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Sommario

Nell’affrontare le fasi di design o di progettazione, la ricerca della forma migliore di
un o componente per il soddisfacimento di una determinata performance ha da sem-
pre rappresentato uno dei problemi principali nel campo ingegneristico. L’ottimizzazione
topologica nasce alla fine degli anni 80 per fornire una risposta a questo tipo di
problema. Nonostante si sia sviluppata nel campo strutturale, dove è ormai ben
consolidata, nel corso degli anni è stata ampliata a maggior varietà di campi fisici
tra cui la fluidodinamica, nel quale tuttavia è una metodologia ancora acerba.

Lo scopo di questa tesi è lo sviluppo di una procedura solida e facilmente repli-
cabile per l’ottimizzazione topologica di componenti aerodinamici in campi fluido-
dinamici complessi. Il modello utilizzato per lo sviluppo delle analisi è basato sul
modello di penalizzazione di Brinkman, il quale permette di simulare il dominio
solido all’interno di quello fluido attraverso un mezzo poroso, definito implicitamente
tramite l’interfaccia di una funzione di livello (LSF).

Dopo una breve introduzione all’ottimizzazione topologica e ai vari modelli ad
oggi sviluppati, il modello sopra descritto viene presentato nel suo formalismo matem-
atico. Tramite semplici test case vengono analizzate le sue performance e l’errore
introdotto dal mezzo poroso, assieme allo sviluppo della procedura per la cor-
retta definizione dei vincoli e della funzione obiettivo tramite l’analisi delle sen-
sitività. Viene inoltre presentata una prima correzione al campo turbolento gener-
ato all’interno del mezzo poroso. L’impatto e l’efficacia della metodologia svilup-
pata sono infine testati sullo scarico primario del motore del Next-Generation Civil
TiltRotor sviluppato da Leonardo Helicopter Division nell’ambito del progetto Clean
Sky 2 - Fast Rotor Craft. La topologia ottenuta è dunque confrontata con quella
base, sviluppata con metodi ingegneristici classici, per confrontarne le prestazioni e
i miglioramenti apportati dal nuovo modello.

La tesi è stata sviluppata in collaborazione con Leonardo Helicopter Division.
Tutte le analisi sono state effettuate tramite il software commerciale Siemens PLM
STAR-CCM+ (v. 2020.3).

Parole chiave: Ottimizzazione Topologica; Metodi Level-set; Modello di Penal-
izzazione di Brinkman; Adjoint; Analisi di Sensitività.
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Abstract

In facing the design of a generic engineering component, the search for the best
shape and material distribution that could guarantee the best performances has
always been one of the greatest problems in the engineering field. Topology opti-
mization born in the late 1980s to try to give an answer at such a problem. Though
it was born for the structural optimization, where it is now well-established, the
basic ideas are applicable to all those physics where the governing equations can be
described by a set of partial differential equations (PDEs), which therefore enlarges
its applications to a high variety of different physics such as acoustics, electromag-
netism, heat conduction and fluid flow, where however it is still immature.

The aim of this thesis is the development of a robust and easy-to-replicate pro-
cedure for the topology optimization of aerodynamic component in a complex fluid-
dynamic scenario. The mathematical model on which the analysis are based is the
Brinkman penalization model, which simulates the solid domain through a porous
media, implicitly defined through a Level-Set function (LSF) interface.

Since the topology optimization has been only recently introduced in Compu-
tational Fluid Dynamics tools, this work aims to investigate all the steps required
for the optimization. These include the choice of the constraints and of the objec-
tive function based on the sensitivity analysis, together with analysis of the error
introduced by the Brinkman Penalization model and the introduction of a turbu-
lence correction. To prove the efficiency of the developed procedure, the topology
optimization is at the end applied to a non-trivial aerodynamic problem: primary
exhaust of the tilt-rotor demonstrator developed by Leonardo Helicopter Division
within the Clean Sky 2 Fast Rotor Craft framework. The obtained typologies are
then compared with the primary exhaust developed by using standard methodolo-
gies.

This thesis was developed in collaboration with Leonardo Helicopter Division. All
simulations were performed using Siemens PLM commercial software STAR-CCM+
(v. 2020.3).

Keywords: Topology Optimization; Level-set Method; Brinkman Penalization;
Adjoint; Sensitivity analysis.
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1
Introduction

Topology optimization was born at the end of the 1980s as an alternative de-
sign technique for structural components to the classical methods and the already
developed methods of shape and dimension optimization. The great advantage in-
troduced by this methodology lies in the fact that there is no need for a predefined
shape, but only in the available design space. Topological optimization is posed as a
material arrangement technique but it brings with it two major advantages: the first,
obviously, lies in identifying the best material distribution for satisfying the various
constraints introduced and the objective function. The second resides in how such
distribution is obtained and, above all, in how much time: through the topological
optimization it is in fact possible to obtain the best form in a very short amount of
time, avoiding other longer methodologies such as the procedures of trial and error
or those based on experiences of the designer. However, one of the problems intro-
duced by this methodology lies in the fact that the geometry obtained in this way
is "natural" and, therefore, difficult to replicate with the standard methodologies
of CAD design and manufacturing. An aid to the development of this technology
comes from the parallel development of Additive Manufacturing technologies, which
have greatly expanded the production capabilities of more complex shapes and ge-
ometries and have opened up the possibility of generating and testing geometries
obtained from topological optimization as they are and not a simplified replica of
them.

The great advantages brought to design by topological optimization in the struc-
tural field have led to its application to various other fields, including fluid dynamics,
thermal (and thermo-fluid dynamics), acoustic, electromagnetic, etc. In such fields
its development has been rendered but more complex and of difficult implementation,
in how much to the base of one good success of the optimization there is a correct
simulation of the physical field in examination. If in the structural field this does
not represent a problem, in the field under examination (that is the fluid-dynamic
one) it is a great limitation to the possibilities of development: the simulation of
a solid inside a fluid must be able to replicate its effects, not only in terms of not
passage of fluid, but also and above all in terms of development of the turbulence.
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Figure 1.1: Example of structures developed with the topology optimization approach

Figure 1.2: Example of Fluid-dynamic
Topology Optimization -
fuel injector

Figure 1.3: Example of Topology Opti-
mization for thermal prob-
lems

These issues are still present in the models used for the implementation of this
optimization methodology, thus they limit considerably the applications: most of
them are in fact related to the study of the optimal geometry of ducts or piping
systems for the reduction of pressure drops or for an uniformity of flow output, but
it can not go beyond these applications. In this thesis we want to investigate these
issues and these aspects, acquiring notions on the physical limits introduced by the
optimization models (illustrated in chapter. 2) and some possible corrections to
them, with the aim of applying topological optimization to a more complex aerody-
namic component: the primary exhaust of an aircraft engine, in particular in the GE
CT7-2E1 installed on the Next-Generation Civil TiltRotor developed by Leonardo
Helicopters.

1.1 Next-Generation Civil TiltRotor (NGCTR)
and the Clean Sky project

In the last decades, the development of new technologies suitable for increas-
ing the efficiency and reducing consumption and emissions of CO2 and NOx has
become more and more important. For this purpose, the Clean Sky Joint Undertak-
ing (CSJU), a public-private partnership between the European Commission and
the European aeronautics industry, was born. The main goal of the CSJU is to
coordinate and fund research activities to deliver significantly quieter and more en-
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1.1. NEXT-GENERATION CIVIL TILTROTOR (NGCTR) AND THE CLEAN
SKY PROJECT

vironmentally friendly aircraft [44] [37]. Following the success of the initial Clean
Sky Programme, its successor, Clean Sky 2, was launched in 2014 as part of the Com-
mission’s Horizon 2020 Research and Innovation Programme. Clean Sky 2 aims to
be the main contributor to the Commission’s Flightpath 2050 goals set by Advisory
Council for Aeronautics Research in Europe (ACARE), which are more ambitious
than those of the initial Clean Sky Programme. These goals are:

• a 75% reduction in carbon dioxide (CO2) emissions;

• a 90 % reduction in mono-nitrogen oxides (NOX);

• a noise reduction of flying aircraft of 65 %;

• mitigate the environmental impact of the life-cycle of aircraft and related prod-
ucts by designing and manufacturing aircraft to be recyclable.

Figure 1.4: Clean Sky 2 Logo

Among all the innovative technologies promoted, there are the study of new
aircraft configurations and capabilities and advances in aerodynamic efficiency. For
this reason, the EU funds two high-speed rotorcraft: the Airbus RACER compound
helicopter [17] and the Leonardo Next-Generation Civil Tiltrotor (NGCTR)[18].
The two projects, despite having the same goal of creating new VTOL aircraft, are
completely different. The Airbus Racer projects is based on the Airbus Eurocopter
X3 and it concerns the study of a "fast helicopter". It is, indeed, an helicopter with
the addition of two Prandtl-like box wings with two propellers alongside the main
rotor. This configuration should provide thrust and lift during the cruising phase,
reducing the main rotor angular velocity and, consequently, the noise produced while
increasing the speed.

On the other hand, the project developed by Leonardo aims to create an aircraft
that is capable of taking off and landing like an helicopter, i.e. a new generation
of tiltrotor aircraft. This idea comes from the long-time experience in tiltrotor that
Leonardo acquired with the development of the AW609. There are many advan-
tages in the tiltrotor concept: it combines the speed and long-range capability of an
aircraft without the necessity of airport infrastructures. According to the required
specifications, it has a MTOW of 11 tons, it can carry up to 25 passengers with a
cruising speed of 300 knots, a ceiling of 25000 feet and a 500 nautical miles range,
numbers that, all together, are unattainable for normal civil helicopters. Moreover,
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Figure 1.5: Airbus RACER compound helicopter

beyond civil air transport, tiltrotor aircraft are ideal for a range of missions that
serve specialised societal needs, such as medical evacuation, search and rescue, and
other utility roles where airport infrastructure is limited or unavailable, like for off-
shore transports. The Next Generation Civil Tiltrotor project aims to introduce
and develop new technologies for the design, production and definition of a new
architecture of the aircraft and of its systems to increase the performances and the
operational capabilities with respect to traditional helicopters or VTOL aircraft.
The ambitious environmental goals for the NextGenCTR, which are relative to the
Leonardo AW139 helicopter, aim to cut CO2 emission by half, to lower NOx by
14%, and to mitigate noise by 30%.

Figure 1.6: Next-Generation Civil TiltRotor rendering. Note the new idea of tilting sys-
tem with respect to the one of the AW609
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Figure 1.7: AW609 during flight test. Note the tilting system that was designed for
rotating all the engine bay

The continuous innovation led to a completely new design of the nacelle and of
the tilting system, along with the introduction of a new V-shaped tail. Compared
with the AW609, in the NGCTR it is no longer the whole nacelle that tilts but it
is only the propeller section: this solutions ensure a lighter tilting system and avoid
the tilting of the engine, that remains horizontal.
Together with these new solutions, according with the Clean Sky promotion in the
search and develop of new and more efficient technologies, the NGCTR project aims
to investigate new design and production systems of the components. It is precisely
in this area that we set the study for a procedure for the topology optimization: this
tool not only can provide new features, but it can create design-based optimized
geometry for a high variety of components in a faster and more efficient way with
respect to the traditional "manual" optimization.

1.2 Objective of the Thesis

The goal of this thesis is to investigate how topology optimization works for a
non-trivial fluid dynamical problem and to develop a procedure that is suitable for
a huge variety of components that have predominantly a fluid dynamic function.
Topology optimization is a well-developed tool for structural components and it is
verified that it can provide optimal design solutions, but it is not so deepened in the
fluid dynamic environment. The procedure here proposed is based on the analysis
of some simple test cases that helped in the analysis of the different problematic
introduced in the solution from the Brinkman Penalization model. The procedure
developed was then tested along with the study of the optimization of the exhaust
mixer (an example in fig. 1.8) of the NGCTR engine, the General Electric CT7-
2E1. To test the robustness of the procedure two different optimization with two
different goals were performed: the first had the primal purpose of increasing the
Jet Pump effect that it generates inside the engine bay, to increase and maximize
the air flow circulating in the bay and improving thus its cooling, while keeping a
maximum pressure on the turbine exhaust section. The second optimization had
the purpose of reducing the pressure losses of the flow exiting the turbine stages,
keeping as much as possible the same amount of mass flow in the engine bay. The
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different results were then analyzed to understand not only the differences in the
topology but also how these reflect on their performances.

Figure 1.8: example of an exhaust mixer for aeronautical purpose

The analysis here proposed were performed with Siemens STAR-CCM+, which in
its newest release (v. 2020.3, available from November 2020) introduced the Adjoint
Topology Optimization model (cap. 2.3.3.2).

1.3 Structure of the Thesis

After a brief explanation of the theory behind the topology optimization and its
state of the art, a focus on the physical models and how this optimization is included
in the work-frame of STAR-CCM+ is presented. Then, some simple test cases are
analyzed to understand how the optimization is performed and to identify the main
passages required for the correct setup of this type of analysis. Then the application
on the exhaust mixer is presented, with its setup, analysis and main results. In the
last chapter some conclusions are reported, together with some considerations on
the future of this tool for fluid-dynamic problems.

Here is presented a brief description of each chapter and its content:
Chapter 2: in this chapter the problem of topology optimization is proposed,

focusing on the differences with shape optimization. There will be an introduction
to the theory behind topology optimization, at first concerning the basic concept of
structural optimization (which is the area in which TO firstly developed) and later
with a deeper focus on fluid-dynamic topology optimization with the adjoint solver
as it is implemented in STAR-CCM+;

Chapter 3: in this chapter the STAR-CCM+ environment is presented, together
with the general setup of a topology optimization problem. Here there will be a brief
discussion on the physical models necessary for the adjoint solver, with a focus on
the turbulence models, a description of the mesh parameters and, lastly, an in-
depth analysis of the definition of the objective function and the constraints for the
optimization.

Chapter 4: in this chapter the topology optimization model is applied on simple
but meaningful problems: starting from a quasi-2D problem, the model is studied in
all its details, focusing on the problems and weaknesses of the current formulation.
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The model is therefore improved with a new sensitivity normalization procedure
and with an implementation of a turbulence correction. The new model is then
compared with the base one in a real 3D problem, to investigate how the new
features behave in more complex geometries. These cases represent the application
of topology optimization in its simplest way, the one for which until today TO was
used in fluid-dynamic environment.

Chapter 5: in this chapter the new topology optimization procedure is applied
on the exhaust mixer of the GE CT7-2E1. After a brief description of the problem
and of the geometry, the optimization analysis are presented. An in-depth analysis
is reserved for the validation of the new geometry and the analysis of the differ-
ence in the flow behaviour between the basic and the two optimized configurations
together with the verification of the satisfaction of the constraints required by the
type certification of the engine.

Chapter 6: in this chapter are reported the conclusions based on the acquired
knowledge of the optimizations performed. Moreover, some considerations on the
next steps in the topology optimization and some possible future development are
proposed.
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2
Topology Optimization

Topology optimization originates in the structural and solid mechanics field as an
alternative to shape and sizing optimizations. The basic concepts of this technique
were posed by Bendsøe and Kikuchi [5] in the late 1980s with the introduction of
a homogenization method. Topology optimization poses itself as a material distri-
bution technique that, in its structural formulation, aims to find the optimal distri-
bution that can improve the performance of a structural component under specific
constraints; in other words, topology optimization aims to give an answer to the
question “where should solid material be placed?” or, alternatively, “where should
the holes be inserted?" [25].
Even thought topology optimization (hereafter referred to also as TO) was devel-
oped a few years after shape optimization (hereafter referred to also as SO), in the
flowchart of the development of a structure it ideally come first since it does not need
an initial structure defined a priori, but moves in a wide design space; the output
of TO is indeed a specific material distribution, that may be furthermore analyzed
with the SO tools if necessary. Today, topology optimization for solid mechanics
is a well-developed and widely available technology and can be applied to a huge
variety of problems.
The basic idea of the original methodology is applicable to all those physics in which
the governing equations can be described by a set of partial differential equations
(PDEs), which therefore enlarges its applications to a high variety of different physics
such as acoustics, electromagnetism, heat conduction, fluid flow, etc. [13]. It is in
the latter field that the work of this thesis is developed: when applied to a fluid field,
the above question should be changed in “where should the fluid flow?”. Although
the basic concepts are also valid for this field, dealing with the Navier-Stokes equa-
tions introduces some advanced considerations, especially on turbulence modeling
and in near-wall treatments.
Since the first mathematical formulation for topology optimization was developed
in the structural fields, it is based on a structural language and such will be used
here for its description. In the following chapters the fluid-dynamic description and
modeling is proposed with an in-depth analysis of the model used for this analysis:

9



2. TOPOLOGY OPTIMIZATION

the discrete adjoint of the compressible Navier-Stokes equations coupled with the
level-set method.

Figure 2.1: Example of topology optimization results

The general workflow of a Topology optimization analysis, illustrated in figure
2.2, consists of three fundamental steps: the Finite Element Analysis, the Sensitivity
analysis and the modification of the material distribution. FEA is the starting point,
since it provides the strain and stress fields on which the sensitivities are computed;
it is clear that a correct and compliant FEA is necessary for the optimization to
succeed. The real backbone of the TO is however the sensitivity analysis, since, based
on its field, a cell is characterized as favorable or counterproductive for the chosen
objective function. As previously sad, topology optimization can handle several
constraints, which also need their own sensitivity analysis: the latter is combined
with the one computed for the base function, which is modified accordingly (i.e.
the sensitivity is filtered with the constraints one). The filtered sensitivity field is
therefore used to modify the material distribution; after such a modification, a new
FEA is needed to analyze the improvements and to compute the new stresses and
strains, and the loop is repeated until the performance is satisfied.
These analysis can be performed in different ways, depending on the method chosen;
in the following sections different methods are introduced and illustrated, with a
particular focus on the one used for the topology optimization performed in this
thesis.
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Problem to
be optimized

FEA

Performance YES

NO

Sensitivity analysis

Filter Sensitivity

Remove or changing
material distribution

Final design

Figure 2.2: Topology optimization typical workflow

2.1 State of the art

Although the foundations of topological optimisation were only laid in the late
1980s, it has undergone a rapid development because of its versatility and the im-
provement it can introduce into the design of a structural component. Nowadays,
structural topology optimization is capable of solving a huge variety of problems,
with multiple constraints, multi-objects, multi-materials or multi-phase physics,
even under manufacturing or performance constraints. Topology optimization usu-
ally generates "natural" and uncommon shapes: for the common and traditional
CAD modeling and manufacturing procedure these represented a problem in the
early stages of its development, but with the introduction and the improvement of
the Additive Manufacturing technologies its implementations have increased rapidly.
To fully understand the capabilities that nowadays TO have, and what it is capable
of, the easiest way is to analyze the huge variety of constraints that it can handle;
some of theme are here presented here, but more can be found, for example, in [3]
and [35]:

• Minimum feature size: ensure a minimal thickness for each geometric fea-
ture.

11



2. TOPOLOGY OPTIMIZATION

• Retained surfaces: ensure a surface not to be modified by the optimization.

• Draw direction constraints: prevent the formation of holes and cavities
along a given direction.

• Cyclic symmetry: to impose cyclic symmetry for circular geometries.

It is evident that the geometries that can be developed with the topology op-
timization coupled with Additive Manufacturing have, ideally, no limits, and the
ease with which are obtained depicts this analysis as the new starting point for the
structural design.
The application of topology optimization for fluid-dynamic aims, in its complete
formulation, to find the optimal geometry that can account both for aerodynamic
and structural parameters. In the past years. the search for model that can account
for fluid-structure interaction, i.e that can couple the topology optimization problem
with the aeroelastic one, has led to some simplified models: initially, linear flow the-
ories and simplified structural models were applied for predicting the aerodynamic
loads in the aeroelastic design procedure [15], but in the last years were developed
some more complex models that allow for detailed linear and non-linear structural
finite element models and non-linear flow theories, such as Euler and Navier–Stokes
flows [20] [14] [32]. Despite the great results that are achievable, these model are
based on the topology optimization as far as the structural model is concerned,
while for the aerodynamic problem a shape optimization is performed and, there-
fore, they are limited to well-defined geometry such as wings; in the general context
of fluid-dynamic topology optimization it is not yet fully developed. In the following
analysis, we will focus on the fluid-dynamic problem only, without considering the
structural one; The major applications of TO for fully fluid-dynamic problems were,
by now, internal flows and piping systems, with the goal of reducing the pressure
losses, increasing the mass flow or optimizing the velocity uniformity (fig. 2.3).
The goal of this thesis is to analyze the different aspects and problematic of the
Level-set approach for TO (explained in chapter 2.3.2) and to find a possible proce-
dure for its correct application also a more complex aerodynamic problems, such as
the topology of an aeronautical engine exhaust.

Figure 2.3: Example of topology optimization for a fluid domain
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2.2 Introduction to Shape Optimization

Quite often topology optimization is confused or mistaken for shape optimiza-
tion. Although they are closely related, SO aims to maximize performance (or reduce
cost) by acting on design parameters associated with a CAD model, for examples
the thickness of a component or the radius of a cylinder, i.e. by changing only the
shape of the design, without introducing new features. On the other hand, TO can
work in a generic design space and does not always need for an initial geometry
to start from; in other words, it has more freedom in finding the optimal solution.
Ideally, TO and SO can be linked and coupled for an in-depth optimization: the
final geometry obtained with topology optimization is usually rough and "natural",
therefore it can be used as an indication of the best geometry; this can then be
subjected to shape optimisation for some minor modifications and improvements.
As mentioned before, SO and TO were firstly developed for structural optimiza-
tions, so the basic mathematical concepts relate to the structural languages. In this
brief introduction to SO and TO, this particular language will be used, although
the following analyses refer to a fluid-dynamic environment.

Let us consider the objective of reducing the volume of a generic component
while imposing a constraint on its stiffness. Since the research of a optimum usually
refers to the minimization of an objective function, we will consider the inverse of
the stiffness, namely the compliance, that is defined as:

J = fT · u (2.1)

where f and u are, respectively, the finite element discretized force and displacement
vectors.
It is now possible to pose two meaningful shape optimization problems:

• Starting from an initial design D0 with volume V0 and compliance J0, find
the shape parameters that minimize the compliance with a constraint on the
volume:

Minimize
s

J

V ≤ V0

smin < s < smax

(2.2)

where s is the vector of the shape parameters.

• Starting from an initial design D0 with volume V0 and compliance J0, find the
shape parameters that minimize the volume with a constraint on the compli-
ance:

Minimize
s

V

J ≤ J0

smin < s < smax

(2.3)

Although these two formulations may seem similar, there is a huge difference between
them: the first one aims at minimizing the compliance with a constraint on the
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volume, i.e. without adding material, while the latter aims to the opposite, i.e.
removing as much material as possible while keeping the compliance below its initial
value. It is obvious, anyway, that if a random search of the optimum is performed,
both these two optimization will lie on the Pareto front.
Today, there are different methods for solving equations 2.2 and 2.3, but the most
popular ones are the first order optimization methods and, among them, the non-
linear conjugate gradients method. Without going into too much detail about this
method, the direction of searching for the minimum of the objective function is
based on the gradient of the same. The minimum is found when the gradients are
equal to zero.
This method is quite powerful because it can simply handle constraints by the use
of the Lagrangian L .
Considering a function f(D), where D are the design variables, subject to equality
constraints g(D) = 0 and inequality ones h(D) ≤ 0, the corresponding Lagrangian
will be:

L = f(D) + λ · g(D) + µ · h(D) (2.4)

where λ and µ are the Lagrange multipliers vectors.
As stated before, it is required the computation of the gradient of the Lagrangian,
that will be as follow:

∇DL = ∇f(D) + λ · ∇g(D) + µ · ∇h(D) (2.5)

The concept of the Lagrangian will be used later in the text.
It is clear that to solve a TO problem it is necessary to compute the gradients, i.e.
perform a sensitivity analysis. While the sensitivity of the bound constraints and
the volume one (or objective) are easy to handle, the real problem is the gradient
of the compliance. There are two different approaches: Direct Finite Difference and
Indirect Finite Difference.

• Direct Finite Difference: computing the sensitivity of the compliance via
a 1-st order finite differences (ex. forward finite difference):

∂J

∂Di

=
J(D + ∆Dj)− J(D)

∆Dj

(2.6)

where

∆Dj =

{
∆Di, if i = j

0, else
(2.7)

Unfortunately, a direct finite difference method suffers from numerical prob-
lems within a FEA context, and would probably lead to the failure of the
optimization process.

• Indirect Finite Difference: let’s consider the definition of compliance:

Ku = f (2.8)

J = fTu (2.9)
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taking the derivative of both equations with respect to shape parameters,
remembering that the vector of the forces does not depend on them, we obtain:

Ku′ = −K′u (2.10)

J ′ = fTu′ (2.11)
where:

(.)′ ≡ ∂

∂Di

(2.12)

So we obtained the displacement sensitivity (u′) and the stiffness matrix sen-
sitivity (K′). The advantage is that the latter is computationally efficient to
calculate using mesh morphing methods. Once we know the stiffness matrix
sensitivity, is possible to compute via eq 2.10 the displacement sensitivity,
which via eq 2.11 let us finally compute the compliance sensitivity.

Based on the gradient, the algorithms chooses where to move in the domain. For
example, a classical gradient-descending method computes the new design variables
at the iteration k + 1 as follow:

Dk+1 = Dk − αJ ′|D=Dk (2.13)

where α is an algorithm parameter, usually constant.

2.3 Topology optimization methods

The theory of topology optimization generalizes the one of shape optimization
since it allows new features to be introduced into the domain. In this chapter, after
the statement of the mathematical TO problem, the two most common methods will
be briefly discussed, while the one used for the here performed analyses is discussed
in depth in chapter 2.3.3.

The generic TO problem can be formally stated as:
Minimize

Ω⊂D
J

Subject to
V ≤ V0

Ku = f

(2.14)

where Ω is the topology to be computed and D is the topological domain. It is
important to compare the above formulation with the one of SO (eq. 2.2 or eq. 2.3)
to clearly understand the differences: in the topology optimization formulation no
design parameters are considered, but the request is to determine the topological
distribution of the material in the domain, i.e. where to insert or remove material.
Nowadays, the two most common methods to parameterize the topology are:

1. density-based methods;

2. Level-set methods.

The first and fundamental difference between them is in the computation of the
sensitivities, as it is explained in the next sections.
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2.3.1 Density-Based Method (SIMP)

The density-based approach is the most popular TO method, since it has a solid
mathematical foundation, it can handle various constraints and objective functions
and it is quite easy to implement in a FE environment. This method is also known
as Solid Isotropic Material with Penalization (SIMP) and was originally proposed by
Bendsoe and Kikuchi (1988) and Rozvany and Zhou (1992). According to Bendsoe
(1989): "Shape optimization in a general setting requires the determination of the
optimal spatial material distribution for given loads and boundary conditions. Every
point in space is thus a material point or a void and the optimization problem is a
discrete variable one." (note: even though Bendsoe refers to "shape optimization",
this method was developed for TO, but at the time no distinctions where still made).
The idea behind the finite element based SIMP method is that it is possible to
associate a pseudo-density variable ρ to every single element, called isotropic solid
micro-structure, that allows to parameterize the topology. In the domain, each single
cell is characterised as either full of material (ρ = 1) or empty (ρ = 0), which will
lead to a discrete material distribution. The introduction of a continuous density
distribution function avoids the binary nature of the problem: for each element,
ρe can vary between a minimum value ρmin (different from zero to avoid numerical
problems) that identifies the empty domain, and 1, thus allowing the assignment of
intermediate densities for the cells.
The TO problem therefore can be reformulated as:

Minimize
ρe

J

E∑
e=1

ρeνe − V0 = 0

Ku = f
ρmin ≤ ρe ≤ 1

(2.15)

where νe is the finite element volume and E is the total number of finite elements.
To find the optimal values of ρe it is necessary to carry out a sensitivity analysis.
Since the relative density of the material can now vary continuously, the Young’s
modulus of the material in each cell must also does the same. A simple but powerful
relationship between them is a power law function (Sigmund 2001 ; Zhou et al.
2001 ):

E(ρe) = (ρe)
pE0 (2.16)

Where p is the penalty factor, which diminishes the contribution of elements with
intermediate densities to the total stiffness. From numerical experiments, in a 3D
problem p = 3 was found to be a suitable value.
In order to compute the impact of the variation of material densities on the stiffness
(or compliance) matrix, it is necessary to perform a sensitivity analysis. Recalling
the general definition of the Lagrangian (eq. 2.4), with the SIMP method it can be
reformulated as:

L (u, ρ) = uTKu + µα

[
E∑
e=1

ρeνe − V0 = 0

]
+ µTf (Ku− f) (2.17)
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which, considering the gradients with respect to u and ρ leads to the sensitivity
expression:

µανe = pρp−1
e uTK0(e)ue (2.18)

The computation of the Lagrange multiplier µα can be performed, for example, via
the bi-section method [3].
We can therefore summarize the SIMP algorithm in the following steps :

1. Initialize the densities to the specific volume fraction ρe = α;

2. With the specified densities, the static problem Ku = f via FE method is
solved;

3. The sensitivity analysis is performed and, via the bi-section method, the den-
sities are updated;

4. If convergence is not reached, return to step 2 with the new densities. If
convergence is reached, the topology obtained is the required one.

2.3.2 Level-set methods

The other most common popular TO approaches are the Level-set Methods
(LSMs), which define the interfaces between material phases implicitly using iso-
lines of a Level-set Function (LSF) [23] [2]. Unlike density-based ones, this kind of
representation can create crisp interfaces between material phases, which can lead
to greater accuracy in correctly capturing the mechanical response near the bound-
aries, avoiding ambiguities of intermediate material phases. Although early versions
of LSMs were not able to insert holes in the domain, this problem has now been
solved with the introduction of the concept of topological derivatives.
The LSF is used to describe the boundaries of a structure occupying the domain
according to the following definition:

φ(x, y) =


< 0, if (x, y) ∈ Ω

= 0, if(x, y) ∈ ∂Ω

> 0, else
(2.19)

where (x,y) is any point in the domain. An example of a LSF is shown in figure 2.4.

The shape and the topology of the domain change during the optimization accord-
ing to the Level set function φ, which evolves according to the following Hamilton-
Jacobi transport equation:

∂φ

∂τ
+ V|∇φ| = 0 (2.20)

where τ is a fictitious time parameter τ > 0 which corresponds to descent stepping
and V is the interface velocity between two phases (see chapter 2.3.3.2).
Topological derivatives concern a further discussion, since they lead to the possi-
bility of generating holes in the domain. This possibility is quite important and
fundamental in a 2D domain, while in 3D this possibility must be used with care,
especially if the domain is a fluid one, since it can generate floating portions of solid
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Figure 2.4: Example of a Level Set function [48]

inside the domain, leading to an unfeasible design.
For simplicity, let’s consider a full solid domain and insert a hypothetical hole of
radius r in a point p. The topological derivative is defined as follow:

T (p) ≡ lim
r −→ 0

φ(r; p)− φ
πr2

(2.21)

where φ is a generic scalar quantity of interest. Let’s now introduce an infinitesimal
increment in the radius throughout a parameter τ . The shape sensitivity of φ with
respect to τ is the following:

χ(r) ≡ dφ(r)

dτ
|τ=0 (2.22)

We can now relate topological sensitivity with shape sensitivity as follows:

T (p) = lim
r −→ 0

χ(r)

2πr
(2.23)

It is possible to derive a closed-form expression for the topological derivative, using
adjoint methods and evaluating stresses and strains in the point p before hole is
inserted. Level set methods are the one used in STAR-CCM+, so there will be a
further discussion later (see chapter 2.3.3.2).
So far, all the models presented where referred to the early theory of structural
topology optimization. From now on, we will focus on a fluid dynamic topology
optimization performed by means of the adjoint model, which is based on the Level-
set method discussed above. In the following sections the discrete adjoint of the
compressible Navier-Stokes equations coupled with the level-set method is presented
and discussed in all its components, since it is the chosen model for the performed
analyses.

2.3.3 Adjoint Topology Optimization Model

As mentioned before, the fundamental step in TO is the computation of the
sensitivity of the objective function with respect to the design variables. In the
gradient-based algorithms, as shown in eq. 2.6, the direct finite difference method
not only can lead to instability but, for a fluid dynamic problem, it can also be
computationally infeasible, due to the high number of design variables. Considering
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L(D) the objective function, each evaluation of L(D) needs the state system to be
solved as first, which requires N+1 solver calls (where N is the number of design
variables): one L(D+∆Dj) for each ∆Dj in the direction of each design variable
plus one L(D).
On the other hand, the adjoint approach, which consists of computing the gradient
of the cost function using the adjoint state, can compute the whole sensitivity with
just one solution of the primal solver and one of the adjoint solver, requiring in this
way just two calls, regardless of the number of the design parameters.
Since this type of optimization requires the adjoint model, here the fundamental
theory behind the adjoint sensitivity is briefly discussed.

2.3.3.1 Discrete Adjoint model

Let R(Q,X) be the vector of the residuals of the discrete Navier-Stokes prob-
lem, where X is the mesh domain, and the steady-state solution R(Q,X)=0. The
sensitivity of the cost function is therefore given by the chain rule:

∂L
∂D

=

[
∂L
∂X

+
∂L
∂Q

∂Q
∂X

]
dX
dD

(2.24)

Focusing on the rightmost term, considering M points on the mesh domain, it turn
out to be a (N x M) matrix. For a large number of variables, like in a generic fluid
dynamic problem, the computation of this term can be too expensive. To avoid this
problem, it is possible to decompose the derivatives:

∂L
∂Di

=

[
∂L
∂X

+
∂L
∂Q

∂Q
∂X

]
dX
dDi

(2.25)

for i = 1, 2, ..., N columns.
It is worth noticing that, while the design variables may be in a large number,
the outputs required are often limited (e.g. pressure, mass flow, forces, etc..). The
computational cost can therefore be improved taking the transpose of the derivatives,
which gives a system consisting of only a few equations:

∂Lj
∂D

T

=
dX
dD

T [∂Lj
∂X

T

+
∂Q
∂X

T ∂Lj
∂Q

T]
(2.26)

Equation 2.26 represent also how sensitivity is performed in STAR-CCM+.
By analysing the terms that make up the equation described above, it is possible to
identify three different sensitivities:

• ∂Lj

∂Q
T
: this term is the sensitivity of the cost function with respect to the

solution Q

• ∂Lj

∂X
T
: this term represents the direct sensitivity of the cost function with

respect to the mesh

• ∂Q
∂X

T
: this term is the sensitivity of the solution with resepct to the mesh
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In order to solve equation 2.26, it is necessary to compute the sensitivity with respect
to the solution, which also gives the one for the mesh. Subsequently it is possible to
evaluate the term in bracket, that represents the sensitivity of the report objectives

with respect to the mesh, i.e. dLj

dX
T
. Lastly, perform the product between the

sensitivity of the mesh with respect to the design parameter dX
dD

T
and the result of

the previous step. It is so obtained the sensitivity of the cost function with respect
to the design parameters, i.e. the wanted sensitivity.
The steps required for evaluating these sensitivities can be briefly summarized as
[41]:

• Sensitivity with respect to the solution. First, the sensitivity of the cost
function w.r.t the solution and the direct sensitivity w.r.t the mesh are com-
puted. These sensitivities are evaluated once the physical solver has converged
or reached a stop criterion, so these operations are only performed once.

• Sensitivity with respect to the mesh. The core of this analysis is the
computation of the sensitivity with respect to the mesh, i.e. the term in
brackets in eq. 2.26.
To calculate the required sensitivity, the adjoint solution for the sensitivity of
the cost function with respect to the residuals of the governing equations, i.e.
dL
dR

T , is performed.
Suppose there are N iterative solvers, each for a subset of variables, such that
particular governing equations are satisfied. Let us consider Qi the set of
variables and Ri the residual forms of the governing equations associated to
the ith solver. Since a coupled flow model is required for the adjoint solver,
the solution of the flow field can be written as a system of coupled non-linear
equations:

Ri(Q1,Q2, ..QN ,X) = 0 for i = 1 : N (2.27)

Since the adjoint can be performed only in a time-steady solution, each solver
constructs its residual based on the previous values and advances thanks to a
local preconditioner [Pi], which is an approximate linearization of the Navier-
Stokes equations with respect to the variables:

Rk
i = Ri(Qk+1

1 ,Qk+1
2 , ...,Qk

i , ...,Q
k
N)

Qk+1
i = Qk

i − [Pi]
−1Rk

i

To obtain the adjoint solution, it is necessary to perform the derivatives with
respect to X for every ith solver, which results in a fully coupled linear system:[

∂R
∂Q

]
∂Q
∂X

= −∂R
∂X

(2.28)

If we invert for the sensitivity of the variables, we obtain a new expression for
the sensitivity of the cost function with respect to the mesh:

dL

dX

T

=
∂L

∂X

T

− ∂R
∂X

T [∂R
∂Q

]−T
∂L

∂Q

T

(2.29)
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From this equation we can define the adjoint solution variable ΛQ:

ΛQ =

[
∂R
∂Q

]−T
∂L

∂Q

T

(2.30)

To avoid the computation and assembly of a large and complex matrix, the
adjoint solution process uses algorithms that only require products between
matrices and vectors, namely Restarted GMRES and Defect correction [24].
The defect correction can be written as:

[P]δΛQ =
∂L

∂Q
−
[
∂R
∂Q

]
ΛQ (2.31)

The advantage in solving the adjoint with this algorithm is that the system is
solved in a Jacobi-like manner, saving lot of memory during the computation.
The final forms of the equations for the computation of the residual are the
following:

Rk
ΛQ,i

=
∂R1

∂Qi

Λk
Q,1+

∂R2

∂Qi

Λk
Q,2 + · · ·+ ∂Ri

∂Qi

Λk
Q,i + · · ·+ ∂RN

∂Qi

Λk
Q,N

Λk+1
Q,i = Λk

Q,i − [Pi]
−TRk

ΛQ,i

(2.32)

This system of equations also include the solver for the turbulence models,
which are expensive and can lead to instability. To enhance stability it is
possible to eliminate the column representing the variables of that solver using
the STAR-CCM+ so-called adjoint frozen turbulence model, which consists
in considering fixed the turbulent quantities obtained in the primal solution
during the adjoint iteration.

• Sensitivity with respect to design parameters. The last important sen-
sitivity is the one w.r.t to the design parameters dLj

dD
T
, i.e. to the mesh de-

formation. This term is the product between the result of the previous step
(dLj

dX
T
) and the sensitivity of the mesh with respect to the design parameter

dX
dD

T . The output of this sensitivity usually is used to compute the effect that
a change in the mesh would have on the solution, in order to perform an opti-
mization via a mesh deformation; this sensitivity is therefore usually used for
shape optimization problems since it requires an initial geometry from which
start from, but for sake for completeness it is analyzed anyway.
The different mesh deformation techniques developed over the years can be
summarized in two great categories: physical analogy based techniques and
interpolation based techniques. While the former describes the fluid mesh
deformation according to a physical process that can be modeled using nu-
merical methods, the latter uses an interpolation function to transfer the pre-
scribed displacements of the boundary points to the fluid mesh [39] [40] [28]. In
STAR-CCM+, the mesh deformation algorithm that is used is the radial basis
function (RBF) morpher algorithm [6], which falls into the category based on
physical analogy, and which compute the sensitivity w.r.t. the design param-
eter as:

dL

dD

T

=
dX
dD

T dL

dX

T

(2.33)
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The RBF allows to create a scalar field that interpolates a function defined
on a set of source points: considering a reference position x0, the interpolated
position x is given by:

x(x0) = α +
N∑
j=1

βjφj(rj(x
0)) (2.34)

There exist two types of RBFs, the ones with compact support [45] and the
ones with global support. In the latter case, the following multiquadratic
biharmonics function φ(r) is used:

φj(rj) =
√
r2
j + c2

j ,
cj=0−−→
∀j

φj(rj) = |rj| (2.35)

where
rj(x0) = ||x0 − x0

j || (2.36)

Considering a discrete domain, with N reference positions, the M interpolation
positions becomes: x1

...
xM

 =

 11
...

1M

α +

 φ1,1 . . . φ1,N
... . . . ...

φM,1 . . . φM,N


β1

...
βN

 (2.37)

In order to obtain the unknown coefficients, it is necessary to solve the following
system: 

φ1,1 . . . φ1,N 11
... . . . ...

...
φM,1 . . . φM,N 1N
11 . . . 1N 0



β1
...

βN
α

 =


d1
...
dN
0

 (2.38)

with the additional constraint

N∑
j=1

βj = 0 (2.39)

It is now possible to derive the expression for the required sensitivity. From
equation 2.38 one can obtain the derivatives of the coefficients α and β and
inserting in the 2.37 from which is possible to derive ∂X

∂dj
.

Since the aim is the calculation of equation 2.33, considering that the second
term has been already computed, the adjoint only has to perform the product:

∂L

∂α
=

 11
...

1M




∂L
∂x1...
∂L
∂xM

 (2.40)

which gives 
∂L
∂β1...
∂L
∂βM

 =

 φ1,1 . . . φ1,N
... . . . ...

φM,1 . . . φM,N


T 

∂L
∂x1...
∂L
∂xM

 (2.41)
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and, finallly, 
φ1,1 . . . φ1,N 11
... . . . ...

...
φM,1 . . . φM,N 1N
11 . . . 1N 0


T 

∂L
∂d1...
∂L
∂dM

t

 =


∂L
∂β1...
∂L
∂βM
∂L
∂α

 (2.42)

where t is rejected.
A similar approach to the mesh sensitivity is the Surface sensitivity ; although
it is conceptually similar to the former, the latter allows for a quicker calcula-
tion of the sensitivities with respect to the boundary parameters as it provides
a large-scale trend and simplifies or guides the placement of the control points
in the domain (for a shape optimization problem). In surface sensitivity anal-
ysis the goal is to give an indication of morphing or displacement and not to
modify the mesh. However, in order to compute a consistent displacement
between the cells, avoiding discontinuities or unrealisable deformations, one
can use the so-called mesh deformation algorithm spring-analogy [46]: with
this approach, each edge of the mesh is replaced by a tension spring with a
spring stiffness kij taken as inversely proportional to the edge length.
To solve the cell displacement, applying Hook’s law to the nodes displace-
ments, we impose the equilibrium of the forces between the ith cell and the
adjacent jth ones. Considering δxi the displacement of the centroid of the cell,
the equilibrium is given by:∑

j

kij(δxj − δxi) = 0 (2.43)

For cells at the boundary, the displacement is known, so the equilibrium can
be re-written: ∑

j,interior

kij(δxj − δxi)− kibδxi = −kibδxb (2.44)

inverting for the displacement:

δx = K−1B where B =

{
0, for interior cells
−kibδxb, for cells on boundaries

(2.45)

The following step is the computation of the adjoint equations. However,
since surface sensitivity has not been used in the continue of the analysis, the
development is not reported here but it can be found in [41].

The above discussed sensitivities are the one used in the remainder of this thesis,
but there are many others, such as the one with respect to boundary conditions; in
the majority of the analyses the boundary conditions are fixed or there is a limited
possibility of modifications, as in our analysis, which makes the computation of this
sensitivity meaningless. The reader is referred to [34] [41] for more information.
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2.3.3.2 Adjoint topology optimization model

Topology optimization, as mentioned earlier, aims to minimize (or maximize) the
user defined cost function by adding new features in the design domain. If this is
done by changing the mesh, it can lead to extremely high computational cost, s the
mesh has to be recalculated at each iteration. The most established technique for
simulating a solid inside a fluid domain is the use of a porous medium, which assigns
a small porosity to the cells identified through the LSF interface; the optimal domain
topology emerges from the final porosity distribution. To simulate the obstacle in
the fluid domain, we use the Brinkman Penalization model [43], which adds a source
term in the momentum equation that forces the velocity to zero in those cells:

∂ρv
∂t

+∇ · (ρv⊗ v) = −∇ · σ − α(1− χ)v (2.46)

where α is the Brinkman Penalization magnitude. This term must be high enough
to force the velocity to zero in the "solid" domain. Ideally, the solid material is
completely impermeable for both convective mass transport and pressure diffusion:
while the former is easily simulated by forcing the velocity to zero, the Brinkman
approach cannot prevent the latter and thus may lead to errors in flow prediction
[4] [30]. Furthermore, the interfaces between fluid and solid are not characterized as
no-slip walls, leading to an incorrect turbulence modeling. As we will show, these
shortcomings in the model may lead to incorrect or even unphysical results in the
optimization process. This error in inherent in the model and cannot be avoided,
even with a very high value of the penalization magnitude which, in addition, can
lead to convergence issues. In the past years, several methodologies have been
developed to try to overcome this issues, focused on a different characterization of
the interface and the enforcement of a no-slip condition [29] or on a completely
new characterization of the solid domain, using the Extended Finite Element Model
developed to studying crack propagation [33].
Analyzing the equation 2.46, another term is added to the momentum equation:
χ, called "Material Distribution Function" which is the function that governs the
material distribution within the domain and it is defined as in equation 2.48. χ = 1
identify that the considered cell is a fluid-domain cell, χ = 0 identifies the cell as a
solid one. During the optimization process χ can assume all values between 0 and 1,
according to the sensitivity analysis. The continuous transition from solid to fluid
facilitates the use of gradient based optimization algorithms but at the end of the
optimization it is necessary to revert to a Boolean approach (solid or fluid); the
solid region can be then be identified with a user defined threshold on the Material
Distribution Function, characterizing all the cells with χ < 0.5 as solid. Therefore,
it is quite obvious that the output of the topology optimization is geometry whose
contours are characterized by a staircase shape and that the new solid domain
must be slightly post-processed to reproduce a smoother geometry and to delete the
smaller, unfeasible features produced by the algorithm.
To solve the energy equations, the inserted porous medium is treated as a solid in
thermal equilibrium, so the only change in the basic equation is the addition of the
thermal conductivity of the solid. The effective thermal conductivity is then given
by:

keff = χkfluid + (1− χ)ksolid (2.47)
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This model works quite perfectly for Low-Re flows (compared to the resolution of
the fully resolved geometry), while for High-Re ones, accuracy slowly decreased but
withing an acceptable level of discrepancy.
As stated before, in order to solve the sensitivities that allow the function χ to
distinguish between solid and fluid, a level-set method is used; χ is therefore a
function of the LSF φ defined as:

χ = 0.5 ·
(

1 + tanh

(
φ

δ

))
(2.48)

where δ is a parameter that defines the thickness of the interface. This parameter
is usually set to 0.1.
In order to have a better control on the development of the porous media, allowing
for the creation of solid domain no only from the interfaces but also in the middle
of the fluid domain, it is possible to add a source term S. Equation 2.20 therefore
becomes:

∂φ

∂τ
+ V ||∇φ|| = S (2.49)

where φ can vary between -1 (that identify the solid phase) or 1 (fluid phase).
As stated before, τ is a fictitious time step that is used to simulate the development
of the LSF inside the domain. Although it has no physical meanings, its value must
be chosen properly, since a too high value could lead to the divergence of the opti-
mization, while a too low one could require too much iterations for the convergence
(remark: TO usually has high computational costs).

When performing an optimization, we usually need to find the minimum (or a
maximum) or the zero of a generic function, usually not achievable analytically.
To solve such a problem, some different algorithm have been developed over the
years: from the well-known root-finding algorithms as the Newton’s method (which
require a derivable function in order to apply the algorithm to the first derivative for
finding minima) up to Gradient based algorithms, particle swarm methods, artificial
neural networks, etc. In general, we can distinguish between gradient-based and non-
gradient-based algorithms: the former are usually quite accurate and can converge
faster then the latter, but may suffer for robustness and for the presence of multiple
local minima. Among the Gradient-based, an algorithm that has stood out from the
others for topology optimization is stochastic gradient descent (SDG) [42]: classic
gradient descent works well for continuous and easily derivable functions but it
deteriorates if the data-set size becomes too large, affecting the convergence as well;
moreover, if the function has local minima, the algorithm might get stuck in one of
them and never reach the global minimum. Stochastic gradient descent overcomes
this problem by randomly selecting data sampling and replacing the exact value
of the gradient with an estimated one based on these samples and updating the
parameters accordingly to the sensitivity functions. This approach is faster and
requires less memory usage during the computation, as demonstrated by [10] [31].

To avoid the algorithm from getting stuck in a local minima and to improve
the convergence, SDG is updated with the Adaptive Moment Estimation (ADAM)
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Figure 2.5: Differences between Standard Gradient Descent (right) and Stochastic Gra-
dient Descent (left)

update rule [12], that gives to the searching direction a momentum (see fig. 2.6):

mk+1 = β1mk + (1− β1)
dL

dχ
(2.50)

vk+1 = β2vk + (1− β2)

(
dL

dχ

)2

(2.51)

v̄ =
mk+1√
vk+1 + ε

(2.52)

where:

• β1: constant that determines the momentum applied to the search direction.
Higher values mean higher momentum, which means more difficulty for the
gradient to change its direction. Usually, its value is set equal to 0.5;

• β2: constant that determines the step-size velocity decay during the optimiza-
tion. A higher value means a smooth but slow approach to the final result.
Usually, its value is set equal to 0.5;

• ε: small constant to avoid a division by zero.

Figure 2.6: Difference of convergence for a SGD with (right) and without (left) momentum

It is now possible to define the velocity at the interface (recall equation 2.49) as
a scaled value of the search direction:

Vi =
Viv̄i∑
k

∣∣∣ ~Ak∣∣∣ (2.53)
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where Vi is the volume of the ith cell and
∑

k

∣∣∣ ~Ak∣∣∣ is the sum of the face areas of
that cell.
Concerning the source term S in eq. 2.49, this is proportional to the search direction
computed during the ADAM and it is defined as follows [41]:

Si = −ω[1− sign(v̄i)φ]v̄i (2.54)

where ω is the source strength. This term is only considered (ω > 0) when the
formation of holes inside the domain is permitted, otherwise the solid can only grow
from allowed boundary and ω = 0.
While the ADAM rule helps the algorithm with the convergence, the choice of the
direction is made by the sensitivity of the augmented Lagrangian function L with
respect to χ. Considering the generic Lagrangian form as the one written in equation
2.4 and re-writing for our problem:

L (x, λ) = f(x) +
∑
i

ψ(ci, λ
k
i , µ) (2.55)

where f(x) is the objective function, c is the constraint, λ is the Lagrange multiplier
and µ the penalty parameter. The function ψ is defined as:

ψ(c, λ, µ) =

{
λc+ µ

2
c2 if c ≥ 0

0 else
(2.56)

At each iteration, the Lagrange multiplier is updated:

λk+1
i =

{
0 if ci ≤ 0

λki + µci else
(2.57)

The penalty parameter µ is one of the most important parameter in such a
problems and assumes a very important role in the optimization, since it governs
the weight that the constraints have on the optimization: the higher the penalty, the
greater are the Lagrange multiplier and thus the importance of the constraint with
respect to the objective function. An analysis on the importance of this parameter
was performed in chapter 4.
For an optimization analysis to converge to the optimal solution, it is necessary that
the Lagrangian are correctly scaled. Indeed, it is necessary that all the sensitivities
of the constraints correctly represent the distance between the constraint itself and
its desired value, in accordance with the value of the sensitivity of the objective
function. Often the sensitivity fields of the objective function and of the constraints
are very different one from the other, therefore a different scaling between them
may be required. A possible approach is to define the constraints and the objective
function is such a way that the obtained sensitivity fields are comparable, which is a
not always that easy and may require some internal iterations of sensitivity analysis
and corrections (For more information, see chapter 3.4.2).
Another possible solution is to normalize the objective and constraints by their
greatest sensitivity value:

f̂(x) =
f(x)∣∣∣∣∣∣ ∂f∂χ ∣∣∣∣∣∣∞ (2.58)
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ĉ =
c∣∣∣∣∣∣ ∂c∂χ ∣∣∣∣∣∣∞ (2.59)

In the following analyses an in-depth comparison is made between optimization
performed with or without such a normalization, in order to better understand
the implications on the analyses themselves and on the results; as we shall see,
the latter (usually referred to as "Automatic normalization") is not always able to
correctly compare the different sensitivities of the objective function with respect to
the constraints, leading to an incorrect final topology.
The theory reported here is just an introduction to all the existing ones concerning
topology optimization and what lies behind it. Since the aim of this thesis is not the
introduction of a new model or method for TO, its development stops here. However,
all the theory necessary to understand the following of this text is contained in this
chapter.
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3
STAR-CCM+ Environment and

Workflow

In this chapter, the STAR-CCM+ environment is presented with a focus on the
most important aspects that will be used for the setup of the generic optimization
problem. In particular, the mesh models that will be used and the physical models
required for the Adjoint Topology Optimization (coupled flow, turbulence models,
adjoint) will be discussed, together with the definition of the objective function and
constraints. A fundamental step concerns the turbulence corrections required to
reduce the error introduced in the solution from the Brinkman penalization model
and its description of the solid domain through porous fluid cells.

3.1 Geometry definition

The first important consideration for the correct setting of a TO problem is the
identification of the part of the fluid region that will take part in the optimization
itself and, conversely, the one that cannot be modified. Although it is possible to
consider the whole domain as a single fluid region, characterizing as "editable" only
the boundaries from which the solid domain can grow, it is better, where possible,
to distinguish between the inlet and outlet boundaries from the others. This ensures
that solid domain cannot grow up to the inlet and outlet sections and, therefore,
that these (that may be constrained by other external constraints not considered
in the simulation) remain unchanged. Based on this considerations, from now on
we will refer to the region that will take part in the optimization process as TO-
Region, while the other will be called Fixed-Region. The differences between
the single-region and the multi-region approach are purely logistical: First, it is
more convenient not to include boundaries that do not need to be modified in the
TO-Region, to simplify the boundary conditions (there is no need to set for each
boundary a fixed constraint). On the other hand, this will lead to the creation of
more interfaces between regions, but, if the mesh at the interface is set correctly,
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3. STAR-CCM+ ENVIRONMENT AND WORKFLOW

the error introduced is negligible and therefore does not represent a problem for
topology optimization (see chapter 5).
Another important aspect to considered is that topology optimization gives better
results if the TO-Region is larger than the "base" geometry, since it has the more
freedom and can generate a more varied topology. This consideration leads to the
creation of a domain that includes the basic geometry and extends it, taking in
account external constraints and limitations. On the other hand, if the external
geometry is to be kept fixed, it is possible to study only an internal optimization
starting from the basic geometry. Contrary to what may appear, an internal opti-
mization is not in conflict with the concept of topology optimization (see chapter
4.2 and chapter 5).

3.2 Mesh models and parameters

The generation of the mesh is a fundamental step in all the CFD analysis, es-
pecially for a topology optimization problem that defines the solid domain through
the porosity assigned to each individual cell. This in the TO-Region may require a
finer mesh than the one that would have been enough to guarantee a convergence
for the fluid field. In the following analysis, the optimizations are performed both
with structured and unstructured meshes, in order to better understand the prob-
lems that their differences could introduce in the optimization. Here, the two mesh
models that we will use later are briefly described:

• Trimmed Mesh: generates predominantly hexahedral cells. It can guarantee a
high mesh quality but it can suffer from complex geometries with high curva-
tures. The mesh is generated by the intersection of the geometry with a outer
grid and with a refinement near the boundaries where geometry intersect the
grid itself. Although this mesh model generates cubic-shaped cells, it is not
exactly a structured mesh if the geometry develops independently over the 3
dimensions or, on the contrary, if the grid is not perfectly aligned with it; it
is possible, for simple geometries, to generate the grid according to the main
direction of the domain and performing a full structured mesh. It is indepen-
dent from the surface mesh quality but it cannot generate conformal mesh at
the interfaces. An example is shown in figure 3.1.

• Polyhedral Mesh: generates polyhedral-shaped cells by connecting the centers
of the cells generated by the surface mesh. These will be the model used for
the unstructured mesh cases. This model is the preferred one for complex
geometries or domain with different regions since it allows the generation of a
mesh with conformal interfaces. The greatest advantage in using polyhedral is
that a volume mesh generated with this model contains about five times fewer
cells than an unstructured one generated, for example, using tetrahedra, for
a given starting surface mesh [41], but it is still capable of achieving a high
quality mesh. The polyhedral cells that are created typically have an average
of 14 cell faces. An example is shown in figure 3.2.
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Figure 3.1: Example of a Trimmed Mesh [41]

Figure 3.2: Examples of a Polyhedral Mesh [41]

The main parameter that we will use to distinguish the mesh size, for example
for the mesh convergence analysis, is the Base Size. For in-depth mesh control,
it is also possible to define, among many others, a minimum and a maximum size
(relative or not to the Base Size), a growth rate (both for surface and volume mesh),
a surface curvature refinement. Some of these parameters will be used later on.
As we already know, to correctly capture the near-wall behaviour and for a correct
turbulence modeling, we need to obtain a Y + consistent with the chosen turbulence
model; the thickness of the first layer is therefore a fundamental aspect in the mesh
generation. As illustrated in the next chapter (ch. 3.1), the turbulence model used
for the analysis can evaluate the Y + of each cell and chose accordingly whether
to use or not the wall functions. Even though these can be less performing in the
turbulence modeling, this model allows use to deal with complex geometries whit
different physical scales, as the one illustrated in chapter 5.

It is clear that there is not a best mesh for all the simulations but the choice
of the mesh model depends on the problem under analysis. For simple geometries
(see chapter 4) without curvatures, the trimmed mesh model is more suitable, but
for complex geometries with small features or large curvatures the polyhedral model
can achieve a better quality with fewer cells. To better understand the differences
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between the two mesh models, an analysis was performed with the test case de-
scribed in chapter 4.1 performing a convergence analysis for the flow solution with
both the trimmed mesh model and the polyhedral one.
But does the mesh model influences the topology optimization? And if it does, how?
Does its result strictly depend on the size of the mesh? As mentioned, the topology
optimization loop (fig. 3.9) has a very high computational cost, so it comes natural
to investigate the influence of the mesh size on optimization solution. In particu-
lar it is important to understand whether the use of a mesh that is not strictly at
convergence can affect the result and, if it does, how much is the error introduced.
This analyses were performed again with the test case described in chapter 4.1 and
the results are presented in a dedicated section (chapter 4.1.2.1) but before answer-
ing this question is necessary to introduce the physic of the problem and the error
introduced by the adjoint topology optimization solver itself.

3.3 Physics models for the Adjoint Topology op-
timization

A correct and good-quality mesh is the starting point for a proper analysis,
but it needs to be accompanied by a the correct description of the physics of the
problem and, thus, with the appropriate choice of physics and turbulence models.
Adjoint topology optimization forces some aspects of this description, requiring not
only the resolution of a coupled flow model but also a stationary fluid flow. These
constraints are due to the algorithm governing the adjoint solver and topology level
set function (as described in chapter2.3.3.2). Although these "constraints" may
appear to be restrictive, they actually reflect the idea behind an optimization: it
is a different concept, in fact, to perform an optimization if the solution changes
in time (in which case the optimisation will be based on the solution obtained as a
time-averaged solution). In addiction, the coupled flow model (which, by the way,
can achieve a higher accuracy on the solution than the segregated one) is necessary
for the computation of the sensitivities with respect to the material indicator (see
chapter 2.3.3.1).
We will not go into the details of each model that we will use in the analyses
(gathered in tab 3.1), assuming them as previous and acquired knowledge.

The models that deserve the most attention are the turbulence ones. The one
used in the simulations is the Menter’s K − ω SST, as is the best solution for our
cases since all of them concern internal flows and may suffer of adverse pressure
gradients. Moreover, this model ensures a good robustness, which is crucial for a
problem whose domain can change drastically during the iterations. The all-Y + wall
treatment uses blended wall functions that emulate the low-Y + wall treatment for
fine meshes, and the high-Y + wall treatment for coarse meshes. It also works well
for meshes of intermediate resolution, i.e. when the centroid of the first cell falls in
the buffer region of the boundary layer. Therefore, this wall treatment is suitable
for a wide range of near-wall mesh densities and it is the best one for domain with
different mesh scales.
The main problem is to capture the turbulence near the porous domain: for the com-
putation of all the turbulence quantities and the application of the wall functions,
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Table 3.1: Physical models. In bold the models required for the TO

Physics

Gas
Three-Dimensional

Ideal Gas
Coupled flow

Coupled energy

Time Steady

Turbulence

RANS
K − ω SST (Menter)

Wall Distance
All Y + Wall Treatment

User-scaling Turbulent Viscosity

Adjoint
Adjoint Flow

Adjoint Frozen Turbulence
Adjoint Topology Optimization

it is necessary to know the distance of the nearest cell from the walls. As stated in
the previous chapter, the All-Y + model can compute the distance of each near-wall
cell and therefore compute its Y +. However, this can only be performed with those
cells close to a non-slip wall: this limitation is due to the the fact that there is
no need to perform such computations for other types of boundary. It is therefore
clear where an error can be introduced: even though we are simulating a solid, it is
actually porous fluid cell and so it is not treated as such, there is no prism layer, no
physical walls, no Y + calculation and no wall functions. In other words, there is no
near-wall turbulence model applied near the porous medium. The error introduced
is hence unavoidable: it is not possible to manually introduce the correct turbulence
behaviour near the porous domain, since the mesh where solid growth is not defined
to be a near-wall mesh and we usually do not know where the interface of the LSF
will generate the solid boundaries. The final behaviour, on the contrary, is almost
that of a rough surface. This error is intrinsic in the Brinkman penalization model
and in all the models that use a fictitious porosity to simulate the solid domain. As
a consequence of the incorrect turbulence modeling, two main considerations can be
made: first, the solution predicted during the optimization itself is not correct and
reliable from the physical point of view; second, the presence of non-zero turbulence
field inside the porous media. As clearly described, the solid domain is, in fact, fluid
domain with a very high porosity. Thus, the presence of turbulence (enhanced by
the porous media itself) is possible, which is totally unrealistic if it were a real solid.
This turbulence can also spread through the porous medium within the domain and
reach areas of the fluid where it should not be, thus affecting the characteristics and
behavior of the fluid field. The simplest (but efficient) way to destroy turbulence
within the porous domain is to force the turbulence viscosity to zero in those cells.
To identify them we use the Material distribution function χ defined as eq. 2.48,
recalling that 0 means solid cells, while 1 means fluid cells. Since it is a continuous
function, it can assume all the values between 0 and 1: by convention, the following
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is assumed:

χ

{
≤ 0.5, Solid domain
> 0.5, Fluid domain

(3.1)

The turbulence correction is then achieved by introducing a new function called
TVRScale, which, multiplied to the turbulent viscosity computed in the fluid field,
destroys all the non-null turbulence inside the porous media. According to fig.
3.3, it is clear that the TVRScale function influences the value of µt only if the
Material indicator value is below 0.5, while if it is greater than this value it is
almost irrelevant. An example of the effect that this function has on the turbulence
field is shown in figure 3.4, from which it is also possible to better understand the
wrong turbulence field in the porous media: in fig. 3.4a the contour of the porous
region is described by the black line inside the domain: it is quite evident that even
if it is the solid one, in reality it is a fluid domain and so, even though the velocity is
almost zero thanks to the Brinkman Penalization, a turbulence is developing inside,
which can seriously influence the flow behaviour. Moreover, analysing the turbulent
viscosity values, it is clear why there is inherently such an error in the model: both
the optimization simulations (the one with TV RScale and the one without) have a
very high turbulence viscosity generation near the porous domain (also due to the
roughness of the porous domain) compared to the one obtained with the correct
turbulence analysis of the re-mesh surface, which is also of an order of magnitude
lower (the new surface was not smoothed for a more consistent comparison).
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Figure 3.3: TVRScale function

Analyzing the results of the optimization performed on a simplified domain of
the test case described in chapter 4.2, it is evident that there is (and always will
be) an error, even a major one, during the optimization iterations, for which the
results must be taken as an indication of an improvement. From the results reported
here, the TVRScale function was able to reduce the error, for example for the total
pressure drop, from the 7.5% to a 4%, or for the PIPS from a 9% to a 4%. However
the error must be taken into account when performing the optimization, since this

34



3.3. PHYSICS MODELS FOR THE ADJOINT TOPOLOGY OPTIMIZATION

(a) Without TVRScale (b) With TVRScale

(c) Reconstructed domain (correct prism layer
mesh everywhere)

Figure 3.4: Turbulence viscosity ratio field with TVRScale effect. The isoline inside the
domain highlights the porous media

reflects on the choice of the constraints value. Based on these considerations, a
reconstruction of the geometry with a new simulation to validate the domain is
always necessary and essential.
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Figure 3.5: Effect of turbulence correction on the reduction of the error
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3.4 Adjoint Topology Optimization setup

In this section, a focus on the setup for the Adjoint Topology Optimization is
proposed, starting from the settings of the adjoint solver itself up to the construction
of the objective function and the constraints. The latter are reported here with their
definition and with a brief explanation of their role in the sensitivity analysis, but the
reasons for such a definition are analyzed in depth in chapter 4. The reader is then
invited to take note and become familiar with them, in order to better understand
their influence on the analyses performed later.

3.4.1 Adjoint Setup

The topology optimization process does not need a high level of accuracy in the
computation of the adjoint variables, since these are taken as an indication of where
material should be placed to improve the cost function and/or to satisfy the con-
straints. The domain can change drastically between two iterations, especially at
the beginning of the optimization, so a too high accuracy in the adjoint computation
would not introduce any beneficial effects in the solution, but would only increase
the computational time. For this reason, the adjoint solver is solved at the 1st or-
der with only one iteration, with a Krylov space dimension of 50 [1] and a relative
tolerance target of 1e − 10. This tolerance is almost always reached before all the
50 iterations of the Krylov space are computed.
These settings are sufficient for the topology optimization since more accuracy would
increase the computational cost with almost no additional information. It is impor-
tant to remember that the optimization process is made of a sequence of primal and
adjoint iterations, which requires a (good) convergence of the primal solution and
then the adjoint computation: this not only leads to high computational costs but
also to override the previously computed adjoint quantities. At the very beginning
of the optimization, the changes in the domain may be enough to completely change
the fluid field and all the adjoint variables, so a high precision of the latter is un-
necessary.
The most important output of the adjoint analysis for this kind of optimization
is the Sensitivity of the considered physical quantity with respect to the Material
indicator (one for each constraint plus the one of the objective function). These
indicate to the solver how the desired quantities would change if material indicator
changes in the cells of the domain. Knowing how far the constraint is from the
desired value, based on the sensitivity values, the LFS interface velocity changes to
modify the solid domain, in order to increase the constraint satisfaction while, at
the same time, increasing (or minimally decreasing) the objective function (or vice
versa if the goal is the minimization of the objective). If the constraints and the
objective function are related to the same physical quantity (pressure, mass flow,
velocity, etc.) and are of the same order of magnitude, the computed sensitivities
can already be used for the analysis. Otherwise, one of the constraint can prevail
over the others, leading the optimization in a wrong direction (see chapter 4.1.3).
This is why it is so important a new definition of the reports with a different weight
and normalization for each constraints.
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3.4.2 Report definition

Solving an optimization problem that takes into account multiple constraints
means looking for the best tradeoff between improving the objective function and
satisfying the constraints themselves. This compromise must be chosen by the user,
who decides the importance of the satisfaction of each single constraint. It is not
necessary that the constraints are not violated during the process, but it is essential
that they are satisfied at the end. In developing the following optimizations, three
different physical quantities will be mainly considered: Mass flow, Pressure Drop
and Solid Volume Ratio (SVR). While the first two are well known, the last one
must be properly understood. Its physical meaning is quite simple and obvious:
SVR simply indicates the fraction of solid cells within the TO region. The reason
for this constraint, on the other hand, is less obvious: while the requirement for a
solid maximum may be consistent (for reasons of space and/or weight), the request
for a minimum may appear counter-intuitive, as it is generally a quantity that is not
known or desired as an output of the optimization itself. However, this constraint is
necessary since the Topology Level Set method, for its definition, needs an external
input to force the interface to enter in the domain, especially at the beginning of
the optimization itself. Choosing a minimum SVR can be problematic in some
cases, since its value is often unknown or not required at all for the purpose of the
optimization, so in some cases different optimizations with different values of SVR
may be needed. Recently, some topology optimization methods called "Performance-
based methods" have been developed to try to overcome this issue [21].
From the analysis performed in chapter 4, it appears that the basic approach with the
normalization of the sensitivities as described in eq. 2.58 may suffers for convergence
issues. Therefore, a new approach is needed, which is able to give different weights
to each constraints and to correctly reproduce the distance between the constraint
itself and its limit value. Moreover, it appears necessary to ensure an adequate
sensitivity not always when the constraint is violated but also when it is satisfied:
this is the reason why the new constraints are defined as a continuous and derivable
function, with different behaviours before and after their limit value. Here below
the new definition of the reports are described:

• Pressure Drop: this constraint computes the total pressure drop between two
sections. It works well for problems with simple geometries, but for multi-inlet
ones (as the one in chapter 4.2 e chapter 5) the total pressure drop between the
desired section and the outlet depends on the mass flow from the other inlets.
For the topology optimization to work properly, it is crucial that the report
definition is unique, otherwise it can be lead in a different direction than the
desired one. It is therefore clear that forcing a maximum value on the pressure
drop asking for the maximization of the mass flow on the other inlet sections
(as done for some cases later on) can generate an inconsistent constraint. To
better understand the problem we can consider the scheme shown in figure 3.6:
while in case 3.6a the pressure drop is uniquely defined, for example for the
section 2, in case 3.6b the correctly computed pressure drop should take into
account both the inlet sections. Since the mass flow rate coming from inlet
1 influences the pressure drop of the whole system, if we want to reduce the
pressure of the inlet section 2 we cannot use the pressure drop of the whole
system.
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To overcome this issue, since in our problem the mass flows of the sections whit
a constraint on the maximum pressure are defined as a boundary condition,
the constraint is imposed on the static (or total) pressure on that boundary.
Following the considerations made before on the continuity of the constraint
function, here we give the general definition of that function, where P denotes
either the static (or total) pressure or the pressure drop.

(a) (b)

Figure 3.6: Difference on Pressure Drop computation

PCF =

αp ·
[
P−Pmax

Pnorm

]2

P ≤ Pmax

βp ·
[
P−Pmax

Pnorm

]2

P > Pmax
(3.2)
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Figure 3.7: Example of a Pressure Cost Function. αp = −1, βp = 10, Pmax = 100Pa,
Pnorm = 500Pa

Observing the cost function (fig. 3.7), it is equal to zero if the pressure is equal
to the maximum value, while it increases for greater values. Thinking about
the nature of this constraint, it is clear that if the final pressure is lower than
the maximum value is a benefit of the optimization, so the constraint will be

PressureCFmax = 0 (3.3)

For lower values of the pressure the solver has to know the value of the cost
function and its derivatives, so we must define a derivable function. However,
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a too high derivative may force the solver to decrease the pressure, as if it
was the objective function. Since we do not want such a behaviour, the values
for P < Pmax are negative but at least a order of magnitude smaller than the
values for P > Pmax. This behaviour is obtained with αp < 0 and βp > 0 (for
a minimum constraint they are reversed).
If the pressure is the objective of the optimization, it can not be scaled as
depicted since we will give a minimum to the function, but it is simply scaled
with a normalization value to adjust the sensitivity:

Pobj =
P

Pnorm
(3.4)

• Mass Flow: this constraint computes the mass flow rate trough a boundary
(or the sum if computed on multiple boundaries). Usually this is a boundary
condition or an objective function, but in particular cases (as the one in chapter
4.1) it can be a constraint. As described for the pressure constraint, if it is the
objective function, it is simply defined as

Ṁobj =
ṁ

ṁnorm

(3.5)

while if it act like a constraint, it is defined as a continuous and derivable
function:

ṀCF =

αṁ ·
[
ṁ−ṁmax

ṁnorm

]2

ṁ ≤ ṁmax

βṁ ·
[
ṁ−ṁmax

ṁnorm

]2

ṁ > ṁmax

(3.6)

• Solid Volume Ratio (SVR): as explained before, this constraints defines the
ratio between the cells defined as solid over the other cells of the TO-Region.
Similar considerations made for the above constraints can be made here, with
a slightly difference in the behaviour after the constraint violation:we cannot
impose that a volume greater than the minimum required is a positive fea-
ture, as this could lead to the introduction of solid only and exclusively for an
improvement in the constraint without a real need, but we must still define a
continuous and derivable function. The behaviour after the constraint satis-
faction is therefore a (small) growth in the cost function itself. Analytically,
the expression is the same as the one used for the Pressure Drop report, but
the coefficients αsvr and βsvr are both positive:

SV Robj =

αsvr ·
[
SV R−SV Rmin

SV Rnorm

]2

SV R ≤ SV Rmin

βsvr ·
[
SV R−SV Rmin

SV Rnorm

]2

SV R > SV Rmin

(3.7)

SV RCFmax = 0 (3.8)

It is fundamental to understand that these reports are just a user-defined char-
acterization of the problem and the minimum value of the cost functions does not
represent the optimal solution for the problem: those functions, indeed, are just a
scaling of the desired physical quantities. On the contrary, the objective function is
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Figure 3.8: Example of a SVR Cost Function for a request of a minimum SVR value.
αsvr = 1, βsvr = 0.001, SV Rmin = 0.15, SV Rnorm = 0.05

a linear function of the physical quantities, so the minimum value is not user-defined
and it depends on the solution.

It is also essential to understand the difference between the different weight given
with this approach and the penalty parameter introduced in eq 2.55: the latter in-
deed is a single parameter, equal for all the constraints, that is used for the Lagrange
update (eq. 2.57) to take into account the constraints satisfaction, but it cannot
distinguish between them. With the automatic normalization approach, the penalty
parameter is also used for weighing the constraints with respect to the objective
function. With the manual approach, this task is entrusted to the different sensitiv-
ities obtained with the new constraints definition and the penalty value is used only
to introduce the constraint in the Lagrange multiplier updating. The consequence
(as analyzed in chapter 4.1.5) is that in the manual approach a smaller value can
be used and its influence is less relevant for the constraint satisfaction. An in-depth
analysis of the influence of the Penalty parameter, together with the one of the
Stepsize (which governs the pseudo-time τ in eq. 2.49) are proposed in cap. 4.1.

3.4.3 Topology Optimization Loop

The topology optimization solver, unlike other adjoint problems, benefits from
frequent recalculations of the primal and adjoint flow and may require many loops to
reach the optimal solution. We have already seen in figure 2.2 the basic workflow for
a correct TO analysis from the structural point of view; here, the same is translated
in the fluid-dynamic language (fig. 3.9). The most important distinction that we
have to made is on the difference between "Base Solution" and "Primal Analysis":
both of them refer to the solution of the flow-field, so formally speaking they are
the same. However there is a difference in the TO context:

• Base Solution: this is the resolution of the primal flow that represents my
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reference condition and starting point for the analysis. A good convergence for
this step is required since it must ensure the proper flow behaviour, regardless
of the initial condition.

• Primal analysis: as said, this is again the resolution of the primal flow, but
it does not require the same high level of convergence of the Base Solution,
since it is just a step in the optimization process and it is needed to update the
LSF interface and for the new computation of the adjoint quantities. Once the
solution converged to a defined topology, the convergence of the solution itself
increase automatically, since the domain remain nearly unchanged as the loop
proceeds. Usually, a fixed number of iterations that guarantee a reduction in
the residuals in the order of 10−3 ÷ 10−4 is enough.

Mesh Generation

Solution Initialization

Base solution

Adjoint analysis

Primal analysis

Stopping criteria satisfied? Final Design

N
o

Yes

Figure 3.9: Topology optimization Loop

3.4.4 Stopping Criteria for the Topology Optimization

When performing an optimization problem, some simple questions arise sponta-
neously: when can we consider the optimization converged to a final solution? When
and how much can we accept a constraint violation if it results in a higher value of
the cost function? When are the oscillations acceptable? By analyzing the plots of
the constraints (see for example fig. 4.20), it is clear that the solver aims to satisfy
the constraints even if this means increasing the cost function and then reducing it as
long as possible until it starts to oscillate close to the optimal solution. If these oscil-
lations are small enough and the topology does not change significantly, the solution
can be considered as the optimal one and the solver cannot get closer than that: the
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solution has converged. It is not necessary for the solution to be perfectly stationary
on a final topology: first, the level set boundary is driven by the sensitivities and its
interface moves continuously, second, as mentioned before, the geometry must be
regenerated and cleaned, so small oscillations are irrelevant. Finally, as described
in cap 4.1.2.1, the final description of the geometry depends on the generated mesh:
finer features are not captured if the mesh is not small enough, and thus the solution
may oscillate around two near-optimal configurations. In order to stop the topology
optimization loop even with small oscillations, a particular stopping criteria called
Optimization Convergence Criteria was set, along with two other criteria that
prevent the optimization from moving forward if it is diverging (note: the primal
solution can converge also if the optimization is diverging):

• Maximum Optimization iterations: this first stopping criteria avoid the opti-
mization to go on forever, normally is set to 150.

• Solid Volume Ratio asymptotic criteria: this criteria stops the iterations if
the change in the SVR from one optimization iteration to the other is lower
than 0.1%. If this criteria is satisfied before the Optimization Convergence
Criteria, it means that the optimization cannot improve in the modification of
the geometry (the level set function boundary cannot move anymore) but the
constraints are not satisfied yet. A modification in the

• Optimization Convergence Criteria: this criteria is simply made of a scalar
parameter which is 0 at the beginning. This parameter is defined as follow:

OCC0 = 0; OCCi+1 =

{
min(OCCi + 1, 10) ∀ Constraints ≤ 0.1

max(OCCi − 1, 0) ∃ Constraint > 0.1
(3.9)

If all the constraint functions have a value lower than a user-defined threshold,
for example 0.1 but can be different for each constraint if needed, (remember, 0
means that the report equals the constraint), then the parameter value increase
by 1 at each optimization iteration, otherwise it decreases by 1 (down to 0).
The optimization is considered at convergence if the Optimization Convergence
Criteria reaches the value of 10 (which means that in the last iterations the
constraints were sufficiently satisfied).

These constraints are the ones that govern the TO loop depicted in figure 3.9.
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4
Procedure Development and Test Cases

This chapter aims to develop the required knowledge and a robust procedure for
the correct implementation of the adjoint topology optimization model as presented
in the previous chapter. Starting from a simple Quasi 2D analysis of a mass flow
partitioning up to a full-fledged 3D problem, the main aspects of a CFD simulation
are analyzed and tested, with an eye on the topology optimization results and per-
formances. With the simplest Quasi-2D problem, the dependence of the topology
with respect to the main governing parameters is analyzed, starting from that with
respect to the mesh model and mesh size, up to the one with respect to the Penalty
and the StepSize values, concluding with the differences between the automatic and
the manual normalization of the sensitivities. In the 3-D case the latter is resumed
and compared to the one of the 2-D case, along with the analysis of the effect that
the 3-D structures have in the final topological description. In both 2D and 3D
cases, the effect that the porous medium has in the flow development is analyzed,
along with the analysis of the error that it introduces into the solution and the
beneficial effect brought by the TVRScale function.

4.1 Quasi-2D mass flow splitting

The first case that has been studied is a simple Quasi-2D flow division (fig. 4.1).
The goal of this optimization was to find the optimal topology that could provide
an equal mass flow splitting between the two outlet sections, while minimizing the
system pressure drop. Since this simulation is a simple test case, with no external
constraints, only one fluid region has been created, but all the boundaries of the
inlet and outlet sections are constrained not to create a solid domain (see chapter
4.1.1 for in-depth analysis). The squared section represent the entire topological
domain, within which the generation of the porous domain will occur. The Quasi
2D formulation was obtained with a much smaller z-component of the domain than
the others and a characterization of the z-normal boundaries as periodic boundaries.
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Figure 4.1: Initial domain of the mass flow splitting test case

4.1.1 Boundary conditions

This case represents a simple division of the mass flow into two different ducts,
with one inlet section and two outlet sections. The first one, that is 0.06m wide, is
set to be a mass flow inlet with ṁin = 0.071kg/s (which gives a Re ≈ 30000), while
the other, that are 0.03m wide, are pressure outlets. In order to replicate a quasi
2D flow, the z-normal boundaries are characterized with a periodic interface, while
the remaining boundaries are non-slip walls. The most important boundary condi-
tions for the latter (from the optimization point of view) are those for the Material
Indicator function, since these govern the growth of the solid: it is possible, in fact,
to set the value of the Material Indication function to tell the solver whether that
particular boundary should be fluid (imposing a constant value of 1) or solid (im-
posing a constant value of 0). Since the Material Indicator function is a continuous
function, all the values between 0 and 1 are allowed, but not recommended since
its physical meaning would be lost. Characterizing the boundary as fluid does not
prevent the solid phase from reaching that boundary if necessary, but only prevent
it to be a source for the solid material. Therefore, this condition is not suitable if
there are external geometric constraints that do not allow a different geometry (e.g.,
manifolds), for which it is advised to separate that region from the TO-Region. It is
necessary for at least one boundary to have a Material Indicator value of 0 since it
is necessary for the porous medium to have some source of solid from which to start.
For obvious reasons, this condition only applies if the boundary is a non-slip wall.
A more freedom can be given to the boundary without choosing any value of the
Material indicator function and leaving the level-set free to move within the domain;
this choice is suitable for all the boundaries that can be modified if necessary but
that are not the ones that I need to be modified.

Another key aspect is the Initial condition of the Material Indicator function:
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normally, the optimization should start with all the domain filled with fluid, i.e. the
Material Indicator function is equal to 1 in the whole domain. However, since we
are performing an optimization analysis, the search for the global minimum may be
affected by the starting point of the search itself. Although the ADAM rule should
prevent the algorithm from getting stuck in local minima, guessing a favourable
initial condition can improve the convergence and reduce the number of iterations
required. In addition, inserting a porous medium into the domain can help the solver
find more complex topology since it has pre-made porous media from which the solid
can grow (the porous medium can only grow from specified boundaries or cells with
a material indicator of 0). An example of this implementation can be found in the
optimization of the primal exhaust in chapter 5, where a particular initial condition
is used.

4.1.2 Mesh Analysis

In the generation of a Quasi-2D problem, the Trimmed mesh model is the more
suitable one since it allows the generation of a volume mesh with only 1 cell in the
z-direction (fig. 4.2a). Due to a better control over the cell size and the alignment
with the boundary of the domain, this type of mesh can better represent the two
dimensional behaviour (remember: the trimmed mesh, as stated in chapter 3.2, is
generated by crossing a mesh grid with the domain. By aligning this grid with a
particular boundary of the domain and not with the origin of the reference frame, the
intersection in the z-direction can be avoided). As mentioned in the previous chapter,
an analysis of the mesh is necessary to understand how the optimization is influenced
by its size and whether a fully converged mesh is needed to obtain a good result,
or whether a coarser one can be generated, reducing the computational cost of the
analysis. Since the mesh size strictly influences the dimension of the smallest features
that can be outlined, it is interesting to instigate whether the optimization can still
converge, even if with a rougher geometry. In the case of positive convergence, the
optimization may forego the possibility of finer modification to the topology for a
faster convergence. The mesh size also strictly influences the Solid Volume Ratio
constraint, as it governs the minimum percentage increment given by a single cell.
Therefore, the choice of its size influences the tolerance on the satisfaction of the
constraint and, if the mesh is too coarse, it can lead to oscillations on the final
solution around different (near-optimal) configurations. It is clear than the larger
the domain, the less influence the individual cell has on this constraint, so the choice
of a finer mesh depends on the problem in analysis. It is important to remember that
topology optimization is a high-computational cost operation per se, so generating a
mesh that is too fine can drastically increase the time required for the optimization
and reduce the performances, so it is not always the best choice. In addition to this,
the geometry obtained by topology optimization is a rough discretized geometry,
which must be smoothed and cleaned after the optimization itself. Therefore, the
best result that the topology optimization can give is an indication of the best
geometry and not an off-the-shelf one. Based on these consideration, it is clear that
the choice of a too fine mesh can be counterproductive, increasing the computational
time without adding any more information to the solution.
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4.1.2.1 Mesh models and size influence on topology optimization

In this section the different mesh models are analyzed in relation to the topology
optimization loop, to understand not only if they can affect the solution but also how
much and in which way. Initially, a mesh convergence analysis was performed on
the base domain with both the trimmed and polyhedral models to not only discover
the mesh size needed for the correct primary fluid solution but also to investigate
the difference in the given solution between the mesh models. As mentioned earlier,
the advantage of the trimmed mesh for quasi 2-d problem is given by the possibility
of generating a mesh aligned with the domain, which results in the inclusion of only
one cell in the z-component of the domain (fig.4.2): the difference between the mesh
generated with or without this tool is analyzed as well. It is important to understand
that this difference leads to an advantage only if the dimension of the BaseSize is at
least least equal to that of the domain in the z component; for a lower value, indeed,
this advantage cannot be obtained since there is no possibility for generating only
one cell and the mesh is therefore not different from the one obtained without this
tool. All meshes are generated with the same parameters, with the only change of the
BaseSize parameter: from 5mm to 2mm. From the results of the analysis, which
are shown in figure 4.3 and 4.3, it is clearly evident that the two mesh models give a
slightly different result (10.3Pa for the Poly mesh respect to 9.1Pa for the trimmed
not aligned) but both reach a convergence almost at 20000 elements, with a base
size of 2.5mm. Focusing on the difference between the aligned and the non-aligned
mesh, the most important result is that the convergence of the analysis (which gives
the same result: 9.1Pa vs 9Pa) is achieved whit a number of elements that is almost
half of the one required by the standard mesh, but with a Base size that is the same
(2.5mm): from the optimization point of view, this is the best possible result, since
it ensures the same geometry definition with a much lower computational cost.

(a) Mesh generated with the alignment tool (b) Mesh generated without the alignment tool

Figure 4.2: Difference from a mesh generated with or without the alignment tool

Table 4.1: Mesh convergence analysis - Mass flow splitting test cases

Pressure Drop [Pa] Mass Flow

Base Size [mm] Poly Trim Trim Aligned Poly Trim Trim Aligned
5 12.5 11 10.4 1.4 1.50 1.50
4 11.8 10.5 10 1.47 1.46 1.55
3 10.5 10 9.5 1.6 1.6 1.63
2.5 10.3 9.3 9.1 1.63 1.65 1.66
2 10.3 9.2 9 1.63 1.65 1.66
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It is clearly evident that for this case, which is made of a simple plane domain,
the trimmed mesh model seems to require less cells for the primal analysis and may
be the best choice, but it is important to understand how the mesh model reflects on
the optimization. To explore this dependency, the topology optimization was per-
formed with both mesh models, with the aligned one for the case with the trimmed
model. By analyzing the results, reported in figure 4.5, it appears that the opti-
mization was able to converge to the same result (from the topology point of view)
also with a coarser mesh than the one at convergence, since the geometry is nearly
the same aside from small features that would likely be eliminated in the geometry
reconstruction process. In addition, it seems that the different mesh model has a
slight influence on the topology (the upper boundary of the duct is more curved in
the poly mesh model, fig. 4.5h, than the one obtained by the trim model, fig. 4.5g),
but this is a small difference that is conceivable since the numerical result is also
slightly different between the two models. However, from the topology perspective,
the optimization seems to converge to a very similar result, so the choice of the mesh
model seems not to influence the topology optimization. Even though this result
might seems obvious, it gives the possibility to change the mesh model according to
the problem in analysis, without affecting the optimization itself. Concerning the
mesh size, the results are very interesting since it seems that it is not mandatory
to use a complete converged mesh, but it is possible to slightly reduce the number
of the elements and obtaining the same topology: this is clearly an advantage from
the computational cost point of view since it is possible to reduce the computation
time giving up a more precise geometry.
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(a) Trim - Base size = 4mm (b) Poly - Base size = 4mm

(c) Trim - Base size = 3mm (d) Poly - Base size = 3mm

(e) Trim - Base size = 2.5mm (f) Poly - Base size = 2.5mm

(g) Trim - Base size = 2mm (h) Poly - Base size = 2mm

Figure 4.5: Influence of the mesh model and mesh size on the topology optimization result
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If the mesh is judged not fine enough for the required geometry definition but
you do not want to refine the entire domain, it is possible to locally increase the
mesh resolution. In order to do so, it is possible to generate a mesh control function
which reduce the mesh size according with the value of a chosen function. For
a topology optimization problem, the driving function can be the gradient of the
material indicator function: although it is a continuous function and can assume all
the value between 0 and 1, the porous domain is often characterized with a low value
of the Material Indicator, while the fluid one have a value that is close to (or equal
to) 1. This discontinuity would lead to a high gradient value, which can be used
for the refinement of the mesh. Within STAR-CCM+, this can be easily performed
with the following control function definition [41] (disclaimer: field functions works
with JAVA programming language):

AMR = alternateV alue(mag(grad($MaterialIndicator)) ∗ $AdaptionCellSize, 0)
(4.1)

which translates in the following criterion:

|∇χ| ·∆xadapt


< 0.001 Coarsen

> 0.1 Refine

Else Keep the actual size

(4.2)

where χ is the Material indicator function and ∆x is the size of the cell that, in case,
will be modified (see fig. 4.6 for an example of its implementation). To refine the
mesh, a child cell is generated from each edge of the selected cell, which together with
the others generated from the same cell will replace the parent one. For this reason,
this method works perfectly with the trimmed mesher but can generate very bad
quality mesh with the polyhedral one. However, there is another major problem with
using such a refinement: since the Level set interface moves during the optimization
and also during the primal solution, it is possible that the mesh is changed multiple
times during the Primal analysis iterations. This can be a huge problem from the
convergence point of view, since we are using a coupled flow model that, especially
for the continuity, is more sensitive to a mesh change during the iterations than
a segregated solver. Even though the local refinement can give a more depicted
geometry with a low number of cells, to guarantee a correct convergence the required
primal iterations may be increased by 2 or 3 times, filling the time gap with the
optimization performed with a finer mesh. Moreover, we must remember that the
final topology is described by a threshold on the material indicator function which
must be undergo post-processing improvements to generate a feasible geometry, so a
too high resolution can be unnecessary. For all these reasons, it is preferable to use
a finer mesh from the beginning, although this would require higher computational
power and time.

When comparing the results of the optimization given by different mesh sizes,
it may come naturally to ask why the obtained topology is not so dependent on
it. One answer to this question may come from the fact that the error introduced
by a coarser mesh, if it is small enough, is overridden by the error introduced by
the physical model with which the topology itself is described (hereafter also called
"topology physics") and, therefore, the solver does not feel such a difference in the
optimization loop. Hence, it becomes important to understand and try to quantify
this error, comparing the numerical results obtained with the porous media with
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(a) Optimization performed without AMR (b) Optimization performed with AMR

Figure 4.6: Difference between the introduction of the Adaptive Mesh model. The outline
depicts the level set boundary.

those obtained with a reconstruction of the geometry and a proper boundary layer
mesh around it.
The following analysis will investigate the effect of two of the most important pa-
rameters: Penalty and StepSize. In order to eliminate the error introduced by the
mesh itself and to focus on the other parameters, the mesh used for these analyses
is the finer one analyzed in the convergence analysis, and their parameters are re-
ported in tab 4.2.

Table 4.2: Mesh parameters: Mass flow splitting test case. Percentages refer to the Base
Size

Mesh parameters
Base Size [m] 0.002

Minimum Surface Size [-] 100 %
Maximum Cell Size [-] 100 %

Prism Layer
Stretching factor [-] 1.5
Number of layers [-] 3
Total thickness [m] 0.001

Total Cell Number ≈ 15500

4.1.3 Penalty parameter

In this section the influence of the Penalty is analyzed. Recalling the equations
2.56 and 2.57, the Penalty is the parameter that multiplies the ith constraint in both
the definition of ψ and in the update of the Lagrange multipliers, thus governing the
weight that they have in the solution: the greater is the penalty value, the greater
is the influence of the constraints. For this reason, it is interesting to investigate the
typical values that it can assumes and how the solution proceeds with values that
are too high or too low. In order to perform these analyses, five different penalty
values were chosen while all the other parameters are held constant. All the analyses
presented here were performed using the automated normalization approach.
From the results of the optimizations the importance and influence of the penalty is
clearly visible: with low values (10 and 100) the constraints are hardly satisfied, while
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the objective function is the real driving force of the optimization. The final topology
is indeed well performing from the pressure point of view, but the constraints are
very far from being satisfied, since a greater satisfaction would lead to an increase on
the objective function. This is a problem, since we do not want the lowest possible
value of the objective function, but we need the lowest possible value according to
the given constraints. With higher values (5000 and 10000) the constraints are
quickly satisfied but than the solution starts to oscillate and cannot converge to the
optimal one: the objective function is not perceived correctly by the optimization
while the constraints seems to plays a role only when they are violated, while once
satisfied seems to be no longer considered (this behaviour is clearly visible in the
SVR plot in fig. 4.8). As a result, the solution either failed to converge to an optimal
solution (for the case with a penalty of 5000, the optimization was stopped after
830 iterations) or got stuck in a local minimum (such as the case with a penalty
value of 10000). It is however interesting to notice that the final topology obtained
with a penalty of 5000 seems to be consistent with the optimal one (fig. 4.10), even
if the solution did not converged. For what concerns the middle value, i.e. 1000,
in this case the optimization suffered from some oscillations at the beginning but
managed to converge in the end, with the final solution providing a huge reduction
of the pressure drop and the SVR constraint is fully satisfied (as reported in tab 4.3);
only the Mass Flow constraint is not completely satisfied but the violation can be
acceptable and, in any case, the obtained geometry should be re-meshed to confirm
the values.
Analysing the numerical results, a strange behaviour of the constraints can be found:
with the highest penalty values, which should weight the constraints more, at the
end of the simulations the Mass Flow constraint turns out to be more satisfied in
the typologies obtained with the lowest value of the penalties. This behaviour is
due to the weighting that is unique to all constraints: the mass flow constraint is
like overridden by the SVR and thus is not properly felt. On the other way, with
a low value of the penalty the greatest satisfaction could be a consequence of the
minimization of the pressure drop, which generates such a flow separation.
Numerical results aside, it is important to understand how the optimization behave
as it develops; here below are reported just some of the most significant plots that
clarify the concepts above discussed, while all the others can be found in Appendix
B.

Table 4.3: Effect of the Penalty parameter on the solution. In red are characterized the
values obtained in the last iteration of the non converged optimizations

10 100 1000 5000 10000

Pressure Drop [Pa] 4.1 4.43 5.05 5.05 6.7
Mass Flow Ratio [-] 1.12 1.15 1.15 1.19 5.45

SVR [-] 0.427 0.446 0.497 0.478 0.49
Optimization Iterations 140 150 385 830 230

The last important consideration that can be made based on the above analysis
is on the iterations required for the convergence of the analysis: while with low
values of the penalty this is not a problem and the optimization converges quickly,
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increasing the penalty also results in an increase in the number of iterations required
(which, by the way, do not guarantee the convergence). As we will see later in the
chapter, a good convergence can be achieved with a far lower of iterations.

(a) Penalty = 10 (b) Penalty = 1000

(c) Penalty = 10000

Figure 4.7: Mass Flow behaviour comparison - Penalty analysis

(a) Penalty = 10 (b) Penalty = 1000

(c) Penalty = 10000

Figure 4.8: SVR behaviour comparison - Penalty analysis
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(a) Penalty = 10 (b) Penalty = 1000

(c) Penalty = 10000

Figure 4.9: Pressure Drop behaviour comparison - Penalty analysis

(a) Penalty = 10 (b) Penalty = 1000 (c) Penalty = 10000

Figure 4.10: Final topology - Penalty analysis

4.1.4 StepSize parameter

Downstream of the results of the analysis on the Penalty parameter, it may
come natural to wonder whether a different choice in the Stepsize could reduce the
oscillations generated in the cases with the highest value of Penalty. Recalling the
equation 2.49, we then wonder what effect the time step τ has on the solution; it
is important to remember that we are solving for a steady state solution, so this is
a fictitious time step that is needed to simulate the evolution of the LSF and its
interface with the fluid domain. Since it has no physical meaning, it can be difficult
to guess a good and consistent time step, so the analysis here performed aims to
investigate the problems that can be generated when a wrong value is chosen.
Two different analyses were performed: the first one is related to the best solution
obtained before, that is the one with a Penalty = 1000, while the second one is
related to investigate a possible reduction in the oscillations, thus relative to the
one with Penalty = 10000.
Let us focus on the first case. The analysis performed in the previous sections
were obtained with a StepSize = 10, so both higher and lower values are tested,
starting from 1 up to 20. According to [41] [12], with the ADAM update rule the
optimization should be robust with respect to the step size and should be able to
converge within a high range of StepSize. From the results reported in fig 4.11
and 4.12, this robustness seems to be confirmed: no major differences in the overall
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behavior of the optimization are evident, with the solution approaches the optimum
in almost the same way for all the simulations, even with a comparable number of
iterations. The only major difference is in the analysis with the lower step size,
since the analysis cannot reach the same level of constraint satisfaction. The reason
can be found in the reduction of the efficiency of the ADAM update rule, since the
momentum given to the interface velocity is not sufficient for overcoming the local
minima, since it changes too quickly from one step to the other.

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10 (d) StepSize = 20

Figure 4.11: SVR comparison - Step Size Analysis - Penalty = 1000

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10 (d) StepSize = 20

Figure 4.12: Pressure drop comparison - Step Size Analysis - Penalty = 1000
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A more interesting analysis is the one performed in the second case, where the
reduction of the StepSize was intended to reduce the oscillations in the solution, to
explore whether such a reduction could help the solution to converge to the optimum.
In this case, for obvious reasons, only lower values of the StepSize were considered.
From the results (fig. 4.13), it is clear that a lower StepSize reduced the oscillations,
but this did not always turn into an improvement; indeed, with the lowest value
the solution completely diverged, confirming that the ADAM update rule does not
work well in such a situation. With an intermediate value (StepSize = 5), the
solution always shows some oscillations but these are around the optimal solution,
as confirmed not only by the final topology (4.14) but also from the values of the
Pressure Drop and of the Mass flows. Here below are reported some of the most
significant plots, while all the others are reported in Appendix B.

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10

Figure 4.13: SVR behaviour comparison - Step Size Analysis - Penalty = 10000

(a) StepSize = 1 (b) StepSize = 5 (c) StepSize = 10

Figure 4.14: Final Topology comparison - Step Size Analysis - Penalty = 10000

In conclusion, we can summarize the above performed analysis as following:

• The penalty value has a huge influence on the solution and on the convergence,
but since it is the same for all the constraints, some of them can be less
considered than others;

• The optimization performed with the automatic normalization of the sensitiv-
ities does not allow for a different weights between the constraints and most of
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the time requires a huge number of iterations to converge to a solution, which
not always is the optimum one;

• The StepSize does not influence so much the solution, if the penalty value
is correctly set. Otherwise, acting of the StepSize to improve the simulation
could not help in the convergence, leading to even more wrong solutions.

4.1.5 Manual Normalization and Sensitivity analysis

The test case analyzed here is a perfect example of what topology optimization
for fluid-dynamic problem, until now, has been used for: the solver has a huge do-
main in which to move for the optimization, with the solid domain that grows to
include the fluid one, to create the best path for the fluid flow. For this reason, and
for the fact that is a very simple domain, is not necessary to pay too much attention
in the definition of the objective function and constraints, since the optimization,
if set up correctly, manages to improve and obtain the optimal topology also if the
sensitivities of the constraints are different one from the others, leaving the solver
to automatically normalize them (as in eq. 2.58). Thus, this is not the best case to
better understand the differences in the results between the automatic and the man-
ual normalization; an in-dept analysis is done with the test case described in chapter
4.2. On the other hand, precisely for its simplicity, it is the best case for under-
standing how these functions can be manually defined and normalized, to replicate
this critical procedure for more complex geometries. With this approach, the value
of Penalty is no longer used to weigh the constraints against the objective function,
since this is done manually; its value must therefore be small, since a too high one
would lead (again) to an overconstrained optimization.Regarding the StepSize, as
we have seen, the solution is not much affected by its value, as long as it is neither
too small nor too high. For these simulations and for all the others analyzed with
the manual normalization the chosen values are: Penalty = 10, StepSize = 10.
Analyzing the definition of the constraints, we notice that it is necessary to identify
three parameters for the constraint functions, while for the objective function it is
necessary only the normalization value. If, for simplicity, we assume that the normal-
ization value is the order of magnitude of the physical quantity under consideration,
the objective function is fully defined while the unknowns for each constraint are
reduced to only two (or even one in this test case). It is important to remember
that this reasoning does not apply to the SVR constraint, since it depends solely on
the mesh size; its normalization will therefore have to be done a posteriori, based
on the values obtained from the physical constraints.
The definition of the unknowns is therefore the core of the analysis, on which we
focus for the definition of the developed procedure: starting from the fluid dynamic
analysis, we evaluate the objective function and the imposed constraints, analyzing
in particular the distance of these constraints from the imposed value. The greater
the distance, the greater the sensitivity of these constraints. In general, it is good
to remember that the sensitivities of the constraints should be smaller than that of
the objective function, unless the constraint is largely unsatisfied. In the present
case, the domain thus defined results in a MassF lowRatio = 1.6, so the constraint
is unsatisfied but not largely so. The value of the sensitivity of this constraint
must therefore be lower than that of the objective function, but still be considered:
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the most consistent choice is therefore a sensitivity that has (as maximum abso-
lute value) an order of magnitude lower than the maximum absolute value of the
sensitivity of the objective function. In order to obtain this result, a cycle like the
following can be introduced:

• Based on the result of the analysis and the distance of the constraints from
the limit values, choose the order of magnitude of difference between the sen-
sitivities, for example as the ratio of the maximum values.

• Guessing an initial value for each unknown;

• Perform the Sensitivity Analysis with the guessed values and evaluate the
above defined ratio;

• If the ratio is greater than the desired one, increase the unknowns values,
otherwise decrease;

• Repeat the loop until convergence.

Base solution

Initial Guess
for each weight

Sensitivity Analysis

Sensitivity ratio satisfied?

Constraint function defined

Adjoint analysis

N
o

Y
es

Figure 4.15: Sensitivity Loop inside the general TO Loop
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In order to better understand the problems that can arise from an incorrect
definition of the functions, let’s identify two different optimizations performed on
the same meshed domain (to reduce the computational time, only the trimmed mesh
with the parameters described in tab. 4.2 was used). Both cases are performed with
a manual scaling of the constraints and with a definition of them as depicted in
chapter 3.4.2; while the first one, called Case A, has a proper scaling (with an order
of magnitude lower than the sensitivity of the objective function), the second one,
Case B, has an incorrect normalization (same order of magnitude).
Since we need an equal division of the mass flow, we should re-define the report
characterization:

ṀCF = αṁ ·
[
ṁout1 − ṁout2

ṁnorm

]2
ṁout1=ṁin−ṁout2= αṁ ·

[
2 ∗ ṁout2 − ṁin

ṁnorm

]2

(4.3)
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Figure 4.16: Mass flow Report Normalization - Case A VS Case B. Both reports are
defined with ṁnorm = 0.001kg/s, but they differ for the normalization:
αṁA = 500 while αṁB = 5000.

Figure 4.16 shows the differences between the Mass Flow constraint function of
Case A and B are illustrated: even thought the values of the constraints may seem
extremely high, it is important to analyze the effect that these values have on the
sensitivities. It is crucial to understand that when we talk about Normalization of
the Sensitivity with respect to Material Indicator, we do not mean that the value
should be near 1 but we mean that the sensitivity value should represent the distance
between the actual value of the constraint and the desired one, assuming that similar
distances equate to similar sensitivity values. As we can see in fig. 4.16, the two
functions differ by an order of magnitude which translates (at the beginning, with
the sensitivities performed on the exactly same domain) in sensitivity values that
differ by an order of magnitude (fig. 4.26a and 4.26b). As the optimization proceeds,
the sensitivity of Case A succeeds in leading it to the correct solution because it gives
an indication of the "ideal path", without overcoming or contrasting the sensitivity
of the objective function (fig. 4.17); on the contrary, the one of Case B is too high
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and it drives the optimization to the point of causing the solution to diverge in order
to have an equal split of the mass fluxes (making them even almost zero) as can be
seen from fig. 4.19b.
While the value of the constraint’s function is expected to decrease down to zero
during the optimization, and so their sensitivities, the value of the objective function
is unknown and it can assume every possible value as the loop proceeds. Therefore,
we do not expect the sensitivity of the objective function to decrease to zero, but
we do expect it to "eliminate" the region of the domain that generates positive
values (if we are performing a minimization of the objective function, vice-versa for
a maximization), as it is clearly shown in fig. 4.17b where the regions for which
the sensitivity is positive (dark red) are the ones with a material indicator value of
0. If we compare the sensitivity values of the pressure drop at the 66th iteration
with the ones of the mass flow constraint (fig 4.17b vs fig. 4.26g), it is clear that a
trade off has been reached, since there are cells that may reduce the pressure but
increase the mass flow ratio: if the sensitivities on that cell tell the solver that a
change in the material indicator would produce an improvement, for example for
the objective function, but a huge reduction in the satisfaction of the constraint,
that cell is not modified, since there is not a clear advantage; this is the concept
behind the Sensitivity Normalization. Based on these considerations, it is evident
that there is not an unique definition of the functions, provided that the sensitivities
are correctly scaled the one with the others.
The sensitivity of the SVR deserves a separate discussion, since it is a function of the
mesh size only: if the mesh does not change during the optimization (see. 4.1.2.1),
the sensitivity remains constant during the entire loop, so its normalization is not
related to the others based on physical quantities (Mass flow, pressure drop, velocity,
etc.) and does not need to assume comparable values with the others (its value is
of orders of magnitude lower then the others for obvious reasons). The value of its
sensitivity is used for the solver to figure out how much solid is required to satisfy
the constraint and the greater is the sensitivity the greater change on the SVR
constraint is obtained if the Material indicator is changed on that cell. Although
its value is not comparable to the others, a too low or too high value may lead to
non satisfaction or instability, but it is impossible to establish this a priori: this
consideration can be made by analyzing the convergence of the optimization. This
is not a contradiction since this constraint is only an indication for the solver and
an aid for the level set function to move within the domain.
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(a) (b)

Figure 4.17: Sensitivity of the Pressure Drop w.r.t the material indicator at iteration 1
(a) and 66 (b) for Case A

Analyzing the values of the mass flow as the optimization proceeds (fig. 4.18), it
appears clear that Case B overestimates the importance of the constraint: although
this may appear to satisfy it more stringently, in reality the optimization is com-
pletely blind to the objective function and physics of the problem; the consequence
is that the mass flows of the outlets are equal just because they tend to zero, which
is not what we wanted.

(a) (b)

Figure 4.18: Mass Flow behaviour during the optimization process: while Case A (a)
managed to satisfy the constraint, Case B (b) diverged.

Case B highlights another aspect of the optimization and a problem that arises
from the generation of porous media in the domain: with this characterization of the
solid domain, the convergence of the continuity may suffer and the simulation may
not converge, but it may not notice it on its own and will keep going through the
optimization without stopping. The result of the optimization is completely wrong
and this is noticeable since the first 10-20 iterations (this optimization was performed
up to the 66th iteration just to compare it with the correct one, which stopped with
the previously defined stopping criteria): the tendency to equalize the mass flow
leads the solver to reduce their value down to zero, which results in a very high
increase of the pressure drop of the system, but which is completely acceptable for
the solver from the physical point of view. Even if the optimization would completely
close the outlet sections, we must remember that the solid domain is fictitious and is
actually a fluid-porous domain, so there is a fluid transition (the Brinkman penalty
forces the velocity to zero but is never absolutely zero) that prevents the solver from
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diverging during the Primal Analysis solution. The result is a geometry through
which the mass flow constraint is fully satisfied, with a ratio of 1.07, but both the
mass flows are nearly 0 and the topology is absolutely non physical: the optimization
has failed and cannot be accepted (4.19b). Does this mean that the iterations of the
Primal Analysis may be increased? Perhaps, but not necessarily, for two reasons:
first, as shown by Case A the optimization can be easily performed with the number
of iterations chosen that are absolutely sufficient for the solver; second, the number
of iterations required may be many times higher than those currently used, therefore
the computational cost required will increase without any benefit. A test with 500
primal iterations (instead of 150) was performed to investigate this possibility, but
the result was absolutely the same. For computational time reasons, no other tests
were performed.

(a) Case A - correct optimization (b) case B - wrong optimization

Figure 4.19: Optimization results - Mass flow splitting test case.

From these analyses the huge advantages that are introduced in the optimization
with the manual normalization of the sensitivities are clear: not only the iterations
required for the convergence are smaller (66 vs >300), but it is possible to give
different weights at each constraint, which translates in a more consistent and correct
optimization. The correct normalization on the sensitivity is made with an iterative
process acting on the parameters that make up the new definition of the constraints
functions, based on the constraint satisfaction at the first iteration.
An interesting analysis can be done by comparing the trend of the objective function
during the optimization with the one of the constraints and with the one that they
have with the automatic normalization (previously shown): from fig. 4.20 is reported
the trend of the objective function as the optimization proceeds. It is clear that in
the first part of the optimization the constraints (SVR and Mass flow ratio) are
far from the satisfaction and therefore are predominant: the optimization is driven
by them. As the optimization proceeds, the constraints tents to be satisfied more
and more while the objective function starts to dominate in driving the Level set
function. In the last iterations the solver reaches a convergence since a a tradeoff is
achieved between satisfying the constraints and minimizing the objective function.
The topology in the last iterations does not change drastically, but small changes are
allowed since, as stated before, it is impossible for the boundary of the level set to
be totally fixed. This leads to the fact the final value of the constraints may not be
unique but may oscillates, therefore a definition of the stopping criteria as defined
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in chapter 3.4.4 is necessary. It is important to distinguish between the oscillations
introduced by the automatic normalization approach and the ones here illustrated:
while in the first case the solution changed drastically during the oscillations, here
the constraints are almost constant and the objective function oscillates around a
single solution, which could probably be achieved if the time step would be iteratively
reduced.

Figure 4.20: Pressure Drop behaviour during the optimization loop - Mass flow splitting
test case

(a) SVR report convergence. αsvr = 100,
βsvr = 0.1, SV Rnorm = 0.01, SV Rmin =
0.5

(b) MF Ratio report convergence. αṁ = 500,
ṁnorm = 0.001kg/s
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4.1.6 Optimization results and validations

With the acquired knowledge from the previous analysis it is now possible to
investigate the error introduced by the topology model. As a further investigation
of the mesh model influence of the mesh model on the optimization result, this
analysis was performed both with the Trim and the Poly mesh (with the same
parameters of tab. 4.2), since the final topology between the two models is very
similar but not exactly the same. This is a simple 2-D test case: the geometry
reconstruction was therefore trivial and based on a simple re-design of the domain
(fig. 4.22); moreover, the mesh parameters used for the validation are exactly the
same of the one used for the optimization loop. In table 4.4 it is possible to compare
the results of the two parameters that were considered in the optimization process:
the mass flow ratio between the two outlets and the pressure drop of the system.

(a) (b)

Figure 4.22: Optimized geometry reconstruction - Trim (a) VS Poly (b) mesh models

Table 4.4: Comparison of the results of the optimization between the mesh models and
the reconstructed (smoothed) geometry

Optimization mesh Mass flow ratio[-] Pressure Drop[Pa]

Trim mesh
Topology physics 1.02 6.85
Reconstructed 1.04 2.0

Reconstructed (Poly) 1.03 2.0

Poly mesh
Topology physics 1.05 9.4
Reconstructed 1.07 2.5

Reconstructed (Trim) 1.09 2.4

Both the analysis were performed with both the models, to remove the depen-
dence of the result of the reconstructed geometry from the mesh model itself. When
analyzing the results of the reconstructed geometry, the topology found with the
trimmed mesh model seems to perform slightly better than the one obtained with
the polyhedral model, maybe for the greater curvature obtained in the upper section
forcing the fluid to a more pronounced curvature, or for the larger stagnation zone
near the ducts separation (fig. 4.23); the differences however are very small and
cannot provide a definite answer. The topology, again, appear to be unaffected,
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which provide confidence that the best mesh can be chosen based on the problem
and not forced by the need for optimization.

(a) (b)

Figure 4.23: Difference in the velocity field for the reconstructed geometry - Trim (a) VS
poly (b)

An important consideration must be made for the error introduced by the topology
physics, which is quiet evident that it is not negligible, especially, in this case, for the
computation of the pressure drop: in the trimmed model the value is 3 times higher
and for the polyhedral near 4 times higher. This represents a huge problem for the
correct setting of the optimization, especially for the value of the constraints that
need to be imposed and therefore it is fundamental to look for corrections that help
in its reduction. Since we are considering an optimization problem, the absolute
value of the objective function is not predefined and is not as fundamental as the
one of the constraints; the rebuilt geometry can indeed give us its real value. The
problem arise when considering the constraints definition: not tacking into account
the error in the computation of the physical quantities can lead to an incorrect
value of the constraints, which would result in a over-constrained optimization (not
capable of improving) or in a under-constrained one (the rebuilt geometry does not
satisfy the constraint). In this test case, for example, if we had wanted to perform
an optimization with the pressure drop as a constraint, imposing a maximum value
of 3Pa could have led to instability in the solution or a non-satisfaction of the
constraint, even though the re-constructed model ensures that it is possible to obtain
such a pressure drop. Therefore, it is crucial to try to reduce as much as possible
such an error or, where not possible, to figure out how to predict its influence on
the solution. As mentioned in chapter 3.3, a major source of error is the presence of
non-zero turbulence within the porous media. Even tough in the cells characterized
with a Material Indicator different from 1 the velocity is forced to zero, thanks to
the Brinkman penalization model (eq. 2.46), its value is never absolutely zero but
is some order of magnitude smaller than the velocity scale of the problem. The
consequence is that a turbulence may develop or propagate inside the porous media
and influence the behaviour of the external fluid.
Let’s consider the figures 4.24 and 4.25: it is clearly evident that there is a huge
turbulence production in the cells near the Level-set interface and a not negligible
one inside the porous media. Compared to the real geometry and a more correct
turbulence modeling, such a production is not physic, as it is not the turbulence
viscosity field. One of the possible and simplest solution identified is to destroy all
of the turbulence present in those cells with a Material indicator value < 0.5, thanks
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(a) (b) (c)

Figure 4.24: Turbulence viscosity ratio field comparison: without TVR (a), with TVR
(b) and real geometry (c)

(a) (b) (c)

Figure 4.25: Turbulence kinetic energy field comparison: without TVR (a), with TVR
(b) and real geometry (c)

to the TVRScale function described in fig. 3.3. Its effect on this simple test case
is shown in figure 4.5, where one can appreciate not only the brutal destruction of
turbulence but also the beneficial effect it has on its generic field. From the numerical
point of view, its effect and the improvement obtained with the TVRScale function
are reported in tab 4.5. Further consideration on this error and its influence on the
solution are made for the next optimizations (chapter 4.2 and chapter 5).

Table 4.5: Comparison of the results predicted by the topology optimization with or with-
out the TVRScale function

Mass Flow Ratio [-] Pressure Drop [Pa]

TV ROFF 1.01 9.16
TV RON 1.02 6.85

Real Geometry 1.035 4.0
Smooth Geometry 1.04 2.0
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.26: Difference between the values of the Sensitivity of the Mass flow w.r.t the
material indicator - Case A VS Case B.
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4.2 Application on a real 3D case: Inlet Particle
Separator

In this section the new procedure for the Adjoint Topology Optimization is ap-
plied to a real 3D case that however represents a "standard" application case for
fluid dynamics topology optimization: creating the best geometry for a duct system
that would reduce the system pressure drop (or increase the mass flow). The base
geometry is the one of the Inlet Particle Separator duct with the one of the Starter
of the Engine of the NGCTR (see. cap 5 for in depth analysis). The goal of this
analysis is to apply the knowledge gained from the 2-D case to a 3-D one, to analyze
the possible differences. An in-depth discussion on the difference between the op-
timization performed with the automatic sensitivity normalization versus the new
developed one is presented and the differences are analyzed, along with an analysis
of the error introduced by the Topology Physics

4.2.1 Problem introduction and geometry definition

The Inlet Particle Separator (IPS) is a fundamental component in the engine
system of an helicopter (or a tiltrotor) since it prevents solid particles (sand, dust,
hailstorm or just in heavy rain condition) from entering the engine stages and con-
taminating the engine itself. These could damage the compressor or turbine blades,
block the cooling systems or it could also generate vibrations and fatigue problems,
affecting safety and engine life. A crucial parameter that governs the proper op-
eration of this component is the pressure drop inside the duct, since the less the
pressure the easier it is to suck in particles. The IPS duct in the CT7-2E1 engine is
connected to the one of the engine starter (fig. 4.27) which also has some require-
ments and constraints for correct performances, like the mass flow or the pressure
drop felt by the starter itself. The connection between them is therefore a source of
turbulence and pressure drop, and it is precisely for this reason that it will be the
area where optimization will be performed. According to the specifications given,

Figure 4.27: Reference geometry of the IPS and starter ducts (in green)

the IPS and the Starter systems are characterized with the following conditions:

• ṁIPS

ṁStarter
= 7.7;

• Maximum IPS pressure increment: ∆Pmax = +35 %;
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• Starter pressure target = 25 %

with the given boundary conditions, on the main pipe we ended up with a Re ≈
7 · 105.

Based on these conditions, the base geometry was simulated to quantify the pres-
sure at the inlet sections and verify if they meet the imposed constraints. For obvious
reasons, the simulation was performed only on the IPS and Starter ducts without all
other engine components. For obvious reasons, the simulation was performed only
on the IPS and Starter ducts without all the other engine components.
The topology optimization was performed after a mesh convergence analysis (fig.
4.28) with a trimmed mesh model: this choice was made with the topology opti-
mization process in mind, since the trimmed mesh a works slightly better, as seen in
the previous chapter it seems. To keep the number of cells as low as possible but to
correctly capture the flow behavior, a refinement was introduced in the connection
area between the IPS and the Starter ducts, with a mesh size that is equal to 25%
of the Base size. The parameters that guarantee a converged mesh are reported in
tab 4.6.
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Figure 4.28: Mesh convergence analysis for the base geometry of the IPS test case. Values
are normalized with the converged value

Table 4.6: Mesh parameters: IPS Test case. Percentage referees to the Base Size

Mesh parameters

Base Size [m] 1.5 · 10−2

Minimum Surface Size [-] 25 %
Maximum Cell Size [-] 100 %
Refinement Cell Size [-] 25 %

Prism Layer
Stretching factor [-] 1.5
Number of layers [-] 5

First Layer Tickness [m] 3.5 · 10−4

Total Cell Number ≈ 250000
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To get an initial indication and idea of where to work to minimize system pressure
loss, we analyzed the flow behavior, especially in the area near the junction of the
two ducts. As reported in figure 4.29, it is possible to understand why there is such
a pressure drop in the Starter: the connection between the ducts is indeed too sharp
and too direct, which generates a huge flow separation and a high turbulent flow
and leading to high pressure losses (fig. 4.30).

Figure 4.29: Streamlines in the connection
zone. A huge circulation is
generated after the junction.
Blue indicates lower values

Figure 4.30: Section of the turbulent vis-
cosity ratio. Values are
normalized according to the
maximum value

Based on these considerations, one might think that the simplest solution to
the pressure problem would be to blunt the sharp edge connecting the two ducts
(where flow acceleration is greatest and separation occurs) to help the flow not sep-
arate, or at least to reduce the separation generated. However, a sensitivity analysis
performed on the geometry seems to indicate that there is another opportunity or,
rather, another change in the geometry that may make a difference: according to the
sensitivities of the starter pressure with respect to the position of the boundaries,
in addition to the sharp edge smoothing identified earlier, it appears that reducing
the cross section of the IPS duct prior to the connection would help in flow mixing.
The final shape appears to be a more rounded starter duct in the connection and a
narrower cross-section in the IPS, which would generate an acceleration of flow and,
therefore, a lower pressure that would help in the intake of flow from the starter
inlet (fig. 4.31).

Figure 4.31: Surface sensitivity of the boundaries with respect to the starter pressure.
Arrows point in the direction of increasing the objective function, so to
reduce the pressure an opposite modification is required.

In this context the topology optimization for this test case is performed, with an
idea of the boundaries on which the solver would work on.
To improve the convergence of the optimization, a slight modification was made in
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the geometry, since the inlet section of the IPS is very close to the duct junction.
Generating a porous medium so close to the IPS inlet boundary condition would
unrealistically increase the pressure, as the influence of the boundary condition
would corrupt the final results. The inlet section is therefore moved away from the
duct junction with a simple straight duct of constant cross section, which would
generate a negligible pressure drop. Similar considerations were made for the outlet
section, which was also moved away from the junction region with a simple straight
duct. Finally, another modification was made on the starter inlet: to reduce the
number of cells, the beginning of the domain was cut off and the inlet section was
imposed on the constant section straight duct before the junction. Obviously all
these changes affect the final result of the analysis, but for our purpose (testing
the optimization on a 3D geometry) these changes are acceptable. Regarding the
topological region, some external constraints have to be considered in the definition
of the modifiable region: these ducts have to remain inside the engine bay and
are embedded in a larger piping system, so the possibilities of modifications are
limited. In order to analyze different possibilities, two different optimizations were
therefore proposed: the first one was done considering that the current geometry
was the "largest possible" and therefore the solver could only "dig" within the
domain. Based on the changes it seems to want to introduce in the domain, only
the boundaries close to the junction are modifiable (Case 1 ); moreover, since the
IPS section has external assembly constraints, the TO-Region does not reach its
section. This case was also used to clarify the differences between the automatic
sensitivity normalization result and the manual one.
The second optimization was performed in the opposite way, i.e., the goal was to
maximize the mass flow of the starter given the total pressure at its inlet section.
To give more freedom to the solver, a small box including the real connection was
defined and a high solid volume ratio requirement was imposed in order to obtain
a topology that is not too much bulkier than the real one (Case 2 ). The two final
geometries that will undergo optimization are shown in figure 4.32a and 4.32b.

(a) Case 1 (b) Case 2

Figure 4.32: Geometry for the topology optimization of the IPS case. Light blue is used
to highlight the TO-Region but only the dark blue boundaries are editable

In order to have a correct reference value for the new domain with respect to
the base one, the initial geometry was modified with the above corrections and
the pressures recomputed. While the IPS pressure did not change significantly (as
expected) the Starter pressure has dropped by about 25 % .
The two cases have the same boundary condition for the inlet section of the IPS (the
one given as specifications and depicted above) but differ for the starter boundary
conditions and, obviously, for the definition and values of the constraints. The choice
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to change the starter boundary condition derives from the different characterization
of the two optimizations: while case 1 is done from the "industrial" point of view,
with narrower component specifications and less possibility for the solver to modify
the geometry, case B is done from the "optimization" point of view: instead of
setting an inlet mass flow it has been characterized with a fixed total pressure
obtained from the simulation of the base geometry, to make it more compliant with
the optimization idea. This choice comes from the consideration that the mass flow
out of the starter can change if the pressure drop is reduced and its value is not
fixed. Since we don’t know anything about the starter, from the industrial point of
view that condition was a fixed constraint, but for the purpose of this analysis we
can allow more possibilities of modifications to better explore its capabilities. The
expected result should still be similar and the final geometry should be able to reduce
the pressure even for the given mass flow. On the other hand, the temperatures are
as given by the specifications, since no reason to change can be found. Regarding
case 1, the amount of material to be introduced in the domain is not a fundamental
constraint, since there are no problems from the assembly point of view. It is obvious
that the more solid it is, the higher will be the pressure losses of the IPS inlet, but
this is a parameter that the solver will manage: no solid will be added if this would
generate too high a pressure increase. Considering that the TO-Region is quite large
compared to the solid domain that we expect the solver to create, the SVR value is
clearly very small (the best value was found at 3% of the volume, i.e. an SVR of
0.03) while for case 2, as mentioned, we need more volume to reduce the obstruction
that the solution can generate in the engine compartment, so the best value for
the SVR was found close to 0.15 − 0.16. While the first choice is quite arbitrary
and made on an expected result, the second choice comes from the consideration of
external constraints and thus is a more severe constraint. On the other hand, this
optimization is not done from an industrial point of view, so a value of 0.15 was
found to be a good compromise between them. As for the goal of our optimization, as
mentioned, it lies in minimizing the pressure at the starting section (or maximizing
the mass flow), while the pressure on the IPS section was set as the maximum
constraint. The problem here comes from the choice of the maximum value: as
we already know, the physics of topology introduces a non-negligible error in the
solution, which means that setting the maximum value equal to what we want may
be unfair to the real problem and the optimization may not converge. Although we
do not know the error introduced in the solution, it seems from previous results that
the Topology Physics tends to overestimate pressure losses. Since we want to reduce
the increment on that pressure as much as possible, its value has been increased by a
33 %. We must remember that, by definition, this value is the maximum acceptable
by the solver, but the constraint function assumes negative values before this limit
and, since the constraint is "PressureCFMAX = 0" (chapter 3.4.2) the solver always
tents to decrease that value.

4.2.2 Optimization Results

This section discusses the results of the optimization analysis. As expected, the
solver tried to create an acceleration on the IPS duct to decrease its pressure and
try to entrain more fluid from the starter. For what concerns Case 1, this is the
only modification that the solver implemented: the final geometry is made for re-
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ducing the section of the IPS duct, meanwhile bending the flow coming from the
starter duct. The result is a more smooth intersection of the two flows and a re-
duction in the separation after the junction. Interestingly, even though multiple
boundaries were characterized as a source for the solid domain (material indicator
= 0), the solver only worked on the edges before the junction itself. Although we
expected this result, it is useful to notice that no modifications in the sharp edge
were made even thought the surface sensitivity analysis seemed to suggest it, per-
haps because the required modifications were not possible with the actual geometry.
This consideration is supported by the result of the second optimization: while the
before-junction geometry is nearly the same as the one obtained in Case 1, the sharp
edge is removed and replaced with a more smooth path for the starter flow. This is
the result that we expected when analysing the flow behaviour at the junction and
the solver seems to confirm it.
Let us focus on the results of Case 1 : as stated, this optimization was performed
with the goal of minimizing the pressure of the Starter section as much as possible,
while keeping the pressure on the IPS section below a maximum value. In this case
we also analyzed the differences between the manual and the automatic sensitivity
normalization. Based on the results obtained in chapter 4.3, we already know that
the automatic approach could lead to oscillation in the solution or un-satisfaction of
some constraints. This behaviour is confirmed also in the 3-D case, since with this
approach the solution hardly managed to converge but introduces some oscillations
when one constraint starts being satisfied (4.34): this confirms that the solution
seems to delete the constraint once satisfied, which obviously is like changing com-
pletely the problem in analysis. Such a behaviour is not present in the manual
approach, which is capable of a smoother convergence; moreover, thanks to its par-
ticular definition, the optimization not only satisfied all the constraints but tried to
remain aware from them, improving the solution from this point of view as well (this
can be avoided acting on the β parameter in the report definition if necessary).

Figure 4.33: IPS and Starter pressure be-
haviour during the optimiza-
tion iterations: Manual nor-
malization case. Values are
normalized with the one at
1st iteration.

Figure 4.34: Behaviour of an automatic
normalization optimization
with a too high penalty
value. Values are normalized
with the one at 1st iteration.

Comparing the topology obtained from the two approaches (fig. 4.35) it is possi-
ble to appreciate huge differences. The basic idea is the same: to reduce the section
of the IPS duct in order to increase its velocity and help the starter flow to change
its direction. However, while the geometry obtained with the automatic approach
is "simpler", the one obtained with the manual one is more peculiar since two small
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support-like ducts are generated that connects the two pipes before the real junc-
tion. From figure 4.37, it is clear what effect on the flow field these structures have:
the one on the right (lower Y coordinates) sucks in the IPS flow, generating a high
vorticity flow that acts as a vent, removing a portion of fluid that is diverted from
the new solid domain. The other (and larger) structure acts as a recirculation zone
for the rotating flow coming from the Starter: as shown in figure 4.36, the bend of
the starter pipe generates a vorticity that, near the junction, is almost perpendic-
ular to the IPS flow direction. That portion of the domain acts as a recirculation
pocket where the vorticity is very high but the flow velocity is very small: it acts as
a kind of stilling chamber that slows down the flow but avoids it entering the main
tube with a wrong direction. While this may seem like a source of vorticity and
turbulence, the beneficial effect on the Starter flow behaviour is relevant, so that
the final pressure on the Starer Inlet section drops at the 25.4% of the initial value,
with an increment in the IPS of ≈ 30% only, which is absolutely consistent with the
constraint that we imposed (all values are reported in tab. 4.7).

Figure 4.35: Comparison of the final topology between automatic (a) and manual (b)
report defintion and normalization

Figure 4.36: Streamline on the Starter
duct before the junction.
Note the birth of a rotational
component in the flow

Figure 4.37: Effect of the two support-
like structures on the flow be-
haviour

Table 4.7: Comparison between the improvement given from the automatic normalization
or the manual one. Values are normalized with respect to the maximum IPS
constraint value

IPS pressure [-] Starter pressure [-]

Base Geometry 0.545 0.69
Automatic Normalization 0.66 0.4
Manual Normalization 0.725 0.175
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Let us now focus on Case 2 ; this optimization was performed with a different
target: the maximization of the mass flow coming from the starter. In order to per-
form this optimization, the inlet boundary condition must be changed: the choice
fell on fixing the total pressure at that section with the value found from the base
configuration. Also the constraint on the pressure was slightly changed: to repro-
duce a more realistic behaviour, a maximum pressure drop of the whole system
was considered. Provided that the total pressure of the Starter section is given as
boundary condition, the constraint works on the IPS pressure but taking directly
into account the increasing of the mass flow from the starter: to provide more free-
dom to the optimization, the constraint has been increased about 2.5 times the base
value. Moreover, as previously said, the optimization domain was modified to give
the solver more freedom and more possibilities of topology modifications. Since this
optimization was not intended to compare manual normalization with automatic
normalization, only the former was used, since it gave higher performance based on
the results of Case 1. The final topology is shown in figure 4.38 and it is based on the
same considerations that we made for the previous case; some (huge) difference can
be found: first of all, the IPS input section was in this case modifiable and therefore
the solid domain connection is smoother. Second, the mounting-like structures that
were generated before are now reduced to a single, larger connection, perhaps due to
the different approach the flow has in that section, due to the smoother connection
mentioned above. The biggest changes are in the region after the junction: the
final part of the starter pipe and the very first part of the junction are shaped by
the solver to give a smoother connection between the pipes (as expected) and to
follow the rotational structures that the Starter curve generates (unexpected). The
flow is therefore almost "accompanied" in its path, with the new geometry trying to
generate as little hindrance as possible to the natural development of the flow (fig.
4.39).

Figure 4.38: Final topology for the maximization of the mass flow case. Highly 3D struc-
tures are evident in the new topology that help the natural flow development

Figure 4.39: Flow behaviour in the optimized geometry. Note how the geometry follow
the swirl of the starter before the mixing.

74



4.2. APPLICATION ON A REAL 3D CASE: INLET PARTICLE SEPARATOR

Although the two optimizations are performed with different objective function
and domains, it may be interesting to analyze how the new geometries behave when
the boundary conditions are changed. In fact, the effects of the optimizations were
almost similar in the final topology and it is not immediate to understand if the solver
felt the different setup and objective function. It is important to remember that
these values refer to the geometry with the Starter inlet section cut off. The table
4.8 shows the characteristic quantities of the two analyses: the mass flow rate at the
starter inlet, the pressure at the IPS section, the pressure drop of the system and the
total pressure at the starter section. From the results it is quite evident that the Case
1 performs better in terms of mass flow even with the switched boundary condition,
but generates a higher pressure at the IPS section, while case 2 performs better in
pressure drop. Although this was expected, since the two optimizations perform
better in the physical quantities considered in the optimizations, it is a confirmation
of the sensitivity that the optimization itself has on the objective function with
respect to the imposed constraints. It is therefore difficult to say which geometry
performs better in an absolute way, but it clear that the two optimizations managed
to find the better result for their own constraints

Table 4.8: Comparison between the results of the IPS optimization cases. In bold are
characterized the boundary conditions. Pressures are normalized w.r.t the
maximum IPS constraint value, while mass flows w.r.t the starter boundary
condition

Mass Flow
Starter [-]

IPS Pressure
[-]

Pressure
Drop [-]

Starter Total
Pressure [-]

Case 1 Nominal 1 0.71 0.28 0.18
Switched 1.55 0.8675 0.288 0.764

Case 2 Nominal 1.38 0.74 0.2335 0.764
Switched 1 0.643 0.24 0.4755

4.2.3 Topology physic error analysis

As done for the Quasi-2D test case, a small section is dedicated to the analysis of
the error introduced by the topology physics model with the Brinkman penalization,
here performed for the 3D cases. In tables 4.9 and 4.10 the values obtained during
the optimization are compared to those obtained after the geometry reconstruction
(with the Starter inlet section cut off). As noticed in the Quasi 2D test case, the
solver tents to overestimate the pressure losses of the system, but this time the error
also reflects in the mass flow values (for obvious reasons: the quasi 2D test case had
the mass flow imposed as boundary condition), which also are overestimated.
Another important physical quantity that may be of interest is the temperature
at the outlet section, even though it was not considered as constraint during the
optimization. The porous medium is also characterized by an effective thermal
conductivity (see cap 2.3.3.2 and eq. 2.47) and it is capable of thermal conduction
within the flow domain. Even thought it is not possible to combine the Adjoint
topology optimization model with the Radiation model inside STAR-CCM+ (it is
not possible to simulate conduction or radiation) the porous media tent to simulate
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the conduction using the energy equation and an increased conductivity. In the case
just analyzed, temperature was not in any way a design constraint and, therefore,
was not taken into account as a parameter for optimization. However, the flow
coming from the IPS and the one coming from the Starter are characterized by two
different temperatures, even if slightly (the temperature of the IPS is 0.9 times that
of the Starter). Therefore, even if temperatures between the flows are almost similar,
analyzing the temperature at the outlet can give us a further indication of the quality
of the model. From figure 4.40 it is possible to see the thermal diffusion inside the
porous media, both in the upper part of the domain and in the new junction between
the IPS and the Starter ducts. The test cases here presented are not suitable for a
more precise and correct analysis of the effect of the porous media and the effective
thermal conductivity on the solution, which can be found for example in [11].

Figure 4.40: Temperature field inside the porous media. The convection is simulated with
an effective thermal conductivity. Values are scaled w.r.t the maximum value

Table 4.9: Error introduced by the Topology physic model - Case 1. Pressure values are
normalized w.r.t the maximum IPS constraint value, while temperatures w.r.t
the Starter boundary condition

IPS Pressure
[-]

Starter Pressure
[-]

Temperature at
Outlet [-]

Topology physics 0.954 0.04 0.91
Reconstructed 0.71 -0.005 0.89

Table 4.10: Error introduced by the Topology physic model - Case 2. Pressure values are
normalized w.r.t the maximum IPS constraint value, while mass flows and
temperatures w.r.t the Starter boundary condition

IPS Pressure
[-]

Mass Flow
Starter [-]

Temperature at
Outlet [-]

Topology physics 1.165 1.788 0.915
Reconstructed 0.74 1.4 0.91

The results seem to confirm the first observation made on the Quasi-2D test
case: all the physical quantities are overestimated during the optimization, but the
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error does not seem to be unique, constant or predictable. Besides this, we can
again confirm what was previously noted: even with this (non negligible) error, the
optimization performs well and manages to optimize the topology of the components,
i.e. the topology does not seem to be influenced by the numerical error, but it is
more dependent on the general behaviour of the flow field.

77



4. PROCEDURE DEVELOPMENT AND TEST CASES

78



5
Topology Optimization of the Primal

Exhaust of the NGCTR Engine

In this chapter a brand-new application of the topology optimization model for
fluid dynamic problems is presented, based based on knowledge gained from test
cases: the optimization of the lobed exhaust of a turboshaft engine. This application
is completely different from the others previously addressed, since the TO-Region is
constrained inside a fluid domain and not at its boundary, with the porous media
being included in the flow field and not vice versa. This optimization was performed
on the Next-Generation Civil TiltRotor (NGCTR) engine with two different pur-
poses: the first optimization aims to maximize the mass flow driven by the engine
bay, while the second one aims to minimize the backpressure on the turbine outlet
section.
After a brief introduction of the problem and of the geometry, the two different opti-
mizations are discussed separately and a brief comparison of the resulting topology
is presented at the end of the chapter.
All the optimization here proposed were obtained with the new sensitivity normal-
ization procedure discussed and developed previously.

5.1 Definition and Setup of the Problem

When considering an helicopter engine (or VTOL Tilt Rotorcfraft), it is critical
to remember that unlike an airplane jet engine, which uses the acceleration of an
air mass to produce thrust, the main task of the turbine stages is to transform the
kinetic and internal energy of the fluid into the angular velocity of a shaft that is
connected to the blades. The result is that the remaining kinetic energy of the
exhaust flow is only needed to move the hot flow away from the engine itself, but
no thrust can be recovered from it. However, since cooling the engine and its com-
partment is a critical task to ensure proper operating conditions, it is easy to see
that the amount of energy remaining in the exhaust can be used for this purpose.
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Starting from this idea, the jet pump effect (see Appendix A) is taken to the next
level: the gas exiting the low pressure turbine is the high pressure flow while the air
inside the Engine bay (see fig. 5.1) is the reservoir of the driven flow. The aim of the
jet pump effect here is the motion of the air along the engine to generate a forced
convection, so to ensure a proper speed of the fluid along the whole engine some
intakes are needed in the Engine Bay, whose position is predominantly determined
by the mechanical component inside. These air intakes are placed on the very outer
side of the engine bay in order to sucks the air from the environment, thanks both
to the propeller (especially during VTOL phases) and the external aerodynamics
during the cruise phase. For this kind of applications, the final pressure or veloc-
ity of the combined flow is not a design parameter, but it is fundamental that the
pressure at the exhaust of the turbine does not rise above a certain value that can
reduce the performance of the engine.
The fundamental component to ensure the optimal performance of the cooling sys-
tem is the exhaust system and its geometry, in particular the topology of the
so-called primary exhaust (see fig. 5.2): this component has been design via ex-
periments, knowledge and trial-and-error procedures leading to the actual lobed-
geometry. Since these can lead to incorrect and sub-optimal designs, it is clear the
need for a procedure for a topology optimization of this component.

5.1.1 Engine base geometry

The exhaust topology optimization process, along with the development of its
procedure, was carried out on theCT7-2EI engine, a commercial version of the T700
designed and developed by GE Aviation 1, that will equip the Next Generation
Civil TiltRotor (NGCTR) of Leonardo S.p.A. Helicopters [18]. As said before,
the optimization concerns only the exhaust components, so to simplify the geometry
the smallest engine features have been removed, keeping the same obstruction of the
engine inside its bay but at the same time allowing the generation of a coarser mesh.
The purpose of this analysis is not a proper fully analysis of the smallest features of
the engine, which have only the functionality of representing the flow domain and
an obstruction to the passage of air.

Figure 5.1: Engine bay (in yellow) with 3
of the 4 inlets (in purple) and
the secondary exhaust (in red)

Figure 5.2: Internal components of the en-
gine bay: In gray all the engine
block with the actual geometry
of the primal exhaust in orange

From figures 5.1 and 5.2 it is possible to distinguish some of the components of
the engine system that are relevant for the analysis:

1https://www.geaviation.com/
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• the main component (in gray) is the engine itself with some auxiliary compo-
nents like the IPS and the Starter ducts (the ones analyzed in chapter 4.2)
and a simplified support on the rear (it is interesting to know that this com-
ponent was subjected to a structural topology optimization). These bodies
are collected into a single one since they will never be modified during the
optimization process.

• the primary exhaust (in orange): this is the principal component of the topol-
ogy optimization analysis, since is the one that must be optimized and the one
that can maximize the jet pump effect. It is connected to the engine along
with the conical component at the exit section of the Low Pressure Turbine,
which in our analysis represents the a mass flow inlet boundary condition.

• the secondary exhaust (in red): this is a conical section that represent the
allowable domain of the exhaust. Inside this domain, the flow exiting the
turbine sucks the flow inside the bay and mixes together to form a single exiting
flow. This part of the exhaust was not part of the optimization process.

• the engine bay (in yellow) along with the intakes (in purple): the engine bay
represents the whole domain of the flow inside where every component must
stay. The walls of the bay are of two different types:

– the back wall is the firewall: its shape and material distributions are
governed by the fire resistance criterion for the airwothiness and therefore
no air intakes can be introduced.

– all the other walls represent the sides of the bay, which are part of the
external nacelle and that’s why the intakes are placed here. Their location
is governed by the internal distribution of the components.

It is fundamental to remember that the external aerodynamic plays an important
role in this problem, since the pressure and the mass flow inside these intakes depend
on the velocity and pressure fields along the nacelle. However, the optimization pre-
sented here did not take these phenomena into account not only for computational
reasons, but also because the primary exhaust should be optimized under all oper-
ating conditions with the addition of the propeller in front of the engine itself. In
addition, the optimization process for this component aims to identify a topology
that is as general as possible and can perform well under different conditions, not a
specific one

5.1.2 Problem Setup and Mesh Analysis

The boundary condition setup deserves special attention especially for the TO-
Region definition. The engine is simulated under a general operating condition,
with flow exiting the turbine stage at a constant mass flow rate and temperature.
Since no information about the swirl component of the flow is provided by the
engine installation manual, the flow is considered as normal to the boundary: this
is obviously an unrealistic behavior of the flow but we have to accept this error,
always focusing on the objective of this analysis, which is not the numerical result
but the behavior of the topology optimization in a complex aerodynamic scenario.
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Moreover, as stated in the previous chapter, the topology optimization model does
not support the Radiation model inside STAR-CCM+, therefore all the physics
concerning the conduction and radiation inside the engine bay cannot be simulated:
this is consistent with the idea of the topology optimization, since the radiation
model needs to create patches on the solid boundaries to calculate the view factors
for the simulation of the radiation. The solid generated via the porous medium
cannot be patched, for two different reasons: the first one lies in the fact that the
porous media changes from iteration to iteration, therefore at every iteration the
new patches and the new view factor matrix should be computed, which will lead
to an enormous increase in the computational time. The second reason is simply
related to the aforementioned characterization of the new solid : the solver treats it
as fluid, therefore it cannot generate patches on its boundaries. As a consequence
of that, the temperatures of the engine block are not considered in the following
analysis. However, for the mesh convergence analysis and validation of the new
geometries the temperature and velocity profiles, together with their average value
at the outlet section, are taken into account, since the flow exiting the turbine stage
is characterized with a high temperature.
Here the boundary conditions for the physics are summarized:

• Turbine inlet section: although it is called "Turbine inlet" it is in reality the
outlet section of the turbine which, for our analysis, is a mass flow inlet con-
dition with also a fixed temperature.

• Air intakes: this should represent a connection with the environment, therefore
are characterized with a fixed total pressure equals to the reference pressure
and the temperature is set at Tintakes = 293.15 K

• Outlet section: this is a simple pressure outlet that represents the discharge
of the exhausts in the environment. To reduce its effect in the solution, the
outlet section is moved away from the real one.

The definition of the To-Region and of the boundary and initial conditions for the
Material indicator function deserves a separate discussion. As stated before, the
region inside which the topology optimization will be performed is the one that is
actually occupied by the primal exhaust, therefore it is completely immersed in the
fluid region. This can represent a problem from the optimization point of view, since
it is not easy to characterize a boundary as source for the solid domain. Moreover,
some mounting constraints reduce the modifications that the solver can make at the
very beginning of the exhaust (see fig. 5.3).

The solution that has been found to overcome the latter problem is quite obvious:
the first part of the exhaust is fixed and not modifiable at all. For the first observa-
tion, on the other hand, the idea was to introduce a particular initial condition for
the material indicator that would retrace the original geometry and characterising
as source for the porous media only the boundary that connects the TO-Region to
the first non-editable part of the exhaust. It is important to recall that the porous
medium cannot develop solid from boundaries that are not sources, but it can be
generated from the one that already exists. Therefore, the actual geometry performs
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Figure 5.3: Part of the mounting system of the Primal Exhaust

as initial condition (fig. 5.4) and also as source for the solid domain. To obtain that
particular initial condition, the following functions were created [7] (field functions
inside STAR-CCM+ are based on Java programming language):

• UnitNormalVector : this function is a Vector function that simply normalizes
the area of the cells considered creating a vector that is parallel to the normal.
It is defined as:

$$Area

mag($$Area)
(5.1)

• The scalar components of the result vectors are collected in a user-defined table
(called "UnitNormalTable") that applies this field function to the surface mesh
of a selected part only, with the relative (X,Y,Z) coordinates in the general
reference frame. In this case it is computed on the surface mesh of the primal
exhaust base geometry;

• InterpolateFunction: this function interpolates the position of the volume cells
with the one of the tables and performs a scalar product with the UnitNor-
malVector components:

InterpolateFunction =

dot($$Position− interpolatePositionTable(@Table(”UnitNormalTable”),

”X”, ”Y ”, ”Z”), interpolatePositionTable(@Table(”UnitNormalTable”),

”UnitNormalV ector[i]”, ”UnitNormalV ector[j]”, ”UnitNormalV ector[k]”))

< 0

(5.2)

The result of this function is therefore a Boolean field, that assumes the value 1
on the cells whose centroid is located inside the selected part and 0 elsewhere;

• InitialConditionFunction: this latter function has the only purpose of switch-
ing the values assumed by the InterpolateFunction, since we need a value of 0
(=solid) on the cells located inside the base geometry of the primal exhaust:

InitialConditionFunction = 1− InterpolateFunction (5.3)

Since the Coupled solver may suffer convergence issues, especially on the continu-
ity, if the initial condition is very different from the converged solution, also for the
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Figure 5.4: Initial Condition for the Mate-
rial Indicator (in red). In green
is highlighted the TO-Region

Figure 5.5: Example of the result of the
InitialConditionFunction with
a too coarse mesh

physics of the problem an indication of the final solution can be helpful. Generally,
one possible solution is using the Segregated solver until a reasonable convergence
and then switches to the coupled one for the final convergence. However, in this
case this procedure is not so reasonable, since all the adjoint setups should be done
after the switching and, therefore, for every optimization that we perform we must
set up the adjoint solver from the beginning, since the segregated solver is incom-
patible with the adjoint one. A possible solution to this problem is the usage of an
initialization with a multigrid approach: the analysis is by the very beginning set
up with a coupled solver, while the grid-sequencing (GS) initialization performs the
normal initialization of the problem with the given initial condition followed by the
computation of an approximate inviscid solution to the flow problem [41]. The GS
works with the following steps:

• A series of coarser mesh are generated (the number of the mesh are chosen by
the user);

• The coarser mesh is initialized with the given standard initial conditions;

• Starting from the coarser mesh, a series of iterations are run until a chosen
convergence or a given maximum number of iterations is reached and the
obtained solution is then interpolated on the new mesh. The step is repeated
until the finer mesh.

The result of this process is a first-order inviscid solution that deserves as initial
condition for the Coupled solver, improving the robustness and the convergence of
the primal solution.
With the given physics condition the mesh convergence was performed, with the
following parameters taken into account at this purpose:

• Average velocity at the outlet section;

• Mass flow at the air intakes;

• Average temperature of the flow at the outlet section;

• Velocity and temperature profile at outlet section;
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Figure 5.6: Mesh convergence analysis - The reports are normalized with their asymptotic
value

The mesh model used for the analysis is the Poly one, since the high complexity
of the geometry is not suitable for a trimmed one. The results of the convergence
analysis are shown in figure 5.6 and parameter of the chosen mesh are reported in
tab 5.1.

Since the engine, regardless its simplified model, has small features, and inside
the bay there are other components (like piping systems or big structural elements),
a stricter control on the prism layer is necessary to correctly keeping into account the
different velocity scales of the problem. In the bay the velocity of the flow is times
smaller than the one in the exhausts sections and the gap between the engine and
some other components cannot accept the same boundary layer that is needed on
the secondary exhaust walls. Therefore the prism layer was characterized following
the Base size but was also given the possibility of reducing the total thickness up to
the 1% of is generic total thickness, reducing also the number of the layers if needed
(fig. 5.9).
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Figure 5.7: Normalized Velocity profile at outlet section - Mesh convergence analysis:
Data refer to Base Size

Figure 5.8: Normalized Temperature profile at outlet section - Mesh convergence analysis:
Data refer to Base Size

Table 5.1: Mesh parameters: Engine primal exhaust optimization. Percentage refer to
the Base Size

Mesh parameters

Base Size [m] 2.5 · 10−2

Minimum Surface Size [-] 10 %
Maximum Cell Size [-] 300 %

Refinement To-Region Cell Size [-] 20 %

Prism Layer

Stretching factor [-] 1.5
Number of layers [-] 5

First Layer Thickness [m] 2.5 · 10−4

Total Thickness reuction [-] 1%

Total Cell Number ≈ 1.8 · 106

The chosen mesh is fine enough to capture the correct flow behaviour but the
domain for the optimization is in the middle of the fluid one, where the mesh is bigger
than the Base size and it is a bit too coarse for the definition of the initial condition of
the material indicator function. This one, indeed, is given with the particular initial
condition generated by the above described field functions: a greater definition of
the cells guarantee a greater characterization of the initial condition. A too coarse
mesh will generate sort of pockets of solid cells scattered through the domain and
not a real porous domain (fig. 5.5). Therefore, the TO-Region was characterized by
a local refinement (20% of the Base size) in order to improve its definition.
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Figure 5.9: Detail of the Prism layer reduction in the mesh. Here, the Starter pipe reduces
the fluid domain and the prism layer general settings cannot fit correctly

Once the problem is defined from the physical point of view, it is fundamental to
analyze and choose the objective functions and the constraints for the optimization,
together with their normalization. In the following, two different optimization were
performed with two different goals: the first optimization concerns the maximization
of the mass flow driven from the engine bay with a maximum constraint on the back
pressure that it generates at the turbine inlet section. The second optimization
is the opposite: the minimization of the pressure at the turbine inlet section with
the less possible loss in the mass flow. Both optimizations start with the same
initial conditions on the material indicator function and this already gives us the
first constraint of our analysis: evaluating the SVR of the initial condition, we can
obtain the amount of solid of the base geometry of the primal exhaust. The goal is
therefore optimizing the geometry keeping the same (on nearly the same) amount
of solid which is near the 11 % of the TO-Region (i.e. SV Rtarget = 0.11), in order
not to increase its weight.

5.2 Mass Flow Secondary Exhaust optimization

The cooling of the Engine and of its Bay is a fundamental task to guarantee a
proper working condition and reliability of the engine itself. Part of this process is
entrusted to the air flowing through the bay, which cools down all the components
thanks to the forced convection: the greater is the mass flow (and therefore the
velocity) the greater is the cooling effect that it can achieve. In standard working
conditions, the air can flow through the bay thanks to the Primal exhaust that
mixes it with the flow exiting from the turbine stages, therefore it is clear that the
fundamental component that controls the amount of air that can flow throughout
the bay is the mixer itself. However, this is not the only parameter that it governs,
since it must guarantee that the mixing effect does no generate too much pressure
losses and too much backpressure on the turbine outlet stages, both for reducing
the fuel consumption and guaranteeing a correct outflow of the gasses. These two
parameters are therefore respectively our objective function (mass flow flowing in
the bay, called also "mass flow secondary") and the second of the two constraints
for the analysis (pressure at the turbine inlet section); the other, as stated before,
is the SVR.
In order to have an idea of the maximum allowable value of the backpressure, we
must consider the specifications of the engine itself: the fig. 5.10, taken from the
engine installation manual, represents the minimum allowable backpressure coeffi-
cient with respect to the swirl of the flow. The represented coefficient is a standard
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pressure coefficient defined as follow:

BP =
Patm − P7

V H7

(5.4)

where "7" is the number of the stage with respect to the whole engine, and denotes
the turbine exhaust section (i.e. our mass flow inlet boundary): P7 is therefore the
static pressure at the turbine exhaust and V H7 is the dynamic pressure at the same
stage.

Figure 5.10: Minimum backpressure coefficient allowable for the turbine exhaust section

Since we do not have indication about the swirl, and in order to simplify the
analysis to better understand the possibility given from the topology optimization
in these complex aerodynamic cases, all the analysis were performed without the
swirl of the flow. Even though this is a fundamental aspect of the flow behaviour,
it is important to consider that the complexity of such a problem is almost times
higher than the one of the standard topology optimization problems like the test
cases discussed before, and the introduction of the swirl will lead to perform an
optimization for different swirl conditions (at least every 5 deg) which translates
in an unattainable computational time (later on the CPU times required for the
performed analysis are reported).
With the actual exhaust geometry, the backpressure coefficient is equal to

BPbase = 0.42 (5.5)

Of course the Backpressure limit is fully satisfied with a high margin for modifi-
cations. With a view to the optimization, this leaves a high design space where to
move; moreover, keeping in mind that the Brinkman penalization model introduces
a non-negligible error which affect the setting of the constraints, let us to define a
maximum value for the pressure with a reasonable safety margin. The choice to de-
fine the pressure as constraint and not the backpressure coefficient itself comes from
the knowledge acquired from the previous optimizations, where we always worked
with the sensitivities of pressures and mass flows.
Since the computation time for the whole domain geometry would have been too
high for the correct settings of the problem, the optimization was performed step by
step starting from a reduced portion of the domain. This helped in the definition of
the reports for the correct sensitivity normalization and, subsequently, the acquired
knowledge was applied to the whole problem. Therefore, these steps are presented
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below, starting from the optimization of the primal exhaust with the reduction of
the engine bay of only a quarter, introducing the hypothesis that the bay is 2-times
symmetric.

5.2.1 Optimization with a quarter of the domain

When analyzing the Engine bay (fig. 5.1) and what there is inside (fig. 5.2), it
is clear that the domain is anything but symmetrical. However, facing a so complex
problem for the first time is easier if some simplifications are introduced. The engine
bay domain is therefore considered as made of 4 equals regions, therefore with a 2-
times symmetry with respect to the Y and Z axis. This simplification obviously
introduces some errors in the simulation and some 3-Dimensional effects might get
lost. As we already know, 3-Dimensional effects seem to play an important role
in the final topology that the solver achieves, so it is not possible to consider the
result of this optimization as the final one, but it is a good starting point if we are
interested in analyzing the possible topology and why it is so. The new fluid domain
(fig. 5.11) is obtained with a slicing of the Engine bay and the two sliced boundary
are characterized as Symmetry boundaries.

Figure 5.11: Quarter of the Engine bay: in blue the symmetry boundaries

As it can be seen, the chosen part of the bay was the one that could guarantee
almost 2 air intakes in the same position of the one in the full domain geometry,
in order to keep the suction both from the rear and the front of the engine. Since
the base geometry of the primal exhaust is axial-symmetric, its configuration was
taken as reference for the cutting plane, in order to consider 2 of the 8 lobed section
in a perfectly axial-symmetric way. The mass flow exiting the turbine was reduced
exactly by a quarter, even though we cannot expect that the resulting mass flow
entering the bay is exactly the quarter of the one computed with the full domain (we
may expect a greater value since we have 2 of the 4 intakes) with a possible reflection
on the value of the pressure on the turbine. Another important difference, as stated,
is on the different flow behaviour between the full and the sliced domain. As shown
in figure 5.12, the slicing of the domain destructs some important recirculation zones
(in the upper left part) while creating an important one in the upper right region,
near the IPS outlet section. The latter moreover generates a lower pressure zone that
drives the flow in a x-positive vorticity in all the IPS zone, deleting the reciruclation
zone that is clearly visible in the full domain under the IPS. Moreover, the flow in
the Quart Domain analysis seems less chaotic and more clean, with the recirulation
zones that are more structured. This translates in an easier path for the flow in the
bay, which means a greater mass flow in the secondary exhaust, as confirmed by the
results shown in table 5.2: the obtained mass flow is grater then the quarter of the
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(a) (b)

Figure 5.12: Comparison of the flow direction and magnitude between the Full Domain
(a) and the Quarter Domain (b) at the secondary exhaust section. Blue
indicates lower values.

original (+38 %), which reflects on a greater pressure at the turbine inlet stage and
leading, as natural consequence, to a lower BackPressure coefficient.

Before proceeding with the optimization analysis, it is required to understand
and to choose the maximum pressure that we may accept. In the previous cases,
we cannot have any indication about the differences between the topology physics
and the reconstruct geometry, but in this case we can: with the particular initial
condition, indeed, we can compare the base geometry described both with the real
component and the porous one, and analyze how the pressure and the mass flow are
modified. With the Brinkman penalization model, the mass flow decreases of about
3 % while the pressure on the turbine drastically increases (tab 5.2) reducing the
BackPressure coefficient at−0.21. Since we need to keep the Backpressure coefficient
greater than −0.22 ÷ −0.23, it is obvious that the error introduced must take into
account the overestimation generated by the model. Based on the aforementioned
increment, a coherent value for the BackPressure coefficient may be around −0.8
but, since the error on the pressure depends on the mass flow and on the topology
that will be developed, giving a bit of margin for the solver can help the convergence,
therefore the minimum allowable BackPressure value was set at −1.0. For an easier
characterization of the optimization problem, the constraint was imposed on the
turbine static pressure, which value has been set accordingly to 2.32 times the value
obtained with the Base geometry. It is important however to remember that the
optimization should always aim to decrease its value (remember: βp < 0). Once
known the constraints value, their functions can be correctly defined ( see figure
5.13 and 5.14).

Table 5.2: Comparison of the main parameters of the base primal exhaust between the
real component and the porous-made one - Quart-Domain case. Mass flows
and Pressures are normalized with the Base Geometry values

Turbine inlet pressure
(relative to Outlet) [-]

Mass flow secondary
[-]

Real Geometry -1 1
Quart Domain -0.922 0.344

Quart Domain Porous Media 0.477 0.333
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Figure 5.13: Pressure turbine report
definition: αp = −0.1,
βp = 20, Pnorm = 0.257,
Pmax = 2.32 (w.r.t the
normalized value).
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Figure 5.14: SVR report definition:
αsvr = 1, βsvr = 0.1,
SV Rnorm = 0.01,
SV Rmin = 0.11

As seen with the test cases, more than the absolute values of the reports is fun-
damental to compare the sensitivities of the constraint with the one of the objective
function. In figure 5.15 this comparison is presented: the values of the sensitivity of
the pressure are quite low compared to the one of the material indicator, which is
absolutely coherent if we consider the initial condition from which the optimization
starts (the pressure constraint is widely satisfied), while the one of the mass flow
is higher but only of one order of magnitude. Based on the results of the previous
test cases and considering that the values of the constraint function will rapidly
increase in the optimization process, these gaps will be fulfilled when the pressure
reaches (and overcomes) the maximum allowable value and the resulting sensitiv-
ity will therefore be considered as equal as (or even greater than) the one of the
objective function. Beside the numerical values, it is also interesting to compare
qualitatively the fields of the sensitivities: apart from particular cases, the two fields
appear to be one the opposite of the other, since the cells that would lead to an opti-
mization of the objective function would decrease the satisfaction of the constraint.
Although this can be quite obvious, it is the formal representation of the idea be-
hind the constrained-optimization and clearly depicts the importance of the correct
computation of the sensitivity to avoid a over-constrained (or under-constrained)
optimization.
The analysis satisfied the OCC stopping criteria (even if with some oscillations with
the SVR constraint, fig 5.17) after just 57 optimization iterations (which on a 6-
core Intel CPU i7-9th gen @ 3.80GHz required ≈ 22hrs) thanks to the particular
initial condition given to the Material Indicator function, with a final topology that
incorporates the basic characteristics of the base geometry (a lobed-like shape) but
favouring a more vertical development of the lobed part with respect to the lateral
one, adding a huge flow deflector-like component at the very beginning section of
the exhaust that accelerates the primal flow and adding a new feature to the geom-
etry: a two horn-like shape at the top end part of the lobed geometry (fig. 5.16).
To better understand the improvement and the effect of the new topology, a model
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reconstruction was performed both whit a smoothing of the surface and removal of
the smallest features and with a hand-made CAD model (fig 5.18).

(a) (b)

Figure 5.15: Sensitivity values for the objective (a) and pressure constraint (b) report.
Values are normalized w.r.t the greatest value.

Figure 5.16: Optimized topology - Quarter of domain

Figure 5.17: Convergence plot - objective function and constraint reports

Figure 5.18: Comparison between Base (a), topology reconstructed (b) and CAD (c) ge-
ometry of the primal exhaust

92



5.2. MASS FLOW SECONDARY EXHAUST OPTIMIZATION

Table 5.3: Results comparison: Quart Domain - Mass flow maximization case. Values are
normalized with the Base Geometry values.

Mass flow
secondary [-]

Turbine
Pressure [-]

BackPressure
Coefficient [-]

Reference geometry 0.344 -0.922 0.37
Opt. Topology Physics 0.428 2.28 -0.93
Reconstructed geometry 0.4 -0.165 0.07

CAD geometry 0.395 -0.155 0.06

The improvement in the objective function is clearly evident (+ 15 %) while the
increase in the pressure, and therefore the reduction of the back pressure coefficient,
is clearly lower than the one predicted by the topology physics. An in-depth analysis
of the flow field depicts the enhancement made by the new topology: underneath
the horn-like shape, a low-pressure zone in generated thanks to the acceleration of
the primal flow, increasing the suction effect on the secondary flow and creating
the required space for its acceleration (fig.5.19c), while shrinking the lobed-region
entrance section for the remaining flow, channeling it into the main one, which
in turn is accelerated by the obstruction generated by the flow deflector at the
beginning of the exhaust. The so-defined lobed feature, on the other hand, helps in
the mixing of the flows but the lack of an horizontal development of the geometry
introduces a huge recirculation zone just after the exhaust itself (fig. 5.19b) which
leads to a less uniform flow at the outlet section.

(a) (b)

(c)

Figure 5.19: Comparison of the flow behaviour between the Base exhaust (a) and the
optimized one (b) (c). Values are normalized with the greatest one.

Even though the final topology is capable of such improvement in the objective
function, the error introduced by the Brinkman penalization model was higher than
the one expected by the previous analysis. The reason of such discrepancy may
rely on the turbulence field: as we already know, the porous media is not capable
of correctly capturing the turbulence development, but by now all the test cases
analyzed had a lower Reynolds number. Considering the flow exiting the turbine
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stage as reference velocity and the diameter of the secondary exhaust as length scale
we obtain Re = 2.5·106, which is an order of magnitude greater than the one studied
in the IPS test case and two orders grater than the Mass flow splitting test case.
Moreover, the porous media is inserted exactly in the middle of the high-velocity
field, leading to an enormous turbulence production, as clearly shown in fig. 5.21:
the porous media, both for the roughness of the surface and for the incorrect wall-
treatments, is the main source of turbulence in the domain which is nearly absent
with the rebuild geometry. The final turbulence viscosity field correctly captured
the secondary exhaust flow separation but the huge production in the lower part
of the porous media generates a high-turbulent flow that, mixed with the already
turbulent one, leads to an overestimation of the turbulence viscosity ratio (fig. 5.20)
in the development inside the secondary exhaust (up to + 25%). This results in a
rise of the pressure losses and of the back pressure at the turbine section, which is
overestimated by more than an order of magnitude.

(a) (b)

Figure 5.20: Comparison between the turbulence viscosity field with the exhaust simu-
lated as porous media (in black) (a) and the one of the real geometry (b).
Values are normalized with the greatest one.

(a) (b)

Figure 5.21: Comparison between the turbulence kinetic energy with the exhaust simu-
lated as porous media (in black) (a) and the one of the real geometry (b).
Values are normalized with the greatest one.
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Beside those considerations and the error introduced, the optimization managed
to converge to a realistic and reasonable geometry with a correctly satisfaction of
all the constraints, setting the stage for the Full-Domain optimization.

5.2.2 Mid-Domain optimization

With the acquired knowledge and the correct optimization settings obtained in
the previous analysis, the domain is now enlarged to a half of the engine bay. This
analysis aims to verify the scalability and the robustness of the problem and of the
settings with respect to a similar but not equal geometry, and to understand the
effect that the 3-D structures before destroyed can have in the final geometry. Since
this optimization is exactly the same of the previous one, apart from the geometry,
and has the purpose of confirming the correct settings, we will not go through all
the details previously analyzed. but we will focus only on the geometry obtained
and on the numerical results.
The first and most important result is the final topology, shown in figure 5.22: it
is interesting to notice that the optimization seems to converge to a topology very
close to the one obtained with the Quart-domain, showing that the simplification
introduced in the domain did not affect the general behaviour of the flow. However,
some small features that are based on a particular flow development can be found,
especially in the horn-like shapes between the two middle lobes and the external
ones, where are slightly defeatured and a smaller space between the lobe is left for
the flow (fig. 5.22b).

(a) (b)

Figure 5.22: Final topology - Mid Domain optimization

The effect of these small features is shown in fig 5.23 and 5.24, where the re-
constructed geometry was analyzed: the smallest gap between the outer lobe help
the primal flow in its development, with a reduced influence of the secondary one
and a less increasing in the pressure. Moreover, the secondary flow entering the
exhaust suffers from some recirculation regions that reduced the x-component of the
velocity, which is recovered with the flat surface between the lobe. This behaviour
is confirmed analyzing the streamlines in the lobed region (fig. 5.24a), where it is
clear that the secondary flow do not enter in the primal flow region but is simply
driven into the secondary exhaust. For what concerns the lobes in the middle, the
behaviour is nearly the same of the one obtained with the Quart domain topology,
with the horn-like shapes that allow for the secondary flow to enter in the primal
one (fig. 5.24b).
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Figure 5.23: Velocity field in the lobed region. Comparison between the outer and the
middle lobes - Mid Domain case. Values are normalized w.r.t the greatest
one.

(a) (b)

Figure 5.24: Streamlines comparison between the outer (a) and the middle (b) lobes -
Mid Domain case. Note how the secondary flow enters the primal exhaust
in case (b). Values are normalized w.r.t the greatest one.

As done for all the previous simulations, the optimization is validated with the
reconstructed geometry. From the results reported in tab 5.4 the improvement in the
objective function seems to be confirmed with the Mid-Domain optimization (+16%)
while there is a small discrepancy in the pressure: here, the turbine pressure is
greater than the one obtained in the Quart-Domain, which maybe is the reason why
the topology has the above depicted differences in the lobed features. However, the
predicted value from the topology physics seems more coherent with respect to the
one computed in the Quart-domain analysis, in confirmation of the un-predictable
error introduced. However, since the constraints are fully satisfied and the objective
function increased, the optimization fully succeeded.

Table 5.4: Results comparison: Mid Domain - Mass flow maximization case. Values are
normalized according to the Quart Domain case.

Mass flow
secondary [-]

Turbine
Pressure [-]

BackPressure
Coefficient [-]

Reference geometry 0.562 -0.953 0.39
Topology Physics 0.76 1.71 -0.7

Reconstructed geometry 0.65 -0.031 0.013

5.2.3 Full-Domain optimization

The reduction of the domain to just a quarter, with the introduction of two sym-
metry boundary to simulate a two-axis symmetry behaviour of the flow field, reduced
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the correct 3-D development of the flow inside the engine bay influencing the final
topology obtained by the optimization process. The switching to a Mid-Domain
geometry shown that some small features can be generated due to the different 3-D
flow behaviour, but the general topology is the same. In this section the full geom-
etry is analyzed, but with a new hypothesis introduced: in order to reduce obtain
a geometry that was not strictly dependent on the smallest features in the engine
bay, so that the new topology could be suitable for a more general working condi-
tion, and to reduce the cells number, the engine bay was defeatured and the new
geometry is shown in figure 5.25. With the proper report scaling obtained by the
sensitivity analysis in the reduced domain, the solver is therefore tested, to verify
whether the simplified domain has an influence on the geometry or not. Beside the
mere purpose of obtaining a complete 360° geometry, this analysis aims to verify
the effective sensitivity of the solver to the different 3-D flow behaviour: we already
stated (chapter 4.2) that 3-D structures strongly influences the topology that the
solver aims at, but it is fundamental to investigate if and how small changes in these
structures play an important role.
The optimization is based on the previously depicted definitions and characteriza-
tions, therefore only the results will be presented, focusing on the analysis of the
obtained topology and on its influences on the flow behaviour. In order to have a
coherent comparison with the base geometry, the obtained topology is reconstructed
and simulated in the real and complete engine bay.

Figure 5.25: Defeatured engine bay for the Full-Domain analysis - In purple the new
engine bay inlet boundary replace the air intakes

Figure 5.26: Final topology - Full Domain Mass-Flow-secondary maximization case
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Starting from a qualitatively analysis of the final geometry obtained (fig. 5.26),
the switch to a full 360° geometry seems not to strongly modify the general topology
the solver aims at, since the lobed geometry with the two horn-like shape is still
reproduced in all the 8 lobed features obtained. A closer analysis (fig. 5.27) however
reveals that the latter, together with the horn-like shapes, are slightly shorter and,
therefore, with a less invasion on the primal flow development. This behaviour may
be due to the satisfaction of the pressure constraint, since a closer analysis at the
convergence of the reports (fig. 5.28) reveals that it nearly reaches the maximum
allowable value after just few iterations. On the opposite, the SVR constraint at the
very first iteration leads to a removal of almost all the porous media generated by
the particular initial condition (the same behaviour is visible in the Quart-domain
simulation (fig. 5.17) but with a much lower strength), sign that the distribution of
the solid domain is strongly penalizing the objective function. By the way this is not
a surprise: if we consider the value of the sensitivity of the mass flow with respect to
the material indicator function, all the cells above the exhaust are highly favorable
for the increasing of the objective function, while there is nothing in the pressure
sensitivity that is strong enough to counteract (fig. 5.29). Moreover, since we start
with such a particular initial condition, at the first iterations the Level-set interface
velocity has no momentum that can help in the stabilization of the solution (see
eq. 2.52), which therefore drastically increases, leading to a huge topology change.
Even though the initial condition is almost lost, a small feature is retained: the
lobed-liked part of the primal exhaust is not completely deleted in the first iteration
(fig. 5.30), which is clearly an indication of the positive effect that it has on the
objective function, and which is the new "initial condition" of the solver from which
the porous media grows and develops. Except from the smaller dimension of the
lobed shape, from the topology point of view the final geometry does not show other
important differences with the simplified case .

Figure 5.27: Comparison between the Quart-Domain (in transparency) and the Full-
Domain topology result
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Figure 5.28: Convergence plot - objective function and constraint reports. The solution
converged after 82 iterations (≈ 4hrs on 48 cores)

(a) (b)

Figure 5.29: Sensitivity values for the objective (a) and pressure constraint (b) report
at the first iteration - Full Domain case. Values are normalized with the
greatest one.

Figure 5.30: Isosurface of the porous media after 1 optimization iteration compared with
the base geometry of the exhaust

In order to verify the constraint satisfaction, and to quantify the improvement in
the objective function, the topology depicted by the porous media was reconstructed
and re-analyzed with the creation of a CAD model (fig. 5.31). As reported in tab
5.5, the optimization succeeded in an improvement of the objective function of about
15.5%, which is in line with the Quart-Domain and Mid-Domain tests. However,
the turbine pressure suffers from a huge increment that reflects on a BackPressure
coefficient value, which drops down to -0.11, which is still greater than the minimum
allowable and it is fully coherent with the constraint impose. A possible cause of the
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pressure increasing can be the CAD model itself: in the hand-made reconstruction
of the geometry, such particular features like the horn-like shape or the correct lobed
development are difficult to reproduce as they are. Even though the geometry is
very close to the predicted one, especially in the horn-like shape the discrepancy is
too high that the flow development in that region is highly affected. The comparison
with the values predicted by the porous media in this case in not coherent, since the
geometry on which the topology was performed was different.

Figure 5.31: Final topology - hand-made CAD model based on the topology result

Table 5.5: Results of the optimization - Mass Flow Secondary maximization. Values are
normalized according to the Quart Domain case. In red the results of the
topology physics, since referred to the defeatured geometry

Mass flow
secondary [-]

Turbine
Pressure [-]

BackPressure
Coefficient [-]

Reference geometry 1 -1 0.41
Base Geometry with Topology 1.54 0.232 -0.1
Topology Physics optimized 2.577 2.36 -0.95
Reconstructed geometry 1.155 0.277 -0.11

Comparing the flow behaviour between the correct geometry and the CAD model
in figure 5.32, is possible to understand why the turbine felt such an increasing on
the pressure with the latter: in the topology predicted by the optimization, the horn-
like are made for generating a low-pressure region at their bottom that deviates the
primal flow and recall the mass flow of the secondary exhaust, in a very smooth
way. On the contrary, with the CAD model the primal flow goes straightforward
to the horn-like shape, which in this way behave like an obstruction in the flow
development: the result is a rapidly increment on the velocity on the primal flow
which increases the pressure on the turbine section. It is possible to fix such a
problem with a more precise geometry reconstruction or with an optimization of the
obtained one using, for example, a Shape Optimization. An ultimate consideration
can be made for the general flow development in the secondary exhaust; as we saw in
the Quart domain case, the so-shaped primal exhaust is capable of an high suction
of the secondary mass flow, but the obtained flow shown a huge separation and
recirculation zone at the beginning of the secondary exhaust. From fig. 5.33 we
can see that this behaviour is also obtained in the Full-Domain case: the secondary
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flow suffers of a huge separation which is recovered only near the outlet section,
reducing therefore the mixing of the two flows, even with different horn-like features
that generates a lover axial component of the primal flow. The ultimate effect is a
high-velocity region in the middle of the exhaust bounded by a near-null velocity
field in the outer part of the exhaust (fig. 5.42 in chapter 5.4).

Figure 5.32: Differences in the velocity field near the horn-like shapes with the final CAD
(a) and with the reconstructed topology of the Quart-Domain (b).

Figure 5.33: Flow behaviour with the optimized primal exhaust - Mass Flow optimization
case. Note the huge recirculation generated in the secondary exhaust-
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5.3 Turbine Pressure optimization

The optimization proposed before had the primal goal of maximizing the mass
flow of the secondary exhaust without generating a too high pressure on the tur-
bine exhaust stage. Despite the optimization successfully succeeded in maximizing
the objective function while complying with the imposed constraints, the resulting
pressure on the turbine section turned out to be much higher than the base con-
figuration. A possible solution could be to repeat the optimization with a more
stringent constraint on the pressure itself and evaluate the result; the error intro-
duced by the physical model, however, as repeated several times, makes it difficult
to determine which values would be more appropriate and could therefore require
many tests before obtaining a more acceptable value. A second solution is to carry
out a new optimization inverting objective function and constraint: in this chapter
we follow this approach, i.e. we will research for a geometry capable of minimizing
the pressure at the turbine section while keeping the mass flow of the secondary
exhaust as close as possible to the base value. Thanks to the acquired knowledge of
the sensitivities from the previous optimization, this case was studied directly in its
Full-Domain characterization.
Contrary to the expectations, this optimization did not manage to converge as well
as the previous, and did not reach a ready-to-use geometry. According to fig. 5.34,
even with the new objective function, in the first iteration the solver removes a huge
part of the initial condition, which drastically reduces the pressure but also reduces
the mass flow of the secondary exhaust. In the following iterations the mass flow
constraint (which, accounting for the error introduced by the porous media, was
increased of about 30 % ) is fully recovered together with the SVR which slowly
decreases down to the desired value. The optimization however required more it-
erations for the convergence, which is never fully reached (the OCC criterion was
never satisfied); in fact the SVR reports start oscillating in the very last iterations,
sign that the solver did not manage to find the optimum solution. The optimization
stopped when the maximum allowed optimization iterations (130) are reached.

Figure 5.34: Convergence plot - Pressure turbine minimization case - objective function
and constraint reports. The solution stopped after 130 iterations (≈ 7hrs
on 48 cores)

The difficulty in reaching an optimal solution has an impact on the topology
obtained, which is not so well-defined as the one obtained with the Mass flow op-
timization (fig. 5.35). Due to the particular given initial condition, the solver
converged to a geometry that is not a single portion of solid but is made of more
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pockets of solid closed to each other, which is not straightforward to reconstruct.
The solver itself cannot create isolated solid pockets inside the domain, but the
growth from cells already characterized as solid is allowed: setting such particular
initial condition implicitly allows the possibility of isolated porous cells inside the
fluid domain. Despite this, an idea of geometry is given, therefore a CAD model
was created starting from the suggested geometry (fig. 5.37), in order to analyze
the possible improvement in the objective function.

Figure 5.35: Final topology obtained
- Pressure minimization
case

Figure 5.36: Detail of the final topol-
ogy - Pressure minimiza-
tion case.

Figure 5.37: CAD model of the optimal solution - Pressure minimization case.

Table 5.6: Results of the Pressure turbine minimization optimization. Values are normal-
ized according to the previous cases.

Turbine
pressure [-]

Mass flow
secondary [-]

BackPressure
Coefficient [-]

Base Geometry -1 1 0.41
Base Geometry with Topology 0.232 1.54 -0.1
Topology physics optimized -0.283 1.37 0.12

Optimized Geometry -1.12 0.93 0.47
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The optimize topology depicts an improvement in the objective function of about
12 % while the reduction in the mass flow of the secondary exhaust is contained at
a −7.5 %. It is interesting to notice that the solver aims to improve the mass flow
of the secondary exhaust far beyond the minimum allowable value, which is the
objective of the so-defined constraint reports: the negative part of the report is an
indication to always search for an improvement ( if possible ) and not to settle for
the minimum satisfaction possible.
The obtained geometry deserves an in depth analysis of its new features: first of
all the vertical development of the lobed-shape is completely deleted and replaced
with a purely longitudinal development with the generation of a sort of A-shape.
Focusing on the bottom side of these new features (fig. 5.36), from the edge of the
triangular hole starts a groove that develops until the end of the lobed feature and
digs into the domed shape. To better understand the functionality of such features,
a closer analysis in the flow field in their proximity is presented in fig. 5.38: the
triangular hole channels the primal flow into the secondary one, reducing the mass
flow that undergoes in the lobed region and, therefore, reducing the pressure on
the turbine section. The same flow however, filling part of the secondary exhaust,
obstructs the suction of the mass flow from the engine bay. The groove, on the other
hand, channels part of the primal flow, driving it into the main exhaust section and
avoiding (or at least reducing) the separation of the same (fig. 5.38a and 5.39).
Both these two features help reducing the pressure at the turbine section, while the
domed shape seems to reproduce the effect of the horn-like shape obtained in the
mass flow optimization, recalling the secondary flow and improving its mixing with
the primal one.

(a) (b)

Figure 5.38: Velocity field near the A-Shaped feature of the optimized exhaust

Figure 5.39: Effect of the triangular hole on the primal flow

104



5.4. VELOCITY FIELD COMPARISON

5.4 Velocity field comparison

An important function of the primal exhaust is mixing the gasses outgoing the
turbine with the one coming from the engine bay in the best possible way, to ensure
not only their proper expulsion, but also to reduce the noise generated by the engine
itself. Even if this parameter was not considered during the optimization, analysing
this aspect can better highlight the differences between the obtained configurations
and the base one; this analysis was based on the comparison of the velocity and
temperature profiles at the outlet section and on the velocity field at different stages
of the secondary exhaust.
Let us focus on the velocity and temperature profiles reported in figure 5.40 and
5.41: The Mass-Flow-optimized configuration generates a high-velocity region in
the middle of the exhaust while in the external part the velocity drops down drasti-
cally, with values that are much lower than the ones of the base configuration. This
translates in a very non-uniform flow at the outlet section and a bad mixing perfor-
mances, confirmed also by the temperature profile: the low-temperature region in
the outer zone of the exhaust is the sign that the mass flow of the secondary exhaust
does not mix well with the high-temperature one exiting the turbine. On the other
hand, the Pressure-optimized configurations seem to correctly manage in the mixing
of the flows, with a slightly higher velocity compared to the base configuration, due
to the less pressure on the turbine section. However, from the temperature point of
view, not such uniformity is reached. This result also confirms what we have seen in
the previous chapters, as it was immediately clear that the configuration optimized
for the mass flow secondary generated a huge recirculation zone that degrades the
mixing performance, while the blowing of primary flow in the secondary one ob-
tained with the second configuration energizes the flow and keeps it more attached
and uniform in the outlet region.
The correct mixing performed by the latter configuration is also confirmed by the
analysis of the sections of the velocity field (fig. 5.42): the triangular-shaped hole
generates the above mentioned blowing in the secondary flow, which helps in its
acceleration and mixing too. Such improvement cannot be found in the velocity sec-
tions of the Mass-Flow-optimized configuration: taking into account the behaviour
of the flow in the primal exhaust section previously analyzed (fig 5.33), it is again
clear that the two flows join in a single reduced section, with the remaining zone
of the secondary exhaust that is characterized by a high recirculating region that
includes the main flow itself. This behaviour may be the main cause of such an in-
creasing in the turbine pressure and a further optimization can help in its reduction
(a Shape optimization in this case would probably be the better choice).
On the basis of this comparison, we can affirm that both configurations have brought
a notable increase of performance in the respective objective function, but the
pressure-optimized configuration (although it has not arrived to convergence as much
as mass-flow-optimized one) results in a more performing geometry also on other
aspects and points of view, resulting therefore more interesting for a real implemen-
tation.
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Figure 5.40: Velocity profile at outlet section - Comparison between the obtained config-
urations

Figure 5.41: Temperature profile at outlet section - Comparison between the obtained
configuration
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Figure 5.42: Comparison of the flow field in different sections of the exhaust - Base ge-
ometry, Mass-flow optimized and Pressure optimized. Values are normalized
with respect to the biggest one.
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6
Conclusions

The goal of this thesis was to analyze and explore discrete adjoint of the com-
pressible Navier-Stokes equations coupled with the level-set method for the topology
optimization. Starting from the correct definition of the topology region, we moved
to the analysis of the mesh characteristics, both from the model and the size point
of view, to quantify the influence that it have on the algorithm and on the result.
Throughout this analysis, we have seen how using a fully-converged mesh is abso-
lutely not necessary, since the optimization managed to converge also with a coarser
definition of the domain, as long as it is fine enough to correctly capture the main
fluid-dynamic characteristics and the general flow behaviour. Trough simple test
cases, we moved to the evaluation of the optimization loop itself, with a particular
focus on the sensitivity analysis: those are the real driving forces of the algorithm, so
it is necessary to perform it correctly. In order to let the optimization to converge at
the optimal solution, with the satisfaction of all the imposed constraints, it appears
necessary that the different sensitivities are correctly scaled one with the others. At
this purpose, different possibilities of normalization were tested, starting from the
simplest possible: the scaling of each sensitivity with its maximum value (also called
"automatic normalization"). This approach was compered to the "manual normal-
ization" one, which aims to normalize the sensitivities with a scaling and a proper
definition of the constraints’ reports. From this analysis, it was clear that the first
approach is extremely sensible to the weight assigned (via the Penalty parameter)
at their satisfaction (which, by the way, is unique for all the constraints): a too
high weight can lead the solver to not feel the objective function, while the opposite
can make it blind to the constraints themselves. In both cases, the penalty value is
not so easy to guess a priori and in order to find the most suitable one a series of
optimization may be required; moreover, with this approach the optimization seems
to take into account a constraint only when it is not satisfied, without having a real
indication of the distance between its value and the limit one. The consequence is
the introduction of oscillations, even huge ones, in the solution and the consequent
divergence of the optimization. The manual normalization is therefore introduced to
avoid (or reduce) this behaviour, with a particular constraint definition based on the
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characterization of the same with a piecewise-defined function which is continuous
and differentiable. The latter is the fundamental property of this function, since it
allows us to give to the solver a gradient which is capable of representing the dis-
tance between the value of the report and its limit value, also when the constraint
is satisfied. The true challenge with this definition is in the correct normalization
of such functions, since the sensitivity values strictly depends on their values: with
this approach, indeed, the sensitivities are not modified after their computation.
An analysis of the parameters that make up such functions was indeed necessary to
understand how they reflect on the optimization itself; the results of such analysis
highlight how the objective function often requires higher sensitivity values with re-
spect to the one of the constraints, which must increase and reaches the same order
of magnitude when the constraint approaches the limit value.
A separate discussion is deserved for the constraint on the amount of solid required
for the optimization (the SVR constraint). Even it can appear counter-intuitive,
the solver need an indication on the ratio of solid that it should achieve, since the
objective function alone seems not enough for the porous media to develop inside
the domain. Being such a value unknown most of the time, it is clear that more
optimization with different values of the constraint may be required, leading to the
analysis of the different geometries obtained.
After the sensitivity analysis the focus was posed on the comparison between the
results predicted by the topology physics and the one really achieved. This clearly
shown how the characterization of the solid domain trough the porous media intro-
duces a not negligible error in the numerical solution, which makes it mandatory
to reconstruct the geometry to validate and quantify the real improvements. In
particular, it shows a lack of a correct turbulence modeling, both inside and at
the boundaries of the porous media. In the first case, even tough the porous is
characterized with a momentum penalization (forcing the velocity field near 0), no
turbulence corrections are implemented, leaving the same to propagate and diffuse
inside the "solid" domain. Apart from the completely un-realistic turbulence field
obtained inside the porous media, which seems not to influence the final topology,
this diffusion can affect the outer flow behaviour, leading to a high numerical error:
the final consequence is that it gets hard to predict the physical quantities obtained
during the optimization and so the limit value of the imposed constraints. A first
correction proposed was to force to zero the turbulent viscosity in all the cells with
a Material Indicator < 0.5, which actually reduced the above depicted error, but did
not manage to delete it. To completely remove the error,is required the introduction
of a particular turbulence model that can (more) correctly predict its development
in the first fluid cell near the porous media: since its boundaries are not charac-
terized as "walls", and without the possibility of generating a correct mesh around
them, the actual turbulence model is not suitable and, in general, its production is
overestimated; the consequence is an overestimation of the physical quantities, like
pressure losses, temperatures or mass flows.
Based on the acquired knowledge, in the last chapter the optimization is applied
to a complex aerodynamic scenario: the primal exhaust of an aeronautical engine.
The main difference between this optimization and the previous made is in the def-
inition of the topology region, which in this case is completely surrounded by the
fluid domain and not viceversa. This depicts the necessity for the optimization to
start from a particular initial condition for the porous media generation, since no
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physical walls are inserted. This, in according with the correct report definition,
leads to a positive convergence and to the generation of new improved geometries,
validated and confirmed with the analysis made on the reconstructed CAD models.
In conclusion, it is clear that the optimization algorithm, if set correctly, is capa-
ble of converge to a optimal solution which satisfies all the imposed constraints in
a smooth and confidence way. However, due to the introduced error, a geometry
reconstruction appears to be absolutely necessary to verify the real goodness of the
new topology.

6.1 Future Developments

According to the analysis here presented, it is clear that the topology optimiza-
tion applied to aerodynamic elements and to a more complex fields compared to
the structural one, such as the fluid-dynamic field, is still an immature and under
development technology. The methodology here proposed can provides non-trivial
optimizations from the topology point of view, but it completely not able in solve
the proper turbulence development of the new component. The need for such an
improvement reflects not only in the possibility of directly evaluate the performances
of the new geometry, but also allows for a better and conformal constraint definition,
which by now must be over-estimated without a clear and unique indication of such
overestimation.
Moreover, the procedure for the report definition still appears non-linear, without
the possibility of predict their effect on the sensitivities; by now, their definition is
based on an initial guess which is performed with a series of analysis. The automatic
normalization can be a starting point, but needs to be improved and modified, so
that it can better quantify the constraint violation and also take into account their
satisfaction, which seems to be almost neglected.
Based on the above depicted error, to correctly quantify the improvements it is
obliged a geometry reconstruction, which however is anything but trivial: the topol-
ogy given from the optimization is described via a threshold o the mesh based on
the fictitious porosity introduced; this do not provide a solid model but generates
a tessellation, whit all the issues related, and the difficulty in the interactions and
modifications. These problem, however, is not exclusively related to the topology
optimization, but generally covers all those analysis which works with the charac-
terization of the cells in the domain for a geometry description.
The implementation of such correction can brake new ground and new application
fields for the fluid-dynamic topology optimization, overcoming the actual (limited)
applications. Exhausts, fins, compressors or turbine blades, turning vanes or aero-
dynamic appendices are all possible applications for these technology: their design
would experience an huge improvement, since it can be highly sped-up and improved,
bypassing the trial-and-error procedures or the geometry based on the knowledge of
the designer or the engineer.
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A
Jet Pump Effect

A jet pump is a particular type of pump in which the energy of a fluid (liquid
or gas) is transferred to another fluid via the well-known Venturi effect [47]. A
high-pressure fluid is forced into a nozzle which converts its energy into kinetic
energy, decreasing its pressure. The resulting low-pressure field creates a suction
that drives another fluid from a reservoir or from an external domain within the
primary fluid. The combined flow is then slowed down, to reconvert the energy into
pressure through an exhaust or a pressure discharge (fig. A.1).

Figure A.1: Basic scheme of the jet pump principle [47]

There are two different approaches for the computational methods of the perfor-
mance of a jet pump. the first and most common one uses pressures and flow ratios
[26], but requires parameters that not always are known. The second approach uses
experimental information, such as adimensional coefficients, to compute efficiency
[22]. The efficiency of a hydraulic pressure pump (HPJ) is defined as the ratio of the
energy added to the secondary fluid in relation to the energy lost by the primary
one.
Let us briefly introduce the most important parameters considering the scheme of a
HJP as in figure A.2.

Considering as (.)1 the flow characteristics of the high-pressure flow, (.)2 the flow
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Figure A.2: Jet Pump scheme

characteristics of the mixed flow and (.)3 the ones of the driven flow, we can define
the input to net flow ratio M :

M =
q3

q1

(A.1)

Moreover, we can define the dimensionless head recovery ratio H :

H =
P2 − P3

P1 − P2

=
1−N
N +M

(A.2)

Where N is a coefficient that represent the experimental information concerning
the loss coefficients along the pipes and junctions and the geometry of the HJP itself.
The equation for N and its derivation can be found in [22]. The pressure P1 can be
expressed as the sum of the hydrostatic pressure and the surface pressure Ps given
by the hydraulic pump:

P1 = h1Gw + Ps (A.3)

Also the intake pressure P3 need to be computed. Knowing the nozzle area An, the
pressure is than computed as follows:

P3 = P1 − g
(

q1

1515.5An

)
(A.4)

Finally, is possible to compute the flow rate q3 knowing an average pressure of its
reservoir Pr and using a Vogel’s performance relation:

q3 = qmax

[
1− 0.2

(
P3

Pr

)
− 0.8

(
P3

Pr

)2
]

(A.5)

Therefore, we can compute the hydraulic efficiency of the pump as in equation
A.6:

η = M ·H (A.6)

If the Jet pump deals with multi-phase fluid, the cavitation problem must be
take in account due to the high speed of the flow combined with the presence of gas
that generates bubbles in the fluid. Since the problem of interest for this thesis deals
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only with gasses, cavitation is not considered but more information can be found in
[8].

There are several advantages in the use of this pump, some of them are here
summarized:

• first of all, this pump has no moving parts, which means that this system is
reliable, requires very-low maintenance and is cheap. The pump uses only the
Venturi effect so is also quite easy to design and once produced can last for a
very long time before a substitution is required;

• the amount of fluid driven by the Venturi effect is controlled by the inlet
pressure given to the primary fluid, so it is quite easy to control;

• since the basic principle of this pump is a simple and well-known effect, it is
also easy to design and optimize for the required purpose;

These features led the jet pump to be used in a variety of applications, which the
most famous and big one is on Oil Wells. The little need for maintenance make this
type of pumps perfect for an underground applications where the access is usually
difficult and requires not only a not negligible time but also qualified operators,
leading to high maintenance costs. These applications use the energy of the high-
pressurized flow to drive the gasses or the oils from their reservoir to the surface
generating an hydraulic artificial lift [38].

For our purpose the jet pump effect is used to drive the flow from the engine bay
through the secondary exhaust, in order to improve the cooling effect of the engine
and of its component. The concepts above discussed are referred to the generic
and basic design of a Jet Pump; however, this is a side effect obtained with the
primal exhaust, whose first task is to ensure a proper expulsion of the gasses from
the turbine stages. All the concepts here reported are just for completeness and are
intended as a side knowledge for the reader.
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B
Mass Flow Splitting Test Cases - Images

In this appendix are reported for completeness all the plots and images referred
to the analysis performed in cap 4.1.

B.1 Penalty analysis

(a) Penalty = 100 (b) Penalty = 5000

Figure B.1: Mass Flow behaviour - Penalty Analysis

(a) Penalty = 100 (b) Penalty = 5000

Figure B.2: Pressure Drop behaviour - Penalty Analysis
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(a) Penalty = 100 (b) Penalty = 5000

Figure B.3: SVR behaviour - Penalty Analysis

(a) Penalty = 100 (b) Penalty = 5000

Figure B.4: final topology - Penalty Analysis

B.2 StepSize Analysis

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10 (d) StepSize = 20

Figure B.5: Mass Flow comparison - StepSize Analysis - Penalty = 1000
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B.2. STEPSIZE ANALYSIS

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10 (d) StepSize = 20

Figure B.6: Final Topology - StepSize Analysis - Penalty = 1000

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10

Figure B.7: Mass Flow behaviour comparison - Step Size Analysis - Penalty = 10000
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6. MASS FLOW SPLITTING TEST CASES - IMAGES

(a) StepSize = 1 (b) StepSize = 5

(c) StepSize = 10

Figure B.8: Pressure Drop behaviour comparison - Step Size Analysis - Penalty = 10000
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