
Politecnico di Milano

School of Industrial and Information Engineering

Master of Science in Mathematical Engineering - Statistical Learning

Lung Cancer Cell Images Classification by Fisher Vector
and Convolutional Neural Network Features

Supervisor: Prof. Giacomo Boracchi

Co-supervisor: Prof. João Batista Florindo

Candidate:

Giacomo Ruffoni Matr. 899361

Academic Year 2019-2020

2

Abstract

In the world of public health, one of the most critical problems about lung cancer is

making fast and good diagnosis. This is a task that can be efficiently solved by ma-

chine learning image classifications techniques. In this work we use a private dataset

consisting of lung cancer cells images divided in four classes: adenocarcinoma, epider-

moid carcinoma, OAT-cells and negative cells. To solve the classification task, we first

extract powerful images features truncating a Convolutional Neural Network still at

level of convolutional layers, training it from scratch or using transfer learning with

fine-tuned parameters, both with and without applying data augmentation. Images

features are then pooled by applying different types of pooling encoders, like Fisher

Vector, Bag of Visual Words and Vector of Locally Aggregated Descriptors. This is

done in order to make them more suitable to be classified by a linear Support Vector

Machine, which is trained with the pooled features. The experiments show that, using

data augmentation and fine-tuning the parameters of a pre-trained CNN, the results

obtained with FV encoding quite overtake all the other tested techniques (best mAP:

89.8% train, 70.4% test). This work demonstrates that the above mentioned structure

reaches competitive performance in solving medical image classifications tasks.

3

4

Sommario

Per la sanità pubblica, uno dei più grandi problemi riguardanti il cancro ai polmoni è

riuscire ad effettuare rapidamente diagnosi corrette. Questo compito può essere risolto

in modo efficiente mediante tecniche di classificazione di immagini con machine learn-

ing. In questo lavoro è stato utilizzato un dataset privato, costituito da immagini di

cellule di cancro ai polmoni suddivise in quattro classi: adenocarcinoma, carcinoma

epidermoide, cellule OAT e cellule negative. Per classificarle, vengono innanzitutto

estratte le caratteristiche delle immagini troncando una Rete Neurale Convoluzionale

a livello degli strati convoluzionali, sia allenandola da zero e sia utilizzando transfer

learning ottimizzando i parametri, in entrambi i casi con e senza data augmentation.

Le caratteristiche estratte vengono quindi raggruppate applicando diversi tipi di pool-

ing encoders, come Fisher Vector, Bag of Visual Words e Vector of Locally Aggregated

Descriptors. Questi hanno la funzione di renderle più adatte ad essere classificate da

una Macchina a Vettori di Supporto lineare, la quale viene poi allenata proprio con le

caratteristiche raggruppate. Gli esperimenti mostrano che, utilizzando data augmen-

tation e ottimizzando i parametri di una RNC già allenata, i risultati ottenuti usando

FV come encoder superano ampiamente tutte le altre tecniche testate (mAP migliore:

89.8% train, 70.4% test). Questo lavoro dimostra che la struttura sopra menzionata

raggiunge prestazioni competitive nella risoluzione dei compiti di classificazione di im-

magini mediche.

5

6

Contents

Abstract 3

Sommario 5

List of Figures 11

List of Tables 13

Introduction 15

1 Machine Learning Background 19

1.1 Unsupervised Learning . 19

1.1.1 Clustering Algorithms . 20

1.2 Supervised Learning . 23

1.2.1 Artificial Neural Networks . 24

1.2.2 Support Vector Machine . 30

1.2.3 Problem of Imbalanced Classes 36

2 Image Classification Problem 39

2.1 Medical Image Classification . 40

2.1.1 Lung Cancer Detection . 41

2.2 Problem Formulation . 42

2.2.1 Related Works . 44

3 Image Features: Extraction and Pooling 47

3.1 Convolutional Neural Networks . 47

3.1.1 The Convolution Operation . 48

3.1.2 General Architecture . 48

3.1.3 Learning Techniques . 55

3.2 Pooling Encoders . 59

3.2.1 Fisher Vector . 59

3.2.2 Bag of Visual Words . 65

3.2.3 Vector of Locally-Aggregated Descriptors 69

7

4 Proposed Solution 71

5 Experiments 79

5.1 Dataset . 79

5.2 Experiment 01 . 81

5.3 Experiment 02 . 87

Conclusions 89

Bibliography 90

Ringraziamenti 97

8

List of Figures

1 Percentage of lung cancer cases with respect to all the lethal cancers in

the EU states in 2015. Image taken from [4]. 15

2 Examples of lung cells for each class in the dataset. 16

3 Basic structure of the classification learning process implemented in this

work. The features are extracted still at the level of convolutional layers,

instead of right before the last fully-connected one. In particular, this is

what gives the big amount of local descriptors for each image. 17

1.1 Unsupervised Learning simple block scheme. 19

1.2 DBSCAN example with 2 clusters (taken from [2]). 20

1.3 Dendrogram example of a 6 elements hierarchical agglomerative cluster-

ing. It joins at each step the two nearest clusters according to the chosen

linkage criteria. 22

1.4 Supervised Learning simple block scheme. 23

1.5 Generic structure of a 1-hidden layer ANN with 9 total neurons. 25

1.6 Structure of a perceptron with 3 inputs and a bias. xi are the inputs, wi

their weights, b is the bias and y is its output. 25

1.7 L : R → R is a simple convex function. Here each red arrow represents

the direction of the negative gradient that determines the parameters

updating. Note how it gets shorter and shorter approaching the minimum. 29

1.8 2-dimenensional example of a SVM classifier for linearly separable data.

The red line represents the margin, the black line is the classification

hyperplane, i.e. f(x) = 0, while the dashed ones are the support vectors,

i.e. f(x) = ±1. 31

1.9 Example of observations mapped from a 2D space to a 3D one, where

non-linear separation surfaces can become well approximated by linear

ones. In real world applications, very high dimensional embedding spaces

are used. 34

9

1.10 Confusion matrix of a generic binary classification problem. “+” and “-”

represent the positive and negative class. TP and TN are respectively

the number of positive and negative samples correctly classified, while

FP and FN represent instead the negative and positive misclassified

observations. 37

1.11 Simple example of a Precision-Recall curve with 10 positive samples (i.e.

in C) and 20 negative ones. Taken from [15]. 38

2.1 Possible generic images inside a dataset. 2.1a, 2.1b and 2.1c represent

examples of Scene images, while 2.1d, 2.1e and 2.1f are instead examples

of Object images. 39

2.2 Brain Tumor Images. Taken from [42]. 40

2.3 Hands and Wrist Bone Fractures Images. Taken from [66]. 40

2.4 Intracranial Hemorrhages Images. Taken from [26]. 41

2.5 2.5a: imaging test via CT scan. 2.5b cytologic test via biopsy. 42

3.1 General structure of a convolutonal layer (taken from [6] and slightly

modified). The depth of the output depend on the number of channels

we set for the layer (hyperparameter). 48

3.2 General structure of a pooling layer (taken from [6] and slightly modified). 50

3.3 2 × 2 max pooling window with stride 2, on a 4 × 4 input image. It

partitions the input image into a set of non-overlapping squares1and, for

each sub-region, outputs the maximum. 51

3.4 Heaviside . 52

3.5 Sigmoid . 52

3.6 ReLU . 52

3.7 Here are shown the connections in a simple neural network structure.

(a) Without using the dropout layer. (b) Using the dropout layer. . . . 53

3.8 Flattening and fully connected layer with two final classes. 54

3.9 Example (taken from [5]) in 2 dimensions of K-means algorithm, with

K = 3 and random initialization of the centroids. Note how the three

centroids change position during the process. 66

3.10 In this image (taken from [1]) it is shown how the BoVW works: first the

features are extracted and then each image is represented as a frequency

histogram of its features. Here the constructed vocabulary has K = 4. . 67

4.1 Detailed scheme of the proposed classification process. After cropping

the images, the features are extracted. An encoder is then applied in

order to obtain the vectors of pooled features (we write “FV Pooling”

since it is the pooling encoder we propose to use). Finally, the vectors

are passed to a linear SVM to be classified. 71

10

4.2 Images pre-processing when training MyNet from scratch and when fine-

tuning VGG-m parameters. The first consists in augmenting the input

image, the second one is the subtraction of the average training image. . 72

4.3 MyNet architecture used during training. 72

4.4 VGG-m architecture used during training. Note that the las fully con-

nected layer outputs only 4 classes and not 1000, as it is in its original

framework. 73

5.1 Examples of lung cells for each class in the dataset. 80

5.2 Loss Function: log-loss, the value continues to decrease but without any

evident improvement. 81

5.3 Feature map of a random chosen cell extracted after 9th layer of MyNet. 81

5.4 MyNet trained from scratch. APs of the four classes using FV encoder. 82

5.5 5.5a: total acc = 81.1%. 5.5b: total acc = 66.0%. 83

5.6 Feature maps of a random chosen cell extracted after 13th layer of AlexNet

(5.6a) and VGG-m (5.6b). 83

5.7 APs of the four classes using FV. 84

5.8 Loss Function: log-loss, the value continues to decrease for training, but

stops and starts oscillating for test. 85

5.9 VGG-m fine-tuned. APs of the four classes using FV encoder. 86

5.10 5.10a: total acc = 89.5%. 5.10b: total acc = 69.5%. 86

5.11 APs for the two augmented dataset using FV. 88

11

12

List of Tables

4.1 MyNet architecture. The separation line between the 9th and 10th layers

indicates where we extract the image features before applying the encoders. 75

4.2 AlexNet architecture. The separation line between the 13th and 14th

layers indicates where we extract the image features before applying the

encoders. 76

4.3 VGG-m architecture. The separation line between the 13th and 14th

layers indicates where we extract the image features before applying the

encoders. 77

5.1 Train and test mAP values (in %) when extracting features with MyNet. 82

5.2 Train and test mAP values (in %) when extracting features with AlexNet. 84

5.3 Train and test mAP values (in %) when extracting features with VGG-m. 84

5.4 Train and test mAP values (in %) when extracting features with VGG-m

fine-tuned from the 9th layer to the last one. 85

5.5 Train and test mAP values (in %) when extracting features with VGG-m. 87

13

14

Introduction

Cancer globally represents one of the major problems in the world of public health. In

2013 ([9]) it was estimated that worldwide there were 14.9 million incident cancer cases

and 8.2 million deaths. Of all the types of cancer, the one with the highest number

of deaths is the lung cancer, with 1.6 million deaths (20% of the total deaths) and an

estimated annually growth of 1.8 million cases. Just in the European Union, around

312,000 people (213,000 men and 99,000 women) are diagnosed with lung cancer every

year. This makes lung cancer the second and third most commonly diagnosed cancer

in men and women, respectively ([38]). In terms of economic costs, lung cancer is the

first and represents the 15% of the total cancer cost in EU, with estimated 18.8 billions

in 2009 ([37]). Nowadays the needs and the challenges in this area are still multiple,

touching fields as patients rights, treatment cost, early diagnosis and tumor detection

techniques. In the last decade, many improvements have been made and patients life

quality has drastically increased, thanks also to more safe and effective therapies and

diagnostic tools.

Figure 1: Percentage of lung cancer cases with respect to all the lethal cancers in the
EU states in 2015. Image taken from [4].

15

There exist different types of lung cancers and a first categorization, both in terms

of danger and localization in the lung, is between Non-Small Cell and Small Cell ones.

To accurately give a diagnosis on the type of cancer, a pathologist has to take into

account many useful features that the cells may or may not present. Making fast and

good diagnosis represents often a problem and reducing the public health total cost

of lung cancer results difficult with an increasing number of cases per year arounf the

world. In particular, recognizing the lung cancer “patterns” in a given cell image re-

quires a “learning from experience” approach. The structure of this task is well suited

to be tackled by machine learning techniques, which could easily reduce both time and

cost of diagnoses. As a consequence, in order to do that efficiently, a world of ideas and

approaches opens up in front of the scientific community and several researchers have

studied and developed many different learning techniques to face and solve this problem.

The dataset used for this analysis is not public and was kindly offered by a col-

laboration with the Department of Pathological Anatomy, Faculty of Medical Sciences

and the Faculty of Mathematics, Statistics and Scientific Computation of University

of Campinas (UNICAMP), Brazil. As typically happens when collecting medical data,

it does not contain many samples. In particular, it is composed of 5277 lung cell im-

ages divided in four imbalanced classes that indicate the presence of the tumor and, in

the affirmative case, also its type. The four classes are Adenocarcinoma, Epidermoid

Carcinoma, Negative and OAT-cell. Examples of images are shown in Figure 2.

(a) Adenocarcinoma (b) Epid. Carcinoma (c) Negative (d) OAT-cell

Figure 2: Examples of lung cells for each class in the dataset.

The approaches that first tried to efficiently classify medical images were based on

shallow methods, which take into account low-level features of the images, relying on

things like colour, shape or texture. These traditional methods were performed di-

rectly classifying the extracted features making use of techniques like random forests

([48]) or support vector machines (SVMs) ([67]). The weaknesses of low-level features

are their poor ability to generalize to interpret high-level domain problems. New well-

performing techniques exploit instead the concept of deep-learning architectures, which

has the capability of detecting high-level features and can compute final classification

labels of the input images. The deep architectures that have been proven to be the best

16

in solving image classification tasks are the Convolutional Neural Networks (CNNs), a

specific type of neural networks that is able to take into account the position of fea-

tures inside the images. Their use is not just limited to classification, but also to other

related problems like, for example, segmentation ([49]). The CNN structure is able to

perform classification by itself, but many researchers used it, as with SIFT, to extract

the important features of the images and then pass them to a SVM classifier ([8]). The

CNN’s built in classifier allows to perform training end-to-end and, in general, is pre-

ferred to the SVM, since the latter often does not improve significantly the performance

of the classification. This is why experts usually think that it is not worth to use it.

The cause of this lack in performance improvement must be sought in the fact that

high-level features extracted with the CNN are not suitable to be well-interpreted by

a SVM, which, as a consequence, is not able to learn how to classify images.

Figure 3: Basic structure of the classification learning process implemented in this
work. The features are extracted still at the level of convolutional layers, instead of
right before the last fully-connected one. In particular, this is what gives the big amount
of local descriptors for each image.

To overcome this problem, we introduce, following the work of Cimpoi et al. ([19]),

a method called Fisher Vector (FV) that could be defined as a specific Pooling Features

Encoder. Here the features extracted from the CNN are called local descriptors and

can be seen as a sort of banks of non-linear filters. The FV allows the SVM classifier to

better interpret the information contained in these local descriptors, feeding it with a

more precise images representation than the one given directly by the CNN. In Figure

3 is shown how the pooling encoders, specifically the FV, intervene in the classification

process. We will also show that FV performance improvement quite overtakes also two

other types of pooling encoders: Bag of Visual Words (BoVW) and Vector of Locally

Aggregated Descriptors (VLAD). Moreover, two techniques to obtain local descriptors

from the CNN are tested. The first one consists in the Training from Scratch of the

network, in which the CNN parameters are randomly initialized and then trained ac-

cording to the target dataset. The second approach is the so-called Transfer Learning,

17

which exploits the fact that in literature there exist networks that have already been

trained on huge amount of data and could be reused to efficiently extract features from

completely new images. Since in our specific case the available training samples are

not so many, the second method is expected to quite overtake the first one. We also

exploit two more techniques: Data Augmentation and Parameters fine-tuning, which,

in particular, should be able to reduce overfitting and slightly improve the performance

of the experiments.

The main contribution of this thesis concerns the usage of the Fisher Vector as a

very efficient pooling encoder in solving lung cancer cell images classification problems,

where Convolutional Neural Networks are used as features extractors and a linear Sup-

port Vector Machine as classifier. Moreover, we also show that when a small amount of

training samples is available, as in the specific analysis on our dataset, the proposed so-

lution can be improved using Data Augmentation and Transfer Learning techniques, in

particular fine-tuning networks parameters. Specifically, we obtained the following im-

provements: 56.5% test mAP when training CNN from scratch, 70.4% test mAP when

using data augmentation and transfer learning with parameters fine-tuning (in both

cases using FV pooling and a linear SVM). This classification framework is promising

since, when given a small amount of data, the linear SVM is computationally easy to

train and it does not tend to overfit (unlike CNN’s built in classifier). Moreover, it

manages to exploit the high-level features extracted with the CNN and then pooled

using FV to perform multi-label classification.

18

Chapter 1

Machine Learning Background

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that aim to make

predictions or decisions. They are able to solve these tasks without being explicitly

programmed to do so, but building a mathematical model based on a set of input sam-

ples. Inside the ML world there exist many different approaches to do that, depending

on the type of data available to the learning system, its structure and also according

to the task the algorithm is asked to perform. The most part of these methods can be

divided into the following three groups: Unsupervised Learning, Supervised Learning

and Reinforcement Learning. We try to give a detailed explication of the first two

categories since the latter one is not exploited in this thesis.

1.1 Unsupervised Learning

The unsupervised learning is a machine learning technique that tries to divide in classes

a set of data that it’s not originally divided into labels, i.e. it’s not known a priori the

group each sample in the dataset belong to. The logical process of this approach is

shown in Figure 1.1.

Figure 1.1: Unsupervised Learning simple block scheme.

Generally speaking, the unsupervised learning does not need an enormous quantity

of data to give interesting results ([10]), but its performance is lower with respect to

the one that could be obtained with labeled data in a supervised learning framework

(1.2). To divide the inputs in groups, unsupervised learning techniques try to detect,

during processing phase, some common pattern between samples. Depending on the

chosen learning algorithm, this is done in different ways.

19

The two main families of algorithms used to classify data without labels are Clus-

tering and Association Rules. Here in this thesis, explaining the latter category would

be redundant and because of that we are presenting just the first one.

1.1.1 Clustering Algorithms

Clustering is an unsupervised learning technique that aims to group a set of data ob-

servations in such a way that the samples in different groups are very different between

each others, while those in the same group are very similar. The groups are also called

clusters. The mathematical evaluation of the notion of “different/similar” is usually

related to the distance between the data points, how they are distributed or the dense

areas they form in the samples space.

In the world of clustering, there exist many different ways to approach the problem of

how to assign samples to clusters, and so how to create them. Let’s so present some of

the widely used types of cluster models and algorithms.

1.1.1.1 Density-based Clustering

Density-based clustering is a technique based on the idea that the samples space could

be divided in clusters regions, in particular high point density and sparse ones. The

two most popular algorithms that exploit this concept are the Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) and the Mean-Shift.

• DBSCAN: this algorithm, originally proposed by [20], gathers observations ac-

cording to some density criterion that has to be satisfied. In the original variant,

this criterion is defined as the minimum number of objects within a radius.

Figure 1.2: DBSCAN example with 2 clusters (taken from [2]).

The main advantages of this method are that it is computationally light, it gives

almost always the same result for every run (the only points that are not deter-

20

ministically assigned to clusters are the border points) and it is able to identify

clusters of approximately any shape (see Figure 1.2). Its biggest disadvantage is

that it expects a density drop to identify the clusters borders.

• Mean-Shift: this algorithm is based on Kernel Density Estimation (KDE) and

follows the procedure of locating the modes of a density function (i.e. the chosen

kernel). It is an iterative process that starts with an initial point that is updated

at each step, moving it in the direction of a specific dense point area. This dense

area is evaluated just on the points inside a circle with center in the already men-

tioned point and a priori fixed radius (also referred to as bandwidth). The data

observations are assigned to a cluster if they lie inside this circle at least once

during the updating process.

As DBSCAN, mean-shift can detect arbitrary-shaped clusters, but due to an iter-

ative procedure that is computationally very expansive, its convergence is usually

slower. Another weakness of this method is that it doesn’t perform well in high di-

mensional samples space. Beside this, mean-shift presents many advantages: the

only hyperparameter to set is the bandwidth of the circle, which in practice also

indirectly determines the number of clusters; it requires no model assumptions -

other than the choice of the kernel - and, thanks to KDE, it is not so affected

by outliers, which at most could lead to the creation of singleton clusters. For

further details and to see how this algorithm could be improved see [16].

1.1.1.2 Connectivity-based Clustering

Also called Hierarchical Clustering, this class of models is based on the idea that the

closer two objects are in the samples space, the more probable is that they belong to

the same cluster. The two general approaches to perform hierarchical clustering are:

agglomerative, where at starting point each observation coincides with a cluster and

moving up into the hierarchy the clusters are joined, and divisive, in which all the

objects start in one cluster which is then split during the process. To measure the

distance between two observations x and y in the dataset, a metric d(x, y) has to be

chosen. The most common metrics are the Euclidian and the Manhattan distances

(see (3.36) for their mathematical expressions), but many others could be efficiently

used. To decide how to join/split clusters, it is necessary to define how to evaluate

“proximity” between them. To do that, the user has to choose one of the so-called

Linkage Criteria, which involve the use of the already chosen distance. Some of the

commonly well-performing criteria are:

• Single-Linkage Clustering. To evaluate the proximity between two clusters X,Y ,

it considers the shortest distance between objects of the clusters:

SL(X,Y) = min {d(x, y) : x ∈ X, y ∈ Y } (1.1)

21

• Complete-Linkage Clustering. Ideally very similar to the first type, this criteria

considers the maximum distance between objects:

CL(X,Y) = max {d(x, y) : x ∈ X, y ∈ Y } (1.2)

• Average-Linkage Clustering. In this criteria the average of all distances between

the elements of the two clusters is performed:

AL(X,Y) =
1

|X| · |Y |
∑
x∈X

∑
y∈Y

d(x, y) (1.3)

To show how the clusters are joined/splitted during the process, it is introduced a

diagram representing tree called dendrogram (see Figure 1.3).

Figure 1.3: Dendrogram example of a 6 elements hierarchical agglomerative clustering.
It joins at each step the two nearest clusters according to the chosen linkage criteria.

Since the hierarchical clustering does not give a unique clusters partition, there exist

many different evaluation methods that the user should take into account to decide

the final number of clusters (e.g. the Elbow Method). In data mining this clustering

model performs very well and is considered the theoretical basis in cluster analysis, but,

because of its high computational complexity, it is not so applied in real problems.

1.1.1.3 Centroid-based Clustering

In centroid-based clustering the number of clusters is a priori fixed. The clusters are

represented by a vector of centroids, one for each cluster. They may or may not

be members of the dataset and their initialization is usually done at random. The

algorithm that exploits this concept with good approximation and is one of the most

22

widely used in applications is the K-means clustering (also called Lloyd’s algorithm,

see [36]), fully explained in sect. 3.2.2.1.

1.1.1.4 Distribution-based Clustering

This category defines clusters simply as a set of samples belonging most likely to the

same distribution. This statistical and probabilistic point of view gives a great theo-

retical foundation to this method and allows to create very complex models, which can

usually well explain the data structure. Unluckily, they tend to overfit the data, i.e.

they are not able to generalize what they learn and may therefore fail in assigning a

cluster to new samples. This phenomenon could be reduced, for example, decreasing

the model complexity.

One of the best performing distribution-based clustering algorithm is the Expectation-

Maximization (EM) one, which exploits the so-called Gaussian Mixture Models (GMMs)

and will then be explained more in detail (3.2.1).

1.2 Supervised Learning

Supervised learning is a branch of machine learning that aims to create a function that

maps an input into an output based on training examples pairs (input, label) ([41]). It is

mainly used to solve two different tasks: classification and regression. Here we exploit

only the first one, which consists in being able to assign a label to new observation

based on the characteristics of each class learned using the training set. This training

set is employed from the learning algorithm to produce the above mentioned function,

which afterwards is used to map, i.e. to classify, the new observations (see Figure 1.4).

To correctly classify these new observations, the algorithm has to be able to generalize

as much as possible the “patterns” learned from the labeled inputs.

Figure 1.4: Supervised Learning simple block scheme.

Let now {(x1, y1), ..., (xI , yI)} be the training data, where the xi and yi represent

respectively the ith observation and its associated label. The objective of a generic

supervised learning algorithm is to search for a function g : X → Y , with X the

samples space and Y the labels one, that should be able to correctly classify the inputs.

23

The strongest hypothesis of supervised classification theory is that the samples in the

training set are independent and identically distributed pairs (i.i.d.). This assumption

tends to simplify the underlying mathematics of a lot of statistical learning tasks and,

even if it is often violated in real world, is likely to work well in practice problems.

We now introduce the Loss function L : Y × Y → R+, which allows to evaluate how

good is the function g at explaining the data and intuitively represents the “cost”

associated to a mistake of g in classifying samples. Said this, let’s define the so-called

expected loss or empirical risk of g:

R(g) =
1

I

I∑
i=1

L(yi, g(xi)) (1.4)

What the learning algorithms tries to do is minimizing, over g, this risk (empirical risk

minimization), or a slightly different function J(g) = R(g) + λC(g) (structural risk

minimization), where C(g) represents a penalty function that helps reducing overfit-

ting and regularizes the optimization, while λ > 0 is a hyperparameter that, in general,

is empirically chosen by cross-validation and controls the bias-variance tradeoff ([22]).

The penalties most commonly applied are the L2 and the L1 norms. Depending on the

selected learning algorithm, the choice of the loss function may vary a lot.

In the context of supervised learning classification, there exist so many different al-

gorithms - and also variants of the same algorithm - that would be impossible to

completely describe all of them here. In this thesis, we just make use of Support Vector

Machine and a specific case of Artificial Neural Networks algorithms, and hence they

will be addressed and explained more in details.

1.2.1 Artificial Neural Networks

An Artificial Neural Network (ANN), often simply called Neural Network (NN), is a

computing system that is inspired by the architecture of the human brain to perform

tasks like, for instance, image recognition ([63]). It is based on the presence of “units”,

usually referred as neurons, that process and transfer information (signals) between

each other through connections (see Figure 1.5). These neurons receive an input and,

after processing it, they produce an output. Each input of a neuron is either the

output of another neuron or an external feature set of values. The connections are the

ANN components that allow to transfer information between neurons. They do that

assigning to every neuron output a weight representing its importance in the network.

The neurons are usually grouped in three different types of layer: input, output or

hidden (i.e. internal to the network).

Mathematically, the action of a neuron is the following:

y = ψ

(∑
i

xiwi + b

)
(1.5)

24

Figure 1.5: Generic structure of a 1-hidden layer ANN with 9 total neurons.

where y is its output, ψ is the activation function (see 3.1.2.3), xi and wi are respectively

the ith input and its weight and b is a coefficient called bias which allows to perform a

shift of the activation function. In the context of supervised binary classification, the

easiest neural structure is the so-called Perceptron, first introduced in 1957 by Frank

Rosenblatt ([21]). Its structure, shown in Figure 1.6, is very simple: all the nodes in

the input layer are directly connected to a single output node (i.e. there is no hidden

layer) that uses as activation a Heaviside function or a shifting thereof (Figure 3.4). In

formula, setting t as the threshold:

ψ(x) =

1 x ≥ t

0 x < t
(1.6)

This structure is very straightforward and does not allow to solve very difficult tasks.

In the last decades, many improvements were introduced to this simple framework in

order to face all kind of machine learning problems. The two main types of ANNs are

the Recurrent Neural Networks (RNNs) and the Feedforward Neural Networks (FNNs)

([28]). Even if in this work we use just a specific subfamily of the second type, also the

first one is briefly introduced for completeness.

Figure 1.6: Structure of a perceptron with 3 inputs and a bias. xi are the inputs, wi
their weights, b is the bias and y is its output.

25

1.2.1.1 Feedforward Neural Networks

This family of NNs is the straightforward evolution of the concept of perceptron. They

are based on the fact that connections do not form cycles and the information starts

from the input layer and can only move forward in the network. These networks can

present many hidden layers and can be divided in subfamilies depending, for instance,

on the activation they use or on their specific architecture. We list some of them (other

than perceptron) and give a brief description of their differences:

• Multi-layer Perceptron: this type of FNN is the first generalization of the per-

ceptron and consists in the union of the neurons to form many layers. The

information is transmitted from the input layer to the output one creating con-

nections between them and the hidden layers. In the general case, the layers are

fully connected, which means that every neuron belonging to a layer receives as

input the weighted average of the outputs of all the neurons in the previous layer.

This means that every neuron output is passed to all the neurons of the following

layer. The Figure 1.5 already showed this structure.

• Radial Basis Function Network : it is a variant of the more general multi-layer

perceptron, in which the activation function is the so-called radial basic function

and not the one shown in (1.6). This is a real-valued function ψ that depends

only on the distance between a point c and the input x, i.e. ψ(x) = ψ(||x− c||),
where || · || is a chosen norm and c could be the origin or another fixed point

in the space of the inputs. In general, this network has just one hidden layer

and the chosen norm is the Euclidian, even if it has been proven that also the

Mahalanobis one perform well in image recognition problems. Usually the taken

RBF is the Gaussian:

ψ(x− c) = e−ε ||x−c||
2

(1.7)

with ε tuning parameter. This network often performs very well in function

approximation problems.

• Convolutional Neural Networks: these networks differ from the standard FNNs

because their hidden layers are not fully connected. In particular, they exploit

an operation called convolution which allows to detect the approximate location

of important and specific patterns and features in the inputs. They are very used

in the field of image classification and recognition and that’s why we are going

to describe them in details in sect. 3.1, where they are used to extract highly

specific features from images.

Thanks to their forward structure, the most suitable and widely used learning technique

for FNNs is the so-called backpropagation algorithm.

26

1.2.1.2 Recurrent Neural Networks

This type of ANNs has a structure that usually presents cycles (also called loops)

that connect the layers between each other and allow to transfer the information both

forward and backward during the training step, giving a dynamic temporal behaviour

to the network. In particular, each of the neurons inside the hidden layers receives the

input with a specific delay in time. This characteristic makes the RNNs particularly

suitable in solving tasks like time series prediction and anomalies detection ([13]) and

speech synthesis and recognition ([64]).

Since there exist several different types of RNNs and they are introduced here only for

completeness, we refer to [39] for a more detailed description.

1.2.1.3 The Backpropagation Algorithm

The backpropagation algorithm is used to make a feedforward neural network (1.2.1.1)

learn to detect the input characteristics. Its purpose is to efficiently pass the learned

information to all its layers through an updating of their parameters. To explain how

it works we first introduce some notations.

Let On and Wn be respectively the output and the set of parameters of the nth layer

of the network, with n = 1, ..., N (Wn and On are actually subsets of the network pa-

rameters and outputs sets W and O). Let O0 = X = {x1, ..., xI} be the set of inputs of

the first layer. From the general structure of a FNN, we can write On = F (Wn, On−1),

where F represents the chosen activation function (3.1.2.3). We also call Li the value

of the loss/cost function given the input xi.

As explained in [33], assuming we know the partial derivative of Li with respect to any

layer output On, it is possible to use the backward recurrence and write:

∂Li
∂Wn

=
∂F

∂W
(Wn, On−1)

∂Li
∂On

(1.8)

∂Li
∂On−1

=
∂F

∂O
(Wn, On−1)

∂Li
∂On

(1.9)

Here, ∂F
∂W (Wn, On−1) and ∂F

∂O (Wn, On−1) are respectively the Jacobian matrices of F

with respect to the weights W and the outputs O, evaluated in the point (Wn, On−1).

When these equations are applied in reverse to the network layers, i.e. from the N th

to the 1st one, all the derivatives of the loss function with respect to weights can be

calculated. Finding the gradient of the loss function “layer by layer” is computationally

much cheaper than doing that for each weight individually. This is why the backprop-

agation algorithm is so efficient and hence very commonly used.

The easiest learning procedure to adjust the weights, in order to minimize the loss

function in the backpropagation setting, is the so-called gradient descent.

27

1.2.1.4 Gradient Descent

The gradient descent is one of the most well performing optimization algorithms and

undoubtedly the most common in the field of neural networks. It consists of an iterative

process that aims to find a local minimum of a certain objective function. From now

on we use the same notation adopted in the backpropagation section.

Given a function L(W) that depends on the variableW and a point Ŵ in the input space

of L, we know that if the gradient of the function evaluated in that point, i.e. ∂L
∂W (Ŵ), is

non-zero, the direction of the gradient coincides with the direction of maximum growth

of the function L from point Ŵ . This is a useful property of differentiable functions

which is used in optimization problems to minimize a generic loss function and, hence,

to efficiently update the parameters of the network during training. In particular, when

trying to minimize the loss, the parameters are updated moving in the direction of the

negative of the gradient. If we instead move in the direction of the positive of the

gradient, the process reaches a local maximum of L and it is called gradient ascent. A

specific variant of the gradient ascent is the Stochastic Dual Coordinate Ascent (SDCA)

and it is used to solve, for instance, the maximization of the SVM dual problem ([54]).

Sticking to the case of a minimization problem, the formula for the parameters updating

between iteration t and t+ 1 is the following:

Wt+1 = Wt − η
∂L

∂W
(Wt) (1.10)

where η ∈ R+ is a small positive real number that defines the step size and is called

learning rate. Its value could be fixed a priori or vary during the updating process.

In general the algorithm guarantees convergence just to a local minimum, but if the

objective function L is convex the convergence is global. This is why the initialization

of the parameters is usually not negligible. To reach convergence, this method could

take many iterations since, often, the closer to the minimum, the smaller the value of

the gradient, i.e. the step toward the searched minimum. Check Figure 1.7 to have a

simple visual representation of the algorithm. There exist three variants of the gradient

descent, which differ in terms of the amount of data used to compute the gradient of

the objective function needed to adjust the network weights. This allows to make a

trade-off between the time needed to find the parameters update and its accuracy with

respect to the descending direction ([50]).

Batch Gradient Descent

The batch gradient descent, also called Vanilla gradient descent, is the basic version

of the gradient descent algorithm. It computes the gradient of the objective function

using all the available training data at once and hence performing just one update for

each of the preset epochs, which are the number of passes of the entire training dataset

28

Figure 1.7: L : R→ R is a simple convex function. Here each red arrow represents the
direction of the negative gradient that determines the parameters updating. Note how
it gets shorter and shorter approaching the minimum.

done by the machine learning algorithm:

Wfin = Win − η
∂L

∂W
(Win) (1.11)

This variant always reaches at least a local minimum, but has the disadvantages of

taking a very long time to find the result and being infeasible with large training sets

that do not fit in memory all at once. Morover, it recomputes gradients for similar ex-

amples before each parameter update (redundant information) and finally it prevents

an online actualization of the parameters with new observations.

Stochastic Gradient Descent

Stochastic gradient descent (SGD), unlike the already described batch gradient descent,

computes the parameters update for each training example in the data. In formula the

update for the (t+ 1)th iteration:

Wt+1 = Wt − η
∂L

∂W
(Wt ; (xi, yi)) (1.12)

where xi is the ith training example and yi its label. An important thing to do when

applying SGD is shuffling data at each epoch, since the order of the inputs may bias

the optimization.

The power of this method is that it eliminates redundancy of information and allows on-

line actualization. As a consequence of the one-sample updating, the algorithm results

very fast, but it usually presents fluctuations, which could complicate the convergence

to the exact minimum during training due to the fact that the gradient direction may

29

not be the best one. In practice, setting a decreasing learning rate with respect to the

epochs could help with this problem: it makes the SDG converge almost surely to a

local or a global minimum ([30]).

Mini-batch Gradient Descent

The mini-batch gradient descent tries to join both the already presented methods, per-

forming an update for every mini-batch of n training samples:

Wt+1 = Wt −
η

n

n∑
i=1

∂L

∂W
(Wt ; (xi, yi)) (1.13)

where the xi are the n training samples inside the considered batch and the yi their

labels. Note that to update the weights, this method uses the average of all the gradients

evaluated on all the inputs inside the considered batch. The commonly used number of

samples inside the batches ranges between 50 and 256, but can vary depending on the

applications ([50]). The trade-off highlighted by the batch size is the following: a small

batch makes the parameters updating very fast, but sometimes it causes the objective

function to diverge; a big batch size tends to eliminate fluctuations, but drastically

slows down the algorithm. For how it was built, this approach embraces the main

advantages of both the batch and stochastic gradient descents and deals very well with

their weaknesses. This makes it the best performing, and hence the most widely used

in many optimization problems, especially for neural networks learning tasks.

One of the things about gradient descent that really affects its convergence, besides

the batch size and the vanishing gradient problem (3.1.2.3), it is the value chosen for

the learning rates. For completeness, we just cite two techniques to do that in an

efficient way even if they are not being used in this work: via line search or using the

Barzilai–Borwein method.

1.2.2 Support Vector Machine

In this section is explained the theory behind a Support Vector Machine (SVM) classifier

and what its advantages are in applications. As already said, in supervised classification

problems it is called training data the set of all the given points {(xi, yi)}Ii=1, where xi

is the feature vector that describes the data point, yi takes the value ±1 and is the label

of the ith point1, I is the number of samples in the set. SVM training algorithm builds a

model that assigns new examples to one class or the other, making it a non-probabilistic

classifier. This classifier that SVM aims to construct is of the form:

y(x) = sign[f(x)] (1.14)

1The SVM was originally invented for binary classification problems and all the theory is based on
this hypothesis. The multi-class adaptation is going to be explained in a few pages.

30

where f(x) is a decision rule function that changes depending on the complexity of the

problem.

Hard-Margin SVM

This subsection is facing the special case of linearly separable data. Suppose to know

that there exists a surface in n dimensions that completely separates the training data,

i.e. an n− 1 dimensional hyperplane defined by:

f(x) ≡ w · x + b = 0. (1.15)

Here w represents the normal vector to the hyperplane and b its offset from the origin.

As shown in Figure 1.8, since the data is linearly separable, we can find the two parallel

hyperplanes that separate the data and such that the distance between them is as large

as possible (they are called support vectors). The region between them is called margin

and the maximum-margin (or largest margin) hyperplane is the one that lies halfway

between them.

Figure 1.8: 2-dimenensional example of a SVM classifier for linearly separable data.
The red line represents the margin, the black line is the classification hyperplane, i.e.
f(x) = 0, while the dashed ones are the support vectors, i.e. f(x) = ±1.

The regions defined by the support vectors are:w · xi + b ≥ +1 yi = +1

w · xi + b ≤ −1 yi = −1
(1.16)

which could be rewritten as:

yi(w · xi + b) ≥ 1 (1.17)

Geometrically speaking, the distance between them is 2
||w||2 . What the SVM algorithm

tries to do is maximizing it, i.e. minimizing ||w||2, applying the constraint showed in

31

(1.17). The resulting problem is then:

minimize:
w

1

2
w ·w

subject to: yi(w · xi + b) ≥ 1 i = 1, ..., I
(1.18)

The factor 1
2 in the objective function is just a coefficient that helps simplify some

algebra. The important consequence of this description is that the largest margin hy-

perplane is found just by looking at those xi’s that lie next to it and not all the data.

Soft-Margin SVM

Supposing that the data is linearly separable actually represents an unrealistic assump-

tion. To generalize the problem, this hypothesis is removed and in each constraint we

introduce a new slack variable ξi that acts as follows:

yi(w · xi + b) ≥ 1− ξi (1.19)

with ξi ≥ 0. The new problem is then the following2:

minimize:
w

1

2
w ·w + λ

∑
i

ξi

subject to: ξi ≥ 0,

yi(w · xi + b) ≥ 1− ξi i = 1, ..., I

(1.20)

In practice, ξi is usually calculated using the so-called Hinge Loss function as:

ξi = max(0, 1− yi(w · xi + b)) (1.21)

Note that ξi = 0 when (1.17) is satisfied, i.e. when the point is correctly classified using

the hyperplane found with Hard-Margin SVM, while if ξi > 0 the point cannot be

linearly separated. Here ξi represents the amount of discrepancy in the classification of

xi, i.e. the distance of xi from the corresponding class margin. 0 < λ < ∞ represents

a trade-off hyperparameter and its value could be improved with a process called

regularization. After all these considerations we could finally say that the Soft-Margin

SVM is a generalization of the Hard-Margin SVM specific case.

1.2.2.1 Computation of the SVM Classifier

In this section is explained how the SVM is computed, starting from defining another

way to see the minimization problem and then describing the so-called kernel trick.

2One possible variant is to use the Least Squares function as regularization term, i.e.
∑
i ξ

2
i , but

since it leads to more complicated equations and it has not been used in this thesis, it is not taken into
account.

32

Primal and Dual Problems

The problems in (1.18) and (1.20) are described as quadratic programming problems,

i.e. optimization problems with a quadratic objective function in at least one variable

(in our case w), subject to linear constraints over that same variable. These problems

are called Primal Problems of the two SVMs described algorithms. Every primal prob-

lem has a Dual Problem, which could be easily thought of a different way to solve the

primal one. In a nutshell, the process consists in finding the Lagrangian of the primal

problem:

L =
1

2
w ·w +

∑
i

αi[1− yi(w · xi + b)] (1.22)

which is the objective function incorporating the constraints. αi is the ith component of

the Lagrange multiplier vector and represents the new objective variable. The following

extremum conditions:

0 =
∂L
∂w

= w−
∑
i

αiyixi (1.23)

0 =
∂L
∂b

=
∑
i

αiyi (1.24)

are then substituted in (1.22). After some calculation and rearranging the result, we

obtain the following dual problem:

minimize:
α

1

2

∑
i,j

αiyi(xi · xj)yjαj −
∑
i

αi

subject to: α · y = 0,

0 ≤ αi ≤ λ i = 1, ..., N

(1.25)

The important result, which follows from Strong Duality and Kuhn-Tucker theorems

(to have more details see respectively [14] and [25]), is that the solution from the dual

problem α̂ coincides with the solution of the primal ŵ and b̂. Once α̂ is found, we just

need to substitute its value in (1.23) to find ŵ and then to substitute ŵ in the first of

the following Karush-Kuhn-Tucker conditions to find b̂:

α̂i
[
yi(ŵ · xi + b̂)− 1 + ξ̂i

]
= 0 (1.26)

(α̂i − λ)ξ̂i = 0 (1.27)

It is now straight forward that:

• α̂i = 0 : the data point xi is on the correct side of the margin.

• 0 < α̂i < λ : the data point xi lies exactly on a support vector.

• α̂i = λ : the data point xi is inside or on the wrong side of the margin.

33

What makes the usage of the dual so helpful is that almost all the calculations per-

formed to obtain its solution scale with the number of data points I (just the dot

product in the objective function scales with the dimensionality of the feature vector).

Even if it might seems odd in problems with many data points, in many others, as for

example image processing with not a lot of data but with huge feature vectors, this

could lead to a speed up of the training process (see SDCA in 1.2.1.4).

Kernel Trick

Suppose now that we would like to map a d-dimensional feature vector x into a D-

dimensional space, with D > d. This could be done imaging an embedding function ψ

as shown in the Figure 1.9.

Figure 1.9: Example of observations mapped from a 2D space to a 3D one, where non-
linear separation surfaces can become well approximated by linear ones. In real world
applications, very high dimensional embedding spaces are used.

The fundamental concept behind this function is that in D-dimensional space it

is possible to linear classify some data which, in the original space, could be labeled

only with a non-linear separating surface. Moreover, thanks to the dual formulation of

the problem, the dimension D could be set to be very high (i.e. a more precise linear

classifier) without changing the complexity of the problem, since as explained in the

previous section, it depends only on the number of data points.

We then introduce the so-called kernel function:

ki,j ≡ k(xi,xj) ≡ ψ(xi) · ψ(xj) (1.28)

which has the properties of being symmetric and having non-negative eigenvalues. Set-

ting this kernel in equation (1.25) in place of the dot product xi · xj and after some

calculation, it is easy to find the classification vector ŵ in the transformed space:

ŵ =
∑
i

α̂iyiψ(xi) (1.29)

34

The bias b̂ is calculated as before substituting in the Karush-Kuhn-Tucker equations.

Note that we do not actually need to know the explicit expression of the function ψ, but

only the matrix formulation of the kernel ki,j . Some example of good working kernels

are3:

Linear: k(xi,xj) = xi · xj
Power: k(xi,xj) = (xi · xj)p

Polynomial: k(xi,xj) = (axi · xj + b)p

Sigmoid: k(xi,xj) = tanh (axi · xj + b)

Gaussian Radial Basis function: k(xi,xj) = exp

(
− |xi − xj |2

2σ2

)
(1.30)

To conclude, a problem that arises when working in a high dimensional space is that

the SVM tends to overfit the data and hence the generalization error increases. In

practice, given enough data samples, this issue is solved and the algorithm still can

achieve good classification performances.

1.2.2.2 Multiclass SVM

The goal of Multiclass SVM is to predict labels of samples by reducing the single mul-

ticlass problem into multiple binary problems. There exist many different techniques

to do that, like Directed Acyclic Graph SVM (or DAGSVM) and Error-Correcting

Output Codes, but the most common and the one we choose to apply in this thesis is

the so-called One-vs-All one. This method consists in building a binary classifiers that

distinguishes between one of the labels and all the rest, and repeating the process for all

the existing labels. To apply this method, since the SVM is a deterministic classifier, it

is necessary to change the way the class is assigned. In particular, the equation (1.14)

is not used anymore and, each time we repeat the binary classification process for one

class versus the rest, a transformation of the decision rule function f(xi) = w · xi + b

is performed and a score is assigned to each input xi. This process is called calibration

and can be applied following different criteria. The one used in this thesis works as

follows:

yk(xi) =
w

mk −mrest
· xi +

b−mrest

mk −mrest
(1.31)

where i = 1, ..., N is the number of inputs, k = 1, ...,K is the number of classes, i.e. the

binary classifiers to be trained and mk and mrest are the medians of the f(xi), where

the xi’s belong respectively to class k and to all the rest of the classes. This method

could be seen as a sort of “median normalization” of the weights and bias trained

with the SVM and that’s why the scores yk(xi) are in general very close to zero. This

3In this thesis just the linear one was considered, the other proposed kernels could be part of a
further work study.

35

technique is not computationally expensive and, indeed, it is called cheap calibration.

One of the most common used calibration technique is the Platt scaling ([46]), which is

more computationally expansive and is based on transforming the outputs of the SVM

classifier into a probability distribution over classes. The use of this type of calibration

could be implemented in some further works. Regardless of the chosen calibration

method, the classification of new instances is performed by using a “winner-takes-all”

strategy: the classifier with the function that leads to the highest output yk(xi), for a

given input xi, is chosen to assign the new instance class.

1.2.3 Problem of Imbalanced Classes

Tackling the problem of binary classification, it happens that the given data is divided

in classes which are not balanced, i.e. contain a very different number of samples. In

this situation the classifier tends to misclassify the instances of the class containing a low

amount of data. The main issue here is that the accuracy of the model (i.e the portion

of correctly classified samples over the total number of samples) could be high even if

the classifier fails in assigning the label to all the observations of a low represented class,

just because the misclassified samples are not so much. The imbalance problem appears

in many real data analysis, but in general for only two different reasons. The first one

is that it is intrinsic to the real problem, e.g. in fraud/terrorist detection analysis,

where usually the number of fraud observations is much smaller than the “honest” one

([43]). The second cause is simply due to how the samples are collected and it does not

depend on the extent of the problem, like it happens in the dataset used for this work

(see section 5.1 for a precise description of the used dataset).

To solve this problem there exist many different approaches. Nowadays, Precision-

Recall (PR) Curve and Receiver Operating Characteristic (ROC) Curve are two of the

best and most widely used. The majority of the studies that deal with imbalanced data

employ the ROC approach, but we choose to apply the PR one because it leads to a

more accurate and intuitive interpretation of practical classifier performance ([51]).

1.2.3.1 Precision-Recall Curve

The Precision-Recall (PR) Curve is a technique that allows to evaluate the performance

of a binary classifier trained on imbalanced classes. As already said, the accuracy,

calculated as:

acc =
TP + TN

TP + FP + TN + FN
(1.32)

could fail in detecting misclassification for low represented classes. To deal with this

problem, in the PR method are introduced the following two quantities:

• Precision of class C:

p(C) =
TP

TP + FP
(1.33)

36

• Recall of class C:

r(C) =
TP

TP + FN
(1.34)

Check the Figure 1.10 to see the definition of the used variables and an example of a

generic confusion matrix for a binary classification problem.

Figure 1.10: Confusion matrix of a generic binary classification problem. “+” and “-”
represent the positive and negative class. TP and TN are respectively the number of
positive and negative samples correctly classified, while FP and FN represent instead
the negative and positive misclassified observations.

For a given class C, a precision score of 1 tells that all the samples predicted as

belonging to class C are correctly classified, while a recall score of 1 means that every

sample that belongs to class C is correctly classified. Since they give two different

interpretations of the goodness of the performance and between them usually exist an

inverse relation, they are both used to evaluate a classifier. Sometimes they are also

combined to form the so-called F1-score, defined as follow:

F1(C) = 2× p(C) r(C)

p(C) + r(C)
(1.35)

Besides that, the thing in which we focus is the plot of these two quantities, which allows

the visualization of performance. This curve is constructed by first plotting precision-

recall pairs, or points, that are obtained using different thresholds on a probabilistic or

other continuous-output classifier ([15]). A generic example of PR curve is shown in

Figure 1.11.

37

Figure 1.11: Simple example of a Precision-Recall curve with 10 positive samples (i.e.
in C) and 20 negative ones. Taken from [15].

What is really important about this plot is the area under the PR curve (AUCPR),

also called average precision (AP), which is a single number summary of the information

given by the curve. This quantity represents a score that can be used as comparison

between different models and, since both precision and recall lie in [0, 1], the value of

the area also lies in this interval. In particular, the higher the AP, the better the model

capability of identifying, and hence classifying, the samples of a certain class C. Since

the average precision is calculated for each given class, to evaluate the total model

performance it is introduced the mean average precision (mAP), which is nothing more

than the average of the APs of all the classes in the dataset.

38

Chapter 2

Image Classification Problem

As already explained in section 1.2, classification is a supervised machine learning task

that arises when, given an already labeled set of data, it is necessary or simply can be

useful to identify the common patterns shared by the observations in the training set

that belong to the same class. Since this task appeared to be very common in a lot

of research fields, a big slice of the scientific community have contributed, especially

in the last decades, to develop advanced classification approaches for improving the

classification accuracy.

(a) Forest (b) Beach (c) City

(d) Bag (e) Wardrobe (f) Couch

Figure 2.1: Possible generic images inside a dataset. 2.1a, 2.1b and 2.1c represent
examples of Scene images, while 2.1d, 2.1e and 2.1f are instead examples of Object
images.

39

For what concerns image classification, the given data consists in a set of images

(see Figure 2.1) that could be divided into scene and object ones. In this context, the

classification algorithms tries to learn the features that a certain class of images can

present and, by checking their presence, to decide if the selected image belongs or not

to a certain group. To perform classification, it is better to pass from image features

instead of directly use the original images. This because the features represent, loosely

speaking, salient points on the image and should be invariant to image transformations

like rotation, translation, scaling, lighting conditions and color, even if not without a

limit. In practice, this represents a complex problem and a challenge in the machine

learning research field: solving this task with an high accuracy requires an algorithm

that is able to efficiently identify the important features in the input images. Usually,

a great amount of samples in the dataset helps the learning of these features, but this

is something that in real-world is not always feasible.

2.1 Medical Image Classification

(a) Metastatic Bron-
chogenic Carcinoma

(b) Sarcoma (c) Glioblastoma

Figure 2.2: Brain Tumor Images. Taken from [42].

(a) Basal Fracture (b) Head Fracture (c) Shaft Fracture

Figure 2.3: Hands and Wrist Bone Fractures Images. Taken from [66].

40

(a) Intracerebral (b) Subdural (c) Subarachnoid

Figure 2.4: Intracranial Hemorrhages Images. Taken from [26].

In image recognition area, medical image classification proved to be a very useful tool,

helping doctors in disease diagnosis and stimulating many further researches. Its aim

is to classify medical images into different categories, which is a task that can overall

be divided in two steps: the extraction of images important features and the creation

of a model able to interpret those features in order to classify the input images.

Nowadays, the diseases in which this process is efficiently applied range from tumor

detection (Figure 2.2), bone fracture detection (Figure 2.3), identification of intracranial

hemorrhage (Figure 2.5) and many others. In the world of tumor detection, one of the

most important steps to be done in order to perform classification concerns the way

images are collected before being analyzed. We present briefly some of these techniques

for the specific type of cancer we aim to correctly classify: the lung cancer.

2.1.1 Lung Cancer Detection

In the field of medical research there exist many different tests that can be asked to

be done in order to check the presence of lung cancer. They differ in terms of price,

process time, accuracy in detecting the tumor and some of them result much more

invasive and harmful for the human body than others. Some of these techniques can

be grouped in two principal categories: imaging tests and cytologic tests.

• Imaging test : the aim of this type of tests is to identify the presence of an abnor-

mal mass or nodule inside the lungs looking at the inside of the body. This could

be done in many ways. The first is X-ray, which is not so accurate and is usually

followed by a Chest scan (also called CT scan), since it is very good in examining

lung tissue. The second one is the so-called Magnetic Resonance Imaging (MRI)

scan, which gives better results when the images need to be very detailed, looking

for cancer at places where, for instance, bone might interfere. The first method

is usually cheaper, but expose the patient to a minimal radiation that in some

situations, like pregnancy, is not appropriate. The test time also differs a lot, for

CT scan it takes approximately 5 minutes, while for MRI scan it could take from

15 minutes to 2 hours, depending on the part of the body being examinated.

41

• Cytologic test : in this category of tests, differently from before, the information

is obtained by examining the structure of specific cells. The process of studying

cells, group of cells and tissues is called Histological analysis and it uses techniques

like microscopic imaging technology and stains to detect the microscopic changes

occurring at cellular and tissue level. The first cytoligic method we describe

is the Sputum cytology, which looks for cancerous cells in lung secretions or

phlegm. The patient coughs up a sample of mucus, which is viewed under the

microscope to check the tumor presence. The other way to obtain these cells is

much more common and is performed by Biopsy. In this case, the extraction of the

suspicious tissue cells can be done passing through the main airways of the lungs

(Transbronchial biopsy) or through the chest (Needle, Thoracoscopic and Open

biopsy). Some of these techniques are very invasive, need general anesthesia and

are requested just if no other method was able to detect the tumor presence and

type. They are not so expansive, but sometimes cannot be performed without a

detailed map of the lungs (obtained for instance with CT scan). Their advantages

are that they give a very detailed information about the tumor type (which is

something that imaging tests do not always reach) and that the whole procedure

usually takes 15 minutes maximum (10-20 seconds for each cell sample).

(a) Imaging Test (b) Cytologic Test

Figure 2.5: 2.5a: imaging test via CT scan. 2.5b cytologic test via biopsy.

2.2 Problem Formulation

The innovation that machine learning brought in the field of medical image classifica-

tion is very remarkable. Every year, cutting edge techniques are developed and more

and more efficient methods are introduced and applied to solve new tasks.

In this work, we use cell images that are obtained digitalizing brush cytologic prepa-

rations, as it will be better explained in section 5.1. We believe that this will help in

perform a more efficient classification of the lung cancer cells since, in general, images

obtained with this procedure are more detailed than the ones obtained by imaging test.

42

Classifying lung cancer cells is a task that can be efficiently solved, once the images

are obtained, by a skilled pathologist. In particular, the process consists in identifying

specific anomalies that lung cells could present. In our specific case, as better explained

in section 5.1, we have four different classes: adenocarcinoma, epidermoid carcinoma,

OAT-cells and negative cells (the ones that haven’t been diagnosed with cancer pres-

ence). The machine learning classification process is not able to underline the chemical

differences between these four categories, like the fact they may or may not react to

some chemical agent, so, to describe their characteristics, we stick to their visual traits.

The cells affected by adenocarcinoma or epidermoid carcinoma are the most similar

and demonstrate poorly differentiated morphological features: they are, in general,

medium- or large-sized lung cells with high-grade nuclear atypia and the occasional

presence of multinucleous; they also show some gland-like formations and squamous

differentiation, respectively ([62]). On the contrary, OAT-cells present more distinct

characteristic that lead to a easier identification: small size, a round-to-fusiform shape,

scant cytoplasm, finely granular nuclear chromatin and inconspicuous, or even absent,

nucleoli ([59]). These morphological attributes are the features that a pathologist look

for when asked to classify a lung cell images. In the same way, the aim of a supervised

machine learning classifier is to implicitly detect those patterns inside the given images

and to learn how to assign them to the lung cancer class they actually belong to.

In the more general area of medical image classification, some of the nowadays main

challenges are:

• Lack of collected data. As already said, this is something that often happens in

real-world medical problems and it is difficult to deal with. It also remarkably

influences the goodness of the performance when training a network from scratch.

• Extract important features from images. In an image classification problem,

one of the most important tasks is being able to efficiently identify significative

patterns inside an image. The accuracy of the classification depends not only on

the amount of data available, but also on the ability of an algorithm to identify

these patterns and associate them with the respective class.

• Make features informative for a classifier. An expert pathologist can easily un-

derstand the characteristic of a disease in an image of a cell or in an x-ray scan,

interpret them and give an appropriate diagnosis. A classifier, instead, needs to

be fed with suitable features to be able to interpret them and correctly classify

an image.

We try to answer to the tasks above in the next subsection, where we present the

results obtained in some of the related works that guided us in formulating our proposed

solution.

43

2.2.1 Related Works

The first listed challenge is one of the most difficult task to solve in medical image classi-

fication problems. Usually, patient health data is — for good reasons — well protected

by patient data laws and the standards differ considerably from country to country,

which makes the issue even more complicated. Apart from the ethic reasons, on which

we have no possibility to freely intervene, deep learning experts have found practical

methods to use the small amount of available data at best. In [40] it is presented

how data augmentation can improve the classification performance, without physically

collecting new data, in three different medical frameworks: skin melanomas diagnosis,

histopathological images and breast magnetic resonance imaging scans analysis. Here

are compared traditional methods of data augmentation, based on combinations of

affine image transformations and color modifications, with other innovative methods,

like GANs, which are based on deep learning models. The first approach is still one of

the most used to face the issue of lack of data, since it is fast and easy to implement and

is successfully applicable to many fields, but it struggles in adding new visual features

to training images. The second approach performs slightly better, but has the flaw

of being computationally very expansive. Merging the two methods could bring huge

potential for improving data-hungry deep learning algorithms, but would still require

a high computational cost.

The second listed challenge can be tackled in many different ways and, to be effi-

ciently solved, gave rise to several techniques. In [35] these techniques are applied and

used to classify lung image patches with interstitial lung disease (ILD). In particular,

they compared the Local Binary Patterns (LBP) and the very popular Scale-Invariant

Features Transform (SIFT) performances, which are known for being feature extractors

that mainly rely on low-level features like shape or color, with other structures like the

unsupervised Restricted Boltzman Machine (RBM) and the supervised Convolutional

Neural Networks (CNN), which are instead high-level feature extractors. The results

showed that the last two widely overtook the first ones and that their ability to auto-

matically extract discriminative features, without applying any manual feature design,

efficiently led to an improvement of the classification. In particular, CNN performed

even better than RBM, which demonstrates the advantage of using a supervised fea-

ture learning over an unsupervised one. For all the techniques, except for the CNN,

a Support Vector Machine (SVM) was used as classifier, while for the CNN no sepa-

rate classifier was needed since it can use directly the final fully-connected layers (see

3.1.2.5). The only problem of using CNNs is that they need a lot of samples to cor-

rectly train their parameters, especially when the data do not present - as it often

happens with medical images - easy identifiable local and global structures like edges,

corners or specific shapes. To overcome this problem, researchers proposed a technique

called Transfer Learning which exploits the knowledge of networks that have already

44

been trained using, for example, a large set of labeled natural images. However, the

substantial differences between natural and medical images may advise against such

knowledge transfer. In [57], fine-tuning is presented as method that can help adjusting

the pre-trained network parameters in order to make them capable of extracting sig-

nificative features from medical images, without the need of having a large amount of

data available. Specifically, this technique is applied to AlexNet network and compared

with the same network trained from scratch, both tested on four distinct medical im-

age applications in three specialities (radiology, cardiology and gastroenterology). The

research showed that the use of a pre-trained CNN with adequate fine-tuning outper-

formed or, in the worst case, performed as well as a CNN trained from scratch and

that neither shallow tuning nor deep tuning was the optimal choice. Moreover, as it

was expected, fine-tuned CNNs proved to be more robust, with respect to training set

size, than the network trained from scratch.

The third and last challenge consists in making the extracted features suitable to

be classified by, for instance, a SVM. In [19], one of the main brought contributions

revisits classical ideas in texture modeling in the light of modern local feature descrip-

tors and Pooling Encoders. In particular, they illustrate the benefit of truncating the

CNN earlier - still at level of the convolutional layers - in order to obtain powerful local

image descriptors that can be combined with traditional pooling encoders, like Bag

of Visual Words or Improved Fisher Vector, to be classified by a SVM. Their results

reached the state-of-the-art in recognition accuracy in several benchmarks, including

diverse sets of visual domains. The outstanding outcome is that these solutions can be

obtained without the need of fine-tuning the CNN parameters, by implicitly reducing

the domain shift problem. One of the main findings of this work is that the performance

of the structure CNN + FV is often significantly superior than the ones reached with

all the other tested structures (e.g. SIFT + FV or CNN + FC) in texture, scene and

also object recognition. The difference in the results increases when considering deeper

CNN architectures. This can be in part explained by the ability of FV pooling to

overfit less and to easily integrate information at multiple image scales. The fact that

this structure is substantially less committed to a specific dataset than, for instance,

the one using the fully-connected layers, made us think that it would have been the

perfect layout to work with in our medical image classification framework.

All these previous works led us to create and test our own proposed solution

(4), which aims to put together the techniques mentioned above and create a well-

performing classifier for our lung cancer cells images.

45

46

Chapter 3

Image Features: Extraction and

Pooling

In general, a visual representation is a function that takes as input an image x and

transforms it to a vector φ(x) in a way that makes its content easier to understand.

When facing the problem of supervised classification of images, φ(x) represents the

features of the input image x. As explained in [19], it is useful to divide this map as

φ = φe ◦ φl, where φl represents the Local Descriptors Extractor and φe the Pooling

Encoder.

The first set can be divided in Hand-Crafted local descriptors, like Scale-Invariant

Feature Tranform (SIFT) or Local Binary Patterns (LBPs), and Learned ones, like

Convolutional Neural Networks (CNNs). It has already been proven that, concerning

image classification problems, the second category overtakes the first one and, because

of that, only CNNs are described in detail and used in the thesis.

3.1 Convolutional Neural Networks

The Convolutional Neural Networks are learned-type local descriptor that have had an

important role in the history of deep learning. They are a specialized kind of neural

network for processing data that has a known grid-like structure, like for example time-

series data (1-D grid) and image data (2-D grid).

CNNs are regularized versions of general feedforward neural networks and are able

to take advantage of the structural characteristics of the data, like the location of a

specific feature, and to use them for assembling more complex patterns. The name

“convolutional neural networks” indicates that they exploit a mathematical operation

called convolution1, which is a specialized kind of linear operation used in place of

general matrix multiplication in at least one of the network layers.

1The name convolution is used only by convention: technically speaking, the operation involved is
a sliding dot product or cross-correlation (see [23]). This has significance for the indices in the matrix
(it affects how weight is determined at a specific index point), but the idea behind the two operations
is exactly the same.

47

3.1.1 The Convolution Operation

The convolution is an operation on two (real-valued argument) functions that produces

a third function expressing how the shape of one is modified by the other. The operator

is defined as the integral of the product of the two functions after one is reversed and

shifted:

(f ∗ g)(t) =

∫
D
f(τ)g(t− τ)dτ (3.1)

where D is the domain of t.

In CNNs terminology, the first argument of the convolution is often referred to as the

input, and the second argument as the kernel (in our notation those arguments are

respectively f and g). The output is usually referred to as the feature map. Usually,

working on computers, the variable t is discretized and in the specific case of 2-D

image analysis, the domain D (and so the input of the two functions f and g) is two-

dimensional. In this case the equation (3.1) becomes:

(f ∗ g)(i, j) =
∑
m

∑
n

f(m,n)g(i−m, j − n) (3.2)

Discrete convolution can actually be seen as a multiplication by a matrix, which has

several entries constrained to be equal to other entries. In two dimensions, this matrix

is a specific type of block circulant matrix (for more details see [23]), and due to the

fact that the kernel is usually much smaller than the input image, as explained in the

next section, the matrix turns out to be very sparse.

3.1.2 General Architecture

A CNN is made of an input and an output layer, and contains various hidden layers -

determining its depth - which could be of many different types. Let’s describe them to

understand how they work and how they could be combined one another to form the

network structure.

3.1.2.1 Convolutional Layer

Figure 3.1: General structure of a convolutonal layer (taken from [6] and slightly mod-
ified). The depth of the output depend on the number of channels we set for the layer
(hyperparameter).

48

This type of layer is the core building block of a convolutional neural network. The

input is a n×m× d image, where n and m are respectively the width and the height

of the image, and d its depth (e.g. when considering an RGB input image, d is equal

to 3). The convolutional layer’s parameters consist of a set of learnable filters (or

kernels), which have a spatially small receptive field in width and height, but extend

on the full depth of the input volume. During the forward pass, we convolve each filter

across width and height of the input image, which in practice is equal to compute the

dot product between the input and the entries of the filter (see Figure 3.1). This will

produce a 2-dimensional activation map and, as result, the network learns how to detect

specific features at some spatial position. A complete convolutional layer is composed

of several feature maps (with different weight vector2), so that multiple features can

be extracted at same location. To ensure some degree of shift, scale and distortion

invariance, the CNNs combine three structural ideas (as explained in [32]):

• Local Receptive Fields: it is the region of the input image at which the filter is

connected. It depends on the size of the filter, which is a hyperparameter setted a

priori, and on the weights assigned to each connection, which are learned during

the training of the model. Since each neuron is connected to a small region of the

input image, the network is able to take into account its spatial structure and the

localization of its features.

• Shared Weights: as already said, the filters act on a certain receptive field and

“move” through the input image. If during this process the weights of the filter

in a particular layer do not change, we say that we are sharing weights. The idea

is that if a specific feature (like an edge) is important to be learned in a particular

part of the image, it may probably be important also in other parts. The great

advantage of using shared weights is that it is possible to substantially lower the

degrees of freedom of the problem (i.e. the number of parameters to learn and

optimize), which also implies a faster convergence to some minimum. Moreover,

this property has the effect of making the model less flexible, but this actually

works as a regularizer and helps avoiding overfitting, since the weights are shared

among neurons.

• Spatial Arrangement: three hyperparameters control the size of the convolu-

tional layer’s output:

– Depth: it corresponds to the number of filters we would like to use and

controls the number of neurons in a layer that connect to the same region

of the input volume. If for example the input is the raw image, different

neurons along the depth dimension may activate in the presence of various

blobs of color or oriented edges.

2The function that is applied to the input values is determined by a vector of weights and a bias
(typically real numbers), called filter. The learning process of the network consists in adjust iteratively
these filters.

49

– Stride: it controls how to allocate the result of the convolution around the

width and height. When the stride is 1 then we move the filters one pixel at

a time. Depending on the stride, we could find heavily overlapping receptive

fields between the columns, and also large output volumes.

– Zero-Padding : sometimes it results useful to pad with zeros the border of

the input image. Padding allows us to control the output volume spatial

size, which is often preserved in the convolutional layers.

The spatial size of the output volume can be computed as follows:

W − F + 2P

S
+ 1 (3.3)

where W is the input volume size, F is the filter (kernel field) size of the convolutional

layer neurons, S is the the stride with which they are applied and P is the amount

of zero-padding used at the border. If the number given from the formula (3.3) is not

an integer, it means the strides are not correct to make the neurons fit the input in a

symmetric way.

3.1.2.2 Pooling Layer

Another important component of CNNs are the pooling layers, which are used to per-

form a non-linear down-sampling (see Figure 3.2). As explained in [53], their purpose

is to achieve spatial invariance by reducing the resolution of the feature maps.

Figure 3.2: General structure of a pooling layer (taken from [6] and slightly modified).

Their units combine the input from a small n × n patch of units. This pooling

window can be of arbitrary size and different windows can be overlapping (depending

on the stride). Pooling layers operate independently on every depth slice of the input

and serve to progressively reduce the spatial size of the representation, i.e. the number

of parameters. They also help controlling memory waste and finally the overfitting on

training data. It is common to periodically insert a pooling layer between successive

convolutional layers in a CNN architecture. Intuitively, the idea behind the use of

pooling is that the exact location of a feature is less important than its rough location

relative to other features.

50

Figure 3.3: 2×2 max pooling window with stride 2, on a 4×4 input image. It partitions
the input image into a set of non-overlapping squares3and, for each sub-region, outputs
the maximum.

There are several non-linear functions to implement pooling, among which max

pooling (shown in Figure 3.3) and average pooling are the most commonly used.

3.1.2.3 Activation Layer

As known from theory, the output y of a Linear Neuron is represented as:

y =
∑
i

xiwi + b (3.4)

where i is the index over the input connections, xi and wi are respectively the ith

elements of input vector x and weight vector w, and b is the bias. The activation

function ψ : R→ Y acts as follows:

y = ψ

(∑
i

xiwi + b

)
(3.5)

and its role is to decide whether a neuron should be activated or not. Its purpose is to

introduce non-linearity into the output of a neuron and to help normalize it (usually Y
is set equal to [0, 1] or [−1, 1]). The simplest activation function is the Heaviside (see

Figure 3.4):

ψ(x) =

0 x < t

1 x ≥ t
(3.6)

This function imposes a threshold t that determines if the neuron is activated or not,

but presents some problems in classification with more than two classes. One of the

most used activation function is the so called Sigmoid function (Figure 3.5):

ψ(x) =
1

1 + e−x
(3.7)

3The shape of the window could also be a rectangle: “Region of Interest” (RoI) pooling is a max
pooling variant, where output size is fixed and input rectangle is a parameter (details in [24]).

51

This function presents several advantages: it is non-linear, its output is in the range

[0, 1] (i.e. the activation cannot “blow up”), it can do not-binary classification and it

has a very smooth gradient4.

The biggest problem that occurs with sigmoid activation function is that it gives rise

to a phenomenon called “vanishing gradient”. The sigmoid has the tendency to bring

the values of y to either the end or the beginning of the curve (i.e. any small change in

the values of x, in the region around 0, will cause values of y to change significantly),

which means the gradient in those regions is very small and y tends to respond very less

to changes in x. The main consequence is that the network “refuses” to learn further

or drastically slows down.

Figure 3.4: Heaviside Figure 3.5: Sigmoid Figure 3.6: ReLU

The most common activation function used in convolutional neural networks is

called ReLU function (Rectified Linear Unit), it is shown in Figure 3.6 and it is math-

ematically equal to:

ψ(x) = max(0, x) (3.8)

The biggest advantage of the ReLU activation is its efficiency: because of its structure,

it does not let all the neurons “fire” (sparse activation) and the network results lighter

(unlike the sigmoid function, with which the activation is dense and it is very costly).

Unfortunately, the ReLU activation function also presents some disadvantages. The

first one is that its output range is [0,+∞] and, since it is not bounded, it could “blow

up” the activation, which computationally represents a limit. Its second weakness is

the so-called dying ReLU problem: because of the horizontal line for negative x, the

gradient go towards 0 and stops adjusting the weights during descent. This means that

the neurons going into that state will stop responding to variations in error/input. This

problem could cause many neurons to just “die”, making a not negligible part of the

network passive. There are variations of the ReLU to mitigate this issue by simply

imposing a little slope on the horizontal part. This technique is called Leaky ReLU

(see [65]).

4This result is very important during the backpropagation step.

52

3.1.2.4 Dropout Layer

The dropout is a regularization technique used in neural networks learning problems

(e.g. with a CNN architecture) that generally leads to a reduction of the network overfit

on the training set. This is done by approximating the train over a large number of

neural networks with different architectures in parallel ([3]).

In practice, the dropout layer could be used with most types of layers, such as convo-

lutional or dense fully connected layers, but not the output one.

Figure 3.7: Here are shown the connections in a simple neural network structure.
(a) Without using the dropout layer. (b) Using the dropout layer.

During the training phase this method randomly drops-out, according to certain

probabilities5, some nodes of the network (see Figure 3.7), in order to ignore them

and to avoid the fact that they generally appear multiple times simultaneously in the

considered model. In this way, each update to a layer during training is performed

with a slightly different network and, consequently, with a different point of view on

the configured layer. The final result is obtained by performing the weighted average

of all the different models.

This technique is computationally cheap and very effective as a regularization method.

Its consequences, in addiction to overfitting reduction, are:

• It creates a noise in the training process, making the nodes less or more responsible

for the inputs.

• It improves the generalization error, i.e. the measure of how well a classification

algorithm is able to classify unseen data.

• It leads to a more sparse training representation.

Concluding, the dropout layer usually tends to improve the network performance when

applied, but slightly increases the processing time in the learning stage.

5This is a hyperparameter which coincides with the probability to retain or not a node.

53

3.1.2.5 Fully Connected and Loss Layers

The fully connected layer is an essential component of CNNs and have been proven

very useful in computer vision6. Its role is to classify the original input image into a

label using the output of the conv/pool layers. This output is flattened, i.e. converted

into a 1-dimensional vector of values, before entering the FC layer (see Figure 3.8). A

standard CNN structure can have more than one FC layer, but the important thing

is that the output of the last one has dimension equal to the number of labels. The

output of the last FC layer, for each image xi ∈ X = {x1, ..., xI}, is a vector yi ∈ RC

where C is the number of labels and every real value (yi)k in the vector is the kth class

score for the ith image.

Figure 3.8: Flattening and fully connected layer with two final classes.

After this, a loss layer is applied, which is always the last layer of the neural network.

Its role is to adjust the weights (initially setted at random) across all the network,

going through the backpropagation process (1.2.1.3). There exist many types of loss

functions and each one is appropriate for different tasks. Its choice can be a challenging

issue as the function must capture the properties of the problem and be motivated

by concerns that are important to the project. One of the most used with CNNs is

the Log-Loss (also called Cross Entropy in information theory), which can predict a

single class in a set of mutually exclusive classes. More precisely, it is based on the

concept of Maximum Likelihood Estimation (MLE), which is a method of estimating

the parameters of a probability distribution by maximizing a likelihood function over

the parameters space. Let X = {x1, ..., xI} be the images dataset and Y = {y1, ...,yI}
the output of the model, which follows a distribution with density function f depending

on a parameter w. The likelihood function is then defined as follows, both for a single

6The fully connected layer can be seen as an order-sensitive pooling encoder (3.2), but because of
its low flexibility it is exploitable just with CNNs. That’s why it is described in this section.

54

sample and for all the training set:

pw(yi;xi) = f(yi|w) → pw(Y ;X) =

I∏
i=1

f(yi|w) (3.9)

In other words, the likelihood is equal to the product of probability densities of every

outcome yi when the true value of the parameter is w. The problem of maximizing this

function should intuitively select the parameter values that make the observed data

most probable. In practice, it results helpful to work with the natural logarithm of

the likelihood (log-likelihood) since it presents some nice properties as monotonicity

and it generally simplifies the representation of very big numbers. In classification

tasks, it is common to treat MLE as a minimization problem, since the loss function

should represent the cost committed in assigning wrong labels to samples. That’s why

the used function is the so-called negative log-likelihood (NLL). In formula, after some

computations:

L(w) = −
I∑
i=1

ln (pw(yi)) (3.10)

where {yi}Ii=1 is the output of the model, i.e. of the last FC layer. This function

coincides exactly with the Log-Loss applied in the loss layer of the CNN.

Since each output yi of the FC layer is a vector of real numbers, we need to apply a

transformation to interpret them as belonging probabilities to each class. We introduce

then the Softmax function σ : RC → RC , defined as:

σ((yi)k) =
e(yi)k∑C
j=1 e

(yi)j
k = 1, ..., C (3.11)

After being normalized with the softmax function, all the components of yi will belong

to the interval (0, 1) and will add up to 1. That’s why they can be interpreted as

probabilities. The result of σ(yi) is what in the expression of the loss function is

indicated as pw(yi).

3.1.3 Learning Techniques

In this section are presented two different learning approaches that exploit all the

concepts presented so far. The first one is the Training from Scratch learning, in which

the CNN is trained for the first time on the target dataset. This method generally

needs a lot of data to reach high accuracy performances, but it has the advantage of

leaving to the user the choice of the most appropriate network structure, depending for

instance on the amount of samples and on the images characteristics.

The second approach is the so-called Transfer learning. The basic idea here is that in

literature there exist network structures that have already been successfully trained on

huge amount of data and that, with slight modifications, could be reused to classify

55

images taken from a new dataset. The biggest asset of this approach is that it usually

does not need a big amount of samples to perform well.

Both these approaches present weaknesses that, in real-world problems, could lead to

bad classification results. Because of that, we also present here some methods for

improving their classification performance.

3.1.3.1 Train from Scratch

Training a network from scratch needs the user to take a lot of decisions that could

lead the performance to sensibly grow or decrease. The first one, and probably also the

most important, is the choice of the network structure. In section 3.1.2 we described

the different layer types of a CNN and their role inside the network, but not how to

efficiently link them together. Unluckily, in literature there are no theoretical rules that

leads to an always well-performing network, but only some guidelines. The most part

of the effort in selecting the structure that best fits a certain problem is done empiri-

cally. In the last decades, many different architectures were tested on many different

problems to expand the empirical knowledge baggage and to reach good classification

performances even without solid theoretical foundations.

After deciding the suitable network structure, we need to set the regularization tech-

niques that help avoiding overfitting and also some important hyperparameters, like

the number of epochs, the learning rate and the gradient descent batch size. The three

main regularization techniques commonly applied are the already described dropout

layer (3.1.2.4) and the L1 (Lasso) and L2 (Ridge) penalty regularization of the loss

function. Another technique that can be thought of as a regularization one is data

augmentation, which usually results in an increasing of the accuracy when the training

set does not contain many observations.

The learning of the CNN consists in the updating of the layers weights through the

backpropagation process in order to minimize the value of the loss function and, in

some way, to make the network “understand” what are the important patterns to be

recognised in the input images.

Data Augmentation

It is of common knowledge that the more data a learning algorithm has access to, the

greater can be its effectiveness. Data augmentation is a technique that allows to in-

crease the amount of images in the training set7, without actually collecting new data,

by applying transformations that are class-invariant for the original images. Some ex-

ample of transformations are: rotation, rescale, flip, crop, shift and gaussian noise.

The class-invariance of these transformations strongly depends on the type of data that

is being analyzed, reminding that the goal is to not increase the irrelevant data, i.e. to

7It is actually possible to use data augmentation also for the test sample to make the prediction
more robust.

56

use transformations that do emphasize the important features of the data structure.

As described in [40], data augmentation give us another not negligible advantage: it

represents a way we can reduce model overfitting. This is done increasing the amount

of training data using information contained only in our training data. The model per-

formance increases by reducing data bias and improving model generalization. When

the original dataset is small the augmented images can be stored directly in memory;

this technique is called offline data augmentation. If the dataset is large we can instead

apply the so-called online data augmentation, which consists in considering augmented

batches of data and fed the network with them.

Cost-Sensitive Learning

The cost-sensitive learning is based on the idea that the misclassification errors of a

model have to be weighted differently depending on the membership to a certain class.

As the Precision-Recall curve (1.2.3.1), this technique helps to deal with the problem

of imbalanced classes, but with the difference that it is applied just during the CNN

training phase (both when training from scratch and when fine-tuning the parameters

in transfer learning), while the PR curve it is used after the classification with the SVM,

regardless of how the local descriptors are extracted. In real-world binary classification

problems exist many cases in which the actual “cost” of misclassifying a sample from

the positive class is bigger than misclassifying the negative ones (e.g. fraud/cancer

detection), which in practice lead to the definition of the so-called cost matrix C:

C =

[
c(++) c(+−)

c(−+) c(−−)

]
(3.12)

where the rows represent the predicted classes and the columns the actual ones (to

see the related confusion matrix check Figure 1.10). The elements of this matrix, if

possible, are set through prior knowledge - i.e. an expert opinion on how it would cost to

misclassify each class - but sometimes happens that this information is not available. In

this case the cost is taken inversely proportional to the number of samples in each class.

To better understand this, suppose the positive class contains 100 samples while the

negative one just 1. The cost c(+−) of misclassifying a true negative is set to 100, while

c(−+) to 1. The costs of correctly classifying positive and negative samples, respectively

c(++) and c(−−), are usually set to 0. All the assigned costs are used in the total cost

expression to give more or less importance to certain misclassified samples with respect

to others. This is done weighting the misclassified samples in the loss function with

respect to their class of belonging ([47]). To heuristically apply this technique during

the CNN training, we first create a vector of weights that is then passed to the loss

layer (3.1.2.5), which will multiply every sample by its corresponding class weight before

computing the loss function. This is a particular way to apply cost-sensitivity, called

weighted learning.

57

3.1.3.2 Transfer Learning

This technique is one of the most common and most used in machine learning. De-

scribed in a nutshell, the focus of this method is on the reuse of some type of knowledge,

obtained solving a certain problem, to a new and different issue, which is somehow re-

lated to the first one. More precisely, it consists in taking the parameters of an already

trained network (generally on a very large dataset, like ImageNet) to exploit its feature

extraction topology in a new classification problem.

As explained in [58], this need arises from the fact that the collection of new samples

could be very difficult and expensive in real world applications and that an insufficient

number of training data is an inescapable issue in some special domains. It seems then

very useful to use, as a starting step, good classification results that have already been

reached, with the goal of successfully learn a new task with a very good performance

and in less time. Generally speaking, the training data must be independent and iden-

tically distributed (i.i.d.) with the test data, but using Transfer Learning it is possible

to relax this hypothesis, which means that the model in target domain does not need

to be trained from scratch. This helps to reduce significantly the demand of training

data and training time in the new domain. Another advantage of using this technique

is that it also deals with the problem of overfitting. This is because the transferred

network is trained on a different set of data and this, in a certain way, makes it less

“expressive” with respect to the new one. This means that the model does not produce

an analysis that corresponds too closely or exactly to the new set of data to which it is

applied. Usually, the architecture of pre-trained networks used for image classification

is specific for a certain type of dataset (e.g. dimension and type of the input images or

the number of labels in which the network is classifying) and so, in order to make them

work, some modification to their architecture or to the dataset are needed. In general,

the features are extracted from the layer that acts before the classification ones, but

this is not always true and depends also on the complexity of the network with respect

to the new dataset (more precisely, if the network is very deep, while the used images

are small and “simple”, the features could be extracted from an earlier layer).

Parameters fine-tuning

With transfer learning, the best results are usually found when the dataset on which the

network was originally trained and the dataset of our problem are very similar. If this

does not happen, or if we just want to try to increase the performance of our model, it

is possible to fine-tune the parameters of the pre-trained network and “adapt” them to

the new dataset. This is done re-training the network on the images of interest, using

again the backpropagation algorithm and the batch gradient descent to minimize the

loss function and to update the network weights.

Given the L layers from the pre-trained network, this technique could be applied in

different ways:

58

• Entirely : it is possible to train again all the L pre-trained layers, using their

weights as initialization for the new training process.

• Partially : in this case we could just choose to re-train the first or last N < L

layers, in order to model the new distribution of data for the new task, or we could

add new layers on top of the N pre-trained ones and train them from scratch.

In both cases, we need to “freeze” the layers that we don’t want to re-train and

make the other ones learn faster. This is done by changing the value of their

Learning Rate in order to accelerate the parameters adjusting.

The fine-tuning process does not always lead to an improvement in the classification

performance of the model, but compared with a network trained from scratch, it is

generally more robust to the size of the training set and, if used adequately, it usually

performs better ([57]).

3.2 Pooling Encoders

The idea of this work is not to directly make use of the CNN as a classifier, but to

exploit its characteristics in order to efficiently extract features from the lung cancer

cell images8. These features are collected and organized in the form of local descriptors.

The role of pooling encoders is to take as input the extracted local descriptors and to

produce a single feature vector which aims to be well suitable for tasks as classification

with, for example, a linear Support Vector Machine (SVM, see 1.2.2).

A smart way to divide encoders is considering whether they take into account the spatial

configuration of input features or whether they discard it (i.e. if the map φe, introduced

at the beginning of this chapter, is invariant or not to some permutation of the input).

This two different types of pooling encoders are respectively called Order-Sensitive and

Orderless ones. An example from the first family of pooling encoders is the already de-

scribed Fully-Connected Layer, while from the second one we are going to describe the

Fisher Vector, the Bag of Visual Words and the Vector of Locally-Aggregated Descrip-

tors. In our specific experiment framework, we present their classification performances

in chapter 5.

3.2.1 Fisher Vector

The Fisher Vector (FV) is an image representation obtained by pooling local image fea-

tures. Its encoding process is based on the concept of Fisher Kernels and its adaptation

to image classification ([44], [52]).

8When the dataset is not so big, as in our case, it would be better to extract features from an earlier
layer of the convolutional stage, as this will be set in more general patterns than the later ones.

59

3.2.1.1 The Fisher Kernel

The Fisher Kernel (FK) is a map that gives a ‘natural’ similarity measure which takes

into account an underlying probability distribution. As the name suggests, this function

derives a kernel which is directly extracted from a generative model of the data. In the

case of FV, this model coincides with a Gaussian Mixture Model (GMM) and can be

interpreted as a “universal probabilistic visual vocabulary”. In a few words, the FK

characterizes the samples by their deviation from the GMM9.

Let X = {xi, i = 1, ..., I} be a sample of I observations xi ∈ RD. Let pλ be the

probability density function which models the generative process of the observations.

λ = [λ1, ..., λM]′ ∈ RM is the vector of the M parameters of pλ. Note that in our case

pλ coincides with a weighted linear combination of Gaussians.

In statistics, the Fisher score function is defined as:

GXλ = ∇λ log pλ(X). (3.13)

It indicates the slope of the log-likelihood function evaluated in a specific point of the

parameter vector λ. Put differently, it represents how the parameters vector λ should

be modified to better fit the data X. Note that GXλ ∈ RM , and hence its dimensionality

does not depend on the size I of the samples set.

Let’s define the Fisher Information Matrix (FIM) as in [11]:

Fλ = E
[
GXλ G

X′
λ

∣∣λ] = Ex∼pλ
[
GXλ G

X′
λ

]
(3.14)

with Fλ ∈ RM×M . This matrix measures the information about the parameters λ that

is contained in the samples in X. As proposed in [27], the Fisher Kernel can be seen

as the similarity measure between two samples Xi and Xj as follows:

KFK(Xi, Xj) = G
X′
i

λ F−1λ G
Xj
λ (3.15)

Let’s now note that, since Fλ is positive semi-definite, its inverse exists and it is positive

semi-definite too. Hence, we can make use of the following Cholesky decomposition:

F−1λ = L′λ Lλ (3.16)

and finally rewrite the kernel as the new dot-product:

KFK(Xi, Xj) = G
X′
i

λ L′λ LλG
Xj
λ = GX

′
i

λ G
Xj
λ (3.17)

The normalized gradient vector GXλ ∈ RM is called Fisher Vector of X. The biggest

advantage of this formulation is that linear classifiers can efficiently learn from this

9In a general classification procedure, the class for a test object can be estimated by minimising,
across classes, an average of the FK distance (which is equivalent to maximize the average of the FK
similarity) from each known member of the given class to the new object.

60

representation, since a non-linear kernel machine using KFK as kernel is equivalent

to a linear kernel machine using the FV as feature vector. This is beneficial because

training a linear classifier is way less computationally expensive than training a non-

linear one.

3.2.1.2 Application to Images

Let now X = {xi, i = 1, ..., I}, with every xi ∈ RD, be the local descriptors extracted

from an image (e.g. with CNN). Substituting (3.17) in (3.13) and assuming indepen-

dence between samples10, it is possible to rewrite the FV as:

GXλ =

I∑
i=1

Lλ∇λ log pλ(xi). (3.18)

Under this assumption, the FV coincides with a sum of normalized gradient statistics

computed for each local descriptor. This statistics embed the extracted features in a

higher-dimensional space where, as showed in Figure 1.9, they are more suitable to

be separated by a linear classifier. As already mentioned, we choose the pλ to be a

GMM and we denote its parameters by λ = {wk, µk,Σk} with k = 1, ...,K, where wk

represents the mixture weight of Gaussian k, µk its mean vector and Σk its covariance

matrix. We can now write:

pλ(x) =

K∑
k=1

wkfk(x) (3.19)

where fk denotes the density function of the D-dimensional Gaussian k:

fk(x) =
1

(2π)D/2|Σk|1/2
exp

(
−1

2
(x− µk)′Σ−1k (x− µk)

)
. (3.20)

To actually make sure pλ(x) is a distribution, the following constraints are imposed on

the weights:

∀k : wk ≥ 0 ,

K∑
k=1

wk = 1 (3.21)

In this representation, the matrix Σk is supposed diagonal ∀k11, and we call σ2k the

variance vector, corresponding to the diagonal of Σk. The parameters of the GMM

are estimated on the training set of local descriptors (usually a subset Y of X) using

the Expectation-Maximization (EM) algorithm to optimize the maximum likelihood

criterion. To obtain the expressions of all the normalized gradients we first need to

10Concerning images, this assumption is generally incorrect, but it is possible to deal with it as
explained in the next section on FV normalization.

11This reduces significantly the number of parameters to learn and is usually an acceptable compro-
mise in vision applications. If the data is significantly correlated, it can be beneficial to de-correlate it
by PCA rotation or projection in pre-processing.

61

adopt the following re-parametrization:

wk =
exp (αk)∑K
j=1 exp (αj)

(3.22)

and so the new parameter vector is λ = {αk, µk,Σk}. Once set this, we introduce a

quantity called soft assignment of xi to the Gaussian k (or posterior probability):

γi(k) =
wkfk(xi)∑K
j=1wjfj(xi)

(3.23)

It is important to specify that in all this section the operations of division, exponenti-

ation, power or square root of vectors must be considered as term-by-term.

The last remaining step is computing the Cholesky decomposition matrix: Lλ = F
− 1

2
λ .

As shown in Appendix A of [52], under some assumption on γi it is possible to consider

the matrix F diagonal. Taking this into account and after some math calculation we

find the three normalized gradients:

GXαk =
1
√
wk

I∑
i=1

(γi(k)− wk) (3.24)

GXµk =
1
√
wk

I∑
i=1

γi(k)

(
xi − µk
σ2k

)
(3.25)

GXσ2
k

=
1√
2wk

I∑
i=1

γi(k)

[
(xi − µk)2

σ2k
− 1

]
(3.26)

The resulting fisher vector GXλ is just the concatenation of these three normalized

gradients. Note that to avoid the dependence on the sample size, the final FV is

normalized by the coefficient I (in the algorithm 1 this sample size normalization is

already performed in the gradients calculation step): GXλ ←
1
IG

X
λ .

The algorithm presented could also be expressed, and consequently solved, in terms of

the following statistics, with S0
k ∈ R, S1

k ∈ RD and S2
k ∈ RD:

S0
k =

I∑
i=1

γi(k) , S1
k =

I∑
i=1

γi(k)xi , S2
k =

I∑
i=1

γi(k)x2i . (3.27)

3.2.1.3 FV Normalization

The normalization of the FV is a necessary step to obtain good results using a linear

classifier. The methods used in this thesis and proposed by [45] act as follows.

L2-normalization: in image processing can happen that different images contain dif-

ferent amounts of background information. Let’s assume that given an image, its

descriptors X follow a distribution d. Thanks to the law of large numbers and to eq.

62

(3.13) we obtain:

1

I
GXλ ≈ ∇λEx∼d log pλ(x) = ∇λ

∫
x
d(x) log pλ(x)dx (3.28)

Suppose it is possible to decompose d in an image-specific part which follows a certain

distribution q, and an image-independent (background) part which follows pλ:

d(x) = ωq(x) + (1− ω)pλ(x) (3.29)

with 0 ≤ ω ≤ 1 representing the proportion of image-specific information inside the

image. If we try to estimate λ maximizing Ex∼d log pλ(x), at least locally and approx-

imately, we can write:

∇λ
∫
x
pλ(x) log pλ(x)dx = ∇λEx∼pλ log pλ(x) ≈ 0 (3.30)

Substituting first eq. (3.29) and then eq. (3.30) in (3.28) we obtain:

1

I
GXλ ≈ ω∇λ

∫
x
q(x) log pλ(x)dx (3.31)

This shows that the background information can be approximately discarded by the

FV. To finally get rid of the dependence on ω we can just apply the L2-normalization

to the FV12. The operation of normalizing the FV could also be interpreted in terms

of changing the kernel in (3.17) as:

K(Xi, Xj) =
K(Xi, Xj)√

K(Xi, Xi)K(Xj , Xj)
(3.32)

Power Normalization: empirically speaking, it has been noticed that the more the

number of Gaussians increases, the fewer descriptors xi are assigned with a significant

probability γi(k) to each Gaussian. This means, in other words, that the fisher vectors

tends to become sparse. Remind that, on L2-normalized vectors, the dot product

coincides with the L2 distance and that this is not a good measure of similarity on

sparse vectors. Let’s then introduce the following transformation:

g(z) = sign(z)|z|p (3.33)

with 0 ≤ p ≤ 1. This function is applied to each dimension of the fisher vectors, right

before the L2-normalization step, in order to reduce the sparsity of the representation.

The value p represents a hyperparameter and is chosen to be equal to 0.5. Because

of this, in this specific case the transformation in (3.33) is also called Signed Square

Rooting.

12Actually this would work normalizing by any Lp-norm. The value p = 2 is justified from the fact
that it is the natural norm associated with the dot product.

63

The algorithm to compute the normalized FV - also called Improved Fisher Vector

(IFV) - from the local descriptors is resumed in the algorithm 1.

Algorithm 1: Improved Fisher Vector (IFV) Algorithm

Input:
- GMM parameters: λ = {wk, µk,Σk; k = 1, ...,K}
- Local Image Descriptors: X = {xi}Ii=1 , xi ∈ RD ∀i

Output:
- Normalized Fisher Vector: GXλ ∈ RK(2D+1)

1. Expectation Maximization algorithm for the GMM
- Introduce αk and γi(k), ∀k = 1, ...,K:

wk =
exp (αk)∑K
j=1 exp (αj)

, γi(k) =
wkfk(xi)∑K
j=1wjfj(xi)

- Compute the normalized gradients:

GXαk =
1

I
√
wk

I∑
i=1

(γi(k)− wk)

GXµk =
1

I
√
wk

I∑
i=1

γi(k)

(
xi − µk
σ2k

)

GXσ2
k

=
1

I
√

2wk

I∑
i=1

γi(k)

[
(xi − µk)2

σ2k
− 1

]
- Concatenate all the FV components:

GXλ =
(
GXα1

, ...,GXαK ,G
X
µ1

′
, ...,GXµK

′
,GXσ2

1

′
, ...,GXσ2

K

′)
2. Normalization of the FV

- Signed Square Rooting normalization ∀i = 1, ...,K(2D + 1):

[GXλ]i ← sign([GXλ]i)
√
| [GXλ]i |

- L2-normalization:
GXλ = GXλ

/
||GXλ ||L2

64

3.2.2 Bag of Visual Words

In computer vision, the Bag of Visual Words (BoVW) is an encoding technique, first

introduced in [34] and then widely used in many classification problems, where the

(frequency of) occurrence in a vocabulary, of each detected feature, is used for training

a classifier (in this thesis a linear SVM classifier).

To explain how the vocabulary is constructed and how the BoVW works, we first need

to introduce the famous clustering algorithm called K-means.

3.2.2.1 The K-means Algorithm

The K-means algorithm was theoretically introduced in 1956 by H. Steinhaus ([56])

and is still one of the most used and well-performing in unsupervised machine learning

to solve clustering tasks. In short words, the algorithm objective is to partition the

observations and assign each of them to one of K clusters, using a specific association

technique.

Given the set of observations X = {xi, i = 1, ..., I}, with xi ∈ RD ∀i, the algorithm

tries to divide them in K sets, with K obviously smaller than I, called clusters and

indicated as:

S = {S1, ..., SK} (3.34)

Its objective is to minimize, over all the possible sets of clusters S, a quantity called

Within-Cluster Sum of Squares (WCSS) that represents the variance of the clusters

and is defined as:

WCSS (S) =
K∑
k=1

∑
xj∈Sk

||xi − ck ||2 (3.35)

To do that, the algorithm is divided in two essentials steps. In the first one, we initialize

a set of cluster centers or means ck, with k = 1, ...,K, and all the data points are

assigned to the cluster with the nearest center. To evaluate the distance between the

centers and the samples many distances could be used. For completeness, here are

reported just the two most used possibilities13:

Euclidian Distance: d(xi, xj) =

√√√√ D∑
d=1

(
[xi]d − [xj]d

)2
Manhattan Distance: d(xi, xj) =

D∑
d=1

∣∣∣ [xi]d − [xj]d

∣∣∣
(3.36)

The distance used in this thesis is the Euclidian one because it tends to give better

clustering performances ([55]).

13With [·]d we indicate the dth element of the vector inside the brackets. This notation is used here
to avoid misunderstandings, since the vector already presents a subscript.

65

The next step is the updating of all the K centroids, and this is done as follows:

ck =
1

|Sk|
∑
xi∈Sk

xi , ∀k (3.37)

Once this is done, the algorithm restart the process, reassigning all the samples to the

K clusters in the same way as done in the first step, but using the new found centroids.

It generally stops when no point is reassigned to a cluster that is different from the one

it belonged at the step before. Computationally, this always leads to convergence. To

grafically see an easy 2-dimensional example of how it works, see Figure 3.9.

(a) Starting Point (b) 5th iteration (c) 10th iteration

Figure 3.9: Example (taken from [5]) in 2 dimensions of K-means algorithm, with
K = 3 and random initialization of the centroids. Note how the three centroids change
position during the process.

There exist more than one way to initialize the clusters. The common one for K-

means consists in randomly choosing K samples from the dataset and use them as first

centroids. The algorithm doesn’t always find the global optimum since the result may

depend on the initialization, but thanks to the fact that WCSS is quadratic (and so

positive), at least a local optimum is always reached.

3.2.2.2 Application to Images

Let X = {xi, i = 1, ..., I}, with every xi ∈ RD, be the local descriptors extracted from

an image. As for the FV, the encoder could be applied to any subset of features Y ⊂ X,

but we will keep the already used notation. The objective is to create a vocabulary

C = [c1, ..., cK] ∈ RD×K , also called codebook (this is equal to the set S of the notation

used in 3.2.2.1), and to assign each local feature xi to its closest visual word14 in the

dictionary. The bag of visual words corresponds to the vector of occurrence counts of

the visual words, i.e. a histogram over the vocabulary C (see Figure 3.10).

14The use of the nomenclature “visual word” derives from the fact that this representation was
originally used in Natural Language Processing (NLP) problems. In the context of image classification,
the so-called words are represented by the image features.

66

Figure 3.10: In this image (taken from [1]) it is shown how the BoVW works: first the
features are extracted and then each image is represented as a frequency histogram of
its features. Here the constructed vocabulary has K = 4.

These visual words are obtained during the training step by performing the K-

means clustering algorithm over the local features xi. The centroids ck of the clusters

corresponds to the visual words of the vocabulary and are randomly initialize. Mathe-

matically speaking, the occurrence counts for each cluster are:

bk = #{xi: xi is assigned to ck} (3.38)

The final BoVW of X is aggregated and average pooled as follows:

BX =
(
b1, ..., bK

)
, BX ← 1

I
BX (3.39)

Besides this, all the techniques of post-processing normalization applied afterwards are

the same as the ones described in 3.2.1.3.

Note that the BoVW algorithm assigns just a single visual word to each of the features

descriptors in an image. This is called hard-assignment and it is one of the biggest

differences between the BoVW and the FV encoder. This way to assign samples to

clusters mainly presents two problems:

• Codeword uncertainty: problem of selecting the correct visual word out of two or

more relevant candidates.

• Codeword plausibility: problem of selecting a visual word without a suitable

candidate in the codebook.

67

Compared with the soft-assignment used for FV, the hard-assignment does not delivers

the mean information of code words and the shape of their distribution. Even with all

these weaknesses, the BoVW still represents the state-of-the-art in many applications,

e.g. large scale content based image retrieval.

In practice it has been proven ([18]) that for the BoVW the average pooling could

be substituted with the max pooling and that, depending on the problem and on the

normalization used in the post-processing, this could lead to a better performance.

Nevertheless, in this thesis we keep using the first described pooling in order to better

compare the results from the different encoders.

The BoVW general advantages are the invariance to scale and orientation of the image

and the good interpretability of the encoding, while the main disadvantages are that

it ignores the spatial relationships among the local descriptors and that creating the

codebook from large amount of data is generally costly.

The pseudo-code of the BoVW algorithm is shown in alg. 2. Here it is not reported its

post-processing normalization, as for the FV, even if performed in practice.

Algorithm 2: Bag of Visual Words (BoVW) Algorithm

Input:

- Number of clusters: K

- Local Image Descriptors: X = {xi}Ii=1 , xi ∈ RD ∀i

Output:

- Bag of Visual Words: BX ∈ RK

1. K-means Algorithm - Creation of the Codebook:

- Initialization of the clusters centroids ck ∈ RD, ∀k = 1, ...,K

while at least one xi changes cluster do

- Assign each of the xi to its nearest ck, using the Euclidian Distance

- Update the centroids ck of the cluster Sk:

ck =
1

|Sk|
∑
xi∈Sk

xi , ∀k

end

2. BoVW Aggregation

- ∀k, count how many features xi are assigned to its corresponding cluster:

bk = #{xi: xi is assigned to ck}

- Aggregate all the bk in the so-called BoVW of X: BX =
(
b1, ..., bK

)
- Average Pooling of the BoVW: BX = 1

IB
X

68

3.2.3 Vector of Locally-Aggregated Descriptors

The Vector of Locally-Aggregated Descriptors (VLAD) is a pooling encoder first intro-

duced in 2010 by H. Jégou et al. ([29]).

The idea behind this technique is the same that exists behind the already explained

FV, but joined with what we showed about the BoVW. Indeed, FV and VLAD are so

similar that the differences between them could be resumed in these two observations:

• Like in BoVW, the local image descriptors are first assigned to their correspond-

ing visual word in the K elements vocabulary, using as quantizer the already

described K-means algorithm (instead of using the GMM as in FV15).

Indeed, the soft-assignment used for the FV (i.e. the posterior probability of each

GMM component), is replaced with the following hard-assignment :

vk =
∑

xi: xi is assigned to ck

(xi − ck) (3.40)

where xi is the input local descriptor and ck its closest visual word in the vo-

cabulary. The final VLAD representation of the image X, indicated with with

VX ∈ RK×D, is the concatenation of the accumulated vectors vk (see [12]):

VX =
(
v1, ..., vK

)
(3.41)

Note that all the vk have the same size, which is equal to the size of the used local

features. Before passing it to the classifier or perform the descriptor normalization

presented in 3.2.1.3, we divide it, as done for the FV and the BoVW, by the sample

size: VX ← 1
IV

X (this is equal to perform the average pooling).

• Considering the FV expressed as in (3.27), we could see VLAD algorithm as a

simplification (or a specific case) of the FV, where the contribution of the 2nd

statistic is not taken into account. This usually leads to a less precise representa-

tion of the local descriptors and, practically speaking, to a weaker classification

performance than the one obtained using FV.

15This is what is generally done in practice, even if theoretically also the GMM could be an option.

69

70

Chapter 4

Proposed Solution

In this chapter it is presented in detail the solution we propose to solve the classification

problem of lung cancer cells images (Figure 4.1).

Figure 4.1: Detailed scheme of the proposed classification process. After cropping the
images, the features are extracted. An encoder is then applied in order to obtain the
vectors of pooled features (we write “FV Pooling” since it is the pooling encoder we
propose to use). Finally, the vectors are passed to a linear SVM to be classified.

We first face the problem of extracting the features training the CNN from scratch.

We constructed our own network, which from now on is called MyNet, taking mainly

as example the AlexNet structure ([31]), but with some modifications. The main differ-

ence between them is that MyNet is shallower and with less parameters to be trained

(AlexNet : ≈ 62 Millions, MyNet : ≈ 1.4 Millions). This is because the more parameters

to train in a network, the more images are needed to obtain good classification results.

In MyNet architecture, we also inserted two dropout layers between the fully-connected

ones. This is done to partially avoid overfitting during the training step. Moreover,

a cost, proportional to the number of samples in each class, is applied to each image

output vector to compute the value of the loss function, which is chosen to be the

so-called log-loss.

71

Figure 4.2: Images pre-processing when training MyNet from scratch and when fine-
tuning VGG-m parameters. The first consists in augmenting the input image, the
second one is the subtraction of the average training image.

The structure of MyNet is explained in details in table 4.1 and its training architec-

ture is shown in Figure 4.3. Note that we set the input image size equal to 256× 256,

with 3 input channels (RGB format), to make the network more suitable for our dataset.

Right before training, we subtract to each image the average of all the training images

in the dataset (see Figure 4.2). This is done to normalize the input data and should

be able to remove their “bias”.

Figure 4.3: MyNet architecture used during training.

Once MyNet is trained, we use it to extract features. Before doing that, we crop

the input images, circumscribing a rectangle around each cell, in order to remove the

useless white background. Then, the features are extracted from the 9th layer (4th

convolutional one) of the network and hence, for each image, we obtain 64 feature maps.

Once the features are extracted, the three different pooling encoders are applied one

at a time and their outcome is then used to separately train the linear SVM classifier.

The whole process (see Figure 4.1), starting from the training of the network, is then

performed again on the augmented dataset. Due to the scarce amount of data, the

described procedure returns poor results and so we try to use a different approach.

72

The local descriptors are then obtained using transfer learning. This should allow

the network to extract good features even without a great amount of data. In our work

we do that exploiting two different pre-trained networks: the already mentioned AlexNet

and VGG-m ([17]). These two networks are not very different between each other, both

in terms of depth (5 convolutional layers and 3 fully-connected ones) and types of layers,

but VGG-m generates more features maps in the last convolutional layers, and hence

presents slightly more parameters (≈ 100 Millions). Both the networks were originally

trained on ImageNet, an enormous visual database containing more than 14 millions

images grouped in more or less 20 thousands non-overlapping classes. The structures of

these two networks are respectively shown in 4.2 and 4.3. Again, before extracting the

images features, we crop the images to remove useless information. For both networks,

the features are extracted after the 13th layer (5th convolutional one), when we want to

apply a pooling encoder, and after the 19th (before the last fully-connected layer) when

no encoder is used. When extracting from the 9th layer using AlexNet, the feature maps

are 256 for each image, while when using VGG-m network they are 512. These features,

with respect to the ones extracted using MyNet, are more precise and detailed (see the

difference between their feature maps in Chapter 5), since they are obtained from a

deeper convolutional layer. The classification results obtained extracting features with

transfer learning overtake the ones of the previous method, both with and without

using data augmentation on the training set.

What we propose next is to improve again this results fine-tuning the parameters of

the pre-trained networks. Note that the networks have to be adapted when re-trained

during fine-tuning, changing the last fully-connected layer’s output dimension in order

to make it classify into 4 classes instead of 1000. This is not necessary when the pre-

trained networks are used directly to extract features. Anyway, we decide to fine-tune

just the VGG-m network since, as it has more parameters, we expect it to perform

better than AlexNet. The training architecture of VGG-m is shown in Fig. 4.4, while

we do not report the AlexNet one since its parameters are not fine-tuned.

Figure 4.4: VGG-m architecture used during training. Note that the las fully connected
layer outputs only 4 classes and not 1000, as it is in its original framework.

73

Also in this case, when calculating the loss, we decide to apply a cost to the images

in order to reduce the imbalanced classes effect. We choose to optimize the parameters

from the 9th to the last layer of the network, which in practice consists in adjusting the

network weights of the last three convolutional layers and all the fully-connected ones,

and freeze the first eight ones setting to 0 their parameters learning rate. This choice

is purely empirical: we did not have enough computational power to fine-tune all the

network layers’ parameters, or even perform tests on how many layers would be ideal

to adapt on our dataset. This is, in fact, something that we aim to discover in some

further analysis. As we did with MyNet, before re-training the VGG-m, we remove the

“bias” from the input images (see again Figure 4.2) subtracting the average image of

the original training set the network was trained on (i.e. ImageNet). We could have

subtracted the average of our specific training set but, since it is significantly smaller

than ImageNet, we choose not to use it. After re-training the network, the process

of extraction, pooling and classification with the linear SVM is performed exactly as

before (Fig. 4.1).

74

Layer Type Input Size Output Size Support Stride Pad

1 Convolution 256× 256× 3 63× 63× 32 8× 8 4 0

2 ReLU – – 1× 1 1 0

3 Max-Pool 63× 63× 32 31× 31× 32 3× 3 2 0

4 Convolution 31× 31× 32 27× 27× 64 5× 5 1 0

5 ReLU – – 1× 1 1 0

6 Max-Pool 27× 27× 64 13× 13× 64 3× 3 2 0

7 Convolution 13× 13× 64 13× 13× 128 3× 3 1 1

8 ReLU – – 1× 1 1 0

9 Convolution 13× 13× 128 13× 13× 64 3× 3 1 1

10 ReLU – – 1× 1 1 0

11 Max-Pool 13× 13× 64 6× 6× 64 3× 3 2 0

12 Fully-Connected 6× 6× 64 1× 1× 500 6× 6 1 0

13 ReLU – – 1× 1 1 0

14 Dropout – – 1× 1 1 0

15 Fully-Connected 1× 1× 500 1× 1× 100 1× 1 1 0

16 ReLU – – 1× 1 1 0

17 Dropout – – 1× 1 1 0

18 Fully-Connected 1× 1× 100 1× 1× 4 1× 1 1 0

19 Softmax Loss – – 1× 1 1 0

Table 4.1: MyNet architecture. The separation line between the 9th and 10th layers
indicates where we extract the image features before applying the encoders.

75

Layer Type Input Size Output Size Support Stride Pad

1 Convolution 227× 227× 3 55× 55× 96 11× 11 4 0

2 ReLU – – 1× 1 1 0

3 Normalization – – 1× 1 1 0

4 Max-Pool 55× 55× 96 27× 27× 96 3× 3 2 0

5 Convolution 27× 27× 96 27× 27× 256 5× 5 1 2

6 ReLU – – 1× 1 1 0

7 Normalization – – 1× 1 1 0

8 Max-Pool 27× 27× 256 13× 13× 256 3× 3 2 0

9 Convolution 13× 13× 256 13× 13× 384 3× 3 1 1

10 ReLU – – 1× 1 1 0

11 Convolution 13× 13× 384 13× 13× 384 3× 3 1 1

12 ReLU – – 1× 1 1 0

13 Convolution 13× 13× 384 13× 13× 256 3× 3 1 1

14 ReLU – – 1× 1 1 0

15 Max-Pool 13× 13× 256 6× 6× 256 3× 3 2 0

16 Fully-Connected 6× 6× 256 1× 1× 4096 6× 6 1 0

17 ReLU – – 1× 1 1 0

18 Fully-Connected 1× 1× 4096 1× 1× 4096 1× 1 1 0

19 ReLU – – 1× 1 1 0

20 Fully-Connected 1× 1× 4096 1× 1× 1000 1× 1 1 0

21 Softmax Loss – – 1× 1 1 0

Table 4.2: AlexNet architecture. The separation line between the 13th and 14th layers
indicates where we extract the image features before applying the encoders.

76

Layer Type Input Size Output Size Support Stride Pad

1 Convolution 224× 224× 3 109× 109× 96 7× 7 2 0

2 ReLU – – 1× 1 1 0

3 Normalization – – 1× 1 1 0

4 Max-Pool 109× 109× 96 54× 54× 96 3× 3 2 0

5 Convolution 54× 54× 96 26× 26× 256 5× 5 2 1

6 ReLU – – 1× 1 1 0

7 Normalization – – 1× 1 1 0

8 Max-Pool 26× 26× 256 13× 13× 256 3× 3 2 0

9 Convolution 13× 13× 256 13× 13× 512 3× 3 1 1

10 ReLU – – 1× 1 1 0

11 Convolution 13× 13× 512 13× 13× 512 3× 3 1 1

12 ReLU – – 1× 1 1 0

13 Convolution 13× 13× 512 13× 13× 512 3× 3 1 1

14 ReLU – – 1× 1 1 0

15 Max-Pool 13× 13× 512 6× 6× 512 3× 3 2 0

16 Fully-Connected 6× 6× 512 1× 1× 4096 6× 6 1 0

17 ReLU – – 1× 1 1 0

18 Fully-Connected 1× 1× 4096 1× 1× 4096 1× 1 1 0

19 ReLU – – 1× 1 1 0

20 Fully-Connected 1× 1× 4096 1× 1× 1000 1× 1 1 0

21 Softmax Loss – – 1× 1 1 0

Table 4.3: VGG-m architecture. The separation line between the 13th and 14th layers
indicates where we extract the image features before applying the encoders.

77

78

Chapter 5

Experiments

In this chapter, other than presenting the dataset, we show the classification results

obtained applying to our set of images the learning techniques as explained in Chapter 4.

The same experiment is carried out more than one time, changing just the train and test

set, in order to have a more general point of view on our algorithm performances and to

see how much they depend on the images chosen for training. For the sake of simplicity,

we just reported the best results for each experiment. The code1 is implemented using a

MATLAB toolbox called MatConvNet (see [61]). This collection of functions develops a

clever way to use convolutional neural networks, pooling encoders and many classifiers

like SVM. In the world of computer vision (in particular image understanding) this

toolbox essentially exploit the open source library VLFeat ([60]).

5.1 Dataset

The dataset2 consists of 5277 lung cells images divided in four imbalanced classes:

• Adenocarcinoma (529 images): Non-Small Cell Lung Cancer (NSCLC), usually

occur at the outer edges of the lung.

• Epidermoid Carcinoma (484 images): Non-Small Cell Lung Cancer (NSCLC),

they are more prevalent in men and arises in the lining of the large air passage-

ways, or bronchi.

• Negative (692 images): cells where the tumor is not present.

• OAT-cell Carcinoma (3572 images): Small Cell Lung Cancer (SCLC), smaller

than normal cells, they barely present any cytoplasm. This is the more aggressive

type of lung cancer; compared with NSCLC, OAT-cells have a shorter doubling

time, higher growth fraction, and earlier development of metastases.

1The “skeleton” of the code takes a page out from the already cited article “Deep Filter Banks for
Texture Recognition, Description and Segmentation” ([19]).

2Kindly offered by the professor Konradin Metze and his research group, Department of Pathological
Anatomy, Faculty of Medical Sciences, University of Campinas, Brazil.

79

One example for each type of cell is showed in Figure 5.1.

The images are retrieved by digitalizing brush cytologic preparations obtained from 132

untreated patients. This is done using the Hematoxylin and Eosin (H&E) stain, one of

the techniques most widely used in histology to make diagnosis. The resulting images

are collected with a spatial resolution of 0.1 µm/pixel (1.25 numerical aperture, 100 ×
oil immersion), as explained in [7]. Tumor and normal epithelial cells were identified

independently by two trained pathologists and only the ones with concordant diagnosis

were included in this study. The final result consists in 256× 256, RGB, ’.bmp’ format

images with luminance levels ranging between 0 and 255.

(a) Adenocarcinoma (b) Epid. Carcinoma (c) Negative (d) OAT-cell

Figure 5.1: Examples of lung cells for each class in the dataset.

To divide the train and test set, we assigned to every image an integer extracted

from a Discrete Uniform Distribution between 1, 2 and 3. If the number assigned is

equal to 3 we set the corresponding image to the test set, otherwise to the train one.

Since in this work we use different versions of the dataset, we give now their description

and the respective notations adopted:

• “lung” dataset: it is the already described dataset, i.e. the original one.

• “aug lung” dataset: to create this dataset, an offline data augmentation is per-

formed. In particular, for each lung cell image in the training set we create 5 more

augmented images applying a random rotation in the angles range of [−π
2 ,+

π
2]

and a random reflection (performed with probability 0.5) both in the horizontal

and vertical direction. Some transformations, like rescaling or gaussian noise, are

not taken into account because of the cells structure, and others, like shifting,

because they wouldn’t add any useful information. We choose to not augment

the test set.

• “ad-vs-ep lung” dataset: this dataset is made up of only two classes, Adenocarci-

noma and Epidermoid Carcinoma.

• “oat-vs-all lung” dataset: this dataset is constructed in order to have just two

classes. The first is the OAT-cells one and the second is the union of all images

in the other three classes.

80

5.2 Experiment 01

Here are analyzed all the described techniques on both the original dataset “lung” and

the augmented dataset “aug lung”.

Training from Scratch

We start showing in Figure 5.2 the behaviour of the loss function with respect to

the training epochs (just for “aug lung” dataset, since it’s the most significative one).

The results are obtained using a batch size of 256 and a learning rate which decreases

logarithmically with the epochs between 10−4 and 10−6.

Figure 5.2: Loss Function: log-loss, the value continues to decrease but without any
evident improvement.

Even if it’s not very significative, since we will then use the SVM to finally classify

the images, the behaviour of the loss function gives us information on the network

ability to learn the important features of our images. After 100 epochs the objective is

still decreasing, but the improvement is so slow that we decide to stop. Once MyNet

is trained, we use it to extract the images features, which are then pooled and used to

train the linear SVM classifier. To have an idea of how the extracted features look like,

see one of the corresponding feature maps of a generic cell in Figure 5.3.

Figure 5.3: Feature map of a random chosen cell extracted after 9th layer of MyNet.

81

The obtained performances are shown in table 5.1, where we set 64 clusters for

VLAD and FV, and 4096 for BovW. To respectively obtain the GMM parameters for

FV and the visual words vocabulary for BoVW and VLAD, we use a subset of 1000

training images.

BovW VLAD FV

Train Test Train Test Train Test

lung 91.9 50.6 36.5 28.7 95.0 56.5

aug lung 72.7 54.9 77.0 60.6 82.7 64.0

Table 5.1: Train and test mAP values (in %) when extracting features with MyNet.

We do not present the final results of the classification using no pooling encoder on

the extracted features because the SVM was completely not able to interpret them and

hence to correctly classify the images. The test performance of the algorithm improves

in all the three cases applying data augmentation. The decreasing of the training

mAP is instead a sign that we are succeeding in reducing overfitting. The results

obtained using BoVW are acceptable, even if not impressive, while the ones obtained

with VLAD are somewhat significative only with respect to the augmented dataset,

but actually forgivable on the original one. The best classification results are obtained

using “aug lung” and FV as encoder (64.0%). Concerning this case, for completeness

we also show in Figure 5.4 the APs for each class and in Figure 5.5 the respective train

and test confusion matrices (which would not be significative without the AP values

since the dataset is imbalanced).

Figure 5.4: MyNet trained from scratch. APs of the four classes using FV encoder.

82

(a) Train Confusion Matrix (b) Test Confusion Matrix

Figure 5.5: 5.5a: total acc = 81.1%. 5.5b: total acc = 66.0%.

Transfer Learning

Here, to extract the important features from the input images, we use both AlexNet

and VGG-m. See in Figure 5.6 an example of the feature maps for both networks.

Looking carefully at the feature maps, it is possible to see that they present more

detailed patterns than the one shown in Figure 5.3, which makes us expect a higher

classification performance since they can identify more precise patterns in the images.

This happens because the features extracted from the two pre-trained networks are

obtained from a deeper layer than the one used to extract them from MyNet.

(a) AlexNet (b) VGG-m

Figure 5.6: Feature maps of a random chosen cell extracted after 13th layer of AlexNet
(5.6a) and VGG-m (5.6b).

The hyperparameters used in this experiment framework are the same as for the

network trained from scratch: 1000 images respectively to train and create the 64 GMM

parameters for FV and the 4096 visual words vocabulary for BoVW and VLAD. The

classification results obtained with the two pre-trained networks are showed in 5.2 when

using AlexNet and in 5.3 when using VGG-m.

83

No Enc. BovW VLAD FV

Train Test Train Test Train Test Train Test

lung 78.1 62.8 86.9 56.3 90.1 64.5 92.6 64.9

aug lung 72.6 63.3 74.7 58.7 86.0 69.4 88.7 69.8

Table 5.2: Train and test mAP values (in %) when extracting features with AlexNet.

No Enc. BovW VLAD FV

Train Test Train Test Train Test Train Test

lung 76.4 62.9 88.8 56.3 93.1 63.7 95.0 65.4

aug lung 72.0 65.6 76.2 58.7 87.8 68.5 90.0 69.8

Table 5.3: Train and test mAP values (in %) when extracting features with VGG-m.

In all the above cases, the features are extracted at the 13th layer of the networks,

except for the case where no encoder is used, in which they are extracted at the 19th one,

right before the last fully-connected layer. In this scenario, the first two fully-connected

layers of the network are interpretable as a pooling encoder that transforms the features

before passing them to the linear SVM. The results are very similar between the two

networks and the differences could actually be due to random choices, like the 1000 im-

ages used for training the GMM parameters and the visual words vocabulary. Anyway,

transfer learning overtakes training from scratch, both with and without data aug-

mentation. The difference is that the performance of the network trained from scratch

improves much more with data augmentation than the pre-trained networks do because

transfer learning already helps reducing overfitting. The FV with data augmentation

remains the encoder giving the best performances (AlexNet : 69.6%, VGG-m: 69.8%).

We show, for this last case, the resulting APs for both networks in Figure 5.7.

(a) APs when using AlexNet (b) APs when using VGG-m

Figure 5.7: APs of the four classes using FV.

84

Even if we already reached some good results, we try to improve them fine-tuning

the parameters of the pre-trained networks. Since the two networks performances are

very similar, we do that just for the VGG-m. We freeze the first 8 layers of the network,

setting their parameters learning rate to 0, while we train just the other ones. Their

learning rate is set to decrease with the epochs from 10−3 to 10−4 and the batch size for

the update with the gradient descent is set to 256. The behaviour of the loss function

during the tuning of the parameters, when using the augmented dataset, is shown in

Figure 5.8.

Figure 5.8: Loss Function: log-loss, the value continues to decrease for training, but
stops and starts oscillating for test.

We fine-tuned the parameters for 10 epochs, but we stopped since after the 5th one

it seems that the network starts overfitting. This is clear because the training value of

the loss keeps decreasing while the test one starts growing back. Once the network is

re-trained, both for the original and the augmented data, the classification is performed

extracting features from the same layers and setting the same parameters as before.

Since the FV already proved to be the highest performing encoder, we do not report

the final mAPs for BovW and VLAD. We also show the classification results when no

encoder is applied just to see if fine-tuning all the FC layers can, in some way, improve

the performance of this classification structure (see table 5.4).

No Enc. FV

Train Test Train Test

lung 62.9 51.6 94.9 63.6

aug lung 69.9 63.5 89.8 70.4

Table 5.4: Train and test mAP values (in %) when extracting features with VGG-m
fine-tuned from the 9th layer to the last one.

85

As expected, the performance obtained fine-tuning the VGG-m network is the best

among all the others (70.4%). We show respectively in Figure 5.9 and Figure 5.10

the APs and the confusion matrices of this experiment. Unfortunately, the gain in

mAP with respect to the standard transfer learning is exiguous. The fact is that the

techniques used until now are already set to reduce a lot the overfitting of the network

on training data and, because of that, the improvement due to fine-tuning is barely

noticeable.

Figure 5.9: VGG-m fine-tuned. APs of the four classes using FV encoder.

(a) Train Confusion Matrix (b) Test Confusion Matrix

Figure 5.10: 5.10a: total acc = 89.5%. 5.10b: total acc = 69.5%.

Something that is important to underline is that we put a lot of attention in pa-

rameters fine-tuning since the use of FV is computationally much more expansive than

directly using fully-connected layers. This happens because the FV needs first to ini-

tialize and train the requested GMM parameters and, secondly, because its pooled

86

representation of the features is generally dense and hence, when working with big

local descriptors, the computing time really represents a limit.

5.3 Experiment 02

This experiment does not aim to prove the efficiency of the proposed methods, but

rather tries to highlight other doubts related to the dataset. The first one concerns

the original reason why the imbalanced dataset. The class of OAT-cells contains much

more images than other classes because, when the data was collected, the objective

was finding an algorithm being able to differentiate between this class and all the oth-

ers. This is why we created the “oat-vs-all lung” dataset and we test our classification

methods on it. The second reason derives from an analysis a posteriori on the outcomes

we obtained in section 5.2. From the test APs of those experiments it was clear that

the worst results of our classification algorithm were obtained when trying to detect the

attributes of cells in the first two classes: Adenocarcinoma and Epidermoid Carcinoma.

We identified the two main causes of this inability: (1) these are the two classes with

less samples in the dataset, and hence our algorithm struggles to learn which are the

main characteristics of these two types of cell; (2) they really are very similar in color,

shape and especially size of the tumor (as explained in section 5.1, they both belong to

the Non-Small Cell Lung Cancer family). Hence, we create the “ad-vs-ep lung” dataset

in order to test our classification algorithm just on these two classes.

This experiment is performed extracting image features with pre-trained VGG-m net-

work without fine-tuning its parameters and using only the FV encoder, since it has

already proven to be the best one. We also perform the classification algorithm ap-

plying data augmentation on both the described dataset as it was applied on “lung”

in the first experiment. We call the two augmented dataset “aug oat-vs-all lung” and

“aug ad-vs-ep lung”, respectively. As before, we use a subset of 1000 training images

to create the 64 GMM parameters3. The results are shown in tab. 5.5.

FV

Train Test

oat-vs-all lung 96.7 89.9

aug oat-vs-all lung 95.6 92.3

ad-vs-ep lung 96.9 72.0

aug ad-vs-ep lung 96.3 77.8

Table 5.5: Train and test mAP values (in %) when extracting features with VGG-m.

87

The results are better than expected. Note that, as it happened before, the two

experiments are improved by applying data augmentation, both reducing overfitting

and increasing the test mAP (aug oat-vs-all lung mAP: 92.3%, aug ad-vs-ep lung mAP:

77.8%). The APs for the classification on the two augmented dataset are shown in

Figure 5.11.

(a) APs of classification on aug oat-vs-all lung (b) APs of classification on aug ad-vs-ep lung

Figure 5.11: APs for the two augmented dataset using FV.

Looking at the results on the first dataset we can say that our algorithm is almost

completely capable of identifying the differences between the two classes and hence

to properly classify them. This is probably due to the fact that, treating as a single

class the three low-represented ones, we partially reduce the imbalanced classes effect.

Moreover, joining these three classes we are implicitly putting together the images most

difficult to distinguish. Concerning the second set of data, the results still do not reach

outstanding performances, always because the scarce amount of data, but at least they

are acceptable considering the fact that the two classes in the dataset are the most

similar and, as a consequence, the most difficult to correctly classify.

3Actually, when we are classifying “ad-vs-ep lung”, the total images are 1013. Since the training
and the test images are assigned as explained in 5.1, the training set will contain less than 1000 images.
This is the only case where to train the GMM parameters it is used the whole training set and not
some randomly selected subset.

88

Conclusions

By performing classification of lung cancer cell images, using Convolutional Neural

Networks as feature extractor and a linear Support Vector Machine as classifier, this

work showed that the Fisher Vector pooling leads to excellent results, even better than

using none or other types of state-of-the-art encoders. As expected, the transfer learning

approach quite overtook the trained from scratch network’s results. The performance

of this framework has been improved by applying data augmentation at first, and

fine-tuning the parameters of the pre-trained network then. Even if we saw a slight

improvement in the results using these two techniques, we did not succeed in completely

overcome the scarce amount of collected data, which indeed represents the biggest limit

in this research. Despite this, our research was primarily able to prove the FV’s ability

of pooling the features extracted from lung cancer cell images in order to make them

much more informative for a linear SVM classifier and, secondly, that applying transfer

learning with data augmentation and parameters fine-tuning really helps to reduce

overfitting. In particular, we think that parameters fine-tuning is an efficient technique

to apply when using transfer learning and the target dataset is very different from the

one used to originally train the network. Because of this, we think that this technique

should be taken into account for further works. Besides that, we believe that the

presented learning structure can be considered a valid option in solving medical image

classification tasks when a huge amount of training data is not available.

89

90

Bibliography

[1] https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-

9ceea97ce0fb.

[2] https://en.wikipedia.org/wiki/Cluster analysis.

[3] https://machinelearningmastery.com/dropout-for-regularizing-deep-

neural-networks/.

[4] https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-

20180531-1.

[5] https://en.wikipedia.org/wiki/K-means clustering.

[6] https://cs231n.github.io/convolutional-networks/.

[7] R. L. Adam, R. C. Silva, F. G. Pereira, N. J. Leite, I. Lorand-Metze, and K. Metze.

The fractal dimension of nuclear chromatin as a prognostic factor in acute precur-

sor b lymphoblastic leukemia. Analytical Cellular Pathology, 28(1, 2):55–59, 2006.

[8] A. F. Agarap. An architecture combining convolutional neural network (cnn)

and support vector machine (svm) for image classification. arXiv preprint

arXiv:1712.03541, 2017.

[9] A. Aggarwal, G. Lewison, S. Idir, M. Peters, C. Aldige, W. Boerckel, P. Boyle,

E. L. Trimble, P. Roe, T. Sethi, et al. The state of lung cancer research: a global

analysis. Journal of Thoracic Oncology, 11(7):1040–1050, 2016.

[10] E. Ahn, A. Kumar, D. Feng, M. Fulham, and J. Kim. Unsupervised feature

learning with k-means and an ensemble of deep convolutional neural networks for

medical image classification. arXiv preprint arXiv:1906.03359, 2019.

[11] S.-i. Amari and H. Nagaoka. Methods of information geometry, volume 191. Amer-

ican Mathematical Soc., 2007.

[12] G. Amato, P. Bolettieri, F. Falchi, and C. Gennaro. Large scale image retrieval

using vector of locally aggregated descriptors. In International Conference on

Similarity Search and Applications, pages 245–256. Springer, 2013.

91

https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb
https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb
https://en.wikipedia.org/wiki/Cluster_analysis
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20180531-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20180531-1
https://en.wikipedia.org/wiki/K-means_clustering
https://cs231n.github.io/convolutional-networks/

[13] L. Bontemps, J. McDermott, N.-A. Le-Khac, et al. Collective anomaly detection

based on long short-term memory recurrent neural networks. In International

Conference on Future Data and Security Engineering, pages 141–152. Springer,

2016.

[14] R. Boţ, G. Kassay, and G. Wanka. Strong duality for generalized convex optimiza-

tion problems. Journal of Optimization Theory and Applications, 127(1):45–70,

2005.

[15] K. Boyd, K. H. Eng, and C. D. Page. Area under the precision-recall curve:

point estimates and confidence intervals. In Joint European conference on machine

learning and knowledge discovery in databases, pages 451–466. Springer, 2013.

[16] M. A. Carreira-Perpinán. A review of mean-shift algorithms for clustering. arXiv

preprint arXiv:1503.00687, 2015.

[17] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in

the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531,

2014.

[18] H. Chougrad, H. Zouaki, and O. Alheyane. Soft assignment vs hard assignment

coding for bag of visual words. In 2015 10th International Conference on Intelligent

Systems: Theories and Applications (SITA), pages 1–5. IEEE, 2015.

[19] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep filter banks for texture

recognition, description, and segmentation. International Journal of Computer

Vision, 118(1):65–94, 2016.

[20] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages

226–231, 1996.

[21] R. Frank. The perceptron, a perceiving and recognizing automaton (project para).

Cornell Aeronautical Laboratory Report No. 85-460-1, 1957.

[22] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance

dilemma. Neural computation, 4(1):1–58, 1992.

[23] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[24] T. Grel. Region of interest pooling explained. deepsense. io, 2017.

[25] M. A. Hanson. On sufficiency of the kuhn-tucker conditions. Journal of Mathe-

matical Analysis and Applications, 80(2):545–550, 1981.

[26] R. G. Hart, H.-C. Diener, S. Yang, S. J. Connolly, L. Wallentin, P. A. Reilly, M. D.

Ezekowitz, and S. Yusuf. Intracranial hemorrhage in atrial fibrillation patients

92

during anticoagulation with warfarin or dabigatran: the re-ly trial. Stroke, 43(6):

1511–1517, 2012.

[27] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-

sifiers. In Advances in neural information processing systems, pages 487–493, 1999.

[28] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A tutorial.

Computer, 29(3):31–44, 1996.

[29] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into

a compact image representation. In 2010 IEEE computer society conference on

computer vision and pattern recognition, pages 3304–3311. IEEE, 2010.

[30] K. C. Kiwiel. Convergence and efficiency of subgradient methods for quasiconvex

minimization. Mathematical programming, 90(1):1–25, 2001.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[32] T. Learning. Convolutional neural network for visual recognition, 2017.

[33] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In

Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[34] T. Leung and J. Malik. Representing and recognizing the visual appearance of ma-

terials using three-dimensional textons. International journal of computer vision,

43(1):29–44, 2001.

[35] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen. Medical image classi-

fication with convolutional neural network. In 2014 13th International Conference

on Control Automation Robotics & Vision (ICARCV), pages 844–848. IEEE, 2014.

[36] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information

theory, 28(2):129–137, 1982.

[37] R. Luengo-Fernandez, J. Leal, A. Gray, and R. Sullivan. Economic burden of

cancer across the european union: a population-based cost analysis. The lancet

oncology, 14(12):1165–1174, 2013.

[38] Lung Cancer Europe (LuCE). Challenges in lung cancer in europe,

2016. https://www.lungcancereurope.eu/wp-content/uploads/2017/10/LuCE-

Report-final.pdf.

[39] L. Medsker and L. C. Jain. Recurrent neural networks: design and applications.

CRC press, 1999.

93

https://www.lungcancereurope.eu/wp-content/uploads/2017/10/LuCE-Report-final.pdf
https://www.lungcancereurope.eu/wp-content/uploads/2017/10/LuCE-Report-final.pdf

[40] A. Miko lajczyk and M. Grochowski. Data augmentation for improving deep learn-

ing in image classification problem. In 2018 international interdisciplinary PhD

workshop (IIPhDW), pages 117–122. IEEE, 2018.

[41] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.

MIT press, 2018.

[42] H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem. Clas-

sification using deep learning neural networks for brain tumors. Future Computing

and Informatics Journal, 3(1):68–71, 2018.

[43] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici. Unknown malcode

detection via text categorization and the imbalance problem. In 2008 IEEE In-

ternational Conference on Intelligence and Security Informatics, pages 156–161.

IEEE, 2008.

[44] F. Perronnin and D. Larlus. Fisher vectors meet neural networks: A hybrid clas-

sification architecture. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3743–3752, 2015.

[45] F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-

scale image classification. In European conference on computer vision, pages 143–

156. Springer, 2010.

[46] J. Platt et al. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Advances in large margin classifiers, 10(3):

61–74, 1999.

[47] X. Qiao and Y. Liu. Adaptive weighted learning for unbalanced multicategory

classification. Biometrics, 65(1):159–168, 2009.

[48] J. Ramı́rez, J. Górriz, F. Segovia, R. Chaves, D. Salas-Gonzalez, M. López,

I. Álvarez, and P. Padilla. Computer aided diagnosis system for the alzheimer’s

disease based on partial least squares and random forest spect image classification.

Neuroscience letters, 472(2):99–103, 2010.

[49] R. Rouhi, M. Jafari, S. Kasaei, and P. Keshavarzian. Benign and malignant breast

tumors classification based on region growing and cnn segmentation. Expert Sys-

tems with Applications, 42(3):990–1002, 2015.

[50] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.

[51] T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than

the roc plot when evaluating binary classifiers on imbalanced datasets. PloS one,

10(3):e0118432, 2015.

94

[52] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with

the fisher vector: Theory and practice. International journal of computer vision,

105(3):222–245, 2013.

[53] D. Scherer, A. Müller, and S. Behnke. Evaluation of pooling operations in convolu-

tional architectures for object recognition. In International conference on artificial

neural networks, pages 92–101. Springer, 2010.

[54] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for

regularized loss minimization. Journal of Machine Learning Research, 14(Feb):

567–599, 2013.

[55] A. Singh, A. Yadav, and A. Rana. K-means with three different distance metrics.

International Journal of Computer Applications, 67(10), 2013.

[56] H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci,

1(804):801, 1956.

[57] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.

Gotway, and J. Liang. Convolutional neural networks for medical image analysis:

Full training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–

1312, 2016.

[58] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep

transfer learning. In International conference on artificial neural networks, pages

270–279. Springer, 2018.

[59] W. D. Travis. Update on small cell carcinoma and its differentiation from squamous

cell carcinoma and other non-small cell carcinomas. Modern Pathology, 25(1):S18–

S30, 2012.

[60] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable library of computer

vision algorithms. In Proceedings of the 18th ACM international conference on

Multimedia, pages 1469–1472, 2010.

[61] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for matlab.

In Proceedings of the 23rd ACM international conference on Multimedia, pages

689–692, 2015.

[62] I. I. Wistuba, D. Bryant, C. Behrens, S. Milchgrub, A. K. Virmani, R. Ashfaq,

J. D. Minna, and A. F. Gazdar. Comparison of features of human lung cancer

cell lines and their corresponding tumors. Clinical cancer research, 5(5):991–1000,

1999.

[63] B. Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

95

[64] H. Zen and H. Sak. Unidirectional long short-term memory recurrent neural net-

work with recurrent output layer for low-latency speech synthesis. In 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4470–4474. IEEE, 2015.

[65] X. Zhang, Y. Zou, and W. Shi. Dilated convolution neural network with leakyrelu

for environmental sound classification. In 2017 22nd International Conference on

Digital Signal Processing (DSP), pages 1–5. IEEE, 2017.

[66] Y. Zhang and X. Xing. Classifications of hand and wrist fractures. In Clinical

Classification in Orthopaedics Trauma, pages 183–230. Springer, 2018.

[67] Y. Zhang, Z. Dong, A. Liu, S. Wang, G. Ji, Z. Zhang, and J. Yang. Magnetic

resonance brain image classification via stationary wavelet transform and general-

ized eigenvalue proximal support vector machine. Journal of Medical Imaging and

Health Informatics, 5(7):1395–1403, 2015.

96

Ringraziamenti

Come accaduto spesso nella mia vita, mi sto nuovamente fermando per chiedermi chi

sono ora e chi sarò in futuro. La risposta alla seconda domanda è nascosta nelle pieghe

sconosciute del caso e dell’incertezza. Mi piace che sia cos̀ı e che, fortunatamente, non

sia oggetto di discussione delle mie prossime righe. La risposta alla prima, invece, è

probabilmente frutto delle innumerevoli esperienze che ho vissuto e che, intersecan-

dosi, mi hanno permesso di diventare la persona che oggi ho di fronte allo specchio.

Raccontarle tutte sarebbe impossibile; è perciò mio obiettivo il tentare di applicare le

mie scarse doti di sintesi per ringraziare chi, a queste esperienze, ha preso parte e ha

contribuito alla mia crescita e conoscimento personale.

Vorrei cominciare ringraziando le due figure accademiche che mi hanno accompa-

gnato e supportato negli ultimi mesi: il professor João Batista Florindo per avermi

proposto questo incredibile progetto e per avermi accolto ed aiutato sin dal primo mo-

mento e il professor Giacomo Boracchi per aver visto in me del potenziale e essere stato

sempre presente nonostante la distanza.

Procedo ringraziando chi nella mia vita è stato al mio fianco dall’inizio, indipen-

dentemente dalle scelte fatte. Mamma, ho sempre ammirato la tua capacità di rialzarti

pur andando tutto storto. Ti ringrazio per avermi mostrato come affrontare la vita

di petto e con coraggio, per avermi insegnato l’importanza delle parole e anche delle

lacrime. Papà, grazie per riuscire sempre a strapparmi un sorriso, anche nei momenti

più difficili. L’amore e la gioia che emani sono inebrianti. Ti ringrazio anche per avermi

trasmesso la tua passione per i viaggi, la tua curiosità e avermi insegnato come andare

d’accordo con l’ansia. Pietro (Peter) per tutte le botte, gli abbracci e le rime che ci

siamo scambiati, per avermi mostrato e insegnato cosa significa empatia e per essere

diventato un amico, oltre che un fratello. Sei il mio esempio. Alla zia Virgi e allo zio

Renny, per essere stati come dei genitori e per avermi insegnato che essere felici non è

poi cos̀ı difficile se si ha vicino chi si ama. Grazie anche per i funghi raccolti insieme e

per i cenoni in taverna. Grazie agli zii Annalisa ed Ezio e ai miei cugini Sofia e Luca,

per tutte le estati passate al Camping “La Rocca” e per esservi da sempre dimostrati

dei veri affetti. Grazie anche a Gianluca, per essere stato al fianco di mamma, anche

nelle avversità, e per avermi voluto bene in maniera spontanea.

97

Un grazie ai Libanesi. A Moaad, compagno di mille avventure dall’infanzia ad oggi,

per le nostre letture, il Marocco e per essere stato la prima persona con cui ho sentito

di poter essere completamente me stesso. Rappresenti un punto fermo nella mia vita.

Al Cresh, per avermi sempre considerato come un fratello, per le tue storie inventate,

le partite ai Pokemon a casa tua in Umbria e per avermi portato al mio primo vero

concerto. Al Sambu, per avermi insegnato che diverso è bello, che certe cose accadono e

basta e per avermi saputo far prendere il volo quando non riuscivo nemmeno a saltare.

Ti stimo molto. Grazie anche a Tonio, Vargas, il Max, Josef e tutti gli altri per essere

riusciti a rimanere uniti nonostante i tanti intoppi.

Un grazie alla Charly per avermi sempre sostenuto da lontano e per essere andata

oltre le apparenze quando ci siamo conosciuti.

Grazie ai rugbisti. A Loris, educatore e mentore, grazie per avermi fatto capire che

nulla è dovuto, per avermi insegnato la meritocrazia e il rispetto. Grazie ai Rumba.

A Giordi, che per quanto io mi allontanassi dal nido, hai sempre trovato un modo per

ricordarmi quanto è importante casa e quanto io sia sempre il benvenuto. A Doni, che

sei passato da essere chi si occupava di me, a farti portare a casa ubriaco dopo i tornei.

Sei più che un amico. A Destro, per esserti rivelato più che un ragazzo a cui piacciono

i kebab, grazie per le risate e per essere fortissimo a Rugby08. Un grazie anche al

Tumi, Zanna, Umbi, Carlo, Gimmy, Leo, Sic, Signo, Marcolongo e tutti gli altri per

aver condiviso con me una parte cos̀ı importante e impattante delle nostre vite.

Un grazie a Via Vallazze 91 e a GLS. Ad Aio (Lëtrë) per aver trasformato in Casa

un luogo che non lo era, per aver condiviso risate e pianti, per il tuo sentimentalismo

e per avermi sempre tenuto con lo stomaco pieno. Sei parte della mia famiglia. A Teo,

per essere sempre riuscito a capirmi a pieno, anche nelle sfumature più incoerenti di

me, per le prime barre, le tante birre e gli infiniti abbracci. Non mi stanchi mai. A

Simo (Cos), per le strimpellate e i canti a squarciagola, per il nostro slang, le nostre

chiacchierate lunghissime e per il tuo modo di amare. Sei una delle persone di cui mi

fido di più. A Giodaz (Flaco), per i concerti e le nottate, per i passaggi in macchina

e le numerose schimicate alle 3 di notte, grazie per la musica che abbiamo condiviso

e per essermi sempre stato vicino rimanendo sempre tu. Ad Albi, grazie per avermi

mostrato i miei difetti, per la tua gentilezza e per tutte le ore che, passate insieme a

crescere, diventavano minuti. Vorrei tanto non averti mai deluso. A Leti, per i sorrisi,

le occhiate di intesa e per avermi fatto di nuovo sentire un bimbo in un mondo dove per

molti diventare adulti è un imperativo. Ad Andre per le mille paglie fumate, per i pasti

condivisi a casa e per avermi fatto vedere che non è mai troppo tardi per esagerare. Ad

Angel̀ı, per i tuoi tanti consigli e le serate pazze, per le giornate di studio a tenermi “sul

pezzo” e per esserti fidato di me dal primo momento che ci siamo incontrati. A Giopog,

per Stranger Things, per essere stato sempre molto diretto, per non aver paura di dire

la tua in situazioni scomode e per avermi insegnato ad essere auto ironico. A Jimmy

per i nostri “workout”, per essere cos̀ı diversi ma volerci cos̀ı bene e per averci portato

a casa vivi dopo un’avventura di ritorno dalla Sardegna. Un grazie ad Apotz per gli

98

insulti amorevoli, ad Abba per i biscotti preparati insieme, a Dipa per le discussioni da

Otaku e a Nene per i rientri insieme a casa di notte. Un grazie anche a Cami, Nderep,

GrandpaEug, Lux, Lollo, Buch, Bea, Tina e Tower, avete reso la mia vita motivo di

orgoglio.

Un grazie ai “Mate”. Ad Abba (Kaldo), per le punchline pregiate e per le nottate

passate ad ascoltare musica e parlare dei nostri problemi senza sosta. Ad Annina, per la

tua parlantina, per i passaggi in macchina e per l’affetto sotto forma di insulti che non

mi hai mai nascosto. A Magiu, per le cotolette che mi portavi, le partite di Macchiavelli

e la fiducia che hai sempre dimostrato di avere in me. Un grazie anche a Manfra e JJ

sottone, mi mancate davvero tanto.

Un grazie a Franco per avermi ricordato che la quantità di tempo trascorso con

qualcuno non fa la qualità e a GiulioP per riuscire ancora a sorprendermi spostando

ogni volta l’asticella della pazzia verso l’alto.

Un grazie al Patio e ai ragazzi di “freesta”. A Uezzo, per le grasse risate e per

avere sempre la risposta pronta. A Michi, per avermi trasmesso la passione che metti

in quello che fai. A Gio, per la tua capacità organizzativa e la serenità che trasmetti.

A Pit, per qualche storia e una serata indimenticabile. A Luke per i tuoi cappellini e i

tuoi pareri musicali. Un grazie anche ad Albi C., Ale, Co, Nico e tutti gli altri. Grazie

per tutti i freestyle interminabili e per le partite a scacchi.

Un grazie infine al Brasile e alla República dos franceses. A Nat per la tua forza di

volontà, il tuo entusiasmo e per esserti trasformata in una sorella, a Fabi per essere la

capa migliore che abbia mai conosciuto, a DZ per i nostri sguardi e i nostri silenzi, allo

zio Vitti per le ore passate insieme ad ascoltare musica e lo scambio culturale creatosi,

a Davinho per aver portato un po’ di Italia e per esserti aperto e fidato di me, a Bruno

per le discussioni infinite, a Gabs per le pazzie e lo smalto, a Billy per le tracce e le

conversazioni sul terzo occhio. Un grazie anche a tutti quelli che non ho nominato, la

mia vita e soprattutto io siamo cambiati e migliorati tanto dopo avervi conosciuto, vi

porterò per sempre nel mio cuore, até mais.

Un altro capitolo della mia vita fa capolinea, uno nuovo prenderà il suo posto e

molte cose cambieranno. Dovunque le circostanze mi condurranno, una parte della mia

famiglia si troverà sempre dall’altra parte del Mondo, e per me questo è semplicemente

un motivo per non fermarmi mai. Tante cose belle giungono cos̀ı al termine. Dal canto

mio, le abbraccio e le lascio con un sorriso, con la speranza che questo faccia da inizio

per un ancor più felice futuro.

I cannot die because this is my Universe.

Non posso morire perché questo è il mio Universo.

99

	Abstract
	Sommario
	List of Figures
	List of Tables
	Introduction
	Machine Learning Background
	Unsupervised Learning
	Clustering Algorithms

	Supervised Learning
	Artificial Neural Networks
	Support Vector Machine
	Problem of Imbalanced Classes

	Image Classification Problem
	Medical Image Classification
	Lung Cancer Detection

	Problem Formulation
	Related Works

	Image Features: Extraction and Pooling
	Convolutional Neural Networks
	The Convolution Operation
	General Architecture
	Learning Techniques

	Pooling Encoders
	Fisher Vector
	Bag of Visual Words
	Vector of Locally-Aggregated Descriptors

	Proposed Solution
	Experiments
	Dataset
	Experiment 01
	Experiment 02

	Conclusions
	Bibliography
	Ringraziamenti

