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Introduction
In the process of designing long-span cable sus-
pended bridges, wind-induced dynamic response
is one of the major concerns. Wind action
on cables, towers and girder can induce vibra-
tions that can damage or weaken the structure.
In recent years great progress has been done
to develop models able to accurately reproduce
the bridge dynamic response under wind action.
However, simplified models are still helpful in
preliminary design phases and to assess the re-
liability of the project.
The aim of this work is to develop an effec-
tive and easy-to-evaluate model for self-excited
forces on bridge decks. The intention of the au-
thor is to investigate the feasibility of a variation
from the work of Skyvulstad et al. [5], who ap-
proximated the unsteady forces with a Volterra
expansion, parameterised with Laguerre expan-
sion basis. In the present work, the Volterra
expansion is stopped at the first order, and La-
guerre orthonormal functions are used to param-
eterise the linear kernel.
The use of a parameterised model reduces the
number of unknowns and the computational
burden of the model. Moreover, these orthonor-
mal functions are good filters for high-order

noise and have an in-built negative exponential,
which makes them suitable to approximate most
mechanical systems’ impulse response functions.
In the present work, a training procedure is
developed and tested on a simulated first or-
der model and then on real wind tunnel data.
The Laguerre model performances are then com-
pared in time and frequency domain, with the
rational functions model, often used to interpo-
late experimental data in wind engineering [3].
Finally, to check the applicability of the force
prediction model, it is coupled with a complete
girder section dynamical system and stability
limits prediction is evaluated.

1. Orthonormal Functions Ap-
proximation

Any kind of continuous real function can be writ-
ten as a linear combination of orthonormal func-
tions from a complete set {gl(τ)}. It is interest-
ing to express the unit-impulse response of a lin-
ear system, from the input m to the output n, as
an infinite summation of orthonormal functions
hnm(t) =

∑∞
l=0 c

nm
l gl(t). Here the gl(t) is the

function of order l, which is multiplied by the
relative coefficient cnml .
However, thanks to the properties of complete
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orthonormal sets, if the system has all poles
strictly on the left-half complex plane, the im-
pulse response function can be approximated
with a finite summation, as in Equation (1), with
increasing accuracy with the number of terms
considered L. Similarly, also the transfer func-
tion can be written as in Equation (2), where
Gl(z) is the z-transform of gl(t).

hnm(t) =
L∑
l=0

cnml gl(t)

Hnm(z) =

L∑
l=0

cnml Gl(z)

(1)

(2)

The expression of the set of discrete Laguerre
orthonormal functions considered in the present
work is shown in Equation (3). The shape of
these functions depends on two parameters: the
decay factor α, and the filter order l. Laguerre
functions for different orders are shown in
Figure 1. The Fourier transform of the set is
then shown in Equation (4).

gn(k) = α
k−n
2 (1− α)1/2

n∑
i=0

(−1)i
(
k

i

)(
n

i

)
αn−i(1− α)i

(3)

Gn(z) =

( √
α− z−1

1−
√
αz−1

)n( √
1− α

1−
√
αz−1

)
(4)

From the impulse response function it can be
expressed the self-excited force relative to the
specific input, as in Equation (5).

Fn(n) =
M∑
k=0

L∑
l=0

cnvl gl(k)v(n− k) (5)

Where v(n) is the input motion convoluted with
the sum of filters, evaluated over the memory
length M .

0 5 10 15 20 25 30

M

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

n = 0

n = 1

n = 2

n = 3

n = 4

Figure 1: Laguerre functions gn[k] with n ∈
[0, 1, . . . 4], α = 0.4.

The expression in Equation (5) can be expressed
in matrix form as Fn = Svc

nv. Where Sv is the
regression matrix containing the Laguerre filters
convoluted with the input. The model train-
ing performances are improved by constructing
this matrix with the recursive relation in Equa-
tion (6). Thanks to this expression, the memory
length M is not a parameter of the model any-
more, and the effective memory is determined
only by the longest stretching filter.

s0[k] =
√
αs0[k − 1] +

√
1− αv[k], s0[0] = 0

sl[k] =
√
αsl[k − 1] +

√
αsl−1[k]+

− sl−1[k − 1], l = 1, ...L, sl[0] = 0

(6)

The vector of unknown coefficients is then de-
termined solving the least-squares problem as
shown in Equation (7).

cnv = (ST
v Sv)

−1ST
v Fn (7)

Once the model is trained as shown, the output
can be foreseen for any input using Equation (5).
The here exposed training procedure can be cal-
ibrated for optimal model parameters. In Fig-
ures 2 and 3 it is shown the impulse response
function approximation of a simulated first or-
der system with the Laguerre model for different
values of model parameters.
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Figure 2: Transfer function approximation for
different decay factors. L = 3.
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Figure 3: Transfer function approximation for
different numbers of filters considered. α =
0.889.

2. Langenuen Experimental
Campaign

The identified model is been tested on real wind
tunnel data. The used data have been collected
during an experimental campaign in the wind
tunnel of the Norwegian University of Science
and Technology (NTNU) [1]. A special forced
motion rig has been used, shown in Figure 5,

capable of forcing the girder model in almost
any desired motion in the wind flow.

Figure 5: NTNU test vibration rig: experiment
preparation.

Thanks to the very light computational burden
of the presented model, the identification proce-
dure has been calibrated with a trial and error
procedure, comparing the predicted time history
with the measured data for different values of the
model parameters. An example of forced input
motion time history and measured aerodynamic
forces can be seen in Figure 4. The time history
comparison has been carried out with the Comp-
met.m Matlab toolbox by Kavrakov et al.[2].
Which compares two time histories calculating
goodness of fit metrics. The metrics selected for
this work were the Phase metric MΦ, the Peak
metric Mp and the Magnitude Warped metric
Mmw. The MΦ metric measures the capability
of the model to capture the fluid memory effect.
The Mp metric measures how well the model fits
the peak value of the self-excited forces, which
is an important design criterion for long span
bridges. The Mmw metric measures the differ-
ences of magnitude in a localized manner, inde-
pendently from the phase shift between the two
compared signals.
The selected optimal parameter values are α =
0.6 and L = 3.
The performances of the model have been
checked to be independent of the geometry of the
girder. This was done by evaluating the good-
ness of the prediction in time domain for differ-
ent geometries tested. In Figure 7 are shown
the goodness of fit metrics for different sections
tested. Apart from little variations in the peak
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Figure 4: Particular of time histories. Input torsional motion at 2.0Hz. Section LN21-5200. Compari-
son between measured and modelled forces with rational functions and Laguerre model.

metric for the lift force, it can be concluded that
in general, the model performances are indepen-
dent of minor changes in the girder geometry.
The model performances have been also evalu-
ated in frequency domain, comparing the trans-
fer functions modelled with Equation (2) with
the ones determined with experimental aerody-
namic derivatives. The results are shown in Fig-
ures 8 and 9. As shown, the modelled transfer
functions module is always included in the band
of ±15% of the experimental one. The phase
is always enclosed in the band of ±5deg, apart
from the transfer function for the torque be-
cause of vertical motion. This is a consequence
of the model not being able to correctly iden-
tify the aerodynamic derivative A∗

1 linking the
vertical speed to the torsion, as shown also in
Figure 11. The identified Laguerre model
has been also compared to a well-established
model for experimental data interpolation: the
rational functions model. The two models are
compared in time domain calculating the met-
rics between the modelled forces and the mea-
sured forces. The results are shown in Figures 4
and 10. It is proved that the two models per-
form in general similarly in time domain, espe-
cially for the module prediction. For a deeper
analysis, they have been compared also in fre-
quency domain comparing their prediction for
the aerodynamic derivatives. The results are
reported in Figures 11 to 14. From this latter
analysis, it is highlighted how the two models

do not perform equally for the whole tested fre-
quency range. The bigger discrepancy is shown,
as said, for the A∗

1 prediction for low excitation
frequency.

3. Girder Section Dynamic
Simulation

Once the Laguerre model has been trained and
proved to perform well for wind-induced forces
identification, it has been coupled with a simu-
lated two degrees of freedom girder section dy-
namical system. With this aim a state-space
representation for the Laguerre expansion model
has been formulated. This is achieved by writing
in matrix form the recursive relation in Equa-
tion (6), obtaining Equation (8a).

Sv(k + 1) = ALSv(k) +BLv(k + 1)

Fn(k) = cnvSv(k)

(8a)
(8b)

AL =



√
α 0 0 . . . 0

α− 1
√
α 0 . . . 0√

α(α− 1) α− 1
√
α . . . 0

...
. . . 0

(
√
α)n−2(α− 1)

√
α

(9)

BL =
√
1− α


1√
α

(
√
α)2

...
(
√
α)n−1

 (10)
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Figure 6: The coupled dynamic model has been simulated for different speeds until instability was
observed. Flutter speed V = 37.6m/s.
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Figure 7: Goodness of fit metrics for different sections tested. Input torsional motion. Laguerre model
prediction compared with measured forces.

Here the input motion time history is v, leading
to the aerodynamic force Fn. The vector cnv is
the vector of identified Laguerre coefficients cor-
responding to the transfer function between the
input v and the output force Fn.
To be inserted in a two degrees of freedom
aerodynamic model, the system in Equation (8)
needs to be expanded to consider all the possible
transfer functions as shown in Equation (11).

F (k) =

[
cyy cyθ 0 0
0 0 cθy cθθ

]
Sy(k)
Sθ(k)
Sy(k)
Sθ(k)


= CŜ(k)

(11)

The Laguerre state-space model is then inserted
in the equations of motion of the deck’s dynam-
ical system.
The continuous time equations of motion of a
two degrees of freedom deck section in Equa-
tion (12) are rewritten in state-space form in
Equation (13). Where the state vector X =
[y(t), θ(t), ẏ(t), θ̇(t)]T is defined, containing dis-
placement and velocity time histories in the ver-
tical and torsional directions. Since the Laguerre
model has been developed in discrete time, the
system matrices Ac and Bc are discretised with
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Figure 8: Module and phase of transfer functions
linking the vertical motion to lift and torque.

the relations in Equation (14).[
my 0
0 J

] [
ÿ(t)

θ̈(t)

]
+

[
ry 0
0 rθ

] [
ẏ(t)

θ̇(t)

]
+

+

[
ky 0
0 kθ

] [
y(t)
θ(t)

]
=

[
Fy(t)
Fθ(t)

]
= F (t) (12)

Ẋ(t) =

[
0 I

−M−1K −M−1R

]
X(t)+

+

[
0

M−1

]
F (t)

= AcX(t) +BcF (t)

(13)

A = eAc∆t, B = [A− I]A−1
c Bc (14)

Expanding the Laguerre matrices AL, BL as
shown in Equation (15), the complete sys-
tem state space model is obtained as in Equa-
tion (16).

ÂL =


AL

AL

AL

AL



B̂L =


BL 0
0 BL

BL 0
0 BL


(15)

X(k + 1) = AX(k) +BCŜ(k)

Ŝ(k + 1) = ÂLŜ(k) +
[
B̂L 0

]
X(k + 1)

(16a)

(16b)
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Figure 9: Module and phase of transfer functions
linking the torsional motion to lift and torque.

Using the complete state-space model, time sim-
ulations have been carried out for different wind
speeds. The wind speed was increased until the
system showed unstable motion because of the
coupling between the two degrees of freedom.
The transition to unstable behaviour can be seen
from the time histories in Figure 6. When the
wind speed exceeds V = 37.6m/s the motion
starts to diverge. This kind of instability, in
bridge aerodynamics, is called flutter instability
and the corresponding wind speed is the flutter
critical speed. Flutter instability is one of the
main issues in suspended bridges design and oc-
curs when the high wind speed causes the bridge
first torsional frequency of vibration to decrease
and get nearer to the vertical one, as can be seen
from the simulation results in Figure 16. This
causes the real part of the corresponding eigen-
values to become positive and hence gives rise
to instability. The value of flutter critical speed
identified with the Laguerre model has been
compared with the value found with a state-
space model constructed with rational function
identification method for self-excited forces [4].
The data used for the girder two degrees of free-
dom model are shown in Table 1.
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Figure 10: Goodness of fit metrics comparing measured forces and modelled forces for torsional input.
Self-excited forces are modelled with Laguerre model and rational functions model.
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Figure 11: Fitting of aerodynamic derivatives
relative to torque because of vertical motion.

Width 0.50m fv 2Hz

Length 2.68m ft 5Hz

m 15Kg/m ρair 1.19Kg/m3

J 0.6Kgm2/m ξ 3 ‰
V ∈ [17, 18, 19, ..., 40] m/s

Table 1: Simulation data for 2 Dof aeroelastic
deck model.

For each wind speed the eigenvalues of the sys-
tem λ1,2, identified with the two models, are
plotted in Figure 15. It is visible that towards
the last wind speeds the system becomes unsta-
ble. This is confirmed by the torsional damp-
ing coefficient that becomes negative as the wind
speed increases, as shown in Figure 16. The flut-
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Figure 12: Fitting of aerodynamic derivatives
relative to torque because of torsional motion.

ter critical speed identified with the two models
is in both cases around V = 37.6m/s.

4. Conclusions
In the present work the feasibility of a linear
Laguerre expansion model for the approxima-
tion of wind-induced forces on suspended bridge
decks has been explored. This work originated
from the work of Skyvulstad et al. [5], who used
a parameterised Volterra model for non-linear
approximation of drag force. The intention of
the author was to develop a model stopping the
Volterra expansion at the first order and express
the linear kernel with parametric Laguerre func-
tions. This aim was achieved and an effective
parametric linear model has been obtained and
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Figure 13: Fitting of aerodynamic derivatives
relative to lift because of vertical motion.
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Figure 14: Fitting of aerodynamic derivatives
relative to lift because of torsional motion.

a training procedure was developed.
The effectiveness of the model was verified on
real data from wind tunnel experiments. In
time domain the forces were well reconstructed
and in frequency domain the model behaved
well for most of the training frequencies.
The model performances have also been proved
to be independent of minor changes in the sec-
tion geometry as a variety of experimental data
on different girder geometries was available.
Thanks to the limited computational burden
of the model, an experimental investigation for
optimal calibration of the model parameters
was carried out. Once the model was trained
with optimal parameters, its performances have
been compared with the rational functions
model. The training computational burden is
comparable and the performance of the two
models is very similar in time domain, the
differences have been highlighted by analysing
the frequency domain predictions.
The Laguerre expansion model for aerodynamic
forces prediction is then coupled with a sim-

ulated two degrees of freedom (2Dof) girder
dynamic model. The flutter critical speed is
then investigated. The results obtained are
compared with the one calculated using the
rational functions as force prediction model in
the dynamic system. It can be highlighted how
in practice, the two models perform in a very
similar way (see Figures 15 and 16) determining
the same instability points for the system.

The presented Laguerre expansion model
gave interesting results and has room for further
improvement. In the model definition could
be added two feed-through terms relative to
speed and displacement to improve the impulse
response approximation. The absence of these
terms is one of the main reasons for the small
discrepancies with the rational function model.
Furthermore, the training procedure could be
further developed training a different set of
parameters for each transfer function in the
system, while in the present work only one
value for α and L was used for the whole
identification.
A further alternative which is worth testing
would be to reformulate the model starting
from a continuous time formulation of Laguerre
filters instead of a discrete one. Finally, it
would be interesting to investigate the eventual
differences in performances using white noise
as training data instead of a single harmonic
motion.
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