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Abstract

Space Surveillance and Tracking activities are fundamental for maintaining an adequate
level of safety in the space environment, allowing the actors in the field to keep their
instruments operational. Given the buildup of high-speed clutter and the ever-increasing
number of inoperative satellites, present and future space missions are at stake due to
recurring conjunction events between resident space objects and strategic orbiting assets.
The main activities of the Space Surveillance and Tracking segment are the observation
of objects in orbit and the maintenance of an updated catalog with their orbital param-
eters. This allows us to maintain collision risk awareness and be able to perform orbit
modification maneuvers to avoid potential impacts.
Monitoring space objects is mainly performed with sensor networks of combined radar
and optical ground stations. The latter relies on advanced image processing techniques to
locate the streak an orbiting object illuminated by the Sun leaves on the detector during
observation campaigns.
In this thesis, an alternative structure of an existing pipeline for tracklet extraction is
proposed. In particular, the core of this work is to integrate a Machine Learning aided
object detection suite for tracklet spotting with a tool for astrometric reduction. Via ob-
ject detection, it is possible to crop a night shot around the object of interest and perform
the tracklet extraction to obtain the centroid position. By carrying out the astrometric
reduction of the image, the angular coordinates expressed in Right Ascension and Decli-
nation are associated with the pixel coordinates of the centroid of the tracklet. This data
can be used to initiate the orbital determination process.
The results obtained from this customized structure are compared with those obtained
from astrometric reduction alone. It is observed a lowered computational time without
losing the ability to correctly analyze a large number of images and to accurately estimate
the centroid angular coordinates.

Keywords: Space Surveillance and Tracking, Space Debris, Object Detection, Track-
let Extraction, Astrometric Reduction
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Abstract in lingua italiana

Le attività di sorveglianza e tracciamento sono fondamentali per il mantenimento di
un’adeguato livello di sicurezza nell’ambiente spaziale, consentendo agli attori in campo di
mantenere operativi i propri strumenti. Data la crescente congestione di oggetti orbitanti
e l’aumento del numero di satelliti non operativi, il successo delle missioni spaziali presenti
e future è a rischio a causa di ricorrenti eventi di congiunzione tra oggetti spaziali residenti
e risorse strategiche in orbita. Le attività principali del segmento di Space Surveillance
and Tracking sono l’osservazione degli oggetti in orbita e il costante aggiornamento di un
catalogo con i loro parametri orbitali. Questo consente di avere consapevolezza del rischio
di collisione e di essere in grado di eseguire manovre di modifica dell’orbita per evitare
potenziali impatti.
Il monitoraggio degli oggetti spaziali avviene principalmente integrando reti di sensori che
includono stazioni terrestri radar e ottiche. Queste ultime si basano su tecniche avanzate
di elaborazione delle immagini al fine di individuare la traccia che un oggetto orbitante
illuminato dal Sole lascia sul sensore durante le campagne di osservazione.
In questa tesi viene proposta una struttura alternativa di una esistente pipeline per
l’estrazione delle tracce. In particolare, il fulcro di questo lavoro è l’integrazione di uno
strumento per il rilevamento di oggetti basato su tecniche di Apprendimento Automatico
che permette di rilevare la traccia, con uno strumento per la riduzione astrometrica. At-
traverso lo strumento di rilevazione, è possibile ritagliare uno scatto notturno attorno
all’oggetto di interesse ed eseguire l’estrazione della traccia per ottenere la posizione del
centroide. Effettuando la riduzione astrometrica dell’immagine, le coordinate angolari
espresse in Ascensione Retta e Declinazione sono associate alle coordinate pixel del cen-
troide della traccia. Questi dati possono essere utilizzati per avviare il processo di deter-
minazione orbitale. I risultati ottenuti da questa pipeline modificata vengono confrontati
con quelli ottenuti dalla sola riduzione astrometrica. Si osserva un tempo computazionale
ridotto senza perdere la capacità di analizzare correttamente un elevato numero di im-
magini e di stimare accuratamente le coordinate angolari del centroide.

Parole chiave: Sorveglianza Spaziale e Tracciamento, Detriti Spaziali, Rilevamento di
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Oggetti, Segmentazione, Riduzione Astrometrica
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1| Introduction

This first chapter provides an introduction to the problem of orbital overpopulation due
to the increasing presence of space debris in orbit, and how the Space Surveillance and
Tracking (SST) segment deals with it as part of the European Space Agency (ESA)
Space Situational Awareness (SSA) programme. Then, the focus shifts to the state-of-
the art techniques for tracklets identification, outilining strenghts and weakeness of the
approaches presented in the literature. Ultimately, the thesis goal and organization is
detailed.

1.1. Orbital overpopulation problem

Since the beginning of the "space age", started with the launch of Sputnik-1 in 1957, the
number of artificial objects around the Earth has progressively grown. The most recent
data provided by ESA counts more than 6200 launches and more than 8800 satellites in
orbit, about 6200 of which are active [1]. The most concerning problem, however, is the
presence of a large number of other non-functional mission-related objects in the form of
spent rocket stages, launch adapters, lens covers, stray bolts and paint chips, solid rocket
motor slag, etc., together with other smaller scattered fragments from collisions and ex-
plosions of spacecraft and upper stages. All these objects are defined as space debris.
Some of the artificial objects in orbit (about 31500) are regularly tracked by Space Surveil-
lance Networks and maintained in their catalog, but many others are not. Figure 1.1 shows
the evolution of the space environment in terms of the number of cataloged and asserted
objects, i.e. not reported but known to exist in the space environment [2].
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Figure 1.1: Evolution of space objects population [3]

From the previous graph, it is visible the harmful effect of a collision in orbit, such as the
February 2009 run-in between a dead Russian Cosmos satellite and a commercial Iridium
spacecraft, which produced an enormous amount of fragmentation debris.
The overall number of debris around the Earth is estimated based on statistical models
to be [1]:

• 36500 space debris objects greater than 10 cm;

• 1000000 space debris objects from greater than 1 cm to 10 cm;

• 130 million space debris objects from greater than 1 mm to 1 cm;

They are mainly located in two orbital regimes [4]:

• Low Earth Orbit (LEO), including satellites orbiting the Earth at altitudes be-
tween 160 and 2000 kilometers. Fifty-five percent of all operational satellites are in
this region since it is ideally situated for remote sensing missions, including Earth
observation and reconnaissance, military objectives, and meteorology;

• Geosynchronous Equatorial Orbit (GEO), including satellites orbiting at an alti-
tude of 35786 km, where the orbital period is equal to the Earth’s rotational period.
Around thirty-five percent of all the satellites belong to this region, making it the
second most populated orbital regime. They are mainly exploited for telecommuni-
cations, defense, and meteorology.
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These orbital regimes, and in particular the LEO one, are on the verge of becoming too
crowded for comfort and the problem is now ready to get worse because of the rise of
satellite “mega-constellations” requiring thousands of spacecraft, such as SpaceX’s Star-
link [5].
Overpopulation of the common orbits increases the probability of collisions between satel-
lites which would pollute the space environment with a high number of small-sized frag-
mentation debris. This cascading effect whereby the generation of space debris via col-
lisions and explosions in orbit could lead to an exponential increase in the number of
artificial objects in space was first postulated by Donald Kessler in 1978 [6] and takes the
name of Kessler syndrome [2].
Orbit overpopulation represents then both a short-term risk of collision, faced by satel-
lites present in a given orbital regime, as well as a long-term risk of triggering the Kessler
syndrome.

1.2. Space Surveillance and Tracking

Under SSA programme, Space Surveillance and Tracking segment is concerned with
watching for active and inactive satellites, discarded launch stages, and fragmentation
debris orbiting the Earth. The core activity of the SST segment addresses a data cata-
logue containing information on all objects that have been detected in orbit. Processed
data regularly updates the catalogue for collision probability assessment among the thou-
sands of tracked objects and operational satellites. When necessary, issue warnings are
sent to satellite controllers. Another SST application addresses the detection and decay
prediction of large pieces of space debris, typically non-functioning satellites or upper
stages, that may re-enter the atmosphere and possibly endanger people or infrastructure
on the ground [7].
This requires a system of sensors comprising, typically, radars, telescopes and laser-ranging
stations, and data centers to process the acquired observation data.
Any SST system can then be considered as a ‘processing pipeline’ to process observation
data acquired by sensors and provide derived applications and services, typically compris-
ing collision warnings [8].
A possible flow chart representative of the SST activities is shown in Fig. 1.2.
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Figure 1.2: Space Surveillance and Tracking activities [9]

By looking at the previous graph it is clear that both the observation phase and the
tracklet extraction phase, which is part of the orbit determination block, play a crucial
role for SST activities, being the starting point for achieving high-level tasks such as
collision risk assessment and collision avoidance.

1.3. State of the art

In a modern era, ground-based optical telescopes are one of the major observation methods
to survey space debris, being it effective and feasible [10]. The observation of an object
of interest with an optical telescope can be performed only if the following conditions are
met [11]:

• the object must be above the station’s horizon. This means that the elevation angle
defined in the context of the Topocentric Horizon frame must be positive (see Sect.
2.1);

• the object must be illuminated by the Sun or an artificial light source;

• the object’s brightness must exceed that of the background sky by a certain margin.

Optical telescopes can perform observations of space debris and satellites with two differ-
ent approaches:

• staring (or survey) mode; the telescope is pointed towards the sky, moving at sidereal
rate. Stars appear as fixed points on the background, while the debris or the satellite
streaks to the field, resulting in a bright line on the image. The longer is the exposure
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time, the longer is the resulting tracklet. An example is shown in Fig. 1.3a;

• chasing (or tasking) mode; once the sensor has detected an object, it starts moving
at the same velocity of the target, acquiring the image. The object appears as a
single dot, while stars streak through the field. An example is shown in Fig 1.3b.

(a) (b)

Figure 1.3: Staring (a) and chasing (b) acquisition modes [12]

Once the observation with an optical telescope is performed, some effort is devoted to the
processing of trailed sources. Low astrometric accuracy at this stage is indeed the main
cause of the orbital data uncertainty for space debris [10]. Normally, raw data cannot be
immediately used for detection. Commonly, a pre-processing step devoted to photometric
corrections is applied to enhance features of interest inside the image [13].
Some methods for the extraction of the tracklet have been developed such as threshold-
ing, edge detection, some techniques based on Point-Spread-Function (PSF) fitting, and
template matching.

Thresholding

Thresholding is a type of image segmentation, where the original image is converted to
a binary mask image that splits regions (connected pixels) that are considered objects
from those that are part of the background. The downside is that an educated guess must
be made about an appropriate threshold value and this is not easy due because of noise,
background variations, or diffuse edges of the objects; any chosen threshold may result
in some true objects being overlooked (false negatives) and some spurious objects being
considered as real (false positives). Thresholding can be used to create masks that select
only the interesting parts of an image, or as the first step before edge detection.
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Edge detection

Edge detection is an image processing technique for finding boundaries of objects within
images. It works by detecting discontinuities in brightness and is used for image segmen-
tation and data extraction in areas such as image processing and computer vision.
One of the most famous algorithms for edge detection is Automated Streak Detection
for Astronomical Images (ASTRiDE) [14]. It is a Python package capable of detecting
streaks in astronomical images with “boundary-tracing” technique. Any streak-like trace
caused by the passage of moving objects like satellite, space debris or Near-Earth Objects
(NEOs), can be detected with this algorithm, capable of quantifying the shape of each
border to determine whether or not it is a streak. The usual steps are:

1. Background removal: ASTRiDE calculates background level and its standard de-
viation using sigma-clipped statistics; then, it removes the background from the
original image.

2. Contour map: ASTRiDE derives the contour map of the original image. The level
of the contour depends on the background standard deviation previously computed,
through a user-defined multiplicative factor. The borders are then detected using
the contour map.

3. Streak determination: the algorithm recognises and removes stellar sources using
morphological parameters derived from each boundary and keeps the tracklets.

This kind of approach is more accurate, but it tends to fail at low Signal to Noise Ratio
(SNR) also due to brightness variations along the tracklet [15].

Point Spread Function

When working with real images containing trailed sources, one has to deal with trails
distorted by atmospheric turbulence. The PSF is the spatial distribution of the intensity
of the source, and these distributions can be modeled by several different functions [16].
In this case, the basic idea of the PSF fitting procedure is to use a model profile of a trail
extended along the direction inferred by either the apparent diurnal motion (for stars) or
the apparent velocity of the object. This seems to be the most robust and versatile way to
obtain the accurate trail positions [15]. Nevertheless, some specific issues may make PSF
fitting fail or its accuracy decrease, such as overlapping or under-sampled trails, trails with
low-SNRs, and trails surrounded by a rapidly changing background. Furthermore, PSF
fitting method is more time consuming, which limits its application in real-time image
processing [10].
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Template Matching

Template Matching is a technique for object localization, which allows to identify parts
of an image that match, under some criteria of similarity, an arbitrarily chosen image
template. A template is a typical model or representative instance that is searched in an
image; for space objects, a template should be a rectangular region containing a typical
trail. In this method, a part of the actual observation image containing a bright trail is
cut as a template; then, parts of the actual image that match the predefined template
are identified. Normalized cross-correlation can be taken as the similarity measurement.
Template Matching involves two critical steps, the similarity measurement and the search
strategy. The drawback of template matching is its high computational cost which has two
distinct origins. The first source of complexity is the necessity of using multiple templates
to accommodate the variability exhibited by the appearance of complex objects. The
second relates to the representation of the templates: the higher the resolution, i.e. the
number of pixels, the more the computational burden [17]. When it comes to track objects
in LEO, telescopes with a Field of View (FoV) of the order of 2-3° are commonly employed.
Combining the relative small FoV and the high angular rate of the observed objects, a
faster even if less accurate model would be beneficial for quick tracklet reconstruction and
follow up observations scheduling [13].

1.4. Thesis purpose and workflow

The purpose of this thesis is to present and analyze a pipeline embedding a first Ma-
chine Learning (ML) based routine intended to locate the streak in FoV with a later
centroid tracklet extraction refinement via edge detection techniques. Obtaining infor-
mation about the position of the tracklet with the tool based on ML, it allows cropping
the image and then limiting the tracklet extraction process to the portion of the image of
interest. The performance is assessed by varying the dimensions of the cropped image to
evaluate success rate of the tracklet extraction process, computational cost, and accuracy
in determining celestial coordinates of the object.
The thesis is structured as follows: Chapter 2 deals with fundamental notions of space ref-
erence frames, optical telescopes, giving then valuable insights of the mentioned separate
modules. In Chap. 3, the integration of the tools is presented and the performed analysis
is described, considering different possible architectures of the overall pipeline. Moving on
to Chap. 4, the results of the analysis are presented, considering different parameters of
merit. Finally, in Chap. 5 some considerations based on the obtained results and possible
future developments are discussed.
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2| Fundamentals

This chapter describes the fundamental concepts and tools necessary for the development
of the thesis. Section 2.1 describes the main reference systems adopted in the astronomical
and space fields. Section 2.2 illustrates the physical principle of optical telescopes, the
image acquisition mode, and the technical specifications of the particular instrument from
which the images analyzed in this thesis are obtained. It also describes the Flexible Image
Transport System (FITS) format in which these images are saved before being analyzed.
Section 2.3 reports a tool for detecting and locating tracklets within astronomical images,
called Real Images Detector (RID), based on Machine Learning techniques. In Sect.
2.4, the functioning of Astrometry.net is described. This system, upon receipt of an
astronomical image, returns its aiming, scale, and orientation. Lastly, Sect. 2.5 describes
a tool named Astronomical Data Analysis and Recovery from Tracklets (AstroDART),
designed for the detection and refinement of tracklets and the determination of the celestial
coordinates of the object of interest at the time of observation.

2.1. Reference frames

To determine the position of an object, it is necessary to define a reference system and
a coordinate system. A reference system implies an origin and three orthogonal axes of
unitary length, respectively represented in Fig. 2.1 by the point O and the triad {i, j,k}.
A reference system is inertial if it does not undergo any acceleration.
A coordinate system is necessary to locate a point of interest within a reference system
[18]. The most used ones for astronomy applications are:

• Cartesian, in which three spatial coordinates define the position of a point. Referring
to Fig. 2.1a, the position of point P is defined as OP = xi + yj + zk.

• Spherical, in which one spatial coordinate (r) and two possible angular coordinates,
the polar angle (ϕ) measured from the zenith and the azimuth angle (θ) spanning in
the plane orthogonal to the zenith direction, are enough to locate a point. Referring
to Fig. 2.1b, the position of point P is OP = r sinϕ cos θi+ r sinϕ sin θj+ r cosϕk.
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Figure 2.1: Cartesian and spherical coordinates [13]

Some of the most commonly employed reference systems for astronomy and space appli-
cations are the Earth Centered Inertial frame (ECI), the Topocentric Equatorial frame
and the Topocentric Horizon frame. It is possible to switch from one reference system to
another using appropriate rotation matrices.

Earth Centered Inertial

The ECI is a right-handed inertial1 reference frame, with origin in the Earth’s center of
mass. Regarding Fig. 2.2, the X-axis points towards the vernal equinox direction at the
J2000 epoch, the Z-axis coincides with the Earth’s rotation axis and points northward
and Y -axis completes the set. XY is Earth’s equatorial plane. The green angle between
the X-axis and the position vector’s projection on the equatorial plane, measured coun-
terclockwise, is the Right Ascension α, with values between 0° and 360°. The red angle
from the equatorial plane to the object’s location is the Declination δ, with values between
-90° and +90°.

Topocentric Equatorial Frame

A Topocentric frame is centered at the observer’s location on the Earth’s surface, rotating
at its same angular velocity. Regarding Fig. 2.3, the Topocentric Equatorial frame has
the three axes x, y, z coinciding with the X, Y, Z axes of the ECI frame; for this reason,
both Right Ascension and Declination of the object of interest are the same as in Fig.
2.2.

1acceleration towards the Sun is neglected.
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Figure 2.3: Topocentric Equatorial Frame

Topocentric Horizon Frame

The Topocentric Horizon frame is also centered at the observer’s location and its funda-
mental plane is the local horizon. The z-axis is normal to this plane and directed towards
the zenith. A possible configuration is shown in Fig. 2.4a, with the x-axis pointing to-
wards North and the y-axis pointing towards West; this frame is also named North West
Zenith (NWZ). Concerning Fig. 2.4b, the two angular coordinates are the azimuth (β)
and the elevation (ϵ). The former is measured clockwise from the North axis to the pro-
jection of the object’s position vector onto the local horizon plane; it ranges from 0° to
360°. The latter is measured from the local horizon plane to the object’s position vector;
it ranges from -90° to +90°. They play the same role of Right Ascension and Declination
in the ECI reference frame.
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Figure 2.4: Topocentric Horizon Frame
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2.2. Optical telescopes

Ground-based monitoring of satellites and space debris is performed thanks to a sensor
network including both optical and radar instruments. This thesis revolves around the
analysis of images obtained through telescope acquisitions.
An optical telescope fulfills three major tasks in astronomical observations [19]:

• it collects light from a large area, making it possible to study very faint sources;

• it increases the apparent angular diameter of the object, improving resolution;

• it is used to measure the positions of objects.

Working principle

A scheme with the working principle of an optical sensor is shown in Fig. 2.5.

Incident light

Anti−reflection coating

Collimating optics
Optics

F iltering

Transmitted light

Detector or
array of detectors

A/D conversion

Processing

Interpretation

Figure 2.5: Optical sensor scheme [13]

An anti-reflection coating is used to ensure that all the light of interest goes into the sensor.
The light is collected using static optics and collimated to fit the subsequent measurement
acquisition subsystem. Further filters and collimating optics select subsets of wavelengths,
known as spectral bands, which pass through and focus onto a detector that transforms
photons to voltage. This voltage is amplified, digitized, and then processed. Charge
Coupled Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS), shown
in Fig. 2.6, are the most widely used technologies for the realization of detectors. In both
cases an electrical signal is generated from light thanks to the photoelectric effect; each
sensing element (pixel) is filled with electrons when hit by photons until it stops being
exposed to light. In a CCD sensor each pixel’s charge is transferred through a limited
number of output nodes to be converted to voltage, affecting the image output uniformity
and quality. [20]. The drawback for a CCD sensor lies in the reduced reading speed, which
is prominent for high resolution shots. [21]. Furthermore, a mechanical shutter is needed
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for stopping receiving photons during the read-out. On the other hand, with the CMOS
architecture, acquisition is almost instantaneous since each pixel has its charge-to-voltage
conversion, granting a faster read out at the expense of uniformity.

Figure 2.6: CCD and CMOS architectures [22]

A simplified model of a telescope, including the most relevant parameters, is shown in
Fig. 2.7. The diameter of the objective is called aperture of the telescope (D). The focal
length (f) is the distance between the telescope’s main optics (aperture) and the point
where the image is created (focal point C). The ratio of the aperture to the focal length is
called aperture ratio (D/f). This quantity characterizes the light-gathering power of the
telescope. If the aperture ratio is large, near unity, one has a powerful, “fast” telescope
and photographs can be taken using short exposures since the image is bright. A small
aperture ratio (focal length much greater than aperture) means a “slow” telescope. The
focal ratio is given by the focal length divided by the telescope’s aperture (f/D); it is the
inverse of the aperture ratio and it is usually written as f/number. The Field of View
(FoV) of a telescope instead is defined as:

FoV = 2arctan
s

2f
(2.1)

where s represents the size of the detector.

D
FoV

s

f

C

Figure 2.7: Simplified telescope model [11]
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The light-collecting surface in a telescope is either a lens or a mirror and then optical
telescopes are divided into two types, lens telescopes or refractors and mirror telescopes
or reflectors [19]. These two configurations are shown in Fig. 2.8.

(a)

(b)

Figure 2.8: Refractor (a) and reflector (b) configuration [23]

Refractor telescopes, shown in Fig. 2.8a, have two lenses, the objective, which collects the
incoming light and forms an image in the focal plane, and the eyepiece, a small magnify-
ing glass for looking at the image. The main problem associated with a single refracting
lens is chromatic aberration because glass refracts colors by different amounts. It can be
corrected by combining three or even more lenses of different glasses in the objective.
The most common telescope type is the reflector, shown in Fig. 2.8b. As a light-collecting
surface, it employs a mirror coated with a thin layer of aluminum. A parabolic mirror
reflects all light rays entering the telescope parallel to the main axis into the same focal
point. One of the advantages of reflectors is the absence of chromatic aberration [19].
Coma aberration is instead associated with this architecture, causing point sources ap-
pearing as comet-like radial smudges. Other limitations are the focus error due to the field
curvature, astigmatism, an azimuthal variation of the focus around the aperture causing
point source images off-axis to appear elliptical, and distortion of object shapes [21].
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Ground-based telescopes

The great majority of astronomical observations are carried out from the surface of the
Earth. With a ground-based telescope, the atmosphere affects observations in many ways.
The most important effect is refraction, which changes the apparent altitudes of objects.
Empirical formulas are used for taking into account and correcting it. Furthermore, the
air is never quite steady and there are layers with different temperatures and densities;
this causes convection and turbulence. When the light from a star passes through the
unsteady air, rapid changes in refraction in different directions result. Thus, the amount
of light reaching a detector constantly varies; the star is said to scintillate. A telescope
collects light over a larger area to diminish scintillation. Instead, differences in refraction
along different paths of light through the atmosphere smear the image, and point sources
are seen in telescopes as vibrating speckles. This phenomenon is called seeing, and the
size of the seeing disc may vary from less than an arc second to several tens of arc seconds.
In astronomy one often has to observe very faint objects. Thus, the background sky must
be as dark as possible, and the atmosphere as transparent as possible [19]. To reduce
light pollution and minimize water vapor absorption, ground-based telescopes are located
far from urban areas, at high altitudes, and in dry regions.

Pratica di Mare ground station

Italian Air Force (ITAF) has recently installed an optical sensor for SST in Pratica di Mare
Air Force Base, named Pratica di Mare Military Telescope (PdM-MiTe); it is designed by
GMSpazio and Officina Stellare and is able to observe the portion of space above it with
coverage of 360° x 90° in azimuth and elevation (see Fig. 2.9). It is built with an exclusive
Riccardi-Honders flat field optical design, with an aperture of 350 mm and a focal ratio
f/2.8 [24].
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Figure 2.9: Pratica di Mare Military Telescope for SST [25]

It is equipped with two CCD sensors: one with a wide FoV used for surveillance tasks
and the second with a narrow FoV of about 2° dedicated for tracking specific objects.
The latter (from which the analyzed images are acquired) is an array of 4096 by 4096
pixels in resolution, leading to a 16 Mpxl detector. It measures nearly 37 mm on both
sides. The telescope is mounted on a platform in equatorial layout designed for high-
speed tracking and pointing purposes. The time sync is performed by a GPS sensor,
which allows knowing the exact time of the shot. Once the image is acquired, a FITS file
containing the main info of the passage is generated and then the image can be analyzed
and processed for the extraction of orbital parameters.

Flexible Image Transport System format

Flexible Image Transport System (FITS) is a file format designed to store, transmit, and
manipulate scientific images and associated data [26]. The term "image" in the standard’s
name is loosely applied and FITS files often contain only non-image data. Astronomers
view their images as data for analysis rather than simply as pictures to look at. FITS
format was designed to facilitate the unambiguous transmission of n-dimensional regularly
spaced data arrays, an n-cube. These multi-dimensional arrays may be 1-D spectra, 2-D
images, or data cubes of three or more dimensions. Two-dimensional tables containing
rows and columns of data can also be stored in a FITS file. FITS is categorized primarily
as a dataset format, with use for image data as secondary.
A FITS file consists of one or more Header + Data Units (HDUs), where the first HDU is
called the primary HDU, or primary array. The primary array may be empty or contain
an N-dimensional array of pixels, such as a 1-D spectrum, a 2-D image, or a 3-D data
cube. The FITS files analyzed in this thesis are 2-D images with unsigned 16-bit integers
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data type, therefore each pixel value ranges from 0 (absolute black) to 65535 (absolute
white). The header of these files reports important pieces of information like:

• BITPIX: bit depth used to represent each pixel;

• NAXIS1, NAXIS2: number of pixels in the first and second axis;

• DATE-OBS: date and time expressed in Universal Time Coordinated (UTC) of the
beginning of the observation;

• EXPTIME: exposure time in seconds;

• XPIXSZ, YPIXSZ: pixel width and height (after binning);

• JD: Julian Date at exposure start time;

• FOCALLEN: telescope focal length;

• APTDIA: telescope aperture diameter;

• OBJECT: name of the target (if present);

• OBJECTRA, OBJECTDEC: topocentric right ascension and declination of the cen-
ter of the image;

• NOTES: additional information added by the user. In the analyzed images, if the
observed body’s NORAD ID2 is known, it will be found here.

2.3. Tracklet detection with RID

In 2021, Calvi developed a ML-based tool for tracklet detection and localization, named
Real Image Detector (RID) [27]. It was generated by training a Convolutional Neural
Network (CNN) based on an object detection algorithm (YOLOv5) architecture. Its aim
is to act as a filter to speed up the tracklet extraction processes: the observations resulting
from image acquisitions can be initially analyzed by RID, and only the shots containing
streaks can then be analyzed by a tracklet extraction system to reduce the total time.
A scheme with the main steps performed by RID is shown in Fig. 2.10.

2NORAD ID is a progressive 5-digit number assigned to all satellites in orbit around the Earth in
order of identification.
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Figure 2.10: RID functioning scheme [27]

As a first step, images in FITS format acquired by the telescope are given as input to the
tool, which then converts them into Portable Network Graphics (PNG) format to make
them compatible with YOLOv5 architecture. The image processing step is necessary for
highlighting the moving object and for reducing noise and vignetting in the original image;
it is performed through the Scikit-Image Python library to obtain high quality images in
the detection phase. This step is performed by the trained CNN and consists in identi-
fying streaks within the image, when these are present. In case a tracklet is identified, a
bounding box is generated around it. The network can distinguish tracklets from clouds,
decreasing false positive detections. At the end of the pipeline, the tool outputs a copy of
all images with bounding boxes printed around tracklets and clouds, and a folder storing
the text files referred to analyzed images in which an object of interest is detected. These
contain the parameters that allow locating a bounding box inside the image, such as its
height, width and center’s coordinates.
Figure 2.11 reports an example of what is obtained in output from the detection: specif-
ically, Fig. 2.11a shows the processed image with the detected trail, while Fig. 2.11b
depicts the geometrical parameters of the bounding box. The class of the detected object
is reported in column 1 (1 for clouds and 0 for tracklets), the x and y coordinates of the
bounding boxes’ center are in in column 2 and 3, and the width and height are in columns
4 and 5.



2| Fundamentals 19

(a)

(b)

Figure 2.11: Tracklet detection output

Scikit-image processing

Image processing for high quality tracklet detection is implemented with Scikit-image
(shortened skimage) Python library. The input FITS image is treated as a 2-D array,
which undergoes a series of transformation:

• Logarithmic correction transforms the input image pixelwise according to the equa-
tion

O = g · (2I + 1) (2.2)

where O and I are respectively the pixel values of the output and input image, while
g is a constant;

• Contrast Limited Adaptive Histogram Equalization (CLAHE), an algorithm for lo-
cal contrast enhancement that uses histograms computed over different tile regions
of the image. Local details can then be enhanced even in regions that are darker or
lighter than most of the image;
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• Gamma Correction, also known as Power Law Transform. This function transforms
the input image pixelwise according to the equation

O = Iγ (2.3)

after scaling each pixel to the range 0 to 1. O and I are again the pixel values of
the output and input image, while γ is a non negative real number;

• Down-convertion of the image to 8-bit unsigned integer format;

• Noise removal through median filtering technique. Each pixel value of the input
image is replaced with the median of the neighboring pixel values;

• Image resize, that consists of scaling the image by a certain scale factor. In this
case a factor 4 is used. Original images have an initial resolution of 4096 by 4096
pixels and are reduced to a resolution of 1024 by 1024 pixels.

Matplotlib.pyplot processing

A different image processing for fast even if slightly inaccurate detection is implemented
with Matplotlib.pyplot library. In this case, the original FITS image is downscaled to a
resolution of 512 by 512 pixels keeping the same color range of values, and an anti-aliasing
filter is applied. Then, the following tansformations are applied:

• definition of the data range that the colormap covers. It emphasizes low light sources
but at the same time can generate noise;

• Lanczos interpolation, which consists of re-pixeling the image to make it more uni-
form and more grainy, to improve the quality of the tracklets. This interpolation
method provides the best properties when it comes to preserving detail, and mini-
mizing aliasing and artifacting. It increases the perceived sharpness of the image.

Figure 2.12 shows a comparison between the two above-mentioned image processing tech-
niques, applied to the same image. In particular, Fig. 2.12a highlights the effect of
skimage processing, while Fig. 2.12a the outcome of matplotlib processing. The former
has more details, greater sharpness, and better resolution [27].
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(a) (b)

Figure 2.12: Effect of different image processing

2.4. Astrometric calibration with Astrometry.net

Astrometric calibration can be defined as a mathematical transformation relating the x, y

positions of pixels in the image array to celestial coordinates in the sky, i.e. right ascension
and declination. These transformations between sets of coordinates are standardized as
World Coordinate System (WCS) conventions, defined in a set of formal papers, four of
which have been officially approved as part of the FITS standard by the International
Astronomical Union (IAU) [28]. A useful tool for performing this step is Astrometry.net.
It is a system that takes an astronomical image as input and returns the pointing, scale
and orientation of that image as output; it can reach a success rate slightly below 100%,
with no false positive matches [29]. To achieve this, once a query image is given, the tool
performs the following steps:

• astronomical sources (stars) detection, by performing some image processing;

• geometric hash code definition for each subset of these stars. The hash code describes
the stars’ relative positions. Subsets of four stars, named "quads", are used;

• research in pre-computed indexes for almost identical hash codes, which are ex-
pressed as a hypothesized match;

• verification criterion, phrased as a Bayesian decision problem, to decide if the hy-
pothesized alignment is correct.
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At the end of the astrometric calibration process, a new FITS file is produced, the header
of which contains also the WCS data generated by Astrometry.net.
The example in Fig. 2.13 shows an image which is correctly solved by the astrometric
calibration tool. Red circles enclose the detected astronomical sources, while green circles
enclose stars listed in known indexes, the match of which is needed to solve the image.

Figure 2.13: Astrometric calibration example

2.5. Tracklet extraction with AstroDART

AstroDART is a tool developed by González López-Cepero in 2022. After the astro-
metric reduction step performed with Astrometry.net, this tool detects the tracklet with
ASTRiDE, then refines it, obtains the celestial coordinates of the object at the observa-
tion epoch, and performs telescope calibration by computing time bias after comparing
the observations of known objects with catalog data [30]. If the telescope is pointing to
an unknown object (no NORAD ID information in the NOTES key inside the FITS file
header) the last step can not be performed. The tool is also designed to provide TDM
files that contain the Right Ascension and Declination (RADEC) evolution of the object
for future acquisitions, and to compute the light curve of the tracklet, but these two
modules are beyond the scope of the analysis developed in this thesis so they have been
deliberately excluded from the pipeline.
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Figure 2.14 shows a chart that resumes AstroDART workflow, including only the functions
of interest in this context.

Input FITS file

Astrometric calibration
with Astrometry.net

Extract tracklet with ASTRiDE

Refine tracklet

Plot tracklet

Critical points determination

Time bias computation

Output plots
and results

Figure 2.14: AstroDART working principle [30]

The tracklet detection process inside AstroDART is done via the Python package ASTRiDE,
which uses boundary-tracing techniques to find all borders in an image, quantifying their
shape to determine whether or not it is a streak-like trace left in the image by some
fast-moving object like debris or a satellite [14]. ASTRiDE’s search for tracklets is ruled
by some parameters that must be chosen by the user, the most relevant of which are:

• contour_threshold: is the threshold to extract a contour map. If this value is high,
only bright streaks will be detected;

• shape_cut: defines an upper limit for the circularity of the detected contour. The
circularity of streak-like objects is much smaller than that of a circle, which is 1;

• radius_dev_cut: defines a lower limit for the approximate deviation from roundness
of the detected objects. A circle has a deviation from roundness of 0;

• area_cut: defines a lower limit for the area (i.e., the number of pixels) inside the
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detected contour.

The tracklet search is carried out iteratively until just one is detected or the selected
maximum number of iterations is reached. At each iteration, if many tracklets were
detected at the previous step, the "contour_threshold" value is increased, while it is
decreased if none was detected. If one of these two conditions happens at the final
iteration, the analysis stops.
The following step is the refinement of the detected tracklet: this is an iterative process
in which each long side of the tracklet is approximated to a straight line through a least-
squares approach; then, the root mean square error of the contour points’ distance with
respect to this straight line is computed and those points whose distance is higher than
a chosen threshold are deleted. This is done recursively until a maximum number of
iterations is reached or no more points are deleted. This allows to obtain a tracklet with
a more regular shape, decreasing the effect of the contamination in its contour due to the
presence of foreign objects or image noise. At this point, both the raw and the refined
tracklet can be plotted. An example is given in Fig. 2.15, where Figure 2.15a shows how
a raw tracklet appears before the refinement process, and Figure 2.15b shows the same
tracklet after the refinement step.

(a) (b)

Figure 2.15: Tracklet aspect before (a) and after (b) the refinement process

The next step is the determination of the tracklet’s initial point, centroid and last point.
The most relevant between these three points is the centroid, whose position is obtained
as the arithmetic mean of the coordinates of the refined tracklet’s contour points. The
successive time bias computation can indeed be performed by taking as reference both the
centroid’s position and the extremes points’ position. In the work developed by González
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López-Cepero [30] it is highlighted that the centroid-based analysis is the best approach
to compute the time bias of the telescope since it gives more accurate results. Given
the pixel coordinates of a fixed point of the tracklet, it is possible to obtain the RADEC
coordinates by using the WCS data obtained from the astrometic calibration step.
After the critical points are determined, if the time bias calculation is possible (if the
NORAD ID of the object is known), it is performed. The time bias is the delay between
the timestamp of the image and the real acquisition epoch. The estimation of the time
bias consists in a minimization process of the residuals between the RADEC coordinates
of the chosen tracklet point (in this case the centroid) and the RADEC coordinates of
the object at that epoch plus the delay, obtained from the catalog. The epoch associated
with the centroid is the one corresponding to the observation timestamp plus half of the
exposure time.
Finally, all output results are stored as files. For each analyzed image, in addition to
the plot of the tracklet before and after the refinement, information on the RADEC
coordinates and the residuals associated with the critical points are printed on a text file,
both before and after time bias correction, assuming the latter is available.
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3| Tracklet extraction introducing
object detection and image
crop

This chapter presents the structure of an alternative pipeline that includes the upstream
use of the RID tool to obtain the position of the bounding box that encloses the tracklet
before the extraction process is performed with AstroDART. The organization of the
pipeline and the analysis carried out on a set of telescope-acquired images are presented
in Sect. 3.1.
Two different approaches are then considered. The first one consists in giving as input to
the tracklet extraction tool the images that are previously converted from their original
FITS format to the PNG format; this approach is discussed in Sect. 3.2. Concerning the
second approach, once the step of object detection is completed with RID, the original
images in FITS format are cropped around the tracklet, then the extraction process is
carried out. This process is described in Sect. 3.3.

3.1. Pipeline architecture

The original pipeline developed by González López-Cepero in his Master’s thesis [30], sum-
marized in Fig. 2.14, takes as input the entire FITS format image that is obtained from
a telescope’s acquisition campaign. It should be noted that there is no prior knowledge
on the presence of a space object streak in the input image. Not only does a successful
iterative search depend on the actual presence of a target, but also on the ASTRiDE
algorithm’s effectiveness to detect it correctly.
An alternative pipeline is here proposed, with the upstream use of RID for obtaining in-
formation regarding both the possible presence of one (or more) tracklet(s) and its (their)
position within the image. By knowing the position of the bounding box that encloses
the tracklet, it is possible to make a crop of the image around it, so that the astrometric
calibration and the tracklet extraction steps are performed only on the target portion of
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the image.
A block diagram representing the architecture of the pipeline is shown in Fig. 3.1.

Tracklet detection
with RID

Crop around
tracklet

Astrometric
calibration

Tracklet extraction
with ASTRiDE

Tracklet refinement

Tracklet plot

Tracklet centroid
determination

Time bias
computation

Output plots
and results

AstroDART

Figure 3.1: Pipeline integrating RID and AstroDART tools

The architecture shown in Fig. 3.1 should be advantageous for different reasons. First, the
upstream introduction of the RID tool into the pipeline allows filtering images that do not
contain any trail and therefore do not need to undergo the tracklet extraction process,
saving a considerable amount of time. The iterative search performed with ASTRiDE
after the astrometric calibration step is indeed quite onerous from a computational point
of view, especially if no tracklet is present in the image and the search is repeated until
the maximum number of iterations is reached.
Furthermore, the information provided as output by the RID tool regarding the position
of the tracklet allows cropping the image, in such a way to include only a portion of the
background sky; in this way, it is possible to analyze a smaller amount of data to extract
the tracklet, obtaining its centroid’s position expressed in pixel coordinates therefore
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converted to RADEC coordinates.
An additional advantage comes from the fact that the trained neural network achieves
better results in terms of correctly detected tracklets on the full-scale original image when
compared to the edge-detection algorithm on which ASTRiDE is based. This is valid
both for the algorithm based on Scikit-image processing and for the algorithm based on
Matplotlib.pyplot processing. In his thesis [27], Calvi compared the detection accuracy of
these three methods on a set of chosen images and showed that ASTRiDE can correctly
detect about 65% of the present tracklets, the neural network based on skimage processing
achieves 98% of correct detection, while the neural network based on matplotlib processing
achieves an accuracy of 91%. Comparing the two CNN architectures, the most accurate
configuration is also the slowest one, needing about 7 seconds per image for processing
and detection steps. On the other hand, the one with lower accuracy needs only about
0.8 seconds to process an image and detect the tracklet. These timing results reported in
Calvi’s work strongly depend on computer hardware. In both cases, it can be concluded
that the detection algorithm based on ML can correctly recognize a higher number of
tracklets with respect to ASTRiDE. The latter can then be facilitated in the extraction
process if it has to analyze a smaller portion of the image within which the tracklet has
already been provided by a more robust detection tool.

Image cropping

A smaller portion of the image is obtained by cropping the original one around the bound-
ing box obtained in output from the RID tool.
The input parameters for the cropping algorithm to work are:

• cx and cy, center coordinates of the bounding box, expressed as a floating point
value ranging from 0 to 1(see columns 2 and 3 of Fig. 2.11b);

• wx and wy, width and height of the bounding box, expressed as a floating point
value ranging from 0 to 1 (see columns 4 and 5 of Fig. 2.11b);

• dimension, image dimension along one image axis expressed as the number of pixels;

• crop_factor, cropping factor expressed as a decimal value ranging from 0 to 1;

• margin, safety margin to ensure the tracklet is fully enclosed inside the cropped
image expressed as number of pixels.

By choosing a crop_factor equal to 0.5 and working with an image in FITS format having
4096 pixels per axis, the resulting cropped image will have half the original dimension on
each axis, resulting in a 2048 by 2048 pixels image. The same crop_factor equal to
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0.5, applied to the same image in PNG format, which has the same dimensions but
a lower resolution of 1024 pixels per axis (or 512, depending on the image processing
adopted), leads to a cropped image of 512 by 512 pixels (or 256 by 256, depending on image
processing). What changes when the same crop_factor is applied to the same image in
two different formats is not the image size, but its resolution, due to the down-scaling
performed in the image processing and conversion step. On the other hand, maintaining
the same image format and cropping with a crop_factor equal to 0.5 results in a cropped
image with half the number of pixels on each axis, not changing resolution but image size.
While performing the cropping step, it must be ensured that the required crop_factor is
not too small for the tracklet enclosed by the bounding box to be entirely contained within
the cropped image. If this happens, the initially selected crop_factor is automatically
increased. Another check to be performed consists in verifying that the size of the cropped
image is consistent with the crop_factor selected, with the borders of the cropped image
not extending beyond the borders of the full-size image. If this happens, the borders are
forced to be coincident; in this case, the tracklet will not be centered inside the cropped
image, but it will be shifted towards the borders.
The main structure of the cropping algorithm is reported in Alg. 3.1.
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Algorithm 3.1 Image cropping
1: %% Obtain the dimension of the cropped image, expressed as number of pixels
2: dim_cut = ceil(crop_factor ∗ dimension)
3: %% Obtain the parameters cx, cy, wx and wy expressed as integer values
4: cx = round(cx ∗ dimension) cy = round(cy ∗ dimension)
5: wx = ceil(wx ∗ dimension) wy = ceil(wy ∗ dimension)
6: %% Check that the bounding box enclosing the tracklet is fully contained in the

cropped image. If not, increase the size of the cropped image
7: if wx + margin > dim_cut or wy + margin > dim_cut then
8: new_crop_factor = ceil((max(wx, wy) + margin) / dimension)
9: dim_cut = ceil(new_crop_factor ∗ dimension)

10: end if
11: %% Define the borders of the cropped image
12: xl = cx − dim_cut / 2 xr = cx + dim_cut / 2
13: yl = cy − dim_cut / 2 yr = cy + dim_cut / 2
14: %% Check that the requested crop does not extend beyond the edges of the original

image. If it does, change borders of the cropped images
15: if xl < 0 then
16: xl = 0
17: xr = dim_cut

18: else if xr > dimension then
19: xr = dimension

20: xl = dimension - dim_cut

21: end if
22: if yl < 0 then
23: yl = 0
24: yr = dim_cut

25: else if yr > dimension then
26: yr = dimension

27: yl = dimension - dim_cut

28: end if
29: %% Perform the effective crop
30: cropped_image = original_image[yl : yr + 1, xl : xr + 1]
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3.2. Analysis of images converted from FITS to PNG

format

In this first approach, the cropped images are those converted into PNG format by the
RID tool, before tracklet detection takes place. After being cropped around the bounding
box enclosing the tracklet, images in PNG format are given as input to the astrometric cal-
ibration tool (Astrometry.net). This tool, once obtained the WCS coordinates, generates
a new FITS format file, which is the input for the tracklet extraction process. During the
processing and conversion step, what was written in the header of the original FITS file is
lost. The original header must then be restored into the new FITS file that is generated
after the astrometric calibration process. Some pieces of information inside the original
header, such as the observation date, the exposure time, and the object’s NORAD ID, are
indeed necessary for determining the tracklet’s centroid RADEC coordinates, computing
the time bias, and checking the accuracy of the pipeline.
The most notable feature of this approach lies in the loss of resolution associated with the
image conversion from FITS to PNG format. Besides being down-scaled, images are also
down-converted from 16-bit to 8-bit pixel depth. Image format conversion is therefore a
double source of loss of information. This makes the images smaller in terms of file size
and makes both the astrometric calibration process and the tracklet extraction process
perform more quickly. Another possible advantage of this configuration is the fact that
the images in PNG format are subject to image processing, which emphasizes the light
sources and thus makes it easier for the image to be associated with the correct portion
of the sky during the astrometric calibration process and for ASTRiDE to extract the
tracklet. This could result in a high percentage of images on which the entire pipeline
process can be completed. On the other hand, a possible and relevant drawback caused
by the loss of resolution is the loss of precision in obtaining the position of the tracklet’s
centroid and therefore of the RADEC coordinates of the object detected in the image.
The block diagram representing this approach is shown in Fig. 3.2
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Figure 3.2: Analysis of images in PNG format

Regarding the RID tool, image processing and tracklet detection steps can be performed
with two different strategies, each one based on a different processing and a different
CNN architecture. The first strategy includes image processing based on the Scikit-image
library and a more complex neural network; this image processing is slow but leads to
high-quality images with easily identifiable streaks. The second strategy is based on im-
age processing implemented with Matplotlib.pyplot library and is characterized by less
complex neural network architecture, aiming at a faster even if less accurate tracklet iden-
tification. Both possibilities are considered for the analysis of the overall pipeline.
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3.3. Analysis of images in FITS format

The second approach is based on the analysis of the cropped images in FITS format. In
this case, the tracklet detection algorithm is used only to obtain the geometric coordinates
of the bounding box, while the image to be cropped is the original one in FITS format.
This allows keeping the original resolution and the original pixel color depth intact, varying
only the size of the image undergoing the tracklet extraction process, depending on the
chosen crop factor. Maintaining the resolution and avoiding loss of information allows to
obtain higher accuracy in the estimation of the centroid’s position and therefore of the
object’s RADEC coordinates. On the other hand, the only reduction in file size is that
associated with image cropping. This makes the overall analysis more time-consuming,
compared to the case in which images in PNG format are analyzed.
A block diagram showing this approach is reported in Fig. 3.3

Input
FITS file

Image processing
& conversion

Tracklet
detection

Bounding box
coordinates

Astrometric
calibration

Tracklet extraction
with ASTRiDE

Tracklet refinement

Tracklet plot

Tracklet centroid
determination

Time bias
computation

Output plots
and results

RID

Cropping around
bounding box

AstroDART

Figure 3.3: Analysis of images in FITS format
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For each image, different crop sizes are considered, to evaluate how the computational
time, the success rate of the overall pipeline, and the accuracy in determining the RADEC
centroid coordinates vary with the size variation of the image undergoing the tracklet
extraction process. The total computational time is given by the sum of three factors:

1. time required for image processing and tracklet detection by RID;

2. time necessary to perform image astrometric reduction;

3. time needed for tracklet extraction and the following steps implemented in the
AstroDART tool.

The time needed to crop the image is neglected, as well as the time needed to modify the
header of the new FITS file generated after the astrometric reduction, in case this step is
required.
The overall pipeline run is considered to be successful if the analyzed image is solved
during the astrometric calibration step and if a single tracklet is identified and extracted
by ASTRiDE, allowing the refinement process and the determination of the RADEC
coordinates of the tracklet’s critical points (most importantly of the centroid).
The accuracy in obtaining the RADEC coordinates of the tracklet’s centroid from the
cropped images is firstly evaluated taking the estimation of the same RADEC coordinates,
obtained from the full-scale FITS format image, as reference. Then, if the RADEC
coordinates obtained from the propagation of the Two-Line Elements (TLE) catalog data
are available, together with the time bias data, the centroid RADEC residuals after time
bias correction are also taken as reference for accuracy evaluation.
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4| Results

This chapter is devoted to the presentation of the results obtained by introducing object
detection and image cropping in the pipeline for tracklet extraction, and by varying the
size of the cropped images. Section 4.1 shows the results obtained by analyzing the
cropped images in PNG format, while Sect. 4.2 presents the results of the analysis of
cropped images in FITS format.
The presented results are obtained from algorithms based on Python codes executed on
a 2016 machine with an i7-6700HQ quad-core and eight-threads CPU (max frequency
2.6GHz, using Turbo Boost 3.5GHz), 16Gb of RAM, and an Nvidia GTX 950M GPU
with 4Gb of VRAM. The operating system is Ubuntu 20.04.5 LTS.

4.1. Pipeline performances analyzing images in PNG

format

In order to perform the analysis, an initial set of 94 images has been filtered, keeping only
those images whose analysis is completed by the original AstroDART pipeline, resulting
in 82 images obtained from 5 different observation campaigns. This filtering has the dis-
advantage of partially hiding both the difference in terms of computational time between
a non-filtered set of full-scale FITS images and the same images cropped and converted
to PNG format and the difference in terms of the overall success rate of the pipeline. On
the other hand, the advantage is that on these filtered images it is possible to compare
the accuracy in determining the RADEC tracklet centroid coordinates.
All these images are labeled with the NORAD ID of the observed object and contain at
least one tracklet, with 2 images containing 2 tracklets each.
In Tab. 4.1 relevant information about each of these groups of images is reported.
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Campaign number Number of images NORAD ID Observation date (UTC)

2756 12 32376 2017-09-15 18:17:58
2761 19 32376 2017-09-20 18:11:44
2762 13 29499 2017-09-20 19:21:28
2763 15 32376 2017-09-21 03:30:54
2764 23 37216 2017-09-21 03:53:58

Table 4.1: Observation campaigns details

Regarding the ASTRiDE parameters which rule the tracklet search at the beginning of the
AstroDART pipeline, when FITS format images are analyzed, they are leaved unchanged
as they were set in the original pipeline [30]: contour_threshold = 2, shape_cut = 0.1,
radius_dev_cut = 0.5 and area_cut = 1000. The area_cut parameter is decreased to
200 when PNG format images are analyzed, while the other parameters remain unchanged.

Scikit-image processing: success rate and computational cost

Figure 4.1a shows how the first two parameters of merit chosen for this analysis, i.e. the
pipeline success rate and the cost in terms of computational time required, vary with the
variation of the size of the analyzed images in PNG format.
Each point in the graphs represents images containing a tracklet and cropped around it
with a given crop factor (crop percentage is reported in the legend); each crop factor is
associated with a value of the FoV framed in the image. The two graphs shown in Fig.
4.1 represent the same trend of these points, with the only difference being that in Fig.
4.1b the plot region containing the most optimal points, which are associated with a high
success rate and a low computational time, is zoomed in. The red squared right-most
point represents images in their original FITS format. Numerical values from which this
graph is obtained can be found in Tab. A.1, where computational times and success rates
associated with the most relevant steps of the pipeline can be distinguished.
Looking at these results, it can be stated that the format conversion and the cropping
that results in images with about 1° of FoV allows a much faster analysis, keeping a very
high success rate of the analysis itself. The lower limit on the crop factor value is given
by the tracklet’s length, with this control automatically implemented, as shown in Alg.
3.1. Even if the tracklet was entirely contained in a cropped image with a restrictive
crop factor, the probability that this image will not be recognized by the astrometric
calibration tool increases, as it is likely that fewer sources (stars) would be present in this
image, making more difficult its recognition during the astrometric calibration step.
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(a)

(b)

Figure 4.1: Effect of size variation of PNG images on pipeline success rate and total
computational time (with Scikit-image processing)
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The results shown in Fig. 4.1a are obtained using the strategy with slower image process-
ing (Scikit-image processing) and more complex CNN architecture within the RID tool,
leading to higher image quality; the time needed for image processing and tracklet detec-
tion is about 6 seconds per image, having exploited the use of the Graphics Processing
Unit (GPU). Using the Central Processing Unit (CPU), the time required for detection is
slightly higher, about 8 seconds per image. A further advantage in terms of computational
cost is obtained thanks to the use of the Ubuntu operating system, both regarding the as-
trometric calibration process, which otherwise should be performed through the use of the
Virtual Machine (VM) and regarding the tracklet detection process with RID. Regarding
the latter step, adopting the strategy with the most accurate processing (Scikit-image
processing), the use of the Windows operating system would imply a detection time of
about 17 seconds per image with the use of the CPU and about 12 seconds per image
with the use of the GPU. From these data and from the data available from Calvi’s work
[27], in which the use of the Windows operating system is known, it can be deduced that
the time required for tracklet detection could be lowered below 6 seconds per image with
the use of higher-quality hardware.

Scikit-image processing: accuracy in determining RADEC cen-

troid coordinates

After evaluating the performance of the pipeline based on the first two parameters of
merit, now it is evaluated how the precision in determining the position of the tracklet
centroid and therefore its RADEC coordinates varies with the image cropping, keeping
the format conversion. For this purpose, the RADEC coordinates of the tracklet centroid
obtained through the analysis of the full-scale FITS images carried out through the original
AstroDART pipeline are taken as a reference. The residuals are then calculated both in
terms of Right Ascension and Declination, as the difference between the value obtained
in output from the analysis of the cropped image in PNG format and the value obtained
from the analysis of the full-scale image in FITS format. This is not done for each value of
the crop factor shown in the previous graph, but only for a few optimal values that involve
a FoV of the cropped image of about 1°; specifically, the results obtained by cropping with
crop factor values equal to 0.4, 0.5 and 0.6 are shown. Figure 4.2a and Fig. 4.2b show
the case related to a subset of images coming from a single data acquisition campaign
(campaign number 2761 in Tab. 4.1). The results obtained from the images of the other
four campaigns are shown in App. B (Fig. B.1 to Fig. B.4).
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(a)

(b)

Figure 4.2: Centroid RADEC residuals (Scikit-image processing) - acquisition campaign
number 2761
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The Right Ascension residuals are found by multiplying the difference in angles with a
factor given by the cosine of the Declination. The reason is due to the geometrical features
of spherical triangles: a small angular error close to the tracklet may turn out to be quite
larger in terms of Right Ascension. Conversely, a large residual in the Right Ascension
can correspond to a small angular error on the tracklet. This comes from the fact that
Right Ascension is defined on the Earth’s equator at Declination = 0°. The way to correct
this phenomenon is to consider RAcos(DEC) to evaluate the residuals.
Observing the results shown in Fig. 4.2a and Fig. 4.2b, it is noted that it is almost
always present a difference that can reach few tens of arcseconds between the RADEC
coordinates obtained from the analysis of the cropped images in PNG format and the
same coordinates obtained from the analysis of full-scale images in FITS format. In some
cases, these differences are even bigger in terms of arcseconds, but in such circumstances
this is often due to a different identification of the tracklet by ASTRiDE. An example of
such a case is given in Fig. 4.3

(a) (b)

Figure 4.3: Example of different tracklet identification by ASTRiDE

The comparison between the two images shown in Fig. 4.3 refers to the group of points
at the top right in Fig. 4.2a and bottom left in Fig. 4.2b. In this case, the high values on
the residuals are due to a different identification of the tracklet, in particular to a partial
identification in the full-scale image in FITS format (Fig. 4.3a). Those cases in which
the residual value on the RADEC coordinates remains limited to a few tens of arcseconds
are observed even for a complete tracklet identification both in the full-scale FITS image
and in the cropped PNG image.
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The observed differences in the determination of the RADEC coordinates of the tracklet’s
centroid might depend on the loss of resolution associated with the image conversion.
Resolution down-scaling can in turn affect both the pointing accuracy during the astro-
metric calibration step and the tracklet extraction process, with the tracklet’s contour
points being detected differently with respect to the case in which the full-scale FITS
format image is analyzed.
Figure 4.4 shows the difference between the pointing obtained from full-scale images
down-scaled in resolution and converted in PNG format and the pointing obtained from
full-scale, high-resolution images in FITS format.

Figure 4.4: Pointing error of images in PNG format (Skimage processing)

These observed differences in pointing due to down-scaled resolution are not enough to
justify the differences observed in Fig. 4.2a and Fig. 4.2b. Resolution down-scaling has
an impact also in the different determination by ASTRiDE of the points that are part
of the tracklet’s contour and this affects the calculation of the position of the centroid.
An example is shown in Fig. 4.5, where 4.5a shows the refined tracklet as it is extracted
from the original FITS image, while Fig. 4.5b shows the same tracklet refined after it is
extracted from the image processed with Scikit-image library, converted in PNG format,
and cropped with a crop factor equal to 0.5.
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(a) (b)

Figure 4.5: Different segmentation after the refinement process - FITS format (a) and
PNG format Skimage processing (b)

A second check on the accuracy in determining the RADEC coordinates of the centroid
is performed by checking the value of the residuals on the RADEC centroid coordinates
calculated as the difference between the coordinates obtained from the image, corrected
with the data on the time bias, and those obtained from the propagation of the TLE
catalog data. These values are given in output at the end of the AstroDART pipeline.
Figure 4.6 compares the residuals obtained from the original full-scale FITS images with
those obtained from the cropped PNG images. The images are the same from which the
results shown in Fig. 4.2a and Fig. 4.2b were obtained. Also in this case, the results
associated with images coming from the remaining four acquisition campaigns are reported
in App. B (Fig. B.5 to Fig. B.8).
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Figure 4.6: Centroid RADEC residuals corrected with time bias (campaign 2761) - Skim-
age processing

From this graph and also from those reported in App. B, a trend of the points is recogniz-
able, which indicates a worsening in the precision with which the RADEC coordinates of
the centroid are obtained when passing from the original full-scale, full-resolution image
to the cropped, down-scaled, and converted image.

Matplotlib processing: success rate and computational cost

The next graph shows the results obtained performing the analysis on the same PNG
images, adopting in this case the strategy for the tracklet detection step involving a faster
but less accurate image processing (Matplotlib processing) and a less complex CNN ar-
chitecture. Numerical values from which the graph in Fig. 4.7 is obtained can be found in
Tab. A.2, where computational times and success rates associated with the most relevant
steps of the pipeline can be distinguished.
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(a)

(b)

Figure 4.7: Effect of size variation of PNG images on pipeline success rate and total
computational time (with Matplotlib.pyplot processing)
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Concerning the results shown in Fig. 4.7a and Fig. 4.7b, the most optimal points are
again those associated with a framed FoV of about 1°. It can also be noted that there is
a larger gap in terms of computational cost between full-scale images in FITS format and
cropped images converted to PNG format; in fact, the required time for completing the
pipeline drops from 35 to about 6 seconds per image. This is due to the higher resolution
loss that reduces the files’ size and also to the more rapid image processing and tracklet
detection steps, which are performed in only 0.8 seconds per image. The drop in resolution
goes from 4096 by 4096 pixels to 512 by 512 pixels. From the graph, it is also observed
a reduced ability of the pipeline to complete the analysis, compared to the case shown in
Fig. 4.1a. In the case of cropped images with a low crop factor, it is believed that this is
due to both the loss of resolution and the lower-quality image processing that cause a loss
of the information necessary to detect the light sources (stars), during the astrometric
calibration process. In the case of images with higher FoV, this is probably due again to
lower quality image processing, which lacks in emphasizing the tracklet within the image
and leads to an increasing number of failures during the tracklet extraction process, in
particular during the tracklet search with ASTRiDE.

Matplotlib processing: accuracy in determining RADEC centroid

coordinates

The precision in determining the position of the tracklet centroid and its RADEC coor-
dinates is evaluated also in this case in which a different image processing is adopted and
the resolution is further halved. Figure 4.8a and Fig. 4.8b show the difference between
the value obtained in output from the analysis of the cropped image in PNG format and
the value obtained from the analysis of the full-scale image in FITS format. The analyzed
images are those coming from acquisition campaign number 2761, the same from which
the results shown in Fig. 4.2a and Fig. 4.2b were obtained.
Also in this case, the observed differences are in the order of a few tens of arcseconds,
with outlier points indicating a difference in tracklet identification, like in the example
shown in Fig. 4.3.
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(a)

(b)

Figure 4.8: Centroid RADEC residuals (Matplotlib processing) - acquisition campaign
number 2761
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The differences in the values of the centroid RADEC coordinates between those obtained
from PNG cropped images and those obtained from the analysis of the whole image in
FITS format appear slightly higher than in the previous case, especially looking at the
data from the other four data acquisition campaigns, reported in App. B (Fig. B.9 to Fig.
B.12). This is consistent with the further reduction in resolution, which also leads to a
larger difference between pointing obtained from full-scale PNG images and that obtained
from full-scale FITS images during the astrometric calibration process, as can be seen in
Fig. 4.9

Figure 4.9: Pointing error of images in PNG format (Matplotlib processing)

This increase in pointing difference can be explained by the increase in the deg/pixel ratio
of the images having now a resolution of 512 by 512 pixels. Table 4.2 shows the trend of
the deg/pixel ratio as the image resolution varies.
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Image Image Resolution deg/pixel

format processing [pixels × pixels] ratio

FITS - 4096× 4096 1.87
PNG Scikit-image 1024× 1024 7.48
PNG Matplotlib 512× 512 14.7

Table 4.2: deg/pixel ratio variation with resolution

The difference in the RADEC centroid coordinates illustrated in Fig. 4.8a and Fig. 4.8b
is only partially due to the shift in pointing. The other cause is a different segmentation
of the tracklet by ASTRiDE, in the process of tracklet extraction. An example is given in
Fig. 4.10, where the same tracklet shown in Fig. 4.5 is reported, with the only difference
that now the comparison is made between the tracklet from the original FITS image and
the one from the image processed with the Matplotlib library, converted in PNG format,
and cropped with a crop factor equal to 0.5.

(a) (b)

Figure 4.10: Different segmentation after the refinement process - FITS format (a) and
PNG format Matplotlib processing (b)

Finally, the check on RADEC centroid time-bias-corrected residuals calculated as the
difference with respect to propagated TLE data is performed. Figure 4.11 compares the
time-bias-corrected residuals obtained from the original full-scale FITS images with those
obtained from the cropped PNG images processed with the Matplotlib library.
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Figure 4.11: Centroid RADEC residuals corrected with time bias (campaign 2761) -
Matplotlib processing

The trend is similar to that shown in Fig. 4.6, with a general worsening of residuals when
passing to images in PNG format. The only difference is that in this case, more marked
differences are observed between the cropped PNG images and the original FITS images,
as can be seen also in images from the other campaigns, reported in App. B (Fig. B.13
to Fig. B.16 ).

4.2. Pipeline performances analyzing images in FITS

format

In this section, the results obtained by performing the tracklet extraction process on the
cropped image in FITS format are reported. In this case, the original high-resolution is
preserved through the pipeline.

Success rate and computational cost

Figure 4.12a shows the trend of the pipeline success rate and of the required computational
time with the dimensions variation of high-resolution FITS images.
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(a)

(b)

Figure 4.12: Effect of FITS images size variation on pipeline success rate and total com-
putational time
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Numerical values from which the graph is obtained can be found in Tab. A.3. The track-
let detection step is performed adopting the slower but higher-quality image processing
(through Scikit-image library) and the more complex CNN architecture, and hence needs
about 6 seconds per image to be completed.
Observing the graph in Fig. 4.12 and comparing it with the analogous ones shown in
Fig. 4.1 and Fig. 4.7, it is possible to notice greater difficulty in identifying optimal
points, although the best results, which guarantee a high percentage of success rate of
the pipeline and a computational cost not particularly high, they are still obtained for
cropped images leading to frame a FoV of about 1°.
It is also noted that the cropping of the images brings a lower computational cost saving
compared to the cases in which images in PNG format are analyzed; this is because main-
taining the high resolution through the pipeline flow leads to a larger size of the files to be
analyzed. Considering a crop factor equal to 0.5 applied to the initial FITS images, there
is a saving in computational time of about 30%. It should also be remembered that this
computational cost saving is underestimated due to the initial selection of the analyzed
images, of which it is known a priori that they are successfully analyzed by the original
pipeline of the AstroDART tool.

Accuracy in determining RADEC centroid coordinates

The first check on the accuracy in determining the position of the tracklet centroid and
its RADEC coordinates is made by comparing the coordinates obtained from the cropped
FITS images with those obtained through the analysis of the full-scale FITS images, which
are taken as reference. Also in this case, only a subset of crop factors are considered,
in particular those corresponding to the most optimal points in Fig. 4.12. The results
obtained are shown in Fig. 4.13 , referring to to images coming from acquisition campaign
number 2761, the same of Fig. 4.2 and Fig. 4.8. The results obtained from images of the
other data acquisition campaigns are shown in the App. B (Fig. B.17 to Fig. B.20).
Also in this case, despite there is no loss of resolution, differences are observed on the
residuals of the RADEC coordinates, even if slightly lower than in the previous cases in
which the comparison took place with respect to images converted to PNG format.
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(a)

(b)

Figure 4.13: Centroid RADEC residuals (cropped FITS images) - acquisition campaign
number 2761
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To check if the astrometric calibration process may be the cause of these differences in the
centroid coordinates, a comparison is made between the pointing obtained from the center
of the cropped FITS images and that obtained from the corresponding point, within the
full-scale FITS image. The center of most of the cropped images coincides with the center
of the bounding box that encloses the tracklet, barring inaccuracies introduced during
the cropping step; the pixel coordinates of this point are known from the output of the
tracklet detection process carried out with the RID tool. Knowing from the astrometric
calibration process also the pointing of the center of the full-scale FITS image, it is possible
to obtain the RADEC coordinates of the point coinciding with the center of the bounding
box by applying an angular shift equal to the distance in pixels of this point with respect
to the center of the full-scale image, multiplied by the deg/pixel ratio. The steps taken
are reported in Alg. 4.1.

Algorithm 4.1 Pointing check
1: Astrometric calibration → (RAcenter, DECcenter)crop % Pointing of cropped FITS
2: Astrometric calibration → (RAcenter, DECcenter)full % Pointing of full-scale FITS
3: Astrometric calibration → deg/pix ratio % Value of deg/pixel ratio
4: Tracklet detection → (cx, cy)BB % Pixel coordinates of Bounding Box center
5: (Ox, Oy)full % Known pixel coordinates of the center point of full-scale FITS
6: ∆RA = (cx −Ox) ∗ (deg/pix ratio)/ cos ((DECcenter)full) % Shift in RA
7: ∆DEC = (cy −Oy) ∗ (deg/pix ratio) % Shift in DEC
8: %% Comparison between pointing from cropped FITS image and reference from full-

scale FITS image
9: Pointingcrop = (RAcenter, DECcenter)crop

10: Reference Pointingfull = (RAcenter, DECcenter)full + (∆RA,∆DEC)

The difference in pointing of the Right Ascension is computed taking into account the
corrective factor cosDEC. The results of this check are shown in Fig. 4.14. These
values are probably overestimated due to misalignments in the order of magnitude of the
deg/pixel ratio between the center of the image and the center of the bounding box,
introduced both during the image cropping step and during the steps reported in Alg.
4.1.
A direct comparison between the difference in pointing and the difference in RADEC
coordinates of the tracklet centroid is shown in Fig. 4.15, referring to the same subset
of images used in the previous graphs. The RADEC centroid coordinates and pointing
differences are compared between the full-scale and the cropped FITS (a crop factor equal
to 0.5 is considered).
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(a)

(b)

Figure 4.14: Pointing difference of cropped FITS images - All images (a) - Mean values
(b)
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(a)

(b)

Figure 4.15: Comparison of pointing and centroid coordinates differences between full-
scale and cropped FITS images (campaign 2761)
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The images characterized by a very high value of the centroid coordinates difference,
attributable to a misidentification of the tracklet in the full-scale image or in the cropped
image, were excluded from the graph shown in Fig. 4.15. Observing this graph, it is
noted that the differences in pointing remain within a certain range, in the order of
magnitude of the deg/pixel ratio, while the differences in the centroid coordinates reach
higher values. The same trend is observed also in the corresponding graphs, reported in
App. B (Fig. B.21 to Fig. B.24). This is explained by a slightly different segmentation of
the tracklet’s contour points, comparing the cropped image to the full-scale image. This
different identification of the edges, albeit slight, leads to a different value of the pixel
coordinates of the centroid and, consequently, to different RADEC coordinates. Some
images, both full-scale and cropped, were checked individually to verify the consistency
between the observed difference in the pixel coordinates and the observed difference in
the RADEC coordinates of the centroid, obtaining a positive feedback.
Finally, the check on RADEC centroid time-bias-corrected residuals calculated as the
difference with respect to propagated TLE data is performed. Fig. 4.16 compares the
time-bias-corrected residuals obtained from the original full-scale FITS images with those
obtained from the cropped FITS images. The same graphs, referring to the remaining
images from the other four acquisition campaigns, are showed in App. B (Fig. B.25 to
Fig. B.28)

Figure 4.16: Centroid RADEC residuals corrected with time bias (campaign 2761)



4| Results 59

Compared to the analogous graphs shown in Fig. 4.6 and Fig. 4.11 there is a smaller
distance between the points representing the cropped images and the points representing
the full-scale images and, above all, a trend that indicates greater accuracy associated
with the full-scale images is not as evident.
Table 4.3 shows the average values of the RADEC centroid residuals corrected with the
time-bias data for each data acquisition campaign, according to the different types of
images analyzed.

Campaign Coordinate
Full-scale 50% crop 50% crop 50% crop

FITS FITS PNG (Skimage) PNG (Matplotlib)

2756
RA cosDEC 8.6834 8.9686 9.4415 9.1413

DEC 14.9821 15.1835 16.3578 18.0213

2761
RA cosDEC 12.4134 12.2465 13.2382 13.7235

DEC 13.8708 13.5439 14.5204 13.9952

2762
RA cosDEC 0.3289 0.1728 0.7769 1.0070

DEC 2.0445 1.0295 4.7109 7.5317

2763
RA cosDEC 4.2885 3.7827 5.7966 6.5292

DEC 4.9578 4.4663 7.4551 7.5883

2764
RA cosDEC 9.8006 9.9425 10.9071 12.9254

DEC 11.8928 10.6264 14.4846 15.7634

Table 4.3: Mean values of RADEC centroid residuals corrected with time bias [arcsec]

Observing these data, it can be stated that the application of a crop around the original
image in FITS format maintains substantially unchanged the accuracy with which the
residuals of the RADEC coordinates corrected with the time-bias are obtained, starting
from the location of the tracklet centroid. On the other hand, a decrease in accuracy is
observed in cases where the analyzed images, before being cropped around the tracklet,
undergo a process of down-scaling in resolution and down-convertion in pixel color depth.
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developments

The approach proposed within this thesis is the result of the integration of an already ex-
isting pipeline for tracklet extraction and astrometric reduction with a Machine Learning
aided object detection tool trained to detect the light streaks within images obtained from
optical telescope acquisition and to indicate their position expressed in the image refer-
ence system. The upstream introduction of this tool before the original pipeline allows to
obtain information about the presence of the tracklet in the image and its position. This
allows to filter those images that do not contain any tracklet. If the tracklet is instead
present, it is possible to define a portion of interest in the original image, containing the
detected streak and the background starry sky. The original image can be cropped and
then it can undergo the process of tracklet extraction.
Since the ML algorithm requires some image processing, resolution down-scaling, and im-
age conversion into a new format, its introduction into the pipeline adds the possibility
to choose which version of an image to analyze, the original one as it is obtained by the
telescope, or the one processed, down-scaled in resolution, and converted to the new for-
mat. Two different image processing techniques were explored, each one associated with
a different resolution down-scaling intensity.
The performances of the new pipeline were compared with those obtained from the orig-
inal one. They were evaluated through three parameters, which are the pipeline success
rate, intended as the percentage of images on which the tracklet extraction process is com-
pleted, the cost in terms of computational time taken to complete it, and the accuracy
with which the angular coordinates of the framed object are obtained, after extracting the
tracklet and carrying out the refinement process that allows having more regular tracklet
shape.
Considering the optimal values of the crop factor and analyzing images in the converted
format with lower resolution, relevant reductions in the computational time were obtained,
while maintaining high success rates of the pipeline. The price to pay was a reduction in
the accuracy with which the position of the tracklet centroid and therefore the angular
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coordinates of the framed object were obtained. This is due to the loss of resolution, in-
herent in the transition to the new image format. In particular, the drop in computational
time went from the 35 seconds per image necessary for the analysis of the original image,
to the 12 or 6.5 seconds per image needed for the analysis of the cropped, resolution
down-scaled image, depending on the chosen image processing technique.
Maintaining the original image format and resolution and considering optimal crop val-
ues, a reduction in the computational cost was observed, even if less marked with respect
to the previous case, passing from 35 to 24 seconds per image. A high success rate of
the analysis was maintained and no significant variations in the accuracy with which the
position of the tracklet’s centroid is obtained were noted, even if the latter was observed
to be almost always slightly different from that obtained by analyzing the original image.
This led to the conclusion that the new pipeline architecture is advantageous concerning
the first two parameters of merit considered for the comparison, but that it is not enough
for improving the precision in obtaining the tracklet centroid. It is therefore believed that
the "bottleneck" lies in the tracklet segmentation process through the edge-detection al-
gorithm. This process is ruled by a set of parameters, the values of which determine
how the segmentation of the tracklet takes place. Fine-tuning these parameters would be
necessary to obtain an optimal detection of the contour points of the tracklet for each
image but this would require continuous manual intervention.
A possible way to make less variable the result on the position of the tracklet centroid
could be to apply a more "aggressive" refinement, which allows to obtain a smoother
tracklet contour. In addition, once the edges of the tracklet have been determined, it
could be advantageous to obtain a binary mask to distinguish the internal points of the
tracklet from the image background, and compute the centroid position as the average
of their coordinates. This could further limit the noisy effect observed in the tracklet’s
contour.
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A| Appendix A

The tables in this appendix contain, respectively, the data from which the graphs in Fig.
4.1, Fig. 4.7, and Fig. 4.12 are obtained. The computational cost and the success rate
associated with the most significant modules of the pipeline are reported, according to
the variation in the dimensions of the images.
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B| Appendix B

This appendix shows the graphs obtained from the remaining data acquisition campaigns,
corresponding to those shown in Chap. 4 relative to the subset of images obtained from
campaign number 2761.
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Scikit-image processing: accuracy in determining RADEC cen-

troid coordinates

Figure B.1: Centroid RADEC residuals (Scikit-image processing) - acquisition campaign
number 2756

Figure B.2: Centroid RADEC residuals (Scikit-image processing) - acquisition campaign
number 2762
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Figure B.3: Centroid RADEC residuals (Scikit-image processing) - acquisition campaign
number 2763

Figure B.4: Centroid RADEC residuals (Scikit-image processing) - acquisition campaign
number 2764
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Figure B.5: Centroid RADEC residuals corrected with time bias (campaign 2756) - Scikit-
image processing

Figure B.6: Centroid RADEC residuals corrected with time bias (campaign 2762) - Scikit-
image processing
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Figure B.7: Centroid RADEC residuals corrected with time bias (campaign 2763) - Scikit-
image processing

Figure B.8: Centroid RADEC residuals corrected with time bias (campaign 2764) - Scikit-
image processing
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Matplotlib processing: accuracy in determining RADEC centroid

coordinates

Figure B.9: Centroid RADEC residuals (Matplotlib processing) - acquisition campaign
number 2756

Figure B.10: Centroid RADEC residuals (Matplotlib processing) - acquisition campaign
number 2762
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Figure B.11: Centroid RADEC residuals (Matplotlib processing) - acquisition campaign
number 2763

Figure B.12: Centroid RADEC residuals (Matplotlib processing) - acquisition campaign
number 2764
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Figure B.13: Centroid RADEC residuals corrected with time bias (campaign 2756) -
Matplotlib processing

Figure B.14: Centroid RADEC residuals corrected with time bias (campaign 2762) -
Matplotlib processing
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Figure B.15: Centroid RADEC residuals corrected with time bias (campaign 2763) -
Matplotlib processing

Figure B.16: Centroid RADEC residuals corrected with time bias (campaign 2764) -
Matplotlib processing
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Cropped FITS images: accuracy in determining RADEC centroid

coordinates

Figure B.17: Centroid RADEC residuals (cropped FITS images) - acquisition campaign
number 2756

Figure B.18: Centroid RADEC residuals (cropped FITS images) - acquisition campaign
number 2762
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Figure B.19: Centroid RADEC residuals (cropped FITS images) - acquisition campaign
number 2763

Figure B.20: Centroid RADEC residuals (cropped FITS images) - acquisition campaign
number 2764
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Figure B.21: Comparison of pointing and centroid coordinates differences between full-
scale and cropped FITS images (campaign 2756)

Figure B.22: Comparison of pointing and centroid coordinates differences between full-
scale and cropped FITS images (campaign 2762)



B| Appendix B 83

Figure B.23: Comparison of pointing and centroid coordinates differences between full-
scale and cropped FITS images (campaign 2763)

Figure B.24: Comparison of pointing and centroid coordinates differences between full-
scale and cropped FITS images (campaign 2764)
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Figure B.25: Centroid RADEC residuals corrected with time bias (campaign 2756)

Figure B.26: Centroid RADEC residuals corrected with time bias (campaign 2762)
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Figure B.27: Centroid RADEC residuals corrected with time bias (campaign 2763)

Figure B.28: Centroid RADEC residuals corrected with time bias (campaign 2764)
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