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Abstract

Anomaly Detection in the CERN Data Center is a challenging task due to

the large scale of the computing infrastructure and the large volume of data

to monitor. At CERN, the current solution to spot anomalous server ma-

chines in the computing infrastructure relies on a threshold-based alarming

systems carefully set by the system managers on performance time series

metrics of each infrastructure component. The goal of this work is to relieve

the burden of this complex task and explore fully automated machine learn-

ing solutions in the Anomaly Detection field. Moreover, in virtually every

real industrial scenario, labeled data to train supervised machine learning

methods are unavailable due to their high cost or difficulties in their col-

lection. Therefore our focus is on fully unsupervised Anomaly Detection

methods and we explore the current state-of-the-art including both tradi-

tional Anomaly Detection ones and also recent successful Deep Anomaly

Detection approaches.

In this work we proposed novel formulations of Time Series specific ap-

proaches (CNN Forecaster, VAR Forecaster) and adaptations to reuse tra-

ditional machine learning methods (LOF, OCSVM, IFOREST, KNN, PCA)

and Deep Learning ones (Autoencoder Fully Connected, CNN Autoencoder,

LSTM Autoencoder) with time series data. In addition we explore six en-

semble strategies to combine the individual algorithm strengths. We then

present a comparative study of these 10 individual methods and 6 ensemble

strategies on the CERN use case for identifying the best approach for the

specific problem’s characteristics of the CERN large-scale computing infras-

tructure. In addition, given the absence of labelled data we put in place an

annotation system to make possible to collect two new Anomaly Detection

for Time Series datasets representing two different CERN user categories.

The results of this study in terms of ROC-AUC and training time makes

a strong point in favour of the traditional methods that for the specific

problem at hand work extremely well; on the other hand we also noticed

that they tend to be over-performed by deep methods whenever the time
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series patterns for normal instances become less trivial. In parallel with

the comparative study we also produced an Open Source Proof-of-Concept

Anomaly Detection system.



Sommario

Il rilevamento delle anomalie nel Data Center del CERN è un compito im-

pegnativo a causa della vasta scala dell’infrastruttura di elaborazione e del

grande volume di dati da monitorare. Al CERN, l’attuale soluzione per

individuare macchine server anomale nell’infrastruttura informatica si basa

su sistemi di allarme basati su soglie impostati con cura dai gestori di sis-

tema sulle metriche delle serie temporali delle prestazioni di ciascun compo-

nente dell’infrastruttura. L’obiettivo di questo lavoro è alleviare il peso di

questa complessa attività ed esplorare soluzioni di Machine Learning com-

pletamente automatizzate nel campo del rilevamento delle anomalie. In-

oltre, praticamente in ogni scenario industriale reale, i dati etichettati per

addestrare metodi di apprendimento automatico supervisionati non sono

disponibili a causa del loro costo elevato o delle difficoltà nella loro raccolta.

Pertanto, il nostro focus è sui metodi di rilevamento delle anomalie comple-

tamente non supervisionati ed esploriamo lo stato dell’arte attuale, inclusi

quelli tradizionali di rilevamento delle anomalie e anche i recenti approcci

di rilevamento delle anomalie basati su Reti Neurali. In questo lavoro ab-

biamo proposto nuove formulazioni di approcci specifici per serie temporali

(CNN Forecaster, VAR Forecaster) e adattamenti per riutilizzare metodi di

Machine Learning tradizionali (LOF, OCSVM, IFOREST, KNN, PCA) e

Deep Learning (Autoencoder Fully Connected, CNN Autoencoder, LSTM

Autoencoder) con dati di serie temporali. Inoltre, esploriamo sei strategie

di insieme per combinare i punti di forza dei singoli algoritmi. Presentiamo

quindi uno studio comparativo di questi 10 metodi individuali e 6 strate-

gie di insieme sul caso d’uso del CERN per identificare l’approccio migliore

per le caratteristiche del problema specifico dell’infrastruttura informatica

su larga scala del CERN. Inoltre, data l’assenza di dati etichettati, abbiamo

messo in atto un sistema di annotazione per rendere possibile la raccolta di

due nuovi set di dati di rilevamento di anomalie per serie temporali che rap-

presentano due diverse categorie di utenti del CERN. I risultati di questo

studio in termini di ROC-AUC e tempo di allenamento costituiscono un
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punto di forza a favore dei metodi tradizionali che per lo specifico problema

in esame funzionano molto bene; d’altra parte abbiamo anche notato che

tendono ad essere sorpassati da metodi basati su Reti Neurali ogni volta

che i modelli di serie temporali per istanze normali diventano meno banali.

Parallelamente allo studio comparativo, abbiamo anche prodotto un sistema

Open Source Proof of Concept di rilevamento delle anomalie.
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Chapter 1

Introduction

Industry devices such as server machines, engines, robots, etc. are the basis

of the correct functioning of virtually any complex industrial system (e.g.

Data Centre, car production factory, etc.). Also the healthcare sector is

increasingly using sensors to monitor the patient’s status and robotic envi-

ronment to improve the good outcome of a surgery operation. The common

denominator of all these complex systems is that they rely on the underlying

hardware and software to work efficiently and in a safe manner. Unfortu-

nately, the more a system is complex, the more likely it is to present system

failures during its lifetime. As a consequence, its failures will inevitably de-

grade the performance, eventually with a cascade effect on the whole system.

Depending on the nature of the system this cascade failure can be trans-

lated in a loss of money [1] or a bad outcome for the patient that can also

lead to his death in the worst-case scenario [2]. Therefore, in these contexts

where we heavily rely on machines, it is crucial to monitor those complex

systems and be informed on the status of their components in order to react

promptly and avoid bigger losses from late intervention. In fact anomalies in

the data contain useful information to reveal concrete hardware or software

failures.

1.1 CERN Context

This thesis originates for an internship I conducted at CERN under the

supervision of PhD. Domenico Giordano. As part of the Openstack Cloud

team I had the opportunity to work closely with colleagues responsible for

the maintenance (i.e. operations) of the Cloud Infrastructure of the CERN

Data Centre. Every experiment for High Energy Physics (HEP) at CERN



requires millions, if not billions of CHF of investment [3], therefore every step

in the chain that lead to new results for HEP is fundamental. In particular

the elaboration and computation of results is crucial and it happens in the

Data Centre, which, with a large number of server machines, configures itself

as a perfect case of those complex systems just mentioned. Consequently a

continuous monitoring of the Data Centre is required to ensure its correct

functioning. The primary goal of a monitoring infrastructure is to give a

comprehensive and complete view of the system via monitoring dashboards;

and this is already in place at CERN with an excellent monitoring infras-

tructure. A second and even more critical quality of an effective monitoring

infrastructure is to promptly inform the user in case of anomalies in the func-

tioning of the complex system at hand. Being able to observe the system in

real-time is not sufficient when the number of entities becomes considerably

large. In particular we cannot expect to allocate a proportionate number of

human resources to manually monitor every entity. For this reason, there

is the need for an Anomaly Detection system that can automatically and

reliably spot the problems of the system ideally on par or even better than

the human expert.

In this direction, the notion of Anomaly is central, and it is often paired

with the concept of Outlier. One of the first definition of outlier dates back

to 1969: ”An outlying observation, or outlier, is one that appears to deviate

markedly from other members of the sample in which it occurs” [4]. Back

in those days the goal of Outlier Detection was closely linked to the prob-

lem of Data Quality, since for a good data mining application the presence

of outliers can be often problematic therefore the identification of outlier

patterns is functional to their removal from the dataset for a better data

mining result. On the other hand, the concept of Anomaly Detection puts

more focus on spotting outliers because they represent interesting events

that we want to be informed of (e.g. failures). Depending on the meaning

behind the outlier in the literature another synonym is Novelty Detection.

In a modern Data Centre structure where the data are in the form of time se-

ries the AD task has to consider the discoveries of anomalies across time [5].

Therefore for CERN Data Centre, an outlier intuitively corresponds to an

unexpected event, or set of events, that is rare and differs in various ways

from the majority of usual events.
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1.2 Challenges and Contributions

Given the size of the CERN context with more than 7′000 physical servers

on premise and a monitoring data rate production in the order of terabytes,

the CERN Data Centre configures itself as a perfect Big Data scenario. In

this context, as part of my thesis and internship, I was responsible for the

designing and implementation of a fully-functioning Proof of Concept for

an Anomaly Detection system for the CERN Monitoring Infrastructure. To

achieve this paramount goal, my thesis work involved two main components

as both Data Engineering and Machine Learning Engineering.

In quality of Data Engineer I faced and overcome the following challenges:

1. Data Preparation: I prepared and processed the huge volume of

data produced by the monitoring infrastructure in a scalable way with

Apache Spark.

2. Infrastructure Design: I designed, implemented and integrated in

the monitoring infrastructure a pipeline to publish the result candidate

anomalies in the monitoring platform for visualization, together with

a procedure to let the CERN experts label the time series data as

anomalous or normal.

3. Dataset Collection: I made it possible to collect two new CERN

Anomaly Detection Datasets on time series that will possibly be shared

with the scientific community allowing scientists to benchmark their

methods on the industrially relevant CERN use case.

On the other hand, from the algorithmic perspective the initial lack

of labelled dataset for Anomaly Detection at CERN and also the limited

human resources available for annotating this complex data excluded the

direct application of supervised techniques in a scalable way. Therefore we

found natural to investigate fully unsupervised Anomaly Detection methods

since the beginning. For the Data Analytics core of the Anomaly Detection

System I worked on the following tasks:

1. Modelling: I modelled the Anomaly Detection on Time Series prob-

lem at CERN and adapted traditional and deep anomaly detection

methods that are designed to detect static outliers to work on our

time series data (LOF, OCSVM, IFOREST, KNN,PCA, Autoencoder,

CNN Autoencoder, LSTM Autoencoder).
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2. Novel usage of Existing Models: I designed variants of existing

models for our specific Anomaly Detection formulation (CNN Fore-

caster, VAR Forecaster).

3. Comparative Study: I compared a pool of selected unsupervised

Anomaly Detection methods on the two newly collected CERN dataset

on Time Series Anomaly Detection.

The major contributions of this work to the research field include: a

comparative study of some of the most used Anomaly Detection methods,

both Machine Learning and Deep Learning ones, on the industrially relevant

CERN use case, a collection of two new CERN Anomaly Detection for Time

Series Datasets and finally an Open Source software implementation of a

Proof of Concept for an Anomaly Detection system produced for CERN in

the scope of the internship [6].

1.3 Thesis Structure

The thesis is organized as follows:

• In Chapter 2 we give the first details about the CERN cloud computing

architecture and them we formally define the problem we address.

• In Chapter 3 we introduce background concepts necessary to under-

stand this research work, then we review literature on traditional and

Deep Learning Anomaly Detection methods.

• In Chapter 4 we describe how we use and adapt the CERN infras-

tructure to annotate and collect the two CERN Anomaly Detection

datasets.

• In Chapter 5 we present details about the design of our Anomaly

Detection System and how we prepare the data with it.

• In Chapter 6 we focus on the Data Analytics core of the System de-

scribing the novel adaptation of previous methods to the time series

scenario.

• In Chapter 7 we assess the performance of the evaluated methods,

describing the evaluation procedure and commenting on the experi-

mental results.

• In Chapter 8 we summarize the contributions of this work, present our

conclusions and suggest possible future research directions.
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• In Appendix A we present further details about the collected dataset.

• In Appendix B we collect an extensive version of the evaluation results.

• In Appendix C we present other complementary details about the

system in terms of software contribution.
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Chapter 2

Problem Formulation

In this Chapter we give the first details about the specific CERN cloud com-

puting architecture and then we formally define the details of the Anomaly

Detection problem we address. We conclude with the main assumptions

behind the proposed formulation.

2.1 Monitoring Infrastructure at CERN

To accomplish its research goals on High Energy Physics, CERN relies heav-

ily on the computational power of its Data Centre. The computational re-

sources form a Private Cloud and are managed via components of Openstack,

the free open standard cloud computing platform. OpenStack provides an

Infrastructure-as-a-Service solution integrated with CERN’s computing fa-

cilities. CERN users can request on-demand virtual machines resources for

production, test and development purposes.

At the time of writing, the CERN Data Centre contains 7 487 hypervisors

running 45 362 Virtual Machines (VMs) in total.

Virtual Machine: a compute resource that runs in a software envi-

ronment instead of directly on a physical computer.

Hypervisor: software that creates and runs virtual machines

(VMs)”[7]. It is sometimes also called virtual machine monitor (VMM).

In this work we also equally refer to an hypervisor with the terms: server,

host, machine.



Those machines run either computations for the various physics exper-

iments or applications and services developed by CERN users to maintain

CERN internal IT services. In both cases a malfunctioning of those servers

can degrade the quality of service for its users. As a consequence CERN

invested considerable amount of resources in making sure that its Data Cen-

tre can run as smoothly as possible. The main Business Unit created for

this specific task in 2016 is the Monitoring Team from the IT Department

whose mission is to ”collect, transport, store and process metrics and logs

for applications and infrastructure” [8]. To provide an effective Monitoring

Infrastructure, the Monitoring Team installed a system statistics collection

daemon named Collectd on every single hypervisor.

Collectd: system statistics collection daemon that periodically checks

some parameters of the hypervisors and store those values in the Moni-

toring infrastructure acting as a sensor. This daemon is modular thanks

to a plugin system that let the system admin decide which parameters to

collect in every hypervisor. Some example of plugins are: CPU, Mem-

ory and ContextSwitch. Each of this plugins can collect more than one

parameters.

Metric: a time series data representing the evolution of a single param-

eters collected by one Collectd Plugin installed on the hypervisor. In

this work we also equally refer to a single metric with the terms: metric,

time series, plugin.

Definition 2.1.1. Time Series: is an ordered sequence of numerical data

points ~a = {a0, a1, a2, a3, ..., at} where the order is determined by the time-

stamp {t0, t1, t2, t3, ...} in which those data points are observed. It is natu-

rally unbounded and the most recent data point is referred to as at.

2.1.1 The Big Picture: Pipeline Architecture

The current configuration of the Monitoring Infrastructure is composed by

five consecutive layers or stages, each of them relies on well known open-

source technologies:

1. Sources: where the raw data (e.g. metrics, logs, etc) are produced;

2. Transport: that serves as a connector from the heterogeneous data

sources to a unified preprocessing engine;
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Figure 2.1: Metrics example. Example of three hypervisor’s metrics: cpu user percent-

age, cpu load, memory usage. Data representing the first 4 days of June. Every time

series represents a different hypervisor. The hypervisors shown are part of an Openstack

Cell devoted to Batch usage (named: Geneva Project 013)

.
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3. Processing: where data are aggregated and preprocessed thanks to

technologies like Spark;

4. Storage: where the processed data are persistently saved for future

access;

5. Access: where the data are available to the user for interactive explo-

ration or systematic analysis.

Note that a detailed description the components and technologies I used

and how will be given in Section 5.2.

Figure 2.2: Monitoring Infrastructure at CERN. [9]

2.2 Modelling Assumptions

In this section we present the two principal assumptions that let us split the

analysis in two main user categories, also called Groups.

2.2.1 Two Main User-Categories: ”Batch” and ”Shared”

Depending on the computational needs, we have two main user categories.

The first one is represented by CERN users or services that are independent

from each other and require a relatively low number of hypervisors, whereas

the second one consists in physicists that need a large pool of computational

resources to elaborate the data from the experiment in a compute intensive

way. For the first user category we can assume to have independent and

intermittent jobs running on the various hypervisors while in the second case

we have jobs that work in a batch and continuous mode showing relatively

regular patterns. In Figure ?? we can see the difference between the two

categories on the CPU Load metric.
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Definition 2.2.1. User categories: Every Hypervisor hi is uniquely assigned

only to one target usage:

∀hi ∈ DC, ((hi ∈ S) ∨ (hi ∈ B)) ∧ (S ∩B = ∅)

Where DC represent the set of machines in the Data Centre, whereas S

represents the set of machines assigned to the ”Shared” usage and B to the

”Batch” usage.

Set

name

User Category Pattern

Usage

Objective

S Shared by User/Ser-

vices

Intermittent

/ Irregular

Maximize the nr of in-

dependent jobs satisfied

B Batch (Physics Ex-

periments)

Regular Maximize the utiliza-

tion

(a) Batch user category (b) Shared user category

Figure 2.3: Typical CPU load patterns in the two user categories. Every image shows

a single group and every line represents the CPU load of a different hypervisors.

2.2.2 Homogeneous Group: same Hardware and Software

To support the various user categories, the compute infrastructure is orga-

nized accordingly. The hypervisor dedicated for a common goal are grouped

in Openstack Cells.

OpenStack Cell: is a functionality to ease the scaling of an OpenStack

cloud in a more distributed way and supports very large deployments.

For the scope of this work we will treat it as an aggregate of hypervisors.

More formally we define it as:

11



Definition 2.2.2. Group (or Openstack Cell):

G = {h1, ..., hn}

is a set of n hypervisors with homogeneous Software and Hardware config-

uration. Moreover they share also the same target usage: batch or shared.

(∀hi ∈ G, hi ∈ S) ∨ (∀hi ∈ G, hi ∈ B)

2.3 Concept of anomaly

Before diving into the details of our problem formulation, we informally

introduce the concept of anomaly. In the spoken language we refer to an

anomaly whenever we have something that ”is unusual enough to be notice-

able or seem strange” (Cambridge Dictionary). We find other more precise

description if we refer to the data science literature on the concept of statis-

tical outlier, that is intertwined with the notion of anomaly. According to

[10]:

”an outlier is an observation which deviates so much from other ob-

servations as to arouse suspicion that it was generated by a different

mechanism”.

Whereas [11] defines it as:

”an observation [...] which appears to be in- consistent with the remain-

der of that set of data”.

These definitions add two important attributes to our concept of anomaly,

respectively the fact that an anomalous observation is normally generated by

a different mechanism and that to discover it we always require a peer con-

frontation with others observations, thus the anomaly is dataset-dependant.

2.3.1 Anomalous Time Series at CERN

In our scenario we are reasoning on time series data, therefore to familiarize

with our anomaly detection problem statement we introduce and discuss

some typical examples of time series anomaly at CERN.

Figure 2.4 shows some typical anomalous behaviours regarding the met-

ric CPU LOAD of the hypervisors in a Batch group. The CPU LOAD is

12



Figure 2.4: Example of anomalies in a Batch group. The brown hypervisor that peaks

up to cpu load of 2.5 shows an anomalous behaviour because its load increases above

the normal expected behaviour. Other three hypervisors have zero CPU load; that

means they are inactive, potentially wasting resource. Ultimately another subset of

machines is used only at half of its power with load equals to 0.5.

a measure of the average system utilization during a time period of 5 min,

10 min , 15 min; in this example it is 15 min. CPU Load equal to 1.73 means

that we have 1.73 runnable processes in the hypervisor, so that on average

0.73 processes had to wait in the queue for a CPU clock (if we assume to be

on a single CPU system). The anomalous behaviours can be present with

respect to different relative point of reference:

• The past of the same entity. An hypervisor is increasing its activity

in a way that never happened in the past. As it can be seen in the

Figure 2.4 where some machines go from a CPU load of 1 to 2.

• The behaviour of the other entities. Some hypervisors are having a

CPU load of 0.5 and that is strange if compared to the majority of the

other machines that instead are fully utilized with load equals to 1, as

it is expected in the ideal case for Batch group.

• In absolute. An hypervisor with load equals to 0 means an idle re-

source and therefore a potential waste of resources. In this case it is

not necessary to have particular information on the past or the other

machines, an idle machine is always bad and we want to identify it.

2.4 Anomaly Detection Problem

Given a Dataset D composed of n samples D = {x1, ..., xn} where xi is a

multidimensional datapoint xi ∈ Rk, the goal of Anomaly Detection is to

model a binary scoring function AD(x) : Rk → 0, 1 such that:
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AD(x) =

{
1 if x is anomalous

0 if x is normal
(2.1)

This is virtually every setting achieved with a two step procedure: scoring

function followed by the application of a threshold. The scoring function

s(x) : Rk → R assigns to each sample an anomaly score indicating its

degree of anomalousness:

∀xa, xb ∈ D, s(xa) > s(xb) if xa is more anomalous than xb (2.2)

Then we apply a thresholding function Tc(s(x)) : R → 0, 1 to binarize the

score, where c is the threshold to discern between normal and anomalous

data. The value of the cut-off point c is chosen using a validation dataset

so that the false alarms rate stays below a certain desired value.

Tc(s(x)) =

{
1 if s(x) ≥ c when x is anomalous

0 if s(x) < c when x is normal
(2.3)

2.5 Time Series Anomaly Detection Problem at

CERN

The first step, when working with time series data, is to determine which is

the minimal unit of analysis. Since time series data are naturally unbounded

streams we adopt the windowing approach and consider for each hypervisor

a fixed length window of data.

Definition 2.5.1. Discretized Time Series: given a time series ~a = {a0, a1, a2,
a3, ..., at}, ~d is a derived time series where each data point is a mean summary

statistics of the values of ~a in the previous xminutes: ~d = {d0, d1, d2, d3, ..., dt}.
Every element di summarizes the mean of a disjoint consecutive subset Ai

of ~a. Ai contains a variable number of elements that were recorded in x

consecutive minutes. The start can be fixed arbitrary.

Definition 2.5.2. Univariate Temporal Window: given a discretized time

series ~d = {d0, d1, d2, d3, ..., dt}, a Univariate Temporal Window ~w is a vector

that represent a subsequence of ~d made of w consecutive data points ~w =

{di, di+1, ..., di+w−1}, where w is the window length.

We decide to analyse our time series in separate non-overlapping tem-

poral windows. Since in our scenario every time series is produced by an

hypervisor, we can see the windows as a representation of the health status
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of that hypervisor. Nonetheless this is only a partial view of our hypervi-

sor because each hypervisor produces m metrics. Therefore we extend our

window representation to include also the other time series produced by the

same hypervisor.

Definition 2.5.3. Multivariate Temporal Window (or Window): given a

hypervisor h and the set D of the m time series metrics it produces D =

{~d0, ..., ~dm}, a Multivariate Temporal Window is a matrix W that has as

rows the m Univariate Temporal Windows of h. Note that the univariate

windows are synchronized, meaning that each column represents the view of

the hypervisor h at the same time step for all the m metrics. We refer to it

with W (h).

Wm,w(h) =


d1i d1i+1 · · · d1i+w−1
d2i d2i+1 · · · d2i+w−1
...

...
. . .

...

dmi dmi+1 · · · dmi+w−1

 (2.4)

Note that: thanks to the discretization procedure it is possible to

stack different metrics of the same hyperviosr even if they are produced

with different frequencies or in slightly different timesteps, because after

discretization each univariate window will have the same length.

If we consider a time window as a sample of our dataset, we go back

to the original formulation (Definition 2.1), but instead of representing a

generic multidimensional point, our sample represents a Multivariate Tem-

poral Window of a specific hypervisor.

In the next section we translate everything as a problem statement for

our CERN specific data centre scenario.

2.5.1 Anomaly Detection in CERN Scenario

Our goal is to detect and identify the windows W (h) of those hypervisors

that are showing an anomalous behaviour. We define an instance window

W (h) anomalous if it is different enough from the windows observed in the

past from that hypervisor and also from hypervisors in the same Openstack

Cell. To this purpose we compare various anomaly detection approaches.

To reach our goal we are given:

• A Group of n Hypervisors (Definition 2.2.2)

G = {h1, ..., hn}
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• Training Dataset: sequences of Multivariate Temporal Windows of

length w contained in the history of those n Hypervisors with a total

length of p discretized time steps.

Vtrain =
⋃

i∈CW

⋃
h∈G
{W (h)}

where CW represents the set indices of all consecutive window seg-

ments of length w within p discretized time steps (where p >> w).

• Testing Dataset: sequences of non-overlapping Multivariate Temporal

Windows of length w referring to those n Hypervisors in a history of f

discretized time steps (that come right after the p timesteps used for

training). The Multivariate Temporal Windows

Vtest =
⋃

i∈NOCW

⋃
h∈G
{W (h)}

where NOCW represents the set indices of non overlapping consec-

utive window segments of length w within f discretized time steps

(where f >> w ∧ f = p).

We are able now to define our objective:

Goal: ∀W ∈ Vtest, assign an anomaly score that is monotonic with

the level of anomalousness of that window. The notion of normality

and anomalousness are learned from the past history. In addition the

score should also let us discern with a simple threshold on it between

anomalous and normal windows.

2.6 Assumptions

The assumption that are behind these problem formulations are:

• hosts in the same OpenStack cells have similar characteristics that can

legitimate us to think of them as a ”swarm” therefore the deviation

from a group behavior could be seen as a good way to spot possible

anomalies;

• the discretization procedure of one time series with a mean aggregate

every x minutes – where x = 10 minutes – is discarding high fre-

quency components that are superfluous for the anomaly detection

process;
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• the selected window length w of analysis – 8 hours – contains all the

meaningful information needed to identify anomalies, or in other words

that lower frequencies components not captured by this windows are

not relevant;

• the selected history length p – 1 week – is enough to learn a model

of normality.

All the decisions about the length of temporal intervals considered were

taken as result of iterative steps of data exploration and domain knowledge

coming from CERN monitoring experts. In particular the window length

of 8 hours and the granularity of 10 minutes for a single data point, we

aimed at filtering out the high frequencies components to reduce the risk of

raising false alarms. In addition the number of analysed metrics was fixed at

the 11 most used by the domain experts during day to day operations and

post-mortem analysis (Table 5.2), exploration on feature selection in such a

complex unsupervised setting is left as future work.
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Chapter 3

Background

In this chapter we introduce background concepts necessary to understand

this research work. After an initial overview of the computing infrastruc-

ture scenario, we give review the salient characteristics of both traditional

outlier detection methods and Deep Learning approaches, to conclude with

an overview of the ensemble techniques available in Anomaly Detection.

3.1 Anomaly Detection for Computing Infrastruc-

tures

Nowadays, many applications are deployed on cloud computing platforms

such as Amazon Web Services, Google Cloud Platform or Microsoft Azure.

In these cases their final users expect a 24/7 availability of the services

exposed. However, cloud systems, being specific kind of software systems by

themselves, are subject to failures that can result in an anomalous behavior.

Beside Cloud platforms and Data Center, every Large-scale and complex

online service systems such as global commercial banks [12] and e-commerce

such as Ebay [13].

Many of these big players of the industry are investing and researching

on methods to cope with anomalies that can arise and undermine their op-

erations. One of the closest use case to the one at CERN is represented

by Alibaba [14] that proposed Donut, a Variational Autoencoder approach,

but that is focusing only on a single metric and is limited to specific KPI

(Key Performance Indicator) metrics. Other examples are represented by

Microsoft and Facebook that proposed general methods to work with time

series either in the direction of anomaly detection [15] or pure forecast-

ing [16]. Nevertheless they address single time series use case, since it covers

a large part of the application, but they overlook the possibility of finding



an anomaly in the correlation between multiple timeseries produced by the

same entity, what in a Data Centre is represented by an hypervisor moni-

toring.

3.1.1 Challenges

The Data Center scenario is the perfect representation of a Time Series

Anomaly Detection problem. Both Ebay [13] and Microsoft ([15]) identify

the following challenges in the area of Time Series Anomaly Detection:

1. Lack of labels. Because of the low interpretability of a signal, it is

reasonable to believe that it is expensive to find annotators for time-

series if compared to images. Therefore as a consequence, the datasets

in the AD for Time Series domain are very much limited to relatively

simple benchmark scenarios. Raising the need for the equivalent of

the ImageNet dataset for the Time series field [17].

2. Efficiency and scalability. Given the size and large-scale of the

complex systems under monitoring, it is needed to monitor millions of

time series at the same time, therefore the methods used in real in-

dustrial application cannot be compute-intensive during the inference

step.

3. Avoid alert spamming. After all a complex system is monitored

and managed by real humans that have limited time to cope with real

problem so it is even more crucial to reduce the false positive rate as

much as possible and raise the attention only on really crucial matters

for the infrastructure.

The first point is the motivator for the effort in putting in place an an-

notation procedure for anomaly detection, it will be discussed in Chapter 4.

Whereas the second point led us focus on relatively simple methods rather

that complicated ones, to respect this scalability principle. The last point

instead has been reinforced by [15] that envisioned as future work the use

of ensemble strategy to provide a more robust anomaly detection service.

Therefore every complex industrial system needs an efficient Anomaly

Detection system, as the work of many big player is witnessing. At the same

time the alerting has to parsimoniously call for human intervention to avoid

spamming and lost of trust in the service itself.
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3.2 Algorithms for Anomaly Detection

In this literature review we present some of the main methods in Anomaly

Detection including both traditional machine Learning methods and Deep

Learning ones; in particular our focus is on fully unsupervised techniques as

mentioned in the Introduction. As mentioned in the Problem Formulation

(2), virtually any Anomaly Detection algorithm models or learns a scoring

function that assign a higher score to abnormal instances and a lower score

to normal ones. Therefore in the next part we present every methods to-

gether with the way it computes its anomaly score, then the results can be

either presented as a rank, starting from the most anomalous sample, or,

as mentioned in the problem formulation, we can choose a threshold and

highlight only the samples with a score higher than that.

3.3 Traditional Anomaly Detection Methods

We call traditional methods those invented before the Deep Learning era:

they are generally based on a variety of different key ideas and assumptions.

We present the most representative methods used in the literature from

that period and also as baselines for current novel methods on Anomaly

Detection: K-Nearest Neighbour (KNN) [18], Local Outlier Factor (LOF)

[19], Principal Components Analysis (PCA) method [20], Isolation Forest

[21], One Class Support Vector Machine (OCSVM) [22].

3.3.1 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) method [18] for Anomaly Detection is

based on the following assumption:

Assumption: anomalies are samples that live in regions of the feature

space far from their closest neighbours.

This is related to the concept of density, therefore samples in areas of

low density (absence of close neighbours) are considered anomalies. The

closeness of the neighbours is assessed with the euclidean distance d(·, ·) in

the multidimensional space. The final formula for computing the anomaly

score is:

sKNN (x) =

∑k
i=0 d(x, ni)

k
(3.1)

where ni is the i-th closest neighbour of x.
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3.3.2 Local Outlier Factor

Local Outlier Factor (LOF) is probably the most known Outlier Detection

methods and the first to introduce the locality concept to spot outliers [19].

The main assumption is:

Assumption: anomalies are samples that live in regions of the fea-

ture space with low local density (i.e. local with respect to the closest

neighbours).

It consists in these main steps:

1. Identify the k-nearest neighbours of every record.

2. compute the k-distance of every record as k−distance(A) coorespond-

ing to the distance of the object A to its k-th nearest neighbor. Usually

the Euclidean distance is used.

3. Given the set of neighbours Nk, compute the Local Reachability Den-

sity (LRD).

LRDk(x) =

(∑
neigh∈Nk

drk(x, neigh)

|Nk|

)−1
(3.2)

where drk(·, ·) is the reachability distance defined as dr(A,B) = max(k−
distance(B), d(A,B)) and d(·, ·) is usually the Euclidean Distance.

4. Get the LOF anomaly score by comparing the LRD of the current

record with those of its nearest neighbours.

sLOF (x) =

∑
neigh∈Nk

LRDk(neigh)
LRDk(x)

|Nk|
(3.3)

3.3.3 Principal Component Analysis for Anomaly Detection

The Principal Component Analysis (PCA) [20] is used to find a linear trans-

formation of your data in such a way that they are projected on directions

that maximize the total variance of your data. The procedure to find those

direction is equivalent to finding the eigenvalues and eigenvectors of the co-

variance matrix of your data. The new directions of projection coincide

with the eigenvectors just found. Moreover, if we sort the eigenvectors

~v1, ~v2, ..., ~vp in increasing order of related eigenvalues λ1, λ2, ..., λp, we have

that the eigenvectors with the highest eigenvalues explain most of the vari-

ance, whereas smaller eigenvalues signal direction of low variance in your
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data.

In our anomaly detection scenario, it means that if projected the data onto

the principal component yp, we observe high variance of the resulting trans-

formed data, while if we project them onto y1 they present a small variance,

and a continuous behaviour with the eigenvalues in between. The main

assumption for using PCA as an anomaly detection technique is:

Assumption: normal data exhibit a small variance if projected to the

directions of the eigenvectors related to the smallest eigenvalues, while

anomalous data show a high variance on those directions of low variance

due to their abnormality.

The intuition is to use this fact, the anomaly score is created by the sum

of the deviations of every projected sample with respect to those directions.

Following this idea [20] proposes the sum of squares of the standardized

principal component scores:

sPCA(x) =

q∑
i=0

y2i
λi

(3.4)

where q < p aims at selecting only the small eigenvalues and y1, y2, ..., yp
represent the projections of record x onto the eigenvectors directions. These

projections are also called principal components of the record x.

3.3.4 Isolation Forest

Isolation Forest (IFOR) was presented by [21] and it is among the newest

from this pool of traditional algorithms. This method based on random

partitions of the feature space with binary split. This binary split is repeated

multiple times and it is represented by a binary tree data structure called

iTree. The presence of more than one iTree configures IFOR as an ensemble

technique. It relies on the main assumption that:

Assumption: anomalies are few and different among themselves and

therefore they can be isolated easily even few with random partitions.

During training time we follow the next steps:

1. sub-sample the dataset X with |X| = n;
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2. construct an iTree by randomly partitioning this sub-sampled dataset

X with binary splits. An iTree is build by recursively selecting a

random feature of your data and a random value then split the data in

two branches. This process stops when either a predefined maximum

height of the tree is reached or when the dataset cannot be split further

because it contains only one element |Xl| = 1 at level l.

Repeat this multiple times and create a predefined number of iTrees, then

at test time:

1. Pass each test instance to an iTree and starting from the root of the

tree and the attributes of the instance follow the path according to

the nodes’ splits. Once it reaches a leaf, record the height (called path

length);

2. Repeat this for every iTree in the ensemble;

3. Compute the average of the path length for that test instance;

4. Convert this into an Anomaly Score thanks to the following formula:

sIFOR(x, n) = 2
−E(h(x))

c(n) (3.5)

where:

• x is the test instance.

• E(h(x)) is the average value of path length in an ensemble of

tree.

• c(n) = 2 ·H(n−1)−
(
2·(n−1)

n

)
where n is the number of instances

in the dataset X and H is the Harmonic Number approximated

via the following equation H(i) = ln(i) + γ (Euler’s constant =

0.577215).

3.3.5 One-Class Support Vector Machine

As the name suggests, this strategy is a variant of the Support Vector Ma-

chine algorithm devised for classification [23, 24]. The One-Class variant [22]

aims at estimating the density of the normal data, the basic idea is to find

an hyperplane in the feature space that separates the sample normal points

from the origin with maximum margin. In this case the origin is taken as

representative of the anomalous class. Although this method was initially

used in a semi-supervised setting with only normal samples, it can also be

used with the soft-margin variation [22] in a complete unsupervised scenario
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as we do in our case.

The anomaly score is then computed via the signed distance sign distance(·, ·)
between every point and the hyperplane.

sOCSVM (x) = sign distance(x,hyperplane) (3.6)

3.4 Deep Anomaly Detection Methods

Given the increasing adoption of Deep Learning in various field, also Anomaly

Detection has recently benefited from the application of Neural Networks

techniques. A recent study [25] has already confirmed that Deep Learning

methods have many potentialities to surpass traditional ones in the such

as Network Intrusion Detection field. Further motivations for using Deep

Learning techniques are related to two challenges in Anomaly Detection that

seem to be solvable only with those methods:

• need for large-scale anomaly detection: the increased volume

of data requires methods that can process them in a scalable way,

regardless of their quantity. Unfortunately many of the traditional

methods rely on the computation of distances that in a large dataset

becomes computationally demanding.

• complex data types: real use cases for Anomaly Detection com-

monly include the use of image or time series input data. The auto-

matic feature learning capability of Deep Learning techniques becomes

extremely useful in these context to avoid the need of developing hand-

crafted features by domain experts.

3.4.1 AutoEncoder

In terms of techniques used, a recent survey on Deep Learning for Anomaly

Detection [26] identifies the AutoEncoder architecture as the main one for

this field.

An AutoEncoder consists in a symmetric neural network structure com-

posed by an encoder e(·) : Rn → Rd that condenses the input x ∈ Rn

to a lower representation e(x) ∈ Rd and a decoder d(·) : Rd → Rn that

is expanding the compressed representation into the output x̂ = d(e(x)).

The objective is then to minimize the reconstruction loss represented by∑
x∈D(x− x̂)2, therefore it is trying to learn the identity function. Despite

this that trivial objective, a crucial component of its success is the bottleneck

in represented by d << n where d is the compressed dimension from which
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the network has to learn how to reconstruct the input of size n, therefore

it has to abstract the salient high level feature of the data in that reduced

representation.

The AutoEncoder technique has been used mainly for feature extraction

or for removing noise from the input data [27]. In the Anomaly Detection

field, their use has been proposed by [28]. The underlying assumption for us-

ing this architecture for Anomaly Detection is that an AutoEncoder trained

on majority of normal data, will learn how to reconstruct them properly,

whereas if we feed it with abnormal data, the reconstruction performance

of the network on those inputs will be inferior. The intuition is therefore to

use the reconstruction error as a measure for the degree of anomalousness

of an input and discriminate between normal data and anomaly.

ReconstructionError(x) =
∑
x∈D

(x− d(e(x)))2 (3.7)

AutoEncoder Variants

Beside the requirements of a general symmetric structure and the bottleneck

principle, the rest of the AutoEncoder architecture can be composed in var-

ious ways. In fact there exist different variants of AutoEncoder; depending

on the main building block we can distinguish the following classes:

• Fully Connected Autoencoder[29]: it consists of a traditional multi-

layer perceptron architecture with a funnel structure leading to the

bottleneck and a symmetric expansion to reconstruct the input.

• CNN Autoencoder [30]: it is based on the fundamental convolution

operation that is typically used to work with image data, since its

ability of using the information about the neighborhood of pixels. It

has recently received lots of attention since its successful application

to many high-dimensional and complex pattern recognition problems

such as feature extraction [31].

• RNN/LSTM Autoencoder [32]: it is based on a neural network com-

ponent that can not only take the output of previous neurons in the

network as input but it keeps also information in the form of mem-

ory from the previous outputs it fired. This is crucial to work with

sequence data as in Natural Language Processing or with Time Se-

ries inputs. A network including this type of components is called

Recurrent Neural Network, and the most recent variant of this unit
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component are: Long-Short Term Memory (LSTM) [33] and Gate Re-

current Unit (GRU) [34].

3.5 Time Series specific Methods

In the time series literature, our metrics coming form the hypervisors are

seen as a stochastic process.

Definition 3.5.1. Stochastic Process: a collection of random variables in-

dexed by some mathematical set. In the time series field this set is typically

composed of natural numbers representing subsequent time instants.

The main difference between working with time series data and other

kinds of data is that the subsequent time steps in a time series cannot be con-

sidered Independent and Identically Distributed random variables (i.i.d.).

This is the case because previous values usually have some correlation with

the future ones. This lack of independence between the variables at different

time steps has been modeled and exploited extensively in the literature.

3.5.1 Forecasting Error: Anomaly Detection on Time Series

In the field of Anomaly Detection a way to exploit the time series literature

is to create a model that fits the normal data reasonably well, so that at

test time if the real new measured data dt at time t is considerably different

from the prediction of our model d̂t, then we flag it as an anomaly. This is

also known as forecasting or prediction error and it is obtained via a dis-

tance measure (e.g. euclidean distance) between dt and d̂t. The assumption

behind this kind of models is that a model that fits the majority of normal

data will be a good predictor for situation of normality, whereas in abnor-

mal scenarios the real data dt will be very far from the expectation d̂t of

our model. In the literature we find both traditional and Deep Learning

application of this principle [35] [36]; moreover we also mention a previous

internal work at CERN is based on it [37].

3.5.2 Traditional Time Series Models

In the traditional time series literature various model families have been

proposed to model this dependency between subsequent timesteps:
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• Autoregressive - AR(p):

dt = µ+

p∑
i=1

βidt−i + εt (3.8)

where p is the order of the model that defines how many past timesteps

of the original timeseries we consider for the prediction, µ is a constant

representing the mean of the series and εt is the error represented by

white noise.

• Moving Average - MA(q):

dt = µ+

q∑
i=1

θiεt−i + εt (3.9)

where εi are white noise error terms and q is the order of the model that

defines how many error terms we consider, µ is a constant representing

the mean of the series and εt is the error represented by white noise.

• Autoregressive-Moving-Average - ARMA (p, q):

dt = µ+

p∑
i=1

βidt−i +

q∑
j=1

θjεt−j + εt (3.10)

that combines the two models in one, modelling both previous value

of the time series and error terms at the same time.

• Autoregressive Integrated Moving Average (ARIMA) where one or

more initial differencing steps (”Integrated” part) are used to get a

time series that has to certain degree the stationarity property 1. Then

the same formula of ARMA model is applied on the new differenced

timeseries.

• Vector Autoregressive - VAR(p): it consists in an Autoregressive gen-

eralization designed for multivariate time series.

~dt = ~µ+

p∑
i=1

Ai
~dt−i + ~εt (3.11)

where Ai is a m x m matrix with m being the number of metrics and

both ~di, ~µ and ~εt are m x 1 column vectors.

1Stationary time series if its properties do not depend on the time at which the series

is observed. More precisely, if yt is a stationary time series, then for all s, the distribution

of (yt, . . . , yt+s) does not depend on t.
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3.5.3 Deep Time Series Models

Deep Learning methods in this context make also use of the forecasting

error. Given a sequence dt−w, ..., dt−1, dt of the last w timesteps at time

t of our time series, we train a Deep model to forecast the timestep dt
given the history dt−w, ..., dt−1 as input. The predicted input d̂t will then

be compared with the real available data dt and the difference between the

two is considered as an indication of anomalousness.

We can have two variants:

• CNN forecaster: we have a receptive field sliding on the time series

just in the temporal dimension to aggregate information coming from

the same time range of different metrics. [35] is representative for

the most recent work in that direction, their method consists in a

traditional CNN trained on a forecasting objective. Nonetheless it has

been trained to detect point anomalies not windows.

• LSTM forecaster: we use the LSTM cell to learn the long term de-

pendencies of a time series to predict the output. A similar work was

already done at CERN in this direction by our colleague Ulrich [37].

However, a proper evaluation section on a real dataset with labels was

missing.

3.6 Ensemble Methods in Anomaly Detection

Mapping all the methods to a specific problem formulation, therefore making

them equivalent in terms of input-output, is beneficial both for evaluating

them in a fair way and also for exploring ways of combining them in an

ensemble method. In this position paper [38], the authors identified the

diversity of models as a requirement for the success of an ensemble method.

They reviewed different ways to introduce diversity in the ensemble:

1. Combining the same type of base detector. One technique is feature

bagging where each detector uses a different subset of features, an

example is [39]. Other alternatives to introduce diversity among de-

tectors consists in using a different subset of the dataset for train or

a different parametrization, a prominent example of this type applied

to time series outlier detection is represented by [40] that worked with

ensemble of RNN Autoencoders. One last way to achieve diversity

can be done by introducing a random component during the model

learning itself (e.g. isolation forest).
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2. Combining different base detector methods and unifying their score as

explained in [41].

The intuition behind combining different based detectors is that various

modeling strategies capture different characteristics of the data, therefore

bringing them together can be useful to mitigate their weaknesses and en-

hance their strengths, as it has been recently proved by [42] in the context

of Explainable AI.

Given the importance of the diversity among the single detector used

in the ensemble, it is crucial to have a way to assess similarity between

those detectors. Unfortunately, as already argued by [43], the AUC-ROC is

a metric based on a single final number that does not tell anything about

the similarities of different methods. Thus the same authors proposed the

Kendall’s τ ([44]) correlation coefficient to compare the ordering of rankings.

3.6.1 How to practically combine models in an ensemble

Usually all the AD algorithms returns an Anomaly Score for each sample.

This score represents in some way the degree of anomalousness of a certain

sample, but unfortunately every algorithm has its own interval and scale

of this score, therefore of the first step to merge the prediction of different

detectors is to make them comparable. Two natural approaches exist for

this purpose:

• Ranking-based: for each detector, we order the samples by anomaly

score, assign at each sample a position in a ranking system, in which

the most anomalous is the 1st and the most normal is the last; then

we combine the ranking of the various detectors.

• Score-based: for each detector we transform (e.g. translate and

scale) the anomaly scores such that the anomaly scores produced by

all detectors are in a similar range; then we combine them with an

arbitrary aggregation function (e.g. average).

The first approach can borrow techniques from the information retrieval

field and some ways to merge the ranking of the various algorithms, but

it discard the absolute information on the degree of anomalousness. For

example this causes problem when we have only normal data, but according

the ranking there will always be a sample that is the most anomalous and if

we adopt the approach of flagging as anomaly the first, this might be a false

positive by being slightly different from normal data. Another observation

in this regard is that if the algorithms is working well, we expect to have a
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large part of data with similar anomaly scores (i.e. normal data) and few of

them with high anomaly score. We would also aim at having the two groups

well separated, and we measure this accordance between the order and the

ground truth with the ROC AUC.

Combination of ranking

Given the loss of information that we have by converting the score in a

ranking, we mention just one of the most intuitive and popular strategy to

combine rankings in an ensemble:

• breadth-first [39]: it constructs a final ranking merging the single

ranking by taking the elements in the 1st position of every method,

followed by the 2nd elements of every method, and so on, up to the

last elements of the ranking. Given that the methods rank the same

elements, we have duplicate copies of the same elements appear mul-

tiple times, therefore we drop them by keeping only the first copy of

each element.

Although simple, this method has the limitation of being sensible to the

order in which we iterate on the various methods; given n AD methods in our

ensembles we have n! possible orderings and correspondent final breadth-first

results. Due to this characteristic the more the single rankings are different,

the more diverse will be the n! final ranking produced by the breadth-first

strategy.

Combination of scores

Given the flexibility on aggregating the raw outlier scores, [41] worked in

that direction proposing a two steps process to make this scores comparable:

1. regularization: to convert the score to a positive number, where close

to zero means normal instance while far from it is an anomaly.

2. normalization: to scale the scores to a similar interval, so that the

algorithms are comparable.

3. probability conversion (optional): to obtain a probability, nor-

malizing in a range [0,1]. This is useful if we want to convert the score

in an absolute range that is also more interpretable by the expert.

The challenge is that if we train on some data and we set an anomaly

score threshold value for which we consider a datapoint d to be an

outlier with probability P (d is outlier) = 1, then it become impossible
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to discern between the degree of anomalousness of test-time instances

that are above that threshold.

After these steps, we can merge the actual normalized scores form the dif-

ferent methods. We have different strategies:

• Max: it take the max score that was assigned to a sample by the

various methods; it leads in favour of the most confident method.

• Min: intuitively it gives high anomaly scores only if all the methods

agree on a high score

• Average of Maxima: it divides the methods in groups, takes the

max of each groups, and then computes the average among the various

groups.

• Simple average of the scores: consist in the statistic mean of all

the methods. savg(x) = 1
|Methods|

∑
i∈Methods si(x)

• Cumulative sum: every sample gets an anomaly score that is the

sum of all the anomaly scores assigned to it by the various methods.

scumsum(x) =
∑

i∈Methods si(x)

• Convex Linear combination: it consists in a weighted average of

the single scores, where the weights are learned by fitting a linear

regression using few labelled samples. By ensuring the convex property

(i.e. all weights sum up to 1) we enforce the resulting anomaly score

to have the same order of magnitude it had before the combination.

The authors [45] reviewed the averaging and maximization combination

strategies. From their experimental section they conclude that averaging is

a low risk-low reward approach that always reduce the variance. On the

other hand, they acknowledged that maximizing can sometimes deteriorate

performance but in other case is beneficial to emphasize extra outliers that

would have passed unseen with an averaging approach. Nonetheless the

scope of their work is limited to ensemble of base detectors of the same

species, either LOF or KNN.
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Chapter 4

Dataset Acquisition and

Annotation

As it is common in industrial settings, companies tend to have an incredibly

large data lake but very little of no labeled data. As a matter of fact, this

is also the case for CERN, where the time series data are available in large

quantities and they are produced at an impressive rate but no one has ever

invested time in preparing a curated dataset for the Anomaly Detection

task. With these premises, we created an Annotation Pipeline and made

it possible to collect an Anomaly Detection benchmark dataset on CERN

data with the two following major objectives:

• supporting the evaluation section of this scientific work with experi-

mental results on the actual CERN data;

• giving CERN, as Organization, the possibility to decide to invest in

creating new datasets that can enable future work on supervised tech-

niques.

Among the two, the primary aim of this dataset is for benchmarking the

Anomaly Detection methods under study in this thesis for the CERN use

case; this gives a clearly faster and objective way of judging the anomaly

detection system if compared to a qualitative feedback that comes after

months of extensive utilization of the system. Nonetheless the second ob-

jective is important as well because it makes CERN users think about their

monitoring infrastructure as a bi-directional interface that is not only ex-

posing information, but it gives also to the users the ability to input their

knowledge in the form of annotations of anomalies, that can function also as

a reminder for future colleagues about past problems. We understand that

this shift of approach requires time to be fully adopted by CERN users.



4.1 Need for a Dataset: Research Field Perspec-

tive

By reviewing a selection of surveys and publication in the field of anomaly

detection for time series data [5, 46, 14, 47], we have noticed that every

paper validates its new method on its own small restricted dataset. This

has been recognized also by the authors of the USR data repository [48]

as a crucial lack for the time series/signal processing community. Indeed

the scarcity of publicly available datasets is even more evident if compared

to other fields like Computer Vision (ImageNet Dataset [17]) and Recom-

mender Systems (The Netflix Prize Challenge [49]) in which the collection

of huge and well created datasets gave a clear boost to the respective re-

search communities. In this regard, we firmly believe that the work done

for the dataset acquisition during this thesis is the first step to allow the

creation of a bigger and more ambitious CERN dataset. Indeed also other

world-recognized organization like NASA were able to achieve this in the

past [50]. The ambitious aim is to release a dataset that can possibly lead

to a less fragmented evaluation section in the various research papers and a

more fair comparison among different methods with a hope to advance the

research field.

4.2 Extension of Grafana Annotation

Among the technologies present in the Monitoring Infrastructure, Grafana

is the platform of reference for the expert to visualize the Time Series data

coming form the hypervisors.

”Grafana is a multi-platform open source analytics and interactive

visualization web application.” Wikipedia

”Grafana allows you to [...] create, explore, and share dashboards

with your team and foster a data driven culture.” Grafana.com

Since we want to make it possible for the experts to input annotations in

an easy and intuitive way, we select the Grafana platform that experts use

on daily base for the annotation purpose. As a matter of fact, selecting a

familiar tool like Grafana can possibly lead to a faster adoption of annotation

practices by the CERN experts.

We can formalize our requirement as:
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Requirement: the user should be able to insert ”anomalous” and

”normal” annotations when looking at the time series of an hypervisor

and be able to trace back every annotation to its specific hypervirsor.

4.2.1 ”Connecting the dots”

Grafana is organized in dashboards that correspond to web pages where the

user can visualise the data in a predefined way. For our particular CERN

scenario, a single dashboard collects and visualises multiple time series data

belonging to different hypervisors by means of a drop-down menu where the

expert can select the hypervisor he wants to inspect. In Grafana, the current

value of this drop-down is called Template Variable 1.

Feature 1: With a single dashboard the expert can visualise multi-

ple hypervisors, once at the time, changing the values of the Template

Variables.

After careful review of the documentation we found that Grafana pro-

vides a native support for point and interval annotation on time series data

in the Grafana Annotation functionality 2. An annotation consists in a start

and end time of the interval plus an optional textual description and optional

set of keyword that serve as tag for your annotation. Every annotation is

dashboard specific and it is saved in the Grafana back-end database. We

can therefore query Grafana to have all annotations related to a specific

dashboard.

Feature 2: The expert can add interval annotations, that are dash-

board specific. Moreover those annotations can be described by tags,

and then based on those tags we can then query annotations.

With dashboard specific annotations, if we use the same dashboard to

visualise multiple hypervisors, and we put an annotation while inspecting

data of one of them, then the same annotation is visible also when inspecting

1Grafana Template Variable: https://grafana.com/docs/grafana/latest/

variables/templates-and-variables/
2Grafana Annotation functionality: https://grafana.com/docs/grafana/latest/

dashboards/annotations/
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other hypervisors. In addition, we will not have a way to retrieve all the

annotations inserted while the specific hypervisor was visible.

A first possible solution consists in enforcing the user to manually insert

tag with the name of the hypervisor it refers to for every annotation, but it

is clearly just a first rudimentary solution to the problem, since we have the

following drawbacks:

• tedious and time inefficient;

• error prone due to mistyping.

Naive Solution: enforce the expert to add the hypervisor’s name

to every annotation by hand as tag (tedious and error prone).

Therefore we wanted to fill this gap and find an better solution to ease

the work of the expert. Given these premises, we decide to extend the

Grafana functionality to automatically append the hypervisor’s name as tag

with a one-click procedure. We implemented this adding two buttons to the

Annotation form (Figure 4.1) in order to automatically flag the annotation

with a tag ”anomaly” or ”normal”. In addition the triggered JavaScript

code has been extended to append all the template variables of the Grafana

dashboard as tags in the Annotation database.

Our solution: it automatically appends info the current value of the

template variables of the dashboard (including the hypervisor’s name).

Having access to the open-source code of Grafana 3 we could verify that

the only needed change was on the client-side JavaScript, leaving the back-

end written in GO untouched. The advantage of the developed solution,

purely client-side, is to prototype it and enable it as a local override in

the user web browser, without having to ask for an entire redeployment of

Grafana at CERN. The core code modification is available in Appendix C.1,

whereas the complete version is available in our data-analytics repository 4.

Soon we realised that this modification could be of help in all those cases

in which we want our annotation to depend not only on the dashboard but

3Official Grafana Repo: https://github.com/grafana/grafana
4Full code modification available at the following link: http://go.web.cern.ch/go/

Jjb6
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Figure 4.1: Modification introduced in the Grafana Annotation interface. Template

Variables are automatically appended as tags.

also on the Template Variables’ values that modify the plotted data. There-

fore we also started a discussion with the Grafana upstream community for

the generalization of our extension for other use cases 5.

4.3 Dataset Creation

Once the annotations are available in Grafana, we can extract them using

the Grafana HTTP API 6, to create an offline, standalone labelled dataset.

Since we leave to the expert the freedom to decide which interval to anno-

tate without forcing him to annotate always contiguous portions, we had to

design how to convert the Grafana annotated intervals in anomaly labels.

We evaluated two options:

1. label every data point in the Grafana annotated intervals;

2. divide the Grafana annotated intervals in chunks of of a given time

length.

Given our problem formulation, that partitions Time Series in time windows,

we decided for the second option. Therefore we converted each Grafana

annotation in window annotations of the predefined length of a time window,

that generally is 8 hours long, and generates three non-overlapping intervals

5Discussion upstream about our Grafana Annotation extension: https://github.com/

grafana/grafana/issues/24674
6Grafana Annotation HTTP API: https://grafana.com/docs/grafana/latest/

http_api/annotations/
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per day: 00:00 - 08:00, 08:00 - 16:00, 16:00 - 00:00. All the possible window

annotation configurations and relative annotation resolution strategies are

shown in Table 4.1.

Window Anno-

tation Case
Description Resolution Strategy

Completely anno-

tated

We have only one type

of expert annotation

(anomalous or normal)

that covers the window

entirely.

We label that window

as anomalous or normal

respectively.

Completely not

annotated

The window do not con-

tains any annotated in-

terval by the experts.

We label the window

with a special place-

holder (e.g. NaN) to

represent that we do not

have any annotation for

it.

Contains only one

type of annota-

tion

The window contains

one or more annotated

intervals of the same

type and other portions

that are not annotated.

We label that window

with the type of anno-

tation(s) present in that

window.

Both

The window contains

both anomalous and

normal annotated

intervals.

Regardless of their

length, sequence of

appearance and over-

lapping, we label the

windows as mix

Table 4.1: Declarative description on how we convert the intervals inserted by the

expert (with an arbitrary start and end) into window annotations with predefined start,

end and length.

4.4 Datasets Description

Given the presence of two clearly distinct user categories we also committed

in creating two different benchmark datasets: one for a Batch group and one

for a Shared group. Next we summarize the salient characteristics of the two

labelled window Dataset showing the resulting labels distribution given the

resolution strategy proposed in Table 4.1. We recall that this datasets are
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based on the window length of 8 hours and to each window is assigned a

label among the following: anomalous, normal, mixed or empty.

4.4.1 Batch Group

For the group of Batch hypervisors we annotated 25 of them and the prob-

lems exhibited by the machines were related to high or low CPU load, swap

misconfiguration or abnormal memory activity. The interval annotated start

from the 13th of February 2020 and end on the 11th August 2020, for a total

interval of 180 days. In Figure 4.2 we present an overview of the various

classes involved, whereas in the Appendix Figure A.1 we present a heatmap

giving a visual overview of all the annotations for the Batch group scenario.

Figure 4.2: Statistics of Annotation Labels for Batch Openstack Cell: blue = normal,

orange = anomaly, black = mixed, white = empty interval.

4.4.2 Shared Group

For the Group of Shared hypervisors we annotated 73 of them and the

problems showed by the machines were related to high or low CPU load,

abnormal Context Switch activity or high I/O memory operations. The

interval annotated starts from the 1st of January 2020 and ends on the 12th

August 2020, for a total interval of 224 days. In Figure 4.3 we present an

overview of the various classes involved, whereas in the Appendix Figure

A.2 we present a heatmap giving a visual overview of all the annotations for

the Shared group scenario.
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Figure 4.3: Statistics of Annotation Labels for Shared Openstack Cell: blue = normal,

orange = anomaly, black = mixed, white = empty interval.

4.5 Artificial Setting Creation

Given the effort required to create the dataset of labeled anomalies, in the

first stage we relied on an artificial anomaly setting for the evaluation of

the various methods. We exploit the presence of two user categories: Batch

hypervisors and Shared by user/service hypervisors.

The idea is to train the models only on historical data of Batch hypervi-

sors and then test them on unseen future windows of data where we inject

some hypervisors from the other Shared category.

The goal of the algorithm trained only on Batch hypervisors is to assign

a high anomaly score to the hypervisors coming to the Shared category

considered another real world generating process, and a low anomaly score

to the Batch hypervisor sampled form the same generating process.

We took inspiration from the previous work of [51] where they identified

few characteristics that a good AD benchmark should have:

1. Normal data points should be drawn from a real-world gen-

erating process. We achieved this by using real data coming from a

different user category.

2. The anomalous data points should also be from a real-world

process that is semantically distinct from the process gen-

erating the normal points. This is guaranteed by the substantial

difference in the usage patter of the two categories.

3. Many benchmark datasets are needed. This is ensured by the

large quantity of data available and the virtually infinite combination

of Batch and Shared data.
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4. Benchmark datasets should be characterized in terms of well

defined and meaningful problem dimensions that can be sys-

tematically varied. This can be obtained by varying the metrics as

input, that can be up to 170 metrics with 2170 possible combinations.

For reason of complexity of the problem this option was not pursued,

but in alternative we used the similarity between hypervisors of Batch

and Shared cells as an indicator of difficulty.

In practice we also explored one way of controlling the difficulty of the

task:

• Similarity-based injection. At test time we inject only Shared hy-

pervisors that are similar to the training data, namely Batch hyper-

visors. This is obtained by means of dot product similarity function

between hypervisors’ windows. Before computing the similarity we

assure that every hypervisor vector is normalized with norm(~h) = 1

where ~h is the vector representing one hypervisor.

• Standardization of metrics. In order to make Batch and Shared

more similar and hence increase the difficulty we normalized the input

data of both with respect to their own mean and variance so to obtain

vectors of metrics with zero mean and variance one. We explored also

the option to change only the mean and keep original variance.

Given the availability of real CERN datasets, this artificial setting is used

mostly in an exploratory way and the details about the procedure adopted

are explained in the Section 7.3.
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Chapter 5

Anomaly Detection Solution:

System Engineering

Nowadays the main use of the CERN monitoring infrastructure is for (i) real-

time inspection of the Data Center status, (ii) threshold-based alarming on

the infrastructure components, (iii) and post-mortem analysis of issues after

notifications by CERN users. The adopted threshold-based alarm mecha-

nism is in part embedded in Grafana, the CERN monitoring platform, and in

part developed in a number of sensors running in each infrastructure entity.

In order to increase the level of automation in Anomaly Detection and relieve

the system managers from this complex task, a new flexible Anomaly Detec-

tion system, based on Machine Learning approaches, is therefore envisaged

and prototyped for the CERN Cloud Infrastructure. In this Chapter we ex-

plain the main design choices and technologies behind the system, together

with a detailed explanation of the data preparation procedure necessary for

the Anomaly Detection methods discussed in the next Chapter.

5.1 System Design Challenges

Given the clear necessity of a more Machine Learning aware Anomaly Detec-

tion System, the first part of my work at CERN consisted of putting in place

a Proof-of-Concept system infrastructure. Indeed no Machine Learning is

possible without data, and the challenges at CERN were several including:

• Big Data processing: the input data are stored in Hadoop Dis-

tributed File System (HDFS) folders and each of them occupy a space

in the order of Terabytes (Figure 5.1). Therefore we require a scalable

approach to prepare them for our algorithms.



• Integration with the Monitoring Infrastructure: the system

must be able to communicate with the rest of the infrastructure al-

ready in place at CERN, not only in terms of input, but especially in

terms of results produced, i.e. candidate anomalies discovered by the

algorithms. The system must be able to publish them in the monitor-

ing infrastructure so that the experts can inspect them and can take

action.

• Reproducible analysis: the entire system must keep track of the

operations executed on the ingested data from the start to the end of

the pipeline. In this way a candidate anomaly has a clear provenance

and the computation that led to it can be reproduced.

Figure 5.1: Space Occupied by Collectd Plugins. We report the total space occupied

by every Collectd Plugins in HDFS. Every plugin is typically containing more than one

metrics and for all the hypervisors at CERN since 2018.

5.2 Core Technologies and their Scope

To face these challenges we relied on the following core technologies and

solutions:

• Apache Spark for the Data Preparation: we employed the CERN

Spark cluster to read data from HDFS and pre-process them.

• ElasticSearch as document storage: we designed a document

format in JSON to store all the information describing a candidate

anomalies produced by our system. Details about this format can be

found in Appendix C.2.

• ElasticSearch and Grafana for publishing candidate anoma-

lies: we designed the above mentioned document format also to be
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compatible with the visualization platform Grafana, so that the can-

didate anomalies found by the algorithms are directly visible as anno-

tated intervals in every dashboard that displays the anomalous time

series.

• Grafana Extension for improved interactivity: we design and

implemented an extension to the Grafana platform (Section 4.2) to let

CERN colleagues insert their annotations directly on top of the time

series they see via the monitoring infrastructure.

• Apache Airflow to automate the result production: we use

Aiflow to code the tasks performed by the system in a Direct Acyclic

Graph (DAG). In this way every step is well documented and it is

possible to reproduce the analysis or to automate it by running it

periodically on different data as input.

5.3 Anomaly Detection Pipeline

The overall system is represented in Figure 5.2 and it reaches its goals by

implementing a process composed of the following steps:

1. Read the data from the Hadoop Distributed File System (HDFS),

where the metrics of every hypervisors are safely stored by the moni-

toring infrastructure (code in Appendix C.3.1);

2. Prepare the data by filtering the group of hypervisors under analysis,

aggregating with the mean function in bin of x minutes for creating

Discretized Time Series of every metric (Definition 2.5.1) and creating

the Multivariate Temporal Window (2.5.3);

3. Analyze the time series window with the Anomaly Detection algo-

rithms;

4. Aggregate the predictions of the single algorithms (optional) thanks to

an ensemble layer to increase the confidence on every prediction and

reduce false alarms as much as possible;

5. Push the candidate anomalies to ElasticSearch storage and visualise

them in Grafana;

At the end of the chain the expert can also annotate normal or anomalous

data directly on the Monitoring Dashboard in a faster and easier way thanks
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to the proposed modification to Grafana (Section 4.2). Moreover, the anno-

tations collected from Grafana can be quickly extracted to create annotated

dataset, as those proposed in Section 4.4 by us.

Figure 5.2: Anomaly Detection Pipeline with Expert feedback. Note that the experts

can see the result of the algorithms directly in the Monitoring infrastructure via the

used dashboard and interact for an easy and fast labelling procedure.

In the context of Figure 5.2 with Feedback loop we refer to the possi-

bility of using the small annotated dataset for other purpose than the mere

benchmarking of the algorithms, for example this dataset can be used to

develop a supervised ensemble logic layer to combine prediction from mul-

tiple algorithms or for exploring work in the field of Active Learning, that

we leave as future work.

5.4 Data Preparation

The Extraction-Transformation-Load (ETL) procedure summarized with

the Apache Spark block in figure 5.2 incorporates multiple steps and it

includes important design decisions heavily dependent on the specific algo-

rithms that we use in the Data Analytics core presented in the Chapter 6.

Before starting with a careful description of every step we summarize in Ta-

ble 5.1 all the temporal scales of the analysis chosen in Section 2.6. In Table

5.2 we summarize instead the names of the metrics used together with the

Collectd plugin that is responsible for their production.

5.4.1 Discretization of Time Series

The rate at which every metric is produced by an hypervisor and goes into

the monitoring infrastructure is unpredictable because of network or pro-

cessing delays. In addition, different configurations for different sensors are

46



Variable Description Chosen Value

w Window Length 48 (nr timesteps)

x Temporal Length of one timestep

summarized in a single data point.

10 (minutes)

m Number of metrics used in a window

of analysis.

11 (metrics)

Table 5.1: Temporal Scales of Analysis. We refer to the same nomenclature of Section

2.6

Collectd Plugin Metric’s name

CPU cpu percent idle

CPU cpu percent system

CPU cpu percent user

Interface interface if octets tx

Interface interface if octets rx

Load load longterm

Memory memory memory free

Swap swap swapfile swap free

Swap swap swapfile swap used

VMEM vmem vmpage io memory in

VMEM vmem vmpage io memory out

Table 5.2: Selected Metrics and their Collectd plugin of origin.

directly responsible for different production rate of the relative timeseries.

Therefore in these cases we have an unbalanced situation with many more

readings for a sensor with respect to the others. As mentioned in our mod-

elling part (Section 2.5), we decide to convert every time series in a Dis-

cretized Time Series (Definition 2.5.1). In practice we aggregate our data

per machine and per sensor in non overlapping intervals of 10 minutes and

we keep the statistical mean of the sensor’s reading in that temporal range

as summary. The implementation has been done in a distributed way using

the Spark DataFrame API and is available in the Appendix C.3.2.

5.4.2 Input Normalization

The metrics collected by the hypervisor’s sensors carry specific information

such as memory available, CPU usage, disk operations, network activity.

Each of them represent a different quantity that might be a percentage, a
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real or discrete value, and most importantly they have typically many order

of magnitudes of difference, for example CPU load represents a percentage

(between 0 and 100) whereas SWAP space free is in the order of Gigabytes,

namely 109. This difference in scale of the various metrics is harmful for some

anomaly detection algorithms since they will erroneously weight more the

metrics with higher value, in particular those that use distance measures like

LOF and KNN. We therefore normalize the data based on our training set

and separately for every metrics. In particular we standardize by removing

the mean and dividing by the standard deviation:

xnormalized =
x− µm√

σm
(5.1)

where m is an hypervisor metric and µm, σm are respectively mean and

standard deviation of that metric computed on the training set (one week

of data) and considering all the hypervisors together. The implementation

of this step is available in the Appendix C.3.3.

5.4.3 Minimal Unit of Analysis

Every algorithm is design to take as input a single Multivariate Temporal

Window (Definition 2.5.3) at a time and produce an anomaly score; this

window refers to a specific hypervisor and a specific time interval covered

by the window itself. Given the differences between traditional Machine

Learning method and Deep Learning ones, we adapt the input based on

the methods. In particular, the vast majority of the traditional methods

(Section 3.3) are not able to model the temporal dimensional, therefore we

propose two distinct input data formats:

• greymap representation: that corresponds to the matrix representation

described in Definition 2.5.3. Here the temporal dimension is preserved

in one axis of the matrix.

• vectorized representation: where all the different metrics and their

timesteps present in the window are flattened and each timestamp of

each metrics becomes a simple feature of our datapoint.

In particular we use the greymap representation for algorithms that can

model the temporal dimension (AECNN, AELSTM, FORVAR, FORCNN)

and the vectorized representation for those not able to model it (OCSVM,

LOF, KNN, PCA, IFOR and AEFC). We also refer to methods taking the

vectorized representation as static anomaly detection methods because they
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are suitable for all kind of dataset with features without taking into account

in any way the temporal information.

In both cases the input contains the same amount of data, it consists in

a temporal window of data containing w time steps in the past and m time

series related to the same same hypervisor. The window length is w = 48

where every time step summarizes 10 minutes of data with the mean. In total

every window represents the last 8 hours of metrics for a specific hypervisor

as described in the Problem Formulation with the concept of Multivariate

Temporal Window (Definition 2.5.3).

5.4.4 Greymap for TimeSeries AD Algorithms

The greymap representation corresponds to what we think as the most nat-

ural representation of a time window, that is the matrix representation

described in our Problem Formulation as Multivariate Temporal Window

(Definition 2.5.3). Each row contains the values of a single metric in that

window of time and therefore the columns refers to subsequent timesteps

of the sensors’ values. We report here the version given by the Definition

2.5.1 declined with the specific number of metrics (m=11) and timestamps

(w = 48) we are considering in our pipeline:

greymapi =


d1i d1i+1 · · · d1i+47

d2i d2i+1 · · · d2i+47
...

...
. . .

...

d11i d11i+1 · · · d11i+47

 (5.2)

The name greymap comes from the visual representation we adopt to inspect

data with a heatmap plot (Figure 5.3).

Figure 5.3: Greymap representation. It consists in a heatmap that represents the

timeseries input for a single hypervisor, each row is the timeseries of one of the many

timeseries M metrics considered in this multivariate setting (in this case, M = 11).

Each column represent the past timesteps in a window of length w (in this case, w = 48).
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5.4.5 Vectorization for Static AD Algorithms

In alternative, for methods that are used to one dimensional input we have

to discard the temporal information and condense all the data from different

metrics (i.e. rows) in a single vector. We call this procedure vectorization

and the resulting encoding a vectorized encoding of our window. By apply-

ing this process, we accept to lose some information since we do not have

anymore a direct representation of time in this representation. The final

formalization of this vector is the following:

vectorizedi = [d1i , d
1
i+1, · · · , d1i+47, · · · , d11i , d11i+1, · · · , d11i+47] (5.3)

5.5 Production Implementation with Apache Air-

flow

We adopt Apache Airflow 1 as the main orchestrator for all the steps of

our pipeline. It is an open-source workflow management platform initiated

by Airbnb in October 2014, where a workflow can be defined asa Directed

Acyclic Graphs (DAGs). Each node of the DAG represents a step in the

piplene and is implemented with an Airflow operator 2. In Figure 5.4 we

see our implementation and the Bash Operator node used to schedule bash

commands. Moreover Airflow can handle also repetitive analysis scenarios,

where a predefined number of tasks has to be repeated every fixed amount

of time. In particular for our experimental part we repeated the analysis

every week, visible in Figure 5.5. The steps encoded are the following:

1. prepare the configuration file containing the information about which

group of hypervisors we want to monitor, metrics we want to consider

and interval for our training set and testing set;

2. download the training data and normalize them by computing and

storing the normalization coefficients for every metric;

3. download the testing data and normalize them with the normalization

computed on the trainset;

4. run the analysis on the downloaded data, with train on the trainset

and test on the testset;

1Apache Airflow Project Description: https://airflow.apache.org/docs/stable/

project.html
2Airflow Operators: https://airflow.apache.org/docs/stable/_api/airflow/

operators/index.html
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Note that every step, apart from the configuration files’ preparation is run in

a Docker container environment to have a precise definition of the libraries

necessary in every step. In addition the last step has two possible optional

outputs for the anomaly score, they can either go to the real monitoring

infrastructure via a Fluentd 3 logging driver attached to the container or

either be saved in a local file for benchmark production.

Figure 5.4: Airflow Production DAG. Direct Acyclic Graph representing the

task done for analysing one week on data with the various algorithms. Note

that the step of data preparation is split in two sub steps (download *,

movelocally ∗), becausetheaggregationhappensonlyinApacheSparkgiventhelargevolumeofdataprocessedandonlythenthedataismovedtothelocalmachineforanalysis.

3Fluentd is an open-source data collector for unified logging layer. More info can be

found here: https://docs.fluentd.org/
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Figure 5.5: Airflow Recurrent Analysis. Recurrent analysis happening for every week of

data in a Batch group of hypervisors.
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Chapter 6

Anomaly Detection Solution:

Data Analytics Core

The main component of the system described in Chapter 5 is the Data An-

alytics core that contains the actual algorithms and methods to discover

anomalies. We select both Anomaly Detection methods related to tradi-

tional Machine Learning (ML) and Deep Learning (DL). For each of those

category we also propose one method that is specific for time series. They

are summarized in Table 6.1 and they are divided in the two families.

Traditional ML Deep Learning Based

One Class SVM (OCSVM) AutoEncoder Fully Connected

(AEFC)

Local Outlier Factor (LOF) AutoEncoder with CNN (AECNN)

Isolation Forest (IFOR) AutoEncoder with LSTM (AEL-

STM)

Principal Component Analysis

(PCA)

Forecaster based on CNN (FOR-

CNN) - Time Series Specific

K-Nearest Neighbors (KNN)

Forecaster based on Vector Autore-

gression (FORVAR) - Time Series

Specific

Table 6.1: Summary of methods under study divided in the two main categories: Ma-

chine Learning and Deep Learning. In addition the last line refers to methods specific

for Time Series Anomaly Detection.

The idea of including traditional Machine Learning methods is also moti-

vated by the presence of a vast amount of literature in the Outlier Detection



methods for non temporal data. Testing their performance and suitability

for the CERN use case is crucial to justify the usage of more powerful but

computational intensive methods. For the implementation point of view,

since CERN requires solid software tools for a production environment we

select the reliable and well tested PyOD library 1 that is also attracting

interest of both industry and academia [52].

6.1 Train Set and Test Set

For our training and test dataset we decided to work on weeks of data with

our choices summarized in the Table 6.2, with one week for train and one

week for test. This procedure is then repeated for every couple of consecutive

weeks of the two curated CERN datasets. During train we fit our models

with data in an unsupervised way. Deep Autoencoder models learn their

reconstruction objective: AEFC, AECNN, AELSTM. Forecasting methods

fit the data to get a low prediction error. PCA learns the projection, KNN

and LOF keep the samples in memory for comparison at test time. Moreover

we also store the mean and standard deviation of every input metric data,

that we then use to normalize all the training data of the train week. We

also save the mean and standard deviation of the anomaly scores computed

on the train week.

At test time we normalize the metrics data of the test week with the mean

and standard deviation of the week of train, so that the metrics are in a

similar range, then we apply the algorithms and get an anomaly score for

every windows in the test week.

6.2 Normalization Anomaly Score

An important design choice common to all algorithms is the Anomaly score

normalization. We normalize the test anomaly scores with the mean and

standard deviation of scores obtained on the train week. Here we assume

that this statistical quantities remain quite stable from a week to the next

one, in particular for the normal instances. We do this step to guarantee

that all the methods get more or less the same range of anomaly scores and

the comparison between them is in the same scale. This is also beneficial

for the ensemble strategies that will combine similar quantities.

1Python Outlier Detection https://github.com/yzhao062/pyod
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Variable Description Chosen Value

tmp(Xtrain) Temporal length of covered by the

training dataset.

1 (week from

Sunday at 00:00

to Saturday at

23.59)

tmp(Xtest) Temporal length of covered by the

testing dataset. Note that the time

of testing is always directly tem-

porally contiguous to the training

dataset.

1 (week from

Sunday at 00:00

to Saturday at

23.59)

Table 6.2: Temporal Scales of Analysis. We refer to the same nomenclature of the

Problem Formulation

6.3 Novel Time Series Methods

Beside the adaptation of traditional outlier detection methods we propose

also adaptation of forecasting methods introduced in the Section 3.5.1 to

our Problem Formulation. They are usually performant in detecting point

anomalies, namely when a single point is anomalous in the entire time series.

Nonetheless in our formulation we are aiming at labeling regions (i.e. win-

dows) of the time series that are showing an unexpected behavior. Therefore

we adapt them by aggregating the anomaly score for each point in the win-

dow in a single anomaly score using the summation of prediction errors on

different time steps:

sforecast(Wm,w) =
w∑
i=1

m∑
j=1

(dji − d̂
j
i )

2 (6.1)

where i is the temporal index among the w timesteps of the window Wm,w, j

refers to the m metrics of our multivariate scenario and d̂ji is the prediction

of the model produced from the historical data preceding the ith timestamp.

6.3.1 Forecasting with VAR

Among the traditional Time Series models introduced in 3.5.2, we choose to

use the Vector Autoregressive (VAR) model for our CERN use case, since it

works on multi-time series scenario and the prediction of a metric’s value can

be dependent on the past values of other metrics too. One limitation of the

VAR model is that it can only learn from complete timeseries belonging to

the same hypervisor. It is not trivial to decide how to learn parameters from
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windows belonging to different hypervisors. Our solution consists in creating

an ensemble of models, each of them learned on a different single hypervisor

and to contain the computational cost we learn only on a random subset of

the hypervisors in the group. Then at test time we use those single model

together to asses the abnormality of all the hypervisors in the groups, even

those for which we did not learn a specific model. In this way we assume

that the selected subset of machine is a good representation of the normal

behaviour and we expect it to generalize well also on new unseen hypervisors.

The order of a single model is set once and for all the models in the

ensemble to p = 2 by minimizing the Akaike information criterion (AIC),

that is a measure of quality of a predictor that rewards the goodness of

fit but considers also the complexity of the model in term of number of

parameters to estimate. This is the formula:

AIC = 2k − 2ln(L) (6.2)

where k is the number of parameters and (̂L) is the likelihood of the model

on the data.

Given an ensemble model composed of c = 20 individual models learned

on the same number of hypervisor, we have two levels of aggregation for the

creation of the anomaly score:

• window-level: each single VAR model is given 2 timesteps of history

in our window and predicts the next timestep. Then we compute the

euclidean distance between prediction and the actual data to find an

error measure. Since our window is W = 48 timesteps long we repeat

this for 46 times. The first aggregation level consists in summing all

the errors of the various timestep to create an overall anomaly score

for this window.

• models-level: the presence of c = 20 models will give us c different

window-level anomaly score that we aggregate them taking the mean

The overall formula is the following:

sV AR(Wm,w) =
1

c

c∑
i=1

w∑
j=p

(V AR modeli(Wm,w(j − p, j))−Wm,w(j))2 (6.3)

where c is the number of models in the ensemble, p the order of the VAR

model, V AR model(·) is the prediction of one model, Wm,w(a, b) is the Mul-

tivariate Temporal Window matrix (Definition 2.5.3) from column in posi-

tion a to position b excluded and Wm,w(a) is just the column at position a

of that windows.
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6.3.2 Forecasting with CNN

We employed a model inspired by LeNet [53], with few layer of CNN followed

by a funnel of densely connected layer. In a given window with W timesteps

and m time series we represented it as an image, that we defined greymap

in Section 5.4.4.

The convolution operation has a certain receptive field of dimension 3·m,

so that every convolution operation can take information from all the other

m timeseries as well from the neighbouring timesteps.

Figure 6.1: CNN Forecaster architecture

Figure 6.2: Sliding predictions that can be done on a single greymap. Here we show 3 of

the total 42 pairs of Input-Output squares that are used to produce the reconstruction

error.

Online Anomaly Detection method focused on point anomalies would

use the entire window of w − 1 timesteps to forecast the current timestep

with the CNN model, but since we are interested in anomalies appearing in

the entire window we adopted a different approach. Instead we trained the

Neural Network model by feeding a shorter segment of the image with H

consecutive timesteps (where H < w) and then predict the next timestep
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after the shorter chunk of length H. The model prediction is then compared

with the real value to compute the prediction error. Then an overall anomaly

score is created by summing all the prediction errors in the window. We

are intuitively applying the same approach used for point anomalies but

replicated for every timestep of the window. A typical example where we

have w = 48 a reasonable value could be H = 6.

(a) Convolutional Operation (b) Max-Pooling

Figure 6.3: Details about the convolutional and max-pooling operations used in the

proposed network.

6.4 Autoencoders for Time Series Modelling

As described in the Background 3.4.1 the most popular Deep Learning ar-

chitecture is the Autoencoder, therefore, taking inspiration from previous

literature [29, 30, 32, 35], we propose our simple versions of those Autoen-

coder variants.

6.4.1 Fully Connected Autoencoder

We propose a fully connected neural network architecture with 1 input layer

to take our vectorized representation as input, 3 hidden layers to implement

the bottleneck principle and 1 output layer to produce another vector with

the same dimension of the input. A indicative representation is given in

Figure 6.4 We adapt the PyOD implementation of this method to work

with the latest version of TensorFlow 2.1.

6.4.2 CNN Autoencoder

We propose an architecture made of an alternation of convolution and max

pooling operations for the encoder part and convolution and up-sampling

for the symmetric decoder side. As anticipated, the input of this method
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Figure 6.4: Fully Connected Autoencoder architecture. It is made of five dense layer

of 528, 64, 32, 64, 528 neurons respectively. Note that the number of neurons is just

smaller to avoid cluttering the diagrams with edges.

is the greymap representation that serves as an image in our case, but con-

trary to usual kernels used for traditional image processing we designed our

convolutional kernel to dimensions able to cover all the metrics when sliding

in the temporal dimension. Moreover, for the input reduction with max

pooling operation we reduce the dimension of the area span by it so that it

summarizes with the max only pixel from the same metrics. We keep avoid

to put more layers to keep the training relatively fast. Figure 6.5 shows the

details of the architecture.

Figure 6.5: CNN Autoencoder architecture

6.4.3 LSTM Autoencoder

We design an architecture made of two LSTM layers that with hidden state

of dimension 10. We keep this representation relatively low to ease the

train and also because we want to enforce the bottleneck principle in this

way. Figure 6.6 shows the overall architecture and also the hidden states

movement.

59



Figure 6.6: LSTM Autoencoder architecture. Note that the blue hidden state is just

the last hidden state of the pass in the first layer and it is repeated to match the number

of timesteps (48), whereas the second LSTM layer is producing different hidden layers

and from each of them we produce a timestamp in the output image (that corresponds

to a column). Note that the reconstructed image shown as output is the ideal situation

and it has not been produced by our algorithm in the real use case.

6.5 Ensemble

Thanks to the normalization of anomaly scores explained in Section 6.2 we

explore the way to combine the prediction produced by different models.

Indeed this normalization steps corresponds to the one described by [41]

and introduced in Section 3.6.1; it converts all the anomaly scores in the

same intervals so that they are comparable in size. We explore some of the

aggregation techniques introduced in the Section 3.6.1: max, min, median,

average.

6.5.1 Linear Regression Ensemble

In addition we propose a novel combination technique that makes use of some

annotated labels. We call it Linear Combination and consists in fitting a

linear regression classifier that combines the scores form different methods

learning a linear combination of them based on some labels:

ENS−LINREG(Wm,w) =
∑

m∈Methods

cm · sm(Wm,w) (6.4)

where cm is the weight learned by the Linear Regression and assigned to

method m, whereas sm(Wm,w is the anomaly score assigned by method m

to the window Wm,w. In particular it can be sees as higher level learning

procedure since we learn how to combine predictions made by other learners.

Note that we use 10 days of the two curated datasets of Batch and

Shared hypervisors learn the regression coefficients and then we remove those

windows of data from the computation of the performance metrics.
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Figure 6.7: Linear Regression Ensemble. We can see the various anomaly score pre-

diction matrix of the single algorithms on the Batch case. Every matrix represent the

anomaly scores of the single hypervisors, corresponding to columns, through time, rep-

resented by the vertical axis. The linear regression coefficients are learnt form the first

days of the ground truth labels.
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Chapter 7

Experimental Settings

Given the interest in the CERN use case the focus is on assessing the per-

formance on CERN data. We identify two scenarios:

1. Experiment A: Two Curated Annotated Dataset from CERN:

collected thanks to the new functionalities and user interface intro-

duced with our extension to the Grafana CERN monitoring dashboard.

They are collected by CERN domain experts on one Batch Openstack

Cell and one Shared Openstack Cell as described in Chapter 4.

2. Experiment B: Artificial Anomalies: following the directives of

[51] we combine time series coming to two different real world process

representing the two user categories introduced in the Problem For-

mulation. The Batch time series are considered normal data, while the

more irregular and diverse Shared time series are considered anoma-

lous. For details refer to the description given to 4.5.

Another option present in the literature [47] is the Server Machine Dataset

(SMD), but it is not compliant with our problem formulation since it has

been designed for point anomaly detection.

7.1 Figure of Merits

Every method under study produces an anomaly score, therefore by apply-

ing a threshold as explained in 2.4 is evaluated with the same performance

metrics of a binary classifier, where the positive class is represented by la-

bel 1 and corresponds to an anomalous instance, whereas the negative one

corresponds to label 0 and means normal instance. We therefore define the

following four quantities:



• True Positives (TP) or True Alarms: number of anomalous hypervisors

that the algorithm correctly identifies as anomalies.

• True Negatives (TN): number of healthy hypervisors that the algo-

rithm correctly identifies as normal.

• False Positives (FP) or False Alarms: number of healthy hypervisors

that the algorithm wrongly identifies as anomalies.

• False Negatives (TN): number of anomalous hypervisors that the al-

gorithm wrongly identifies as normal.

Those four situations are summarized in the Figure 7.1, then with those we

build the derived metrics described in the sub sections that come next and

summarized in the table.

Figure 7.1: Main metrics to evaluate a binary classifier. On the left we see a group of

machines represented by robot icons, it can be either normal or anomalous. Then the

binary classifies can declare it as normal (blue circle) or anomalous (orange circle). On

the right we have the four possible situations where the algorithms is good at spotting

anomalies (True Positives) or normal data (True Negative) and where it is bad, spotting

false anomalies (False Positive) or false normal data (False Negative).

7.1.1 Receiver Operating Characteristic

In this alarming context the most relevant metrics for assessing the per-

formance of an Anomaly Detection method is the False Positive rate since

the expert do not have enough time to cope with many False Alarms given

the limited amount of time. Comparing also to similar literature [54], the

Receiver Operating Characteristic (ROC) is the tool used to compare the

methods under study in terms of True Positive Rate (TPR) and False Pos-

itive Rate (FPR). The ROC consists in plotting the TPR on the y-axis and

the FPR on the x-axis for different values of thresholds for the anomaly
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scores to discern between normal and anomalous. They are computed with

the following formulas, where P and N are respectively the total number of

anomalies and normal data:

TPR =
TP

TP + FN
=
TP

P
(7.1)

FPR =
FP

FP + TN
=
FP

N
(7.2)

The main reason for using it in this context is that we do not have to

choose a threshold for every algorithm but we can compare their performance

with various threshold values. In addition we also use the Area Under the

Curve (AUC-ROC) to summarize the performance of the algorithms in a

single number. It consists in the integral of that curve and therefore the

possible values ar in the range (0, 1) with 1 being the best. Even though

some limitations have been reported for specific contexts [55], we still believe

it is a good indicator to consider together with other metrics.

7.1.2 Precision, Recall, F1 Score

Other indicators we import from the Information Retrieval literature are the

following:

Precision =
TP

TP + FP
=

Nr Good Prediction of Anmalous Hypervisors

Nr Hypervisors Predicted as Anomaly
(7.3)

Recall =
TP

TP + FN
=

Nr Good Prediction of Anmalous Hypervisors

Nr of real Anmalous Hypervisors
(7.4)

F1 =
2 · Precision · Recall

Precision + Recall
(7.5)

We highlight that the Recall coincides with the True Positive Rate used

in the ROC and the F1 score is the harmonic mean of the other two indica-

tors: Precision and Recall.

7.1.3 Distribution of Anomaly Score

The final goal of the anomaly score is to discern between normal instances

and anomalous ones. Therefore the distribution of anomaly score of the

two groups is crucial to visually verify that the two distributions can be

separated with a threshold on the anomaly score value. In fact, in a good

algorithm for Anomaly Detection we expect that the normal instances are
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have mostly a lower score than the anomalous ones, which on the contrary

should have a higher anomaly score.

7.1.4 Average Training Time

Beside the detector performance’s metrics, training time is another crucial

characteristic to compare methods used in an operational context such as

the one at CERN.

7.1.5 Similarities among Methods

Once we have single methods’ results then we want also to see if they are

significantly different from each other. Kendall’s Tau coefficient [44] is an

option proposed by [56] to measure the accordance between two anomaly

detection rankings (Section 3.6.1) in view an increased diversity required

for the creation of a good ensemble strategy. We considered the original

formulation of [44] and the implementation of scipy 1:

τ(a, b) =
(P −Q)√

(P +Q+ T ) · (P +Q+ U)

where a and b are the two rankings and P is the number of concordant

pairs, Q the number of discordant pairs, T the number of ties only in a,

and U the number of ties only in b. Note that ties that are present in both

rankings are not considered.

Nonetheless the ranking approach has a very important limitations that is

present if applied to our scenario. In fact the longer the rankings compared

are the more probable it is to have a low coefficient, and consequently low

measured similarity. Therefore we confine the use of Kendall’s tau only to

analysis of a single week of data, whereas for the comparison of all anomaly

score we rely on the correlation of normalized anomalies scores. In fact af-

ter the normalization of the anomaly scores, we have that every algorithm

assigns a score that is somehow centered in zero on training data, there-

fore we can compare their similarities from a scatter plot represented each

window of data analysed with the x and y coordinate corresponding to the

normalized score of the two algorithms.

1Scipy Python library: https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.kendalltau.html
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7.2 Experiment A - CERN curated Dataset

We run the analysis of the data on about six months of annotated data. We

repeat this experiment for both a Batch and a Shared group separately.

We analyse the non-overlapping window data with the selected algorithms.

Therefore for each method we produce the anomalies scores of every hy-

pervisor in the two Openstack cells under study for a length of around six

months. In a final step we compare the produced anomalies scores with the

ground truth labels collected by our experts and produce the ROC curve

and compute the AUC, Precision, Recall, False Positive Rate and F1. Note

that not all the data are completely annotated, therefore we exclude the

windows for which a hypervisor is not annotated from the computation of

these performance metrics. These are the performance metrics on the two

cases:

• Batch dataset (described in Section 4.4.1). Complete results are visible

in the Appendix in Figures B.1 and B.2 for Traditional and Deep

methods respectively.

• Shared dataset (described in Section 4.4.2). Complete results are vis-

ible in the Appendix in Figures B.3 and B.4 for Traditional and Deep

methods respectively.

7.2.1 Formalized Train and Test Procedure

For the comparative study, we adapt the all the methods to work with the

same quantity of input data both at train and test time, the only differ-

ence is in the format, either greymap of vectorized. In the Algorithm 1 we

summarize the steps we undergo both during training and test for a single al-

gorithm. The main points concern the fact we train on one week and test on

the consecutive week, and we rank one window of data at a time. Moreover,

we have a two step normalization procedure as explained in Sections 5.4.2

and 6.2, we normalize the data to have the features in the same range and

we normalize the anomaly scores to have the various methods producing a

score centered in zero for the normal case. Note that in the Train procedure

(Algorithm 2) we create all possible windows form the train data, we also

allow overlapping windows, therefore for example with x = 10 minutes, that

means that a datapoint summarizes 10 minutes of data, and w = 8 hours

we have 144 different windows for every hypervisor in one day. On the other

hand for the Test procedure (Algorithm 3) we create only non-overlapping

windows that can be created within the current week test data, with the
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same parametrization just mentioned we will have 3 different windows for

every hypervisor in one day. Another note on the amount of training data,

for the Deep learning one that are data greedy we give all the possible

windows as input, whereas for the traditional method we subsample 1000

samples since they are not scaling as well as the Deep methods, especially

those parametric like KNN and LOF that store the data seen at train time.

Algorithm 1 Train-Test Procedure

1: all results = empty list . Prepare the result list

2: dataset = either Batch or Shared Dataset . Select your benchmark

Dataset

3: weeks = split(dataset) . Divide my dataset in chunks of one week each

4: sorted weeks = sort(weeks) . Sort the weeks, the oldest first

5: algo = initialize algorithm

6: for index in range[1, len(sorted weeks)] do . Iterate over weeks

7: current week = sorted weeks[index]

8: previous week = sorted weeks[index - 1]

9: (tr data means, tr data st devs, tr mean score, tr st dev score) =

TRAIN(previous week, algo)

10: week results = TEST(current week, algo, tr data means,

tr data st devs, tr mean score, tr st dev score)

11: all results.append(week results)

12: end for

7.2.2 Algorithms Training Time

In Figure 7.2 and 7.3 we summarize the training time respectively for the

traditional and deep methods, we recall that every algorithm undergoes an

entire training procedure for every week. An important decision that heavily

influence the comparison between deep and traditional methods consists

in not feeding to the traditional algorithms only a subsample of size 1000

windows among all the possible windows we can build with the week of

training data.
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Algorithm 2 Train Routine

1: procedure TRAIN(previous week, algo)

2: previous week = sorted weeks[index - 1]

3: tr means = empty list . Vector of metrics’ means

4: tr st devs = empty list . Vector of metrics’ st.dev.

5: for m in metrics do

6: mean m, st dev m = get mean stdev(previous week, m)

7: tr means.append(mean m)

8: tr st devs.append(st dev m)

9: end for

10: std prev week = standardize(previous week, tr means, tr st devs)

11: train dataset = get all possible windows(std prev week)

12: if algo is not Deep Learning then

13: train dataset = subsample(train dataset, n=1000)

14: end if

15: algo.fit(train dataset) . Train the algorithm

16: train anomaly scores = algo.assign score(train dataset)

17: tr mean score = mean(train anomaly scores)

18: tr st dev score = st dev(train anomaly scores)

19: return (tr means, tr st devs, tr mean score, tr st dev score)

20: end procedure

Algorithm 3 Test Routine

1: procedure TEST(current week, algo, tr means, tr st devs,

tr mean score, tr st dev score)

2: week results = empty list

3: st current week = standardize(current week, tr means, tr st devs)

4: test dataset = get non overlapping windows(std current week)

5: test anomaly scores = empty list

6: for window in test dataset do

7: w score = algo.assign score(window)

8: n w score = normalize(w score, tr mean score, tr st dev score)

9: week results.append(n window score) . Add also information

about hypervisor and time of end of the window

10: end for

11: return week results

12: end procedure
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(a) Run on the Batch dataset. (b) Run on the Shared dataset.

Figure 7.2: Training Time of Traditional methods under study. We see the mean value

and variance (error bar) of the time required by the specific method to train on one

week of data. They are trained only on a random subsample of 1000 windows, to avoid

scale issue on parametric methods. Note that the y-axis is in log-scale.

(a) Run on the Batch dataset. (b) Run on the Shared dataset.

Figure 7.3: Training Time of Deep methods under study. We see the mean value and

variance (error bar) of the time required by the specific method to train on one week

of data. The number of epochs of train is 20. Note that the y-axis is in log-scale.

7.2.3 Area Under Curve - ROC

In Table 7.1 and 7.2 we report all the mean and variance of the Area Under

the Receiving Operating Characteristic Curve (AUC-ROC) for all methods:

traditional, deep and ensemble. The mean and variance are computed along

the various runs, one per week, for a total of 26 runs in the Batch case and

32 for the Shared one.
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Method Mean StD

KNN 0.697 0.173

LOF 0.877 0.168

PCA 0.910 0.124

OCSVM 0.814 0.140

IForest* 0.921 0.134

ForecastVAR 0.704 0.234

AEDenseTF2 0.909 0.124

AECnnTF2 0.753 0.208

AELstmTF2 0.829 0.203

ForecastCNN 0.910 0.159

ENS-MAX 0.883 0.158

ENS-MIN 0.739 0.196

ENS-

MEDIAN

0.884 0.153

ENS-

AVERAGE

0.877 0.158

ENS-

CUMSUM

0.877 0.158

ENS-

LINREG

0.833 0.218

Table 7.1: AUC-ROC all methods on

Batch. It is computed as average on all

the weeks for the Batch scenario. The

best mean is highlighted with a *.

Method Mean StD

KNN 0.739 0.065

LOF 0.698 0.121

PCA 0.713 0.137

OCSVM 0.693 0.084

IForest 0.752 0.092

ForecastVAR 0.724 0.095

AEDenseTF2 0.713 0.139

AECnnTF2 0.777 0.071

AELstmTF2* 0.793 0.058

ForecastCNN 0.715 0.138

ENS-MAX 0.754 0.092

ENS-MIN 0.717 0.087

ENS-

MEDIAN

0.750 0.103

ENS-

AVERAGE

0.768 0.096

ENS-

CUMSUM

0.768 0.096

ENS-

LINREG

0.774 0.122

Table 7.2: AUC-ROC all methods on

Shared. It is computed as average on

all the weeks for the Shared scenario.

The best mean is highlighted with a *.

7.3 Experiment B - CERN Artificial Setting

As described in Section 4.5, in this artificial setting we merge Batch and

Shared considering them respectively normal and anomalous data. In prac-

tice, We start from a week of windows of 183 Batch hypervisors and a week

of 200 Shared hypervisors, we divide them into windows of 8 hours. Sub-

sequently we iterate over all the non overlapping 8 hours intervals of Batch

windows and we train every method on the 183 Batch hypervisors then

we test its performance by scoring the same 183 Batch hypervisors plus 91

Shared hypervisors extracted form the week of Shared windows. The quan-

tity of injected windows is chosen to keep 2:1 relationship between normal

and anomalous data.

In the ideal case the methods should be able to tell if at test time an

71



hypervisor is a Batch or Shared one assigning respectively a low and high

anomaly score. To increase the difficulty of the artificial task we select

the Shared hypervisors to inject based on a similarity score with the Batch

hypervisors in the same window. The similarity score is computed with the

dot product of the normalized vectors representing the hypervisors, we select

the one that is on average most similar. Moreover we design three different

scenarios of increasing complexity:

• unprocessed data. We keep the data unprocessed, they have their

original mean and variance, and the disproportion among metrics is

also left untouched, meaning that for example the CPU idle is a per-

centage while the SWAP space free is a number in Gigabytes therefore

billions.

• same mean. We report both windows form Shared and Batch hyper-

visor to have zero mean on all the input metrics.

• same mean and variance. We report both windows form Shared

and Batch hypervisor to have zero mean and unit variance on all the

input metrics.

Given that the performance of the final anomaly detection system is not

measured on the ability to discern between Batch and Shared hypervisors we

decided to restrict these experiments only to some representative methods

form the two families: traditional and deep. The goal is to understand if

the two user categories are significantly different from each other and at the

same time measure the ability of the two families to capture patterns that

go beyond the mean and variance.
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In Figures 7.4, 7.5, 7.6 we report ROC and score distributions of the

three scenarios tested on one window of data for four traditional methods

(PCA, IForest, LOF, KNN) and two Deep Learning ones (Autoencoder Fully

connected and CNN).

Figure 7.4: Unprocessed data. ROC and score distributions tested on one window of

artificial setting with 183 normal Batch hypervisors and 91 anomalous Shared hyper-

visors. Methods tested: PCA, IForest, LOF, KNN, Autoencoder Fully connected and

CNN.

Figure 7.5: Same mean. ROC and score distribution tested on one window of artifi-

cial setting with 183 normal Batch hypervisors and 91 anomalous Shared hypervisors.

Methods tested: PCA, IForest, LOF, KNN, Autoencoder Fully connected and CNN.

Figure 7.6: Same mean and Variance. ROC and score distribution tested on one

window of artificial setting with 183 normal Batch hypervisors and 91 anomalous Shared

hypervisors. Methods tested: PCA, IForest, LOF, KNN, Autoencoder Fully connected

and CNN.
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7.4 Algorithms’ Implementation Details

For the majority of the Outlier Detection methods we relies on the imple-

mentation provided by PyOD 2 given the good level of code quality in terms

of coverage and the support from the open source community. Note that

for the three most popular traditional methods (LOF, iForest, OCSVM) the

implementation of PyOD relies on the homonym classes from scikit-learn 3.

In the Table 7.3 every algorithm is paired with the library that implements

it.

Algorithm

Name

Implementation Version

LOF PyOD (scikit-learn) 0.8.0 (0.23.1)

IFOREST PyOD (scikit-learn) 0.8.0 (0.23.1)

OCSVM PyOD (scikit-learn) 0.8.0 (0.23.1)

PCA PyOD 0.8.0

KNN PyOD 0.8.0

ForecastVAR this work 1.0

ForecastCNN this work 1.0

AEFC PyOD (adapted for TensorFlow 2 in

this work)

0.8.0 (1.0)

AECC this work 1.0

AELSTM this work 1.0

Table 7.3: Algorithms used and their implementations

7.5 Final Results Discussion

We summarize in this section the main findings from the results of our three

experiment: Batch dataset, Shared dataset and artificial setting. Firstly

given the ease with which the anomaly detection methods can distinguish

between the Batch and Shared hypervisors in the artificial setting (Figure

7.4), we can conclude that the two user categories are showing clearly dif-

ferent patterns in terms of both mean and variance (Figure 7.5). Therefore

considering the two separate scenarios with two separate Batch and Shared

2Python Outlier Detection (PyOD) library, code available here: https://github.com/

yzhao062/pyod
3scikit-learn library code available here: https://github.com/scikit-learn/

scikit-learn/
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benchmark datasets is a reasonable choice and confirms the initial experts’

belief.

7.5.1 Performance and Task Complexity

If we consider the mean AUC of the various methods in Figure 7.7 for the

Batch and Shared datasets, we can clearly see that the Batch datasets lead

to the higher AUC results. We can hereby confirm that the Batch scenario

represents an easier task; moreover also the lack of significant difference be-

tween traditional and deep methods in this case can be seen as an indicator

of an easier anomaly detection scenario in case of Batch hypervisor monitor-

ing. We explain this difference also from visual inspection of the anomalies

on the Batch that are usually corresponding to almost perfect step functions

in the metrics, most of the time the CPU Load, whereas this is not the case

for the Shared dataset.

(a) Batch dataset (b) Shared dataset

Figure 7.7: AUC-ROC all methods on Batch and Shared. It is computed as average

over the weeks of analysis. The performance are sorted in increasing order and in green

we can see the AUC of the traditional methods whereas in blue the ensemble strategies.

To reinforce this hypothesis that the Batch anomaly detection task prob-

ably does not need complex models to be solved we have that PCA performs

incredibly well on par of other Deep learning methods like Autoencoder Fully

Connected (AEDense). In fact, even if this deep model includes non linear

activation functions it can still learn the linear solution of the problem.

And the strong correlation between the PCA and AEDense anomaly scores

in Figure 7.8 confirms the hypothesis that they converged on very similar

solutions in both Batch and Shared dataset tasks. This good performance

of the PCA is a good sign from a practical perspective, because it means
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that such a simple method can find most of the anomalies with a low False

Positive Rate.

(a) Batch dataset (b) Shared dataset

Figure 7.8: Anomaly scores correlation between Autoencoder Fully Connected and the

PCA on both CERN curated dataset.

7.5.2 Input Data Quantity

The decision of subsampling the input for traditional methods prevents us

from commenting on the training time difference between the traditional and

deep families, but this choice is motivated by the fact that some of them are

parametric and therefore do not learn any model but simply store the data

showing in the end a poor scalability. On the performance side subsampling

does not affect traditional methods as much as deep learning ones that if

trained on smaller dataset lead to very miserable performance.

In terms of quantity of data required by the various methods we have

two lesson learned in debugging problems with Autoencoder CNN and LOF

methods respectively. We noticed that for the Autoencoder CNN in par-

ticular but also for other deep learning methods, learning on just non-

overlapping windows of the previous week was not enough. In fact, that

quantity of data for a common group of either Batch or Shared hypervi-

sors contains around 4’200 windows and that is definitely not enough to

cope with the need of Deep Learning methods. That is why we adopted

the sliding windows approach in the training week. On the other hand for

a traditional method like LOF, the usage of a disproportionately smaller

number of neighbours than the size training set leads to a very poor result

as shown in Figure 7.9
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Figure 7.9: Example of bad and good LOF parametrization. In both cases we use as

training set 1000 samples. On the left we set the number of neighbours to 20 whereas

on the right we set it to 200

We therefore highlight the importance to appropriately set a number of

neighbours based on the a validation dataset if possible.

7.5.3 Novel Methods Discussion

The new methods proposed based on the forecasting principle (ForecastVAR

and ForecastCNN) show a different behaviour among themselves in terms

of AUC performances on the Batch dataset, wherase they achieve similar

ones in the more complex setting of Shared hypervisors. Even though the

different model could be enough to justify this difference, we also argue that

the subsampling step present in the ForecastVAR method could be partially

responsible for this high variance in the Batch case. In fact the ForecastVAR

methods subsample 20 of the overall ca 200 hypervisors of the group and

makes a model on top of them, this phenomenon can be less visible in the

Shared dataset since we only subsample for a group of 80 hypervisors.

On the other hand the ForecastCNN is the best among the Deep Learn-

ing group in the Batch and the second best in the Shared one. An important

detail it is equivalent in term of AUC-ROC to the Autoencoder Fully Con-

nected (AEDense) in both cases. This trend is confirmed in Figure 7.10

where we see a clear correlation between the two methods’ anomaly scores,

with the Autoencoder that tends to give a higher score to normal data

whereas Forecast CNN gives consistently lower scores. The clear advantage

of our model is in terms of model complexity: 632’048 parameters for the

Autoencoder and only 2’803 for the Forecaster (Figure C.4 and C.1 of the

Appendix). We can attribute this saving in parameters to the better suit-
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ability of Forecast CNN to handle temporal data. Nonetheless we also point

out that Forecst CNN requires a sensibly longer training time (Figure 7.3).

Figure 7.10: Anomaly scores correlation on the Shared dataset between Autoencoder

Fully Connected and the Forecaster CNN.

Inspecting the results produced by the ensemble methods in Figure 7.7

we notice that most of the strategies are leading to similar AUC score with

the exception of the min strategy that is clearly degrading the performance

of the singular individuals. We can explain this with the fact that if at least

one method in the ensemble is erroneously classifying a window as normal

when it is not, this drives the entire ensemble to say that it is a normal

sample. Therefore the min strategy is more sensitive to the worst method

in the ensemble with a tendency to remove overlook anomalies. On the

other hand the two methods analyzed and recommended by [45], namely

max and average, are not showing particular different between each other in

this context. On the contrary our novel ensemble method based on a simple

Linear regression combination of the others and that is using a small amount

of labels is able to achieve the highest score among the proposed ensemble

strategies in the Shared scenario. We interpret it as a confirmation that also

in a learner of second level the use of few labeled data can lead to superior

performance in a similar way it happens usually thanks to outlier exposure

in other Anomaly Detection methods [57].
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Chapter 8

Conclusions

In this work we have tackled the problem of Anomaly Detection on Time

Series data for the CERN large-scale computing infrastructure with both

traditional Machine Learning algorithms and Deep Learning ones. The main

contributions and outputs of this thesis are the following:

• Dataset Collection: we created two curated CERN datasets repre-

senting the problem of anomaly detection on time series on a large-

scale computing infrastructure, with two levels of task complexity;

• Comparative study: we compared the performance of a selection of

algorithms on the newly collected CERN datasets;

• System Implementation: we implemented a Proof of Concept Anomaly

Detection system for the CERN Cloud Infrastructure.

• Novel variants: we propose two new variants Anomaly Detection

methods on time series (Forecaster VAR and Forecaster CNN) together

with a new combination strategy for an ensemble method.

From the experimental results we noticed how traditional methods are

incredibly good at spotting anomalies in groups of hypervisors that are run-

ning similar batch jobs with the goal of fully utilize the computing resource.

For this scenarios PCA, Local Outlier Factor and Isolation Forest methods

are achieving the goal with a minimal training time. On the other side, when

the hypervisors are used in an on-demand fashion by multiple users and ser-

vices with intermittent jobs, then it is harder to achieve good performance

on the anomaly detection task and Deep Learning methods have the power

to have better performances than traditional methods if feed with enough

data at training time. In particular architectures that model the temporal



dimension, such as those LSTM-based, can outshine the traditional Fully

Connected scenario.

Among the limitations of the current thesis work we highlight the follow-

ing two points. The former is that we run our analysis following the expert

opinion in most of our work, including the choice of metrics to monitor and

the time frame of analysis. Nonetheless we believe that a systematic study

on varying the number of input metrics and the time scale of analysis could

have revealed respectively the robustness characteristic of the methods un-

der study and the best time scale of analysis for the specific problem at hand.

The second limitation is that we did not fully tuned every single method to

perform at the best, but we use the default settings in most of the cases.

A detailed parameter search could have revealed the best configuration for

every method comparing them at the best of their possibility on the current

task. We did not explored these two directions due to the lack of time and

the need of having a prototype ready, even if in a Proof-of-Concept stage.

We therefore suggest some future directions that we would have explored

with more time, in order of priority:

• explore the use of more metrics rather than the one suggested by the

expert and with different time scales of analysis;

• explore alternative network architectures for the proposed Deep Learn-

ing models for maximizing their performance on the hardest setting of

Shared group of hypervisors;

• thanks to the two new labelled CERN datasets, extend the compara-

tive study including supervised techniques;

• thanks to the, now available, workflow to annotate time series in the

monitoring infrastructure, explore active learning approaches to decide

on which temporal windows are worth to be annotated first;

• use the data from multiple Openstack Groups to train more robust

Deep Learning Models for the two user categories separately: one

model for Batch and one for Shared ; in these way we expect to learn

from a larger pool of normal data and be more robust to small variation

in the normal behaviour;

• explore a two steps procedure to combine the traditional machine

Learning method and Deep Learning ones in a sequence to combine

their strengths; for example, an Autoencoder architecture performs

feature extraction and a traditional method detects anomalies in the

new lower dimension feature space.
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Appendix A

Dataset

A.1 Overview Annotations

In this section we provide a visual overview of the annotations taken by

the experts on the two datasets. We use a heatmap where every column

represent an hypervisor whereas every row a window of data, note that we

have 3 windows per day. We highlight with different colors the different

types of windows:

• blue: normal window.

• orange: anomalous window.

• black: mixed (dropped for evaluation)

• white: no annotations provided by the expert on that window (dropped

for evaluation).

For a precise description of every type of window refer to the Table 4.1 in

the main text.
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Figure A.1: Overview of Annotation Labels for Batch Openstack Cell: blue = normal,

orange = anomaly, black = mixed, white = empty interval.



A.1. Overview Annotations 91

Figure A.2: Overview of Annotation Labels for Shared Openstack Cell: blue = normal,

orange = anomaly, black = mixed, white = empty interval.
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Appendix B

Complete Experiments’

results

B.1 ROC and Performance Metrics: Complete Anal-

ysis

Next we show the results of the benchmark procedure of all the methods

on the two curated datasets: for both Batch Dataset (Figures B.1 and B.2)

and Shared Dataset (Figures B.3 and B.4).

B.2 Correlation of Anomaly Scores

In Figures B.5 and B.6 we show the comparison of the normalized anomaly

scores of all algorithms with each other. Note that we analyse the correlation

of scores of two algorithms in the range [−2.5, 10] for both Batch and Shared

dataset separately. Below the main diagonal we plot correlation among

anomalous instances, whereas on the diagonal and above we visualise the

normal samples.

B.3 Ensemble Performance

In Figures B.7 and B.8 we show the results of all the evaluated ensemble

strategies: min, max, average, median, cumulative sum of all scores, linear

regression combination (our method).
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Figure B.1: Results on Batch dataset for Traditional Algorithms (KNN, LOF, PCA,

OCSVM, IFOREST, ForecastVAR). The first column shows the multiple ROC curves

build from the 26 weeks of data, the remaining represent cumulative quantities in

which all weeks are represented together; we have in order the ROC, the cumulative

distribution of anomaly scores and the performance metrics: Precision, Recall, False

Positive Rate and F1.
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Figure B.2: Results on Batch dataset for Deep Algorithms (AEFC, AECNN, AELSTM,

ForecastCNN). The first column shows the multiple ROC curves build from the 26 weeks

of data, the remaining represent cumulative quantities in which all weeks are represented

together; we have in order the ROC, the cumulative distribution of anomaly scores and

the performance metrics: Precision, Recall, False Positive Rate and F1.
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Figure B.3: Results on Shared dataset for Traditional Algorithms (KNN, LOF, PCA,

OCSVM, IFOREST, ForecastVAR). The first column shows the multiple ROC curves

build from the 32 weeks of data, the remaining represent cumulative quantities in

which all weeks are represented together; we have in order the ROC, the cumulative

distribution of anomaly scores and the performance metrics: Precision, Recall, False

Positive Rate and F1.
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Figure B.4: Results on Shared dataset for Deep Algorithms (AEFC, AECNN, AELSTM,

ForecastCNN). The first column shows the multiple ROC curves build from the 32 weeks

of data, the remaining represent cumulative quantities in which all weeks are represented

together; we have in order the ROC, the cumulative distribution of anomaly scores and

the performance metrics: Precision, Recall, False Positive Rate and F1.
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Figure B.5: Anomaly score correlation among all the pairs of algorithms for the Batch

dataset. Below the main diagonal we have the anomalous instances, whereas on the

diagonal and above we have the scores of normal instances.
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Figure B.6: Anomaly score correlation among all the pairs of algorithms for the Shared

dataset. Below the main diagonal we have the anomalous instances, whereas on the

diagonal and above we have the scores of normal instances.
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Figure B.7: Results on Batch dataset for Ensemble strategies (MIN, MAX, MED, AVG,

CUMSUM, LINREG). The first column shows the multiple ROC curves build from the

26 weeks of data, the remaining represent cumulative quantities in which all weeks are

represented together; we have in order the ROC, the cumulative distribution of anomaly

scores and the performance metrics: Precision, Recall, False Positive Rate and F1.
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Figure B.8: Results on Shared dataset for Ensemble strategies (MIN, MAX, MED, AVG,

CUMSUM, LINREG). The first column shows the multiple ROC curves build from the

32 weeks of data, the remaining represent cumulative quantities in which all weeks are

represented together; we have in order the ROC, the cumulative distribution of anomaly

scores and the performance metrics: Precision, Recall, False Positive Rate and F1.
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Appendix C

Appendix

C.1 Code modification for Grafana Extension

Next we show the extension code for the client side Javascript of Grafana

visualization platform.

1 // Get list of templated variables from the DOM

2 var mylist = document.querySelectorAll(’[aria -label="

Dashboard template variables submenu item"]’);

3 // console.log(mylist);

4 for (var i = 0; i < mylist.length; i++) {

5 var mylabel = mylist[i]. childNodes [0]. childNodes [0].

innerText;

6 var myvalue = mylist[i]. childNodes [0]. childNodes [1].

innerText;

7

8 console.log("templated var label: " + mylabel);

9 console.log("templated var value: " + myvalue);

10 var mytag = mylabel + ":" + myvalue;

11 console.log(mytag);

12 //t.tags.push(myvalue);

13 t.tags.push(mytag);

C.2 ElasticSearch Document Format

Next we show the json format of the document representing one candidate

anomaly found by our algorithms and sent to the monitoring infrastructure

to be stored in ElasticSearch and queried later in Grafana.

1 "algo": {

2 "class_name": "PyODWrapperAnalyzer_IForest",

3 "version": -1,

4 "hparam_str": {},
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5 "hparam_int": {},

6 "hparam_float": {},

7 "hparam_bool": {}

8 },

9 "entity_data": {

10 "entity": "p06253927b11147",

11 "cell_name": "gva_project_013",

12 "hostgroup": "cloud_compute/level2/batch/

gva_project_013"

13 },

14 "entity_metrics": {

15 "plugins": {

16 "swap_swapfile_swap_used": {

17 "type": "swap",

18 "type_instance": "used",

19 "plugin_name": "swap"

20 },

21 "swap_swapfile_swap_free": {

22 "type": "swap",

23 "type_instance": "free",

24 "plugin_name": "swap"

25 },

26 "vmem__vmpage_io_memory_in": {

27 "plugin_instance": "",

28 "type": "vmpage_io",

29 "type_instance": "memory",

30 "value_instance": "in",

31 "plugin_name": "vmem"

32 },

33 "vmem__vmpage_io_memory_out": {

34 "plugin_instance": "",

35 "type": "vmpage_io",

36 "type_instance": "memory",

37 "value_instance": "out",

38 "plugin_name": "vmem"

39 },

40 "cpu__percent_user": {

41 "plugin_instance": "",

42 "type": "percent",

43 "type_instance": "user",

44 "plugin_name": "cpu"

45 },

46 "cpu__percent_idle": {

47 "plugin_instance": "",

48 "type": "percent",

49 "type_instance": "idle",

50 "plugin_name": "cpu"

51 },

52 "cpu__percent_system": {
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53 "plugin_instance": "",

54 "type": "percent",

55 "type_instance": "system",

56 "plugin_name": "cpu"

57 },

58 "load_longterm": {

59 "value_instance": "longterm",

60 "plugin_name": "load"

61 },

62 "memory__memory_free": {

63 "plugin_instance": "",

64 "type": "memory",

65 "type_instance": "free",

66 "plugin_name": "memory"

67 },

68 "interface__if_octets__tx": {

69 "type": "if_octets",

70 "type_instance": "",

71 "value_instance": "tx",

72 "plugin_name": "interface"

73 },

74 "interface__if_octets__rx": {

75 "type": "if_octets",

76 "type_instance": "",

77 "value_instance": "rx",

78 "plugin_name": "interface"

79 }

80 }

81 },

82 "preprocessing": {

83 "type": "standardization"

84 },

85 "temporal": {

86 "time_start_milli": 1593583200000 ,

87 "time_start": "2020 -07 -01 T08 :00:00.000Z",

88 "time_end_milli": 1593612000000 ,

89 "time_end": "2020 -07 -01 T16 :00:00.000Z",

90 "window_length": 48,

91 "step_resolution_minutes": 10

92 },

93 "anomaly": {

94 "score": 3.9858576333577713 ,

95 "rank_position": 1,

96 "rank_percentile": 100,

97 "explainalibilty": {

98 "metric_0": "unsupported",

99 "nr_anomalous_metrics": -1,

100 "total_metrics": -1

101 }
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102 },

103 "is_anomaly": true ,

104 "slide_steps": 48,

105 "ids": {

106 "algo": "e5baa02f03953a43135216142ac60d0d38cf77e2",

107 "entity_data": "

f804e23d1862ac2eedcb4caacb179f223eb6a310",

108 "entity_metrics": "970

a503ce9349323e6651ce89ff84e1b6c302afb",

109 "preprocessing": "61

d6dbf3ad9cdca3b6a2e461ef5798d7b03a30bd",

110 "temporal": "45 d11d1f3987dd1998ee00264b0d5dd94ada2d28

"

111 },

112 "document_id": "946169602798023

d3d89db2380eaac11462b0521",

113 "validity": true

C.3 Apache Spark - Big Data Preparation

This section contains the code used to prepare the data in the CERN Spark

Cluster. We used the PySpark library to communicate with the cluster in

Python code.

C.3.1 Data Reading

Next we show the code we use to read the data from HDFS and to keep

only the hypervisors belonging to the Group of interest.

1 def data_reading(spark , plugins , days , hostgroups):

2 """ Read all plugin and all days.

3

4 Params

5 ------

6 spark: spark context

7 plugins: dict.

8 Every key is the signal name. Then inside it we have

all the value for

9 the colums necesary to filter the correct data.

10 days: list of tuples

11 every tuple is (year , month , day)

12 hostgroups: list of str

13 full paths for the hostrgoroups you are interested in

14

15 Return

16 ------

17 all_data: PySpark DataFrame
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18 containing data from the plugins and cells in the

following form:

19 timestamp | hostname | hostgroup | value | plugin

20 NB timestamp will be in seconds

21 NB hostgroup is the the extended version

22 """

23 plugins = copy.deepcopy(plugins)

24 inpaths = \

25 create_paths_for_collectd(basepath="/project/monitoring

/collectd",

26 plugins=plugins , days=days)

27 existing_inpaths = keep_only_existing_paths(spark=spark ,

paths=inpaths)

28 [print(p) for p in sorted(existing_inpaths)]

29

30 try:

31 df_raw = spark.read.parquet (* existing_inpaths)

32 except AnalysisException:

33 print("path not found: %s" % existing_inpaths)

34 return

35

36 all_data = \

37 _keep_only_these_plugins_and_hg(df_raw , plugins ,

hostgroups)

38

39 return all_data

40

41 def _keep_only_these_plugins_and_hg(df , plugins , hostgroups):

42 """ Keep only the plugins and hostgroups.

43

44 Rename them also with the serialized version.

45 """

46 # filter hostgroups

47 only_my_hgs = df.filter(F.col("submitter_hostgroup").isin(

hostgroups))

48 # create the filter string

49 filter_str = ""

50 # for every plugin create the condition and then put them

in or

51 # df.filter(’d<5 and (col1 <> col3 or (col1 = col3 and col2

<> col4)) ’)

52 or_conditions = []

53 # filter all the plugin individually

54 for k in plugins.keys():

55 plugin_dict = plugins[k]

56 # for all attributes of this plugin

57 and_conditions = []

58 plugin_dict["plugin"] = plugin_dict.pop("plugin_name")

59 for sub_k in plugin_dict.keys():
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60 value = plugin_dict[sub_k]

61 and_conditions.append(sub_k + " == ’" + value + "’"

)

62 plg_condition = "( " + " and ".join(and_conditions) + "

)"

63 # print(" plg_condition: ", plg_condition)

64 or_conditions.append(plg_condition)

65 # print (" or_conditions: ", or_conditions)

66

67 # filter all interested line

68 filter_str = " or ".join(or_conditions)

69 print("filter_str: ", filter_str)

70 only_my_plugins = only_my_hgs.filter(filter_str)

71

72 df_list_plugin_ranamed = []

73 # filter line of each plugin to rename them

74 for plg_name , condition in zip(plugins.keys(),

or_conditions):

75 df_current = only_my_plugins.filter(condition)

76 df_current = df_current.withColumn(’plugin ’, F.lit(

plg_name))

77 df_list_plugin_ranamed.append(df_current)

78

79 only_my_plugins_renamed = union_all(df_list_plugin_ranamed)

80

81 # project only relevant column

82 # cast timestamp to int (seconds)

83 relevant_cols = only_my_plugins_renamed\

84 .select("event_timestamp", "plugin",

85 "host", "submitter_hostgroup", "value")\

86 .withColumnRenamed("event_timestamp", "timestamp")\

87 .withColumnRenamed("host", "hostname")\

88 .withColumnRenamed("submitter_hostgroup", "hostgroup")\

89 .withColumn("timestamp", (col("timestamp") / 1000).cast

("int"))

90

91 return relevant_cols

C.3.2 Time Series/Metrics Aggregation

Next we show the code we use to summarize 10 minutes of consecutive data

of a machine with the mean.

1 def downsampling_and_aggregate(spark , df_all_plugins ,

every_n_minutes):

2 """"Create the aggregate every x minutes.

3

4 Example: if every 10 min it means that data between 15:10

and 15:20 are
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5 summarized with the mean statistic and they will get

timestamp 15:20.

6 This happens for each hostname and plugin separately.

7

8 Params

9 ------

10 spark: spark context

11 df_all_plugins: PySpark DataFrame

12 timestamp | hostname | hostgroup | value | plugin

13 every_n_minutes: int

14 nr of minutes you want to aggregate. The aggregation

function is the

15 average.

16

17 Return

18 ------

19 aggregated_data: PySpark DataFrame

20 containing data from the plugins and cells in the

following form:

21 timestamp | hostname | hostgroup | value | plugin

22 NB timestamp will be in seconds

23 Value contains the average values every x minutes for

that host on that

24 plugin.

25 """

26 aggregated_data = df_all_plugins\

27 .withColumn(

28 ’minutes_group ’,

29 F.col("timestamp") - (F.col("timestamp") % (60 *

every_n_minutes))

30 )\

31 .withColumn(’timestamp ’, F.col("minutes_group") + (60 *

every_n_minutes))\

32 .groupBy ([’hostgroup ’, ’hostname ’, ’plugin ’, ’

minutes_group ’])\

33 .agg(

34 F.mean(’value’).alias(’value’),

35 F.max("timestamp").alias("timestamp")

36 )\

37 .orderBy("timestamp")

38

39 return aggregated_data

C.3.3 Time Series/Metric Normalization

Next we show the code we use to normalize the input data with respect to

every single metric.

1 def normalize(spark , df , df_normalization):
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2 """ Normalize the data given a dataframe with the

coefficients.

3

4 Remove the mean and divide by the std deviation to the

value column.

5

6 Params

7 ------

8 spark: spark context

9 df: PySpark DataFrame

10 timestamp | hostname | hostgroups | value | plugin

11 df_normalization: PySpark DataFrame

12 hostgroup | plugin | mean | stddev

13 where mean and stddev are the mean and stddev of the

relative plugin

14 for the specified cell.

15

16 Return

17 ------

18 normalized_data: PySpark DataFrame

19 containing data from the plugins and cells in the

following form:

20 timestamp | hostname | hostgroup | value | plugin

21 NB hostgroup is the the extended version

22 """

23 F.broadcast(df_normalization)

24 to_be_normalized = df.join(df_normalization , [’hostgroup ’,

’plugin ’])

25 normalized_data = to_be_normalized\

26 .withColumn("value",

27 (F.col("value") - F.col("mean")) / F.col("

stddev"))\

28 .select("timestamp", "hostname", "hostgroup", "plugin",

"value")

29

30 return normalized_data

C.4 Deep Learning Architecture details

In this section we summarize the details of all the four deep methods with the

TensorFlow summary tool that gives us information about the structure and

type of layer. An important information is also the number of parameters

of the overall model that gives us an idea of its complexity.
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Figure C.1: Tensorflow Summary of the Autoencoder Fully Connected
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Figure C.2: Tensorflow Summary of the Autoencoder CNN

Figure C.3: Tensorflow Summary of the Autoencoder LSTM
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Figure C.4: Tensorflow Summary of the Forecast CNN

C.5 Image Credits

The icon representing a normal and faulty robots come from freepik from

Flaticon.com

• www.flaticon.com/-iconrobot 3398611

• www.flaticon.comfree-iconrobot 3398643
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