomalie. Questa tesi propone anomalearn, una libreria per lo sviluppo di nuovi modelli e
approcci per il rilevamento di anomalie nelle serie temporali. Essa consiste in un progetto
rigoroso orientato agli oggetti utilizzante UML come primo strumento di descrizione delle
sue funzionalità. In aggiunta, anomalearn utilizza un approccio basato su interfacce per
condividere il disegno delle API e il linguaggio di programmazione Python, lo standard de
facto per soluzioni di apprendimento automatico e profondo. Il codice sorgente della tesi
può essere scaricato ed esplorato all’indirizzo: https://github.com/marcopetri98/2021-
2022-thesis.

Parole chiave: rilevamento delle anomalie, serie temporali, insiemi di dati, libreria,
programmazione orientata agli oggetti, python
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1| Introduction

The work of this thesis is about time series anomaly detection, which means that the
emphasis is on two items: the type of data (time series) and the task carried out on this
data (anomaly detection). The kind of data is important in the context of industrial (and
other fields) measurements, which are related to some ordering of time; between all the
application fields of time series, some standard and notable examples are weather forecast-
ing and stock market prediction. Time series analysis is quite an old topic with a massive
amount of published literature about it, of which some is the theory of the generation
process of a time series through the theoretical element called stochastic processes (see
chapter 2). The historical fields of observation of time series were fields of study in which
the collection of measurements was extremely serviceable: weather, economics, medicine
and astronomy [62]. The great interest and growth in time series datasets can be observed
in many ways, one of which is browsing the UCI repository [27] (storage of datasets) con-
taining 131 time series datasets for different purposes. More recently, datasets containing
time series about industrial equipment to carry on diverse tasks (like predictive mainte-
nance and anomaly detection) have been published. Time series are employed in several
problems: forecasting, classification, clustering, anomaly detection, and many others. In
this thesis, anomaly detection for time series is studied and used to propose metrics to
evaluate the complexity of datasets. Secondly, a library for developing anomaly detection
solutions for time series is proposed. The task of anomaly detection is characterized by
the presence of two types of data: normal and anomalous. The anomalous data may rep-
resent several behaviours and is a minuscule portion with respect to the amount of normal
data. The anomalies may depict faulty behaviour in industrial machines, cyber attacks
in systems, or possible signs of illness in patients through the analysis of MRIs or ECGs.
Therefore, the ability of an anomaly detection method to accurately identify anomalies
and raise alarms/messages is of great importance and interest, e.g., the identification of
signs for tumours in MRIs is crucial to start treating the patients with appropriate cures
as soon as it is possible.

The current state-of-the-art in time series greatly varies depending on the task (clas-
sification, forecasting or others). Overall, there is a shift from statistical and machine
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learning solutions to deep learning approaches. Neural networks are increasingly popular
for developing solutions for time series in many fields. Particularly, with the introduction
of transformers [79], new powerful neural network blocks capable of extracting strong
temporal correlations are available. Regarding anomaly detection specifically, there are
few libraries encompassing the problem of containing several state-of-the-art models to
aid data scientists in comparing existing and newly proposed approaches. There are li-
braries for deep learning solutions for anomaly detection [6], for tabular data solutions
for anomaly detection [89], and for time series unsupervised anomaly detection [7]. How-
ever, none of the published libraries proposes a methodological, clear, and simple way to
develop new methods providing UML diagrams and well-structured interfaces by using
the software engineering best practices. In general, in the context of machine and deep
learning solutions, there are libraries for developing solutions with well-detailed documen-
tation for each component, but none of these libraries is meant to create general solutions
for anomaly detection. Moreover, aside from the lack of libraries for developing anomaly
detection solutions, there is also the problem of datasets being simple and not providing
a good metric for evaluating the efficacy of techniques.

This thesis aims to fill some of the gaps in the current state-of-the-art libraries for anomaly
detection for time series and to provide definitions and algorithms for evaluating the
simplicity of published datasets for anomaly detection. The proposed library aims at
aiding the data scientist in the creation of new approaches, from data processing to
models for time series anomaly detection. The simplicity definitions and algorithms aim
at supplying the scientific community with tools to evaluate whether a dataset is or is not
simple according to some statistical measures.

The work on the evaluation of the complexity of an AD dataset is inspired by the work
in [85]. The work in [85] provides an insightful view of the inherent problem of simple
datasets available to the scientific community, and proposes a method to evaluate whether
a dataset is trivial. This thesis applies a similar analysis to the complexity of a dataset
relative to the specific AD task by proposing a definition of simplicity in terms of spatial
properties. On top of that definition, scores for evaluating the degree of simplicity of
datasets are presented beside the algorithms for their computation.

Anomalearn (the proposed library) enables the data scientist to develop anomaly detection
models and processing methods for time series in an easy way. The data scientist can
decide whether to use single modules separately or together to reduce the number of
functionalities to implement, especially the frequent ones. It also ships functionalities to
aid the creation of experiments on datasets using defined data readers to automatically
create a chain of experiments with automatic train/test splits, such that the data scientist
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can effortlessly state the datasets along with their location on disk and splitting, and use
these declarations to iterate over the datasets to perform experiments in few lines of
code. Furthermore, algorithms to evaluate the simplicity of datasets are shipped with the
library, which enables the data scientist to evaluate the simplicity of datasets; it enables
the selection of simple and complex time series to assess a model through experiments.

Chapter 2 introduces all the necessary concepts to understand the rest of the thesis.
Chapter 3 introduces the study of simplicity with definitions and algorithms for com-
putation, along with the determination of the degree of simplicity of publicly available
datasets. Chapter 4 introduces the proposed library for developing solutions for time
series anomaly detection. It also compares the proposed library to existing solutions in
anomaly detection and general-purpose machine learning libraries. Chapter 5 draws the
conclusions of this thesis work, while chapter 6 lists some of the possible tracks for fur-
ther research. Finally, appendix A introduces necessary definitions of topics related to
statistics and probability to understand topics in chapter 2, and appendix B introduces
the notation to identify code elements in written text.
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2| Background and

state-of-the-art

This section introduces all the concepts needed to read this thesis in a brief summary
and a review of the state-of-the-art methods. Only the notions that are directly used by
state-of-the-art methods or that are directly used by thesis specific work are introduced
in this chapter. In case the reader does not know some of the chapter’s underlying topics,
the appendix A contains more detailed and basic concepts.

Throughout this chapter, several sources will be used as reference. Moreover, since some
sections continuously use the same sources, they are listed here to avoid continuous rep-
etition of the same citation:

• Statistics and probability: [24, 38, 66] are the main sources for this section.

• Time series: [13, 43, 53, 61] are the main sources for this section.

2.1. Statistics and probability

In the context of Anomaly Detection (AD), it is frequent that a method decides whether a
point is anomalous based on a threshold. Several approaches can compute such a decision
boundary, the work in [59] presents a multivariate gaussian distribution to model errors
and calculate a threshold over the gaussian PDF (section 2.6 contains a detailed expla-
nation). This chapter briefly introduces the Gaussian distribution aiming at introducing
its generalization to random vectors (i.e., a multivariate gaussian distribution).

Definition 2.1.1 (Gaussian distribution): Let X be a continuous random vari-
able, µ ∈ R, and σ2 ∈ R+. We say that X has a gaussian distribution if its
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Probability Density Function is:

fX(x) =
1

σ
√
2π

exp

{
−1

2

(
x− µ

σ

)2
}

(2.1)

We denote this distribution by X ∼ N (µ, σ2)

The Gaussian distribution is also called the Normal distribution. One of its interesting
properties is that any distribution N (µ, σ2) is transformable in N (0, 1). It follows that be-
ing able to compute the probability of N (0, 1) enables the computation of the probability
of a Gaussian random variable with any mean and variance.

Proposition 2.1.1: Let X be a normal random variable and a, b ∈ R s.t.
b ̸= 0. Then, the random variable Y = a + bX is a normal random variable
Y ∼ N (a+ bµ, b2σ2).

It follows the following proposition:

Proposition 2.1.2: Let X be a normal random variable X ∼ N (µ, σ2). Then
the random variable Z = (X − µ)/σ is a normal random variable Z ∼ N (0, 1)

If a normal random variable has distribution N (0, 1), it is said to have a standard normal
distribution.

While dealing with normal random variables, it is common to use a process called stan-
dardization: the transformation defined by proposition 2.1.2. The standard normal dis-
tribution is so important that its CDF is identified by Φ(x), and its PDF is identified by
ϕ(x).

Theorem 2.1.1 (Central limit theorem): Let X1, X2, ... be any sequence of
independent identically distributed random variables with mean µ and finite
positive variance σ2, and let Xn be their average. Then for any x ∈ R:

lim
n→+∞

P

(√
n(Xn − µ)

σ
≤ x

)
= Φ(x) (2.2)

where Φ is the CDF of N (0, 1).

The central limit theorem is an significant result in statistics, and it ahs to do with normal
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distribution. Its interpretation is that given a sufficiently large number of independent
identically distributed random variables, the standardization of their average (or sum)
is approximately distributed as a standard normal variable. It is the justification with
which many research works can assume that the distribution of noise or errors is normal.

Given these few meaningful properties, it is possible to introduce the multivariate gaussian
distribution, i.e., gaussian distribution over random vectors instead of random variables.

Definition 2.1.2 (Multivariate gaussian distribution): Let X ∈ Rn be an n-
dimensional random vector. X is a gaussian random vector if and only if,
∀a ∈ Rn the random variable aTX is gaussian. The notation N (µ,Λ) is used
to denote that X has (multivariate) gaussian distribution with mean vector µ

and covariance matrix Λ.

By definition, the covariance matrix may be singular; in such a case, the PDF is not
defined. However, only multivariate gaussian distributions whose matrix is not singular
are of interest. Each component of a Gaussian random vector is a Gaussian random
variable, their sum is a Gaussian random variable, and the marginal distributions are
Gaussian. Furthermore, since the components of the vector weren’t assumed independent,
they may even be dependent on each other.

The deep treatment of the estimation of a multivariate gaussian distribution (mean vector
and covariance matrix) is out of the scope of this section.

2.2. Time series

Time series are the central component of this thesis. Time series can be used to oper-
ate anomaly detection on FRIDGE (a private dataset available to this thesis work) and
other publicly available datasets. When possible, FRIDGE is used to test components
of the presented library (see chapter 4). This section introduces univariate time series,
multivariate time series, and the differences between these two types of time series.

The fundamental piece defining time series is a stochastic process. A stochastic process
is a sequence of random variables ordered with respect to an index t, often referred to as
time. A stochastic process is a sequence of random variables defined on the same sample
space. Formally:
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Definition 2.2.1 (Stochastic process [13, 53, 61]): Let T ⊆ R be a set, and let
(S,F, P ) be a probability space. A stochastic process is a set of random variables
over (S,F, P ) defined as:

V = {v(t, s)|t ∈ T ∧ s ∈ S} (2.3)

Where v : T × S → R is a function.

In other words, a stochastic process is a function of the index and the sample space.
By fixing t = t0, the stochastic process becomes a function solely of the event v(s).
Conversely, fixing the event s = s0 converts it into a function solely of the index v(t) called
process realization. The reader might note that a time series is the process realization of
a stochastic process. Recall that F is a σ-algebra [9, 38].

It is frequent that models work on a specific type of stochastic process: stationary stochas-
tic processes. The definition of stationarity for a stochastic process requires the introduc-
tion of some properties.

Definition 2.2.2 (Mean function [13, 53, 61]): Let V be a stochastic process
defined over the index set T ⊆ R and probability space (S,F, P ). The function
m : T → R is called mean function, and it is defined as:

m(t) = E[v(t, ·)] (2.4)

Definition 2.2.3 (Variance function [13]): Let V be a stochastic process defined
over the index set T ⊆ R and probability space (S,F, P ). The function V ar :

T → R is called variance function, and it is defined as:

V ar(t) = E
[
(v(t, ·)−m(t))2

]
(2.5)

Definition 2.2.4 (Covariance function [13, 53, 61]): Let V be a stochastic
process defined over the index set T ⊆ R and probability space (S,F, P ). The
function γ : T × T → R is called covariance function, and it is defined as:

γ(t1, t2) = E [(v(t1, ·)−m(t1)) (v(t2, ·)−m(t2))] (2.6)

These definitions are the adaptation of mean, variance and covariance functions of random
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variables for stochastic processes. Recall that by fixing the time for a stochastic process,
a random variable is obtained. However, from now on, I will use the notation v(t) to
refer to the random variable v(t, ·) of a stochastic process for the sake of simplicity. Now,
stationarity can be defined:

Definition 2.2.5 (Strict stationarity [53]): Let V be a stochastic process
defined over the index set T ⊆ R and probability space (S,F, P ). If for
every t1, ..., tn ∈ T n and τ ∈ R the distribution of the random vector
[v(t1 + τ), ..., v(tn + τ)] is independent of τ , the process is strictly stationary.

Definition 2.2.6 (Weak stationarity [53]): Let V be a stochastic process de-
fined over the index set T ⊆ R and probability space (S,F, P ). If the mean
function m(t) is constant and its covariance function γ(t1, t2) depends upon
t2 − t1 only, then the process is weakly stationary.

The definition of a weakly stationary process implies that its variance function is constant.
It is a direct consequence of the definition of weak stationarity because the covariance
function depends only on the time lag; in fact, it can be written as:

γ(τ) = E [(v(t)−m)) (v(t+ τ)−m)] (2.7)

From now on, the weak stationarity assumption will be used many times for stochastic
processes. Furthermore, before introducing some relevant properties of a weakly station-
ary process, the correlation coefficient for a stochastic process must be defined.

Definition 2.2.7 (Correlation function [13]): Let V be a stochastic process
defined over the index set T ⊆ R and probability space (S,F, P ), and let γ

be its covariance function. The function ρ : T × T → R is called correlation
function, and it is defined as:

ρ(t1, t2) =
γ(t1, t2)√

γ(t1, t1)
√

γ(t2, t2)
(2.8)

Similarly to the covariance function, the correlation function of a weakly stationary process
depends upon the lag only since it is defined utilizing the covariance function. It means
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that for a weakly stationary process, it is:

ρ(τ) =
γ(τ)√

γ(0)
√
γ(0)

=
γ(τ)

γ(0)
(2.9)

Some [13] call the correlation function of a weakly stationary process normalized covari-
ance function, and so I will. Note that the correlation function is not defined if γ(0) = 0,
and it does not affect its usage. If the covariance function is zero, data are equal to each
other and constant, which is useless and impossible in real-world scenarios since there is
at least some noise. The covariance function of a weakly stationary process has three
paramount properties:

Proposition 2.2.1: Let γ be the covariance function of a weakly stationary
process. The covariance function has the following properties:

• γ(0) ≥ 0

• γ(−τ) = γ(τ)

• |γ(τ)| ≤ γ(0)

Now, the final background component can be defined. It is a cardinal type of process
commonly used to describe the noise. The reason for its importance is that it is unpre-
dictable.

Definition 2.2.8 (White process [13]): Let η be a weakly stationary process.
If its covariance function is γ(τ) = 0 for every τ ̸= 0, we call it white process
and we write η ∼ WN(µ, σ2) stating that µ is its mean and σ2 is its variance.

The white process is the essential element used for other processes’ definitions. Mea-
surement experiments discovered that the white process is fruitful in modelling noise in
data.

2.3. Time series decomposition

Given the definitions and properties related to stochastic processes, it is possible to inves-
tigate the properties of time series. Recall that a time series is the process’ realization of
a stochastic process, i.e., the result of an experiment performed over a stochastic process.
Since a process’ realization is a function of time, time series may exhibit two behaviours:
trend and periodicity. If a time series has trend and periodicity, it can’t be assumed to
be stationary, and since stationarity is a common assumption in many methods, it is nec-
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essary to scrutinize the relationship between trend, periodicity and stationarity. Hence,
the components of a time series are described and divided into trend, seasonal and cyclic.

Definition 2.3.1 (Trend [43]): Let Y be a time series. We call trend an in-
creasing or decreasing component in the time series.

Definition 2.3.2 (Seasonality [43]): Let Y be a time series. We call seasonality
a periodic component (known period) in the time series.

Definition 2.3.3 (Cyclic [43]): Let Y be a time series. We call cyclic a com-
ponent that show rises or falls in the time series without exact frequency.

The periodic component is called seasonality because many application fields of time series
have patterns influenced by the calendar (e.g., the hour of the day, the day of the week,
the month, the season and so on). However, since a seasonality is a periodic component, it
may also contain periodicity independent of the calendar. A time series can have multiple
seasonalities and multiple cyclic behaviour. Differently, the time series has only one trend
component that may have change-points (i.e., the time series can either have a positive,
null or negative trend in a time interval, it cannot rise and fall concurrently).

The time series decomposition in the basic blocks is useful in many ways, e.g., to obtain
a stationary series given a nonstationary series. Even if each component can be found
independently, many decomposition methods group the trend and the cycle together.
Therefore, methods can decompose the time series into four components in an additive
way:

y(t) = S(t) + T (t) + C(t) +R(t) = S(t) + TC(t) +R(t) (2.10)

Where S(t) is the seasonal component, T (t) is the trend component, C(t) is the cyclic
component, and R(t) is the residual component (what remains of the time series after we
removed the others). However, many decomposition methods group the trend and cyclic
components into the trend-cycle component TC(t). Alternatively, another common way
to decompose the time series is the multiplicative method:

y(t) = S(t) · T (t) · C(t) ·R(t) = S(t) · TC(t) ·R(t) (2.11)

The multiplicative method is preferable when the seasonal and trend-cycle components
appear proportional to the level of the time series [43], i.e., the average value in an interval,
the component captured by the trend-cycle. Conversely, when the components are not,
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the additive approach is preferred.

2.3.1. Decomposition methods

There exist several methods to decompose a time series. The simplest decomposition
method is moving average decomposition. It is a method to smooth the original time
series using the average over a moving window. Besides the algorithm description, it is
also essential to clearly define what a moving average is:

Definition 2.3.4 (Moving Average): Let y(t) be a time series. We write m-
MA to identify the moving average of order m of the time series y(t), and it is
defined as:

T̂ (t) =


1
m

m−1
2∑

i=−m−1
2

y(t+ i) if m = 2k + 1 ∧m ≥ 1 ∧ k ∈ N

1
m

m
2
−1∑

i=−m
2

y(t+ i) if m = 2k ∧ m
2
≥ 1 ∧ k ∈ N \ 0

(2.12)

When the moving average is applied to a time series, it smooths the time series and
reduces its dimension by n − 1, where n is the order of the moving average. Generally,
the order of the moving average order is odd. However, not only it is possible to use an
even moving average, it is possible to perform an even moving average on an even moving
average to obtain a centred even moving average. In the latter case, the process is written
as m2 ×m1-MA, where m2 is the order of the moving average to be applied to the first
moving average. The decomposition of a time series using a moving average is composed
of several steps:

1. Compute the trend-cycle component. If m is odd, use a m-MA for the estimation;
otherwise, use a 2×m-MA to compute a centered moving average.

2. Compute the detrended series. If the method is additive, it is y(t)−TC(t); otherwise,
it is y(t)/TC(t).

3. Compute the seasonal component from the detrended component. Fix the length of
the season to any value n ≥ 2. If the season length is n, the ith element of the season
is the average of every observation of the ith elements of non-overlapping sequences
of length n.

4. Compute the remainder component. If the method is additive, it is y(t)− TC(t)−
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S(t); otherwise, it is y(t)/TC(t)S(t).

This method does not represent the state-of-the-art of decomposition methods, and it
has several problems [43]: some initial and starting observations cannot be decomposed
(due to moving average), rapid rises and falls are over-smoothed, seasonality is assumed
not to change in the time series, and the decomposition is not robust to anomalous data.
Therefore, there has been an effort in the scientific community to develop more advanced
decomposition methods.

2.3.2. STL Seasonal and Trend decomposition using Loess

The work in [22] introduces STL to decompose a time series into three components: trend-
cycle, seasonal and residual. This method decomposes the time series using an additive
approach. Therefore, obtaining a multiplicative decomposition requires transforming the
data before using the decomposition method. Figure 2.1 provides an example of decom-
position using a FRIDGE dataset.

Loess (locally-weighted regression) is a technique which can be used to smooth a curve.
Given a set of independent (x) and dependent (y) variables, a local curve is fitted to the
data at each location (x, y) to get the Loess value for that point. Loess has two parameters:
the neighbour dimension q ∈ N \ {0} (the number of elements in the neighbourhood) and
the degree of the polynomial to fit d. If the series to be smoothed has n points, the
following quantity is defined (a function of the independent variable or variables):

λq(x) =

{
distance of qth farthest point from x q ≤ n

λn(x)
q

n
q > n

(2.13)

This function defines the neighbourhood of a point to perform the local regression. How-
ever, the definition of the neighbourhood of a point also uses the tricube function, which
is:

B(u) =

{
(1− u3)

3
0 ≤ u < 1

0 u ≥ 1
(2.14)

Finally, if the data are ordered with respect to some index i, the weight of the ith data
point around x is defined as:

vi(x) = B

( |xi − x|
λq(x)

)
(2.15)

These weights are used to define the points to be used to perform the local regression. The
tricube function enables locality since its argument will always be greater than zero and
since it is a weight laying in [0, 1]. Therefore, the closer the point, the bigger the weight.
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Figure 2.1: Example of time series decomposition using STL [22] on a FRIDGE. The
image can be generated by running the script "example_stl.py".

As q goes to infinity, the polynomial to be fit converges to the least-squares estimate
of a polynomial. Moreover, as q goes to infinity, the estimated polynomial is no more
local since weights tend to 1 independently by the point around which the regression is
computed.

The decomposition of the series into trend, seasonal and residual components is divided
into two loops: an outer loop and an inner loop. The outer loop is used in case one
wants to perform a robust estimation of the trend and seasonal components in case some
outliers are present in the data. The inner loop performs the decomposition using of Loess
smoothing and moving averages. Specifically:

• Inner loop: computes the seasonal component using Loess from the detrended series
and applies a low-pass filter (made up of moving averages and Loess) to the seasonal
component. Then, it computes the trend using Loess from the deseasonalized series.
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• Outer loop: calculates the residual by removing the trend and the seasonal from the
original time series

The computation of the seasonal component in the inner loop uses the detrended series
and vice-versa (trend computation uses deseasonalized series). It is possible because the
algorithm initializes the series to be all zeros at the first run. Then, it uses the detrended
series to compute the seasonal component to allow robust decomposition.

2.3.3. New decomposition approaches

The research is still active on time series decomposition. Although STL is capable of
decomposing a time series into trend-cycle, seasonal and residual components, it is also
affected by some weaknesses: it works only with additive methods (needs transformation
and back-transformation to use the multiplicative decomposition), it does not take into
account exogenous variables, it does not consider multiple seasonalities at the same time,
and it is sensible to abrupt changes in trend. The work in [25, 26] present STR and
Robust STR aiming to solve the problem of the inability to estimate multiple seasonal
components. Real-world time series have complex patterns mainly due to the presence of
various overlapping phenomena, which may also be seasonal with different periodicities
[25]. Separately capturing all these periodicities is an appealing task. Their model al-
lows decomposing a time series with any number of seasonal components and exogenous
variables with constant, time-varying or seasonal coefficients. Even though this method
provides these improvements, it has a drawback: it is slow to compute. The work in [82]
presents RobustSTL, an approach aiming at improving previous methods by allowing the
modelling of abrupt change in trend, keeping an eye on anomaly detection. Because of
this interest, they decompose a time series in trend-seasonal-residual while assuming the
residual component to be composed of white noise, spikes, and dips. Their decomposition
method is able to capture cleaner and smoother seasonal components while maintaining
the point anomalies: it does not eliminate outliers. It allows keeping point anomalies
since it uses bilateral filtering for noise removal [82] and the least absolute deviation loss
for trend estimation. Therefore, it is more suitable for anomaly detection. However, this
approach still does not allow the computation of multiple seasonalities. To enable the es-
timation of several seasonalities in RobustSTL, the work in [83] presents FastRobustSTL.
It significantly improves the computational complexity of the algorithm from O(N2) to
O(N logN).

Besides introducing such approaches, it is worth mentioning that the decomposition meth-
ods implemented in Python libraries are STL and standard moving average decomposition,
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which are implemented in statsmodels [68]. The other approaches do not have official (by
the authors) implementation in python:

• STR [26]: is implemented in R and is distributed as an R package.

• RobustSTL [82]: is not officially implemented. However, although an unofficial
implementation exists [51], it is not delivered as Python package.

• FastRobustSTL [83]: has no public implementation.

2.4. ARIMA processes

Decomposition and theory on time series are fundamental concepts. However, research
also involves the actual computation of models for time series aiming to capture their
generation process. Among all the existing models, SARIMAX models (a class of models)
use a white process as a fundamental block to create a statistical model for a time series.
Such models work for either univariate or multivariate time series in which there is interest
only in predicting one feature. A statistical model treating multivariate time series exists,
and it is called VARMAX; however, it is not the focus of this section for two reasons:
in most real-world datasets, either we are interested in one channel prediction (e.g., in
[41] only telemetry is of interest), or we have too many dimensions (e.g., in [44] there are
thousands of features), and machine learning and deep learning outperforms statistical
methods in many tasks.

The SARIMAX model family includes other families by themselves, one of which is the
ARIMA model family (before introducing it formally, the prediction problem must be
introduced). It is both a model for time series and a stochastic process since it can be
proved to be identical to an ARMA model/process.

The prediction problem is the task of predicting future values based on past data. In its
simplest form, it presents itself as the one-step-ahead prediction problem (predicting the
value of the next point). In the context of time series data, this task is often called fore-
casting. Several domains rely on forecasting: stock price forecasting, weather forecasting,
biomedical signal forecasting and many others. Let us call v(t) a variable representing a
process realization. The forecasting problem in its simplest form (one-step-ahead) is to
predict the value v(t+ 1), that is:

v̂(t+ 1|t) = f(v(1), v(2), ..., v(t)) (2.16)

Where v̂ represent a prediction, v represent the real value of the function, and f is the
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model used to predict future values based on present and past data. This function won’t
be exact and will yield errors in prediction. These errors can be computed by simply
measuring the error between the real value and the predicted value for a given time
instant:

ε(t+ 1) = v(t+ 1)− v̂(t+ 1|t) (2.17)

Theoretically, the best model yields ε(t + 1) = 0 by perfectly predicting future values.
However, achieving this result is practically impossible because of noise. The best obtain-
able predictors yield a fully unpredictable error: it is impossible to predict the error it will
have on forecasted values. Namely, the best predictor has ε ∼ WN(µ, σ2). Note that if
a model has predictable prediction error, it is possible to build another model predicting
the error to obtain an overall model yielding either another model with a predictable
prediction error or a model with an unpredictable prediction error.

2.4.1. MA process

A Moving Average process is a linear combination of current and past values of a white
noise term. Those white noise terms can be interpreted as the prediction errors made by
the model.

Definition 2.4.1 (Moving Average Process [13]): Let η ∼ WN(0, σ2) be a
white noise, and let c0, c1, ..., cq ∈ R be parameters. We call moving average
process of order q, and we write MA(q), a stochastic process defined as:

y(t) =

q∑
i=0

ciη(t− i) (2.18)

There exist several different definitions of the moving average process. The previous is
only one of the currently existing definitions. Other definitions of the moving average
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process of order q are:

y(t) = η(t) +

q∑
i=1

ciη(t− i) (2.19)

y(t) = η(t)−
q∑

i=1

ciη(t− i) (2.20)

y(t) = µ+ η(t) +

q∑
i=1

ciη(t− i) (2.21)

All having η ∼ WN(0, σ2). Let y1(t) be the first alternative definition, and y3(t) be the
third. It can be immediately observed that y3(t) = y1(t)+µ. It means they have the same
variance and covariance functions. The only difference between the two definitions is the
mean function. However, since the mean can be any real value (also 0) and a process
can be defined on top of another by shifting the mean, they are identical in terms of
theoretical properties.

Let y2(t) be the second optional definition. It has the exact same white noise terms and
parameter’s position and number with respect to y1(t). Since the constants can be any
real number, the equivalence between the two is ci,1 = −ci,2 where ci,j is the constant i of
definition j. Therefore, they have the exact same properties.

Therefore, proving that all the definitions are the same can be reduced to proving y1(t) =

y(t). Let ξ(t) = c0η(t), the first definition of moving average process becomes:

y(t) = ξ(t) +

q∑
i=1

ci
c0
ξ(t− i) = ξ(t) +

q∑
i=1

diξ(t− i) (2.22)

Where ξ ∼ WN(0, c20σ
2). Therefore, since all ci and σ2 are all parameters to learn, the

two definitions are identical.

Independently by the values of the parameters, a moving average process is always a
weakly stationary process. It has a covariance function depending only on the distance
between two considered points and a constant mean and variance. The covariance function
of a MA(q) is:

γ(τ) =

σ2

q−τ∑
i=0

cici+1 τ ≤ q

0 τ > q

(2.23)
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2.4.2. AR process

An Autoregressive process is a linear combination of the past values of the variable and
of a white noise term.

Definition 2.4.2 (Autoregressive Process [13]): Let η ∼ WN(0, σ2) be a white
noise, and let a1, a2, ..., ap ∈ R be parameters. We call autoregressive process of
order p, and we write AR(p), a stochastic process defined as:

y(t) =

p∑
i=1

aiy(t− i) + η(t) (2.24)

Similarly to the Moving Average process, it is possible to define the autoregressive process
by summing to equation 2.24 a constant µ ∈ R.

y(t) = µ+

p∑
i=1

aiy(t− i) + η(t) (2.25)

The second definition allows the process to have a mean different from zero. However,
since the study of a zero mean process is simpler, I think it is better to select a definition
having zero mean.

Differently from a moving average process, an autoregressive process may be non-stationary.
To analyse when an autoregressive process is weakly stationary, we use the operator
zf(x) = f(x + 1) (i.e., the operator is such that z−1f(x) = f(x − 1)). Therefore, the
autoregressive process can be written as:

y(t) =

p∑
i=1

aiz
−iy(t) + η(t) (2.26)

Note that this notation allows expressing the autoregressive process by means of a transfer
function, that is:

W (z) =
1

1−
p∑

i=1

aiz
−i

(2.27)

This transfer function represents an asymptotically stable process if and only if all poles
are strictly less than unitary in absolute value. In this case, an important result is that
the autoregressive process tends asymptotically to a weakly stationary process [13].

The computation of the covariance of an autoregressive process is harder than that of
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the covariance function of a moving average process. The computation of the covariance
function at a given lag for an autoregressive process is given by the Yule-Walker equations.
These equations serve both as a tool to compute the covariance function of a known process
(known parameters) and as a tool to estimate the parameters of a process whose variance
is known. The Yule-Walker equations are:

γ(τ) =
n∑

i=1

aiγ(τ − i) ∀τ ≥ 1 (2.28)

If the covariance function values are known for an AR(p) process, it is possible to write a
system of equations (Yule-Walker equations) to find the parameters of the process. Once
the parameters have been found, the variance of the white noise term is obtainable through
the process variance. Conversely, it is possible to compute the values of the covariance
function if process parameters and the variance of the white noise are known.

2.4.3. ARMA process

An Autoregressive Moving Average process is a generalization of the moving average and
autoregressive processes.

Definition 2.4.3 (ARMA Process [13]): Let η ∼ WN(0, σ2) be a white noise,
let c0, c1, ..., cq, a1, a2, ..., ap ∈ R be parameters. We call ARMA process of order
p, q, and we write ARMA(p, q), a stochastic process defined as:

y(t) =

p∑
i=1

aiy(t− i) +

q∑
i=0

ciη(t− i) (2.29)

A moving average process is a special case of an ARMA process in which p = 0, and an
autoregressive process is a special case of an ARMA process in which q = 0.

As in the case of an autoregressive process, it is necessary to investigate when an ARMA
process generates a weakly stationary process. To this end, the ARMA process can be
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written using the delay operator (and so its transfer function):

y(t) =

p∑
i=1

aiz
−iy(t) +

q∑
i=0

ciz
−iη(t) (2.30)

W (z) =

q∑
i=0

ciz
−i

1−
p∑

i=1

aiz
−i

(2.31)

Since W (z) is a transfer function, it represents an asymptotically stable process if and
only if all its poles are less than unitary in absolute value. If this is the case, the ARMA
process is weakly stationary [13].

2.4.4. ARIMA process

The definition of an Autoregressive Integrated Moving Average process is straightforward
knowing the definition of an ARMA process. However, the differentiation of a time
series is needed to define an ARIMA process. In the context of ARIMA processes, the
differentiation of the time series refers to the process of computing a new time series
by means of subtraction of the previous value to the current value. Namely, if y(t) is
a time series, its differenced time series (first order difference) is y′(t) = y(t) − y(t −
1). The second-order difference of the time series is the differentiation of the first-order
differentiation of the time series. Therefore, we can express the differentiation as:

y(n)(t) = y(n−1)(t)− y(n−1)(t− 1) n ≥ 1 (2.32)

This definition of differentiation leads to an indirect definition of an ARMA process. It
can be expanded as a summation of terms of the original time series up to t − n, where
n is the order of the differentiation. In general, the differentiation of order n is:

y(n)(t) =
n∑

i=0

kiy(t− i) ki ∈ R (2.33)

The definition of an ARIMA process as an ARMA process requires the exact expression
of ki terms. From the expansion of such terms, we can derive the following proposition:
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Proposition 2.4.1: Let y(t) be a time series and n ∈ N \ 0. The nth order
differentiation of the time series is:

y(n)(t) =
n∑

i=0

(−1)i

(
n

i

)
y(t− i) (2.34)

Proof. This proposition can be demonstrated by means of an inductive demon-
stration. The hypothesis and the thesis are:

Hp : y(n)(t) = y(n−1)(t)− y(n−1)(t− 1) ∧ y(0)(t) = y(t) n ∈ N \ 0

Th : y(n)(t) =
n∑

i=0

(−1)i

(
n

i

)
y(t− i) ∀t

First, the base case is proved for n = 1.

y(1)(t) = (−1)0

(
1

0

)
y(t) + (−1)1

(
1

1

)
y(t− 1) = y(t)− y(t− 1)

Therefore, the property is trivially true for n = 1. The proof requires it to be
true for every n+ 1 when it is true for n.

y(n+1)(t) =
n+1∑
i=0

(−1)i

(
n+ 1

i

)
y(t− i)

=
n∑

i=0

(−1)i

(
n

i

)
y(t− i)−

n∑
i=0

(−1)i

(
n

i

)
y(t− 1− i)

The first right-hand term is the thesis, and the second is the hypothesis expand-
ing the first and second terms using the thesis. The equivalence between the
first right-hand term and the second right-hand term must be proved. If this is
true, the thesis at n+ 1 can be reduced to the hypothesis at step n (the thesis
has been used at step n on the hypothesis since it is assumed true), which we
assumed to be true. We rewrite the three summations of the right-hand terms.
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The first term is:

n+1∑
i=0

(−1)i

(
n+ 1

i

)
y(t− i) = y(t)+

n∑
i=1

(−1)i

(
n+ 1

i

)
y(t− i)+

+ (−1)n+1y(t− n− 1)

The first summation of the second right-hand term is:

n∑
i=0

(−1)i

(
n

i

)
y(t− i) = y(t)+

n∑
i=1

(−1)i

(
n

i

)
y(t− i)

The second summation of the second right-hand term is:

n∑
i=0

(−1)i

(
n

i

)
y(t− 1− i) =

n−1∑
i=0

(−1)i

(
n

i

)
y(t− 1− i)+

+ (−1)ny(t− 1− n)

The first right-hand term should be equal to the subtraction between the second
and the third right-hand terms (x1 = x2−x3). Therefore, we can simplify some
terms and write:

n∑
i=1

(−1)i

(
n+ 1

i

)
y(t− i) =

n∑
i=1

(−1)i

(
n

i

)
y(t− i)+

−
n−1∑
i=0

(−1)i

(
n

i

)
y(t− 1− i)

It can be observed that the last summation goes from 0 to n − 1 while the
others go from 1 to n. Therefore, it is possible to rewrite the equivalence as:

n∑
i=1

(−1)i

(
n+ 1

i

)
y(t− i) =

n∑
i=1

(−1)i

(
n

i

)
y(t− i)+

−
n∑

i=1

(−1)i−1

(
n

i− 1

)
y(t− i)
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Therefore, the minus in front of the last summation can be included in the
power of term (−1).

n∑
i=1

(−1)i

(
n+ 1

i

)
y(t− i) =

n∑
i=1

(−1)i

(
n

i

)
y(t− i)+

+
n∑

i=1

(−1)i

(
n

i− 1

)
y(t− i)

Now, and equivalence between the two summations can be written:

n∑
i=1

(−1)iy(t− i)

(
n+ 1

i

)
=

n∑
i=1

(−1)iy(t− i)

[(
n

i

)
+

(
n

i− 1

)]

If the binomial coefficient on the left is equivalent to the binomial coefficient
on the right, the thesis is proved to be reducible to the hypothesis at step n

using the property at n.

(n+ 1)!

i!(n+ 1− i)!
=

n!

i!(n− i)!
+

n!

(i− 1)!(n− i+ 1)!

(n+ 1)n!

(i− 1)!(n− i)!i(n+ 1− i)
=

n!

(i− 1)!(n− i)!i
+

n!

(i− 1)!(n− i)!(n− i+ 1)

(n+ 1)

i(n+ 1− i)
=

1

i
+

1

(n− i+ 1)

(n+ 1)

i(n+ 1− i)
=

(n− i+ 1) + i

i(n+ 1− i)

n+ 1 = n+ 1− i+ i

Then, since the thesis at step n + 1 can be reduced to the hypothesis at step
n, the proposition is true for any n+ 1 if the proposition is true at n.

An ARIMA(p, d, q) is defined as the process ARMA(p, q) applied to the dth order differ-
ence of the time series. The formal definition of an ARIMA process is:

Definition 2.4.4 (ARIMA Process): Let η ∼ WN(0, σ2) be a white noise, let
c0, c1, ..., cq, a1, a2, ..., ap ∈ R be parameters. We call ARIMA process of order
p, d, q, and we write ARIMA(p, d, q), a stochastic process defined as:

y(d)(t) =

p∑
i=1

aiy
(d)(t− i) +

q∑
i=0

ciη(t− i) (2.35)
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This process is helpful when the observed time series is not stationary. The differentiation
of the data might produce a stationary time series (i.e., the differentiated time series is
stationary), which is a desirable property for the data. Moreover, since the analytical
expression of the nth order difference of a time series is known, it is possible to derive the
ARMA process generated by an ARIMA process.

Proposition 2.4.2: Let η ∼ WN(0, σ2) be a white noise, let c0, c1, ..., cq ∈ R
and a1, a2, ..., ap ∈ R be parameters. The ARIMA(p, d, q) is:

y(t) = −
n∑

i=1

(−1)i

(
n

i

)
y(t− i)+

+

p∑
i=1

ai

n∑
j=0

(−1)j

(
n

j

)
y(t− i− j)+

+

q∑
i=0

ciη(t− i) (2.36)

2.5. Forecasting time series

Many papers survey forecasting [52, 56, 77], the task of predicting future values based
on past data. Let us say there are data up to t0 ∈ T with T being a totally ordered
set; the forecasting task consists in predicting values for t ∈ T such that t > t0. The
index t is generally strictly increasing and equally spaced. Some typical applications of
time series forecasting are stock price forecasting and electrical load forecasting, which
are of great interest for portfolio creation and evaluation and for energy suppliers. Time
series forecasting is a well-known, widely developed, and widely explored research field.
However, before the introduction of LSTM [40] and later of the Transformer [79], deep
neural networks were not as efficient as statistical and machine learning approaches due to
the problems of memorizing data. Even though these new blocks empower the capabilities
of neural networks to forecast new values, the work in [57] shows that machine and deep
learning do not outperform statistical approaches, and the work in [58] shows that machine
learning approaches are now able to outperform statistical ones. In both competitions,
they observe that the ensembles outperform single methods. This finding confirms that
there is no superior approach for time series forecasting. However, the time series included
in the competition are short (around 1900 points each) and numerous. Firstly, neural
networks are slower to train with respect to ML and statistical approaches. Secondly, the
bigger the network, the more data the network needs to learn a meaningful representation.
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Consequently, submitting neural network models to these competitions might be infeasible
due to time requirements. Nonetheless, the work in [87] makes similar observations:
they present shallow neural networks capable of outperforming transformer-based neural
networks for time series forecasting on publicly available datasets. Consequently, it seems
that neural network advances are still immature to replace machine learning and statistical
approaches used for forecasting and that even simple neural networks are enough to
accomplish this task.

2.6. Anomaly detection

Anomaly Detection (AD) is an active research field of artificial intelligence and machine
learning. Numerous papers [3, 5, 17, 19, 20, 23, 50, 67] surveyed it over the years from a
general perspective and specifically for time series, the focus of this thesis. It is a partic-
ular instance of highly imbalanced binary classification where common practice identifies
anomalous examples as the positive class and normal examples as the negative class. AD
datasets are characterized by an infinitesimal portion of anomalies and a vast majority
of normal points, making it practically impossible to adopt supervised learning solutions
in most cases. Although supervised, unsupervised and semi-supervised solutions have
been developed to tackle this problem in images, spatial, and temporal data, the last
two techniques are broadly more common. The latter data type is spatial data ordered
by some index t, usually named time. Because of that, it is called a data series or time
series. It is central in many papers [4, 33, 41, 44, 48, 60, 76, 85] presenting their own AD
dataset or benchmark. There are numerous datasets from different sources, one of which
is cybersecurity. It is a natural field in which anomaly detection arises as a need natu-
rally: fraudulent behaviour in banking, cyber attacks at power plants, and many others.
The anomalous examples are usually related to a damaging or dangerous behaviour of
the observed process; in some cases, it also follows permanent damage of a machine or
permanent monetary loss. Therefore, detecting these behaviours is vitally important to
avoid damage to people or to the company. This inherent imbalance between normal and
anomalous classes makes the problem and the evaluation of models difficult. Notwith-
standing the problems in collecting anomalous examples, there must be some anomalous
points in the dataset; otherwise, algorithms can’t be evaluated.

AD can be approached using several algorithms. There exist different directions by which
it is possible to classify approaches: learning type (supervised or unsupervised), field
(statistical, machine learning or deep learning), approach (prediction, reconstruction and
others) and output (scores or labels). Many models have been proposed for all families
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with different learning frameworks.

The learning type for an AD model is called semi-supervised: the model is learnt on
normal data and tested on mixed data. Semi-supervised learning type is the current
standard approach because of the previously discussed high class imbalance.

Even though models from all fields have been tested, there is a recent shift from statistical
and machine learning approaches to neural network approaches. They offer many advan-
tages: the most attractive is that deep neural networks do not need feature engineering
since they extract features from data automatically.

The ouput of an AD model is generally of two types: score or label. The latter is a
number which is 1 in case a point is considered an anomaly and 0 otherwise. The former
is a score of abnormality of a point and is a more common way to report the output of
the anomaly analysis. Scores can be bounded or unbounded and with high values for
anomalies as well as low values for anomalies. A typical convention is to scale the score
in [0, 1], where 1 as the most anomalous score and 0 as the least anomalous score.

The approaches used to tackle AD are vast in number and in type. The work in [67]
makes a well detailed description of the approaches used in AD. In short, they classify
the approaches as:

• Forecasting-based methods are typically semi-supervised and forecast a number of
points in the future, i.e., using points up to t, n points after t are predicted. The
forecasted points are compared to the real ones: the residuals are the anomaly
scores.

• Reconstruction-based methods are typically semi-supervised and reconstruct a sub-
sequence of the time series of length: usually called window. A reconstruction
approach consists receiving a portion of the time series (the window), mapping the
window in a smaller space (optionally latent space), and mapping back from the
smaller space to the original time series. The reconstruction error of a point (the
difference between the input and the reconstructed sequence mapped back from the
encoded space) is its anomaly score. However, it is vital to notice that if there
are overlapping windows, there must be a method to score a point considering the
multiple windows containing it (if two windows overlap, they partially include the
same points). In general, reconstruction is the task of computing the original input
from a smaller and different vector.

• Encoding-based methods are similar to reconstruction-based, with the difference
that they score anomalies in the latent space instead of trying to reconstruct the
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windows, e.g., they project the time series to a smaller space and compute the scores
on that space.

• Distance-based methods are typically unsupervised and use a distance function to
compute the distance of a point or subsequence to their neighbours. The higher the
distance of a point or subsequence, the more anomalous.

• Distribution-based methods: can be either semi-supervised or unsupervised. They
estimate a distribution over the data and classify points based on the learnt distri-
bution.

• Isolation tree-based methods are typically semi-supervised. They build random
ensembles of trees to partition data and isolate anomalies. The shorter the path to
isolate a point, the more anomalous.

2.6.1. Historical methods: statistics

Statistical methods are either statistical models used to forecast time series or methods
based on the computation and usage of statistics to determine which are the normal
and the anomalous points. ARIMA [43] and its generalization SARIMAX is the most
famous example of a statistical model usable for AD. It is the direct transposition of the
ARIMA process to a model finding the parameters though fitting on data. It models
the data generation process and forecasts points based on the learnt model. This model
requires the search for the optimal orders to describe the time series, which are the
so-called hyper-parameters. Although the autocorrelation and partial autocorrelation
function helps identifying them, it might be that it is not suitable to model the time
series. In fact, several other statistical models exist. Simpler models include the usage of
thresholds based on mean absolute deviation and other statistical quantities.

2.6.2. Machine learning methods

Machine learning methods learn a model from data and generally require hand-crafted
features. Most of the machine learning methods for AD have to be used in a semi-
supervised or unsupervised manner. Some of the most common machine learning methods
for AD are Isolation Forest [54], Local Outlier Factor [15], and One-class SVM [55].
Isolation Forest learns to isolate samples: the shorter the average tree path to isolate the
sample, the more anomalous. Local outlier factor learns to classify a point as anomalous
or not based on the distance to its neighbours. One-class SVM learns the support vectors
identifying the normal class of data and classifies new points based on their position with
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respect to the learnt surface. Clustering approaches (such as K-Means) cluster points and
compute the distance between points and their centroid as anomaly scores [67].

Machine learning approaches for AD on time series tend to use sliding windows [23, 67]
to incorporate time information. A sliding window has two parameters: the shift and
the window length. The window length is the number of contiguous points inside the
window. The shift represents the number of points by which it is moved to the right on
the time series while producing vectors (like the strides parameter of convolutional layers
in neural networks). Let Xn ∈ Rf be a time series with n points and f features. The
sliding window produces vectors in a space Rw×f where w is the length of the window.
Precisely, the sliding window space is Wnw ∈ Rw×f where nw = ⌊n−w

s
⌋+ 1 is the number

of windows and s is the shift. Let wi ∈ Wnw and xi ∈ Xn, the sliding windows are:

wi = [xis, xis+1, ..., xis+w−1] (2.37)

The windows are matrices, and most machine learning methods work on vectors. There-
fore, when the time series is multivariate, it could be necessary to flatten the matrix to a
vector. A possibility is to put all features in order such that the new window is:

wi = [xis,1, ..., xis+w−1,1, xis,2, ...., xis+w−1,f ] (2.38)

However, windows will grow fast using such an approach. Although another option is to
analyse channels separately and group together the results, [73] observes that a time series
should be considered an entity instead of analysing the channels separately. A feature
may be correlated with others to some degree, thus giving the contextual information that
would not be present analysing channels separately.

After the time series has been projected in the window space, it can be analysed and used
for training. Nonetheless, it is critical to define the way in which the scores or predictions
are handled in case of overlapping windows. When the shift is less than the window size
(s < w), windows will share some points. Consequently, points might be reconstructed,
forecasted or assigned to a score multiple times. In each case, it is necessary to decide
which strategy to use to give a final score to the point. For reconstruction and forecasting,
there are several options:

• Median: take the median forecasted or reconstructed value (e.g., [34] takes the
median value for the reconstruction part).

• Mean: take the mean forecasted or reconstructed value.
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In purely spatial approaches that do not provide a reconstruction or a forecast, each
window will have a label or a score. If the model assigns a label without any score, a
voting scheme is used to obtain the labels of points. If the windows have a score, there
exist several options to propagate the score from the overlapping windows to the point:

• Median: take the median score.

• Mean: take the mean score.

• Minimum: take the minimum score (the idea is that overlapping windows containing
an anomalous point will have higher scores).

• Maximum: take the maximum score.

2.6.3. Neural approaches

Neural approaches to AD are more and more common. Several architectures have been
used successfully to identify anomalies in datasets. Lately, approaches using transformers
[78, 86], GANs [34], variational autoencoders, convolutional, mixes of the previous [21,
73, 88] and others [18, 30] have been proposed. This section limits itself to introducing
the general usage of neural networks for anomaly detection in time series. Networks must
learn temporal dependencies between time points as well as machine learning. Also, neural
networks use sliding windows to encode information of close timestamps to predict the
future, but there are a few differences. For instance, neural networks tend to be either
predictive (forecast some points in the future) or reconstructive. With reconstruction
approaches or GANs, windows will have a reconstruction and possibly a critic score [34]
(only with GANs, the output of the critic net distinguishing how the input seems real or
not). Since such values describe the windows and not the points, it is important to decide
how to give scores to points using either the median or the mean for the reconstruction.
The work in [34] applies kernel density estimation to the collection of critic scores assigned
to a point and takes the maximum smoothed value. For forecasting approaches, it is
important to note that even if the windows overlaps, each point might have only one
prediction; e.g., if the forecasting length is 1, each point is predicted only once. Therefore,
points will have multiple forecasted values if the forecasting length is greater than 1, and
if the shift is smaller than the forecasting length. In such a case, it is important to state
whether the forecasted value for a point is the mean or the median of all the forecasted
values. However, it is not necessary to define a reconstructed value or a forecasted value
for a point if only anomaly scores are in the interest of the approach. The work in [59]
proposes to estimate a Gaussian distribution of the errors on the normal data points of
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the validation set. The error vectors used to estimate the distribution are:

e(t) = [e11(t), ...., e1l(t), ..., ed1(t), ..., edl(t)] (2.39)

Where e(t) is the error vector for the tth point of the time series, each feature is predicted
(or reconstructed) l times, and d features are predicted (or reconstructed). Suppose
for a moment that the approach is a forecasting-based one (the reasoning is similar for
a reconstruction-based), eij(t) is the error between the real feature i at time t and the
predicted feature i at time t predicted at time t−j; e.g., the feature xi(t) will be predicted
l times; therefore, there will be l differences for that feature. It is not mandatory to
predict (or reconstruct) all the features of a time series. Similarly, for reconstruction-
based approaches, j identifies the reconstructed feature by the window at time t− j.

2.7. Current ML and AD libraries

Creating machine learning models from scratch is a long, time-consuming and complex
task. Because of this complexity, many libraries have been developed and made available
to the scientific community. Machine learning solutions are developed in several languages.
However, Python is one of the most (if not the most) used programming languages for
machine learning development because of its simplicity and intuitiveness. Besides its
numerous positive sides, it has some drawbacks:

• Speed: it is slow since it is interpreted and offers helpful features such as duck
typing.

• Dynamic typing: types are dynamically checked, which is effective, but sometimes
draws away the attention of developers creating the constant need to verify the
documentation.

Given the need for speed in machine learning and the simplicity of Python, several tools
have been developed to perform numerical operations. Since it allows the creation of
libraries written in C to expose a Python API, libraries such as numpy [39], numba [47],
pandas [63, 84], scipy [81], scikit-learn [65], pytorch [64], tensorflow [2] and others have
been developed to perform numerical, and machine learning tasks fast in Python. These
libraries greatly aid the data scientist in the development of machine learning solutions.
However, libraries such as [2, 65] are generic for machine learning and are not specific for
time series. Libraries like statsmodels [68] add functionalities to analyse and create models
specifically designed for time series. Since time series anomaly detection is an extremely
specific task, there are few libraries for it, and even few are of good quality. Time series
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anomaly detection includes some specific tasks that are almost always present, and very
few libraries include modules designed to aid the development of specific functionalities of
the anomaly detection methods. Two valid libraries addressing the problem are Orion [7],
and PyOD [89]. The latter is a library implementing several anomaly detection methods.
The former is a library based on the machine learning library MLPrimitives/MLBlocks
[69, 80] completely based on the concept of a pipeline for time series. Some of these
libraries will be discussed and compared to the proposed anomaly detection library in
chapter 4.
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As with any other machine learning task, AD methods must be evaluated against a
performance measure. Since AD is an instance of imbalanced classification with a skewed
distribution of labels towards the normal class, different imbalanced classification metrics
are appropriate for AD. Even though AD datasets are labelled (if the anomalies are
unknown, how could an algorithm’s quality be assessed?), the training often follows a
semi-supervised approach (only normal points in the training).

This chapter describes the evaluation of anomaly detection methods and datasets. Section
3.1 briefly introduces general machine learning metrics. Section 3.2 introduces imbalanced
classification metrics. Section 3.3 presents the metrics used in AD, along with the ad-
vantages and disadvantages. Section 3.4 analyses the bias in publicly available datasets
and proposes an automatic approach to evaluate their inherent simplicity to enrich the
critical analysis of anomaly detection methods on public datasets.

3.1. Metrics used in machine learning

Machine learning is useful for solving several problems (like increasing the accuracy of a
classification system). It aims to create a model from data to minimize (or maximize) a
performance measure called loss function (or utility function) [11]. Moreover, numerical
quantities used to evaluate the model are also called metrics. The key difference between
the two numerical quantities is that the former is used for finding the parameters during
training, whereas the latter is used only for evaluation. Different tasks have different
objectives and metrics, e.g., accuracy cannot be used for regression. An example of a loss
function is the Mean Squared Error (MSE) in regression problems:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.1)

Where n is the number of points, yi is the true value and ŷi is its prediction. The
objective of this loss function is to find the model whose predictions are the most similar
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to the real values. It has two desirable properties for loss functions: continuity and
differentiability. Since the global optimization of a function that is not differentiable
and not even continuous is hard, many current global optimization algorithms assume
continuity; e.g., differential evolution [72] assumes the function is continuous, SHGO [28]
assumes the function is continuous and works better if it is Lipschitz smooth, and DIRECT
[45] is a Lipschitzian optimization algorithm (assumes Lipschitz continuity).

Each task has specific loss functions to accomplish the final result. A common loss function
for classification is the Categorical Cross Entropy (CCE) or the Sparse Categorical Cross
Entropy (SCCE). They are the same loss function, and they differ only in terms of label
format. The CCE for a k class classification problem has 1-of-K coding scheme vector
for the target (all zeros and 1 in the position of the correct class) [11], while the SCCE
has integers as targets. Let φi be the feature vector of point i, tij the jth element of the
target vector of point i, and ŷij the predicted probability that the point i is of class j.
The CCE is defined as:

CCE = −
N∑
i=1

K∑
j=1

tijln(yij) (3.2)

This loss function aims at giving probability 1 to the correct class for each point. Indeed, it
is the negative log-likelihood function for the multi-class classification problem. However,
it does not take into account imbalances in data.

Besides giving an introductory discussion on the loss functions that could be used for re-
gression or classification, it is worth mentioning some of the metrics used for classification
tasks since this thesis is about AD (a specific instance of imbalanced classification). Let
TP, TN, FN, FP be true positives, true negative, false negatives, and false positives; Ac-
curacy (Acc), Precision (Pre), Recall (Rec), True Positive Rate (TPR) and True Negative
Rate (TNR) are defined as:

Acc =
TP + TN

TP + FN + TN + FP

Pre =
TP

TP + FP

TPR =
TP

TP + FN

Rec = TPR

TNR =
TN

TN + FP

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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3.2. Metrics used in imbalanced classification

Imbalanced classification consists of labelling objects into one of K classes over a dataset
whose classes have different proportions. Contrariwise, balanced classification over K

classes have n/K points for each class (same proportion). Therefore, the CCE is an
appropriate loss for balanced classification since each point has the same importance
(expressed as the implicit weight of one). Conversely, if classes have different population
sizes and thus it is impossible to train the method on a set of classes with the same
proportion, it is possible to employ a weighted loss function to improve the quality of
learning. An option is to use Weigthed Categorical Cross Entropy (WCCE):

WCCE = −
N∑
i=1

K∑
j=1

wjtijln(yij) (3.8)

Where wj is the weight of class j. There are several other ways to deal with imbalances,
such as modifying the algorithm to consider the imbalance [32, 46, 71]. Besides the
training, there are many metrics to evaluate imbalanced classification. One of which is
the Balanced Accuracy (BAcc), a weighted version of the Acc removing the bias towards
the majority class [36].

BalancedAccuracy =
1

K

K∑
i=1

cii∑K
j=1 cij

(3.9)

Where cij is the number of elements of class i that are predicted as being of class j.

3.3. Metrics used in anomaly detection

Being AD an instance of imbalanced binary classification, the reader might think that
metrics for imbalanced binary classification are all appropriate in anomaly detection; this
is not true in practice. Since anomalies describe undesired and optionally dangerous or
faulty behaviour, it is imperative to identify all anomalies and avoid the misclassification
of normalities. However, many models only provide a score of abnormality for each
point, which must be thresholded to obtain labels, i.e., the detections. Such problems
are orthogonal [67]. Chaining the two approaches and evaluating classification metrics
might underestimate the goodness of the model (e.g., the thresholding method is poor).
To evaluate efficacy of detection methods (label as output), TPR and FPR (also called
false alarm rate, since anomalies should raise alerts in monitoring contexts) are useful [50].
If TPR and FPR are optimal (1 and 0), the algorithm yields perfect detection. Another
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widely used measure to evaluate detections (for binary classifications) is Fβ Score (Fβ);
it is a weighted harmonic mean [31] between Pre and Rec [70]:

Fβ =
(1 + β2)pre · rec
β2pre + rec

=
(1 + β2)TP

(1 + β2)TP + β2FN + FP
(3.10)

Where TP, FN, FP mean true positives, false negatives, and false positives. The most
common value for Fβ is β = 1. Besides using metrics to measure the goodness of detec-
tions, there are also metrics to evaluate the quality of the scores, i.e., the ability of the
model to separate normal and anomalous classes. The most common measures for evalu-
ating scores are the Area Under the Curve (AUC) measures; e.g., Area Under the Receiver
Operating Characteristics Curve (AUC-ROC) and Area Under the Presicion-Recall Cruve
(AUC-PR) are two metrics used in [67].

Besides the previous standard metrics to evaluate AD and classification, papers proposed
metrics to evaluate range-based detections and online detections. The work in [75] pro-
poses a variation of the point-based Pre and Rec metrics designed to work with ranges
rather than with points; therefore, they propose range-based metrics. Regarding online
detections, [49] defines a metric for the evaluation of online detections called NAB score.
However, the usage of these metrics is not a standard practice for the moment.

3.3.1. Metrics used by current state-of-the-art papers

The anomaly detection literature is vast, and there is not common agreement on the
performance measures to use. Here there is a list of some of the latest works in AD:

• The works in [78, 86] use both Fβ and AUC-ROC.

• The works in [34, 88] report Fβ with uncertainty.

• The work in [73] reports Fβ.

• The work in [18] reports the best Fβ with uncertainty (only for their model) selecting
the threshold on the test set with adjustment of predicted labels (i.e., if a point in an
anomalous interval is labelled as anomalous, all points in the interval are considered
true positives besides what is the output of the network).

• The works in [21, 30] report the best Fβ on the test set.

Even though all the previous measures are appropriate for anomaly detection, there might
be some cases in which some measures should be avoided or coupled with the usage of other
measures. The choice of the performance measure depends on the aim of the evaluation:
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Figure 3.1: It is the flowchart of the two possible ways to create a model for AD: use a
model giving scores to points and subsequently convert scores into labels, or use a model
directly outputting labels.

the model’s ability to separate normal and anomalous classes, the capability of a new
thresholding mechanism to provide decent thresholds, or both together.

3.3.2. How to choose the metric

The choice of the metric for evaluation purposes depends on whether scores or detections
are evaluated. Threshold-agnostic measures like AUC-ROC and AUC-PR are appropri-
ate for analysing the capability of a model to separate normal and anomalous classes.
Threshold-dependent measures like Fβ, Pre, Rec, TPR and FPR are serviceable for
analysing the quality of detections. Assuming both scores and detections are under evalu-
ation, both categories are needed for the assessment, e.g., AUC-ROC for evaluating scores
and Fβ for evaluating detections. A notable example of the latter case is the works in
[78, 86], they provide both the Fβ and AUC-ROC.

Computing the best obtainable threshold-dependent measure (like Fβ) on the test by
varying the threshold τ to transform scores into labels is technically correct because it
returns a threshold-agnostic measure. Moreover, it substitutes the role of the thresholding
mechanism (see figure 3.1) of converting scores into labels with a method solely used for
the computation of metrics that require detections, but only scores are available. This
means that the proposed solution is incomplete and cannot be used in practice since
it misses the thresholding component to transform scores into labels. Therefore, this
numerical quantity is of little interest for some reasons:

• It is a purely theoretical result: such a score might be unobtainable since the thresh-
olding mechanism must be unsupervised or semi-supervised.
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• Change of semantics: it transforms a threshold-dependent metric into a threshold-
agnostic metric providing. Moreover, it might produce the exact same final infor-
mation as other threshold-agnostic metrics.

Therefore, using a threshold-agnostic measure is natural for scores and gives the same
information. If both labels and scores of different models are under evaluation (some
models output a label and some output a score for a point), the adoption of a best
obtainable threshold-dependent measure for scores is a good choice. These measures are
able to compare the detection power of scores against raw detections by assuming that
the underlining threshold mechanism is perfect.

Solely reporting the threshold measures such as Fβ when both a model and a thresholding
algorithm are presented hides the information on the contribution of each method to
the final result. Low scores might be mainly due to the thresholding method being
inappropriate. This practice hinders the complete and simple understanding of the results.

Finally, in each case, the confidence on the performance measures should be reported
with all the details needed to reproduce such values (such as seeds). Avoiding reporting
confidence disallows the reader to understand the degree of the stability of the model.
If one model has a minuscule variation and another has an immense variation, even if
the method with immense variation has a slightly higher mean, it could be discarded in
favour of the more stable one. That is, tighter confidence intervals are preferred over
larger confidence intervals.

3.4. Bias in datasets and annotations

To the best of my knowledge, [85] is the only paper approaching the problem of datasets’
inherent triviality for anomaly detection. They claim that some datasets are simple and
solvable through simple approaches. Therefore, it is not of interest to evaluate complex
and hardly explainable models such as neural networks on them, and the research com-
munity should abandon them. Given this interesting and important statement, a question
arises: is it possible to define a measure of triviality and an algorithm computing such a
measure? In their work, [85] define a dataset as simple if there exists a one-liner solving
the dataset, i.e., a method writable in one line of code achieving Acc = 1. They also give
an example of a one-liner that might be used to evaluate the triviality:

x > c1movmean(x,w) + c2movstd(x,w) + b (3.11)
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Where x is either the time series, the differentiation of the time series (see Section 2.4.4)
or the absolute value of the differentiation of the time series, w ∈ N is the sliding window
length, b ∈ R is a constant, c1 is a constant which is either 0 or 1, and c2 ∈ R is a constant.
The moving average is defined as in definition 2.3.4, and the moving standard deviation
is defined using the same sliding window approach. The only difference with the previous
definition is that values outside the time series are considered to be 0 such that it returns
a series of the same length as the input series. The moving average performs a smoothing
of the time series, the standard deviation measures the sparsity in the subsequence, and
the constant adjusts the series for correct detection. Figure 3.2a shows an example of the
approach presented in [85]. The reader should observe that values lower than the moving
average will never be detected as anomalies. An improvement of their method could be
to consider in parallel also the following inequality:

x < c1movmean(x,w)− c2movstd(x,w)− b (3.12)

In which the constants are the same as those in equation 3.11. Therefore, a system of the
equations 3.11 and 3.12 will detect abnormally low or high values as anomalies. However,
a statement against that improvement could be that the first difference of a time series
tends to be stationary. Thus the time series depicted in figure 3.2 is not realistic.

To clear doubts about the correctness of the example in figure 3.2, figure 3.3 shows two
time series. The time series in figure 3.3a is a time series whose first order differentiation
generates the time series in 3.3b, which is the time series used in 3.2. Therefore, even
smooth and rather simple functions might generate complex and non-stationary time
series after differentiation. Moreover, even if this is uncommon behaviour, it is still an
example of a case not covered by the previous approach.

Therefore, given the problems reported by [85] on some publicly available datasets re-
garding their simplicity, there is the need for an automatic tool evaluating the degree of
simplicity of datasets for AD.

3.4.1. Simple datasets

The task of evaluating whether a dataset is simple is partially independent of the task
of learning to solve simple datasets. A dataset might have simple spatial and temporal
characteristics hardly identifiable from methods. Therefore, I propose an approach to
evaluate the simplicity of a dataset based on its spatiotemporal characteristics. Moreover,
since an AD dataset is a classification dataset, a sort of simplicity definition already exists:
linear separability [11].
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Figure 3.2: One-liner approach proposed by [85] and an improvement having c1 = 1,
c2 = 1 and b = 2.5. Blue is the time series, orange is the moving average, green is the sum
of the moving average and moving standard deviation, red is the complete right-hand side,
violet is the moving average to which the moving standard deviation is subtracted, and
brown is the complete right-hand side subtracting the constant and the moving standard
deviation. (a) the one-liner exactly defined in [85]. (b) the enhancement of the one-liner
to get also anomalies of abnormally low values. The images can be generated by running
the script "example_wu_approach.py".

«Data sets whose classes can be separated exactly by linear decision surfaces
are said to be linearly separable.» — Christopher M. Bishop

Linear separability is a property which makes a classification dataset simple. The per-
ceptron convergence theorem supports this strong statement: the perceptron algorithm is
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Figure 3.3: The time series in (a) generates the time series in (b) by first order differenti-
ation. The images can be generated by running the script "example_wu_approach.py".

guaranteed to find an exact solution in a finite number of steps if the dataset is linearly
separable [11].

It is possible to define notions of simplicity for anomaly detection resembling the linear sep-
arability property. It is known in the AD community that point anomalies [23] are simple
to solve, and contextual and collective anomalies [23] are harder. Since point anoma-
lies are typically out-of-range points, they should be detectable by comparison against
a constant (or constant vector for multivariate time series). Contextual and collective
anomalies need a way to embed time information to be detected. A possible approach
is to use a sliding window of length w, thus incorporating the temporal knowledge up to
t± w

2
. However, since the aim is to evaluate the simplicity of a dataset, the idea is to use
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Figure 3.4: Simple datasets with 2 dimensions in which (a) has comparison constants on
all dimensions, and (b) has comparison constants on some dimensions. The images can
be generated by running the script "example_simplicity.py". Red points are anomalies,
blue points are normal points.

only statistical quantities over the sliding window. Specifically, the moving average and
moving standard deviations are used to define a simplicity score. The moving average is
used to analyse the change in mean, and the moving standard deviation is used to analyse
the variability of points. Aiming at incorporating a simplicity definition for AD, I define
simplicity as:

Definition 3.4.1 (Dataset simplicity): Let x ∈ Rn×f be a time series with n

points and f features. The time series x is said to be simple if for all 1 ≤ i ≤ f ,
1 ≤ k ≤ f , and 1 ≤ j ≤ n, there exist constants cui ∈ R and cli ∈ R such that
the following rules for the identification of anomalies provide Acc = 1:

xj,i ≤ cli

xj,k ≥ cuk
(3.13)

Namely, the definition states that if there are constants on one or multiple dimensions of
the time series separating the anomalous and normal class, the time series is simple. Figure
3.4a is an example of a time series scatter plot in which anomalous and normal points
are perfectly separable through constant comparison (observe that there is no temporal
information). The analysis of simplicity does not consider temporal dependencies (and
a time series is a set of vectors ordered by an index); it only considers spatial values of
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the points. Since the time series is seen as a spatial dataset to analyse simplicity, this
problem is analogous to finding the minimum bounding box of a set of points.

Furthermore, the aim is to obtain a score of simplicity from the definition of a simple
dataset: the definition 3.4.1 must be translated into a formal definition of a score of
simplicity. Therefore, by leveraging the use of constants, it is possible to define the
following score:

Definition 3.4.2 (Constant simplicity score): Let x ∈ Rn×f be a time series
with n points and f features. The constant simplicity score of the time series
x is defined as max(TPR) @ TNR = 1, of the following function, where @
means “at the value of”:

f(i, j, clj, c
u
j ) =

1, if xi,j ≤ clj ∨ xi,j ≥ cuj

0, otherwise
(3.14)

Where clj, c
u
j are constants. That is, the highest percentage of anomalous points

separable from normal points without producing false positives.

A straightforward definition leverages the fact that there is no interest in simple anomalies;
complex anomalies enable the development of the scientific process.

If a dataset has a high constant simplicity score, a high percentage of anomalies can be
separated from normal points by exploiting the spatial properties of the time series. If the
score is one, anomalies and normalities can be perfectly separated only using spatial prop-
erties. Therefore, the temporal information is useless for the identification of anomalies.
A time series whose temporal information is useless for the task is of limited interest to
the scientific community. However, if the anomalies can be found on the moving average
or moving standard deviation series, the series is simple too. Accordingly, the following
scores can be defined:

Definition 3.4.3 (Moving average simplicity score): Let x ∈ Rn×f be a time
series with n points and f features, and w ∈ N \ {0}. The moving average
simplicity score of the time series x is the constant simplicity score of the series
movmean(x,w).
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Definition 3.4.4 (Moving standard deviation simplicity score): Let x ∈ Rn×f

be a time series with n points and f features, and w ∈ N \ {0}. The moving
standard deviation simplicity score of the time series x is the constant simplicity
score of the series movstd(x,w).

These scores can give an idea of the complexity of a time series. If any of the scores is
maximum (all scores are in the interval [0, 1]), anomalies can be perfectly separated from
normal points. However, if all scores are in the interval (0, 1), it might be possible that
the dataset is simple in general or simpler than what single scores suggest: different scores
might separate distinct anomalies. A more general score is defined to capture anomalies
by all the previous scores:

Definition 3.4.5 (Mixed simplicity score): Let x ∈ Rn×f be a time series with
n points and f features, and w ∈ N \ {0} be a constant. The mixed simplicity
score of the time series x is defined as max(TPR) @ TNR = 1, of the following
function, where @ means “at the value of”:

f(i, j, clj,v, c
u
j,v) =



1, if xi,j ≤ clj,1 ∨ xi,j ≥ cuj,1

1, if mvavg(x,w)i,j ≤ clj,2 ∨mvavg(x,w)i,j ≥ cuj,2

1, if mvstd(x,w)i,j ≤ clj,3 ∨mvstd(x,w)i,j ≥ cuj,3

0, otherwise

(3.15)

Where clj,v, c
u
j,v are constants. That is, the highest percentage of anomalous

points separable from normal points without producing false positives.

Given the definitions of scores, it is possible to introduce algorithms to compute them.
The first algorithm computes the constant simplicity score since it is the basis for other
algorithms. The constant simplicity algorithm pseudo-code (algorithm 3.1) has worst-case
time complexity T (N,F,A) = NF log(N) + ANF + NF + N = Θ(NF log(N) + ANF )

where N is the number of points in the input time series, A is the number of anomalous
points, and F is the number of features in the input time series. Here I list all the passages
in a bulleted list:

• The ordering of the time series costs Θ(NF log(N)), and the initialization of lower
and upper bound lists costs Θ(F ).

• The outer loop costs Θ(F ) since it iterates over all the channels of the time series.
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• The inner loop executes at most Θ(AN). The TPR increases until there are anoma-
lies separable from normalities, and since the TNR never decreases, the cycle costs
Θ(A). Inside the loop, the computation of TPR and TNR requires Θ(N) since the
comparison against a constant and the count of positive (or negative) rate can be
parallelized.

• After the loop, the labels can be obtained with Θ(NF ) since every feature is com-
pared with the lower and upper bound. Finally, the TPR between two vectors of
length N costs Θ(N).

Differently, the best case time complexity is T (N,F,A) = NF log(N) + 2NF + N =

Θ(NF log(N)). It is the case in which the constant simplicity score is 0; the TNR will
decrease at the first iteration, and the break will be executed. Therefore, the time
complexity is controlled by the ordering of the time series.

The pseudo-code for the moving average and moving standard deviation code is almost
identical. The only difference is that the former calculates the average over the windows,
and the latter computes the standard deviation. The algorithm 3.2 defines both the
algorithm to compute the moving average simplicity score and a heuristic to obtain a
list of window lengths to try while searching the moving average simplicity score. The
exact moving average score would require trying all the possible windows. However,
with long windows, adding a few other points will slightly change the mean; therefore,
a logarithmic increment is chosen. The pseudo-code for computing the moving standard
deviation simplicity score differs from it only at line 25, in which "movmean" is substituted
with "movstd".

Given the previous algorithms, the pseudo-code of the mixed score is straightforward. It
calls all the the previous simplicity algorithms, computes the labels of each approach and
merges them by calculating the OR between the labels; i.e., if a point is identified as an
anomaly by at least one of the previous, it is identified as an anomaly.

Finally, figure 3.5 shows the previously introduced scores for some publicly available
datasets. It is possible to observe that Yahoo Webscope S5 [48] has a substantially high
constant simplicity score. Indeed, it contains several point anomalies in the first three
benchmarks (A1, A2, A3). Other datasets containing fewer point anomalies have a lower
constant simplicity score (such as UCR and NAB), which increases with moving average
and standard deviation simplicity scores. Several datasets have anomalies separable from
normal points, and datasets like UCR [85] have complex and simple series. Differently,
MGAB [76] and GHL [33] have anomalies which are not separable from normal points just
by looking at these simple statistics. Therefore, most benchmarks contain both complex
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Algorithm 3.1 Constant simplicity score
1: procedure compute-constant-score(x, labels)
2: x_asc = order-by-feature(x, "asc")
3: lower, upper = each is list of num_features NaN
4: for i = 0 to num_features do
5: tnr_up, tpr_up, score_up = 1, 0, 0
6: tnr_dw, tpr_dw, score_dw = 1, 0, 0
7: for j = 0 to num_points do
8: if tnr_up == 1 then
9: tpr_up = tpr(x[all, i] ≥ x_asc[num_points - 1 - j, i], labels)

10: tnr_up = tnr(x[all, i] ≥ x_asc[num_points - 1 - j, i], labels)
11: if tpr_up > score_up and tnr_up == 1 then
12: upper[i] = x_asc[num_points - 1 - j, i])
13: score_up = tpr_up
14: end if
15: end if
16: if tnr_dw == 1 then
17: tpr_dw = tpr(x[all, i] ≤ x_asc[j, i], labels)
18: tnr_dw = tnr(x[all, i] ≤ x_asc[j, i], labels)
19: if tpr_dw > score_dw and tnr_dw == 1 then
20: lower[i] = x_asc[j, i])
21: score_dw = tpr_dw
22: end if
23: end if
24: if tnr_up != 1 and tnr_dw != 1 then
25: break
26: end if
27: end for
28: end for
29: labels_pred = compare x with lower and upper
30: score = tpr(labels_pred, labels)
31: return score, lower, upper
32: end procedure

and simple time series. If a study wants to pick series at random from a benchmark,
it should either devote attention to the series that are being chosen or use fully com-
plex datasets. However, since I want to emphasize the importance of reproducing and
comparing results, I suggest testing on the overall benchmark while evaluating a method.

3.4.2. Simple datasets vs. simple methods

This section briefly discusses the difference between the analysis of the intrinsic simplicity
of a dataset and the complexity of an AD method. Simple approaches may detect anoma-
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Algorithm 3.2 Moving average simplicity score and window choice
1: procedure get-windows(range)
2: windows, i = empty list, range[0]
3: while i ≤ range[1] do
4: windows.append(i)
5: if i < 5 then
6: i += 1
7: else if 5 ≤ i < 20 then
8: i += 5
9: else if 20 ≤ i < 100 then

10: i += 10
11: else if 100 ≤ i < 200 then
12: i += 20
13: else if 200 ≤ i < 300 then
14: i += 50
15: else
16: i += 10⌊log10(i)⌋

17: end if
18: end while
19: return windows
20: end procedure

21: procedure compute-mov-avg-score(x, range, labels)
22: best_lower, best_upper = each is list of num_features NaN
23: best_score, best_window = −1,−1
24: for w in get-windows(range) do
25: mov_avg_series = movmean(x,w)
26: score, lower, upper = compute-constant-score(mov_avg_series, labels)
27: if best_score == −1 or score > best_score then
28: best_lower, best_upper = lower, upper
29: best_score, best_window = score, w
30: end if
31: if best_score == 1 then
32: break
33: end if
34: end for
35: return best_score, best_lower, best_upper, best_window
36: end procedure

lies in datasets whose score is low and vice versa (complex approaches which cannot detect
anomalies in datasets whose score is high). The relationship between the simplicity of
datasets and the complexity of methods is subtle to grasp. Datasets complexity is driven
by several factors, the first of which should be temporal dependence. However, if datasets
have mainly anomalies separable from normalities in space, the encoding and using the
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Figure 3.5: Figures of simplicity scores of publicly available benchmarks (one score for
each dataset in the benchmark). Inside the violin plot there is a box plot such that
the plot shows the distribution of scores and the interquartile range of datasets. The
images can be generated by running the script "example_public_ds_simplicity.py". The
scores have been computed using as range [2, 300] on the original series till the third order
differentiation.

temporal dependency between points may only add complexity (without improving the
performance). Figure 3.6 shows examples of simple and complex time series. As [85] ob-
serves, it is possible to use simple approaches to find all or most anomalies for many simple
datasets. The analysis presented in this chapter aims to provide additional instruments
to evaluate the usefulness of methods and a method enabling qualitative analyses of the
complexity of approaches. When most anomalies in a used benchmark are spatially sep-
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Dataset Split defined N. of time series
Yahoo [48] NO 367
UCR [85] YES 250
SMD [73] YES 28
NAB [4] NO 58

MGAB [76] NO 10
GHL [33] YES 49
NASA [41] YES 82

Table 3.1: A list of public AD benchmarks with the number of series contained, and the
information regarding whether the benchmark defines a training and a testing sets.

arable from normalities, is the method complexity justified? Are simple methods unable
to detect anomalies? The answers to these questions are fundamental.
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Figure 3.6: The time series in (a, b) is a complex series with a mixed score of 0: no
anomaly can be separated in space by normalities. The time series in (c, d) is simple with
a moving standard deviation score of 1, while constant and moving average scores are 0.
The images can be generated by running the script "example_simple_series.py".
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for anomaly detection

Creating machine learning models in software is conceptually the same as creating any
other piece of software based on mathematics. Software development can follow several
approaches, and each has advantages and disadvantages. However, there is a need for a
reliable and extensible library for AD highly focused on the development of AD models
rather than focusing on the usage of implemented approaches. Since the description of
the library involves code, the notation used to distinguish between different objects is
detailed in Appendix B.

This chapter describes anomalearn (the proposed library). Section 4.1 describes its pur-
pose. Section 4.2 describes the general structure of the library. Section 4.3 describes the
approaches for OOP libraries for machine learning. Section 4.4 describes the standard for-
mat used by the readers of datasets. Section 4.5 describes the central functionality of the
applications package. Section 4.6 describes the approaches to develop pipelines and the
one used for anomalearn. Section 4.7 describes the modular approach used by the library
and its extensibility. Section 4.8 describes the implementation of efficient algorithms in
Python for anomalearn. Section 4.9 describes how to implement state-of-the-art methods
using anomalearn.

4.1. Purpose of the library

The creation of machine learning models and programs is a complex task. It involves
several sub-problems, such as function optimization, handling of high-dimensional data,
transformations, and others. Overall, there exist several good libraries implementing fa-
mous machine learning approaches [65], implementing statistical learning methods [68],
implementing building blocks to create neural networks [2, 64], implementing fast array
operations [39], implementing optimization and mathematical procedures [81], implement-
ing data reading operations [63], and many others. However, there are few libraries for AD
and the development of new models. Currently, libraries implement some AD methods:
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PyOD [89], Orion [7] and Anomalib (for images) [6] are notable examples of AD libraries.
PyOD is a collection of anomaly detection algorithms mainly for tabular data. Anomalib
is a collection of deep learning algorithms for anomaly detection in images. Orion is a
library for unsupervised time series anomaly detection. These libraries are more focused
on implementing state-of-the-art models rather than creating a structured approach to
develop new models from data reading to output generation. Moreover, many libraries
do not have data readers returning data frames or similar common structures for usage.
Anomalearn aims to create an end-to-end library using a modular approach enabling the
independent usage of the library’s components: dataset reading objects, pre-processing
components, post-processing components, scoring functions, models, and pipelines. The
design devotes attention to the easiness of the APIs for simple extendibility and automatic
(or quasi-automatic) functioning of new components with the rest of the library.

4.2. General structure of the library

Anomalearn contains several objects offering different functionalities. It is possible to
distinguish between two classes of packages: core packages and utility packages. The first
class of packages offer the most important functionalities of the library and is not used
or is slightly used by other packages. The latter class of packages offer either additional
functionalities or functionalities only needed for the creation of other packages. The
library has four core packages:

• Algorithms: it contains all the algorithms for handling data: processors, transform-
ers, models, tuners, and pipelines. It is structured in sub-packages which are loosely
coupled to enable the usage of single modules without the need to know in any way
the functionality of other packages or with the need to know only what is strictly
necessary, e.g., pipelines make use of other layers to create a chain of operations, it
is needed to know the functioning of pipeline elements to understand the pipeline.

• Data analysis: it is a set of functions for analysing data. The essential functions
of this package are the dataset simplicity scoring functions. They implement the
pseudo-codes of chapter 3 and add an option called "diff" stating that the score will
be computed on the series and its differentiations up to the order specified in that
field, among the scores, the maximum will be returned.

• Applications: it is a set of functionalities to aid the process of creating experiments.
This package contains the code to build experiments or automate the learning pro-
cess. It is a package based on other packages for automation and reproducibility.
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Figure 4.1: UML package diagram of the top level packages of anomalearn. Blue packages
are the core packages, green packages are utility packages.

• Readers: it is a set of generic and specific readers for general time series and anomaly
detection time series datasets. All the readers translate the original format of the
dataset into a pandas data frame such that the user does not need to know the
specific format in which the dataset has been saved.

Figure 4.1 contains the UML package diagram of the top-level packages. It can be noted
that there is a low coupling of the core packages: they have few or no incoming us-
age relationship arrows. Furthermore, almost all the packages do not have sub-packages;
therefore, the internal structure of each package is self-elucidative once one opens its folder
since they mostly contain interfaces and some implementations. Differently, the structure
of the algorithms package (figure 4.2) demands a detailed description. Its sub-packages
are loosely coupled, pipelines and preprocessing packages the only ones used by the
others. Other packages use the interfaces defined in pipelines to implement objects
which can be inserted into them. These interfaces are used by concrete pipelines to be
able to define a pipeline composed of any sequence of objects that can be inserted as a
pipeline layer. Differently, some types of postprocessing techniques depend on the prepro-
cessing technique that is being used before running the model. They use the preprocessing
techniques to accomplish their task. The contents of the sub-packages of algorithm are:

• transformers: it contains objects applying transformations on data.
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Figure 4.2: UML package diagram of the algorithm package.

• preprocessing: it contains objects processing data before feeding them into the
model.

• models: it contains models for computing scores or labels from data.

• postprocessing: it contains objects processing the output data of a model.

• pipelines: it contains objects defining a way to pipeline all objects that could be
inserted as a pipeline layer (typically, objects from the previous packages).

• tuning: it contains objects for tuning parameters or hyper-parameters.

4.3. OOP approaches for ML libraries

Most of the machine learning Python libraries follow an OOP approach. In general, each
model is implemented as an object able to fit on data (if the model can be fitted) and to
predict (classify, cluster, or other). Since libraries adopt several different paradigms, the
aim is to mix them to obtain the most usable objects by exploiting all the advantages of
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each utilized approach. Before directly describing the proposed library, I will review and
introduce two programming styles used by other libraries: duck typing and MLPrimitives.

4.3.1. The duck typing approach

Duck typing is an approach strongly related to dynamic typing. Dynamic typing refers to
the act of verifying the type of an object at run-time rather than at compile-time. Python
is a dynamically typed programming language since it assigns and checks the type of an
object at run-time; therefore, it supports duck typing. The easiest way to introduce it is
to quote Python’s documentation [1]:

«If it looks like a duck and quacks like a duck, it must be a duck.» — Glossary
of Python

It means that the emphasis is on the methods or attributes of an object more than on
its type. If an object X takes as input an object of class Y that implements a list Z

of methods, every object implementing Z will be accepted since it implements the same
methods, even if they have different types. Libraries like scikit-learn [16] follow the
duck typing approach and offer some base classes already implementing some methods.
Besides its simplicity in implementation (one does not have to know any interface, only
the naming convention used for methods needs to be known), this approach requires one
to know beforehand all the naming rules used for an object. Implementing a new object
requires following all the conventions specified in the developer guides detailing all classes
of objects. Respecting these rules means that the names of methods and fields must be
coherent and consistent with the rest of the API. If an argument of a function is an object
implementing a list of methods, the callee must verify whether the object is appropriate
or not. So, working with duck typing implies the choice between the following strategies:

• Try to call the required method; if it does not exist, Python will raise an exception.

• Adopt EAFP programming [1].

Besides the choice of how to deal with it, there is an observation about it: it relies
on the developer knowing the conventions and reading the documentation. Since most
developers tend not to read documentation or devote little attention to it, I think it is
avoidable to use such an approach. Enforcing the coherence and consistency between
objects by enforcing types should be better. It happens so frequently that developers do
not read the documentation that the They Ain’t Gonna Read It (TAGRI) principle [8]
has been defined in agile modelling.
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4.3.2. A different view: MLPrimitives/MLBlocks

A different approach to developing machine learning models is that of MLPrimitives/ML-
Blocks [69, 80]. They base the library on the concept of primitive:

«A primitive is a data processing block. Along with a code that does the pro-
cessing on the data, a primitive also has an associated JSON file that has a
number of annotations.» — MLPrimitives’ documentation

Besides this definition of two sentences, they describe in detail the concept of primitive.
The most important property of a primitive is that it can be of two types: function and
class. A function primitive is a simple function which can be called directly. A class
primitive is a primitive that must be instantiated before it can be used for computation.
For class primitives, there is a second classification: directly importable against primitives
requiring an adapter. The library follows a typical pattern in machine learning software
packages, the fit-produce abstraction: an estimator has a fitting method for calculating
the parameters of the model and a production method for obtaining the output after
the estimator has been fitted. An example of such approaches is the scikit-learn

estimators. Differently, tensorflow keras models require compilation before they can
be fitted on data. They are an example of a model requiring an adapter to be interfaced
with MLPrimitives/MLBlocks. Besides this summary of the functioning of this library, it
is vital to describe how a component (which will be a primitive) can be integrated into this
ecosystem. Each primitive has an annotation file written in JSON specifying the name
of the fitting function and the production function, along with all the hyperparameters.
Each primitive can be used only if it has a JSON file with a directly importable field of
the primitive implementation, e.g., sklearn.preprocessing.MinMaxScaler. Therefore,
extending the list of primitives with a new machine learning block requires two pieces:
the class or function containing the implementation and the JSON annotation file for
that primitive. A positive side of this approach is the freedom in the implementation of
new techniques, e.g., the fitting and production functions can have any name since they
are specified in the JSON. A class can have any number of methods and is not bound to
almost any naming convention. A negative side is that the implementation of a primitive
requires the knowledge of the JSON format and the specification of every detail of the
function in such a format. Another advantage is the simplicity of embedding any machine
learning model following the fit-produce abstraction by only creating the annotation file.
However, this approach is not flexible and hardly leverages the automatic refactoring tools
offered by many software packages. If the methods of the class under development change
the signature, the annotation JSON file must be modified manually.
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4.3.3. Proposed approach: interface-driven

The proposed approach for the library is an interface-driven approach aiming at taking
the best of both practices and providing tools to ease the development while avoiding
overly constraining the user. The idea is to characterize all the possible types of mod-
els through interfaces with specific methods. Instead of having one unique production
method called predict, the library defines several interfaces for machine learning objects
like IClassifier or IParametric implementing the methods classify and fit respectively
(there are many other interfaces). Therefore, the machine learning engineer can choose
the most appropriate interface (or interfaces) for the model under development while be-
ing compliant with the API such that the method can be easily integrated with other
library objects. This approach does not provide the same level of freedom of MLPrim-
itives/MLBlocks while it still provides a higher level of freedom with respect to only
having predict method for production. At the same time, it also enables the adoption of
a duck typing approach if the machine learning engineer feels more comfortable using it,
even if it is not recommended to adopt such a practice. The use of duck typing with in-
terfaces is permitted since Python is a dynamically typed programming language offering
a method called __subclasshook__ for abstract classes to enable the customization of the
subclass check through isinstance function. Interfaces override this method and define
an object as a subclass if it implements all the interface methods, e.g. if the interface
defines only one method X, any object with a method called X is considered a subclass of
this interface. Such an approach significantly simplifies the documentation: if an object
of a specific interface is required as input to a method, the documentation can effortlessly
state that the required object is expected to expose the same interface methods X. Then,
it will be a choice of the user whether to directly inherit from it or manually add the
methods and copy the signature of the interface. Neither the former nor the latter way
of creating the class is forced. Secondly, once a class has been implemented and tested,
nothing else is needed to let it work with other library objects.

Besides this general approach, it is crucial to assume a notation similar to famous libraries
to simplify the learning process of anomalearn. The methods having the same meaning
as methods defined in scikit-learn API [16] have the same signature in interfaces, e.g.,
the fit method takes x and y with optionally other parameters. Thus, switching from a
scikit-learn estimator to an anomalearn estimator should be straightforward. However,
the saving mechanism is an essential feature of models and objects of anomalearn. A
serializable object must implement a safe saving method. Therefore, the use of pickle

can be avoided to save them since it is unsafe (the only case in which pickle is allowed
is on adapters of objects that must be saved using pickle).
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4.4. Standard format for dataset reading

Machine learning tasks cannot be executed without a dataset, and each dataset must be
read before being used (the words dataset and benchmark will be used interchangeably to
identify a set of time series for AD). Many state-of-the-art algorithms repositories cannot
leverage pre-existing dataset readers and require to implement them. This approach is
wrong from the point of view of the scientific community: it violates the Don’t Repeat
Yourself (DRY) principle [42].

«Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.» — Andrew Hunt and David Thomas

Even though this principle refers to the development of a system by a developing team,
it can be generalized to the scientific community as a whole. Scientific progress conveys
the discovery of new features and the proposal of new approaches. Once a method or a
dataset has been proposed, there should be a single implementation of the same procedure
for several reasons:

• Errors: every time software is being developed, some errors might appear. With a
single piece of software, it will be possible to discover and fix it for every community
member. If everyone has his/her implementation, it might be that the implemen-
tation has some conceptual errors which won’t be found; therefore, it might create
confusion in results.

• Coherence: multiple pieces of software doing the same thing might adopt a different
format for data or models. With a single publicly accessible element, the scientific
community can compare research works more easily.

• Slowed progress: if models or data readers have to be re-implemented every time a
new study needs to be carried out, an immeasurable quantity of time will be wasted
in re-implementing currently existing functionalities. Differently, if the data readers
and models are publicly usable, each scientist can devote all attention to his/her
study to bring innovation to the field.

For these reasons, the anomalearn library implements several data readers of commonly
used datasets in the context of anomaly detection. The data readers expose the same
interfaces, and the output format is standard; therefore, the scientist does not need to
know the details of the format in which the dataset is saved, and he/she can use different
data readers and different datasets using the same methods and fields.
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anomalearn

interface 
Reversible

interface 
Sized

interface
ObtainableABC

- __subclasshook__

reader

interface
IDataReader

+ read
+ get_dataframe

interface 
IDatasetReader

Figure 4.3: Partial UML package diagram of reader package. It contains only the neces-
sary elements to understand the IDatasetReader interface.

Firstly, I will describe the format of the datasets:

• timestamp: it is the column containing the index.

• is_training: it is the binary column identifying the training points. If a point has
a 1, it is a training point. Note that not all datasets have it (because not all datasets
have a pre-defined train-test split).

• class: it is the binary column specifying whether a point is an anomaly (1) or a
normality (0).

• value: it is the column containing the values of a univariate time series. Note that
it is present only for univariate time series.

• channel_X: it is a list of columns in which X is generally a number identifying the
channels of the multivariate time series, e.g., a multivariate time series with seven
channels will have seven columns starting with channel_. Note that it is present
only for multivariate time series.
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1 from matplotlib import pyplot as plt , gridspec
2

3 from anomalearn.reader.time_series import SMDReader
4 from anomalearn.visualizer import line_plot
5

6 reader = SMDReader("../ data/anomaly_detection/smd")
7

8 # iterate over the SMD dataset and plot
9 for ds in reader:

10 fig = plt.figure(figsize =(8, 8), tight_layout=True)
11 gs = gridspec.GridSpec(2, 1)
12

13 series = fig.add_subplot(gs[0, 0])
14 line_plot(ds["timestamp"].values ,
15 ds["channel_0"].values ,
16 ax=series)
17

18 targets = fig.add_subplot(gs[1, 0])
19 line_plot(ds["timestamp"].values ,
20 ds["class"].values ,
21 ax=targets)
22

23 plt.show()
24

25 # read specific time series by an index and print its dataframe
26 df = reader [0]
27 print(df)
28

29 # read specific time series by name and print its dataframe
30 df = reader.read("machine -1-1").get_dataframe ()
31 print(df)

Listing 4.1: Example of code to read the SMD Dataset

The names of the columns are specified in an INI file called "time_series_config.ini".
They are retrieved by the reader.time_series package and stored on a public variable
called "rts_config" (rts stands for reader time series). Even though this configuration file
can be modified to change the names to whatever the user wants, I suggest not doing that.
The advantage of a standard naming convention is that results are easily comparable with
each other.

Finally, the dataset readers will be described. They are concrete classes implementing
the interface IDatasetReader (the class UML diagram in figure 4.3 details it). They are
iterators over the series of the dataset whose length is the number of time series. Each
time series can be accessed through the indexing operator, and a pandas data frame will
be returned with the specified fields of the previous list. Moreover, each benchmark is
characterized by different types of series, and some datasets also give names to them;
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1 from anomalearn.applications import ExperimentLoader
2 from anomalearn.reader.time_series import YahooS5Reader , MGABReader
3

4 reader_yahoo = YahooS5Reader("path_to_yahoo")
5 reader_mgab = MGABReader("path_to_mgab")
6

7 experiment = ExperimentLoader ([ reader_yahoo , reader_mgab],
8 [(0.8, 0.2), None], # splits
9 [None , [0, 1, 2]], # series to use

10 (0.7, 0.3)) # default split
11

12 for train , test in experiment.series_iterator ():
13 # do stuff

Listing 4.2: Example of code to create an experiment over two datasets specified some
splits and series to be used.

therefore, the parameter "path" of the "read" function will also accept a name in some
cases. In such a way, the user will be able to iterate over all the series and pick any of
the series either using an index or the name of the series. A snippet of code providing an
example of such capabilities is presented in listing 4.1. The snippet uses the SMD as an
example since its time series have names, i.e., all three behaviours can be shown.

4.5. Experiments

Research in the machine learning community usually involves the usage of a dataset to
evaluate the capabilities of a method or to make a proof of concept. Moreover, test-
ing and evaluating models on various benchmarks is common since they have different
characteristics. Splitting data, creating cross-validation sets for evaluation, and many
other functionalities are available in machine learning libraries such as scikit-learn

[65]. However, also the creation of a set of experiments involving training and testing on
several datasets is an highly repetitive task that one would like to automate. Since there
are no data readers available in AD libraries, there is no general object to automate this
process. Given benchmarks, a researcher may want to test his/her model on the overall
dataset or on a subset of the series contained in it, as well as he/she may want to define
different train-test splits for distinct datasets. Given the existence of the data readers
in the library, it is possible to implement an experiment object capable of retrieving and
splitting time series from benchmarks in any order specified by the user. These objects are
located in the applications package, and they use the interfaces defined in the reader

package to operate such that any object exposing this interface can be used, also if it is not
part of the library (see figure 4.1 use relationship). The ExperimentLoader is the central
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component of the applications package. It is a collection of readers, with optionally
specified splits and series to be used (None means "use the default value"). It will iterate
on the selected series for each dataset (if nothing is specified, all the series are retrieved)
and divide the dataset with the specified split, if any; otherwise, it will use the default
one. To ease the creation of experiments, an iterator over the series is also implemented
such that a simple and intuitive usage as in listing 4.2 can be adopted to get the data
frames of the time series of the selected AD benchmarks.

4.6. Pipelines: avoid repeating code

The task of subsequently applying transformations to data before the actual training of
the model is as repetitive as splitting and selecting the training set. These transforma-
tions are called preprocessing operations since they happen before data processing by the
model. Contrariwise, transformations performed on the output of the model are called
postprocessing operations, and they are frequent too. The former type of transformation
might be necessary, e.g., there are categorical features, and the model only accepts numer-
ical input. If this is the case, several transformations can be used to transform data in an
acceptable form for the model, e.g., one-hot encoding is an example of such a transforma-
tion: it changes the dimension of the input data by increasing them by a factor of n− 1,
where n is the number of categories of the encoded feature. However, transformations may
not change the dimensions of the input like range transformations, e.g., min-max scaling.
The usage of scaling transformations can be of interest both before and after the model,
e.g., scaling the output of the model in range [0, 1] when the model outputs abnormality
scores enables to represent an anomaly with a value of 1 and normal points with the value
0. Furthermore, the sliding window preprocessing operation is important when a spatial
model is used to perform anomaly detection: temporal data must be modified to become
spatial data as well as the output of the model must be inversely projected to a temporal
dimension. Given the repetitiveness of such operations, libraries introduced the concept
of pipeline: a compound object defining how the contained objects interact to transform
the input into an output. The simplest example of a pipeline is the sequential pipeline: a
pipeline composed of a list of objects which must be applied sequentially, i.e., the output
of the ith object is the input of the (i+ 1)th object.

4.6.1. The scikit-learn pipeline

The scikit-learn pipeline is the first pipeline object that should be described because
it is contained in one of the most commonly used libraries. It has two main types of
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1 import numpy as np
2 from sklearn.pipeline import Pipeline
3 from sklearn.preprocessing import StandardScaler , MinMaxScaler
4 from sklearn.svm import LinearSVC
5

6 rng = np.random.default_rng(seed =123)
7 data = rng.random ((100, 3))
8 labels = rng.integers(0, 2, size =100)
9

10 pipe = Pipeline ([("std", StandardScaler ()),
11 ("minmax", MinMaxScaler ()),
12 ("linear_svc", LinearSVC ())])
13 out = pipe.fit(data , labels).predict(data)

Listing 4.3: Example of scikit-learn pipeline with estimator at the end.

pipelines: Pipeline and FeatureUnion. The former is a somewhat simple concept. It
consists of a sequence of transformations and an estimator at the end. The latter is
constituted of a list of transformer objects: the transformers are applied in parallel, and
their output is horizontally stacked. This means that the shape of the input will change
from (n_samples, n_features) to (n_samples, n_components) where n_components

is the sum of the number of features in output to each transformer.

Listing 4.3 shows an example of scikit-learn pipeline with an estimator at the end. It
is possible to observe that this type of pipeline is what I previously called a sequential
pipeline. However, it is slightly less general than a sequence of operations. It only accepts
one estimator object at the end. It means that it is impossible to create a pipeline for meta-
learning (learning from the output of a learner instead of learning directly from data) since
there must be only one estimator. Since it assumes that the last element is an estimator,
many of the methods of this pipeline (like predict) are called on the last element of the
pipeline, except for the transform method that is called on all the other elements (it is
possible to call it also on the last). Therefore, this pipeline focuses on the last element
instead of the general compound object. Although it is possible to create a pipeline
solely composed of transformations, it is impossible to create a pipeline having either
transformers after an estimator or multiple estimators. This is the first notable limitation
of the scikit-learn pipeline. Contrarily, a nice feature of a scikit-learn pipeline
is that it can contain other pipelines (if by unwrapping them, the previous constraints
are not violated, i.e., only one estimator at the end). Moreover, a change in shape to
more than two dimensions is not expected since scikit-learn estimators tend to work
on 2D data, which means that the usual transformations performed on a time series as
preprocessing (e.g., sliding windows) are not naturally defined for this type of pipeline.
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Essentially, the preprocessing operations on a time series are more general.

4.6.2. The orion and MLBlocks pipeline

The orion pipeline [7] is a wrapper around the MLBlocks pipeline [69], and it has been
developed for unsupervised time series anomaly detection. The Orion object is in charge
of executing the AD functionalities and of the interactions with the underlying MLBlocks

pipeline. Therefore, the introduction of MLBlocks pipeline also describes the pipeline
adopted by orion (it is a wrapper). Even though this pipeline follows an analogous
approach to that of scikit-learn, it is much more elaborate. A MLBlocks pipeline is
a sequence of primitives, no matter which type, it neither assumes the presence of an
estimator at the end (even though they report that it is common for a pipeline to have
such a behaviour) nor presumes any ordering between primitives. Moreover, the pipeline
follows the general approach of the library: it is attached to an annotation file as any
other primitive. Furthermore, it wraps primitives in MLBlock objects: a container with
the name of the primitive and a counter. This tuple of two elements (the name of the
primitive and a counter) is sufficient to fully describe a block because the library has a
detailed lookup procedure to find also the user-defined primitives (see "Adding Primitives"
part of the MLBlocks documentation for more details). However, since the objects are not
directly passed to the pipeline as in the scikit-learn pipeline, if any of its layers requires
some initialization parameters different from the default ones, they must be passed to the
pipeline. Upon the instantiation of the MLPipeline, it is possible to specify both the list
of primitives contained in it and a dictionary of initialization parameters in which the keys
are the primitives of the pipeline. In essence, the MLBlocks pipeline is created following
a descriptive approach rather than an imperative approach: it receives a list of names of
primitives and a dictionary of instantiation parameters, then it creates and instantiates
each object of the pipeline.

Even though the pipeline is sequential, input/output management between layers is com-
prehensive. It uses a structure called context dictionary to keep track of each variable.
Before explaining its functioning, recall that each primitive has an associated annotation
file in which the fit and produce functions have a list of arguments with names and types;
additionally, the production function also has a list of the outputs with names and types.
The context dictionary maps the names of variables to their content. Each time a layer
has to be executed, all the variables in the context dictionary with the same name of the
arguments accepted by the layer are passed to it. Once the output is generated, there are
three possible scenarios:
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• Overwrite: all the output variables have a name present in the context dictionary.
In this case, the variables in the context dictionary with these names will be over-
written.

• Partial overwrite: some of the output variables of the layer have the same name as
some variables in the context dictionary. Variables whose name is present in the
context dictionary will overwrite the current ones. The other variables will be added
to the context dictionary.

• Addition: all the output variables have names which are not keys of the context
dictionary. All the variables will be added to it.

This approach has a significant advantage: each layer can add and overwrite variables in a
shared context dictionary. Therefore, it is possible to write heuristic functions computing
the parameters to pass to the subsequent layers as well as any manipulation function.

4.6.3. The anomalearn pipeline

The anomalearn pipeline tries to mix both approaches and follows the interface-based
policy presented in section 4.3.3. The approach of scikit-learn includes several con-
straints to the types of pipelines that can be created; the approach of MLBlocks gives
complete freedom of development unless the annotation JSON file is provided. The policy
of anomalearn tries to create a balance between the two: it does not need any annotation
procedure while giving a lot of freedom in the development. First of all, the pipelines of
anomalearn have to satisfy the following properties:

• Savable: each pipeline must be savable. It does not matter if the layers of the
pipeline include a save method or not. The pipeline must be safely serializable to
enable loading and publishing. The reason is that when a sequence of layers has
been trained to carry on a specific task, the developer should be allowed to store
and distribute his/her work easily.

• Interface-based: each pipeline must implement the same interface. A pipeline rep-
resents a concept: a compound object with explicitly stated connections between
layers. The way in which the layers are connected is dependent on the implementa-
tion.

• A pipeline is a layer: a pipeline must be a valid layer for another pipeline, indepen-
dently of its content.

• A layer is a concept: a layer is an object implementing a given interface. A pipeline
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must accept as a layer any object implementing the interface or implementing the
methods defined in the interface.

These requirements make the design of a pipeline complex, but it also makes the pipeline
simple and easy to use. Particularly, the fourth element of the list is the reason why
the pipelines package is used by almost all other sub-packages of algorithm (see figure
4.2). The elements which can be included in a pipeline as a layer implement one of the
abstract classes for pipeline layers. There are two abstract classes: an abstract class
for layers which does not implement a saving method and an abstract class for layers
that implement a saving method. In this way, the pipeline knows whether an object
must be re-instantiated while loading from a file or loaded using the loading method of
its class. The loading or instantiation operation requires knowing the type of object.
Each object deriving from the class SavableModel of anomalearn creates a file called
"signature.json" upon saving. This JSON file contains the name of the class that is being
saved. Therefore, the pipeline only needs to open the signature file, and it will know
which class to load. Conversely, unsavable objects need to be instantiated instead of
loaded. However, since the pipeline must be decoupled from the other objects, it uses
two utility functions of the anomalearn.algorithms.algo_functions module to load
classes: "load_estimator" and "instantiate_estimator". These functions can load and
instantiate a model of the anomalearn library or a list of user-defined classes. They only
need the name of the class to be loaded or to be instantiated. They first check from the
list of user-defined classes; if the class is not contained in the list, it looks up in the folders
of the library for classes with that name for instantiation or loading. If the class does not
exist, an exception is raised.

Besides the description of the saving mechanism, the APIs can be described quite easily.
The Pipeline accepts only one argument at creation: a list of layers. The list of layers
is a list of several types of input: a tuple of different dimensions or a layer object. Each
layer in a Pipeline has a unique name for identification purposes and a boolean value
stating if it has to be trained during the fit. The only required argument for an element
of the list is the layer object: the name defaults to the string representation of the object
and a number, and the boolean defaults to true (the trainable flag does not state that
the pipeline will try to execute the fit method. It state that the layer will be trained
if it has a fitting method). The elements of the list can be an object or a tuple whose
order of its content is: name, object, and boolean. The input list can contain one, two or
three elements; the order (name, object, boolean) and the presence of the layer object are
the only requirements. A Pipeline can be empty and is a mutable object: layers can be
added, removed and modified. The listing 4.4 contains a snippet of code with an example
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1 from anomalearn.algorithms.models.machine_learning import
IsolationForest

2 from anomalearn.algorithms.pipelines import Pipeline
3 from anomalearn.algorithms.transformers import MinMaxScaler
4

5 minmax = MinMaxScaler ()
6 isolation_forest = IsolationForest ()
7

8 pipeline = Pipeline ([("minmax", minmax),
9 (isolation_forest , True)])

10 pipeline.summary ()

Listing 4.4: Example of anomalearn pipeline with a scaler and a model at the end.

of Pipeline’s creation.

4.7. Modularity and extensibility

The library is composed of packages (see figures 4.1 and 4.2) with low coupling. In this sec-
tion, the word module refers mainly to functionalities rather than strict Python modules
(even if the two coincide most of the times). To boost the extensibility and the simplicity
of the implementation of new approaches, the philosophy behind the development of the
library can be stated in the following sentence:

If a functionality has to be added to the library, it should also be removable
without hindering the usage of the library.

It means that a functionality should be the least dependent on other modules. Ideally,
the addition of a new functionality does not require the modification of other pre-existing
functionalities in the library. In listing 4.4, the component MinMaxScaler is used, it can be
removed without causing problems to the rest of the library at this state. This behaviour
should be achieved from each new component introduced in core packages. This practice
will be called the Add If Removable And Independent (AIRAI) principle. It states that
a functionality can be integrated if it can also be deleted immediately after it has been
added and if any other functionality of the core packages can be deleted too once the new
component is integrated. It does not state that the functionality must be removable for
the whole life cycle of the library. Example: a state-of-the-art approach is implemented
using the anomalearn pipeline and added to the library. It is acceptable that the deletion
of layers used by this approach will cause dependency problems.

Moreover, the implementation of any approach should also respect the conceptual division
of packages. Example of wrong implementation: if a model is added to the models package
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and it uses a preprocessing object, or it does an equivalent job to that of a preprocessing,
it should be a pipeline. Specifically, the core implementation after the preprocessing can
be implemented in models. The overall architecture should be a pipeline. However, there
exist exceptions to this principle: postprocessing operations defined only if there was a
specific preprocessing before. In this case, the principle applies to the two classes since
they jointly represent the new functionality. The principle applies to each introduced
functionality at the maximum granularity. Currently, the AIRAI is respected by all
objects of the library. Following this principle gives the following advantages:

• Free usage: the use of a single component does not require the knowledge of an-
other component of the library. Any module can be used independently or almost
independently of other components (like some postprocessing).

• Implementation simplicity: new functionalities do not need the usage of pre-existing
functionalities unless they are pipelines.

• Testing simplicity: testing will be a lot easier. New functionalities can be tested
completely by unit testing without the need for integration testing in most cases.

Because of the aforementioned reasons, the low coupling, and the clarity of the interfaces,
the system should feel extensible. Each object implemented in the library exposes public
methods defined in one or multiple interfaces. Moreover, the arguments of methods
are expressed as input interfaces rather than concrete objects, which makes it easier to
understand which pool of objects it can work with.

4.8. A note on efficiency

Writing efficient code requires the design of algorithms with the best achievable time com-
plexity. An algorithm with time complexity Θ(N10) won’t be efficient in any programming
language. However, since Python has been chosen as the programming language of this
anomaly detection library, efficiency is an enormous problem. Since it is known that
Python is not an efficient programming language, several libraries have been published
to write efficient Python code: Cython [10, 14], pythran [37] and numba [47] are notable
examples. If methods can be implemented using efficient libraries for array and matrix
computation, using Python may be good enough. However, if it is necessary to write an
algorithm having loops in Python, it may be the case of using one of the previous libraries.
Each library has its advantages and disadvantages. For this note, two properties will be
evaluated:

• Simplicity: the degree of simplicity of using the library compared to using Python.
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Function Before numba After numba
constant score 452.15 s 1.90 s

moving average score 15848.92 s 56.25 s
moving standard deviation score 20529.57 s 63.23 s

Table 4.1: The speed of the simplicity scoring function before and after the usage of numba

• Compilation: whether the library requires compilation or not; thus, whether the
library allows the development of pure Python packages.

Cython and pythran both require compilation of Python code to use the efficient version,
whereas numba employs a JIT compiler based on decorators of functions and classes.
Cython is a super set of the Python programming language more than a compiler. It
allows to invoke C functions directly and adds new constructs directly mapping to C code
to create efficient code. Differently, pythran and numba are not super sets of the Python
programming language. They add decorations to code to produce efficient code. The
former adds these "decorations" as comments with only one command (pythran export).
The latter introduces some decorators of functions and classes that state how to compile
the Python code. However, pythran requires compilation of the Python file to produce
efficient code, while numba will compile the function the first time it is called, and this
compilation will last for the whole duration of the session. Given this short introduction
of these libraries, numba has been chosen to produce efficient Python code because of its
simplicity and capability of producing pure Python packages for distribution. Table 4.1
contains a list of the speed of simplicity scores’ algorithms before and after using numba.
As can be seen, it provides huge improvements. Moreover, it also allows leaving the code
almost identical to the Python version.

4.9. Reproduction of state-of-the-art methods

State-of-the-art approaches can be implemented in anomalearn. However, it is important
to keep attention to the components of such approaches. Many state-of-the-art approaches
include preprocessing or postprocessing operations other than a model. A typical prepro-
cessing procedure in time series AD is the computation of the sliding windows. Then, it
is also common for reconstruction (or forecasting) approaches to compute the score of a
point based on the median/mean reconstructed (or forecasted) value or to compute the
score based on a gaussian distribution over the vector of all reconstructions (or forecasts).
The thresholding method to extract labels from scores is instead a postprocessing opera-
tion. In these cases, the state-of-the-art approach presented in an academic paper is the
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compound object of preprocessing operations, model, and postprocessing operations in
which the model solves a task different from AD (clearly, forecasting is not a classification
task). Therefore, it is common for state-of-the-art approaches to be pipelines.
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This thesis presents a series of algorithms to evaluate the simplicity of AD datasets and
a library for the development of AD methods on time series. The work on the analysis of
simplicity provides a tool for assessing the practical complexity of a dataset, a task that is
becoming increasingly important. Conversely, the need for data to perform experiments
and evaluate models is less prominent (there are several publicly available datasets).
However, given the rise of new datasets, a new challenge reveals itself to the scientific
community: the evaluation of the properties of a dataset. The importance of using
various and different datasets is vital for the development of knowledge and methods.
The proposed definitions of simplicity and algorithms give a consistent, reproducible and
helpful tool to evaluate datasets. They establish a formal definition of a score to assess
the simplicity of a model based on statistical measures. These definitions are independent
of the algorithms, allowing different implementations to compute them. Furthermore, the
proposed algorithms calculate such a score with a time complexity of Θ(NF log(N) +

ANF ). These algorithms automate the process of evaluating the level of simplicity of the
datasets and are sufficient conditions: if a dataset has a high simplicity score, it is simple.
Contrariwise, a low score does not mean that the dataset is so complex that few methods
are able to deal with it. They aid data scientists in determining the simplicity of datasets,
such that they can test their model on both complex and trivial time series and such that a
more comprehensive evaluation of the proposed approach can be carried out. These tools
equip the data scientists with a method enabling the choice of the datasets for evaluating
the model in identifying anomalies at varying difficulties. Instead of solely reporting the
average performance on a benchmark, it is now possible to record the performance at
different levels of complexity of the dataset. Therefore, these tools help the data scientist
to answer questions like:

• Is the algorithm capable of solving complex datasets?

• Is the algorithm good at identifying simple anomalies?

• Can the algorithm identify point anomalies?

These tools enable the explanation of the goodness of the method in terms of the com-
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plexity of the data that it is able to handle. However, the introduced explainability is also
beneficial for creating ensembles of methods. Since the three measures of the complexity
of the datasets capture different concepts, the ensembling of models can now be guided by
the information on the type of complexity solved by diverse models (however, the test in-
formation must not guide the ensembling). It will be possible to ensemble models capable
of finding different types of anomalies by observing the kind of complexity of the analysed
series, which is a primary aspect of ensembling: models must be distinct and learn diverse
patterns/concepts. To wrap it up, evaluating the complexity of algorithms offers both a
way to assess the quality of datasets and a tool to ease the creation of ensembles.

The second proposal of this thesis is anomalearn. The need for libraries for developing
machine and deep learning models for AD is high. The proposed library aids the data
scientist in several ways. It does not only help the data scientist in the creation of a new
component for AD, it assists the data scientist in creating and evaluating any element of
the sequence of operations to be performed on AD. It enables the development of a new
preprocessing, postprocessing, or model without re-implementing the other components
and the logic to let them work together, e.g., if a researcher invented a new thresholding
technique, it is now possible to use all the preprocessing and model components in a
pipeline with the new postprocessing operation (the thresholding) to evaluate it against
the other pre-existent thresholding mechanisms. Therefore, comparing new and existing
techniques is simple, and the data scientist is able to save a massive amount of time
that otherwise will be dedicated to implementing existing approaches or the connection
logic between components. Furthermore, assessing different preprocessing or postpro-
cessing operations is simple since the pipelines enable the creation of any sequence of
operations to train and predict. It allows the creation of compound objects composed
of existing models and preprocessing objects to evaluate new postprocessing operations
or any different combination of new and existing elements. Moreover, studies about the
optimal configuration of methods from preprocessing to output generation can be carried
out effortlessly. Therefore, answering the following questions will be substantially simple
compared to the current state-of-the-art libraries for AD:

• Is a given preprocessing better in general for these models?

• Is a given postprocessing better with these models?

• Is a given postprocessing better in general?

The approach of the proposed library is general and extensible, which means that adding
new functionalities will be easier with respect to other libraries. However, there is still
one contribution to the scientific community of this library: the distribution. Currently,
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libraries do not implement a safe and simple procedure to save and distribute someone’s
work. Libraries such as orion [7], MLBlocks [69] and scikit-learn [65] either do not
provide a way to save the trained models or do not provide a safe way to serialize the
trained models by employing pickle to store objects. On the contrary, anomalearn pro-
vides a safe way to distribute methods by enforcing the implementation of a saving method
that uses secure formats like npy files of numpy [39]. Compound objects (pipelines) use
this function to save the object and its components safely. Therefore, the distribution of
trained models with weights is now possible and safe, allowing researchers to distribute
their work and make it accessible to the scientific community to boost the development
of scientific knowledge and progress. Finally, being the library highly based on interfaces
and on a general design using UML, the translation of this library to other languages (e.g.,
C++) will be much less complex than translating other libraries adopting duck typing
or complex approaches which load components at run-time. Therefore, the effort in the
design of a simple API does not constrain the library implementation to Python.
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Since the thesis proposed two main contributions, there are two distinct future research
directions to describe: simplicity algorithms and anomalearn

The simplicity algorithms use statistical measures to evaluate the simplicity of an AD
dataset. The description of the complexity of an AD dataset could be enlarged and com-
pared to complexity measures used in other research fields, as well as to other complexity
measures for time series [74] which are not devoted to measuring the complexity of AD
datasets. Moreover, since the time complexity of the presented algorithms to compute
such scores have time complexity Θ(NF log(N) + ANF ), improving the algorithms to
lower the complexity to be linear in the number of points and features Θ(NF ) using re-
lated problems such as that of finding the minimum bounding box of a set of points. In
the end, a new algorithm to refine the search of the scores or new and better heuristics
are possible research directions (currently, since not all windows are tried, it is only an
estimation).

Regarding anomalearn, the continuous implementation of state-of-the-art and historical
approaches in the libraries and the implementation of other preprocessing and postpro-
cessing operations is a valuable future work that will make the library more usable and
helpful. Moreover, the implementation of different types of pipeline with parallelism (sim-
ilar to scikit-learn [65] FeatureUnion) is of interest such that multiple transforming
operations can be executed in parallel as well as implementing a pipeline able to fit and
train estimators in parallel; thus providing objects capable of creating ensembles of the
output of several models. Finally, the creation of a structure similar to that of the context
dictionary present in MLBlocks [69] to handle the creation of named variables to pass to
the following layers of the pipeline.
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A| Statistics and probability

This appendix contains a list of formal definitions needed for the definitions introduced
in the body of the thesis. The bibliography of this section considers [66] as main source
for statistics and probability, and [9, 12, 24, 29, 35] for probability.

A.1. Statistics: definitions

Definition A.1.1 (Population): We call population a set X representing a
collection of elements.

Definition A.1.2 (Sample): Given a population X, we call sample any subset
Y ⊂ X.

Definition A.1.3 (Dataset): We call dataset a function D : V −→ N, and we
call its domain elements values and the images frequencies.

Definition A.1.4 (Sample mean): Let X be a collection of values with |X| =
n. We call sample mean the following quantity:

x =
1

n

∑
x∈X

x (A.1)

Definition A.1.5 (Sample median): Let V be a collection of values, O an
arrangement of V with values in increasing order, and |O| = n. If n is odd,
the sample median is the element at position (n+1)/2; if n is even, the sample
median is the mean between the elements at position n/2 and n/2 + 1.
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Definition A.1.6 (Sample mode): Let D be a dataset whose values are vi for
0 ≤ i ≤ n and respective frequencies are fi for 0 ≤ i ≤ n. The sample mode is
the set of all elements vi for i ∈ I : fi = maxj fj.

Definition A.1.7 (Sample variance): Let X be a collection of values with
|X| = n and x the sample mean of X. We call sample variance the quantity:

s2 =
1

n− 1

∑
x∈X

(x− x)2 (A.2)

Definition A.1.8 (Sample standard deviation): Let X be a collection of values
with |X| = n and x the sample mean of X. We call sample variance the
quantity:

s =

√
1

n− 1

∑
x∈X

(x− x)2 (A.3)

Definition A.1.9 (Sample percentile): Let V be a collection of numerical val-
ues and 0 ≤ p ≤ 1 the percentage. We call sample 100p percentile the data value
v ∈ V such that at least 100p percent of the data are less than or equal to it,
and at least 100(1−p) are greater than or equal to it. If two data values satisfy
these conditions, then the sample 100p percentile is the arithmetic average of
the two values.

Definition A.1.10 (First quartile): We call first quartile of some data the 25th

sample percentile.

Definition A.1.11 (Second quartile): We call second quartile of some data
the 50th sample percentile.

Definition A.1.12 (Third quartile): We call third quartile of some data the
75th sample percentile.

Definition A.1.13 (Interquartile range): Let q1 be the first quartile and q3 be
the third quartile. We call interquartile range the quantity IQ = q3 − q1.
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A.2. Probability: definitions

Definition A.2.1 (Sample space): Let e be an experiment for which we cannot
predict with certainty the outcome. If we know which is the set of the possible
outcomes of the experiment, we call it sample space and we identify it with Ω.

Definition A.2.2 (Event): Let Ω be a sample space and ω ∈ Ω the outcome
of the experiment. Any subset E ∈ Ω is called event, and if ω ∈ E we say that
E has occurred.

Definition A.2.3 (Algebra of subsets): Let Ω be a sample space and F ⊆
P(Ω). We say that F is an algebra over Ω if it has the following properties:

1. ∅ ∈ F

2. E ∈ F ⇒ EC ∈ F

3. E,F ∈ F ⇒ E ∪ F ∈ F

Definition A.2.4 (σ-algebra): Let Ω be a sample space and F ⊆ P(Ω). We
say that F is a σ-algebra over Ω if it has the following properties:

1. ∅ ∈ F

2. E ∈ F ⇒ EC ∈ F

3. E1, E2, ... ∈ F ⇒ ∪∞
i=1Ei ∈ F

Definition A.2.5 (Measurable space): Let X be a set and A a σ-algebra on
X. We call the tuple (X,A) measurable space.

Definition A.2.6 (Measure): Let (X,A) be a measurable space. A function
µ : A → R is a measure if it has the following properties:

• µ(∅) = 0

• µ(E) ≥ 0 for all E ∈ A

• Let {Ek}∞k=1 ∈ A be a disjoint sequence, that is Ei ∩ Ej = ∅ if i ̸= j.
Then, µ(∪∞

i=1Ei) =
∑∞

i=1 µ(Ei)

Definition A.2.7 (Probability measure): Let Ω be a sample space, and (S ⊆
P(Ω),F) be a measurable space. A function µ : F → R is a probability measure
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if it has the following properties:
• µ(Ω) = 1

• µ(E) ≥ 0 for all E ∈ F

• Let {Ek}∞k=1 ∈ F be a disjoint sequence, that is Ei ∩ Ej = ∅ if i ̸= j.
Then, µ(∪∞

i=1Ei) =
∑∞

i=1 µ(Ei)

Definition A.2.8 (Probability space): Let Ω be a sample space, (S ⊆ P(Ω),F)

be a measurable space, and P be a probability measure on F. The tuple (S ⊆
P(Ω),F, P ) is called probability space.

Definition A.2.9 (Conditional probability): Let (S,F, P ) be a probability
space, and F ∈ F be an event such that P (F ) > 0. For each event E ∈ F,
we call conditional probability of E given F the following quantity:

P (E|F ) :=
P (E ∩ F )

P (F )
(A.4)

Definition A.2.10 (Independent events): Let (S,F, P ) be a probability space.
Given E1, E2, ..., En ∈ F, we say that E1, E2, ..., En are independent, if for each
{h1, h2, ..., hk} ⊆ {1, 2, ..., n} with k ≥ 2 we have:

P

(
k⋂

i=1

Ehi

)
=

k∏
i=1

P (Ehi
) (A.5)

Definition A.2.11 (Conditional independence): Let (S,F, P ) be a probability
space, and A,B,C ∈ F. We say that A is conditionally independent from C

given B if:

P (A|B,C) = P (A|B) (A.6)

Definition A.2.12 (Random variable): Let (S,F, P ) be a probability space.
We call random variable a function X : S → R, such that for each x ∈ R:

{X ≤ x} := {s ∈ S|X(s) ≤ x} ∈ F (A.7)
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Definition A.2.13 (Cumulative distribution function): Let X be a random
variable defined over the probability space (S,F, P ). We call Cumulative Density
Function of X the function FX : R → [0, 1], defined as:

FX(x) := P (X ≤ x) (A.8)

Definition A.2.14 (Discrete random variable): Let X be a random variable
defined over the probability space (S ⊆ P(Ω),F, P ). We call X discrete random
variable if there exist a countable set C ⊆ P(Ω) such that P (X ∈ C) = 1.

Definition A.2.15 (Probability mass function): Let X be a discrete random
variable defined over the probability space (S,F, P ). We call Probability Mass
Function of X the function pX(x) := P (X = x)

Definition A.2.16 (Bernoulli distribution): Let X be a discrete random vari-
able and p ∈ [0, 1] a real number. We say that X has a bernoulli distribution if
its Probability Mass Function is:

pX(x) =

{
p if x = 1

1− p if x = 0
(A.9)

We denote this distribution by X ∼ Be(p).

Definition A.2.17 (Continuous random variable): Let X be a random variable
defined over the probability space (S ⊆ P(Ω),F, P ). X is a continuous random
variable if there exist a function fX : R → R+ such that its Cumulative Density
Function can be written as:

FX(x) =

∫ x

−∞
fX(x)dx (A.10)

We call fX Probability Density Function.

Definition A.2.18 (Expected value of discrete random variable): Let X be a
discrete random variable taking value in S, and let pX be its PMF. The expected
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value (or mean) of X is defined as:

E[X] =
∑
x∈S

xpX(x) (A.11)

provided that the series converges absolutely. In this case we say that X has
finite expectation. If

∑
x∈S |X|pX(x) diverges, then we say that X has no finite

expectation.

Definition A.2.19 (Expected value of continuous random variable): Let X

be a continuous random variable and fX be its PDF. The expected value (or
mean) of X is defined as:

E[X] =

∫ +∞

−∞
xfX(x)dx (A.12)

provided that the integral converges absolutely. In this case we say that X has
finite expectation. If

∫ +∞
−∞ |x|fX(x)dx diverges, then we say that X has no finite

expectation.

Theorem A.2.1: Let X be a random variable. Any function φ(x) defines a
new random variable φ(X). If φ(X) has finite expectation, then:

E[φ(X)] =

{∑
x φ(x)pX(x) if X is discrete∫ +∞

−∞ φ(x)fX(x)dx if X is continuous
(A.13)

Definition A.2.20 (Rth moment): Let X be a random variable. If Xr has
finite expectation, we call E[Xr] the rth moment of X.

Definition A.2.21 (Variance): Let X be a random variable with second mo-
ment E[X2]. We call variance the following number:

V ar[X] = E[(X − E[X])2] (A.14)

Definition A.2.22 (Standard deviation): Let X be a random variable. We
call standard deviation the number Std[X] =

√
V ar[X].
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Definition A.2.23 (Covariance): Let X, Y be random variables defined over
the same sample space. We call covariance the number:

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] (A.15)
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B| Code notation

This appendix contains the notation used in chapters to refer to code elements. The
development follows an OOP approach strongly based on loosely coupled packages. The
following notation is adopted:

• package name: the monospaced font is used to refer to a package with name package
name, e.g., algorithm is the way in which the package named algorithm is referred.

• package elements: the blue color is used to refer to objects of a package, e.g.,
pipelines refer to pipelines defined in pipelines (the name of the element may be
singular).

• object: the dark green color is used to refer to a specific object of the library, e.g.,
Pipeline refers to the class named Pipeline (located in pipelines).
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