
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Computer Science and Engineering

Distributed Data Collection in a
Context Aware Pervasive System

Relatore: Prof. F.A.Schreiber

Tesi di Laurea Magistrale di

FRANCESCO MARIA FILIPAZZI

Matricola: 816424

Abstract

Con l'imminente avvento delle reti di telecomunicazione di quinta e sesta

generazione, il ruolo dei Sistemi Pervasivi, delle reti di sensori wireless e

concetti come quello di Internet of Things saranno centrali nello sviluppo

di nuove tecnologie. La presente tesi spiega come, in un Sistema Pervasivo,

i dati possano essere raccolti da sensori �sici e comuni canali di di�usione

delle informazioni, per essere poi inseriti in database di ultima generazione e

trattati ad alto livello all'interno di un Contesto. La progettazione parte dal

linguaggio PerLa e dal middleware ad esso dedicato, che è stato potenziato,

prevedendo la possibilità di implementare una struttura distribuita per la

raccolta dei dati. La trattazione giunge allo sviluppo di un prototipo che,

ispirandosi al disastro di Rigopiano, ha lo scopo di gestire una situazione

emergenziale in caso di valanghe collegate a scosse sismiche.

Abstract

With the imminent advent of �fth and sixth generation telecommunication

networks, the role of Pervasive Systems, wireless sensor networks and con-

cepts such as the Internet of Things will be crucial in the development of new

technologies. This thesis explains how, in a Pervasive System, data can be

collected by physical sensors and common information distribution channels,

to be then entered into the latest generation databases and processed at a

high level within a Context. The design starts from the PerLa language and

from the middleware dedicated to it, which has been enhanced, providing the

possibility of implementing a distributed structure for data collection. The

discussion leads to the development of a prototype which, inspired on the

Rigopiano disaster, has the purpose of managing an emergency situation in

the event of avalanches connected to seismic earthquakes.

Contents

1 Introduction 8

2 Contex-Aware Pervasive Computing and PerLa 10

2.1 Wireless Sensor Networks . 11

2.1.1 Sensors and Actuators 11

2.1.2 R�d . 11

2.2 Pervasive Systems and IoT . 12

2.3 Modern Pervasive systems . 13

2.3.1 Scalability and Adaptability 13

2.4 Context Aware Pervasive Systems 13

2.5 PerLa . 14

2.5.1 Why the PerLa project? 14

2.5.2 Context PerLa . 14

2.5.3 Some scenarios of Pervasive Systems 15

3 Starting situation and feasible improvements 16

3.1 PerLa Middleware . 17

3.1.1 The FPC . 17

3.1.2 The Channel . 19

3.1.3 The Device Descriptor 20

3.1.4 Device Description with SensorML 21

3.2 The levels . 22

3.3 Relational database integration into PerLa 23

3.4 Data management distribution 23

2

CONTENTS

4 Connecting the PerLa Middleware to a Database 24

4.1 Relational Databases and MySql 24

4.1.1 Why Mysql? . 25

4.2 NoSql and Apache Cassandra 25

4.2.1 NoSql . 25

4.2.2 Why Apache Cassandra 26

4.2.3 Structure of a Cassandra Database 27

4.3 Database connection development 27

4.3.1 Class: DatabaseTask 28

4.3.2 Class: DatabaseWrapper 28

4.3.3 Class: DatabaseHandler 30

5 Message Exchange between nodes 32

5.1 Message Oriented Middleware 32

5.1.1 The Publish and Subscribe design pattern 33

5.2 The Java Message Service API 33

5.3 PerLa and JMS . 34

5.3.1 Mirror FPC . 34

5.3.2 Types of message . 35

5.3.3 An example . 36

6 The PerLa Query Language 39

6.1 Query Structure . 39

6.2 Query Example . 40

6.3 Query Distribution . 41

6.3.1 Intermediate Nodes . 41

6.3.2 The Registry . 41

6.3.3 Query distribution . 41

6.4 Issues in distributed PerLa . 42

6.4.1 Distributed data collection in a pervasive system 44

6.5 Query distribution development 46

6.6 Data collection . 48

3

CONTENTS

7 The Prototype 50

7.1 ST MicroElectronics Sensors 50

7.2 Rss Feed . 51

7.3 The Context . 51

7.4 The Prototype . 51

7.5 Development of the prototype 53

7.5.1 Description . 53

7.5.2 Rss FPC . 54

7.5.3 Socket FPC . 56

7.5.4 Board Programming 56

8 Conclusion 58

A Comparison between PerLa and other systems 60

A.1 Data Stream Management Systems and

�WSN as a database� . 61

A.1.1 TinyDB . 61

A.1.2 Global Sensor Network 62

A.1.3 Contiki . 62

8.2 Tesla and PerLa comparison 62

8.2.1 T-Rex and Tesla . 62

8.2.2 Tesla language vs PerLa language 63

4

List of Figures

2.1 The Context Dimension Tree context model for a museum . . 15

3.1 Distributed PerLa . 16

3.2 PerLa Middleware . 17

3.3 FPC internal structure . 18

3.4 The Open Geospatial Consortium standard 22

4.1 Structure of a Cassandra Schema 27

5.1 The Publish and Subscribe design pattern 33

5.2 MirrorFpc . 35

5.3 PerLa and Jms. An example 37

6.1 Data �ow in non-distributed PerLa 43

6.2 Room3 . 43

6.3 Data �ow in distributed PerLa 44

6.4 Decomposition of "sum" function 45

6.5 Decomposition of "average" function 46

6.6 Query Distribution . 47

6.7 Data Collection . 49

7.1 Context Dimension Tree . 52

7.2 The Prototype . 57

5

Listings

3.1 FPC Task . 18

3.2 FPC TaskHandler . 19

3.3 The TinyOs Channel Java constructor 19

3.4 The Device Descriptor Template 20

3.5 Device Descriptor Attributes 21

3.6 Device Descriptor Channel . 21

4.1 Database Task . 28

4.2 Database Wrapper . 28

4.3 Get Method . 29

4.4 Get Method with sample period 29

4.5 Async Method with sample period 29

4.6 Database Handler . 30

4.7 Data method . 30

4.8 Creation of a MySql database by Java Code 30

4.9 Creation of a Cassandra Schema by Java Code 31

5.1 JMS class to add a FPC . 35

5.2 JMS class for sending data request from the server to the nodes 36

5.3 JMS class for sending collected data from the nodes to the server 36

5.4 FPC: XML description . 37

5.5 Request sending . 38

5.6 Sending Data . 38

6.1 A PerLa Query . 40

7.1 Query Prototype 1 . 52

7.2 Query Prototype 2 . 52

7.3 Avalanche Context Creation 53

6

LISTINGS

7.4 Invg RSS . 54

7.5 RssFpc . 55

7.6 Socket FPC . 56

7.7 Board Programming . 56

8.1 PerLa Application 1 . 64

8.2 PerLa Application 2 . 64

7

Chapter 1

Introduction

In 1991 Mark Weiser [1] envisioned "pervasive systems" for the �rst time.

He described ubiquitous computers that disappear into the background, not

visible to users, that assist people in everyday life. "The most profound tech-

nologies are those that disappear. They weave themselves into the fabric of

everyday life until they are indistinguishable from it."

A pervasive system is composed of hundreds of heterogeneous and indepen-

dent devices, usually connected with a network. Wireless sensor networks are

infrastructures composed by wirelessly connected devices, called nodes, used

to detect, measure and monitor physical phenomena and collect data about

it. PerLa, Pervasive Language, is a software infrastructure for data man-

agement and integration in Pervasive Information Systems. Its development

started in 2006 with a thesis entitled "A Declarative Language for Pervasive

Systems" [5], written by Marco Fortunato and Marco Marelli, master stu-

dents of Politecnico di Milano. In 2014 Guido Rota in his master thesis [6]

described and developed an high-level abstraction layer, that can be used to

collect information from a Pervasive System, i.e., a heterogeneous network

composed of sensing and actuating devices with di�erent characteristics. The

software was conceived to work on a central server to which devices send

data collected during their work. In 2014 Julia Malovic described a plug-in

to store data arrived from sensors in a NoSql-Cassandra database. In 2015

Guido Rota developed the Low Level Query Language, to allow �nal users

8

to write sql-like queries and collect data from devices in a transparent way.

We can de�ne a distributed database "as a collection of multiple, logically

interrelated databases distributed over a computer network. A distributed

database management system (distributed DBMS) is then de�ned as the

software system that permits the management of the distributed database

and makes the distribution transparent to the users" [13].

Oracle de�nes a distributed database as "a set of databases in a distributed

system that can appear to applications as a single data source" [14]. Data

are stored in multiple computers usually distributed over a network, to store

large amount of data and ensure fault tolerance, because even if a system

fails, the integrity of the database is maintained.

The DBMS market o�ers many solutions to manage distributed databases.

Oracle developed distributed SQL queries and during last years many No-

Sql engines have been developed supporting DDBMS. PerLa needs to support

data storage in some distributed databases, because this feature is actually

required for industrial and research use.

The aim of this master thesis is to show two recently developed important

system improvements:

-a plug-in to connect PerLa Middleware to a MySql database and the com-

pletion of the support of distributed databases using Cassandra;

-the distribution of Middleware and, consequently, of calculation and data

aggregation among nodes connected to the network.

A simple prototype application will be developed at the end of the work. It

will be composed of the distributed Middleware, the query system and the

database storage plugin.

9

Chapter 2

Contex-Aware Pervasive

Computing and PerLa

In the coming years with the advent of technologies such as 5g and 6g [7],

systems will become increasingly "pervasive" and "ubiquitous". However,

technological evolution has led to the production of billions of devices con-

stantly connected to the global network, which collect and send data to the

servers of many organizations. The treatment and conservation of the over-

whelming amount of information that is collected is a daily challenge. In

this scenario, the pervasive computing paradigm, together with the concept

of Internet of Things, is increasingly important, but must necessarily be as-

sociated with e�cient data management. In fact, data must be processed,

stored, studied and used to improve people's lives and to better develop the

technology itself.

"The scope of data management in pervasive systems is to give the users

an instantaneous and complete access to any information at any time and

anywhere" [2].

A pervasive system is therefore composed of sensors, actuators and RFID

identi�cation systems. In addition, an advanced data collection system must

be provided, in our case a middleware that acts as an intermediary between

the physical layer and the layers responsible for information management,

such as database or context management.

10

2.1. WIRELESS SENSOR NETWORKS

2.1 Wireless Sensor Networks

From the 70s to today, information technology has evolved [3] in the area of

local and geographic networks, in the �eld of personal computers, distributed

systems, wireless technologies and sensors. All these technologies make up

the elements of pervasive systems. In particular, an extremely important

development is that of Wireless Sensor Networks (WSN).

2.1.1 Sensors and Actuators

Leaving aside the network infrastructure, the main components of a WSN are

sensors.These are electronic devices that collect data from the surrounding

environment. The sensors read a physical quantity and transform it into an

electrical signal, which is then read and stored or used to act accordingly to

environmental changes.

The sensors can have various sizes, but currently very small devices have

been developed, capable of disappearing from view. A Wireless Sensor Net-

work can therefore be a network of invisible sensors, realizing the paradigm

proposed by Weiser in 1991. Sensors can measure many physical quantities,

such as temperature, pressure, brightness, speed and acceleration.

Actuators are components that produce changes in the system, bringing it

from a starting state to an arrival state. The actuators can be, for example,

electric, electromagnetic or hydraulic and can be of various kinds, such as

motors or diodes. If, for example, in a speci�c context, an incorrect state

(danger) is detected, actuators can be activated to bring the system back to

a correct state (safety).

2.1.2 R�d

Since the 1940s there has been research to develop electronic systems to auto-

matically identify objects. This technology is called RFID (Radio Frequency

IDenti�cation) and in recent years, due to the signi�cant reduction in costs,

it had a great di�usion.

This technology can be divided into two groups: active tags and passive tags.

11

CHAPTER 2.

Since active tags require the use of batteries for power, they take up some

space and their use is not economically convenient. Passive tags, on the

other hand, are composed only of an antenna and a chip in semiconductor

material.

A passive tag reader therefore needs to supply energy to the tag to commu-

nicate with it, in order to collect the information saved in it. This technology

therefore makes it possible to produce extremely miniaturized devices that

carry information.

RFID technology today has a lot of potential, because tags can be created

with information inside that goes beyond the simple identi�cation of an ob-

ject. For example, information about the owner or destination of a shipped

item can be saved.

Another very interesting use is that of RFID that incorporates sensing de-

vices. [8].

2.2 Pervasive Systems and IoT

The concepts of Pervasive Computing and Internet of Things (IoT) should

not be confused, even if they are closely linked. Speaking of IoT, a concept

formulated for the �rst time in 1999, we indicate the set of all objects, of

various kinds, connected to the global network. It is not just about personal

computers and smartphones, but about vehicles, appliances, smartwatches,

medical equipment and many other types. These objects are geolocalizable,

can transmit and receive information, interact with people and with each

other. The IoT Paradigm tends to create an environment made up of in-

terconnected objects. These are dynamic environments, which change size

quickly, in which the elements connect and disconnect without central con-

trol.

In an IoT system, basically everything has an electronic identity and the real

world is mapped as a network of devices.

12

2.3. MODERN PERVASIVE SYSTEMS

2.3 Modern Pervasive systems

2.3.1 Scalability and Adaptability

Pervasive systems are dynamic in nature. The amount of connected devices

can change very quickly and, especially in cases where their number increases

signi�cantly, the infrastructure must be able to work without discontinuity.

The scalability of a software system is the ability to adapt quickly and,

possibly, transparently its operation in the event of a change in size and a

signi�cant increase in the amount of data collected.

This is a fascinating challenge, taking into account the fact that in a perva-

sive system communication does not take place unidirectionally because each

device receives and sends data. In addition, each device communicates with

many other devices, thus creating "many to many" relationships.

2.4 Context Aware Pervasive Systems

The concept of "context" has been de�ned over the years in various ways. A

very important de�nition in literature is that of Dey: "Context is any infor-

mation that can be used to characterize the situation of entities (i.e. whether

a person, place or object) that are considered relevant to the interaction

between a user and an application, including the user and the application

themselves. Context is typically the location, identity and state of people,

groups and computational and physical objects ".

To de�ne the context we also need three computational points of view.

• Physical: it is the set of environmental conditions of a system, such as

temperature, heat and humidity.

• User: people's position, identity, role within the environment.

• Computing environment: devices present in the system, input and out-

put interfaces, network.

The context therefore serves to provide the essential information to identify

the state of a system, so that you can choose what is really useful for your

13

CHAPTER 2.

purposes.

Another important concept is that of "context awareness". A system capable

of attending its behavior based on the change of the surrounding context, is

a "context aware system".

This is another very important feature in modern Pervasive Systems.

2.5 PerLa

2.5.1 Why the PerLa project?

As already mentioned, in a pervasive system a software structure is needed

to collect and analyze data. PerLa, the Pervasive Language, was created

to have a sensor system that can be interrogated as if it were a database,

regardless of the hardware di�erences of the various sensor models. For this

reason PerLa is an SQL-Like language.

In order to overcome the technical di�erences between the sensors, it was

decided to abstract them and make them "present" to the system through a

descriptor, written in the form of structured data.

Therefore PerLa middleware was born, which deals with the organization of

communication with sensors through an abstraction called the Functionality

Proxy Component and the descriptors in XML format.

2.5.2 Context PerLa

Originally PerLa was conceived only for collecting data from a pervasive

system but, because of the great potential of the developed middleware, more

functionalities have been added. Context PerLa is an expansion of PerLa [4]

that:

• de�nes the environment with a suitable model;

• creates a context on the de�ned model;

• acquires the sensor readings and external inputs which de�ne a speci�c

context;

14

2.5. PERLA

• activates or deactivates a context at run-time depending on the actual

values of the context variables;

• performs the context-aware actions on the system.

2.5.3 Some scenarios of Pervasive Systems

• In 2012, a research team from the Politecnico di Milano devised a pro-

cess for monitoring the production and transportation of wine. Through

the use of the PerLa language, of technologies such as RFID and GPS

receivers, a pervasive system was de�ned that followed the entire wine-

making process. [9]

• In [2] a museum has been modeled as a Context Aware Pervasive

system. Figure 2.1 shows the Context Schema modeled as a Context

Dimension Tree (CDT) of the studied system.

• [10] Describes a pervasive system that aims to monitor a large-scale

agricultural environment in Australia. For example, the use of sensors

positioned on cattle is proposed.

• [11] explains the possibility of integrating Wireless Sensor Networks

and drones for disaster management support acts.

Figure 2.1: The Context Dimension Tree context model for a museum

15

Chapter 3

Starting situation and feasible

improvements

The PerLa middleware has been developed around a set of APIs [6], that are

interfaces towards the �nal users. They allow everyone to add plug-ins and

software units to PerLa. This modular design underlies the possibility to

connect the systems to many types of databases provided they are supported

by Java Libraries.

Figure 3.1: Distributed PerLa

16

3.1. PERLA MIDDLEWARE

3.1 PerLa Middleware

3.1.1 The FPC

The Middleware is based on the Functionality Proxy Component (FPC),

that is a data interface. FPCs provide a high-level abstraction of a Pervasive

System, through a single consistent Advanced Programming Interface (API).

Every instance of the PerLa Middleware hosts multiple FPCs, one for each

sensing node.

FPC is a self contained proxy object that abstracts the physical and other

Figure 3.2: PerLa Middleware

information sources by embedding all the logic required to communicate with

a single remote device. The most prominent trait of the FPC is its inter-

face, an API that allows PerLa users to interact with the sensing network

through a compact set of hardware-agnostic communication primitives remi-

niscent of classic Java getter and setter methods. Use of this interface neither

requires knowledge of the sensing network, nor of the device that will ulti-

mately perform the requested operation. This components allow to expand

17

CHAPTER 3. STARTING SITUATION AND FEASIBLE

IMPROVEMENTS

Figure 3.3: FPC internal structure

the structure of PerLa and make it compatible with any source of structured

data. Using a set of high level functions, users can manage a heterogeneous

Pervasive System composed of many types of sensor and http services. An

FPC can communicate with data sources through Channels and can provide

data coming from them to a destination decided by the user. In our case,

the destinations are two DBMS: Apache Cassandra and MySql.

Task and TaskHandler are the components that allow plugins development

to expand PerLa features.

Task

The Task is an object for controlling the execution of an asynchronous FPC

operation. A Task can be employed to stop the ongoing operation or to query

its current state.

1

2 pub l i c Li s t<Attr ibute> ge tAt t r i bu t e s () ;

3

4 pub l i c boolean isRunning () ;

5

18

3.1. PERLA MIDDLEWARE

6 pub l i c void stop () ;

Listing 3.1: FPC Task

TaskHandler

The TaskHandler is a general handler interface for collecting the results of

an asynchronous FPC Task.

When a sample is ready, the data() method is invoked, to use sampled data

for the current purpose.

1

2 pub l i c i n t e r f a c e TaskHandler {

3

4 pub l i c void data (Task task , Sample sample) ;

5

6 }

Listing 3.2: FPC TaskHandler

3.1.2 The Channel

The Channel is an interface for performing I/O operations. It represents the

principal abstraction used by the middleware to communicate with hardware

devices and external software services. The Channel is not tied to a speci�c

technology so a wide variety of data management tasks can be instantiated

as a Channel. The current Middleware architecture encourages the creation

of several highly specialized Channels, which are usually developed around

third-party communication libraries.

For example, to develop the TinyOsChannel, the Java TinyOs libraries and

the PerLa Channel Interface have been used.

1

2 pub l i c c l a s s AbstractChannel extends Channel ;

3

4 pub l i c c l a s s T inyosSe rve rL i s t ene r

5 implements

6 net . t i nyo s . message . MessageListener ;

19

CHAPTER 3. STARTING SITUATION AND FEASIBLE

IMPROVEMENTS

7

8 pub l i c c l a s s TinyosChannel extends AbstractChannel ;

9

10 pub l i c TinyosChannel (i n t id , TinyosChannel t o s l) ;

Listing 3.3: The TinyOs Channel Java constructor

3.1.3 The Device Descriptor

To create a new FPC a Device Descriptor is required. The Descriptor is a

XML �le that contains the details of all the features that characterize the

node in terms of data structures, attributes, protocols of communication,

computational capabilities, and behavioral patterns.

The XML �le is parsed and the FPC is created following its description by the

FPC Factory, a software component that guarantees a Plug&Play addition

mechanism.

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <dev i ce type=" t e s t " xmlns=" ht tp : // pe r l a . de i . org / dev i c e ">

3

4 <at t r i bu t e>

5 <!−− Attr ibute d e c l a r a t i o n s −−>
6 </ a t t r i bu t e>

7 <channel>

8

9 <!−− Channel d e c l a r a t i o n s −−>
10 </channel>

11 <message>

12

13 <!−− Message d e c l a r a t i o n s −−>
14 </message>

15 <reques t>

16

17 <!−− IORequest d e c l a r a t i o n s −−>
18 </ reques t>

19 <operat ion>

20

21 <!−− Operation and S c r i p t s −−>
22 </ operat ion>

20

3.1. PERLA MIDDLEWARE

23 </dev i ce>

Listing 3.4: The Device Descriptor Template

For example, in 3.5 an attribute section is shown. It describes a sensor

that measures temperature, pressure and humidity.

1 <a t t r i b u t e s>

2 <at t r i bu t e id="temp" type=" f l o a t " permis s ion="read−only "/>
3 <at t r i bu t e id=" pre s su r e " type=" f l o a t " permis s ion="read−only "/>
4 <at t r i bu t e id="humidity" type=" f l o a t " permis s ion="read−only "/>
5 </ a t t r i b u t e s>

Listing 3.5: Device Descriptor Attributes

The Descriptor must declare the channel to communicate with the de-

scribed sensor. For example in 3.6 a sensor communicating with TinyOS is

described.

1 <channe l s>

2 <http : channe l id=" t inyo s "/>

3 </ channe l s>

Listing 3.6: Device Descriptor Channel

3.1.4 Device Description with SensorML

PerLa interacts with sensors and generic data sources described by XML

schemas. A good XML syntax allows to create a good abstraction and work

with a wide range of devices. The just described syntax has been developed

for the particular scope of PerLa Middleware.

Sensor ML [12] is a standard description model developed by Open Geospa-

tial Consortium, an international standard organization, composed by 481

governmental, commercial and non pro�t organizations. Sensor ML could

be an important opportunity for the PerLa Project, because it is a complete

standard, with a lot of features and has been projected for a large range of

uses and could allow the interaction with systems already based on OGC

standards.

The University of Alabama has initiated a number of projects to use this

21

CHAPTER 3.

Figure 3.4: The Open Geospatial Consortium standard

language, including an editor and a Java library application, JAXB, which

is useful for creating Java classes from XML data structures. SensorML is

inserted and included in a wide system of standards for analysis, description,

cataloging and archiving created by the OGC and other bodies.

Using Sensor ML, PerLa could be internationalized and could have an indus-

trial scope, because the OGC consortium works with companies as Airbus,

Lockheed Martin or as Oracle and Google.

3.2 The levels

A PerLa application is composed of three levels:

• Low Level or data collecting level, that collects data from physical

sources. Example of Low Level modules are the TinyOs and the Http

modules;

• Middleware that receives data coming from the Low level and processes

them using the FPC abstraction. The PerLa middleware is provided

with some structures to interact with the other two levels. The Channel

sends information coming from the data sources to the FPCs and the

FPCs, using the data() method, can interact with the Upper Level.

22

3.3. RELATIONAL DATABASE INTEGRATION INTO PERLA

• High Level that makes data available to the �nal user and allow to store

them or to place them in a context. Example of High Level modules

are the database modules or the Query language.

3.3 Relational database integration into PerLa

The �rst part of this thesis describes the project and development of a plug-

in that connects a PerLa system to a MySql database. However No Sql

databases have been conceived to overcome relational databases. During the

last few years, these technologies achieved success, because they can be easily

used in real-time applications, they can be distributed and they can manage

big data. PerLa must be able to connect to a NoSql database system, to be

used for advanced projects. So an example shows that the plug-in can be

used to connect PerLa to a NoSql database as Cassandra starting from the

plugin developed for MySql connection.

3.4 Data management distribution

The Middleware provides a single server that receives all data coming from

channels. Channels can be connected to http services or physical devices [6].

Furthermore, all queries are sent from the server to devices, because all FPCs

are registered on the server. This structure can be useful in the presence of

a few channels, but can become a bottleneck if a system is composed of

hundreds of heterogeneous devices. The second part of this thesis focuses on

the de�nition of a software distribution infrastructure that can be used to

divide high level computation and query activity into smaller, independent

units of work to be executed on the individual nodes of the sensing network.

23

Chapter 4

Connecting the PerLa

Middleware to a Database

4.1 Relational Databases and MySql

In 1970 Edgard Codd spoke about the need for the users to manage data

banks without knowing how the data is organized in the machine [21] and

proposed the "relational data model", applying principles of relations to data

systems.

In the following years the relational model became the most important data

model and has been used all over the world for storage and processing data.

SQL, Structured Query Language, is a programming language designed to

manage relational databases and it is the primary database language in the

world. SQL became a standard of the American National Standards Institute

(ANSI) in 1986, and of the International Organization for Standardization

(ISO) in 1987. The Sql support is a critical feature in PerLa development,

because the project has the purpose to be available for the largest possible

number of users.

MySql is a DBMS that uses SQL to store and manage data.

24

4.2. NOSQL AND APACHE CASSANDRA

4.1.1 Why Mysql?

MySql is an open-source relational database management system. In 2013

it was the world's second widely used RDBMS. It provides the capacity to

handle embedded applications that use a few MBs, to massive databases

holding terabytes of information. It is developed by Oracle Corporation that

supports users with a lot of guides and a rich documentation.

4.2 NoSql and Apache Cassandra

4.2.1 NoSql

Someone considers NoSql databases as an evolution of Relational databases,

because they don't use the traditional tabular model, substituted by a key

value model. Most of the NoSql structures are designed similarly to an object

oriented model, to avoid expensive mapping of code to relational structures.

These technologies are used by the most important software enterprises in

the world, as Google or Amazon, and have a lot of advantages as high hor-

izontal scalability or lower cost for setting up a node with respect to Sql.

They are useful for distributed systems, for big data management and cloud

computing.

They allow to manage complex data, because usually these databases don't

handle the simple tabular data. Another advantage of NoSql management

systems is the possibility to manage huge numbers of users, accessing sys-

tems concurrently and constantly.This is a very important feature for an

application as distributed PerLa.

NoSql categories

There are four categories of NoSql databases [15]:

• Key-values Stores. Used for applications that have frequent small reads

and writes along with simple data models. Values can be simple, as

integers or booleans, or they may be structured data types, as lists.

25

CHAPTER 4. CONNECTING THE PERLA MIDDLEWARE TO A

DATABASE

• Column Family Stores. In a relational database, data access is by

row. A Column DBMS changes the focus from the row to the col-

umn. This model improves performance when large data aggregations

are needed, but reading operations are fewer than writing operations.

Usually "columnar databases" can manage large amounts of data that

require high availability.

• Document Databases. Probably the most popular of the NoSql databases,

document databases are used to store varying attributes. In relational

model, di�erent data is stored in di�erent tables. In the document-

oriented model, data that is frequently queried together is stored in

the same document. Each document is identi�ed by a key. So, in

relational model each table has uniform records, while in document-

oriented model each record has its own characteristics.

• Graph Databases. Systems that can be represented as networks of

connected entities, can be well supported by graph databases.

4.2.2 Why Apache Cassandra

Starting from early years of twenty �rst century, a lot of NoSql systems have

been developed to meet speci�c market demand. Apache Cassandra is one of

the most important available projects. We decided to use it to connect the

PerLa Middleware to a NoSql database, because it can be used for academic,

industrial and personal projects. For example, the Atlas project at Cern is

based on a Cassandra database. A wide Wireless Sensor Network can pro-

duce hundreds of heterogeneous megabytes of data per year, so Cassandra

has a lot of interesting features that could be used for an advanced applica-

tion of PerLa.

Cassandra can be seen as a hybrid between a column-oriented and a key-

value system. So it supports large aggregations, but supports a lot of con-

temporary writing operations too. Google demonstrated that a Cassandra

database, mounted on an adequate hardware structure, can support one mil-

ion writes per second [16] These features are fundamental for the PerLa

26

4.3. DATABASE CONNECTION DEVELOPMENT

Figure 4.1: Structure of a Cassandra Schema

system. Cassandra is used to build fault tolerant systems because data is

automatically replicated to multiple nodes and can be replicated across dif-

ferent data-centers. So we can prevent loss of data even if an entire data

center fails. This NoSql system supports massive insertion data rates and a

database can be developed following the evolution of the system.

4.2.3 Structure of a Cassandra Database

Cassandra is essentially a hybrid between a key-value storage and a database.

Instead of tables, "column families" are used. Column families contain rows

and columns. The basic object is the row, uniquely identi�ed by a key. Each

row has multiple columns, each of which has a name, value, and a timestamp.

Unlike a table in an RDBMS, di�erent rows in the same column family do

not share the same set of columns, and a column may be added to one or

multiple rows at any time. This structure is named "sparse column storage

engine", while traditional relational model is named "static column storage

engine". In a relational system each row must reserve memory space for

every column of the schema. In this model, space is used only if a column is

not empty.

4.3 Database connection development

To connect PerLa to a database, we need to create a software layer between

the �nal user and the FPC. This layer is the Wrapper class, that is connected

27

CHAPTER 4.

to the classes Handler and TaskHandler. These classes can be adapted to be

used for a connection between PerLa and a database. Now we are going to

explain the structure of these classes and to make a comparison between the

code used for connecting to Cassandra and the code used for connecting to

MySql.

4.3.1 Class: DatabaseTask

DatabaseTask implements the Task class in the Middleware, that controls

the synchronous and asynchronous operations of the system. DatabaseTask

receives the name of table to be used as a parameter. In this way the user can

�nd out the table name which the system has created to save the records that

he has requested.To control the operation, the methods of a Task must be

used. So the class receives a Task as parameter too. Each Task corresponds

to a table.

1 pub l i c c l a s s DatabaseTask implements Task {

2

3 pr i va t e S t r ing tableName ;

4 pr i va t e Task task ;

5

6 pub l i c DatabaseTask (Task task , S t r ing tableName) {

7 t h i s . task = task ;

8 t h i s . tableName = tableName ;

9 }

Listing 4.1: Database Task

4.3.2 Class: DatabaseWrapper

This class is the layer between the FPC and the user. It receives data coming

from an FPC and saves it into the chosen database. Each FPC corresponds

to a schema. The global variables are the FPC and the schema name that

will be created and used to save data coming from it.

1 protec ted FPC FPC;

2 protec ted St r ing schemaName ;

3

28

4.3. DATABASE CONNECTION DEVELOPMENT

4 pub l i c DatabaseWrapper (FPC FPC) {

5 t h i s .FPC = FPC;

6 schemaName = "FpcSchema" + FPC. get Id () ;

7 }

Listing 4.2: Database Wrapper

This class is provided with three methods, which wrap the corresponding

FPC methods, that are useful to exemplify how the system works, because

they are related to the most important features of the system. In particular

a user can call two "get" methods and one "async" method. The methods

get() and periodicGet() receive the Collection of FPC attributes as parameter.

These attributes will be mapped as table columns. The methods also receive

a Task Handler that noti�es data coming from the FPC to the component

that required them. These methods call the get() method provided by the

FPC, that is a part of the Middleware.

1 pub l i c Task get (Co l l e c t i on<Attr ibute> a t t r i bu t e s ,

2 TaskHandler handler , S t r ing tableName)

Listing 4.3: Get Method

The periodicGet() is similar to the �rst method, but it receives a long type

attribute. This is a sample period, that is used to manage periodical sam-

pling.

1 pub l i c Task per iod i cGet (Co l l e c t i on<Attr ibute> a t t r i bu t e s ,

2 long periodMs , TaskHandler handler , S t r ing tableName)

Listing 4.4: Get Method with sample period

The async() methods is used to manage the asynchronous calling. It uses

the async() method of FPC.

1 pub l i c Task async (Co l l e c t i on<Attr ibute> a t t r i bu t e s ,

2 long periodMs , TaskHandler handler , S t r ing tableName)

Listing 4.5: Async Method with sample period

29

CHAPTER 4.

4.3.3 Class: DatabaseHandler

DatabaseHandler is a nested class of DatabaseWrapper. This class is the

focal point for the database connections. It depends on the chosen

DBMS and must be changed accordingly. In wrapper class, Database-

Handler is initialized using a TaskHandler and the FPC attributes that will

be used to build the table.

1 pr i va t e DatabaseHandler (TaskHandler handler ,

2 Co l l e c t i on<Attr ibute> a t t r i b u t e s) {

3 connect (hostAddr , port) ;

4 createSchema () ;

5 t h i s . s e tA t t r i bu t e s (a t t r i b u t e s) ;

6 t h i s . setHandler (handler) ;

7 }

Listing 4.6: Database Handler

The data() method is invoked to store the new record into the database.

1 pub l i c void data (Task task , Sample record) {

2

3 saveRecord (record) ;

4 handler . data (task , r ecord) ;

Listing 4.7: Data method

Connect() method uses java.sql.* libraries methods to connect to a MySql

server and com.datastax.* libraries methods to connect to a Cassandra Server.

Then createSchema() is used to build a string, in the chosen database lan-

guage, to create a schema.

MySql Version:

1 pr i va t e void createSchema () {

2 St r ing schemaCreationQuery="CREATE DATABASE IF NOT EXISTS "

3 + schemaName ;

4 cmd . executeUpdate (schemaCreationQuery) ;

5 t h i s . hostAddr= " jdbc : mysql : // l o c a l h o s t /"+schemaName ;

6 connect (t h i s . hostAddr) ;

7 }

Listing 4.8: Creation of a MySql database by Java Code

30

4.3. DATABASE CONNECTION DEVELOPMENT

Cassandra version:

1 pr i va t e void createSchema () {

2 s e s s i o n . execute ("CREATE KEYSPACE IF NOT EXISTS "

3 + schemaName

4 + " WITH r e p l i c a t i o n "

5 + "= { ' c l a s s ' : ' S impleStrategy ' ,

6 ' r e p l i c a t i o n_ f a c t o r ' : 3 } ; ") ;

7 }

Listing 4.9: Creation of a Cassandra Schema by Java Code

As it can be seen, the code di�ers only if a method connects directly to the

DBMS. This example shows that PerLa can simply connect to many types

of databases, with a limited interfacing e�ort.

31

Chapter 5

Message Exchange between nodes

In order to develop a distributed query system, to allow the communication

between the central server and the nodes, a messaging protocol is required.

To achieve this goal a Message Service can be used. The message service can

be developed using a Message Oriented Middleware (MOM) [19].

5.1 Message Oriented Middleware

A MOM is an infrastructure for sending and receiving messages between

distributed systems. MOMs are widely used in systems composed by het-

erogeneous components. They create a communication layer between the

operating system and the application, so the application developers don't

have to know details of network interfaces. A system based on distributed

PerLa will be composed by servers, single-board computers, mobile phones

and other devices, therefore a MOM is needed.

A distributed system must work even if a node is not connected to the net-

work and problems related to intermittent connectivity had to be solved. A

MOM provides an asynchronous [18] communication model to allow many

clients to send data at the same time. It uses queues for temporary storage

of messages to allow message exchange even if a component is temporarily

not available.

32

5.2. THE JAVA MESSAGE SERVICE API

Figure 5.1: The Publish and Subscribe design pattern

APIs are usually provided by MOMs, to allow the development of speci�c

messaging services.

5.1.1 The Publish and Subscribe design pattern

The publish and subscribe [22] messaging pattern is a design architecture in

which the message sender, called publisher, doesn't send data to speci�c re-

ceivers, called subscribers; it just publishes messages into a queue, which are

automatically delivered to clients which have declared their interest. Pub-

lisher and subscriber are decoupled, because they don't need to be connected

at the same time, they don't need to know all the addresses of the other

participants and they don't need to be synchronized. This pattern provides

a dynamic network topology because a component can subscribe or create a

new queue anytime.

5.2 The Java Message Service API

The Java Message Service API is a Java Message Oriented Middleware that

provides the Publish and Subscribe design pattern. It is a part of the Java

Enterprise Edition platform. Using JMS can be advantageous for the de-

33

CHAPTER 5.

velopment of distributed PerLa, because we expect that it will be used in

wide area wireless sensor networks. Furthermore, thanks to the http-channel

module, we can expect that some components of PerLa will be connected to

the central server using the tcp/ip protocol from a long distance.

Due to asynchronous messaging implemented by JMS, it is not necessary

that all the nodes of PerLa be up for the the whole application to work. The

JMS server stores the messages on behalf of the receivers when they are down

and then sends them once they are up.

The following JMS components are the classical components of a MOM.

• JMS client: an application or a process that sends or receives a message;

• JMS message: an object that contains data; it is a serializable Java

Class;

• JMS publisher: a client that sends a JMS message;

• JMS subscriber: a client that receives a JMS message;

• JMS queue: a queue that contains messages that are waiting to be read;

each message can be processed only once;

• JMS topic: a structure that allows messages delivering to multiple

destinations.

5.3 PerLa and JMS

5.3.1 Mirror FPC

When a FPC is registered on a distributed Middleware of Perla, a Mirror

FPC is registered in the FPC Registry of the central PerLa Middleware and

is seen as an ordinary FPC. This Mirror FPC has the same attributes of the

just registered FPC, so the query language is allowed to execute queries on

the whole set of FPCs. Each Mirror FPC can distribute the queries to the

corresponding FPC.

34

5.3. PERLA AND JMS

Figure 5.2: MirrorFpc

5.3.2 Types of message

-The "Added FPC Message": to create the Mirror FPCs, the server must

receive the attributes of the FPCs connected to the nodes so each node must

send a message for each of its own FPCs. When the server receives a "Added

FPC Message" it initializes a new Mirror FPC and adds it to the registry.

1

2 pub l i c c l a s s AddFpcMessage implements S e r i a l i z a b l e {

3

4 pr i va t e S t r ing nodeId ;

5 pr i va t e i n t fpc Id ;

6 pr i va t e Co l l e c t i on<Attr ibute> a t t r i b u t e s ;

7

8 }

Listing 5.1: JMS class to add a FPC

-The "Get Message": the user's requests must be routed to the speci�c

nodes. So the message service must be provided with a class that speci�es

details of requests to the node.

35

CHAPTER 5.

1 pub l i c c l a s s GetMessage implements S e r i a l i z a b l e {

2 pr i va t e S t r ing nodeId ;

3 pr i va t e i n t fpc Id ;

4 pr i va t e boolean async ;

5 pr i va t e boolean s t r i c t ;

6 pr i va t e Lis t<Attr ibute> a t t r i b u t e s ;

7 pr i va t e long periodMs ;

8 pr i va t e S t r ing queue ;

9

10

11 }

Listing 5.2: JMS class for sending data request from the server to the nodes

If the request corresponds to the FPC's async()method, the attribute "async"

is set to true by the constructor.

If the request is a periodic sampling operation, the attribute periodMs is

initialized by the constructor, otherwise it is set to null.

-The "Data Message":when a node collects sampled data, it creates a

"Data Message" containing it.

1 pub l i c c l a s s DataMessage implements S e r i a l i z a b l e {

2

3 pr i va t e Sample sample ;

4

5 pub l i c DataMessage (Sample sample) {

6 t h i s . sample = sample ;

7 }

Listing 5.3: JMS class for sending collected data from the nodes to the server

5.3.3 An example

An application of the message service developed using JMS is shown below

and in �gure 5.3. The system is composed by:

• a metereological service;

36

5.3. PERLA AND JMS

Figure 5.3: PerLa and Jms. An example

• a PerLa Middleware that runs over a Raspberry PI2, a single-board

computer, connected to the network;

• a PerLa Middleware that runs over a server.

When the system starts, each PerLa Middleware launches a Message Con-

sumer, that receives messages sent to the dedicated queue. Each Middleware

has one or more dedicated queues.

The metereological service is described by an Xml descriptor. The supervised

attributes are:

1 <a t t r i b u t e s>

2 <at t r i bu t e id=" c i t y " type=" s t r i n g " />

3 <at t r i bu t e id="temp_k" type=" f l o a t "/>

4 <at t r i bu t e id="temp_c" type=" f l o a t "/>

5 <at t r i bu t e id="temp_f" type=" f l o a t "/>

6 <at t r i bu t e id=" pre s su r e " type=" f l o a t "/>

7 <at t r i bu t e id="humidity" type=" f l o a t "/>

8 <at t r i bu t e id="wind_speed" type=" f l o a t "/>

9 <at t r i bu t e id="wind_deg" type=" f l o a t "/>

37

CHAPTER 5.

10 </ a t t r i b u t e s>

Listing 5.4: FPC: XML description

When the user sends a request to the MirrorFpc, the system initializes a

GetMessage and sends it to the FPC located on the Raspberry.

1 GetMessage reqMess = new GetMessage (att s , s t r i c t , f a l s e ,

2 periodMs , nodeId , queue , t h i s . fpc Id) ;

3

4 serverMsgSender . sendGetMessage (reqMess) ;

Listing 5.5: Request sending

The FPC receives the request and starts a classical data collection. When

data arrives from the weather service the TaskHandler calls the data()method,

that sends a data message to the server.

1 pub l i c void data (Task task , Sample sample) {

2

3 DataMessage dataMessage = new DataMessage (sample) ;

4 aggregatorMsgSender . sendDataMessage (dataMessage) ;

5

6 }

Listing 5.6: Sending Data

The Server Consumer collects data coming from the FPC and activates the

data() method of the MirrorFpc, that sends it to the chosen application. In

this case data is used to draw a graph.

38

Chapter 6

The PerLa Query Language

The PerLa Query System is an infrastructure that allows the user to submit

a query to the Middleware and to receive responses, data and samplings from

the devices involved in the query. It provides data aggregation clauses too.

Required mathematical operations, as sums or mean, are carried out by the

system. Queries are written in the PerLa Query Language [5], a declarative

sql-like language. The basic idea is to abstract a sensing network as a table,

whose columns correspond to a speci�c attribute. In this way, users don't

have to know speci�c structures of nodes, so the system is "transparent".

Information can be sampled from a group of sensors, from a memory of an

endpoint device or extracted from a web service. PerLa Query is used to

de�ne the behaviour of a single or of a group of devices.

6.1 Query Structure

Each query is built following a �xed schema [6]:

• Data management: introduced by the SELECT clause, de�nes which

data elements (Attributes) are to be collected from the Pervasive Sys-

tem. Then it indicates computations and aggregations that must be

performed on the extracted information. Operations can be sum (SUM),

counting (COUNT), maximum (MAX) , minimum (MIN) and average

(AVG).

39

CHAPTER 6. THE PERLA QUERY LANGUAGE

• Sampling: introduced by the SAMPLING clause, is used to specify

how and when the data attributes requested by the SELECT statement

are to be extracted from the nodes. Sampling can be time-based (ex.

SAMPLING EVERY 1 MINUTES) or event based (a.g.: SAMPLING

ON EVENT lastReaderChanged).

• Conditional Execution: introduced by the EXECUTE IF clause, con-

tains a boolean expression that must be satis�ed by sensing devices

in order to be considered as a data source. It can be complemented

by a REFRESH clause, to specify when the execution condition is re-

evaluated to update the list of nodes involved in the query.

• Termination: introduced by TERMINATE AFTER clause. Can be

used to stop a query after a speci�c time frame (TERMINATE AF-

TER 1 DAY) or after a number of selection (TERMINATE AFTER 10

SELECTIONS).

6.2 Query Example

1 CREATE OUTPUT STREAM Table (Temperature FLOAT) AS:

2 EVERY 5 MINUTES

3 SELECT MAX (TEMP, 10 MINUTES)

4 SAMPLING

5 EVERY 1 MINUTES

6 EXECUTE IF EXISTS (temp)AND EXISTS (room) AND room=3

Listing 6.1: A PerLa Query

This query initiates a temperature sampling operation on all temperature

sensors located in room number 3.

• The SAMPLING clause speci�es that devices send a FLOAT every

minute. This sample is collected in the Local Bu�er;

• The EVERY 5 MINUTES clause speci�es that the SELECT statement

is activated every �ve minutes, to create a new record;

40

6.3. QUERY DISTRIBUTION

• The MAX aggregation expression speci�es that the query contains the

maximum temperature collected in the previous 10 minutes.

6.3 Query Distribution

6.3.1 Intermediate Nodes

An intermediate node is usually a single-board computer equipped with a

hardware con�guration that allows network connection. A complete PerLa

system runs on each Intermediate node.

In order to distribute calculation and data collection, query distribution is

required. This means that intermediate-nodes must have enough comput-

ing power to compute some mathematical operations and data aggregation.

Queries must be parsed to recognise which part of them can be executed

on nodes and how many devices are involved for each node. The communi-

cation is Middleware-to-Middleware, because each intermediate-node hosts

PerLa Middleware. This structure allows to build a tree with a lot of levels,

because each node can be server and client at the same time.

6.3.2 The Registry

The Registry [6] is a simple in-memory database that stores FPC objects so

it is a complete directory of all data sources connected to the PerLa Middle-

ware. It is primarily employed for the discovery of sensing devices registered

in a running PerLa instance, and its services are extensively exploited by

the Query Executor component for the management of EXECUTE IF state-

ments because, by means of the Registry, users can examine all nodes of the

network, and select those that best suit their current computational needs.

The Registry is the key-component to exploit Query Distribution.

6.3.3 Query distribution

The decision about participation of a node to a query has been one of the

most important issues in PerLa design since the starting phases. Currently,

41

CHAPTER 6.

a PerLa query is parsed and distributed to FPCs that can satisfy it. In

particular, the clause EXECUTE IF EXISTS (temp)AND EXISTS (room)

AND room=3 is parsed and assigned to FPCs that have "temp" and "room"

among their attributes and the "room" set with "3" value. The clause SE-

LECT MAX (TEMP, 10 MINUTES) selects the maximum value of attribute

"temp" sampled in last 10 minutes. These operations are pretty simple, be-

cause they work on a single data �ow and all nodes send their data to a single

server that hosts all the FPCs. In the following table we can see a possible

set of records.
ID Temp Timestamp

34 21.0 12/09/2015@12:00

35 21.2 12/09/2015@12:00

36 21.1 12/09/2015@12:00

34 21.1 12/09/2015@12:01

35 21.0 12/09/2015@12:01

36 20.9 12/09/2015@12:01

34 21.2 12/09/2015@12:02

35 21.2 12/09/2015@12:02

36 21.1 12/09/2015@12:02

6.4 Issues in distributed PerLa

The �rst problem in developing a distributed version of PerLa is to retrieve

devices and services involved in a query. An interrogation must be addressed

only to the intermediate nodes linked to devices that can satisfy the require-

ments. Figure 6.2 shows a system composed by a central server, three inter-

mediate nodes and a device directly connected to the server. All nodes and

devices are in room 3. We can speculate about system behaviour studying

the following query:

1 CREATE OUTPUT STREAM Table (Temperature FLOAT) AS:

2 EVERY 5 MINUTES

3 SELECT MAX (TEMP, 10 MINUTES)

4 SAMPLING

5 EVERY 1 MINUTES

42

6.4. ISSUES IN DISTRIBUTED PERLA

Figure 6.1: Data �ow in non-distributed PerLa

Figure 6.2: Room3

43

CHAPTER 6.

6 EXECUTE IF EXISTS (temp)AND EXISTS (room) AND room=3

6.4.1 Distributed data collection in a pervasive system

A sensing network managed by PerLa is abstracted as a large table in a

streaming database, so we can apply to Distributed PerLa the principles

used to manage the built-in functions of a distributed database [17]. Every

Figure 6.3: Data �ow in distributed PerLa

distributed query works in two phases:

• Obtain required data from the system. Each intermediate node collects

data, executes the query and sends the server the result of the execu-

tion. From the point of view of the server, the result of a distributed

query is a number of fragments satisfying the quali�cation part of the

query.

• Apply to the obtained data the required operators. Built-in operators

in PerLa are the same commonly found in a Distributed Information

System. They are the following:

1. max-of(X): it computes the maximum element of X. In the PerLa

query language the relative clause is SELECT MAX().

44

6.4. ISSUES IN DISTRIBUTED PERLA

2. min-of(X): it computes the minimum element of X. In the PerLa

query language the relative clause is SELECT MIN().

3. sum-of(X): it computes the sum of the element of X. In the PerLa

query language the relative clause is SELECT SUM().

4. count-of(X): it computes the cardinality of X. In the PerLa query

language the relative clause is SELECT COUNT().

5. average-of(X): it computes the mean of the element of X. In the

PerLa query language the relative clause is SELECT AVG().

Figure 6.4: Decomposition of "sum" function

Max-of, min-of, sum-of and count of are Homogeneously decomposable func-

tions [17] so they can be simply decomposed. Just as an example, Sum-of

can be decomposed as follows:

sumof(X ∪ Y) = sumof(sumof(X), sumof(Y)

The function average-of is a Non-Homogeneoysly Decomposable Func-

tion [17] so to decompose it a computing e�ort is required. When the server

45

CHAPTER 6.

receives data, it has to calculate the weighted average of the partial aver-

ages. The node must send the partial average and the weight to allow the

calculation.

WeightedAverage =

∑n
i=1 xiwi∑n
i=1wi

averageof = (X∪Y) =
(sumof(averageof(X)sumof(X), averageof(Y)sumof(Y))

sumof(countof(X), countof(Y))

Figure 6.5: Decomposition of "average" function

6.5 Query distribution development

In the previous section we explained the query distribution from a logical

point of view. To implement the query distribution in PerLa a new compo-

nent has been introduced. The software schema is shown in �gure 6.6.

1. The Query Parser contains the PerLa Language de�nition. The Lan-

guage component receives a PerLa Query and creates a Statement, that

is a structure that contains

46

6.5. QUERY DISTRIBUTION DEVELOPMENT

-the attributes requested by the query;

-the data aggregations (max, min, avg ecc) requested by the query.

2. The Statement is parsed by the Query Parser, that reads the FPC

Registry and obtains the list of FPCs involved in the query.

3. The Query Parser matches the FPC list with the Aggregator Registry.

This registry contains the list of the aggregators. Each aggregator is

coupled with a JMS queue. A message directed to an aggregator must

be sent to its queue.

4. If a signi�cative number of the FPCs hosted by an aggregator are in-

volved in the query, the Message Service sends the queue to the aggre-

gator.

5. If a minor part of the FPCs hosted by an aggregator is involved, the

communication structure is shown in the chapter 5.

Figure 6.6: Query Distribution

47

CHAPTER 6.

6.6 Data collection

To collect data arriving from the nodes, we must consider the properties of

the network and we must know some information about the aggregators that

received the query. Just as an example, to calculate a weighted average,

we must know how many FPCs hosted by an aggregator are involved in the

query. (�gure 6.5)

To collect data in the right way, the "Data collector" component has been

introduced. Furthermore, the aggregators send data using the Query Data

Message class, that is the implementation of a JMS message. In the �gure

6.7 the �ow of operations is shown.

1. The aggregators send the server queue (implemented using JMS) the

messages that contain the data requested by the query and all the

information useful to data aggregation;

2. The message service sends the information to the Data collector, that

aggregates data;

3. Data can be used by another PerLa component. They can be stored in

a database using the PerLa database component or used in a context

oriented application [4].

48

6.6. DATA COLLECTION

Figure 6.7: Data Collection

49

Chapter 7

The Prototype

In the �rst days of 2017, a hotel has been hit by an avalance in Abruzzo,

an Italian region, causing the death of 29 people. Tecnhical �ndings stated

that the incident was triggered by a series of earthquakes in central Italy, in

conjunction with the raise of the atmospheric temperature that melted the

snow. Is there a way to avoid these type of tragedies?

The scope of this project is the development of a monitoring system that

could help to prevent such events in future. It relies on three architectural

components:

• Hardware: sensors and boards (STM32 Nucleo and Raspberry PI2);

• Software: the PerLa System;

• Data sources: the INGV Rss Feeds that publishes information about

last earthquakes.

7.1 ST MicroElectronics Sensors

ST MicroElectronics developed the STM32 Nucleo boards. These high af-

fordable boards allow anyone to try out new ideas and to quickly create

prototypes with any STM32 MCU. The most important feature developed

by ST Micro is the very easy way of use of the board, that can be programmed

with a C-Like language.

50

7.2. RSS FEED

Our prototype is composed of:

• A Nucleo 64. The basic board provided of an ARM Cortex CPU;

• A Nucleo Expansion Board provided of inertial, barometer, humidity

and temperature module;

• A Wi-Fi module.

7.2 Rss Feed

Rss, Rich Site Summary, is a XML standard used to publish asynchronous

updated information from web sites and data sources. Usually RSS is used by

newspapers but it can be used for all types of frequently updated information.

The INGV (Istituto nazionale di geo�sica e vulcanologia) research group uses

a RSS feed to publish information about earthquakes that occur in Italy. Our

project is based on "open source" Rss Feeds that could be replaced by "ad

hoc" sources because PerLa can work with all types of structured data in an

etherogenous environment.

7.3 The Context

Figure 7.1 shows the context, modeled as a Context Dimension Tree (CDT)

used in the prototype; black circles represent the context dimensions, white

circles represent their possible values, square nodes represent dimension at-

tributes.

7.4 The Prototype

The prototype that we are showing is based upon two queries written in

PerLa.

The �rst query collects temperature, humidity and position of all the ST

electronics sensors connected to the system.

51

CHAPTER 7. THE PROTOTYPE

Figure 7.1: Context Dimension Tree

1 CREATE OUTPUT STREAM st_el (temperature , humidity , axeX , axeY , axeZ)

2

3 SAMPLING EVERY 5 MINUTES

4

5 EXECUTE IF EXISTS temperature , humidity , axeX , axeY , axeZ ' '

Listing 7.1: Query Prototype 1

The second one queries the RSS feed and collects the earthquakes data

made available by the INGV institute

1 CREATE OUTPUT STREAM feed ()

2

3 SAMPLING EVERY 5 MINUTES

Listing 7.2: Query Prototype 2

The collected information is saved in a MySql database.

We built a prototype composed by a WiFi network composed by:

• Two Raspberry Pi2;

• One server;

• Two St Electronics Systems, as previously described.

The PerLa Middleware is installed on the server and on the Raspberry boards.

When query 1 is started, the system identi�es the nodes that can provide

temperature, humidity and position, and trasmits the instructions to each

52

7.5. DEVELOPMENT OF THE PROTOTYPE

involved node. The ST sensors send data to the Raspberry boards, that

are intermediate PerLa node. The boards then send the data to the PerLa

central node.

Since the user is not involved in the communication with the sensors, the

system can be further expanded with the same functionality.

7.5 Development of the prototype

7.5.1 Description

The System receives data from two types of sources:

• RSS feed (Ingv and weather forecast);

• Physical devices (St Microelectronic Nucleo Boards).

RSS Feeds are used for:

• Data storage and statistical analysis. For example, ground vibrations

in a speci�c geographic point can be correlated with seismic activities

occurred in an other geographic zone.

• Context activation. For example, if the weather forecast expects a

temperature increase during seismic activities, the system can forecast

a snowslide activating the context "Avalanche".

1 CREATE CONTEXT avalanche_danger

2 ACTIVE IF seism_event_mag 3 AND meteo_trend = warming OR

3 meteo_trend = snowing

4 ON ENABLE:

5 EVERY 5min SELECT max_temp , max_vibration

6 SET alarm

7 SAMPLING EVERY 1min

8 ON DISABLE:

9 EVERY 60min SELECT temp , v i b r a t i on

10 STOP alarm

11 SAMPLING EVERY 15min

12 EXECUTE IF EXIST termometer OR acce l e romete r OR alarm

53

CHAPTER 7.

13 REFRESH EVERY 30MIN

Listing 7.3: Avalanche Context Creation

Physical devices are used for monitoring the real situation of a critical zone

and collect environmental metrics to react in real time to a dangerous situa-

tion. Crossing environmental data and RSS feeds will help to design a strong

prevention system.

To accomplish the project, two FPC structures have been developed.

7.5.2 Rss FPC

The following program listing shows the RSS feed structure provided by the

INGV. RSS feed are asynchronous sources of data and they can be managed

by PerLa.

1 <entry>

2 <id>

3 sm i :webs e rv i c e s . ingv . i t / fdsnws/ event /1/ query ? eventId=14955981

4 </ id>

5 <t i t l e>

6 <! [CDATA[2017−04−24 07 : 4 1 : 5 1 UTC −
7 Magnitude (ML) 2 .1 − L ' Aquila]]>

8 </ t i t l e>

9 <updated>

10 2017−04−24T08:09:37+00 :00
11 </updated>

12 <l i n k r e l=" a l t e r n a t e " type=" text /html"

13 hr e f=" ht tp : // cnt . rm . ingv . i t / event /14955981"/>

14 <summary>

15 <! [CDATA[A magnitude ML 2 .1 earthquake occured

16 in the r e g i o n : L ' Aquila on 2017−04−24 07 : 4 1 : 5 1 UTC]]>

17 </summary>

18 <dc :date xmlns:dc=" ht tp : // pur l . org /dc/ e lements /1 .1/ ">

19 2017−04−24T07:41:51+00 :00
20 </dc :date>

21 <geo :Po int xmlns:geo=" ht tp : //www.w3 . org /2003/01/ geo/wgs84_pos#

">

22 <g e o : l a t>

23 42.4583

54

7.5. DEVELOPMENT OF THE PROTOTYPE

24 </ g e o : l a t>

25 <geo : l ong>

26 13.3083

27 </ geo : l ong>

28 </ geo :Po int>

29 <geo r s s : p o i n t>

30 42.4583 13.3083

31 </ g e o r s s : p o i n t>

32

33 </ entry>

Listing 7.4: Invg RSS

To read RSS feeds, a lot of Java libraries are provided. Java Rome is

one of the most robust implementation and ease to use library. In order to

manage the feeds, a PerLa FPC must be de�ned.

The following listing shows the basic structure of the RssFPC class:

1 public c l a s s RssFpc implements FPC {

2

3 pr i va t e s t a t i c S t r ing rssFeedUr l ;

4 pr i va t e S t r ing magnitude ;

5 pr i va t e S t r ing l a t i t u d e ;

6 pr i va t e S t r ing l ong i tude ;

7 pr i va t e S t r ing toponym ;

8

9 //The cons t ruc to r

10

11 pub l i c RssFpc (St r ing rssFeedUrl) {

12

13 t h i s . r s sFeedUr l = rssFeedUrl ;

14

15 //SyndFeedInput and SyndFeed are the c l a s s e s

16 // provided by Java Rome

17

18 SyndFeedInput input = new SyndFeedInput () ;

19 SyndFeed f eed = input . bu i ld (new XmlReader (rssFeedUrl)) ;

20

21 }

Listing 7.5: RssFpc

55

CHAPTER 7.

7.5.3 Socket FPC

The ST WiFi Nucleo Board can use sockets to provide TCP connections. In

order to communicate with the devices we have implemented the Socket FPC

class, that uses the socket infrastructure provided by the Java standard li-

brary. A Socket FPC is the abstraction of a physical device, thus an attribute

list is needed to create it. When the system receives an XML descriptor from

a board, it initializes a SocketFPC class.

1 private ArrayList<Attr ibute> At t r i bu t eL i s t = new ArrayList<

Attr ibute >() ;

2

3 pub l i c SocketFpc (St r ing XMLDescriptor) {

4

5 Att r i bu t eL i s t = c r e a t eA t t r i bu t eL i s t (XMLDescriptor) ;

6

7 }

Listing 7.6: Socket FPC

7.5.4 Board Programming

The core of the board action is the following code listing. During the "while"

cycle, the board retrieves data from the sensor modules and sends it to the

PerLa system.

1 while (1) {

2 p r i n t f ("\ r \n") ;

3

4 /∗ The board r eque s t s temperature and humidity ∗/
5 temp_sensor1−>GetTemperature(&value1) ;

6 humidity_sensor−>GetHumidity(&value2) ;

7

8 /∗ The w i f i module sends two array to the socket

9 connect ion ∗/
10 p r i n t f ("HTS221 : [temp] %7s C , [hum] %s%%\r \n" ,

11 printDouble (bu f f e r1 , va lue1) ,

12 printDouble (bu f f e r2 , va lue2)) ;

13

56

7.5. DEVELOPMENT OF THE PROTOTYPE

14 p r i n t f ("−−−\r \n") ;
15

16 /∗ The board reque s t the acce l e romete r data ∗/
17 acce l e rometer−>Get_X_Axes(axes) ;
18

19 /∗ The w i f i module sends the ph i s y ca l data to

20 the socket connect ion ∗/
21 p r i n t f ("LSM6DS0 [acc /mg] : %6ld , %6ld , %6ld \ r \n" ,

22 axes [0] , axes [1] , axes [2]) ;

23

24 /∗ The r eque s t s are sent every 5 seconds ∗/
25 wait (5) ;

26 }

Listing 7.7: Board Programming

Figure 7.2: The Prototype

57

Chapter 8

Conclusion

In this thesis we presented the possibility of using PerLa in a real scenario,

showing the possibility of integrating PerLa Middleware with a series of prod-

ucts of di�erent nature.

In particular we have shown the possibility of integration with relational

databases, such as MySql, in order to make it compatible with as many past

and future uses as possible. We have shown also the possibility of integrating

non-relational NoSql databases, such as Cassandra, in order to make PerLa

usable with the most modern systems and to use the great possibilities pro-

vided by them. We have also expanded the system, making it distributed,

through the use of a message service that exploits the publish and subscribe

paradigm.

Finally, we applied these developments to the creation of a prototype, which

uses electronic products available on the market. In particular, through the

use of wireless networks, Raspberry PI cards, sensors produced by ST Micro-

Electronics and public RSS feeds, we have integrated data �ows of di�erent

nature to create an avalanche monitoring and prevention system, inserted in

a management context of emergencies.

The most stimulating moment of the work was the successful attempt to

develop new modules, starting from the work of Guido Rota, adapting the

system to a practical scenario.

The developed system is complete and further expandable, usable not only in

58

restricted scenarios, but also in geographically wide scenarios, thanks to the

possibility of distributing the middleware on nodes consisting of low energy

consumption minicomputers.

In this way we have created a system that can be used in advanced pervasive

systems and within the Internet of Things.

59

Appendix A

Comparison between PerLa and

other systems

Wireless Sensor Networks (WSNs) are networks of wirelessly connected de-

vices called nodes, that are able to measure or detect physical properties

(such as temperature, pressure, humidity. . .) from their surrounding envi-

ronment. The current usage of the term WSN includes also devices with

actuation capabilities.

A WSN can be a variegated software and hardware environment, so a

framework or a middleware, to provide an easy way of access to the func-

tionalities of all components of the network is needed.

There are two characteristics that a system should have in order to be

considered as pervasive, according to the de�nition given by Mark Weiser:

physical integration, that is the ability of hardware and software to hide

themselves into everyday life objects, and spontaneous interoperability, that

is the devices ability to communicate whenever required by the context.

To manage pervasive systems, the idea of a high level language to hide

the user the whole complexity of the underlying system has been conceived

and a lot of project attempted to realise it.

60

A.1. DATA STREAM MANAGEMENT SYSTEMS AND

�WSN AS A DATABASE�

A.1 Data Stream Management Systems and

�WSN as a database�

�A data stream is a sequence of digitally encoded coherent signals (packets of

data or data packets) used to transmit or receive information that is in the

process of being transmitted�. Today data streams are used in wireless sensor

networks and Internet of Things. The increasing di�usion of these infrastruc-

tures, made the creation of Data Stream Management Systems model neces-

sary. The aim of a DSMS is to process and store unbounded data streams.

An important issue in applying the DSMS model is the creation of a persis-

tent storage to save all relevant data. To achieve this objective, the concept

of data stream query language has been developed, creating the concept of

�WSN as a database�. It means that a sensor network can be queried as

a database. The result of a query is the sampling stream coming from the

devices.

A.1.1 TinyDB

TinyDB [25] is one of the �rst projects that tried to provide a generic

abstraction suitable for the development of sensing applications based on

Pervasive Systems. A sensor network managed by TinyDB is presented to

the �nal users as a streaming database controlled through SQL-like queries.

Limits: TinyDB requires all nodes in the network running TinyOS, so the

variety of devices which can be managed is limited. Furthermore, if the

user is concerned in high speed databases and high performances, TinyDB

is the wrong choice. PerLa exceeds TinyDB, because the middleware plugin

system allows to manage nodes running TinyOS in a transparent way and in a

variegate environment, together with nodes that run other OS. PerLa can also

interact with high performance databases and can reach high performances.

TinyREST

TinyREST provides a RESTful data access interface to each node available

in the pervasive system. An HTTP GET request is used to sample a phys-

61

APPENDIX A.

ical phenomena and a PUT operation is used to command actuators or set

variables on remote devices. TinyREST requires all nodes running TinyOS,

so it is vulnerable to the same critiques made to TinyDB.

A.1.2 Global Sensor Network

Global Sensor Network's [26] central concept is the virtual sensor abstrac-

tion which enables the user to declaratively specify XML-based deployment

descriptors in combination with the possibility to integrate sensor network

data through plain SQL queries over local and remote sensor data sources.

GSN is a Java Middleware based on the concept of Virtual Sensor, a high-

level component (similar to the PerLa FPC) aimed at providing a common

interface that corresponds to a physical sensor and allows to interact with

it. Virtual Sensors are created by means of a declarative XML descriptor.

Limits. GSN doesn't provide a system for the automatic creation of vir-

tual sensors. PerLa exceeds GSN because when a device is connected to the

middleware, the FPC creation is automatic and the user doesn't care about

it.

A.1.3 Contiki

Contiki [27] is an advanced operating system for the Internet of Things. It

is designed for memory-limited and low power consuming devices. Contiki

uses TCP/IP and a limited number of wireless standards. PerLa exceeds

Contiki because it is designed not only for limited devices, but it has been

conceived for all devices that can collect and send data using all types of

communication protocol.

8.2 Tesla and PerLa comparison

8.2.1 T-Rex and Tesla

Distributed applications systems require huge amounts of memory. It is ap-

propriate to imagine that some of these systems could be used also with

62

8.2. TESLA AND PERLA COMPARISON

processing data as a stream of data, and not necessarily storing them. As

an example, a system can operate by observing the happening of primi-

tive events, combining them to create composite events and �nally sending

the noti�cation to the components in charge of reacting to them. Complex

Event Processing (CEP) middlewares, are responsible for managing events

got from sources. CEPs operate interpreting sets of event de�nition rules,

that describe how complex events are de�ned from simple ones.

T-rex is a Cep middleware which works with a language named Tesla [28].

Tesla allows to express all the constructs that are needed by a CEP system,

as content-based event �ltering, customizable event selection and consump-

tion policies, Event sequences with timing constraints, negations (time-based

and interval-based), parameters and aggregates. In Tesla it is assumed that

events occur instantaneously at some points in time, after happening, they

are encoded by sources into event noti�cations. Each event noti�cation has

a type and a timestamp.

8.2.2 Tesla language vs PerLa language

Tesla and PerLa must be compared holding the following preconditions:

• For basic requests, PerLa and Tesla are interchangeable;

• Tesla doesn't support static data;

• Tesla doesn't support the current time sampling;

• PerLa requires the construction of at least two queries for each request.

A query must be written in PerLa language and the second query must

be written in the database language relative to the DBMS in which

data is stored.

Example 1. A similar behaviour

Environment: car rental company.

Request: �nd cars that have been used without rental contract.

Condition: Speed>0 when (Current Date)>(Last Rental Release Date)

63

APPENDIX A.

PerLa query: selects the speed of all cars that are moving. The query

samples on the speci�c event �Speed>0�.

1 CREATE OUTPUT STREAM Theft_Table (i n t idCar , date Released , date

CurrentDate) AS:

2

3 EVERY 5 MINUTES

4

5 SELECT Speed

6

7 SAMPLING

8

9 ON EVENT Speed>0

10

11 EXECUTE IF EXISTS Speed AND IF EXISTS Released AND IF EXISTS

CurrentDate AND IF (CurrentDate>Released)

Listing 8.1: PerLa Application 1

High level (database) query: selects all the cars in Theft Table.

1 SELECT idCar FROM Theft_Table

2 Tesla query :

3 de f i n e Theft (ID : S t r ing)

4 from VehicleData (idCar = $id and speed > 0) and

5 l a s tRe l e a s e (idCar = $id) with in 10day from VehicleData and

6 not Taken (idCar = $id) between Release and VehicleData

7 where ID = VehicleData . idCar

Listing 8.2: PerLa Application 2

Comment: in this case, the query complexity is quite similar, but Tesla

requires to put a value in the clause �within�. In this case the value �10 day�

makes data sampled before 10 days unavailable.

Example 2. A request that can't be satis�ed by Tesla

Environment: car rental company. Test if the estimated travel time to

release point is slightly below than remaining time from reservation expira-

64

8.2. TESLA AND PERLA COMPARISON

tion.

We need to know:

• travel time to release point

• reservation expiration time.

Sampling attribute: current data.

Comment: Tesla can't satisfy this request, because it doesn't provide the

current time. On the contrary, PerLa can achieve the objective.

Example 3. Another request that can't be satis�ed by Tesla

Environment: car rental company. Say if the vehicle had stopped in a

place where it couldn't (car in a no-parking zone, for example). We need

to know:

• the vehicle's position

• the roads network

We also need a table that contains the list of �legal� positions.

Comment: Tesla can't satisfy this request, because it doesn't allow static

data. PerLa, on the contrary, allows static data.

Conclusion: It appears that PerLa is more powerful than Tesla [29] in many

applications. However, it should be noted that PerLa needs two queries in

each execution. This means that PerLa requires more programming e�ort,

while Tesla has a more immediate use.

65

Bibliography

[1] Mark Weiser, The Computer for the 21st Century, Scienti�c American

(265:94-104), 1991.

[2] F.A. Schreiber, L. Tanca et al., Data Management in Pervasive Systems,

Springer, 2015

[3] P. N. Mahalle, P. S. Dhotre., Context-Aware Pervasive System and Ap-

plications, Springer, 2020

[4] R. Sabatino,Context Management in a Pervasive System, Master Thesis

Politecnico di Milano, 2015.

[5] M.Fortunato, M.Marelli, Design of a declarative language for pervasive

systems, Master Thesis Politecnico di Milano, 2006/2007.

[6] G.Rota,Design and development of an asynchronous data access middle-

ware for Pervasive Networks: the case of PerLa, Master Thesis Politec-

nico di Milano, 2013.

[7] Y.Zhao, G. Yu, H. Xu, 6G Mobile Communication Network: Vision,

Challenges and Key Technologies, 10.1360/N112019-00033, 2019.

[8] R. Want, An Introduction to RFID Technology, Pervasive Computing

(IEEE) january, 2006.

[9] F.A.Schreiber, R.Camplani, G.Rota, Extracting Data from WSNs: A

Data-Oriented Approach, 2012

66

BIBLIOGRAPHY

[10] T.Wark, P.Corke et al. Transforming Agriculture through Pervasive

Wireless Sensor Networks, Pervasive Computing (IEEE) aprile-june,

2007.

[11] M. Erdelj, E.Natalizio et al., Help from the Sky:Leveraging UAVs

for Disaster Management, Pervasive Computing (IEEE) january-march,

2017.

[12] Sensor ML Documentation, http://sensorml.com/

[13] M. Tamer Ozsu, Patrick Valduriez, Principles of Distributed Database

Systems, Springer, 2010.

[14] Oracle Documentation, Database Administrator's Guide, Part V,

https://docs.oracle.com/cd/E1188201/server.112/e25494.pdf, 2015

[15] Dan Sullivan, NoSQL for Mere Mortals, Pearson-Addison-Wesley Pro-

fessional, April 2015.

[16] Google Cloud o�cial Blog. Cassandra Hits One

Million Writes Per Second on Google Compute

Engine,https://cloudplatform.googleblog.com/2014/03/cassandra-

hits-one-million-writes-per-second-on-google-compute-engine.html, 2014

[17] F.Crivellari, F.Dalla Libera, S.Frasson and F.A.Schreiber, Computation

of statistical functions in distributed information systems, Information

Systems, Vol.8, No 4 (303-308), 1982.

[18] Kenneth P. Birman, Thomas A. Joseph, Exploiting Virtual Synchrony

in Distributed Systems, SOSP '87 Proceedings of the eleventh ACM Sym-

posium on Operating systems principles (123-138), 1987.

[19] G. Banavar, T. Chandra, R. Strom, D. Sturman A Case for Message

Oriented Middleware, Proceedings of the 13th International Symposium

on Distributed Computing (1-18), 1999.

[20] Edward Curry, "Message-Oriented Middleware" Chapter in Middleware

for Communications (1-28), John Wiley and Sons, 2004.

67

BIBLIOGRAPHY

[21] Edgard Codd, A Relational Model of Data for Large Shared Data Banks,

Communications of the ACM, Volume 13 Issue 6 (377-387), 1970.

[22] P.Eugster, P.Felber, R.Guerraoui, A.Kerrmarrec, The Many Faces of

Publish/Subscribe ACM Computing Surveys (CSUR) Volume 35 Issue 2

(114-131), 2003.

[23] C.Cappiello, F.A. Schreiber, Experiments and analysis of quality-and

energy-aware data aggregation approaches in WSNs 10th International

Workshop on Quality in Databases QDB 2012 (Co-located with VLDB

2012) (1-8), 2012.

[24] F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli,

G. Rota, PerLa: A Language and Middleware Architecture

for Data Management and Integration in Pervasive Informa-

tion Systems, IEEE Transactions on Software Engineering

http://doi.ieeecomputersociety.org/10.1109/TSE.2011.25, 2011.

[25] S.R.Madden, M.J. Franklin, J.M.Hellerstein, W.Hong,

TinyDB: an acquisitional query processing system for sen-

sor networks, ACM Transactions on Database SystemsMarch,

https://doi.org/10.1145/1061318.1061322, 2005

[26] J. Eberle, J.P. Calbimonte, S. Sarni, K. Aberer, Global Sensor Networks:

an evolving middleware for sensor data stream processing Presentation at

the Global Fair and Workshop on Long-Term Observatories of Mountain

Social-Ecological Systems, University of Nevada at Reno, USA, July (16-

19), 2014.

[27] A. Dunkels, B. Gronvall, T. Voigt, Contiki a lightweight and �exible op-

erating system for tiny networked sensors, Proceedings of the 29th Annual

IEEE International Conference on Local Computer Networks (455�462),

2004.

[28] G. Cugola, A. Margara, TESLA: a Formally De�ned Event Speci�cation

Language, In Proceedings of 4th ACM International Conference On Dis-

68

BIBLIOGRAPHY

tributed Event-Based Systems (DEBS 2010). Cambridge, United King-

dom July (12-15), 2010

[29] S. Crotti, Comparison and Evaluation of Some Stream Processing Lan-

guage, Relazione di Progetto di Ingegneria informatica

69

